USF Libraries
USF Digital Collections

Fabrication of CIGS absorber layers using a two-step process for thin film solar cell applications

MISSING IMAGE

Material Information

Title:
Fabrication of CIGS absorber layers using a two-step process for thin film solar cell applications
Physical Description:
Book
Language:
English
Creator:
Sankaranarayanan, Harish
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla.
Publication Date:

Subjects

Subjects / Keywords:
selenization
photovoltaics
semiconductors
renewable energy
Dissertations, Academic -- Electrical Engineering -- Doctoral -- USF   ( lcsh )
Genre:
government publication (state, provincial, terriorial, dependent)   ( marcgt )
bibliography   ( marcgt )
theses   ( marcgt )
non-fiction   ( marcgt )

Notes

Summary:
ABSTRACT: Copper Indium Gallium DiSelenide absorber layers are fabricated using a two step manufacturing-friendly process. The first step involves the sequential deposition of Copper and Gallium and codeposition of Indium and Selenium, not necessarily in that order, at 275 C. This is followed by the second stage, where the substrate is annealed in the presence of Selenium and a thin layer of Copper is deposited to neutralize the excess Indium and Gallium on the surface to form the Copper Indium Gallium diSelenide absorber layer. Elimination of the need for high degree of control and elimination of toxic gases like hydrogen selenide aid in the easy scalability of this process to industry. The performance of CuInGaSe₂/CdS/ZnO solar cells thus fabricated was characterized using techniques such as I-V, C-V, Spectral Response and EDS/SEM. Cells with open circuit voltages of 450-475 mV, short circuit current densities of 30-40 mA/cm², fill factors of 60-68% and efficiencies of 8-12% were routinely fabricated. Gallium in small amounts seems to improve the open circuit voltages by 50-100 mV without significantly affecting the short circuit currents and the band gap in Type I precursors. Gallium also improves the adhesion of the CIS layer to the molybdenum back contact. Efforts are also being aimed at improving the short circuit current densities in our high bandgap devices. It is believed that improperly bonded Ga is hurting the electronic properties of the CIGS films. A part of this work involves the reduction of the detrimental effect of Ga on the Jsc's by modifying the base process, so as to improve the homogeneity of the film. The modifications include lowering the Ga level as well as fine-tuning the annealing step. Ar annealing of the samples has also been incorporated. The short circuit current densities have been improved significantly by the above mentioned modifications. At present, the best Jsc's are in the 33-35 mA/cm² range. The Voc's have also been improved by splitting the Ga into two layers and replacing the top Cu layer by a Ga layer. Light soaking studies of the absorber have also been carried out. The baseline Type I process has also been adapted to a new load-locked in-line evaporator system. Device performance dependence on Ga and In thickness as well as the top selenization temperature has been determined in this research. The effect of moisture on the quality of the films has been studied. Bandgap variations due to the presence/absence of Se during the Cu deposition has been investigated. The impact of substrate cleaning/Moly deposition conditions on the device performance has been explored. Insitu Ar annealing studies of CIGS absorbers have been carried out. Alternate buffer layers have been pursued. Devices with Voc's as high as 480 mV, Jsc's as high as 40.7 mA/cm² and fill factors of 66% have been fabricated.
Thesis:
Thesis (Ph.D.)--University of South Florida, 2004.
Bibliography:
Includes bibliographical references.
System Details:
System requirements: World Wide Web browser and PDF reader.
System Details:
Mode of access: World Wide Web.
Statement of Responsibility:
by Harish Sankaranarayanan.
General Note:
Includes vita.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains 155 pages.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
oclc - 56137691
notis - AJR7190
usfldc doi - E14-SFE0000366
usfldc handle - e14.366
System ID:
SFS0025060:00001


This item is only available as the following downloads:


Full Text

PAGE 1

! # # $$ $ % &' ( # ) &*)#) ) )#) $+) )#) ) *)#) )#) # % ( /0* 1220 + ( % * $ 3 1220*

PAGE 2

%

PAGE 3

% #) # & % ) ) #) ) #) *#) *#) #) ) 4 4) 5* ,'* .* +* 6* 7 % ) 8* 9 : & 9:) 8 ) & % % ) ) ;, $9;,$:)

PAGE 4

< 8$ % <,$ % 8, 4 $, / ;, <#<; / $, 1 <,$ #$7$ 6 = 1)/ = 1)1 ; > 1)? /2 1)0 & /0 1)0)/ /0 1)0)/)/ & /0 1)0)/)1 $@ /> 1)0)/)? & 8 /A 1)0)1 < /B 1)= /C 1)=)/ < /C 1)=)1 11 1)=)? 7 1? 1)=)0 $@ 1= $, ? << 7 < 1C ?)/ 1C ?)1 % ?2 ?)? % ?/ ?)0 9*: % ?> $, 0 #$7$ 8, <; ;# $,5 <; 0A 0)/ #% 0A 0)/)/ 0B 0)/)1 8 0C

PAGE 5

0)/)? =2 0)/)0 5<4 =? 0)1 #% =? 0)1)/ 8 # =0 0)1)1 == 0)1)1)/ $% =B 0)1)1)1 $% >2 0)1)1)? 3 >? 0)1)? # >? 0)1)0 5<4# >0 0)? #% 3 >= 0)?)/ 7 97: & >= 0)?)1 & >A $, = ,$ ;# #<; >C =)/ 9 *: A2 =)/)/ &, A2 =)/)1 D #% A0 =)1 $% A> =)1)/ $@ AA =)1)1 $@ 5< $% #% AA =)? 9 : B2 =)?)/ $@ #% B2 =)?)1 $@ 4#% B/ =)?)? $@ #% B? =)?)?)/ $@ 3 B? =)?)?)1 $@ 3 B0 =)?)0 B= =)?)= BC =)0 9 : C/ =)0)/ $@ C/ =)0)1 $@ C1 =)0)? C? =)= CB =)> 9 /: /22 =)>)/ $@ % #% /21 =)>)1 $@ % #% /2= =)>)? $@ 3 /2B =)>)0 #% /2B =)>)= # /2C =)>)> $@ % //1

PAGE 6

=)A 8 9 1: //? =)A)/ $@ //? =)A)/)/ 7 7 //? =)A)/)1 87 //0 =)A)1 $@ //B =)A)? 5 8 @ /12 =)A)0 % /12 =)A)= D &# /11 =)A)> $@ 3 #% /1= $, > <;<; ;#,$<&&$;# <; /1A ,$$,$;$ /?0 8< $ <, $

PAGE 7

/)/ & 0 ?)/ 8 <@ 7 02 =)/ $@ #% A= =)1 $@ #% AA =)? 8 5< AB =)0 $@ #% B2 =)= $@ 4 #% B1 =)> $@ #% /2? =)A $@ #% /2= =)B $@ 3#% /2B =)C $@ #% /2B =)/2 $@ 7 //2 =)// $@ 7 //1 =)/1 $@ < 7 //0 =)/? $@ //B %

PAGE 8

1)/ # ; $" A 1)1 $# ;. B 1)? # ;. B 1)0 $8#; C 1)= $8#;. $" /2 1)> $ 8 # // 1)A $ 8 # $" // 1)B $ 8 # 5< /? 1)C $ 8 # & 9:8 9: /= 1)/2 $ 8 # & 9: 8 9: /> 1)// $ 8 # & 9: $" 9: 8 9: ,% 8 /A 1)/1 $ 8 # & < 9:8 9: /C 1)/? $ 8 # ; 1/ 1)/0 7 # 10 1)/= % 7 % &4 1= %

PAGE 9

1)/> $" % 9:E 9: 1> 1)/A $@ 1A 1)/B $@ 1A ?)/ ?/ ?)1 # ?0 ?)? # ?= ?)0 8 # * ?A ?)= 8 ?B ?)> #8 8 02 ?)A 8 <@ 0/ ?)B 8 # 9: 9: 0? ?)C 8 # ; 00 ?)/2 % 8 8 0= ?)// % 8 <@ 0= 0)/ #% FF5< 0A 0)1 3 =/ 0)? 5< =0 0)0 9:$% 9: =C 0)= $% >1 0)> & 9: / 9: 1 >1 0)A >0 0)B ? >> %

PAGE 10

0)C >B =)/ 7 7 9G:,, 10 A2 =)1 # 9G:, 7 H 10 A/ =)? 7 7 9G: 10 $@ 4# A1 =)0 7 1? A1 =)= 7 9G: 1? A? =)> 7 % /?)2I#% A0 =)A 7 &4 7 A= =)B #% # 0=2 ==2 A> =)C $@ J$ AB =)/2 7 % #+ % AC =)// $@ J$ B/ =)/1 $@ 4 B1 =)/? $@ 3 B? =)/0 7 # /C2 B0 =)/= $@ 3. B= =)/> 7 # /C/ B> =)/A ==2 B> =)/B 7 # /C> BA =)/C /C> BB =)12 7 # /CA BB =)1/ /CA BC =)11 7 # /CB C2 =)1? /CB C2 %

PAGE 11

=)10 7 # : /B0: /B> C1 =)1= $@ C? =)1> 7 # 122 C? =)1A 122 C0 =)1B 7 # 121 C= =)1C 121 C= =)?2 7 # 12/ C> =)?/ 12/ CA =)?1 7 # 120 CA =)?? 120 CB =)?0 7 # /B0:8 : CC =)?= 7 # /B2:8 : CC =)?> 7 # 1/B /2/ =)?A 7 # 1== /21 =)?B 7 # 1=C /2? =)?C $@ /20 =)02 7 # 9:1B/ 9:1B1 /20 =)0/ 1=2 K 122 K /2= =)01 $@ /2> =)0? 7 # 9:1B/9:1B2 /2A =)00 >A=2 K >=22 K /2A =)0= $@ 3 /2C =)0> $@ //2 =)0A $@ 7 /// %

PAGE 12

=)0B 7 $@ 7 H /// =)0C 7 # 9:??= 9:??> //1 =)=2 $@ 8 //? =)=/ $@ 7 //= =)=1 8 7 //= =)=? 7 8 7 //> =)=0 $@ # #. H //A =)== 7 # 9:?1?9:1C0 //A =)=> 7 # ??A //B =)=A $@ H //C =)=B 7 # ??1 /12 =)=C 7 # ?=1 /1/ =)>2 7 # ?=0 /1/ =)>/ 7 # ?=A /11 =)>1 7 # ?>2 /1? =)>? 7 # 9:?>B9:?>C /1? =)>0 $@ & /10 =)>= # 7 % ?>C /10 =)>> 7 # ?>0 /1= =)>A 7 # ?>> /1> 4

PAGE 13

# ) % % * 1A= ) 34 ) $ 4 ) FF5< 3 7* 7* $#F$&) % 0=20A= 7* ?202 F >2>BI B/1I ) % % =2/227 @ ) % ) 4

PAGE 14

$@ % %) % !) % % @ H % !) % ) ) % % % !) H ???= ) 7 H % % ) % ) % ) #% 3 ) @ ) 8 % % ) & % 4) % ) @ % ) #% 7 H 0B2 7*. H 02)A >>I % ) 4

PAGE 15

% % ) ) ) % % ) 8 % ) * ** ) % ) ; % ) % % ) % % ) % ) % % % 4 ) % % ) < ) /

PAGE 16

% % ) % ) ) % /B?C 8" % 8 /C=0 L/ M) % ) % % 3 /CA2H) ) % %* ) % % ) % % % L1M) % * % ) 9: % 4 10I L?M* % % 4% ) ) % ) % ) 7 4 @% ) 1

PAGE 17

7 @ % ) @% ) ) & % ) @% ) ) 4 ) @) * % L0M) % ) 7 % ) /)/ !L=* > AM) $ % > /2F* 1=F) % ) % /=I) ?

PAGE 18

!" # #"$ # $ % &'! & 9 : $ I 9-: ) >A1B C)/ >/)? 4 F A0/A A)> => ?B=C /2)1 ?C)? 8 0=02 B)0 ?B)1 $# FF ?C2> A)B ?2)> ??=2 B)A 1C)? $5 ?A0> >)C 1=)A F ?>A> >)1 11)B F /122 B)C /2)A C?B //)/ /2)0 & 8 /122 B)A /2)2 FF C2? /2)1 C)1 8 A2> /2)/ A)/ $ 7 A0/ B)/ > $ B0= >)C =2B =/)A /0)1 ?>=/ //)B ?0=C /?)0 ) />)2 />)> 8 4 0BA0 /2)A 0

PAGE 19

( ) % % ) *' ) ) % ) ) % ) ' % % ) ( $"&'$*! % % % ) 4 ) ) * ) % % ) # =

PAGE 20

% % ) 4* 4 3 3 % ) % 4 ) % % ) $ % ) ) ) % LBM N 92: G 91)/: $ 92: 2 % ) (( +'"$* ) ) @ D ) @ % 9!4: ) ) 3 >

PAGE 21

) % 9; : % 9; : ) @' !) D ) 4 D @ ) D ) % N 9 : 91)1: 7 ) @4 ) 4 ) 1)/*1)1* 1)? *! ) P Regionn Region x ) Net Donor Density Net Acceptor Density Depletion Region (N D -N A ,'( $ %, !* '* "# '* +'"$* "-' $" 1)0) 1)=) A

PAGE 22

Area=built-in potential 0 p -x x n x m -E E ,' (( $* $ & !* '* # '* +'"$* bi V x V 0 ,' (. *" !* '* # '* +'"$* B

PAGE 23

" % % ) V E A E F E C E E C E D E F E V ,' (/ ",0 "& ,! # !*& 0 "& 0 $"&'$*! @* ) % LBM N 91)?: 7 7 % % ) N 9 : 91)0: ; ; LBM) ;' !' !) ' ) ; ; % % ) C

PAGE 24

Vacuum Level Metallurgical Junction E C E F E V ,' (1 ",0 "& # +'"$* " % -' (. *2'"$* "! @ ) % @ * % ) % *% @ D ) 1)> ) $ $ @ ) 1)A) *% ) @* /2

PAGE 25

Vacuum Level E C1 E F1 E V1 E g1E g2 E C2 E F2 E V2 1 2 V E C m1 m2 ,' (3 ",0 "& # 4 !*& $"&'$*! Vacuum Level Fermi Level qV qVd d2Eg2Eg1qVd1 V p nCq q q 1 1 2 2q ,'(5 ",0 "& ,# *2'"$* "%-' //

PAGE 26

D ) @ % ) O N 91)=: D O$ 3 ) % % O N9 O : 91)>: ) % % % @ ) ) % @ @ ) % ) % % ) 5<' 1)B) & 9: ) % ) % % % % ) 9 /1

PAGE 27

CuInSe 2 CdS 1.0 eV 2.42 eV 3.3 eV ZnO E C E F E V ,' (6 ",0 "& # '" & 7" *2'"$* % 5<: % ) ) ) ) % ) % % ) @ ) LCM) ) % ) /?

PAGE 28

(/ $"&'$* *$*! 9 : ) % ) D 4 < ) (/ $ %**80 *$*! (/ & $"&'$* +'"$* "! % % ) 9 : 9 : 1)C) ) % % ) 1)C) ) % ) % ) 3 ) P P % @ 7 ) /0

PAGE 29

VACUUM E C E F E V E C E F E V W qV bi q q q m Bn (a) (b) ,'(9",0"& ,#&* $"&'$*+'"$* :; # *$* :; #* *$* D ) % LBM N 9 : 91)A: ) % LBM N 9 : 91)B: $ ) ) ) /=

PAGE 30

(/( % <$* # '#$ **! ) 1)/2 ) VACUUM E C E F E V E C E F E V W qV bi q q q m Bn (a) (b) ,' (= ",0 "& # $"&'$* +'"$* 4 *% '#$ **! :; # *$* :; #* *$* % $ !* % $ ) % 9J : % 3 9J : ) % * ) $ @) ) />

PAGE 31

(/. $"&'$* +'"$* "! "& & * D D ) 1)//9:) qV R q(V bi + V R ) qV bi q(V bi V F ) V F q Bn q E C E F E V (a)(b)(c) ,' ( ",0 "& # $"&'$* +'"$* " & :; % -' :; 4 & :$; > ! < % 7 ) 1)//9:) % D ) 9 D D :) D ) D ) /A

PAGE 32

' % % 7 7 1)//9:) % % % ) ) % D % ) ' % % % D ) % % * LBM) (/( % $ *$*! % LB M) < D 4 7 ) % % %) ) *D % ) ) *) D % /B

PAGE 33

) 1)/1) * ) VACUUM E C E F E V E C E F E V q (a) (b) m q ,'((",0"& ,#* $"&'$*% $" *$* :; # *$* :; #* *$* (1 (1 %0 # 3 % @ % ) ) @ ) ) % % ) /C

PAGE 34

) 43 % L/2M) !" ) % ) % ) ) $4 % F ) ) % ) 3 N 91)C: H % % $ ) % N 91)/2: ) 4 ) % ) % ) ) ) 12

PAGE 35

% % @ ) % % ) ) ) % % ) 1)/? ) ŠExcess Electrons C E 0 oc Excess Holes V 0 E V ,' (. ",0 "& # +'"$* "& "* $ $ % % ) % ) 4 % 4 ) % % ) 1/

PAGE 36

(1( %*$'" "& $* !"! 4 % LBM 9 :N 9 : 9 :L/ 9 :M 91)//: 9 : 9 : *, D ) 9J$: % ) % LBM 9 / :9 :G 9 : N2 91)/1: ) % N G 9 : 91)/?: $ !* ) % N 9 : 91)/0: @ ) ) N 9 :L/ 9 :M L/ M 91)/=: 11

PAGE 37

4 ) % % LBM 9 :N 9 :G 9 :G 9 : 91)/>: % 4% 9/ : % LB M* 9 :N / 9 :L/ 9 :M 9 9 :G 9 :G 9 :: 91)/A: 9 : LB M N 9 :L/ 9 :M 9 : 91)/B: % ) (1. '" *) *, %$* !* $! 1)/0 7 ) % % ) N 9 /: 91)/C: % N 9 /: 91)12: % ) D ) % % 1?

PAGE 38

VI V oc I sc Dark Light ,' (/ ) %$* !* $! '"& 8 "& "* % 97 :) 2 % ) % N 9 9/G :: 91)1/: + 83H ) 7 % ) 9:%7 % % % % ) ) % / 1) % 7 ) % / ) 7 7 ) 1)/= 4 % 7 % 0 ) 10

PAGE 39

m P I 0 V m oc V V I sc Maximun Power m Rectangle I ,' (1 > *& ) '> % 4 ", ? 4 $*", 4 % 4 % 7 ) !9:7 % N 91)11: % % % % N N 91)1?: 4 ) (1/ <$* # "& % '" !*"$! 3 ) % 1)/>) 1)/> 3 ) % 1=

PAGE 40

L I LI I VV I R s R sh (a) (b) ,' (3 -' > $' # :; & !@ :; *% !"$ # "& % '" !*"$! ) % 7 ) % ) % N 9 /: G 9 : 91)10: * ) 49<:* D ) 7 % ) 7 % % ) @ 7 % 1)/A) @ 7 % @ ) % 1>

PAGE 41

@ % % ) I sc s IVV oc slope=1/RIdeal ,' (5 <$* # ! !*"$ I sc slope=1/R p V ocVIIdeal ,' (6 <$* # % '" !*"$ ) % ) % ) 1A

PAGE 42

, ) @ 7 % 1)/B) 7 % % ) % ) 7 ) 1B

PAGE 43

. ) *&'$* /B?C 8" % ) % @) /BA>) 4 % ) % 8 ) /C=0L/M) % ) % % @% ) % ) % 4% ) % ) ) F ) ) % ) % ) % ) 3 1C

PAGE 44

) ) 4/=2) ) ) 10)=IL>M) />I /2F) % % 7 ) .( % %* > $! 7 % *! ) ) D4* ) *! % 4% % * *7#) ) % ) ) !) 4 ) % !) ?2

PAGE 45

! 9:* 9 : # 9:) % /BI 9: L//* /1M />I L/?M) % ) % $ H 4 L/0M) * ) .. '" % %* > $! 7 ) /)27 ?)> /2 L/= */> M ) 3 ?)/) ) % ) ,' %$ 0 *'$*' # ) 9 ?/

PAGE 46

: % ) < % ) % 9 : 9 % : ) % ) % ) ) % 4 % % % @% L/A M) 9 7 :) ) % %L/BM) < 7 <#)< 7 /)? 7) 9* : % L/CM) 17 G <#) % <#H L/AM) % D % L12M* L1/M* L11M* L1?* 10 M* % G L1= M % ) < *% ) 8 % % ) % ) ;,$ L1>M) % % /=I) % 9 ?1

PAGE 47

: % ? % ) % % ) ) ) ) ) 4 % ) 3) % ) % ) % ) 9 : @ ) !% %) @ ) & 2)B= 2)CC % % % ) % % !) % ) ) % 4 L1A M ?)1) ) % ) % % ) *% D 4 !) ) % 122 ) ??

PAGE 48

CuIn Se Cu Se 2 In Se 3 2 CuInSe 2 ,' .( "0 '" %! ) % % ) ) ) !) 4 !) % ) D 4 % % ) % % % !) ;D 4 ? % % !) ?)? L1BM ) 4 ?0

PAGE 49

,' .. !'& "0 %! # !* ?=

PAGE 50

=2 I ==I ) 9 : /)2 2)B1) 4 4 ) !* 3 ! ) 3 !) @ % ) 8 * ?)0L1CM) 4" ) 3 *" L?2M) ./ ':"A; % %* > $! % % !) % 7 ) ) 9G: ) % 7 ) 7 7 ) % ) ) ) % ?>

PAGE 51

,' ./ "0 %! ,! # 'A '"A "& ?A

PAGE 52

@ ) /)0 7 LCM) /)27 % ) ) % L?/ M) % N/ 2//G2 >>0 2 10C 9/ : 9?)/: % N/ 22?1G2 A/?>C 9?)1: ?)=) $ % % ! % L?1 M) [In]/([In]+[Ga]) Stoichiometric Cu-poor CISeCGSe 1.00.80.60.40.20.0 0.00.20.40.60.81.0 1.0 1.2 1.4 1.6 [Ga]/([In]+[Ga])Bandgap(eV) ,' .1 %", "&, '"$* # *" # "& $ % $ ?B

PAGE 53

4 %!@) & ) L??M) L?0M) *! ) !) !* ) # * % % * * @ ) 9/(/(1: L?=M) % % ) 8 /)1= 7* % @ % L?>M) % % % L?A M) % ) % @ % ) 5 L?B M % @ % ) ?)/* @ )% % O$ ) % % O$ % ?C

PAGE 54

% ) @ ?)>) "& B 2)>2 2)20 2)1> /)22 1)>A /)?A 2)1> /)2? 2)AB /)=? 2)1/ 2)1B 2)/? 2)A> /)2/ 2)0A 2)=2 2)/? /)=0 /)20 2)?0 /)20 1)01 2)?0 /)20 5 ?)B2 /)0/ /)12 /)2A 2)/> 5 1)B1 2)C> 2)0? 2)>1 2)?A 5 1)?C /)1> 2)?2 2)C1 /)22 CIS CdS 0.60 0.04 0.34 1.04 E C E V 2.42 eV 1.04 eV 1.68 eV CGS ,'.3%* $0* "&"& "'!* 4 "& 02

PAGE 55

4 O$ 4 % O$ L?CM) % O N 2 ?0G2 > 9?)?: ?)A) 3 ) -0.40.8 0.61.0 0.1 0.0 0.1 0.2band offset0.2[Ga]/([In]+[Ga])0.0Conduction0.2 ,' .5 "&'$* "&
PAGE 56

7 % O$ 2)A 2 7* P@P ) ) 7 O$ ) 4 O$ 2 2)0 7) O$ 4 2)0 7* D ) O$ 2)A 2 7* % < 7 ) 4 O$ 2 2)0 7) 4 % ) ) ) @ * @ @ ) % !) ) 4 * ) % ) ) @ ) @ 01

PAGE 57

E Vac x=0x=L n E E f E C V (a) 1.0 eV E Vac x=0 x=L (b) E V E f E C n ,' .6 $ %* $ "& # :; ,"'! :; && ) ?)B9:) ?)B9: ) % ) % % %) %* % % ) < 98:) 8 0?

PAGE 58

) ) D ) 8 % ) L0/*01M) % L0?M* % ) !* ?)C /)1 7 /)2 7) ) 2)1 ) VB CB 1.2 eV 1.0 eV 0.2 um x 1.0 um ,' .9 % "& # !& *$ % *'$*' 3 L00M % % ) % ?)/2) % ) 00

PAGE 59

WindowAbsorber CB VB E F E i Inverted ,' .= > # '#$ # &' "& "& ", ) WindowAbsorber CB VB E i E F ,' '#$ > &'$* &' "$!& "&'$* "&
PAGE 60

! O$ % ?)//) % @ ) % O$ % ) L0= M) % 4 ) % ) 0>

PAGE 61

/ ) 7 / > $ *'$*' 0)/ % FF5< ) % % ) 95<: ) ZnO (0.5 microns) CdS (0.02 microns) CIGS(2.0 microns) Mo(1.0 microns) Glass (2mm) ,' / > $ *'$*' # B&B7" 0A

PAGE 62

/ '!** ) #9 : % % L0> M) % % ) < @ ) % % L0A M) % !;% % % L0BM) @ 0=2 ) % % ) ; 7 % L0CM) ; F L=2 M ) & % @ ; @ !L=/M) 3 % ) 3 ; L=1M) % ; !) 0B

PAGE 63

$4% ; % @! L=?M) ; 9 / I: %L=0 M) ) L== M % ; ) ; 3 % ) % ;* % % ) ; ) % L=>M) % 3 4 % 3 4 % L=A M) 3 4 7 L=BM) % @ % @ ) 9 >22 : ) /( $ 8 *$* & 9&:) &) / & #& ) % L0AM) 4 % % ) % *! % ) *!4 ) 0C

PAGE 64

% %) % @ % ) % ) < % % L=CM) % % % ) & % ) & ) ?) /. & 'C& % ) % 3 0)1) 9 : % % 1)0 7 =/2 ) ) ) 9#:* 9: % ) # % % ) % % % !) =2

PAGE 65

,' /( '*D *'$*' # & % 4 4) !L>2 M) !* ) % ) % L>/M) 5< ) % % L>1 M) 9>22B22 K : 7 % ) % % % % ) 7 =/

PAGE 66

#L>?M) 7 !) @ % 7 % ) @ L>0M) @ ! L>= M) @ ) # L=AM) 4 > & /)= /22 % L>>M) % @ % ) ) & 5 5* 5 ) @ 5 5< % /1)= I L>>* >AM) 4 % % % L>1 M) 4 @ 5*5 % 4 /? I L>B >C M) 5< % % LA2M) # 5 @ /AI LA/ A1M) 5< @ # /?)1I LA?M) 5&< @ % />)1ILA0 M) =1

PAGE 67

// 7 "$ ? & % ) 5< ) 5< 9?)? 7: 4 ) # ) 5< 9 =22 K : 5< ) 5< 95<: < ) 45<(91I: < ) @ ) C2I % 022/222% C /2 % ) @ % ) D% 5< D ) % 0)?) /( > $ $* " % ) & # ) * * 3 ) ) 5< 5< ) =?

PAGE 68

,' /. "! !! # 7" /( $ 8 *$* = = 1 % ) % % ) #93: % ) % # ) % D ) # ; ) ) / & # ) /=2 * % ) # = $ ) & 1/2) &!4 % % = /2 ) =0

PAGE 69

* % ) % % % ) /(( 0 % % %) ;,$ % 4 % LA= M) 9* : 9=>2 :) % %) % ) % % % % ) ) D 4 ) % ) 1A= % ) " ) ) % ) % ==

PAGE 70

) ==2 D 4 3 ) ) 3!) % ) 3 @ LBM) % % *3 ) D ) !4 4 G 3L?C M) % 4 4 9 =22 :% ) 4 % ) 4 % @4L0>M) 4 % !LA>M) % % % ) D !) //1) ;,$ !112 /B)BIL//M) =>

PAGE 71

112 % % 7 ) 112 120 % & ) & LAA M) % 112 !) 112 120 !) ) 9112 120: ) % *@ ) ) & & LABM) & % ) 3 ) * 91A= :)3* 9 ==2 :) % % !) % % % 4 !4 D 4 ) 4 % 3 !) % 4 % =A

PAGE 72

%) !4 ) % 4 3 % 4 LACM) % ) /(( $'! '$ > @D 4 @* @ 4 0)0) ) 3* ) 12I % ) 3 %) D 44 ) 3 % ** % D 4) 3 ) 4D 4 ) @ & ) %) ) 4 =B

PAGE 73

5(a)(b)10152025 161121In Se Cu Ga Cu In SeGa1611162116510152025 ,' // '$ "," :; > *& :; '**& & ) ) & ) ) % ) % 1A= ) D 4 ) ) 4 @ ) /)1 K ) /)? K /)/ K ) ?)1 K 1)B K ) /)/B 2)C ) % D 4 !* LB2M) D 4 =C

PAGE 74

! ) 2)> K 2)= K ) % /)2 K ) /((( $'! "" > % ) % 3 4 ) ) @ ) % ) % @ ) % % ) % % ) % ) % % ) ) % % *) % ) ) % ) % /4/2 )#" 3 ) >2

PAGE 75

% % ) % ) % % ) 3 ) & ) $ ) / ) 1% ) % = ) % % 3 ) 14 1 4% ) 3) 1) % ) ) ) ) 0)=) ) @ % ) % ) ) 3 %) >/

PAGE 76

Se Cu510152025 16111621In,Ga ,' /1 '$ "," *% " > 0)>) % % /) & 4 1 9: E9:% ) Cu In Cu In (a)(b) 0.98 0.94 0.89 1.08 1.11 1.09 ,' /3 * & *% '!** :; % :; % ( >1

PAGE 77

) / 1) / / /8)D % @ ) 3 % ) /((. D* 0=2 ? % D 4/> K ) 0=2 A ==2 ) ==2 A 91=/22 K : 3 4 ) @ 4D 4 01= D 4 @ % ) 0)A) /(. & ?22=22 K : ) 2)2/= *2)/= *2)/= 4 # ) A2B2 ) ) =A 4 ) >?

PAGE 78

TemperatureSe flux = 19 A/sec 275 450 550( C)o022 1115 428 Precursor Time (min) ,' /5 *' C # $* /(/ 7 "$ ? & % 5< ) 2)/ 5< @ % ) /1= % ) 9 022 K : <4 5< 90=22 K : ) % 5< B/1 /2 C2 I % % ) >0

PAGE 79

/. > $ %$* D* 3 7 97: ) 7 % %) 3 % % % ) /. '" *) *, :); !'" *! % 97: 0/0=8 3 + 10/2 ) 7 3 + 10/2) 3 7 1= ) < 5< & ) & 4 % % ) 8 7 7 7 ) @ !% ) 7 ) % & ) 5< ) 4 7 % ) >=

PAGE 80

%) 7 % % % ) % 0)B) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8Voltage (V) -5 0 5 10 15 20 25Current (mA) Dark IV Light IV ,' /6 & 3 +10/2 ) 10/2 % ) 7 5< & ) % ) % 2)1% G2)=% 7 % ) % % 7 ) >>

PAGE 81

/.( $* !"! !'" 4" % 4 /A20 < 1>2 ) 9 % 022C22: ;, $ 9;,$:) ;,$ % C22/022) % 3 % ) % ) % 3 ) C22 022/022) %) 0)C) 4/A20 % 1>2 ) @ C22/022 % ) >A

PAGE 82

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE Cu at 450C Cu at 550C ,' /9 $* !"! >B

PAGE 83

1 ) '% 3 3D 4) % 3 7 ) % % D % ) % !) 1= 5< 2)/ % = = ) H % % ) %) %) 7 7 4 ) % % ) %) % % ) >C

PAGE 84

1 0 :' "A; '** ", % ) % & ) LACM) 7 H01=0A=7 ?B02 /2/1I ) 7 H 0C=79=2A7 : % % >0I % /?)2I) % 3D 4 ) @ ) 1 * "! &* "! 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 Metal Ratio 400 425 450 475 500V oc (mV) ,' 1 ) # ) '"$* # :" E ; '" (/ =)/ % 7 % ) C/ K AA K A2

PAGE 85

) % 2)AA/)21) % % C= 7 ) 7 9G: /)22) @ ) 9G: 4 /)22) % ) % 34 !) GaSeGa Se0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.86 0.85 0.84 0.83 0.83 0.80 0.79 0.78 0.78 0.77 400 490 495 455 455 475 475 455 440 445 445 455 445 425 425 455 445 445 435 425 445 430 435 425 X Cu SourceCu Source In Source 1.02 1.01 1.00 0.99 0.98 In Source ,' 1( % !* '* "# :"E; "& ) F! (/ 7 H =)1) 7 H 9G: / ) @ ) 7 H % D 4 ) =)? % 7 9G: 10) @ 3 D 4 @) % / =) % A/

PAGE 86

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 400 410 420 430 440 450 460 470 480 490 500 Cu/(In+Ga)Voc (mV) Column1 Column2 Column3 Column4 Column5 ,' 1. ) # ) '"$* # :"E; '!** (/ 4 *% *% <$* # '? $'& 7 H ) ) 4 7 % D 4) D 4 7 H ) 400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wavelength (nm)QE Near Cu Source Near In Source ,' 1/ ) # $* !"! (. A1

PAGE 87

=)0 % 1?* 9 9G: 2)CC: 9 9G: 2)AA:) % % H % @ % % 2)A=) 3 @ % ) % ) % ) 0.75 0.8 0.85 0.9 0.95 1 36.5 37 37.5 38 38.5 39 39.5 40 Cu/(In+Ga)Jsc (mA/cm2) ,' 11 ) # + '"$* # :"E; (. =)= % 9G:) 2)B/)22 H @ ) % @ =/2I) @ % % % 2)A=) % 9 /0I: 7 H H) A?

PAGE 88

=)> 7 % %) % 7 0C= 7* 02 >0I) % 7 =2A 7 % /?I) % ) % A2I *%% 4/=I) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8Voltage (V) -5 0 5 10 15 20 25Current (mA) Dark IV Light IV ,' 13 ) '> # .= I > $ 1( "G'"$ # > $ #"$ # 9G: % 3) 3 % !) =)A 7 ) 4 7 H ) D 4 % ) % 4@) % 9@ A0

PAGE 89

50 60 70 80 90 100 110 120 13 0 380 400 420 440 460 480 500 Top Cu Thickness (A)Voc (mV) ,' 15 ) # ? ) 4 *% *% % $ 8"!! : ) A= K % 9 =)1:* 2)C= 2)A= ) A= K % /)22 % ) 1 <$* # 0 > $ *! 7 ;) 9 K : # 9 : 97: 20/A =2 0=2 0/2 ?=)/ /A2B =2 0=2 0=A ?>)/ /C2A >2 0=2 0== ?0)0 />/2 =0 0=2 0?1 ?=)= 121/ =2 ==2 012 ?C)2 1?1/ =2 ==2 0?= ?C)? 10// A= ==2 0C= ?C)C 1=2> A= ==2 00= 02)2 1A2A /22 ==2 0== ?C)2 ?/2A A= ==2 00= 02)2 >=2/ =2 ==2 02= >>21 >2 ==2 01= ?=)2 A=

PAGE 90

=)/ ) % =)B 0=2 ) 3 ) % 4 D %) ==2 % H) 0=2 3 ) % % @ % ) 400 500 600 700 800 900 1000 1100 1200 1300 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE Cu at 450C Cu at 550C ,' 16 $* !"!! # 4 > $! 4 *%*% *& /1= "& 11= 1( 0 > # % ) % ) 3) A>

PAGE 91

1( <$* # % $ 8"!! 1( <$* # % $ 8"!! > $ #"$ ;) 9 K : 97: % :9F : /12/? C=2 ?>= 12)= /11/1 C=2 02= 1A)B /0=// BA= ?B= ??)= /==/B B22 ?B= 02)2 /?A// A=2 ?B= ?B)/ /=?/? A1= ?B= ?C)C =)1 7 H@ @ ) 7 H !. H ) H) ) % ) 7 H ) '@ % 7 H ) =)C @ J$!) 1(( <$*#"&&7"% $ 8"!!" 0> *&> $! 4 % 5< % ?22 K A22 K ) % =)?) 4 5< % 7 % ) % =)/2) 5< % ) 7 H H AA

PAGE 92

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wavelength (nm)QE 950A 875A 800A 750A 725A ,' 19 <$* # % $ 8"!! H 1. * 4 7" % $ 8"!! "& #"$ ;) 5< 9 K : 97: 9I: /=/1? A22 ?B= ?0)>B /=21? =22 ?C= 0=)CA /=111 022 0/= >2)1C /==1/ ?22 01= =A)2> /=?11 ?22 ?A= =2)// % % 5<) 5< ) % 7 % ) 5<) % 7 % 5< % ) 7 H 5< 5< A22 K ?22 K ) % 5< ?22 K ) 7 H AB

PAGE 93

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2Voltage (V) -5 0 5 10 15 20 25Current (mA) Dark IV Light IV ,' 1= ) '> $* ", "8! "& !! > 5< 022 K % ) 5< A22 K 022 K ) % 5< ?22 K ) % % % ) # !4 ) % % % % !4 ) % ) @ @ ) % ) % 4 %) AC

PAGE 94

1. 0 $'!! :" ; 1. <$* # % $ 8"!! 0 > $! /A0* /AA* /AB* /AC* /B/ *4 % ) D 4 !41= K ) % % =)0) 1/ <$* # % $ 8"!! > $ #"$ ; 9 K : 7 97: 9 : /A0 B22 00= 1A)C ?/)1 /AA B22 0?= 1C)> ?1)B /AB >22 ?0= ?/)> /AC 022 0/= ?1)= ??)> /B/ 122 1== Q *7 H ) >22 K ) 4 ) 122 K % ) G % % ) < H % !) % ) 4 ) @ !) 4 %) B2

PAGE 95

! % ) 8 % !* %) H) % 7 H) @* *% % 7 H =)0) /AC ) 4 7 ) % H ) @ % J$H =)//) ) 400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 17411 17723 17803 17903 ,' 1 <$* # H 1.( <$* # '? > $ #"$ /A?* /A0* /A=* /A> /AA % D 4 3 % ?2 K 12 K ) D 4 ?2 K ) !4B22 K ) B/

PAGE 96

11 <$* # '? > $ #"$ ;) 49 K : 7 97: 9 : /A? ?2 0/= 1B ?/)= /A0 1= 00= 1A)C ?/)1 /A= 12 ?B= ?2)1 ?1)B /A> 12 ?C= Q /AA 1= 0?= 1C)> ?1)B 400 500 600 700 800 900 1000 1100 1200 130 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wavelength (nm)QE 17303 17411 17513 17713 ,' 1( <$* # '? + =)=* % 9 % : D 41= K ) 7 H @ D 4) D 4 !) D 4 % % % ) < % D 4 % ) % D 4 % !) % D 4 D 4 % @ % !) B1

PAGE 97

=)/1. H*!*% D 4) 1.. *' <$*! > $ #"$ 1.. <$* # ,% D* *' @ % !* 3 =A= /B?* 022 K D 4 1= K ) /AC 3 ==2 ) % 90/=7: @ H % ) H % J$ % ) @ =)/?) 400 500 600 700 800 900 1000 1100 1200 1300 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 17915 18323 ,' 1. <$* # ,% D* *' + B?

PAGE 98

1..( <$* # ", D* /C2 ==2 ) % 7 H H) 4 7 0>= 7 % ?0)/ ) ) 47 ) 7 H @ % ) 7 =)/0) @ 7 % ==2 ) % ) 345 365 395 375 465 375 355 395 395 425 365 385 415 415 455 395 385 385 415 435 405 405 365 385 405 Cu Source In Source ,' 1/ ) !* '* # 9= /C2 9/A0: =)/=) !) ==2 B0

PAGE 99

" ) 400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wavelength (nm)QE 19021 17411 ,' 11 <$* # ", D* " + ==2 /C/) 7 H. H % ) 7 =)/> =)/A) @ % ==2 ) 4 ) % J$ % % ) % /0 ) 7 H H) ==2 A /0 % 7 H H) 1./ '"! !* ) >22 K 1A= 122 K ==2 3) ) B=

PAGE 100

Cu Source In Source 285 305 395 305 315 255 345 325 310 345 240 285 305 335 355 275 285 355 345 285 295 295 335 345 305 ,' 13 ) !* '* # 9 400 500 600 700 800 900 1000 1100 1200 1300 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wavelength (nm)QE 7 mins 14 mins 21 mins ,' 15 $* !"!! # ", # 0 11= B>

PAGE 101

/> /B 3) 7 0>=7 1C)AF ) ) =)/B =)/C 7 /C>% ) % 7 ) Cu Source In Source 295 285 435 405 325 445 465 465 465 345 405 425 425 405 315 395 355 430 280 335 255 265 375 240 245 ,' 16 ) !* '* # 93 % % /CA0=2 3 ) ==2 ) /0 /> 3) ==2 ) % ==2 ) 4 7 0B=7 4 ?1)B ) 7 =)12 =)1/ % ) 7 % ) % 7 H % /)/7)&@ % % 7 H >227 ) BA

PAGE 102

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 17411 19607 ,' 19 $* !"! # 93 Cu Source In Source 405 395 375 395 455 405 415 425 425 435 415 285 415 420 465 405 435 425 445 485 455 455 475 475 445 ,' 1(= ) !* '* # 95 BB

PAGE 103

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 17411 19704 19713 19715 ,' 1( $* !"!! # 95 1.1 % @ % % % ) /CB 1A=2 K % /=2 K ==2 3) 0=2 3 /0 3) ==2 > ) 7 =)11) 7 ) % ) %* 4 %) % % 7 H % A27) BC

PAGE 104

Cu Source In Source 285 335 335 355 365 365 365 365 365 385 345 325 385 345 405 315 355 395 415 375 385 385 405 255 275 ,' 1(( ) !* '* # 96 400 500 600 700 800 900 1000 1100 1200 1300 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 17411 19810 19811 19813 19823 ,' 1(. $* !"!! # 96 C2

PAGE 105

7 ) < H ?= ) J$ % ) =)1?) 1/ 0 $'! :" '; 1/ <$* # % $ 8"!! % !* % ) % * % ) @ ) !* ) ) @ % % D 4 1= K 3) /B0 B22 K /B> 022 K ) 7 =)10) % 7 H /B0 B22 K /B>4 %) @ % 022 K ) @ 4 ) % 9 :* @ 4 ) C/

PAGE 106

Cu SourceCu Source In SourceIn Source 395 415 425 425 435 415 405 435 405 455 425 425 435 435 415 405 425 375 430 415 415 425 405 425 425 225 215 275 235 265 145 145 135 155 145 305 335 355 355 345 X 95 X X X X 215 280 X 255 ,' 1(/ ) !* '* # ; 6/ ; 63 ) 1/( <$* # ," "" ", @ 0) 122 =A= ) /BA /2 ) $" % ) 7 H ) ?B= 7 % 02= 7 ) ) % 7 H) H* % =)1=) ?=)0 % ) C1

PAGE 107

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 18708 18713 ,' 1(1 <$* # ," "" ", + 1/. 122 % ) 0=2 3 /0 3) =)1> 7 122) Cu Source In Source 445 460 535 535 435 545 525 525 515 525 545 545 545 555 515 545 505 555 555 545 525 545 555 545 545 ,' 1(3 ) !* '* # (== 7 H === 7 ) 7 H % %) 7 C?

PAGE 108

=)1A) % ) /B0 ) ,' 1(5 $* !"!! # (== 121 122@ 3 =A= ) 7 =)1B) 7 H % /227* ) % *. H % % =)1C) 12/ 121) % % ) 022 K 122 K ) @ 7 =)?2) C0

PAGE 109

Cu Source In Source 345 395 435 255 395 385 425 435 435 425 355 375 425 425 X 415 435 425 435 435 435 455 X 435 415 ,' 1(6 ) !* '* # (=( ,' 1(9 $* !"! # (=( C=

PAGE 110

Cu Source In Source 345 345 325 335 335 335 355 345 325 345 435 405 395 405 255 435 395 385 395 425 425 435 420 425 435 ,' 1.= ) !* '* # (= H % % ) % 3 ) ) % 7 H) 7 H) =)?/) % 7 H3 % H) 4 % 4 ) 120 ) ==2 ) 0=2 ) 1/ ) =)?1 7 ) 7 H ) 3 % 9*: ) 9 : C>

PAGE 111

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 20103 20111 20113 20115 ,' 1. $* !"!! # (= Cu Source In Source 435 455 455 445 485 485 485 495 495 495 495 505 475 515 515 530 535 535 545 525 555 560 560 555 555 ,' 1.( ) !* '* # (=/ CA

PAGE 112

% 7 H @ % ) =)??) ,H @ ) ) 400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 20403 20410 20421 20423 ,' 1.. $* !"!! # (=/ 11 ,% 8 ", % 4 ) & /)= 9 : /2 ) ?2 ) =)?0 7 /B0 ) =)?0 % 7 H %*. H @ ) =)?= 7 /B2 @ @ ) 7 % @ % 7 H % CB

PAGE 113

Before Light SoakingAfter Light Soaking Cu SourceCu Source In Source 395 415 425 425 435 415 405 435 405 455 405 425 375 430 415 415 425 405 425 425 In Source 425 425 435 435 415 425 435 445 445 445 405 435 445 435 465 425 445 455 455 435 425 445 425 445 440 X 445 445 445 445 ,' 1./ ) !* '* "# 6/ ; # ; #* ,% 8 ", Before Light SoakingAfter Light Soaking Cu SourceCu Source In SourceIn Source 365 375 365 365 345 365 355 355 350 325 445 465 465 465 445 485 485 485 485 445 465 475 475 465 425 445 385 425 465 425 445 455 465 455 425 465 445 455 465 425 385 375 365 375 335 X 235 365 345 335 ,' 1.1 ) !* '* "# 6= ; # ; #* ,% 8 ", CC

PAGE 114

% ) % % 7 H %) % @% % ) %) 13 0 $'! :' % ; #% % 0) % /) % 1 ) 3 1) @ ) ) ) ) ) % 7 H) 7 H % ) 7 1/B =)?>) ) @ & ) % % % 4 ) 4 ) % / 1) /22

PAGE 115

Cu Source In Source X X X 275 155 X X X 275 265 235 X 255 215 X X X 255 X X ,' 1.3 ) !* '* # (6 ) 4 % % ) 7 4 ) % ) 4 3 ) %) 4 ) % ) 4 3 ) 1==) 3 ) 4 7 H) 7 H 01=7) =)?A 7 1==) 8 3 ) ) /2/

PAGE 116

Cu Source In Source 285 405 415 415 435 410 415 385 425 435 415 0 425 415 425 405 395 0 425 425 405 405 0 265 415 ,' 1.5 ) !* '* # (11 @ ) % %) % !4 4 3 ) ) =)?B 7 ) 7 H % ) 43 % ) % ) 13 <$* # > > $ #"$ % 0=2 K 1=2 K ) ) ) =)> @ % ) 7 H /21

PAGE 117

Cu Source In Source 365 345 275 195 215 330 350 355 355 375 245 305 345 305 345 260 175 X 045 315 X X X X X ,' 1.6 ) !* '* # (19 13 <$* # % $ 8"!! > $ #"$ ;) 9 K : 7 97: 9: 1>11/ 0=2 ?>= /)> 1>>2> ?=2 01= 1)= 1>>// ?=2 01= 1)1 1>A1/ ?22 01= 1)A 1A21/ 1=2 0?= 1)? 1A22/ 1=2 0/= ?)> ?=2 1=2 K ) 0=2 K 7 H !) H ) =)?C) H 0=2 K ?22 K ) % @ 1=2 K ) 4 3 012 =12 0=2 ==2 ) 1=2 K 122 K ) 3 ==2 ) ) 1B/ 1B1 1=2 K 122 K /2?

PAGE 118

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 450A 350A 300A 250A ,' 1.9 <$* # % $ 8"!! + % ) 7 =)02) 7 H. H @ ) =)0/) (b) (a) Cu SourceCu Source In SourceIn Source 415 425 415 405 415 405 415 415 405 405 420 425 425 425 425 405 405 405 405 415 405 395 375 385 405 435 435 435 425 435 435 425 415 415 425 435 435 405 435 435 425 425 435 435 435 425 415 415 425 425 ,' 1/= ) !* '* # :;(6 "& :;(6( /20

PAGE 119

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Wavelength (nm)QE 250A 200A ,' 1/ $* !"!! # 4 *% % $ 8"!!! # (1= I "& (== I 15 <$* # % $ 8"!! > $ #"$ ;) 9 K : 7 97: 9: 1A22/ A222 0/= ?)> 1A21/ A222 0?= 1)? 1A/2/ A?22 0/= 1)1 1A/1/ A?22 01= /)/ 1A12/ >A=2 ?B= ?)1 1A1/> >A=2 ?C= /)B 13( <$* # > > $ #"$ % >A=2 K A?22 K ) 3 012 =12 0=2 ==2 ) @ % =)A) 7 H @ ?2 7 A222 K ) H A?22 K ) H /2=

PAGE 120

% !) H A?22 K >A=2 K =)01) 400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 7300A 7000A 6750A ,' 1/( <$* " % $ 8"!! + % % ) % !4 1=2 K ==2 3 ) ) =)0? 7 1B2 1B/ >A=2 K >=22 K % ) ) 7 H ) =)00) %) % !4 >=22 K % 122 K ) /2>

PAGE 121

(b) (a) Cu SourceCu Source In SourceIn Source 415 425 415 405 415 405 415 415 405 405 420 425 425 425 425 405 405 405 405 415 405 395 375 385 405 425 435 435 435 425 425 445 445 435 425 425 425 425 415 405 370 405 425 415 415 405 425 445 430 425 ,' 1/. ) !* '* # :;(6 :;(6= 400 500 600 700 800 900 1000 1100 1200 1300 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Wavelength (nm)QE 6750A 6500A ,' 1// $* !"!! # 4 *% % $ 8"!! # 351= I "& 31== I /2A

PAGE 122

13. <$* # D* *' 3 % =12 =A= ) >A=2 K 1=2 K ) 16 <$* # D* " > $ #"$ ;) 9 : 7 97: 9: 1A12/ =12 ?B= ?)1 1A1/> =12 ?C= /)B 1AA10 ==2 0?= ?)2 1AA/? ==2 01= ?)1 1AB2/ =A= 002 2)/ 1AB2= =A= 00= 2)/ =)B 7 H 3 =12 =A= ) % H 4 =A= ) ==2 3 % H 7 H) @ 3 =)0=) H ==2 ) H 1AB 4 ) 13/ $* # > $ #"$ 19 <$* # > $ #"$ ;) 9 K : 7 97: 9: 9I: 1B12/ 2 0?= ?)C 1B12? 2 0?= 0)0 1B>2/ 1= 0=2 ?)/ >1)0 1B>2? 1= 0=2 0)2 >1)0 /2B

PAGE 123

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wavelength (nm)QE 520 C 550 C ,' 1/1 <$* # D* *' *% + 1B1 1B> 4 1B1 1B>1= K ) =)C 7 H % ) % ) H % =)0>) 131 + "&"$ % "& "! % % % % ) 4!% ) % % / % 1) H % ) H % % ) @ =)/2) 4 % H) % % % ) /2C

PAGE 124

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE No Top Cu 25A ,' 1/3 <$* # + 1= <$* # ) ", + ;) ;) 9 : 1BC2? / ?2)= 1C21= ? 02)A 1C//= = ?B)A =)0A) @ 4 @ /) / % 1 ) 1 !% % % / % ) @ =)// =)0B) 7 H % @ ) //2

PAGE 125

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wavelength (nm)QE Run #1 Run #3 Run #5 ,' 1/5 <$* # ) ", + 400 500 600 700 800 900 1000 1100 1200 1300 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE Run #2 Run #3 Run #5 ,' 1/6 ) C$* # *% <$* # ) ", + F! ///

PAGE 126

1 <$* # ) ", *! ;) ;) 9 : 7 97: 9I: 1C?/B 1 /B)> 002 =0)A 1C01? ? 1C)A 0=2 >2)> 1C=/1 = ??)? 002 =B)B 133 <$* # "$!& > =)0C 7 ??= ??>) ??= % /=2 K ??>) (a)(b) Cu SourceCu Source In SourceIn Source 410 400 380 410 430 440 420 400 400 410 430 420 410 390 350 420 420 380 410 400 50 X X X X 430 420 420 420 410 350 360 360 370 350 330 290 350 350 330 350 320 350 310 330 230 320 290 240 250 ,' 1/9 ) !* '* # :;..1 "& :;..3 7 H % B2 7) % 4 ) H* % =)=2) % !) //1

PAGE 127

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE 33515 33603 33613 33618 ,' 11= <$* "$!& '8 % $ 8"!! + 15 0 $'! :' % (; 1 /) 1) 3 1) 15 '" -'"$ <$*! 15 ) ) "! =)/1 7 H @ % /% ) 7 @ % ) % @ % /) % 4 ) @ =)=/) //?

PAGE 128

1( <$* # % "& "! " $' ) *, ;) 7 97: ?/1 /* 7 ?/? 1 ??2 ?/0 ? 002 ?/= = 002 ?/> /* 7 ?A2 ?/A 1 ?A2 ?/B /* 7 ?C2 ?/C 1 0=2 ?12 % 0?2 ?11 ? 002 ?1? 1 0A2 15( "&, ) "! % ) % / 9: ) % / @ ) 47 H /, =) @ =)=1) % / % ) @ =)=?) % ?12) % % ) 8 % / % ) =)=0 @ ) ?/= / % //0

PAGE 129

312 313 314 315 316 317 318 319 320 321 322 323 324 Run # 320 340 360 380 400 420 440 460 480Voc (mV) C1,C2 R2 R3 R5C1,C2R2 C1,C2 R2 C2R3 R2 ,' 11 <$* # % "& "! ) 400 500 600 700 800 900 1000 1100 1200 1300 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE Run #5 Run #3 Run #1 ,' 11( $* !"!! % 4 ", "&, ) "! //=

PAGE 130

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE C2 Vented Run #3 Run #5 ,'11.) C$* "#*%$*!"!! % 4 ","&, ) "! 1C2) 8 @ ) ) ) =)== 7 ?1? 1C0) ?1? 8 % 1C0 %) 7 H 1C0*?1?4 %) 8 4 ) % * % ) 4 % ) 8 ) % % *??A //>

PAGE 131

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wavelength (nm)QE Cu in C2 Cu in C1 ,'11/<$*#!"$#' ",*%! ""+ F! (a)(b) Cu SourceCu Source In SourceIn Source 430 440 440 450 430 440 440 400 450 330 410 430 420 400 390 0 320 410 400 470 440 440 420 440 430 270 200 240 290 330 460 440 430 450 450 450 450 450 X 430 450 440 440 450 460 0 450 440 450 450 ,' 111 ) !* '* # :;.(. :;(9/ //A

PAGE 132

% ) % % =)=>) % % /* ) Cu Source In Source 100 290 210 300 220 240 270 270 320 090 270 100 200 160 150 320 250 220 220 070 140 050 110 060 X ,' 113 ) !* '* "! # ..5 15( <$* # "" ", 1. <$* # "" ", ;) # 9 : 7 97: 9 : ?101? ;< 0=2 ?10/1 ;< 0?2 ?=)/ ?1=/= ;< 0?2 ?1>/A 6$ 1=2 /02 ?1A1? 6$ /=2 0A2 1B)B ?1B/> 6$ 122 ?>2 ??2/1 ;< 0B2 ??21? ;< 0=2 ?2)B ??/1? 6$ /=2 0=2 1B)= ??//0 6$ /=2 022 ?2)2 //B

PAGE 133

4 ) % =22 ) 1)=) =22 /2 ) =)/? @7 ) 1=2 =22 % % ) 7 H 122 /=2 ) /=2 7 H %) % !) ) % ) @ =)=A) 4 % !) 400 500 600 700 800 900 1000 1100 1200 1300 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Wavelength (nm)QE No Anneal Ar Anneal ,' 115 <$* # ," "" + F! //C

PAGE 134

15. 7" '< ??1 % ) # 5 @ % ) 5 122 ) @ ?22 K ) 5< % ) 7 H% =)=B) % 4 5 @ ) % 5 @) 122 5 % @ H) ) 390 340 330 310 350 330 270 340 320 360 360 340 350 370 360 360 310 330 370 360 300 230 270 380 350 CdSZnSe ,' 116 ) !* '* # ..( 15/ $* # '!** ", > *! % /*/*1 D 9$:) % 4 4% $ % ) @ % $) ?=1 9$: $) /12

PAGE 135

=)=C) 4 $ @ % ) Cu Source In Source 420 420 410 410 370 430 430 410 390 410 440 430 400 420 420 420 430 350 400 390 340 360 260 270 130 ,' 119 ) !* '* # .1( $ ?=0) & % ) % =)>2) ) Cu Source In Source 320 270 270 340 340 300 300 290 300 200 290 330 250 320 310 290 330 300 250 260 210 320 290 200 210 ,' 13= ) !* '* # .1/ $$ % ?=A 7 H) 7 /1/

PAGE 136

=)>/) 7 H ) Cu Source In Source 440 440 440 420 320 430 430 430 420 420 330 420 410 410 410 330 360 270 340 310 120 160 300 230 220 ,' 13 ) !* '* # .15 151 "G'"$ # 0 "& "! ?>2 & & ) % & !) & % 0=27) % % >227 4% % !) /)? K & % ?)2 K ) % =)>1) % % @ ; @ @ 7 H) & >222 K ?>C) ?222 K A=22 K ?222 K ) 7 H % /11

PAGE 137

Cu Source In Source 330 380 380 380 380 360 370 370 370 370 340 360 380 380 370 370 360 370 370 370 360 360 340 370 310 ,' 13( ) !* '* # .3= &9?>B:) =)>?) H % =)>0) (a)(b) Cu SourceCu Source In SourceIn Source 420 410 400 410 430 420 400 400 420 420 420 420 410 400 440 420 410 420 410 390 420 420 430 430 440 360 420 420 420 420 420 420 410 410 430 420 420 400 410 420 420 410 420 430 440 430 420 410 430 430 ,' 13. ) !* '* "! # :;.36 :;.39 7 % =)>= 4 % % ) & ) 4 ) 4 % ) /1?

PAGE 138

400 500 600 700 800 900 1000 1100 1200 1300 140 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Wavelength (nm)QE 6000A Mo 10500A Mo ,' 13/ <$* # 0 % $ 8"!! + 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 3.5 3 2.5 2 1.5 1 0.5 0 0.5 x 103 Voltage (V)Current (mA) Dark Light ,' 131 8 "& ,% ) '> # .39 /10

PAGE 139

153 <$* # D* " > $ #"$ ?>0 8 % 3 0 ) 7 =)>>) 7 H % /227 ) 4 3 % !) Cu Source In Source 340 320 280 320 310 320 330 320 270 270 340 230 330 260 240 320 330 330 310 230 320 320 290 270 210 ,' 133 ) !* '* # .3/ 3 0 ?>>) 7 =)>A) 7 H % 4 %) % =22 @) 4 % 1B ) /1=

PAGE 140

Cu Source In Source 420 410 280 240 220 360 360 410 410 380 310 340 410 280 390 390 330 370 320 360 140 220 180 220 190 ,' 135 ) !* '* # .33 /1>

PAGE 141

3 3 ) @% % % 12I 9 : ) & % ) % % !) % !) % & ) ) % ) 9=2 A= K : 3 % % ) D 4 % ) 902 : % % /?I) 7 H 0=2 7 0C=7) H >=I >BI) 7 H 9G: /)22) % % D 7 H* ) 7 H D 4* % ) D 4 7 H /1A

PAGE 142

) H* % % % % 2)A=) D 4 % %) !) ) % ) % H* % 7 H 027)7 4 ) ) % 3 !) A= K % ) ==2 0=2 ) 3 @) @) $4 % %) <3' ) % ) 4 B22 K @ !) B22 K % ) 7 H % % ) *7 H % ! 027) !*7 H) /1B

PAGE 143

% ) % ) 7 H H % % % ) % % % 5< ) 7 % @ 5< 4 022 K ) 5< 022 K % ) 9: 3 % % %) % ) 7 H % B22 K *7 H4 122 K ) % H ) 4 ) % % 3 =A= 7 ) 39/0==2 : % % ) 7 H) ) H ?0)/ %) ) 7 H % ) ==2 A/0) $4 % % H 7 H) 7 H % % ) 7 H 0B=7 7 H % % ) % /1C

PAGE 144

) 34 % % % ) #%4/0I7 H>227 H ?0 H A2I ) F 7 ) 7 H 7 H ) % % ) H?=)0 ) % *7 H @ ) % % ) % 7 /227) 7 H % ) 7 H ) H @ ) ==2 % 7 H=>27). H % % ) % 1/ 10 3) 4 % 0=2 3 /0 % ) % 7 H) % ) % % ) 7 H % /?2

PAGE 145

0=2 K ?=2 K ) ?=2 K 122 K % @ 7 H) H 0=2 K 122 K ) % !3122 K ) % 3 122 K >=22 K 3 ==2 1= K ) H % % % ) % ) 7 % 0>27. 02)A ) 7 H H) % % % %) % % % % ) %7 %) 7 H ?27 % 9 / % :* % % % ) % ) % 4 % % ) % ) % 4 % ) 7 H @ /?/

PAGE 146

. H) < % % !% ) 7 H% 7 H % % ) % H % 4 ) % % % H 9 01 :) % !) &4 4 H) 8 % % ) 7 % @ % / % ) % 4 ) 7 H ) 7 ) % 7 H @ 1 % ) ) % F) % 7 ) 7 H % 8 % 0B27 H ?=)/ >>I) % % @ ) 1B 3 % ) 8 /)/7)/=27 2)C=7) /?1

PAGE 147

7 H) 7 H % 127 % 9 2)C=7:) 7 8 % ) @ 4 ) % % ) < ) 8 % % ) 43 %) ) 5 @ ) 7 H % @ ) % H % 4 ) 5 5 @ % % % H ) #% % % ) @ 7 H % % ) % D % ) ; @ !) % *%! ) & 4 % @ % ) /??

PAGE 148

L/M #)&)*)) *)) *P' % *P.)) )* 1=*>A>* 9/C=0:) L1M &)* P < *P *; 9/CB1:) L?M .)5 P10I *P 10 $$$ % /0AA*9$$$* /CC0:) L0M )) *P$ *P 1? $$$ % ?BC* 9$$$* /CC?:) L=M +)5 *P( * P* % *7 ?*=* F< 9/CC=:) L>M &) P $ 97 /?:*P % ( *A* ?/*9/CCC:) LAM &))*P$ 97 1/:*P % ( *//* ?C*9122?:) LBM )&)* P #%*P *; 6 9/CB/:) LCM )) ,))8 P ( % $ % *P 8* 9/CC?:) L/2M ).)&*P *P 9/CC?:) L//M &)) P 12I $ 9*: *P ( % 9/CCB:) L/1M );*P 9*: $/BI*P $ & *>A*??/*9122/:) /?0

PAGE 149

L/?M ))*P % ( #% *P 1C $$$ % 0A1* 9$$$* 1221:) L/0M +)5 )&)8* P % 9 $( :*P #)* 9/CC?:) L/=M -) P !*P !* 0B*>A*9/CAB:) L/>M ))+3*P< @ *P .)7 ) ) )* /* ?C=*9/CB?:) L/AM ) 5 P# *P ,% 8*P =A* />* C>01* 9/CCB:) L/BM .)+ P$ !*P 1? % =0C*9$$$* /CC?:) L/CM &)) P# 9*: 92 # 4 # /: 9*: *P 1= $$$ % B2C*9$$$* /CC>:) L12M ;),*P $% *P*/>*/==*9/CB>:) L1/M 8) ,)) P P*>2* /0/9/CAC:) L11M .) 3*P, !)P/0 % CB2* 9$$$* /CB2:) L1?M )*#)*P$ !*P */>*10=*9/CB>:) L10M 6))+*P $ *P10$$$ % 121*9$$$*/CC0:) L1=M ) )*P 4 P) ) )?=* 10*9/CAC:) /?=

PAGE 150

L1>M .), *P 9*: % *P &, &* 701>* /0?*9/CC>:) L1AM ), ,)-)8* P % *P, '* 9. /CBC:) L1BM &)) P/>)0I % $ *P % ( 1*1BA*9/CC0:) L1CM #),); !*P $$ *P. *=1*B* C0A* 9/CC/:) L?2M +))* PJ % % F & ,*P)#) &* 9/CC>:) L?/M #)) P 9*: !*P 1/ $$$ % =>1*9$$$* /CC2:) L?1M -)) *P#% P /C $$$ % /00=* 9$$$* /CBA:) L??M )).*P *P1?$$$ % =AA*9$$$* /CC?:) L?0M &); P % 9*: % *P10$$$ % 111* 9$$$* /CC0:) L?=M )* P$@ $* # *P. 7 )A1* 10* ?/CC*9/CCB:) L?>M )-) P 8 ( $ *P $ & ?0*/C* 9/CC0:) L?AM .),) *P37 8 9*: ( & @ *P $ & ?=* /C?*9/CC?:) L?BM )))5 *P8<@<8 587 *P. AB*>* ?B0>* 9/CC=:) /?>

PAGE 151

L?CM )&)* P % 9*: 9*: % P*)#)#*% 9/CC=:) L02M )&*P$@ 8<@ #% *P$ & *>A* B?* 9122/:) L0/M .),) *P$4 &!8 #%*P 12 $$$ % 7 /=1=*9$$$* /CBB:) L01M )5 P $@ *P ;,$ ; % ,%* 9/CC>:) L0?M )#), *P & 8 *P 1? $$$ % %*0A=*9$$$* /CC?:) L00M ,).) 3 P# *P11$$$ % 7 C12*9$$$* /CC/:) L0=M )8) P8 # 8 % *P 12 $$$ % 7 /0=A* 9$$$* /CBB:) L0>M ), P ( *P*1?A*9/CC0:) L0AM .))! P *P 1>2*1>* 9/CC=:) L0BM &) P $% 9*: #*P*?BA*??*9122/:) L0CM &)*P$35< 9*: #% *P *?BA* 11=*9122/:) L=2M ) P 9*: *P *?>/?>1*?>2*91222:) L=/M +) *P' #@ & *P >0*/BAA*9122?:) /?A

PAGE 152

L=1M #)8 PD 9*: *P*?>/?>1*/>/* 91222:) L=?M ), P; 3 9*: ; ; ( # * #% *P *?A1*1/1*91222:) L=0M .)$) .),)* PJ % 9*: % #%*P 1>$$$ % *?BA*9$$$* /CCA:) L==M &)) *P<,;&! 9*: & &9&N;*+*: *P 1> $$$ % * ?=C* 9$$$* /CCA:) L=>M .)$).),)*P 8 8 *P % $ < % 7* 9/CCB:) L=AM )+*P 4$ 9*: 8( <4* 8 $@*P ?>/?>1* ?=?* 91222:) L=BM )+*P$@ 9*: *P % &*/2* /*?/*9/CCB:) L=CM );'* P 3 *P&)) % * 9/CC=:) L>2M ;)) 3* P % *P &))* % *9/CC/:) L>/M ,))& P<3 5< P 11 $$$ % BCB* 9$$$* /CC/:) L>1M &)) P<3 # $ 9*: 8 *P *02?020*120*91221:) L>?M )+* P$@ 8 @ 9*: *P 7 )B= ;)C*>B=B* 9/CCC:) L>0M ); P; % # 9*: 8 # *P ?>/?>1* ?0>*91222:) /?B

PAGE 153

L>=M ); )+ P# $% #@ 9*: # 8 # *P 7 )A0*;)/A* 1000*9/CCC:) L>>M -)$)#% *P *P 1/$$$ % *01B*9$$$*/CC2:) L>AM ,)+ P9*: 95*: P 12 $$$ % /00?* 9$$$* /CBB:) L>BM 6)< *P#% 5< 5 /)? /)= 7* P 10 $$$ % 1/B* 9$$$* /CC0:) L>CM 6)< *P 9*: % @ P 1= $$$ % 9$$$* /CC=:) LA2M ,)8 P # ,% 5< $ < 8 @ *P1> $$$ % ?B?*9$$$* /CCA:) LA/M ); P$ 9*: # 5 8 @ *P $$$ $#%* 7 )0>*;)/2* 12C?*9/CCC:) LA1M ); P$ 9*: #58 @ *P$&*>A*1==*9122/:) LA?M )3 *P588 @ 9*: *P *?>/?>1*/C?* 91222:) LA0M ); *P # *P 1C $$$ % ; <* 91221:) LA=M &) P 9*: ( ; % *P10$$$ % >B*9$$$* /CC0:) LA>M 8))*P 3 % *P.)) )* >A*1>?A*9/CC2:) LAAM &)) *P 4 & *P *?>/?>1*/>A*91222:) /?C

PAGE 154

LABM )* P3 9*: & *P *?BA*//B*9122/:) LACM ) P$@% 9*: *P&*% 9/CCB:) LB2M ))5* P 3 5< 9*: % *P)#)#*% *9/CCA:) /02

PAGE 155

# #) $ $ % ) % 8)$) $ $ 7 $ % &* & $ $ % /CC= /CCB % ) 3!)


xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam 2200433Ka 4500
controlfield tag 006 m d s
007 cr bn
008 040712s2004 flua sbm s000|0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0000366
035
(OCoLC)56137691
9
AJR7190
b SE
040
FHM
c FHM
090
TK145
1 100
Sankaranarayanan, Harish.
0 245
Fabrication of CIGS absorber layers using a two-step process for thin film solar cell applications
h [electronic resource] /
by Harish Sankaranarayanan.
260
[Tampa, Fla.] :
University of South Florida,
2004.
502
Thesis (Ph.D.)--University of South Florida, 2004.
504
Includes bibliographical references.
500
Includes vita.
516
Text (Electronic thesis) in PDF format.
538
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
Title from PDF of title page.
Document formatted into pages; contains 155 pages.
520
ABSTRACT: Copper Indium Gallium DiSelenide absorber layers are fabricated using a two step manufacturing-friendly process. The first step involves the sequential deposition of Copper and Gallium and codeposition of Indium and Selenium, not necessarily in that order, at 275 C. This is followed by the second stage, where the substrate is annealed in the presence of Selenium and a thin layer of Copper is deposited to neutralize the excess Indium and Gallium on the surface to form the Copper Indium Gallium diSelenide absorber layer. Elimination of the need for high degree of control and elimination of toxic gases like hydrogen selenide aid in the easy scalability of this process to industry. The performance of CuInGaSe/CdS/ZnO solar cells thus fabricated was characterized using techniques such as I-V, C-V, Spectral Response and EDS/SEM. Cells with open circuit voltages of 450-475 mV, short circuit current densities of 30-40 mA/cm, fill factors of 60-68% and efficiencies of 8-12% were routinely fabricated. Gallium in small amounts seems to improve the open circuit voltages by 50-100 mV without significantly affecting the short circuit currents and the band gap in Type I precursors. Gallium also improves the adhesion of the CIS layer to the molybdenum back contact. Efforts are also being aimed at improving the short circuit current densities in our high bandgap devices. It is believed that improperly bonded Ga is hurting the electronic properties of the CIGS films. A part of this work involves the reduction of the detrimental effect of Ga on the Jsc's by modifying the base process, so as to improve the homogeneity of the film. The modifications include lowering the Ga level as well as fine-tuning the annealing step. Ar annealing of the samples has also been incorporated. The short circuit current densities have been improved significantly by the above mentioned modifications. At present, the best Jsc's are in the 33-35 mA/cm range. The Voc's have also been improved by splitting the Ga into two layers and replacing the top Cu layer by a Ga layer. Light soaking studies of the absorber have also been carried out. The baseline Type I process has also been adapted to a new load-locked in-line evaporator system. Device performance dependence on Ga and In thickness as well as the top selenization temperature has been determined in this research. The effect of moisture on the quality of the films has been studied. Bandgap variations due to the presence/absence of Se during the Cu deposition has been investigated. The impact of substrate cleaning/Moly deposition conditions on the device performance has been explored. Insitu Ar annealing studies of CIGS absorbers have been carried out. Alternate buffer layers have been pursued. Devices with Voc's as high as 480 mV, Jsc's as high as 40.7 mA/cm and fill factors of 66% have been fabricated.
590
Adviser: Don L. Morel
653
selenization.
photovoltaics.
semiconductors.
renewable energy.
690
Dissertations, Academic
z USF
x Electrical Engineering
Doctoral.
773
t USF Electronic Theses and Dissertations.
949
FTS
SFERS
ETD
TK145 (ONLINE)
nkt 7/26/04
4 856
u http://digital.lib.usf.edu/?e14.366