Discharge and drift of benthic macroinvertebrates in a tropical montane stream


previous item | next item

Citation
Discharge and drift of benthic macroinvertebrates in a tropical montane stream

Material Information

Title:
Discharge and drift of benthic macroinvertebrates in a tropical montane stream
Translated Title:
Aprobación de la gestión y la deriva de macroinvertebrados bentónicos en una corriente tropical montano
Creator:
Moore, Megan
Publication Date:
Language:
Text in English

Subjects

Subjects / Keywords:
Benthic animals ( lcsh )
Animales bentónicos ( lcsh )
Stream ecology ( lcsh )
Ecología de las quebradas ( lcsh )
Invertebrates ( lcsh )
Invertebrados ( lcsh )
Costa Rica--Puntarenas--Monteverde Zone
Costa Rica--Puntarenas--Zona de Monteverde
CIEE Fall 2004
CIEE Otoño 2004
Genre:
Reports

Notes

Abstract:
Several studies in temperate regions have observed an active behavioral response of stream invertebrates to environmental factors. However, few of these studies have been conducted in the tropics and the behavior of tropical stream invertebrates is unknown. In an attempt to improve the knowledge on tropical stream ecology, this study observed indirect behavioral responses to discharge within the drift as well as the benthic macroinvertebrate community. Drift, benthic, and discharge samples were taken at 11 sites along the Quebrada Máquina from October 28-November 13 of 2004. The drift community richness and diversity and discharge resulted in a non-significant, negative trend. However, the benthic community richness and diversity and discharge resulted in a significant positive correlation. Further analysis showed that drift and benthic communities were similar in composition, implying that the drift community arises directly from the benthic community. The positive correlation of the benthic community to discharge suggests that, similar to temperate macroinvertebrates, tropical macroinvertebrates actively respond to discharge. ( , )
Abstract:
Varios estudios en regiones templadas han observado una respuesta de comportamiento activa de los invertebrados de agua dulce a los factores ambientales. Sin embargo, muy pocos de estos estudios se han conducido en las zonas tropicales y el comportamiento de los invertebrados tropicales de la corriente es desconocido. Con el propósito de mejorar nuestro conocimiento de la ecología tropical de la quebrada, este estudio observó respuestas del comportamiento a la descarga de las aguas a la deriva así como de la comunidad béntica. Muestras de deriva, bénticas y de descarga fueron tomadas en diez sitios diferentes a lo largo de la Quebrada Máquina del 28 de octubre al 13 de noviembre de 2004. La riqueza y la diversidad de la comunidad de la deriva y la descarga dieron lugar a una correlación negativa no significativa. Sin embargo, la riqueza de la comunidad y la diversidad y la descarga bénticas dieron lugar a una correlación positiva significativa. El análisis adicional demostró que las comunidades de deriva y bénticas eran similares en composición, implicando que la comunidad de la deriva proviene directamente de la comunidad béntica. La correlación positiva entre la comunidad béntica y la descarga sugiere que de manera similar a los macroinvertebrados de aguas templadas, los macroinvertebrados tropicales responden activamente a la descarga.
Biographical:
Student Affiliation:Department of Biology, Northeastern University
General Note:
Born Digital

Record Information

Source Institution:
Monteverde Institute
Holding Location:
Monteverde Institute
Rights Management:
This item is licensed with the Creative Commons Attribution Non-Commercial No Derivative License. This license allows others to download this work and share them with others as long as they mention the author and link back to the author, but they can’t change them in any way or use them commercially.
Resource Identifier:
M39-00371 ( USFLDC DOI )
m39.371 ( USFLDC Handle )

Postcard Information

Format:
Book

Downloads

This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xlink http:www.w3.org1999xlink xmlns:xsi http:www.w3.org2001XMLSchema-instance
leader 00000nas 2200000Ka 4500
controlfield tag 008 000000c19749999pautr p s 0 0eng d
datafield ind1 8 ind2 024
subfield code a M39-00371
040
FHM
0 041
eng
049
FHmm
1 100
Moore, Megan
242
Aprobacin de la gestin y la deriva de macroinvertebrados bentnicos en una corriente tropical montano
245
Discharge and drift of benthic macroinvertebrates in a tropical montane stream
260
c 2004-11
500
Born Digital
3 520
Several studies in temperate regions have observed an active behavioral response of stream invertebrates to environmental factors. However, few of these studies have been conducted in the tropics and the behavior of tropical stream invertebrates is unknown. In an attempt to improve the knowledge on tropical stream ecology, this study observed indirect behavioral responses to discharge within the drift as well as the
benthic macroinvertebrate community. Drift, benthic, and discharge samples were taken at 11 sites along the Quebrada Mquina from October 28-November 13 of 2004. The drift community richness and diversity and discharge resulted in a non-significant, negative trend. However, the benthic community richness and diversity and discharge resulted in a significant positive correlation. Further analysis showed that drift and benthic communities were similar in composition, implying that the drift community arises directly from the benthic community. The positive correlation of the benthic community to discharge suggests that, similar to temperate macroinvertebrates, tropical macroinvertebrates actively respond to discharge.
Varios estudios en regiones templadas han observado una respuesta de comportamiento activa de los invertebrados de agua dulce a los factores ambientales. Sin embargo, muy pocos de estos estudios se han conducido en las zonas tropicales y el comportamiento de los invertebrados tropicales de la corriente es desconocido. Con el propsito de mejorar nuestro conocimiento de la ecologa tropical de la quebrada, este estudio observ respuestas del comportamiento a la descarga de las aguas a la deriva as como de la comunidad bntica. Muestras de deriva, bnticas y de descarga fueron tomadas en diez sitios diferentes a lo largo de la Quebrada Mquina del 28 de octubre al 13 de noviembre de 2004. La riqueza y la diversidad de la comunidad de la deriva y la descarga dieron lugar a una correlacin negativa no significativa. Sin embargo, la riqueza de la comunidad y la diversidad y la descarga bnticas dieron lugar a una correlacin positiva significativa. El anlisis adicional demostr que las comunidades de deriva y bnticas eran similares en composicin, implicando que la comunidad de la deriva proviene directamente de la comunidad bntica. La correlacin positiva entre la comunidad bntica y la descarga sugiere que de manera similar a los macroinvertebrados de aguas templadas, los macroinvertebrados tropicales responden activamente a la descarga.
546
Text in English.
650
Benthic animals
Stream ecology
Invertebrates
Costa Rica--Puntarenas--Monteverde Zone
4
Animales bentnicos
Ecologa de las quebradas
Invertebrados
Costa Rica--Puntarenas--Zona de Monteverde
653
Tropical Ecology Fall 2004
Ecologa Tropical Otoo 2004
655
Reports
720
CIEE
773
t Monteverde Institute : Tropical Ecology
856
u http://digital.lib.usf.edu/?m39.371



PAGE 1

1 Discharge and Drift of Benthic Macroinvertebrates in a Tropical Montane Stream Megan Moore Department of Biology, Northeastern University ABSTRACT Several studies in temperate regions have observed an active behavioral response of stream invertebrates to environmental factors. However, few of these studies have been conducted in the tropics and the behavior of tropical stream invertebrates is unknown. In an attempt to improve the knowledge on tropical stream ecology, this study observed indirect behav ioral responses to discharge within the drift as well as the benthic macroinvertebrate community. Drift, benthic, and discharge samples were taken at 11 sites along the Quebrada Máquina from October 28 November 13 of 2004. The drift community richness an d diversity and discharge resulted in a non significant, negative trend. However, the benthic community richness and diversity and discharge resulted in a significant positive correlation. Further analysis showed that drift and benthic communities were s imilar in composition, implying that the drift community arises directly from the benthic community. The positive correlation of the benthic community to discharge suggests that, similar to temperate macroinvertebrates, tropical macroinvertebrates active ly respond to discharge. RESUMEN Varios estudios en regiones templadas han observado una respuesta de comportamiento activa de los invertebrados de aqua dulce a los factores ambientales. Sin embargo, muy pocos de estos estudios se han conducido en las zonas tropicales y el comportamiento de los invertebrados tropicales de la corriente es desconocido. Con el propósito de mejorar nuestro conocimiento de la ecología tropical de la quebrada, este estudio observó respuestas del comportamiento a la descarga de las aquas a la deriva así como de la comunidad béntica. Muestras de deriva, bénticas y de descarga fueron tomadas en diez sitios differentes a lo largo de la Quebrada Máquina del 28 de octubre al 13 de noviembre de 2004. La riqueza y la diversidad de la comunidad de la deriva y la descarga dieron lugar a una correlación negativa no significativa. Sin embargo, la riqueza de la comunidad y la diversidad y la descarga bénticas dieron lugar a una correlación positiva significativa. El análisis adicional dem ostró que las comunidades de deriva y bénticas eran similares en composición, implicando que la co munidad de la deriva proviene directamente de la comunidad bén tica. La correlación positiva entre la comunidad béntica y la descarga sugiere que de manera sim ilar a l os macroinvertebrados de aquas templadas, los macroinvertebrados tropicales responden activamente a la descarga. INTRODUCTION Drift is defined as a dispersal mechanism by which macroinvertebrate larvae leave the benthic surface, enter the water c olumn, and use the current to float downstream (Smock 1996). The larvae can enter the water column passively (by the force of the water flow), or actively. Several studies have supported the hypothesis that macroinvertebrates drift as an active behaviora l response (Kohler 1985). Among the many behaviors observed, the most common reasons why a larva drifts are to avoid predators, competition, or pollution, seek nutrients, or search for better substrate (Smock 1996).

PAGE 2

2 Numerous studies have been performed on temperate streams to test active behavioral response by studying the factors that affect drift communities. Kohler (1985) supported the active response by demonstrating that macroinvertebrates respond to low light and food levels. Koetsier and Bryan ( 1995) tested the abiotic factors that cause a response in the benthic and drift community by comparing the effect of discharge on drifting communities in the Mississippi River, Louisiana. They found that several drifting taxa, including Ephemoptera and Tr ichoptera, were significantly, negatively related to discharge. In addition, they found a positive correlation in abundance be tween discharge and benthic communities. They proposed that an increase in discharge leads to an increase in surface area macroi nvertebrates can colonize, and therefore a decrease in competition for space. This supports the hypothesis that macroinvertebrates actively drift. However, they also noticed that some drift organisms spent their entire life cycle drifting. This suggests that the two communities are different, which weakens their argument on drift being an active behavioral response from the benthic community (Smock 1996). Perhaps because of the high daily variability in tropical streams due to the high amounts of preci pitation in the tropics , few researchers have attempted to study the behavior of tropical drift communities (Masters 2004) . In fact, there has never been a study on the effects of discharge on the benthic and drift communities. Yet understanding the beha vior of the macroinvertebrate community is a crucial element to understanding stream ecology. Moreover , the current poor state of knowledge of freshwater invertebrates makes assessing anthropogenic disturbances difficult (Palmer and Lake 2001). This stud y attempts to improve the knowledge of a tropical stream. Based on past studies of temperate streams, this study hypothesized that an area of tropical stream with high discharge should have a lower drift of macroinvertebrates and a greater amount of benth ic macroinvertebrates than that of an area of stream with lower discharge. Furthermore, I expected the drift and benthic communities to have different species compositions. MATERIALS AND METHODS Study Area Data were collected between five and 55 meters above the dam on Quebrada Máquina, Montverde, Costa Rica (Figure 1). The stream was chosen to minimize the effects of other factors, like pollution, that are known to cause drift. The unpolluted stream is located in the upper reaches of the Lower Pre Mo ntane Wet Forest. The sites were located between the altitudes of 1460 and 1465 meters (Holdridge 1967). Samples were taken for a total of 11 sites (one site/day) starting at 10:00 AM each day from October 28 November 13 , 2004. Sites were set at five meter intervals (Figure 2). To achieve the best sample of each community, drift nets were placed in the riffle stretches of the stream. Benthic samples were taken from highly heterogeneous substrate because a past study performed by Hyman (2002) showed gr eater community diversity as heterogeneity increased. High substrate heterogeneity was determined visually.

PAGE 3

3 Sampling Daily measurements included discharge, dissolved oxygen, drift, and benthic kick. A ~100µm net was placed halfway into the water for a total of 30 minutes to measure drift. Benthic kick is a process in which the stream substrate is stirred up and then captured downstream by a kick net. There were two one minute, one square meter benthic kicks per site within two meters of the placement of the drift net. The velocity of the stream was determined by the float method in which an orange was placed in the stream and the time it took to travel ten meters downstream was recorded A meter stick was used to measure the cross sectional area. D ischarge was calculated by multiplying the velocity by the cross sectional area. Dissolved oxygen was measured using Oakton DO 300 series O 2 meter (serial number WD 35615 75). Both benthic and drift samples were identified the day of sampling under a ste reomicroscope. Identification to Order and Family was performed using the dichotomous key titled How to know the Aquatic Insects (Lehmkuhl 1979). Analysis Sites differed in discharge, and therefore the number of individuals may differ solely due to wate r volume differences. To factor out this variation in the water volume sampled, the total number of individuals/site was divided by the total volume of water passing through the net over the 30 minute period. Benthic sample sizes were not altered because sample size was not subject to discharge. Family and Order richness for the drift samples were also volume corrected. The Shannon Weiner index of diversity (H') was used to calculate Family and Order diversity for both drift and benthic samples. Spearm an rank correlations were used to test the relation of the rate of discharge with abundance, Family and Order richness, Family and Order diversity, and Family and Order evenness for both benthic and drift communities. Lastly, the total number of species fo und in the community was converted into a percentage at both the Family and Order level to compare community composition. RESULTS A total of 11 sites were measured for discharge, benthic organisms , and drift organisms (Appendix, Table 1). Site eight was excluded from analysis because it was measured during a day when the rivers were flooded which is known to cause unusually high amounts of drift (Minshall and Winger 1968). Identification revealed 17 Families and 11 Orders with a total of 150 individual s in the drift community, and 26 Families and 11 Orders with a total of 368 individuals in the benthic community. Correlations Between Community and Discharge There were no significant correlations between drift community size (N), richness (S), divers ity (H'), and discharge. There was, however, a significant correlation between benthic richness and diversity, and discharge, at both the Family and Order level. Figure 3 shows the relationship of individuals and discharge in drift communities for which

PAGE 4

4 there was a negative trend and in benthic communities for which a positive trend was observed, neither showing a significant correlation (Spearman rank correlation, Drift: r = 0.2727, p = 0.4458, n = 10; Benthic: r = .3769, p = 0.2830, n = 10). Although a weak negative trend was observed, drift communities did not show a significant correlation between Family and Order richness and discharge (Figure 4; Spearman rank correlation, Family: r = 0.3818., p = 0.2763, n = 10; Order: r = 0.4303, p = 0.2145, n = 10). Benthic communities showed a strong, positive correlation between Family and Order richness and discharge (Figure 4; Spearman rank correlation, Family: r = 0.6525, p = 0.0409, n = 10; Order: r = 0.6420, p = 0.0454, n = 10). Drift communities did no t show a significant correlation between Family and Order diversity and discharge (Figure 5; Spearman rank correlation, Family: r = 0.0182, p = 0.9602, n = 10, Order: r = 0.0547, p = 0.8807, n = 10). Benthic communities showed a strong, positive correlat ion between Family and Order diversity and discharge (Figure 5; Spearman rank correlation, Family: r = 0.7818, p = 0.0075, n = 10; Order: r = 0.9152, p = 0.0002, n = 10). Drift and benthic communities showed no trends between Family and Order evenness and discharge, indicating that richness that controls diversity (Figure 6). Community Structure The drift community, which included 11 Orders and 17 Families, was largely dominated by the Dipteran, Trichopteran, and Ephemopteran Orders and the Simuliidae, H ydropsychidae, and Baeti dae Families (Figure 6 ). The taxa unique to drift communities were C. Arachnida, O. Megaloptera, Dipteran Families Culicidae, Nematocera, and Dolichopodidae, and Hemiptera F. Saldidae. Similar to the drift community, the benthic c ommunity was dominated by the Dipteran, Coleopteran, and Trichopteran Orders and Simuliidae, Elmidae and Hydropsychidae Families. Figure 7 shows that Diptera dominated the drifting community much more than the benthic community, Trichoptera was almost exa ctly the same in both communities, and O. Coleoptera strongly dominated in the benthic community. DISCUSSION The Effect of Discharge on Macroinvertebrate Communities The results here relating both benthic and drift communities to discharge on the Quebra da Máquina indicate that aquatic invertebrates respond to stream flow. The benthic community significantly increased in both richness and diversity as discharge increased. Because of these significant correlations, the benthic community is actively or pa ssively responding to discharge. The drift communities showed a weak negative trend to discharge. Although the correlation is not significant, it appears that the drift community is also responding to discharge. The lack of significance for the drift co mmunity could be due to a small sample size. Overall, the results prove that discharge directly or indirectly elicits a response from tropical stream macroinvertebrates.

PAGE 5

5 Drift and Benthic as One Community Upon assessing community structure, there is no overwhelming evidence that drift is a separate community from the benthic community. This may be due to a small sample size. A larger sample size would help distinguish what species were simply rare and which ones were unique to the drift community. O. Diptera, F. Culicidae, and O. Hymenoptera were the only taxa of the drift community that were found in large numbers and were absent from the benthic community. However, these samples were both in adult stages and had fully developed wings, which suggest s that they live just above the water and are not part of the aquatic drift community. These results suggest that the drift individuals found arise from the benthic community. Drift as an Active Behavioral Response Given that drift and benthic organisms belong to one community, their relationship with discharge can now be connected. The decreasing trend in drift individuals and the increasing correlation in benthic richness and diversity indicate that as stream flow increases, macroinvertebrates that ar e drifting become benthic. The question that remains is if this response is active or passive. If this were a passive response to discharge, one might expect the increasing velocity associated with increasing discharge to force benthic macroinvertebrates into drift. Therefore, the results from an increase in discharge would reveal a decrease in benthic numbers and an increase in drift numbers. However, this results support the opposite, which refutes the hypothesis that it is passive response. One poss ible explanation supports an active response to discharge. As mentioned before, one possible motivation in entering drift is to avoid competition (Smock 1996). An increase in stream flow may decrease drift and increase number of benthic individuals becau se as the water level becomes higher, macroinvertebrates can find more benthic surface to colonize and settle out of drift. In other words, there is not as much competition for space in areas of higher discharge. Another explanation is that, as the strea m moves faster, there is more dissolved oxygen in the water. Oxygen is a resource that macroinvertebrates seek as they drift and possibly upon finding a higher content of dissolved oxygen they would settle into the benthic community. Both of these theori es explai n why numbers of individuals drift ing decrease and individuals in the benthic community increase in areas of high discharge and explain it as an active behavioral response from macroinvertebrates. Understanding behavioral responses of tropical m acroinvertebrates is a considerable advancement in the understanding of stream ecology. Furthermore, with the comprehension that the drift and benthic communities are one community, future researchers may obtain a sample of the whole community by just sam pling drift or benthic organisms. Depending upon the results needed, the methods of sampling one habitat might be preferred over the other. Lastly, f urther research can be conducted to see if drift is similar in polluted waters as it is in pristine habit ats. This could become useful information in studies on the effects of pollution that can possibly look at drift communities as bio indicators. With knowledge of the best community to study, there is increased potential for producing significant results.

PAGE 6

6 ACKNOWLEDGEMENTS A huge thank you to my advisors Javier Méndez and Dr. Karen Masters for helping me stay on the right path when the data overwhelmed me. I also wish to thank J Robert Rancourt for assisting in the data collection and being peer support t hroughout the project. Last but not least, I am grateful to Dr. Alan Masters, Oliver Hyman, and Matt Gasner for their input and advice. I am also thankful we did not cross any professional boundaries on bird diversity day. LITERATURE CITED Gore, J. 1996. Discharge Measurements and Streamflow Analysis . In: Methods in Stream Ecology , R. Hauer and G. Lambert, editors. Academic Press, San Diego, California, USA, pp. 58 65. Greaves, M. 1994. Drift of Aquatic Invertebrates in a Tropical Stream (Rio San Lu is, San Luis Arriba, Costa Rica). UCEAP Monteverde Tropical Biology:138 147. Hauer, R. and W. Hill. Temperature, Light, and Oxygen . In: Methods in Stream Ecology , R. Hauer and G. Lambert, editors. Academic Press, San Diego, California, USA, pp. 58 65. Holdridge, L.R. 1967. Life Zone Ecology. Tropical Science Center. San Jose, CR. Hyman, O. 2002. Substrate Effects on Macroinvertebrate Composition and Guild Structure. CIEE Tropical Ecology and Conservation:86 100. Koetsier, P. and F. Bryan. 1995. Ef fects of Abiotic Factors on Macroinvertebrate Drift in the Lower Mississippi River, Louisiana. American Midland Naturalist 134 :63 74. Kohler, S. 1985. Identification of Stream Drift Mechanisms: An Experimental and Observational Approach. Ecology 66 :1749 1 761 Lehmkuhl, D. 1979. How to Know the Aquatic Insects . Wm. C. Brown Company, Iowa, USA. Masters, A. 2004 CIEE Tropical Community Ecology Reader. Costa Rica, pp. 70. Minshall, G. and P. Winger. 1968. The Effect of Reduction in Stream Flow on Invertebrat e Drift. Ecology 49 :580 582. Palmer M. and P Lake 2001. Invertebrates, Freshwater, Overview . In: Encyclopedia of Biodiversity , S. Levin, editor. Academic Press, New York, USA, 3 :531 542. Smock, L. 1996. Macroinvertebrate Movements: Drift, Colonization, a nd Emergence . In: Methods in Stream Ecology , R. Hauer and G. Lambert, editors. Academic Press, San Diego, California, USA, pp. 371 389.

PAGE 7

7 Figure 1. Map of location of sites on Quebrada Máquina. Samples taken f rom October 28 November 13 of 2004.

PAGE 8

8 Figure 2. Map of sites along Quebrada Máquina. Samples taken from October 28 November 13 of 2004. Site one was taken five meters upstream of the dam and the distance between neighboring sites is five meters. Site eight was measured but not included in analysis due to weather.

PAGE 9

9 Figure 3. Relationships between abundance and discharge for all s ites along the Quebrada M á quina , Monteverde from October 28 No vember 13 of 200 4. A) Non significant negative trend between abundance of drift and discharge. B) Non significant positive trend between abundance of ben thic and discharge.

PAGE 10

10 Figure 4. Relationships between richness (at bot h the Family and Order level) and discharge for all sites along the Quebrada Máquina , Monteverde from October 28 November 13 of 2004. A) Non significant negative trend between drift Family richness and discharge. B) Significant positive correlation between benthic Family richness and discharge. C) Non significant negati ve trend between drift Order richness and discharge. D) Significant positive correlation between benthic Order richness and discharge.

PAGE 11

11 Figure 5. Relationships between diversity (at both the Family and Order level) and discharge f or all sites along the Quebrada Máquina , Monteverde from October 28 November 13 of 2004. A) Non significant between drift Family diversity and discharge. Significant positive correlation between benthic Family div ersity and discharge. B) Non significant between drift Order diversity and discharge. Significant positive correlation between benthic Order diversity and discharge. Figure 6. Relationships between evenness (at both the Family and Order level) and discharge for all sites along the Quebrada Maq uina, Monteverde from October 28 November 13 of 2004. A) Non significant relationship between both drift and benthic and discharge. B) Non significant between both drift and benthic and discharge.

PAGE 12

12 F igure 7. Percentages of drift versus benthic communities to Family for all sites along the Quebrada Máquina , Monteverde from October 28 November 13 of 2004.

PAGE 13

13 Figure 8. Perce ntages of drift versus benthic communities to Order for all sites along the Quebrada Máquina , Monteverde from Oct ober 28 November 13 of 2004.

PAGE 14

14

PAGE 15

15


printinsert_linkshareget_appmore_horiz

Download Options [CUSTOM IMAGE]

close
Choose Size
Choose file type

Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.