USF Libraries

The effect of wing color on Heliconius melpomene mating behavior and its implications on the evolution of mimicry

MISSING IMAGE

Material Information

Title:
The effect of wing color on Heliconius melpomene mating behavior and its implications on the evolution of mimicry
Translated Title:
El efecto del color de las alas de Heliconius melpomene en el comportamiento de apareamiento y sus implicaciones en la evolución del mimetismo ( )
Physical Description:
Book
Language:
English
Creator:
Thompson, Ellen
Publication Date:

Subjects

Subjects / Keywords:
Butterflies--Sexual behavior   ( lcsh )
Warning coloration (Biology)   ( lcsh )
Mariposas--Comportamiento sexual
Coloracion de advertencia (Biology)
Tropical Ecology 2006
Mullerian mimicry
Ecologia Tropical 2006
Mimetismo Mullerian
Genre:
Reports   ( lcsh )
Reports

Notes

Abstract:
Wing color is important to butterflies both for social signals and protection from predators. Butterflies gain protection from predators by having aposematically colored wings that warn the predator that the butterfly is distasteful. Some butterflies are also part of Mullerian mimicry complexes in which two distasteful species converge on the same color pattern to enhance their aposematic protection. Heliconius erato and Heliconius melpomene are Mullerian mimics that exhibit a wide variety of wing patterns throughout Central and South America. Their wing patterns have greatly diverged within each species, but between the species they are almost perfect mimics in each area. It has previously been found that H. melpomene prefer to court butterflies of their same color pattern race. This study examined a possible mechanism of this racial isolation by investigating the effect of wing color change on H. melpomene courting and mating behavior. To accomplish this, 26 female and 18 male H. melpomene had the red stripe on their forewing painted. Half of the individuals were painted white, and the other half were painted red as a control. Their mating and courting behavior was observed to see how they were affected by the color change. Over seven days, seven matings were observed – all between red individuals. White males also tried to court red females and were rejected on six different occasions. This demonstrates that decreased reproductive success is an immediate consequence of wing color change and wing color may be responsible for the racial isolation observed in H. melpomene. Because of this strong sexual selection to maintain existing color patterns, geographic isolation is most likely necessary for the evolution of any new mimicry patterns.
Abstract:
El color de las alas de las mariposas se usa para señales sociales y para la protección de los depredadores. Las mariposas obtienen protección de los depredadores por tener alas de color que advierten al depredador de que la mariposa es venenosa. Algunas mariposas son parte de los complejos del mimetismo Mullerian en que dos especies venenosas tienen alas muy parecidas para aumentar su protección. Heliconius erato y Heliconius melpomene son mimetismos de Mullerian que demuestran una gran variedad de diseño de alas por todo Centro y Sur América. Sus diseños de ala son muy variadas dentro de cada especie, pero entre las dos especies son casi mímicos perfectos en cada lugar. Se ha encontrado previamente que H. melpomene prefiere cortejar a las mariposas de su misma raza de diseño. Esta investigacion examino una posible razón por este aislamiento racial. Se investigo el efecto de los cambios en el color de las alas de H. melpomene en su apareamiento y cortejo.
Language:
Text in English.
General Note:
Born Digital

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
usfldc doi - M39-00179
usfldc handle - m39.179
System ID:
SFS0001355:00001


This item is only available as the following downloads:


Full Text

PAGE 1

The effect of wing color on Heliconius melpomene mating behavior and its implications on the evolution of mimicry Ellen Thompson Department of Biology, Kenyon College ABSTRACT Wing color is important to butterflies both for social signals and protection from predators. Butterflies gain protection from predators by having aposematically colored wings that warn the predator that the butterfly is distasteful. Some butterflies are also part of Mullerian mimicry complexes in which two distasteful species converge on the same color pattern to enhance their aposematic protection. Heliconius erato and Heliconius melpomene are Mullerian mimics that exhibit a wide variety of wing patterns throughout Central and South America. Their wing patterns have greatly diverged within each species, but betw een the species they are almost perfect mimics in each area. It has previously been found that H. melpomene prefer to court butterflies of th eir same color pattern race. This study examined a possible mechanism of this racial isolation by investigating the effect of wing color change on H. melpomene courting and mating behavior. To accomp lish this, 26 female and 18 male H. melpomene had the red stripe on their forewing painted. Half of the indivi duals were painted white, and the other half were painted red as a control. Their mating and courting behavior was observ ed to see how they were affected by the color change. Over seven days, seven matings were observed all between red individuals. White males also tried to court red females and were rejected on six different occasions. This demonstrates that decreased reproductive success is an immediate consequence of wing color cha nge and wing color may be responsible for the racial isolation observed in H. melpomene Because of this strong sexual selection to main tain existing color patterns, geographic isolation is most likely necessary for the evolution of any new mimicry patterns. RESUMEN El color de las alas de las mariposas se usa para seales sociales y para proteccin de los predadores. Las mariposas consiguen proteccin de predadores por tener alas con co loracin aposemtico que avisa a los predadores que la mariposa es venenosa. Algunas mariposas son parte de complejos de mmica Mullerian en que dos especies venenosos tienen alas muy parecidas para aumentar a su proteccin aposemtico. Heliconius erato y Heliconius melpomene son mmicos Mullerian que demuestran una gran variedad de diseo de alas por todo Centro y Sur Amrica. Sus diseos de ala son muy variadas dentro de ca da especie, pero entre los do s especies son casi mmicos perfectos en cada lugar. Anteriormente fue descubierto que H. melpomene prefieren cortejar a mariposas de su mismo raza de diseo. Esta investigacin examin una posible razn por esta aislamiento racial. Se investig el efecto de cambios en el color de las alas de H. melpomene en su apareando y cortej ando. Para hacer esto, 26 hembra y 18 macho H. melpomene tuvieron la raya roja en su ala pintada. Un medio de los individuos fue pintado blanco y el otro medio fue pintado rojo como un control. Su apareando y cortejando fue observado para ver como fueron afectados por el cambio de color. En siete das, siete copulaciones fuer on observados todos entre individuos rojos. Tambin haban seis veces cuando machos blancos trataron de cortejar a las hembras rojas y fueron rechazados. Esto demuestra qu e cambiando el color de las alas de mariposas causa una disminucin en el xito reproductivo de una mariposa y el color probablement e es responsable para el aislamiento racial que fue observado en H. melpomene Por esta seleccin sexual muy fuerte que funciona para mantener el color de ala que existe, el aislamiento probablemente es necesario para la evolucin de nuevos diseos mmica. 1

PAGE 2

INTRODUCTION Color patterns of butterflies wings serve two very important functions: social signals used during courtship and male-male interact ions, as well as prot ection from predators (Silberglied 1977, Poulton 1908, Cott 1940 in Silb erglied 1989). Many butterflies have aposematic coloring to warn predators that they are distasteful, and some butterflies form mimicry complexes to further enhance aposema tic protection (Turner 1989). One type of mimicry is Mullerian mimicry in which unpala table species mimic each other (Turner 1989). An especially interesting Mullerian mimicry complex occurs between Heliconius erato and Heliconius melpomene Both species have evolved many different wing pattern races that exist throughout Central and South America. Although there is a major divergence of wing pattern within each species, there is almo st perfect mimicry between the species in each area (Turner 1981) (Figure 1). The evolution of mimicry in a species of butterfly results from a balance of sexual and natural selection. The fitness of the mimetic butte rflies is increased via natural selection because they have greater protection from predators, however sometimes this can decrease fitness via sexual selection (Benson 1972, Malle t and Barton 1989). Butterflies that evolve a new mimetic pattern may have lowered reproducti ve success since it can be more difficult for them to attract a mate due to their new coloration (Burns 1966). Taking this into account, a variety of re search has been conducted on the race phenomenon of H. melpomene and H. erato. In one study researchers investigated whether there was assortative mating between the various H. melpomene races. They found that male H. melpomene are more likely to approach and court their own color patterns as compared to those H. melpomene of other color pattern races (Jiggins et al 2004). These authors also found that some races of H. melpomene had more attractive pa tterns than others an d red was found to be especially attractive acro ss all races (Jiggins 2001; Jiggins et al. 2004). For example, they found that almost all races were attr acted to the red stripe on the forewing of the postman race and there was a higher probability that males woul d court a race other than their own if the postman race was the other option (Figure 2, see Tarapoto race). Cran e (1955 in Silberglied 1989) also found that red was important for H. erato. Crane painted the red stripe on the forewing of both sexes and found that the farther the color was from the natural red, the less the painted butterfly was recognized by other H. erato. Cranes study did not measure recognition in a quantifiable way, and so this raises the question of exactly what the consequences of wing pattern change are for butterflies and how these consequences may play into sexual selection and the evolution of mimetic patterns. It is interes ting to consider whether it is really visual cues involving wing color, or other factors such as ch emical signaling, that may be causing the sexual selection that isolates H. melpomene races. This study aims to examine this question by looking at the effects of color change on the mating and courting behavior of H. melpomene 2

PAGE 3

a) b) Yurimaguas (Peru) Tarapoto (Peru) Puyo (Ecuador) Guayaquil (Ecuador) Figure 1a. The distribution and phy logeny of the various races of H. melpomene (left) and H. erato (right). Numbers denote existing forms and letters denote hypothetical ancestors (Turner 1981). 1b. A few of the races of H. melpomene and H. erato in color (www.cnrs.fr November 26, 2006). 3

PAGE 4

METHODS Study Organism H. melpomene are a useful model organism for the st udy of color change and its effect on mating behavior. Their mating behavior usually involves males searching for females using visual cues, and then once they locate them, c ourtship behaviors usually incorporate tactile and chemical communication (Jiggins et al. 2004). H. melpomene is an ideal Heliconius subject to study mating behavior because unlike other Heliconius that mate at female pupation, H. melpomene mate as adults. The adults are polyga mous, which gives the opportunity to observe multiple mating events of one indivi dual (Jiggins et al. 2004). Study Site This study was conducted at the Monteverde Bu tterfly Garden in Monteverde, Costa Rica in a 5 x 15 m area that that contained Heliconius butterflies of the following species: H. sara, H. charitonius, H. hecale, and Dryas julia. The most dominant vegetation in the garden was plants of the species: Lantana camara (F. Verbenaceae), Stachytarpheta jamaicensis (F. Verbenaceae), Asclepias curassivica (F. Asclepiadaceae) and Gurania sp. (F. Cucurbitaceae). There were also hanging cups of L. camara injected with sugar water for the bu tterflies to feed from. One end of the garden received full sun while the othe r tended to be slightly shadier. Procedure H. melpomene pupae were obtained from Finca de Mariposas la Gucima and pinned to an eclosion chamber at the Monteverde Butterfly Garden. Upon eclosing, the sexes were placed into separate net cages that were about one m tall and a half m in diameter. Once the butterflies were a day old and their wings were strong and dry, half of each sex had the red stripe on their forewing painted white using a Sharpie Paint Pen, and the other half had the same stripe painted red as a control. A total of 26 female and 18 male butterflies we re released over the course of three days; half of each sex was painted red and the other half was painted white. No more than 10 H. melpomene already lived in the garden and were left unaltered. The mating and courting behavior of the butterflies was observed in the morning on seven days (including the three days butterflies were released) for about five hours at a time. Courting behavior was defined as a male butterfly hovering over a perched female. RESULTS Only red individuals mated and all of the mating occurred between unaltered or redpainted males and red-painted females: three times with red-painted males and four times with unaltered males (Table 1). Almost all of the mating behavior occurred in the same area of the garden where abiotic conditions were breezier and slightly brighter. Four of the matings took place on the same L. camara plant. Matings were easy to observe because the butterflies remained in copula for one to three hours. 4

PAGE 5

TABLE 1. Courting and mating behavior of painted and unaltered H. melpomene butterflies as observed on seven days at the Monteverde Butterfly Garden Red-Painted Female (n=13) White-Painted Female (n=13) Red-Painted Male (n=9) 3 matings 1 male courted the female and lost interest White-Painted Male (n=9) 6 males courted and were rejected Unaltered Male (n<10) 4 matings In addition to never mating, the white males we re observed to be rejected when they tried to court red-painted females (Table 1). The white males hovered over females who usually kept their wings completely closed while the male tried to court them and if the male still did not stop, they usually flew away from him. One white ma le even attempted to grab onto a female and mate with her, but she managed to escape. Finally, there was one occasion when a red-pa inted male began courting a white-painted female and shortly thereafter moved away from her (Table 1). In this case, the female seemed interested in mating with the male since she was flapping her wings, too, but the male lost interest and so they did not mate. There were very few ot her interactions between the H. melpomene individuals and there were no obvious male-male chases or other noteworthy behaviors. DISCUSSION These results demonstrate that wing color changes in H. melpomene lead to decreased reproductive success. This was shown since none of the white butterflies mated. This study reinforces the idea that pattern and visual cues are important in mate selection for Heliconius butterflies and it suggests that wing color most likely plays a role in H. melpomene preference to court and mate with butterflies of their own color pattern (Jiggins et al. 2001, Jiggins 2004). This study did not find any interactions between two white individuals, which is most likely due to the fact that since the butterflies were painted they still remained mentally red. Overall, this study demonstrates that sexual selection will work to maintain the current color pattern since new patterns tend to reproduc tively isolate butterflies. If there is strong sexual selection for the ma intenance of an existi ng color pattern, then how is it possible that so many different races of H. melpomene and H. erato could have evolved? Much effort has gone into investig ating this phenomenon and it has been suggested that the many races are the result of island ref uges created when rain forests in South America were reduced due to cool, dry conditions duri ng the Pleistocene era (Simpson and Haffer 1978). The clear regional patterns of the different races are well correlated to the areas that most likely contained continuous forest during the last glacial maximum (Brown 1981). During these isolating events it may have been easy for mutations to cause variations in color pattern in each population since the presence or absence of each mark on H. melpomene and H. erato is controlled by one of about eight single loci (Futuyma 1986). It is also proposed that the races 5

PAGE 6

did not simply arise from geogra phic isolation, but rath er the resulting selective pressure that caused the butterflies to mimic the most abundant or distasteful species in the area (Brown 1974). Further study has also suggested that refuge s are not necessary and it is possible for races to form parapatrically if there are changes in butterfly abundance within a continuous forest. The new race forms when the butterflies starts to mi mic that newly abundant species (Turner 1981). This seems unlikely because converging on the abunda nt pattern will still ultimately lead to a decrease in fitness; fitness may be increased slightly if converging on the abundant pattern actually provides greater protection from pred ators, however this will be outweighed by the dramatic decrease in reproductive success. This pr ovides an interesting example of the way that the evolution of mimetic patterns is really a balance of natural and sexual selection and in this case sexual selection is clear ly playing a larger role. Another mimetic phenomenon that demonstrates an interesting balance between natural and sexual selection is sex-limited mimicry. Se x-limited mimicry occurs when just one of the sexes, generally females, in a species is mimetic This shows extreme sexual selection. Males are very constrained and are not able to adopt the more protected aposematic coloring because females strongly preferentially mate with males of the ancestral color pattern. It is also interesting to consider the opposing selective pr essures placed on females in sex-limited species. There is pressure via sexual selection for the fema les to retain their original color because males may preferentially mate with females with male -like color patterns (Burns 1966). However, an opposite pressure exists through natural selection which favors females with mimetic patterns since they are less suscep tible to predation. Unlike the other ca ses discussed, in this situation the sexual selection to maintain the ancestral pattern is not as strong and natu ral selection selects for some butterflies to evolve the mimetic pattern. Overall, this study shows that color is a very important el ement in mating success and strong sexual selection to maintain the original color pattern can constrai n the evolution of new mimetic patterns in H. melpomene New races are likely to evol ve only during large isolating events when new H. melpomene races escape the presence of anot her race that would otherwise be maintained through sexual selection. Natural se lection also plays a role in maintaining the original race since it is the one most recogni zed as distasteful by predators. Thus sexual selection and natural selection bo th play an important part in maintaining the existing color pattern of an area and so the evol ution of mimetic patterns is unlik ely: the costs of developing a new mimetic pattern generally outweigh the benefits. ACKNOWLEDGMENTS I would like to thank the Monteverde butterfly garden for allowing me to conduct my study in their garden. The staff was very helpful and took care of my pupae until they eclosed. Thanks to Alan Masters for all of his assistance in helping me plan and carry out this study. I would also like to thank Karen Masters and Kathy Rockwell who were my moms away from home and took very good care of me throughout all of my illness during the project and made it possible for me to actually complete a project. Karen also doubled as my project advisor while Alan was out of town and I would like to thank her for all her assistance in making sure I had a successful project. Last, but not least, I would especially like to thank Cam Pennington without whom I would not have survived this experience. She was my right-hand throughout the entire project and accompanied me to the garden every day and helped me in every way possible (everything from getting and doing everything I needed for my project to bringing me delicious snacks and keeping me entertained). She, along with Anna Peterson and Sarah Anvik also provided great editing advice. 6

PAGE 7

7LITERATURE CITED Benson, W. W. 1972. Natural selection for Mullerian Mi micry in Heliconius erato in Costa Rica. Science 176: 936-939. Brown, K. S. 1981. The Biology of Heliconius and Related Genera. Annual Review of Entomology 20: 427-56. Brown, K. S., P. M. Sheppard, and J. R. G. Turner. 197 4. Proceedings of the Royal Society of London 18: 369378. Burns, J. M. 1966. Preferential Mating versus Mimicr y: Disruptive Selection and Sex-limited Dimorphism in Papilio glaucus. Science 153: 551-553. Futuyma, D. J. 1986. The Evolution of Interactions Among Species. In D. J. Futuyma. Evolutionary Biology, pp. 482-504. Sinauer Associates, Inc., Sunderland, Massachusetts. Jiggins, C. D., R. E. Naisbit, R. L. Coe, and J. Mallet. 2001. Reproductive isolation caused by colour pattern mimicry. Nature. 411: 3025. Jiggins, C. D., C. Estrada, and A. Rodrigues. 2004. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol. 17: 680-691. Joron, M. and I. Olivieri. 2000. La selection naturelle. www.cnrs.fr Accessed on 2006 November 26. Mallet, J. and N. H. Barton. 1989. Strong Natural Sel ection in a Warning-Color Hybrid Zone. Evolution 43: 421431. Silberglied, R. E. 1989. Visual Communication and Sexual Selection Among Butterflies. In R. I. Vane-Wright and P. R. Ackery (Eds.). The Biology of Butterflies, pp. 207-22 3. Princeton University Pre ss, Princeton, New Jersey. Simpson, B. B. and J. Haffer. 1978. Speciation patterns in the Amazonian forest biota. Annual Review of Ecology and Systematics 9: 497-518. Turner, J. R. G. 1981. Adaptation and Evolution in Heliconius: A Defense of NewDarwinism. Annual Review of Ecology and Systematics, 12: 99-121. Turner, J. R. G. 1989. Mimicry: The Palatability Spectrum and its Consequences. In R. I. Vane-Wright and P. R. Ackery (Eds.). The Biology of Butterflies, pp. 207-223. Princeton University Press, Princeton, New Jersey.


xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xlink http:www.w3.org1999xlink xmlns:xsi http:www.w3.org2001XMLSchema-instance
leader 00000nas 2200000Ka 4500
controlfield tag 008 000000c19749999pautr p s 0 0eng d
datafield ind1 8 ind2 024
subfield code a M39-00179
040
FHM
0 041
eng
049
FHmm
1 100
Thompson, Ellen
242
El efecto del color de las alas de Heliconius melpomene en el comportamiento de apareamiento y sus implicaciones en la evolucin del mimetismo
245
The effect of wing color on Heliconius melpomene mating behavior and its implications on the evolution of mimicry
260
c 2006-12
500
Born Digital
3 520
Wing color is important to butterflies both for social signals and protection from predators. Butterflies gain protection from predators by having aposematically colored wings that warn the predator that the butterfly is distasteful. Some butterflies are also part of Mullerian mimicry complexes in which two distasteful species converge on the same color pattern to enhance their aposematic protection. Heliconius erato and Heliconius melpomene are Mullerian mimics that exhibit a wide variety of wing patterns throughout Central and South America. Their wing patterns have greatly diverged within each species, but between the species they are almost perfect mimics in each area. It has previously been found that H. melpomene prefer to court butterflies of their same color pattern race. This study examined a possible mechanism of this racial isolation by investigating the effect of wing color change on H. melpomene courting and mating behavior. To accomplish this, 26 female and 18 male H. melpomene had the red stripe on their forewing painted. Half of the individuals were painted white, and the other half were painted red as a control. Their mating and courting behavior was observed to see how they were affected by the color change. Over seven days, seven matings were observed all between red individuals. White males also tried to court red females and were rejected on six different occasions. This demonstrates that decreased reproductive success is an immediate consequence of wing color change and wing color may be responsible for the racial isolation observed in H. melpomene. Because of this strong sexual selection to maintain existing color patterns, geographic isolation is most likely necessary for the evolution of any new mimicry patterns.
El color de las alas de las mariposas se usa para seales sociales y para la proteccin de los depredadores. Las mariposas obtienen proteccin de los depredadores por tener alas de color que advierten al depredador de que la mariposa es venenosa. Algunas mariposas son parte de los complejos del mimetismo Mullerian en que dos especies venenosas tienen alas muy parecidas para aumentar su proteccin. Heliconius erato y Heliconius melpomene son mimetismos de Mullerian que demuestran una gran variedad de diseo de alas por todo Centro y Sur Amrica. Sus diseos de ala son muy variadas dentro de cada especie, pero entre las dos especies son casi mmicos perfectos en cada lugar. Se ha encontrado previamente que H. melpomene prefiere cortejar a las mariposas de su misma raza de diseo. Esta investigacion examino una posible razn por este aislamiento racial. Se investigo el efecto de los cambios en el color de las alas de H. melpomene en su apareamiento y cortejo.
546
Text in English.
650
Butterflies--Sexual behavior
Warning coloration (Biology)
4
Mariposas--Comportamiento sexual
Coloracion de advertencia (Biology)
653
Tropical Ecology 2006
Mullerian mimicry
Ecologia Tropical 2006
Mimetismo Mullerian
655
Reports
720
CIEE
773
t Monteverde Institute : Tropical Ecology
856
u http://digital.lib.usf.edu/?m39.179