USF Libraries
USF Digital Collections

Sub-centennial scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene

MISSING IMAGE

Material Information

Title:
Sub-centennial scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene
Physical Description:
Book
Language:
English
Creator:
LoDico, Jenna Meredith
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla
Publication Date:

Subjects

Subjects / Keywords:
Climate change
Sea surface temperature variability
Freshwater floods
Dissertations, Academic -- Marine Science -- Masters -- USF
Genre:
bibliography   ( marcgt )
theses   ( marcgt )
non-fiction   ( marcgt )

Notes

Abstract:
ABSTRACT: Sediment core MD02-2550 from Orca Basin located in the northern Gulf of Mexico (GOM) provides a high-resolution early Holocene record of climatic and hydrologic changes from approximately 10.5 to 7 thousand calendar years before present (ka). Paired analyses of Mg/Ca and oxygen isotopes on the planktonic foraminifer Globigerinoides ruber (white variety, 250-355 microns) sampled at approximately 20 remove a comment year resolution were used to generate proxy records of sea surface temperature (SST) and an oxygen isotope record of seawater in the GOM. The Mg/Ca-SST record contains an overall1.5 degree C warming trend from 10.5 to 7 ka that appears to track the intensity of the annual insolation cycle and six temperature oscillations (0.5-2 degree C), the frequency of which are consistent with those found in records of solar variability. The GOM oxygen isotope record contains six approximately 0.5 per mil oscillations from 10.5 to 7 ka that bear some resemblance to regional ^hydrologic records from Haiti and the Cariaco Basin, plus a -0.8 per mil excursion that may be associated with the "8.2 ka event" recorded in Greenland air temperatures. The GOM oxygen isotope record, if interpreted as a salinity proxy, suggest large salinity fluctuations (greater than 2 psu) reflecting changes in evaporation-precipitation (E-P) and Mississippi River input to the GOM. Percent Globigerinoides sacculifer records from three cores in the GOM exhibit remarkably coherent changes, suggesting episodic centennial-scale incursions of Caribbean waters. Spectral analysis of the Mg/Ca-SST and the GOM oxygen isotope record time series indicate that surface water conditions may be influenced by solar variations because they share significant periods of variability with atmospheric delta 14C near 700, 200, and 80-70 years. Our results add to the growing body of evidence that the sub-tropics were characterized by significant decadal to centennial-scale climatic and hydrologic variab ility during the early Holocene.
Thesis:
Thesis (M.A.)--University of South Florida, 2006.
Bibliography:
Includes bibliographical references.
System Details:
System requirements: World Wide Web browser and PDF reader.
System Details:
Mode of access: World Wide Web.
Statement of Responsibility:
by Jenna Meredith LoDico.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains 106 pages.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 001789520
oclc - 137340120
usfldc doi - E14-SFE0001452
usfldc handle - e14.1452
System ID:
SFS0025771:00001


This item is only available as the following downloads:


Full Text
xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam Ka
controlfield tag 001 001789520
003 fts
005 20070604143217.0
006 m||||e|||d||||||||
007 cr mnu|||uuuuu
008 070604s2006 flu sbm 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0001452
040
FHM
c FHM
035
(OCoLC)137340120
049
FHMM
090
GC11.2 (ONLINE)
1 100
LoDico, Jenna Meredith.
0 245
Sub-centennial scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene
h [electronic resource] /
by Jenna Meredith LoDico.
260
[Tampa, Fla] :
b University of South Florida,
2006.
3 520
ABSTRACT: Sediment core MD02-2550 from Orca Basin located in the northern Gulf of Mexico (GOM) provides a high-resolution early Holocene record of climatic and hydrologic changes from approximately 10.5 to 7 thousand calendar years before present (ka). Paired analyses of Mg/Ca and oxygen isotopes on the planktonic foraminifer Globigerinoides ruber (white variety, 250-355 microns) sampled at approximately 20 remove a comment year resolution were used to generate proxy records of sea surface temperature (SST) and an oxygen isotope record of seawater in the GOM. The Mg/Ca-SST record contains an overall1.5 degree C warming trend from 10.5 to 7 ka that appears to track the intensity of the annual insolation cycle and six temperature oscillations (0.5-2 degree C), the frequency of which are consistent with those found in records of solar variability. The GOM oxygen isotope record contains six approximately 0.5 per mil oscillations from 10.5 to 7 ka that bear some resemblance to regional ^hydrologic records from Haiti and the Cariaco Basin, plus a -0.8 per mil excursion that may be associated with the "8.2 ka event" recorded in Greenland air temperatures. The GOM oxygen isotope record, if interpreted as a salinity proxy, suggest large salinity fluctuations (greater than 2 psu) reflecting changes in evaporation-precipitation (E-P) and Mississippi River input to the GOM. Percent Globigerinoides sacculifer records from three cores in the GOM exhibit remarkably coherent changes, suggesting episodic centennial-scale incursions of Caribbean waters. Spectral analysis of the Mg/Ca-SST and the GOM oxygen isotope record time series indicate that surface water conditions may be influenced by solar variations because they share significant periods of variability with atmospheric delta 14C near 700, 200, and 80-70 years. Our results add to the growing body of evidence that the sub-tropics were characterized by significant decadal to centennial-scale climatic and hydrologic variab ility during the early Holocene.
502
Thesis (M.A.)--University of South Florida, 2006.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
538
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
500
Title from PDF of title page.
Document formatted into pages; contains 106 pages.
590
Adviser: Benjamin P. Flower, Ph.D.
653
Climate change.
Sea surface temperature variability.
Freshwater floods.
690
Dissertations, Academic
z USF
x Marine Science
Masters.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.1452



PAGE 1

Sub-Centennial Scale Climatic and Hydrologic Variability in the Gulf of Mexico during the Early Holocene by Jenna Meredith LoDico A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science College of Marine Science University of South Florida Major Professor: Benjamin P. Flower, P h D Terrence M. Quinn, Ph.D. Michael Howell, Ph.D. Date of Approval: January 20, 2006 Keywords: climate change, sea surface temperature variability, freshwater floods Copyright 2006, Jenna Meredith LoDico

PAGE 2

Acknowledgements We thank the IMAGES program, Viviane BoutRoumazeilles Yvon Balut, and Laurent Labeyrie for a productive cruise on the R/V Marion Dufresne in 2002. We thank L. Peterson, G. Haug, and R. Poore for use of their proxy records. We also thank Ethan Goddard for support in running the ICP-OES and the SIRMS, Tom Guilderson at Lawrence Livermore National Laboratory for providing the 14 C dates, and Heather Hill, Sarah Judson, and Christie Stephans for lab assistance. The Natural Science Foundation provided funding for the study under grant # OCE-0318361 to B. P. F. and T. M. Q.

PAGE 3

i Table of Contents List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Site Location and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. SST Variability in the Early Holocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4. 18 O GOM Variability in the Early Holocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5. 13 C record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6. Salinity Variability and Faunal Changes in the Early Holocene . . . . . . . . . . . . . 16 7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Appendix A: Sampling Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Appendix B: Bulk Weight and Individual Weight per Foraminifera . . . . . . . . . . . . 46 Appendix C: Faunal Assemblage Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Appendix D: Geochemical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Appendix E: 18 O GOM and Estimated Salinities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Appendix F: Table of Correlation Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Appendix G: Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

PAGE 4

ii List of Tables Table 1: 14 C Accelerator Mass Spectrometer (AMS) Dates . . . . . . . . . . . . . . . . . . . 29 Table 2: Correlation Coefficients between MD02-2550 proxy records and other proxy records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

PAGE 5

iii List of Figures Figure 1: Map of the GOM showing location of core MD02-2550 . . . . . . . . . . . . . 30 Figure 2: Paired 18 O and Mg/Ca data based on Globigerinoides ruber and age model for core MD02-2550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 3: SST record in comparison to proxies of solar variability . . . . . . . . . . . . . 32 Figure 4: 18 O GOM 13 C G. ruber and 18 O GISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 5: Mixing model for GOM used for estimated salinities determined from modern relationship between salinity 18 O SW . . . . . . . . . . . . . . . . . . . . 34 Figure 6: Estimated salinities and faunal assemblage data . . . . . . . . . . . . . . . . . . . 35 Figure 7: Relative frequency of foraminifer species Globigerinoides sacculifer for three GOM records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 8: Spectral analysis of the MD02-2550 SST time series . . . . . . . . . . . . . . . 104 Figure 9: Spectral analysis of the MD02-2550 18 O GOM time series . . . . . . . . . . . . 105 Figure 10: Spectral analysis of the 14 C time series for the 7-10.5 ka interval . . . . 106

PAGE 6

iv Sub-Centennial Scale Climatic and Hydrologic Variability in the Gulf of Mexico During the Early Holocene Jenna LoDico ABSTRACT Sediment core MD02-2550 from Orca Basin located in the northern Gulf of Mexico (GOM) provides a high-resolution early Holocene record of climatic and hydrologic changes from ~10.5 to 7 thousand calendar years before present (ka). Paired analyses of Mg/Ca and 18 O on the planktonic foraminifer Globigerinoides ruber (white variety, 250-355 m) sampled at ~ 20 year resolution were used to generate proxy records of sea surface temperature (SST) and the 18 O of seawater in the GOM ( 18 O GOM ). The Mg/Ca-SST record contains an overall ~1.5 C warming trend from 10.5 to 7 ka that appears to track the intensity of the annual insolation cycle and six temperature oscillations (0.5-2 C), the frequency of which are consistent with those found in records of solar variability. The 18 O GOM record contains six ~ 0.5 oscillations from 10.5 to 7 ka that bear some resemblance to regional hydrologic records from Haiti and the Cariaco Basin, plus a -0.8 excursion that may be associated with the .2 ka event recorded in Greenland air temperatures. The 18 O GOM record, if interpreted as a salinity proxy, suggest large salinity fluctuations (> 2 ) reflecting changes in evaporation-precipitation (E-P) and Mississippi River input to the GOM. Percent Globigerinoides sacculifer records from three cores in the GOM exhibit remarkably coherent changes, suggesting episodic

PAGE 7

v centennial-scale incursions of Caribbean waters. Spectral analysis of the Mg/Ca-SST and the 18 O GOM time series indicate that surface water conditions may be influenced by solar variations because they share significant periods of variability with atmospheric 14 C near 700, 200, and 80-70 years. Our results add to the growing body of evidence that the sub-tropics were characterized by significant decadal to centennial-scale climatic and hydrologic variability during the early Holocene.

PAGE 8

1 1. Introduction The tropical and subtropical regions are responsible for transporting heat to the higher latitudes and play an important role in climate (Bigg, 2003). Numerous paleoclimate reconstructions and models suggest that the tropical and the subtropical Atlantic experienced warmer conditions and greater moisture availability during the early Holocene, 10.5 7 thousands of years before present (ka) compared to modern day. Ostracod 18 O records from Lake Miragoane, Haiti suggest decreased evaporationprecipitation (E-P) during this time period (Hodell et al., 1991). In the Cariaco Basin, increased % titanium (Ti) and % iron (Fe), which are proxies for continental run-off, suggest decreased E-P in tropical South America (Haug et al., 2001). Faunal assemblage records from the western Gulf of Mexico (GOM) during the early Holocene indicate increased transport of Caribbean waters into the GOM and warmer than present winter sea-surface temperatures (SST)(Poore et al., 2003). While an alluvial record of sediments from central Texas suggests a period of maximum precipitation during the early Holocene (Nordt et al.,1994). While various climate proxies from the tropical and subtropical Atlantic Ocean suggest the early Holocene was a warm period with substantial decadal-centennial scale variability (Peterson et al., 2000, Haug et al., 2001, Poore et al., 2003), the geographic and temporal coherence of these low-latitude climate variations remains unclear.

PAGE 9

2 The early Holocene was a transitional time period with respect to Earths orbital parameters. After a maximum in summer insolation and a minimum in winter insolation at ~ 12 ka, the seasonal contrast in the Northern Hemisphere slowly reduced during the remainder of the Holocene (Berger, 1978). The Holocene Climatic Optimum or Hypsithermal following the maximum in insolation is generally defined as a warm period during the interval 10 to 5 ka, but the timing and the extent of warming depends on the region in consideration (Ruddiman, 2001). Some components of the climate system, such as the Asian monsoons, appear to respond relatively quickly to orbital insolation changes (Kutzbach and Gallimore, 1988). On the other hand, terrestrial conditions in North America may have responded more slowly to the orbital forcing because the Laurentide Ice Sheet influenced regional temperatures until ~ 9 ka (Mitchell et al., 1988). Did the tropical and subtropical Atlantic climate system significantly affect North American climates during the early to mid-Holocene? In the high northern latitudes, an abrupt cooling during the early Holocene known as the .2 ka event disrupted normally warm temperatures. From 8.3 to 8.1 ka temperatures dropped 4 8 C in central Greenland (Alley et al., 1997) possibly resulting from the reduction, or shut down, of thermohaline circulation related to the draining of proglacial Lake Agassiz (Barber et al., 1999; Teller et al., 2002). Evidence of temperature changes, atmospheric circulation changes, and hydrologic changes associated with the 8.2 ka event exists in proxy records from sites in the North Atlantic Ocean, North Africa, and North America (KlitgaardKristensen et al., 1998; von Grafenstein et al., 1998; Tinner and Lotter, 2001; Dean et al., 2002; Lachinet et al., 2004). Regional climate responses include a weaker South American monsoon (Lachniet et al., 2004), enhanced trade winds

PAGE 10

3 and drier conditions over the Cariaco Basin (Hughen et al., 1996), and a reorganization of atmospheric circulation over Central North America (Dean et al., 2002). A recent synthesis suggests that many climate proxies that indicate anomalies occurring around 8.2 ka may be reflecting a broader climate anomaly rather than one sharp event (Rohling and Plike, 2005). Many of these proxy records indicate a long term cooling beginning at 8.6 ka and spanning between 400 and 600 years with the seasonal bias of the record being of great importance. Here we present a high-resolution early Holocene paleoclimate records from the Orca Basin, GOM from 10.5 to 7 ka. Measured 18 O and Mg/Ca data on Globigerinoides ruber from the same samples provide a derived SST and 18 O seawater ( 18 O sw ) records. These records as well as faunal assemblage records indicate substantial decadalto centennial-scale climatic and hydrologic variability, including a substantial salinity decrease and major shift in the biotic community at ~ 8.6 to 8.3 ka.

PAGE 11

4 2. Site Location and Methods The Western Hemisphere Warm Pool (WHWP), which encompasses the Caribbean and the GOM, develops in the late summer with SST reaching >28.5 C. The WHWP provides moisture to the North American continent as far north as Canada (Wang and Enfield, 2001) and to the North American Monsoon System, which influences northern Mexico and the American Southwest (Metcalfe et al., 2003). The Orca Basin (Fig. 1), which is situated ~ 300 km from the present Louisiana coast, is ideally located to record not only regional climate changes but the influence of freshwater from the Mississippi River system as well. The Orca Basin is advantageous for high-resolution Holocene paleoclimatology because of high sedimentation rates (approximately 30 cm/1000 yr) and a brine layer (salinity >250) overlying the sediment that preserves sedimentary laminations throughout the Holocene (Leventer et al., 1983). The continuous presence of pteropods tests throughout the Holocene portion of the sediment core indicate minimal dissolution of carbonate material. In July 2002, core MD02-2550 (9.09 m) was recovered from Orca Basin (26.78 N 91.75 W) at a water depth of 2248 m. For this study, Section 2 of core MD02-2550 was sliced continuously at 0.5 cm intervals. Samples were wet-sieved at 63 m and dried in a ~ 50 C oven. Using a microsplitter the samples were split with one half designated for faunal assemblage analysis and the other half designated for geochemical analysis. The first split was sieved at the >150 m size fraction and further

PAGE 12

5 split to obtain approximately 300 individual foraminifers for the faunal assemblage census. Planktonic foraminifers in the census were identified to species and counted; the relative frequency of each planktonic foraminifer species was expressed as percent of the total planktonic foraminiferal assemblage. From the geochemical split, sets of 70 G. ruber (white variety) were picked from 250-355 m size fraction, gently crushed, and split into aliquots for analysis of stable isotope and minor elements (Mg/Ca). Approximately 80 g were sonicated in methanol and analyzed on a Finnigan MAT Delta Plus XL light stable isotope ratio mass spectrometer (SIRMS) at the College of Marine Science, University of South Florida. The 18 O calcite ( 18 O c ) data (Fig. 2) are reported on the VPDB scale calibrated with standard NBS-19. External precision of this instrument based on >1000 standards run since July 2000 is .06 for 13 C and .09 for 18 O. Approximately 300 500 g of material underwent an extensive cleaning process for Mg/Ca analysis (Barker et al., 2003). This process includes multiple water rinses, multiple methanol rinses, an oxidizing treatment and a weak acid leach. Foraminiferal Mg/Ca (Fig. 2) was analyzed on a Perkin Elmer 4300 DV Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) at the College of Marine Science, University of South Florida. Analytical precision for Mg/Ca is 0.4% root-mean standard deviation (1 ). Samples were alternated with standards to account for instrument drift (following Schrag, 1999). SST values were determined using the Anand et al. (2003) calibration curve for G. ruber (white variety; 250 m) which is as follows: Mg/Ca=0.449exp(0.090*SST) (C). Average standard deviation based on 54 % replicate analysis is 0.10 mmol/mol for Mg/Ca, which corresponds to 0.17 C; 5 % of

PAGE 13

6 replicated samples were determined to have been contaminated during the cleaning procedure and were omitted from the plots only. The chronology for core MD02-2550 from 190 310 cm was based on 7 accelerator mass spectrometry (AMS) 14 C dates from monospecific G. ruber (white and pink varieties) (Table 1; Fig. 2). AMS 14 C dates were determined at the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory in Livermore, CA. Radiocarbon ages were corrected using a constant 400-year reservoir age, and then were calibrated to calendar years using the Calib5.0 (Stuvier et al., 1998) online conversion program (http://radiocarbon.pa.qub.ac.uk/calib)(Table 1). Core depth in centimeters was converted to calendar age by linear interpolation and yielded sedimentation rates of 30 cm/kyr, which gives an average sampling resolution of ~ 20 years during the early Holocene interval AMS 14 C dates from the western GOM (core RC 12-10)(Poore et al., 2003) and the Pigmy Basin (MD03-2553)(Poore et al., 2004) were also calibrated to calendar years in this contribution using the Calib5.0 online conversion program.

PAGE 14

7 3. SST Variability in the Early Holocene The white variety of G. ruber is a tropical-subtropical surface-dwelling species (upper 50 m), which makes it ideal for recording sea surface temperatures (Be and Hamlin, 1967; Hemleben et al., 1989). At the present time there is no seasonal flux information from the GOM, but evidence from the Sargasso Sea suggests that white variety of G. ruber is a suitable species to reflect the mean annual temperature (Deuser et al., 1981; Deuser et al., 1987; Deuser and Ross, 1989; Williams et al., 1989). A core top value of 4.86 mmol/mol Mg/Ca based on the white variety of G. ruber corresponds to 26.5 C, which is close to the present mean annual temperature (Levitus, 2003). The mean Mg-SST value derived from G. ruber (white variety) from the 10.5 7 ka interval (Fig. 3) is 26.3 0.17 o C (Fig. 3) and the SSTs range from 23.6-28.1 o C, which is close to the present seasonal range in SST for the GOM (23-29 o C)(Levitus, 2003). The SST record exhibits a gradual warming of 1.5 o C from 10.5 to 7 ka. From 10.5 to 9.4 ka SSTs averaged 25.5 o C, and varied by 12 o C. This cool interval is supported by faunal-census data. Cool-water foraminifer species Neogloboquadrina pachyderma (dextral) and Globoconella inflata (Fig. 3) are present in low abundance (< 3.5 %) until 9.3 ka when they disappear. These species exhibit significantly higher frequencies during the last glaciation (Kennett et al., 1985). From 9.4 to 8.0 ka SST averaged 26.5 o C and varied by 0.5 .5 o C. From 8.0 to 7.0 ka SST averaged 27 o C and varied by 1.5 o C.

PAGE 15

8 Superimposed on the gradual warming is an abrupt increase of 1.5 o C occurring from 9.4 to 9.3 ka. The trend of our Mg/Ca-SST record appears to be similar to precession controlled changes in seasonal insolation. Climate proxy records from the Yucatan Peninsula (Hodell et al., 1991) and the Cariaco Basin (Haug et al., 2001) exhibit a similar relation to regional insolation seasonality. During the early Holocene in the GOM, the September March insolation difference increased by nearly 20 W/m 2 (Berger, 1978)(Fig 3a). The seasonal distribution of the white variety of G. ruber may have shifted during the early Holocene in response to warmer summers and cooler winters produced by enhanced seasonality in insolation. Although it may be present in the upper water column during the entire year and can withstand SST as low as 10 o C G. ruber white variety shows optimum growth in the SST range of 24.2 29.7 o C (Zaric et al., 2005). Cooler winters may have increased the preference of G. ruber (white variety) to grow during the warmer summer climate. Although our record does not extend beyond 7 ka, we appear to have captured part of the Holocene Climatic Optimum in the GOM. Our SST record reaches maximum warming between 8-7 ka. This is consistent with faunal-census data from other Orca Basin cores (Kennett et al., 1985) and a western GOM core (Poore et al., 2003). An increase in the warm-water species Globorotalia menardii and Pulleniatina obliquiloculata is documented in Orca Basin cores (Kennett et al., 1985) and western GOM cores (Poore et al., 2003) during the early Holocene suggesting the warmest SST by 7.5 ka. The faunal-census data from MD02-2550 agree with similar frequencies from 10.5 7 ka in G. menardii and P. obliquiloculata compared to deglacial frequencies

PAGE 16

9 (LoDico, 2006). In addition, alkenone records from the Tobago Basin in the tropical Atlantic Ocean reach a modern SST of 28.5 o C by 8 ka indicative of an overall 1.5 o C warming of SST during the early Holocene (Ruhlemann et al., 1999). Similarly, North American continental records suggest a warm period during the early Holocene with regional differences in moisture availability. Pollen records indicate maximum warming in the Great Plains of North America by 9 ka (Baker, 1985). Vegetation records from eastern North America suggest warming (Bernado and Webb, 1977), and the Elk Lake record from Northwestern Minnesota trends toward warmer and more arid conditions from 8 ka to present (Dean et al, 2002). Records from the midwestern United States suggest a 2 o C warming in mean annual temperatures during the early Holocene (Webb, 1985). Pollen records from the southeastern United States document an increase in moisture availability (Webb et al., 1993). In contrast, some regional records from the low-latitude Atlantic Ocean exhibit an early Holocene Climatic Optimum around 10 ka. SST records from Cariaco Basin, suggest maximum SSTs of 27 C from 11 to 8 ka (Lea et al., 2003). Records from the Caribbean Sea indicate a peak in SST reaching modern values of 28.5 C by 11 ka (Schmidt et al., 2004). Pollen records suggest that Mexico was cooler than present until 10.2 ka and then the early Holocene warming began (Metcalfe et al., 2000), which is consistent with the Cariaco record Overall, there is considerable evidence that continental North America and the GOM reached optimum temperatures around 9-7 ka, whereas lower-latitude records (except Tobago Basin) exhibit an earlier climatic optimum. It is possible that North America and GOM climates may have still been under

PAGE 17

10 the influence of the Laurentide Ice Sheet during the early Holocene, thus producing a delayed climate optimum (Mitchell et al., 1988). The warming trend in the GOM is punctuated by six distinct peaks in temperature ranging from 0.5 to 1 o C and lasting between 100 to 500 years (horizontal gray bars, Fig. 3c) above the two local means. From the period of 10.5 to 9.4 ka (mean of 25.2 o C) SST increase by 1 o C for ~ 300 years. From the period of 9.4 to 7 ka (mean of 26.6 o C) SST increases by 0.5 o C repeatedly lasting on average 150 years, besides the longest and largest increase of 1 o C occurring from 7.9 to 7.4 ka. The SST record clearly has decadal to centennial-scale variability, and the comparison to the atmospheric 14 C record (Fig. 3b) (Reimer et al., 2004) is used to investigate a link between solar variability and climate. The abrupt warming in SST from 9.4 to 9.3 ka is preceded by a maximum in solar activity at 9.6 ka. A second abrupt warming from 8.0 to 7.8 ka is also preceded by a maximum in solar activity at 8.5 ka. However, the correlation coefficient between these two records is r=0.2 indicating only a modest correlation. Therefore, some of the variability in the Mg/Ca-SST record may be connected to solar variability, but other controls such as oceanic and or atmospheric circulation may have played a larger role.

PAGE 18

11 4. 18 O GOM Variability in the Early Holocene The 18 O c record based on G. ruber (Fig. 2) is a function of temperature and the 18 O sw at the time of calcification, which in turn depends on ice volume and salinity. In order to isolate 18 O sw the temperature component was removed from the 18 O c values using the Mg/Ca-SST estimates. The Bemis et al. (1998) Orbulina universa high light equation (SST ( o C)=14.9-4.8( 18 O c 18 O sw )) was utilized because it is also appropriate for G. ruber (Thunell et al., 1999; Spero et al, 2003). Adding 0.27 produces a 18 O sw record on the Vienna Standard Mean Ocean Water (VSMOW) scale. Propagation of error (Beers, 1957) including analytical error and combined errors in Mg/Ca-SST and 18 O calibration, is 0.26 Lastly, we subtract contributions from global ice-volume changes by using a sea-level record (Fairbanks et al., 1989; Bard et al., 1996) to isolate a GOM 18 O sw residual ( 18 O GOM )(Fig. 4a). Sea-level height was converted to the corresponding 18 O sw with the relationship of 0.083 per 10 m sea-level change (Adkins et al., 2001). The 18 O GOM record tracks changes in E-P processes in the GOM, as well as freshwater inputs from the Mississippi River system. Paired coretop values of Mg/Ca (4.86 mmol/mol; 26.6 o C SST) and 18 O c of .55 yields a 18 O GOM of 1.16 which is in good agreement with the modern 18 O sw value of 1.2 in the GOM (Fairbanks et al., 1992). The early Holocene 18 O GOM mean of 0.9 is somewhat lower than the modern seawater 18 O value of 1.2 suggesting lower mean salinity in the early Holocene (see

PAGE 19

12 Section 5). Our 18 O GOM contains six oscillations of 0.5 about the mean lasting between 300-600 yr (vertical gray bars, Fig. 4a). These negative excursions suggest centennialscale variations in 18 O GOM attributed to some combination of changing E-P processes and river input. In the 18 O GOM record, the largest negative pulse of almost ~1 reaches a minimum of ~ 0.4 at 8.4 ka, constrained by 9 points from 8.6 8.3 ka (7.6-7.4 14 C ka). At face value, our data suggest a regional low salinity anomaly that spanned ~300 years and preceded the 8.2 climate event known from Greenland air temperature (Fig. 4c). Accordingly, our data are consistent with the finding that a broad, complex climate anomaly is observed from ~8.6 8.0 ka (Rohling and Plike, 2005). However, given the total uncertainty associated with calibration to calendar years it is possible that the GOM event is more closely associated with the 8.2 ka event (7.4-7.2 14 C ka) that is present in the Greenland air temperature record. Either way, our data suggest that the sub-tropical Atlantic was marked by an episode of greater moisture availability, in contrast to the observed reduction in the Asian Monsoon systems. We also consider the possibility that glacial meltwater entered the GOM at this time. Geologic evidence indicates that following the Younger Dryas event, the GOM drainage outlet for the Laurentide Ice Sheet was abandoned by 11 ka (Teller et al., 2002; Fisher et al., 2003). The Laurentide Ice Sheet retreated to the Hudson Bay region by 8.5 ka (Clarke et al., 2003). The freshwater from the proglacial Lake Agassiz is considered to have drained north into Hudson Bay at 8.47 ka and geomorphic evidence precludes a southern routing of this freshwater (Barber et al., 1999). Given the age uncertainties, this pulse may be related to a southern freshwater pulse in the Great Lakes system from 8.9

PAGE 20

13 8.5 ka documented by Moore et al., (2000). Therefore, at 8.4 ka we cannot rule out the possibility that the largest negative pulse in the 18 O GOM record reflects in part freshwater from the Laurentide ice sheet. Meltwater with a 18 O composition close to the Laurentide ice sheet would require minimal salinity changes in the GOM (see section 5). Other sub-tropical Atlantic Ocean climate records suggest significant changes in moisture availability in the early Holocene. The % Ti record from the Cariaco Basin, which is located offshore of Venezuela can be used to infer changes in hydrologic balance in subtropical South America (Haug et al., 2001). Percent Ti variations are a summer-dominated proxy of rainfall-induced runoff from Venezuela rivers. The Cariaco Basin record exhibits a maximum in % Ti during the early Holocene, suggesting overall wetter conditions between 10.5 and 5.4 ka. Superimposed on this trend are many highfrequency episodes, which are suggested to be controlled by a more northerly position of the ITCZ. The % Ti record indicates decreasing amounts of terrestrial runoff beginning around 8.6 ka with two individual minima occurring at 8.4 and 8.2 ka. In contrast, the Cariaco grayscale record, a winter dominated proxy for wind-driven productivity implies a sharp increase from 8.3 8.1 ka (Peterson et al., 2000). Taken together, these records support the influence of an external summer-dominated climate anomaly from ~ 8.6 8.2 ka, with a sharp winter-dominated climate anomaly from ~ 8.3 8.1 ka (Rohling and Plike, 2005). Overall, the modest agreement with regional records of ITCZ variability suggests additional controls on Orca Basin surface-waters. The episodic decreases in 18 O GOM may also be indicative of large-scale hydrologic variability in the Mississippi River system during the early Holocene. The negative excursions may be attributed to some

PAGE 21

14 combination of increased flooding from Mississippi River system and net changes in E-P. Changing seasonal insolation will change the strength of the monsoons (Kutzbach and Gallimore, 1988). We speculate that increased seasonality of insolation enhanced North American Monsoon variability and associated rainfall in the GOM region, including the Mississippi River system. Large flooding can occur in the Upper Mississippi River Valley when strong meridional patterns develop between moist warm air masses from the GOM and the jet stream (Knox, 2000). During the early Holocene, episodic northward shifts of the ITCZ compared to present day may have enhanced precipitation over the GOM and the North American monsoon region.

PAGE 22

15 5. 13 C record The 13 C DIC in GOM surface waters is controlled by Mississippi River water input and primary production. Mississippi River water is depleted in 13 C (modern 13 C = -11 to 5 ) mainly due to 13 C-depleted soils (Tan, 1989). Primary production leaves the surface waters more enriched in 13 C (~2) due to the preferential sequestering of 12 C by photoautotrophs. Accordingly, shifts in the G. ruber 13 C result from the interplay between Mississippi River input and primary production. Previous work suggests that a positive relationship between G. ruber 18 O and 13 C indicates episodic Mississippi River flooding during the Holocene (Brown et al., 1999; Aharon, 2003). Comparing 18 O GOM to 13 C is a more direct method of isotopic tracing of flooding events (Fig. 4a & 4b) since SST has been removed leaving only a hydrologic signal in the 18 O GOM In this study, no consistent relationship exists between the 18 O GOM and the 13 C. A positive relationship exists in 4 out of the 6 freshwater events, but the largest excursion in 18 O GOM appears to be coincident with a positive 13 C excursion. If Mississippi River flooding lowered the 13 C of surface waters during the 8.6 8.3 ka interval, then it may have been masked by nutrient rich flood waters stimulating primary production and increasing the 13 C DIC

PAGE 23

16 6. Salinity Variability and Faunal Changes in the Early Holocene Determining the sources of low 18 O GOM waters has implications for changes in sea surface salinity (SSS) and the volume of freshwater input. Estimated salinity is determined based on a simple mixing model using modern values of 1.2 18 O GOM and 36 psu salinity (Fairbanks et al., 1992) and two possible freshwater end members (0 psu salinity), 3.5 for modern GOM precipitation (Bowen and Revenaugh, 2003) and 7 for modern Mississippi River system input (Ortner et al., 1995) (Fig. 5). The magnitude of salinity change depends on which freshwater end-member is used. The Orca Basin modern annual salinity range is 34-36 psu with increased salinity in winter months and decreased salinity in summer months (Levitus, 2003). The estimated salinities based on the .5 end-member for the early Holocene range from 38-30 psu (Fig. 6a), which is much larger than the modern range. A salinity reduction of ~ 5.5 psu would be required to create the excursion from 8.6 to 8.3 ka. This is equivalent to 26 times the modern precipitation based on instrumental records (Ropelewski and Halpert, 1996) and 18 times the modern annual Mississippi River system discharge volume (Dinnel and Wiseman, 1986). The salinity estimates from the modern Mississippi River system end member (-7 ) vary by as much as 4 psu during the early Holocene and the oscillations require as much as 21 times the modern precipitation and 15 times the modern annual Mississippi River system discharge volume. The end-member indicates more reasonable salinity changes and implies a substantial contribution from

PAGE 24

17 Mississippi River system flooding. For comparison, using a end-member appropriate for Laurentide ice sheet meltwater would require only a 2 psu change in salinity. Salinity changes can also be constrained by the faunal assemblage data. G. ruber is an opportunistic and euryhaline species dominating in low-salinity waters (<34.5 psu) and high-salinity waters (>36 psu) (Ruddiman, 1969; Be and Tolderlund, 1971). Genetic differences that have been observed through molecular phylogenetic analyses between the white and pink varieties of G. ruber suggest species level differences (Darling et al., 1997) and the two varieties occupy different water column depths and different seasonal distributions in the Sargasso Sea. The white variety is present year-round, whereas the pink variety is a non-winter species (Deuser et al., 1981; Be, 1982; Deuser et al., 1987; Deuser and Ross, 1989; Williams et al., 1989). The relative frequency of both varieties of G. ruber covary from 10.5 8.8 ka (Fig. 6b & 6c). Preceding and throughout the largest freshwater excursion, the white and pink varieties of G. ruber indicate a change in their relative abundance. The relative frequency of G. ruber (pink variety) begins to decrease at 8.7 ka and declines to almost 0% by 8.4 ka. The relative frequency of G. ruber (white variety) begins to increase at 8.6 ka and reaches abundances of 40 % by 8.4 ka. This faunal response begins ~ 100 years before the largest freshwater event in salinity occurring from 8.6-8.3 ka. The change in the biotic community reflects an environmental change that is consistent with a broad climate anomaly preceding the 8.2 climate event known from Greenland as discussed in Section 4. A similar relationship between faunal abundances and 18 O GOM is observed at 7.7 ka, which is preceded by faunal shifts at 7.8 ka.

PAGE 25

18 We speculate that the white variety is more opportunistic than the pink variety during the largest low salinity events. During the last deglaciation, Orca Basin records indicate that G. ruber dominated during the major meltwater pulse, but the pink and white varieties were not distinguished (Kennett et al., 1985). In addition, evidence from recent studies indicate the white variety of G. ruber are especially tolerant to varying salinities in the Caribbean and the Mediterranean during intervals of freshwater lenses over surface-waters (Schmuker and Schiebel, 2002; Rohling et al., 2004). Our faunal census data also support previous work that shows the cool-water species Globorotalia crassaformis disappeared in the mid-Holocene, based on Orca Basin cores EN32-PC6 and EN32-PC4 (Kennett et al., 1985). This species is also found to disappear from both Gyre 97-6 PC 20 from the Louisiana slope and RC 12-10 from the western GOM by the mid-Holocene (Poore et al., 2003). Our Orca Basin record from core MD02-2550 indicates that the relative frequency of G. crassaformis (Fig. 6d) decreases to < 2 % by 8 ka. Furthermore, the relative frequency of the warm-water species G. sacculifer appears to be coherent in the GOM based on three records generated by two different groups (Fig. 7a,b,& c). The overall trends in amplitude and patterns are similar between core RC12-10 from the Mexican Ridges area (Poore et al., 2003), core MD03-2553 from Pigmy Basin (Poore et al., 2004), and core MD02-2550 from Orca Basin (this study). All three records indicate a peak of > 20 % around 10 ka and another peak of > 15 % from 7.5-7.2 ka. Covariance at higher frequencies suggests substantial environmental variability on the centennial-scale in the GOM as well. Modern GOM % G. sacculifer do not exceed 15 %, while Caribbean waters contain > 20 % (Dowsett et al., 2002). Early

PAGE 26

19 Holocene values of >15 % in all three GOM records suggests episodic incursions of Caribbean waters via the Loop Current into the GOM (Poore et al., 2003). During the early Holocene, the more northerly position of the ITCZ may have been the driving force of this influx of warm Caribbean waters. Episodic incursions of Caribbean waters may have had important effects on North American continental climates.

PAGE 27

20 7. Conclusions Paired analyses of 18 O and Mg/Ca of the planktonic foraminifer G. ruber from the early Holocene from the Orca Basin indicates substantial centennial-scale climate variability during a time of increased seasonality in insolation. The MD02-2550 Mg/CaSST record contains an overall ~ 1.5 C warming trend from 10.5 to 7 ka, and also reveals six high frequency oscillations ranging from 0.5-2 C. A major feature of the Mg/Ca-SST record is a ~1.5 0.2 C warming occurring from 9.4 to 9.2 ka. The 18 O GOM record indicates hydrologic changes with ~ 0.5 fluctuations. The 18 O GOM record also reveals considerable freshwater input from 8.6 to 8.3 ka, which appears to precede the 8.2 ka event and may reflect a broader climate anomaly rather than the sharp cooling event found Greenland air temperatures. Faunal-census data supports a change in the biotic community before and throughout this 18 O GOM change. The Mg/Ca-SST record shows minimal variation during this interval. Possible causes for the hydrologic variability include large-scale changes in precipitation patterns over the GOM and episodic megaflooding from the Mississippi River system. While the variations in the 18 O GOM record do not correlate significantly with high-latitude or low-latitude climate records the GOM records do suggest substantial hydrological and climatological changes at the subcentennial scale. Our results join a growing number of studies suggesting that the early Holocene was highly variable in the low-latitude band. This and other regional records indicate that while solar variations play a role in centennial-scale climatic and hydrologic

PAGE 28

21 variability other mechanisms such as atmospheric and oceanic circulation must have had an important influence on early Holocene climate.

PAGE 29

22 References Adkins, J. R., and D. P. Schrag (2001), Pore fluid constraints on deep ocean temperature and salinity during the last glacial maximum, Geophys. Res. Lett. 28, 771-774. Aharon, P. (2003), Meltwater flooding events in the Gulf of Mexico revisited: Implications for rapid climate changes during the last deglaciation, Paleoceanography 18 1079, doi:10.1029/2002PA000840. Alley, R. B., P. A. Mayewski, T. Sowers, M. Stuiver, K. C. Taylor, and P. U. Clark (1997), Holocene climatic instability: A prominent, widespread event 8200 yr ago, Geology 25 (6), 483-486. Anand, P., H. Elderfield, and M. H. Conte (2003), Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography 18 doi: 10.1029/2002PA000846. Barber, D.C., A. Dyke, C. Hillaire-Marcel, A. E. Jennings, J. T. Andrew, M. W. Kerwin, G. Bilodeau, (1999), Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes, Nature 400 344-348. Baker, R. G. and K. A. Waln (1985), Quaternary pollen records from the Great Plains and central United States. In: B.J. Vaughn and R. Holloway (Editors), Pollen Records of Late Quaternary North American Sediments, American Association Stratigraphy Palynology Foundation, Dallas TX, pp. 191 Baker, P. A., G. O. Seltzer, S. C. Fritz, R. B. Dunbar, M. J. Grove, P. M. Tapia, S. L. Cross, H. D. Rowe, and J. P. Broda (2001), The History of South American tropical precipitation for the past 25,000 years, Science 291 640-643. Bard, E., B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, and F. Rougerie (1996), Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge Nature 382, 241 244. Barry, J. M., (1997), Rising Tide The Great Mississippi Flood of 1927 and How it Changed America pp. 524, Simon and Schuster, New York. Be, A.W.H., and Hamlin, W.H., 1967, Ecology of recent planktonic foraminifera. Part 3. Distribution in the North Atlantic during the summer of 1962, Micropaleontology, v. 6, n.4, p. 87-106.

PAGE 30

23 Be, A. and D. S. Tolderlund (1971), Distribution and ecology of living planktonic foraminifera in the surface waters of the Atlantic and Indian Oceans, In: B. M. Funnell and W. R. Reidel (Editors), The Micropaleontology of Oceans pp. 105-149, Cambridge University Press, London. Beers, Y. (1957), Introduction to the Theory of Error pp. 66, Addison-Wesley-Longman, Rading, Mass. Bemis, B. E., J. H. Spero, J. Bijma, and D. W. Lea (1998), Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations, Paleoceanography 13 150-160. Berger, A., (1978), Long-term variations of daily insolation and Quaternary climatic changes, J. Atmos. Sci 35 (12), 2362-2367. Bernabo, J. C., and T. Webb III (1977), Changing patterns in the Holocene pollen record of northeastern North America: A mapped Summary, Quaternary Research 8, 64-96. Bigg, G., (2003), The Oceans and Climate pp. 48-51, Cambridge University Press, Cambridge, UK. Bond, G., W. Showers, M. Cheseby, R. Lotti, P. Almasi, P. deMenocal, P. Priore, H. Cullen, I. Hajdas, and G. Bonani (1997), A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science 278 1257-1266. Bond, G., B. Kromer, J. Beer, R. Muscheler, M. N. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas, G. Bonani (2001), Persistent Solar Influence on North Atlantic Climate During the Holocene, Science 294 2130-2136. Bowen, G. J., and J. Revenaugh (2003), Interpolating the isotopic composition of modern meteoric precipitation, Water Resources Res ., 39 doi: 10.1029/2003WR002086. Boyle, E. A., Keigwin, L. D. (1985/1986), Comparison of Atlantic and Pacific paleochemical records for the last 215,000 yrs: changes in deep ocean circulation and chemical inventories, Earth Planet, Science Letters 76 135-150. Brown, P., J. Kennett, and B. Lynn Ingram (1999), Marine evidence for episodic Holocene megafloods in North America and the northern Gulf of Mexico, Paleoceanography, 14(4), 498-510. Brunner, C. A. (1979), Distribution of planktonic foraminifera in surface sediments of the Gulf of Mexico, Micropaleontology 25 (3), 325-335

PAGE 31

24 Cane, M. and A. C. Clement (1999), A role for the tropical Pacific coupled oceanatmosphere system on Milankovitch and millennial timescales: Part II, Global Impacts, In: Clark, P.U., et al., Mechanisms of global climate change at millennial timescales: American Geophysical Union Monograph, 112 373-283. Dean, W. E., R. M. Forester, J. P. Platt Bradbury (2002), Early Holocene change in atmospheric circulation in the Northern Great Plains: an upstream view of the 8.2 ka cold event, Quaternary Science Reviews 21 1763-1775. Denton, G. H., and T. J. Hughes (Ed.) (1981), The last great ice sheets 484 pp., John Wiley, New York. Deuser, W. G., E. H. Ross, C. Hemleben, and M. Spindler (1981), Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea, Palaeogeography, Palaeoclimatology, Palaeoecology, 33 103 Deuser, W. G. (1987), Seasonal variations in isotopic composition and deep-water fluxes of the tests of perennially abundant planktonic foraminifera of the Sargasso Sea: Results from sediment-trap collections and their paleoceanographic significance, Journal of Foraminferal Research, 17 (1), 14 27. Deuser, W. G. and E. H. Ross (1989), Seasonally abundant planktonic foraminifera of the Sargasso Sea: Succession, Deep-water fluxes, isotopic compositions, and paleoceanographic implications, Journal of Foraminiferal Research, 19 (4), 268 293. Dinnel, S. P. and W. J. Wiseman, Jr. (1986), Fresh water on the Louisiana and Texas shelf, Continental Shelf Research 6 765-784. Endfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble (2001), The Atlantic Multidecadal oscillation and its relation to rainfall and river flows in the continental U.S., Geophysical Research Letters, 28 (10), 2077 2080. Fairbanks, R. G. (1989), A 17,00-year Glacial-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature 342 637-642. Fairbanks, R. G., Charles, C. D., and Wright, J. D. (1992), Origin of global meltwater pulses, in Taylor, R. E., et al., eds., Radiocarbon after four decades pp. 473, Springer-Verlag, New York. Flower, B. P. and J. P. Kennett (1990), The Younger Dryas cool episode in the Gulf of Mexico, Paleoceanography 5 949-961.

PAGE 32

25 Flower, B. P. and J. P. Kennett (1995), Biotic Responses to Temperature and Salinity changes During the Last Deglaciation, Gulf of Mexico, National Research Council Studies in Geophysics: Effects of Past Global Change on Life pp. 209-220, National Academy Press, Washington D. C. Fisher, T. G. (2003), Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico, Quaternary Research 59 271-276. Ghil, M., et al., (2002) Advanced spectral methods for climate time series, Reviews of Geophysics 40 (1), 1003, doi:10.1029/2000RG000092. Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen, and J. Jouzel (1993), Comparison of oxygen-isotope records from the GISP2 and GRIP Greenland ice cores, Nature 366 552-554. Hastings, D. W., A. Whitko, M. Kienast, and S. Steinke (2001), A comparison of three independent paleotemperature estimates from a high resolution record of deglacial SST records in the tropical South China Sea, Eos Trans. AGU 82 Fall Meet. Suppl., PP12B10. Haug, G. H., K. A. Hughen, D. M. Sigman, L. C. Peterson, and U. Rohl (2001), Southward migration of the Intertropical Convergence Zone through the Holocene, Science 293 1304-1308. Hemleben, C., Spindler M., and Anderson, O.R., 1989, Modern Planktonic Foraminifera, Springer-Verlag, New York, 363 p. Hodell, D. A., J. H. Curtis, G. A. Jones, A. Higuera-Gundy, M. Brenner, M. W. Binford, and K. T. Dorsey (1991), Reconstruction of Caribbean climate change over the past 10,500 years, Nature 352 790-793. Hughen, K. A., J. T. Overpeck, L. C. Peterson and S. Trumbore (1996), Rapid climate change in the tropical Atlantic region during the last deglaciation, Nature 375 391-394. Kennett, J. P., K. Elmstrom and N. Penrose (1985), The last deglacial in Orca Basin, Gulf of Mexico high-resolution planktonic foraminiferal changes, Palaeogeography, Palaeoclimatology, Palaeoecology 50 189-216. Klitgaard-Kristensen, D., H. P. Sejurp, H. Haflidason, S. Johnsen, and M. Spurk (1998), A regional 8200 cal. yr. Cooling event in northwest Europe, induced by the final stages of the Laurentide Ice Sheet deglaciation?, Journal of Quaternary Science 13, 165-169. Kutzbach, J. E. and R. G. Gallimore (1988). Sensitivity of a coupled atmosphere/mixedlayer ocean model to changes in orbital forcing at 9000 yr BP, Journal of Geophysical Research 93 803-821.

PAGE 33

26 Lachniet, M. S., Y. Asmerom, S. J. Burns, W. P. Patterson, V. J. Polyak, and G. O. Seltzer (2004), Tropical response to the 8200 yr B.P. cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica, Geology 32 (11), 957-960. Lea, D. W., D. K. Pak, L. C. Peterson, and K. A. Hughen (2003), Synchroneity of Tropical and High-Latitude Atlantic Temperatures over the Last Glacial Termination, Science 301 (5638),1361-1364. Leventer, A., D. F. William, and J. P. Kennett (1983), Relationships between anoxia, glacial meltwater and microfossil preservation in the Orca Basin, Gulf of Mexico, Marine Geology 53 23-40. Levitus, S. (2003), National Oceanographic Data Center World Ocean Atlas 1994 at http://www.cdc.noaa.gov/ (NCDC, Boulder, Colorado, USA) LoDico, J. M., D. W. Hastings, B. P. Flower, and T. M. Quinn (2002), A Multi-Proxy Approach to Distinguish between changes in Sea Surface Temperatures and Meltwater input into the Gulf of Mexico Back to MIS 3., Eos Trans. AGU Fall Meet. Suppl., F901. LoDico, J.M. (2006), Sub-Centennial Scale Climatic and Hydrologic Variability in the Gulf of Mexico during the Early Holocene, Masters Thesis, University of South Florida Liu, Z., E. Brady and J. Lynch-Steiglitz (2003), Global ocean response to orbital forcing in the Holocene. Paleoceanography 18 (2), 1041, doi:10.1029/2002PA000819. Mayewski, P. A., E. E. Rholing, J. Curt Staher, W. Karlen, K. A. Maasch, L. D. Meeker, E. A. Meyerson, F. Gasse, S. van Kreveld, K. Holmgren, J. Lee-Thorp, G. Rosqvist, F. Rack, M. Staubwasser, R. R. Schneider, and E.J. Steig (2004), Holocene climate variability, Quaternary Research 62 243-255. Metcalfe, S. E., S. L. OHara, M. Caballero, and S. J. Davies (2000), Records of Late Pleistocene-Holocene climatic change in Mexico a review, Quaternary Science Reviews 19 699 Mitchell, J. F. B., N. S. Grahame, and K. J. Needham (1988), Climate simulations for 9000 years before present: Seasonal variations and effect of the Laurentide Ice Sheet, Journal of Geophysical Research 93, 8283-8303. Moore, T. C., J. C. G. Walker, D. K. Rea, C. F. M. Lewis, L. C. K. Shane, and A. J. Smith (2000), Younger Dryas interval and outflow from the Laurentide ice sheet, Paleoceanography, 15 (1), 4-18 Nordt, L. C., Boutton, T. W., Hallmark, C. T. and Waters, M. R. (1994), The late Quaternary vegetation and climatic changes in central Texas based on the isotopic composition of organic carbon, Quaternary Research 41 109-120.

PAGE 34

27 Ortner, P. B., T. N. Lee, P. J. Milne, R. G. Zika, M. E. Clarke, G. P. Podesta, P. K. Swart, P. A. Tester, L. P. Atkinson, and W. R. Johnson (1995), Mississippi River flood waters that reached the Gulf Stream, Journal of Geophysical Research 100 (13), 595. Peterson, L. C., G. H. Haug, K. A. Hughen, and U. Rhl (2000), Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290 1947-1951. Poore, R. Z., H. J. Dowsett, S. Verardo, and T. M. Quinn (2003), Millennialto centuryscale variability in Gulf of Mexico Holocene climate records, Paleoceanography 18 (2), 1048, doi:10.1029/2002PA000868. Poore, R. Z., T. M. Quinn, and S. Verardo (2004), Century-scale movement of the Atlantic Intertropical Convergence Zone linked to solar variability, Geophysical Research Letters 31 doi:10.1029/2004GL019940. Paillard, D., L. Labeyrie, P. Yiou (1996) Macintosh Program performs time-series analysis. Eos Trans. AGU 77 379. Rabalais, N. N., R. E. Turner; D. Just, Q. Dortch, W. J. Wiseman, Jr., B. K. Sen Gupta (1996), Nutrient Changes in the Mississippi River and System Responses on the Adjacent Continental Shelf, Estuaries 19 (2), Part B: Dedicated Issue: Nutrients in Coastal Waters, 386-407. Reimer, R. W., S. Remmele, J. R. Southon, M. Stuiver, S. Talamo, F. W. Taylor, J van der Plicht, CE Weyhenmeyer (2004), Radiocarbon 46 1029-1058. Remenda, V. H., J. A. Cherry, and T. W. D., Edwards (1994) Isotopic composition of old groundwater from Lake Agassiz: Implications for late Pleistocene climate, Science 266 1975 1978. Rohling, E. J., M. Sprovieri, T. Cane, J. S. L. Casford, S. Cooke, I. Bouloubassi, K. C. Emeis, R. Sciebel, M. Rogerson, A. Hayes, F. J. Jorissen, and D. Kroon (2004), Reconstructing Past Planktonic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5, Marine Micropaleontology, 50 89 Rohling, E. J. and H. Plike (2005), Centennial-scale climate cooling with a sudden cold event around 8,200 years ago, Nature, 434, 975 979. Ruddiman W. F. (1969), Planktonic foraminifer of the subtropical North Atlantic gyre, Thesis Columbia University, New York, N.Y. Ruddiman, W. F., (2001), Earths Climate Past and Future pp. 318, W. H. Freeman and Company, New York.

PAGE 35

28 Ruhlemann, C., S. Mulitza, P. J. Muller, G. Wefer, and R. Zahn (1999), Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation, Nature 402 511-514. Schrag, D. P. (1999), Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates, Paleoceanography 14 97-102. Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, F. G. McCormac, J.Van Der Plicht, and M. Spurk (1998) INTCAL98 radiocarbon age calibration 24,000 cal BP: Radiocarbon 40 1041. Tan, F. C. (1989), Stable carbon isotopes in dissolved inorganic carbon in marine and eustarine environments, in Handbook of Environmental Geochemistry 3A, edited by P. Fritz, and J. C. Fontes, pp. 171-190, Elsevier, New York Teller, J. T., D. W. Leverington, and J. D. Mann (2002), Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation, Quaternary Science Reviews 21 (8-9), 879-887. Thunell, R., E. Tappa, C. Pride, and E. Kincaid (1999), Sea-surface temperature anomalies associated with the 1997-1998 El Nino recorded in the oxygen isotope composition of planktonic foraminifera, Geology, 27, 843-846. Tinner, W., and A. Lotter (2001), Central European vegetation response to abrupt climate change at 8.2 ka, Geology 29 551-2554. von Grafenstein, U., H. Erlenkeuser, J. Muller, J. Jouzel, and S. Johnsen (1998), The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland, Climate Dynamics 14 73-81. Williams, D. F., W. H. Allan, and R. G. Fairbanks (1981), Seasonal stable isotopic variations in living planktonic foraminifera from Bermuda plankton tows, Paleoceanography, Paleoclimatology, Paleoecology, 33 71-102. Wang, C., and C. B. Endfield (2001), The tropical Western Hemisphere Warm Pool, Geophysical Research Letters 28 1635-1638. Zaric, S., B. Donner, G. Fischer, S. Mulitza, and G. Wefer (2005), Sensitivity of planktonic foraminifera to sea surface temperature and export production as derived from sediment trap data, Marine Micropaleontology, 55 75-105.

PAGE 36

29 Table 1. 14 C Accelerator Mass Spectrometer (AMS) Dates from core MD02-2550 a Center for Accelerator Mass Spectrometry (CAMS), Lawrence Livermore National Laboratory b Dates are calibrated to calendar ages using CALIB 5.0 Radiocarbon Conversion Program (http://radiocarbon.pa.qub.ac.uk/calib/)(Stuiver et al., 1998). a CAMS # Depth in core (cm) 14 C AMS Age (ka) 14 C Error (+/yr) b Calibrated Age (ka) Calibrated Error (+/yr) 100670 190-190.5 6.110 35 7.02 64 100671 210-210.5 7.050 40 7.93 89 100672 230-230.5 7.650 35 8.50 90 100673 250-250.5 7.930 40 8.91 134 100674 270.5-271 8.415 40 9.48 66 100675 290-290.5 8.885 40 10.14 176 100676 307.5-308 9.390 40 10.64 125

PAGE 37

30 Figure 1. Map of the GOM showing location of core MD02-2550 (26.77N, 91.74W, 2248 m water depth in Orca Basin). Orca Basin, MD02-2550

PAGE 38

31 Figure 2. Paired 18 O and Mg/Ca data based on G. ruber (white variety, 250 -355 m) and age model for core MD02-2550. A) raw 18 O, B) raw Mg/Ca and C) age model based on seven accelerator mass spectrometry 14 C dates on G. ruber (white and pink variety) calibrated to calendar years using CALIB 5.0 (http://radiocarbon.pa.qub.ac.uk)(Table 1). -3 -2 -1 18 O G. ruber (, VPDB) average precision 4 5 6 Mg/Ca (mmol/mol) average precision 7 8 9 10 11 200 220 240 260 280 300 Calendar Age (ka) Depth (cm)

PAGE 39

32 Figure 3. SST record in comparison to proxies of solar variability. A) Difference between September and March insolation at 27 N, B) Delta 14 C record plotted on an inverted scale so increased solar output is up (Reimer et al., 2004). C) Orca Basin core MD022550 Mg-derived SST based on G. ruber with 5-point smooth. Horizontal gray bars indicate periods of SST increases as defined in the text. D) Relative frequency of coldwater foraminifer species N. pachyderma (dextral) and G. inflata Inverted triangles indicate ages of six accelerator mass spectrometry 14 C dates for MD02-2550 calibrated to calendar years (Table 1). 23 24 25 26 27 28 29 Mg/Ca SST (C) C average precision 10 15 20 25 30 Insolation (Sept. minus March) (Watts/m 2 ) A -30 -20 -10 0 10 20 30 Delta 14 C () B 0 1 2 3 4 % N. pachyderma (d) % G. inflata 7 8 9 10 Relative frequency (%) Calendar age (ka) D

PAGE 40

33 Figure 4. 18 O GOM 13 C G. ruber and 18 O GISP A) 18 O GOM calculated from paired analysis of 18 O G. ruber and Mg/CaSST and corrected for ice-volume, with the modern 18 O GOM of 1.2 indicated by the dashed horizontal bar and the vertical gray bars indicating negative excursions as defined in text B) Raw 13 C G. rube r with 5-point smooth. C) Greenland air temperature record based on Greenland Ice Sheet Project 2 (GISP2) 18 O data (Grootes et al., 1993). Inverted triangles indicate ages of six accelerator mass spectrometry 14 C dates for MD02-2550, calibrated to calendar years (Table 1). -37 -36 -35 -34 -33 7 8 9 10 18 O GISP2 ( VSMOW) Calendar age (ka) C 0 0.5 1 1.5 13 C G. ruber ( VPBD) B 0.2 0.6 1 1.4 18 O GOM ( VSMOW) A average precision

PAGE 41

34 Figure 5. Mixing model for GOM used for estimated salinities determined from modern relationship between salinity and 18 O SW A) Modern precipitation end-member: -3.5 (Bowen and Revenaugh, 2003), B) Modern Mississippi River end-member: -7 ( Ortner, et al., 1995). Note that the lower end-member requires smaller salinity changes in the GOM. -8 -6 -4 -2 0 2 0 5 10 15 20 25 30 35 40 18 O GOM ( VSMOW) Salinity (psu) A. 18 O GOM = 0.13 SSS 3.5 B. 18 O GOM = 0.23 SSS 7 A B

PAGE 42

35 Figure 6. Estimated salinities and faunal assemblage data. A) Estimated salinities calculated from 18 O GOM based on two possible end-member compositions for freshwater input (Fig. 5). B) Relative frequency of foraminifer species G. ruber (pink variety). C) Relative frequency of foraminifer species G. ruber (white variety). D) Relative frequency of foraminifer species G. crassaformis. Inverted triangles indicate ages of six accelerator mass spectrometry 14 C dates for MD02-2550, calibrated to calendar years (Table 1). 30 32 34 36 38 -3.5 end member -7 end member Estimated Salinity (psu) A 0 10 20 30 Relative frequency (%) G. ruber (pink variety) B 10 20 30 40 Relative frequency (%) G. ruber (white variety) C 0 5 10 15 7 8 9 10 Relative frequency (%) Calendar age (ka) G. crassaformis D

PAGE 43

36 Figure 7. Relative frequency of foraminifer species G. sacculifer for three GOM records: A) Core RC12-10 record recovered from the Mexican Ridges region of the western GOM (23.00 N, 95.53 W, 3054 m water depth)(Poore et al., 2003). B) Core MD02-2553 record recovered from the Pigmy Basin (27.11 N, 91.25 W, 2259 m water depth)(Poore et al., 2004). C) Core MD02-2550 record recovered from the Orca Basin (this study). Inverted triangles indicate ages of six accelerator mass spectrometry 14 C dates for MD022550, calibrated to calendar years (Table 1). RC 12-10 and MD02-2253 were also calibrated to calendar years (see text). 5 10 15 20 25 Relative frequency (%) RC12-10, G. sacculifer A 0 5 10 15 20 25 30 Relative frequency (%) MD02-2553, G. sacculifer B 0 5 10 15 20 25 7 8 9 10 Relative frequency (%) Calendar age (ka) MD02-2550, G. sacculifer C

PAGE 44

Appendix A: Sampling Protocol 37

PAGE 45

38 Sediment Sampling 1. Precisely align measuring tape and core on the table in order to ensure accurate sampling. 2. Take samples from core using the predetermined sampling interval (from estimated sedimentation rates) such 0 .5 cm, 1 cm, or 2 cm sample spacing. a. Use spatula to remove the sample and place in whir-pack bag clearly labeled with the core name and inte rval. When taking the sample be careful not to sample the edges of th e sediment in contact with the core liner. b. It may be necessary to split the sample into sub-samples for multiple analyses such as organics, pollen etc. c. Be sure to rinse spatula and sampling devices with DI water and Kim wipes between each sample in order to not contaminate the samples d. Keep a log, note things such as large piece of seaweed, changes in sediment color, etc. 3. Take approximately 12 whirl-pack bags with samples in them to freeze dryer 4. Follow instructions on freeze dryer, pl acing the samples in the chamber and following the protocol. 5. Samples depending on their size should remain in the freeze dryer for approximately 24 hours.

PAGE 46

Appendix A: (Continued) 6. Once dry the samples should be weighed on the large mettler-toledo balance. a. Tare the balance with your measurement container b. Place sample on balance and record the bulk weight of the sample, along with core name and interval 7. Once weighed place samples into 500 ml Nalgene bottles, once again clearly labeled with core name and interval. 8. Add anti-flocculant solution to each Nalgene bottle so it is approximately half way full. a. The solution is composed of 900 mg NaPO 4 1 pellet of NaOH and approximately 4 L of H 2 O. 9. Place the bottles on the table shaker and leave for 24 hours. 10. Samples are then wet sieved using the 63 m sieve and DI water. Carefully pour sample from the bottle onto the sieve. Rinse the bottle out with DI water over the sieve to remove any remaining sample. Use the DI water and large soft paintbrush to gently remove and excess clays from the sample. You know your sample is clean when the water running through the sieve is very clear. a. It is very important to be gentle in this process in order to not crush the foram tests. The soft paintbrush should only be used when large chucks of clays remain in the sample after being on the table shaker for 24 hours. 11. Once the sample is clean, set up a filter paper in the funnel drainage system (label the filter paper with core name and interval and fold into fours in order to make a 39

PAGE 47

Appendix A: (Continued) pocket for you sample to sit in while the H 2 O drains out). Move sample into a corner of sieve using water. Pour sample from sieve into filter paper using DI squirt bottle. 12. Once excess water is drained carefully place 2 filter papers with the samples in it into 250 ml heat resistant plastic beakers. Place in the oven set at approximately 60 0 Leave for 24 hours and take out of the oven. 13. Once the sample is dry begin to weight them for the washed weight on the mettler-toledo balance. Carefully remove filter paper from beaker, tare your balance and weigh sample. Record the weigh, core name and interval. 14. From here samples should be transferred into clean, labeled glass vials. 15. Once stored in vials samples can go onto to be picked, counted, and analyzed. Faunal Assemblage Procedure 1. Using a micro-splitter, divide the entire sample into two samples with one half designated for faunal assemblage analysis and the other half designated for geochemical analysis. 2. Sieve the faunal assemblage split at the >150 m size fraction and further split to obtain approximately 300 individual foraminifers for the faunal assemblage census. 3. Identify the planktonic foraminifers in the sample to species using a counter. 4. Express the relative frequency of each planktonic foraminifer species as percent of the total planktonic foraminiferal assemblage. 40

PAGE 48

Appendix A: (Continued) Geochemical Analyses Procedure 1. Sieve the geochemical split between 250-355 m. 2. Using a fine paintbrush pick and place 30 Globigerinoides ruber (white variety) for single analysis and 60 foraminifer for replicate analysis onto slides. 3. Transfer the foraminifer tests into clean glass vials labeled with the core, core depth, and type of samples. 4. After transferring, allow the samples to dry in oven set at approximately 60 0 for 24 hours. 5. Weight all of the foraminifera tests for each sample. The full sample should weigh between 300 g500 g. Try to keep the samples approximately the same weight. Record details of core depth, species, number of tests and sample weight. 6. Once the total weight is recorded the tests can be crushed. The aim here is to open the chambers to allow the material inside the chambers to be removed during cleaning. Gloves are not necessary. 7. To clean the glass plates: Use concentrated liquid detergent and MQ water. Wearing gloves clean the glass plates by hand. Then rinse with methanol and air dry. 8. Place the tests on the bottom glass plate, with the second plate apply gentle pressure to the forams just opening the chambers. Do not crush the forams to powder. 9. Using a clean razor blade homogenize the sample. 41

PAGE 49

Appendix A: (Continued) 10. Split the crushed sample into aliquots and weigh out between 30-80 g. This aliquot is now ready for the stable isotope ration mass spectrometer analysis. The sample can be placed back into the glass vial until run on the instrument. 11. The remaining sample for Mg/Ca analysis should weight between 150-500g (50% is assumed lost during cleaning). If the sample is being replicated, split the sample into half. 12. Put each split sample into a clean and labeled 0.5mL centrifuge tube. Mg/Ca Cleaning Procedure 1. Foraminifera are cleaned in sets of sixteen, more than one set can be done at a time. One set takes approximately three hours. Work in a laminar flow hood and wear gloves. 2. Removal of fine clays with water and sonication. a) Squirt a small amount (10-20 L) of MQ water in to each tube, leave tubes open. b) Sonicate for 1-2 minutes. This will encourage separation of more tightly bound clays from test surfaces. Suspend clays will appear as a milky residue just above the sample. c) Add 500 L of MQ water to each tube. d) Using the 100-1000 L pipette pick up the sample squirt back to agitate the sample. Allow the sample to settle and siphon off the water with the pipette. Make sure to use a new pipette tip for each sample. 42

PAGE 50

Appendix A: (Continued) e) Repeat these steps for a total of three times. Make sure to remove all water after the third repetition (use smaller pipette). More repetitions may be necessary as long as clays are being visibly brought into suspension by sonication. f) Add 250L quartz distilled methanol into each tube. The lower viscosity of MeOH should dislodge material still attached to the carbonate tests. a. Turn on the water bath for the oxidation step after first methanol step. g) Sonicate for 1 minute. h) Lift methanol off the sample with a pipette and squirt straight back in to bring clays into suspension. i) Allow the sample to settle, remove methanol. Methanol is less viscous, so be more careful during siphoning; dont go quite to the bottom. j) Repeat steps f) to i) k) Fill tubes with MQ water and siphon off-to rinse away any remaining methanol. 3. Removal of organic matter with oxidizing reagent. a) Make up alkali buffered peroxide solution: add100 L H 2 O 2 to 10mL of 0.1M NaOH. Make this solution up just before cleaning. b) Pipette 250L of peroxide solution into each sample. Close caps. c) Place the samples into the water bath (95-100 0 C) for a total of 10 minutes. 43

PAGE 51

Appendix A: (Continued) a. At 2.5 and 7.5 minutes, remove the rack and rap on bench top to release any gaseous build up. After 5 minutes, sonicate briefly (5 seconds) and return to the water bath. The aim of this step is to maintain contact between reagent and sample. b. After water bath sonicate and rap on table. d) Remove oxidizing reagent with pipette tip. e) Repeat steps b) to d). f) Remove remaining oxidizing reagent by filling tubes with MQ water, fill tubes to top and fill the caps. Siphon off the water. Repeat 1-2 times. It is important to rinse out all the reducing solution before moving on to the next step. 4. Weak acid leach. This will remove any adsorbed contaminants from the test fragments. a) Add 250L 0.001M HNO 3 to each sample. b) Sonicate the samples for 30 seconds, allow to settle and siphon off. c) Fill with MQ water, allow to settle and siphon off. Pipette off the remaining water (>5L will cause the CaCO 3 to recrystallize). Cap and store the samples. They can be stored indefinitely at this stage. 5. Sample Dissolution-Wear gloves during this step. a) Add 0.4 mL of 2% HNO 3 to each tube and cap tube. b) Make sure the sample is dissolved and then transfer to test tubes. 44

PAGE 52

Appendix A: (Continued) c) Add 2% HNO 3 to the test tubes according to the split weight to maintain consistent Ca measurements (around 20 ppm). d) The samples are now ready to be run on the Inductively Coupled Plasma Optical Emission Spectrometer. 45

PAGE 53

Appendix B: Bulk Weight and Individual Weight per Foraminifera 46

PAGE 54

Depth (cm) Age (ka) Bulk weight ( mg) Dry Weight (mg) # of foraminifera tests total weight ( g) Weight/foraminifera ( g) 1907.0215295852229913.6190.57.051705621157887111.21917.07162367079311.3191.57.0965599221927.111222412807088212.6192.57.13975616217187112.31937.16103505867782810.8193.57.1886035116266110.71947.2013953555797369.3194.57.2287513033440011.81957.2597924997172510.2195.57.27128133145055811.21967.2947601592329512.8196.57.3171943225472713.51977.33112316773845311.9197.57.36123425923340812.41987.38115524163638410.7198.57.4097342385058111.61997.4272262285362011.7199.57.45134406446678311.92007.4770213565968511.6200.57.49103715407598713.22017.5176653305061012.2201.57.53137797272027.56106392337083812.0202.57.5886263087079011.3 Sample bulk wet sediment weight, dry weight(>63microns), number of individual G. ruber picked from sample, total weight of all of the foraminifera, and weight per foraminifera. 47

PAGE 55

Appendix B: (Continued) Depth (cm) Age (ka) Bulk weight (mg) Dry Weight (mg) # of foraminifera tests total weight ( g) Weight/foraminifera ( g) 2027.56106392337083812.0202.57.5886263087079011.32037.6061702717179611.2203.57.6263762664960712.42047.65131985257480010.8204.57.67101002917188012.42057.69112303107081611.7205.57.71157793847380811.12067.7477032415969011.7206.57.76134825287376010.42077.7883853396878411.5207.57.8086663207390512.42087.82115164057582511.0208.57.85116453697787811.42097.87109254387178011.0209.57.89121045437182811.72107.918009370210.57.93114244647084812.12117.9498283677080011.4211.57.9660522852730011.12127.9784773457392712.7212.57.9955302504857712.02138.0076223476067911.3213.58.0273604244955111.22148.03134835117588811.8214.58.05100394176265610.62158.068152359232289.9215.58.084779971518512.32168.09105443854755411.8216.58.1168052781920110.62178.12149056215465712.2 48

PAGE 56

Appendix B: (Continued) Depth (cm) Age (ka) Bulk weight ( mg) Dry Weight (mg) # of foraminifera tests total weight ( g) Weight/foraminifera ( g) 217.58.1315573478011.42188.1598124304952810.8218.58.16185787332198.1866362012326511.5219.58.1974433775564211.72208.2155681062128413.5220.58.22261474659.92218.2455291754655612.1221.58.25129876587079511.42228.278706493222.58.28127373652238.30101543537071510.2223.58.3172322637580810.82248.3376231325762511.0224.58.34168605947578010.42258.361920982424410.2225.58.37110765077072810.42268.3967011337580010.7226.58.40101883797077611.12278.4296216187076310.9227.58.43133639767076510.92288.4451642597480410.9228.58.46127566007073710.52298.4783481677177911.0229.58.498609498747339.9230 8.50 14609 657 75 789 10.5230.58.5194805657582010.92318.5275793347982210.4231.58.5361823217080011.42328.54147447547083111.9232.58.55124047667080811.5 49

PAGE 57

Appendix B: (Continued) Depth (cm) Age (ka) Bulk weight (mg) Dry Weight (mg) # of foraminifera tests total weight ( g) Weight/foraminifera ( g) 2338.5688964887089512.8233.58.5788265267586311.52348.5816071075152510.3234.58.59117635392358.6071323397084412.1235.58.61116366617080511.52368.6277105157080111.4236.58.6381814817090913.02378.6580464577086812.4237.58.66133406727076510.92388.6796954387080911.6238.58.6861522502398.69111055875660210.8239.58.70167529077072110.32408.7147532124555912.4240.58.72154594105570512.82418.733384401316913.0241.58.74137605282428.7556942174562113.8242.58.7675912855671512.82438.77145714497094513.5243.58.7855991565068013.62448.7973902425880513.9244.58.80152085367090012.92458.8154281714044711.2245.58.8280092034055213.82468.8317483760246.58.84137687747090412.92478.85117907987090312.9247.58.86148468077085212.22488.8778513767388012.1 50

PAGE 58

Appendix B: (Continued) Depth (cm) Age (ka) Bulk weight (mg) Dry Weight (mg) # of foraminifera tests total weight ( g) Weight/foraminifera ( g) 248.58.8896895627083812.02498.8974804227090012.9249.58.9056173514260814.52508.91204337433032510.8250.58.9285221502633612.92518.9447971251617510.9251.58.95167965233437511.02528.9663672773033011.0252.58.9893872573038312.82538.9974493132936012.4253.59.01777023933511.72549.0287142722731511.7254.59.0498432335362011.72559.0557901192635013.5255.59.06173565463140313.02569.08161794612933511.6256.59.0955622262932711.32579.11103415957087412.5257.59.1238162142426010.82589.14124123423036012.0258.59.1568671983036312.12599.16104124953037912.6259.59.1887955556483013.02609.19157276211618011.3260.59.2179221773032310.82619.22123783663034511.5261.59.2483952463037612.52629.2598224007073010.4262.59.27134296423030810.32639.2873732913035311.8263.59.29109855453033811.3 51

PAGE 59

Appendix B: (Continued) Depth (cm) Age (ka) Bulk weight (mg) Dry Weight (mg) # of foraminifera tests total weight ( g) Weight/foraminifera ( g) 2649.3180314663036312.1264.59.32113968657081511.62659.34142622823034311.4265.59.3577053513034211.42669.3794114113032510.8266.59.38135473683038512.82679.3987351927086112.3267.59.41145583113038612.92689.4268111273039613.2268.59.4463911113039813.32699.4574051172937813.0269.59.47122932126279312.82709.48121692183036612.2270.59.50202923563041713.92719.5164041103033111.0271.59.53170153343039613.22729.55107382596063610.6272.59.56119054043040513.52739.58120033373035411.8273.59.6053571423042414.12749.6191392363038812.9274.59.6376092076077512.92759.64145364883035011.7275.59.6692765582529011.62769.68155414573037312.4276.59.6974954593032710.92779.7194913176067511.3277.59.73124461583040413.52789.74152393053040213.4278.59.766194803034811.62799.78131162223041914.0 52

PAGE 60

Appendix B: (Continued) Depth (cm) Age (ka) Bulk weight (mg) Dry Weight (mg) # of foraminifera tests total weight ( g) Weight/foraminifera ( g) 279.59.7998461636076912.82809.81113872633041113.7280.59.83151835903036512.22819.8464522523041413.8281.59.8677893293036312.12829.8896444656075112.5282.59.89100433833039813.32839.9141751273036712.2283.59.9281432993033411.12849.9453971533036712.2284.59.9694402796074412.42859.9781691703037612.5285.59.99101232223041113.728610.0167181203041213.7286.510.0298391833041213.728710.0473391023443412.8287.510.0690624433036912.328810.0788474453035211.7288.510.09140514933036712.228910.1154791393037212.4289.510.1257211766073912.329010.143418812834412.3290.510.15164872983034811.629110.1766121503042314.1291.510.18104752973034511.529210.19106693366062710.5292.510.2163731743038412.829310.22100512553036812.3293.510.2496501823034011.329410.25156963393037312.4294.510.26146323676074612.4 52

PAGE 61

Appendix B: (Continued) Depth (cm) Age (ka) Bulk weight (mg) Dry Weight (mg) # of foraminifera tests total weight ( g) Weight/foraminifera ( g) 29510.28146594503036812.3295.510.29123508303025229610.3180393073035912.0296.510.3269212933040813.629710.3393284295776113.4297.510.35186545283038212.729810.3653773583035811.9298.510.3858632533039313.129910.39150496053037712.6299.510.40131304106077612.930010.429092324 53

PAGE 62

54 Appendix C: Faunal Assemblage Data

PAGE 63

Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 190.5 6.13 7.05 1/16 63 89 25 49 36 29 13 10 44 60 20 43 191 6.16 7.07 1/128 58 49 13 25 6 14 10 15 26 3 9 24 192 6.20 7.11 1/32 51 50 16 21 17 11 30 17 6 31 5 12 192.5 6.23 7.13 1/64 86 42 7 12 14 4 26 24 17 27 3 8 193 6.25 7.16 1/32 50 40 8 16 9 8 12 19 9 28 3 7 193.5 6.27 7.18 1/64 55 60 12 23 10 2 30 14 15 26 1 9 194 6.30 7.20 1/64 47 72 13 27 6 0 23 8 16 22 1 16 194.5 6.32 7.22 1/16 40 61 17 33 7 3 34 12 12 26 3 7 195 6.35 7.25 1/16 58 54 12 21 8 4 29 8 11 17 3 4 195.5 6.37 7.27 1/16 70 82 25 48 11 9 46 21 15 45 2 13 196 6.39 7.29 1/8 28 48 11 28 3 1 17 11 9 25 0 10 196.5 6.42 7.31 1/16 30 24 6 20 3 2 9 2 15 11 0 4 197 6.44 7.33 1/32 57 37 6 16 5 4 8 7 7 19 0 13 197.5 6.46 7.36 1/16 51 56 16 28 6 1 23 8 22 52 0 6 198 6.49 7.38 1/32 40 46 13 25 1 2 18 4 16 30 0 2 198.5 6.51 7.40 1/16 58 68 22 27 2 3 29 18 19 46 0 14 199 6.53 7.42 1/16 67 80 8 32 3 1 26 5 9 45 0 12 199.5 6.56 7.45 1/16 49 69 11 27 0 8 20 10 16 28 0 19 200 6.58 7.47 1/16 62 68 17 12 2 0 23 11 11 18 3 8 200.5 6.60 7.49 1/16 48 60 29 14 2 1 27 10 31 40 4 9 201 6.63 7.51 1/8 97 92 13 18 4 0 21 16 11 51 2 8 201.5 6.65 7.53 1/8 76 97 15 30 7 6 26 30 13 63 1 8 202 6.67 7.56 1/8 107 96 29 8 4 50 34 24 60 4 7 27 202.5 6.70 7.58 1/8 96 90 24 37 3 7 30 22 20 62 1 13 203 6.72 7.60 1/8 127 70 13 14 1 2 43 17 20 42 2 2 203.5 6.74 7.62 1/8 123 83 16 36 4 6 36 29 14 58 4 5 55

PAGE 64

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 190.5 6.13 7.05 191 6.16 7.07 192 6.20 7.11 192.5 6.23 7.13 193 6.25 7.16 193.5 6.27 7.18 194 6.30 7.20 194.5 6.32 7.22 195 6.35 7.25 195.5 6.37 7.27 196 6.39 7.29 196.5 6.42 7.31 197 6.44 7.33 197.5 6.46 7.36 198 6.49 7.38 198.5 6.51 7.40 199 6.53 7.42 199.5 6.56 7.45 200 6.58 7.47 200.5 6.60 7.49 201 6.63 7.51 201.5 6.65 7.53 202 6.67 7.56 202.5 6.70 7.58 203 6.72 7.60 203.5 6.74 7.62 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 3 31 0 1 3 0 1 1 1 3 0 0 20 7 10 7 0 2 3 3 1 5 1 1 0 0 16 2 28 14 0 3 0 5 0 2 1 0 0 0 30 4 23 7 0 2 0 2 1 4 2 0 0 0 41 4 14 1 0 2 0 2 0 2 0 0 0 0 18 1 14 10 0 2 0 1 0 2 0 0 0 0 33 2 19 6 0 1 0 4 0 2 0 1 0 0 19 2 15 8 0 2 0 1 2 2 0 2 0 0 23 0 13 7 0 2 0 1 0 1 1 0 0 0 21 0 19 7 0 2 0 1 0 5 2 1 0 0 35 0 11 4 0 0 0 0 0 2 3 0 0 0 24 0 13 0 0 0 0 0 0 2 1 0 0 0 18 2 3 5 0 0 0 0 0 0 0 0 0 0 5 0 18 8 0 2 0 1 0 4 2 0 0 0 24 0 20 6 0 3 0 0 1 5 0 1 0 0 24 1 9 12 0 0 0 3 0 5 0 1 0 0 25 1 8 7 0 1 0 1 0 7 0 0 0 0 27 0 11 9 0 0 0 0 0 3 1 0 0 0 19 0 7 7 0 0 1 0 4 1 6 1 0 0 67 2 8 8 0 0 1 0 0 0 0 0 0 0 10 4 25 14 0 8 0 2 1 9 5 1 0 0 3 11 18 14 0 0 0 1 0 2 2 1 0 0 10 1 13 1 0 0 10 0 11 4 0 0 0 0 10 2 13 15 0 0 0 0 1 10 2 0 0 0 13 1 15 2 0 1 0 1 2 14 2 0 0 0 22 1 33 8 0 4 0 2 0 10 2 1 0 0 27 4 56

PAGE 65

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 190.5 6.13 7.05 191 6.16 7.07 192 6.20 7.11 192.5 6.23 7.13 193 6.25 7.16 193.5 6.27 7.18 194 6.30 7.20 194.5 6.32 7.22 195 6.35 7.25 195.5 6.37 7.27 196 6.39 7.29 196.5 6.42 7.31 197 6.44 7.33 197.5 6.46 7.36 198 6.49 7.38 198.5 6.51 7.40 199 6.53 7.42 199.5 6.56 7.45 200 6.58 7.47 200.5 6.60 7.49 201 6.63 7.51 201.5 6.65 7.53 202 6.67 7.56 202.5 6.70 7.58 203 6.72 7.60 203.5 6.74 7.62 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 31 17 2 6 0 2 6 5 3 0 525 624 22 12 6 3 0 4 2 7 0 0 285 359 34 44 9 8 0 1 1 17 2 0 320 470 23 49 7 4 0 4 1 19 0 0 311 463 33 7 8 5 0 1 1 43 0 2 232 349 15 75 41 7 0 1 0 103 0 0 286 563 30 21 8 3 0 1 2 55 0 0 284 425 35 74 22 6 0 1 0 94 0 0 287 542 38 45 15 2 0 1 0 75 0 0 254 451 24 63 19 5 0 2 2 32 0 0 424 606 13 70 24 4 0 3 7 21 0 0 211 377 28 43 10 2 0 2 2 106 5 0 142 360 3 16 2 1 0 1 0 50 1 0 187 266 21 57 19 2 0 1 1 201 5 0 304 635 15 31 11 3 0 1 1 140 0 0 233 460 12 90 16 1 0 0 3 30 2 0 336 516 13 103 19 5 0 1 4 25 2 0 312 511 16 61 11 6 0 0 1 197 0 0 281 592 36 49 0 0 0 1 1 98 0 0 262 516 25 126 32 0 0 3 5 157 2 0 292 656 26 147 12 0 0 1 1 176 3 0 398 778 19 32 13 3 0 0 0 169 0 0 410 657 27 49 19 1 0 0 0 0 0 0 489 597 18 57 9 0 0 0 3 6 2 0 446 555 79 106 10 4 0 1 0 13 2 0 390 628 70 112 1 0 0 1 2 10 1 1 475 703 57

PAGE 66

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 204 6.77 7.65 1/32 69 39 20 4 5 3 23 18 8 15 0 4 204.5 6.79 7.67 1/16 78 65 11 21 5 2 47 30 19 41 0 5 205 6.82 7.69 1/16 71 44 11 0 6 6 8 30 12 21 3 4 205.5 6.84 7.71 1/8 106 57 6 12 3 3 34 35 13 37 2 6 206 6.86 7.74 1/8 105 51 5 17 4 2 19 35 16 28 1 12 206.5 6.89 7.76 1/16 97 59 7 19 5 2 27 37 12 58 1 18 207 6.91 7.78 1/16 98 5 2 20 3 6 18 27 10 27 3 5 207.5 6.93 7.80 1/8 106 81 6 41 0 3 18 29 15 38 0 6 208 6.96 7.82 1/16 113 65 10 35 3 1 22 32 8 45 4 6 208.5 6.98 7.85 1/8 159 62 14 37 5 3 32 36 9 57 0 15 209 7.00 7.87 1/16 125 41 13 23 8 4 30 39 10 45 2 8 209.5 7.03 7.89 1/16 91 38 12 15 4 3 24 13 14 39 1 5 210 7.05 7.91 1/16 58 14 13 17 2 4 15 17 26 49 0 6 210.5 7.07 7.93 1/16 77 28 9 12 3 3 32 18 16 46 0 5 211 7.08 7.94 1/8 101 60 11 34 7 10 35 16 41 62 0 11 211.5 7.10 7.96 1/8 68 73 4 26 11 15 7 10 20 36 0 0 212 7.11 7.97 1/16 95 67 9 27 2 4 31 17 16 26 0 0 212.5 7.13 7.99 1/8 93 53 13 29 4 3 16 24 29 33 1 0 213 7.14 8.00 1/16 67 54 4 25 15 17 13 11 20 24 6 1 213.5 7.16 8.02 1/16 70 73 7 36 6 8 10 14 19 33 15 8 214 7.17 8.03 1/32 53 33 3 62 9 6 11 6 14 37 9 8 214.5 7.19 8.05 1/16 83 47 6 49 7 6 6 9 25 47 17 13 215 7.20 8.06 1/16 73 47 8 38 3 3 11 8 25 30 7 10 215.5 7.22 8.08 1/8 45 29 5 16 4 2 10 13 8 35 8 2 216 7.23 8.09 1/16 76 65 4 17 9 5 24 18 20 32 12 4 216.5 7.25 8.11 1/16 96 54 3 17 2 6 23 17 29 58 8 3 58

PAGE 67

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 204 6.77 7.65 204.5 6.79 7.67 205 6.82 7.69 205.5 6.84 7.71 206 6.86 7.74 206.5 6.89 7.76 207 6.91 7.78 207.5 6.93 7.80 208 6.96 7.82 208.5 6.98 7.85 209 7.00 7.87 209.5 7.03 7.89 210 7.05 7.91 210.5 7.07 7.93 211 7.08 7.94 211.5 7.10 7.96 212 7.11 7.97 212.5 7.13 7.99 213 7.14 8.00 213.5 7.16 8.02 214 7.17 8.03 214.5 7.19 8.05 215 7.20 8.06 215.5 7.22 8.08 216 7.23 8.09 216.5 7.25 8.11 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 27 7 0 0 0 2 1 14 2 0 0 0 8 21 36 5 0 1 0 4 0 6 1 1 0 0 6 1 24 10 0 5 0 0 0 8 1 0 0 0 14 0 28 8 0 7 0 1 0 8 0 1 0 0 17 1 20 14 0 2 0 0 0 12 0 1 0 0 27 3 30 16 0 2 0 2 0 7 1 0 0 0 20 0 21 7 0 4 0 4 0 12 0 0 0 0 27 2 24 8 0 11 0 5 1 13 1 0 0 0 31 2 29 19 0 16 0 3 1 14 2 3 0 0 26 1 36 13 0 9 0 2 0 46 1 3 0 0 26 2 30 8 0 7 0 3 0 21 3 0 0 0 13 1 17 9 0 16 0 0 0 16 4 0 0 0 20 1 18 15 0 10 1 0 0 0 1 2 0 0 26 0 24 6 0 9 0 0 0 20 0 1 0 0 20 2 47 9 0 11 0 2 1 22 3 1 0 0 47 1 33 9 0 22 0 0 0 27 1 0 0 0 28 0 20 12 0 3 0 0 0 16 1 0 0 0 10 1 34 11 0 14 0 6 0 20 2 2 0 0 24 1 22 7 0 12 0 0 0 23 2 0 0 0 10 3 47 6 0 20 0 6 0 18 1 0 0 0 33 1 32 4 0 16 0 7 0 26 0 0 0 0 23 2 23 5 0 12 0 0 0 13 0 2 0 0 18 0 29 14 0 12 0 0 0 12 0 0 0 0 16 0 22 6 0 18 0 1 0 17 0 0 0 0 17 1 42 5 0 15 0 1 1 25 2 0 0 0 18 0 30 11 0 10 0 2 0 24 0 0 0 0 30 0 59

PAGE 68

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 204 6.77 7.65 204.5 6.79 7.67 205 6.82 7.69 205.5 6.84 7.71 206 6.86 7.74 206.5 6.89 7.76 207 6.91 7.78 207.5 6.93 7.80 208 6.96 7.82 208.5 6.98 7.85 209 7.00 7.87 209.5 7.03 7.89 210 7.05 7.91 210.5 7.07 7.93 211 7.08 7.94 211.5 7.10 7.96 212 7.11 7.97 212.5 7.13 7.99 213 7.14 8.00 213.5 7.16 8.02 214 7.17 8.03 214.5 7.19 8.05 215 7.20 8.06 215.5 7.22 8.08 216 7.23 8.09 216.5 7.25 8.11 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 38 13 3 0 0 0 0 9 0 1 262 354 27 39 4 0 0 1 3 3 0 0 378 462 31 93 14 0 0 0 0 10 0 0 264 426 63 110 10 0 0 0 0 5 1 0 367 574 49 325 0 0 0 0 2 0 0 0 344 750 30 93 12 0 0 0 2 15 0 0 400 572 57 84 22 0 0 0 0 21 0 0 272 485 55 19 19 0 0 2 1 22 0 0 406 557 71 135 26 0 0 0 1 29 1 0 431 721 110 97 12 1 0 0 2 21 2 1 540 813 95 86 10 0 0 0 1 10 0 0 420 636 78 103 8 0 0 0 0 10 0 0 321 541 71 62 10 0 0 0 0 156 0 0 268 593 80 97 25 2 0 2 2 45 1 0 309 585 114 125 33 0 0 0 3 25 0 0 484 832 140 145 13 0 0 1 1 56 0 0 362 746 96 63 4 0 0 0 0 17 0 0 346 537 114 128 22 0 0 1 1 48 0 0 387 726 82 145 21 0 0 2 1 24 0 0 323 611 90 134 15 0 0 0 0 39 2 1 398 712 127 130 14 0 0 0 2 50 1 0 336 685 109 150 16 0 0 0 1 34 0 0 370 698 69 136 19 0 1 0 0 27 1 0 330 599 65 138 5 0 0 0 0 28 0 0 241 495 82 139 12 0 0 0 0 30 0 0 377 658 90 180 15 0 0 0 0 53 0 0 393 761 60

PAGE 69

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 217 7.26 8.12 1/4 29 24 3 14 3 5 8 6 7 19 5 1 217.5 7.28 8.13 1/8 61 67 3 23 7 9 20 16 34 50 16 5 218 7.29 8.15 1/16 72 51 9 22 3 8 6 11 31 42 7 3 218.5 7.31 8.16 1/16 70 54 7 19 5 7 22 12 33 46 12 7 219 7.32 8.18 1/16 69 49 8 21 8 5 26 15 29 18 9 1 219.5 7.34 8.19 1/16 74 62 6 20 4 3 24 16 26 17 10 4 220 7.35 8.21 1/8 62 56 33 42 8 12 16 11 34 26 15 13 220.5 7.37 8.22 1/32 83 44 8 18 8 2 12 13 27 26 12 7 221 7.38 8.24 1/16 105 36 7 28 12 2 35 22 29 48 12 6 221.5 7.40 8.25 1/16 116 39 3 30 9 7 22 15 23 44 23 10 222 7.41 8.27 1/16 83 51 4 8 6 6 15 14 12 40 21 16 222.5 7.43 8.28 1/16 139 96 2 20 14 9 29 21 37 73 45 14 223 7.44 8.30 1/32 75 34 6 15 10 8 10 10 12 31 16 7 223.5 7.46 8.31 1/16 99 52 4 18 7 5 12 9 15 41 19 7 224 7.47 8.33 1/8 144 65 8 19 7 10 16 11 29 65 26 10 224.5 7.49 8.34 1/16 131 25 7 25 12 3 20 21 25 35 36 11 225 7.50 8.36 1/4 110 18 9 20 3 4 14 11 19 24 23 4 225.5 7.52 8.37 1/16 128 14 6 24 3 3 1 14 14 16 13 7 226 7.53 8.39 1/4 178 17 13 32 10 3 30 6 12 39 44 21 226.5 7.55 8.40 1/16 110 7 3 17 7 5 17 9 10 28 23 10 227 7.56 8.42 1/16 130 13 9 44 6 3 21 13 4 50 49 11 227.5 7.58 8.43 1/32 120 16 7 27 4 3 14 8 11 33 19 8 228 7.59 8.44 1/16 99 13 10 12 8 6 16 6 7 16 20 13 228.5 7.61 8.46 1/16 119 19 4 21 5 7 22 15 5 24 27 5 229 7.62 8.47 1/16 101 22 6 5 9 8 17 5 13 27 18 2 229.5 7.64 8.49 1/32 75 16 10 7 11 2 10 4 8 18 18 1 61

PAGE 70

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 217 7.26 8.12 217.5 7.28 8.13 218 7.29 8.15 218.5 7.31 8.16 219 7.32 8.18 219.5 7.34 8.19 220 7.35 8.21 220.5 7.37 8.22 221 7.38 8.24 221.5 7.40 8.25 222 7.41 8.27 222.5 7.43 8.28 223 7.44 8.30 223.5 7.46 8.31 224 7.47 8.33 224.5 7.49 8.34 225 7.50 8.36 225.5 7.52 8.37 226 7.53 8.39 226.5 7.55 8.40 227 7.56 8.42 227.5 7.58 8.43 228 7.59 8.44 228.5 7.61 8.46 229 7.62 8.47 229.5 7.64 8.49 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 19 8 0 13 0 0 0 11 0 0 0 0 15 0 28 12 0 9 0 2 0 19 0 0 0 0 23 0 41 6 0 6 0 0 0 12 0 0 0 0 41 0 37 7 0 11 0 0 0 16 0 0 0 0 27 0 31 6 0 8 0 2 0 18 0 0 0 0 10 0 21 5 0 12 0 1 0 13 0 1 0 0 34 0 37 16 0 8 0 0 0 17 0 0 0 0 32 1 21 6 0 9 0 2 0 31 3 0 0 0 25 2 43 17 0 19 0 0 0 20 2 0 0 0 13 0 27 26 0 18 0 2 0 28 1 1 0 0 17 2 21 13 0 21 0 0 0 19 0 1 0 0 15 2 52 22 0 17 1 1 0 25 4 1 0 0 37 2 24 9 0 10 0 0 0 22 1 0 0 0 11 2 25 5 0 13 0 1 1 34 3 2 0 0 13 2 38 11 0 22 0 0 0 38 3 0 0 0 26 0 34 17 0 29 0 0 0 29 3 0 0 0 16 3 29 5 0 15 0 1 0 25 3 1 0 0 16 2 25 8 0 14 0 2 0 27 2 0 0 0 10 1 28 12 0 14 0 0 0 37 3 1 0 0 24 2 33 10 0 10 0 0 0 14 4 0 0 0 4 0 48 8 0 11 0 0 1 29 2 0 0 0 28 2 27 6 0 12 0 0 0 33 0 0 0 0 15 2 57 5 0 9 0 0 1 21 1 0 0 0 9 2 44 9 0 5 0 0 0 36 0 0 0 0 11 1 41 8 0 13 0 2 6 18 3 0 0 0 9 1 33 3 0 9 0 5 0 22 0 0 0 0 10 1 62

PAGE 71

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 217 7.26 8.12 217.5 7.28 8.13 218 7.29 8.15 218.5 7.31 8.16 219 7.32 8.18 219.5 7.34 8.19 220 7.35 8.21 220.5 7.37 8.22 221 7.38 8.24 221.5 7.40 8.25 222 7.41 8.27 222.5 7.43 8.28 223 7.44 8.30 223.5 7.46 8.31 224 7.47 8.33 224.5 7.49 8.34 225 7.50 8.36 225.5 7.52 8.37 226 7.53 8.39 226.5 7.55 8.40 227 7.56 8.42 227.5 7.58 8.43 228 7.59 8.44 228.5 7.61 8.46 229 7.62 8.47 229.5 7.64 8.49 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 59 113 4 0 2 0 0 134 0 0 175 502 65 111 8 0 0 0 2 25 0 0 381 615 57 46 10 0 0 0 0 29 0 0 330 513 69 103 18 0 0 0 0 37 0 0 365 619 110 92 7 0 0 0 0 34 0 0 323 576 92 111 21 0 0 0 0 27 0 0 319 604 39 88 11 0 0 0 0 47 0 0 406 624 59 158 31 0 0 2 1 69 0 0 332 679 79 149 22 0 0 0 0 103 0 0 443 809 104 256 18 0 0 0 0 177 0 0 444 1018 44 154 15 0 0 0 0 457 0 0 351 1038 68 286 38 0 0 0 1 97 1 1 623 1153 46 125 9 0 0 0 2 45 1 0 300 541 66 140 11 0 0 0 0 80 0 0 372 684 98 154 6 0 0 0 1 37 0 0 522 844 97 159 6 0 0 0 4 388 0 0 463 1136 86 217 8 0 0 0 0 311 0 0 338 978 47 137 12 0 0 0 0 250 0 0 321 778 75 185 18 0 0 0 0 204 0 0 500 1008 61 143 0 0 0 0 0 6 1 0 317 532 67 227 10 0 0 0 0 20 0 0 452 806 30 127 15 0 0 0 0 23 1 0 348 561 83 16 19 0 0 5 2 88 0 0 320 544 85 219 18 0 0 9 1 73 0 0 367 784 6 135 11 0 0 1 0 17 0 0 324 504 78 133 4 0 0 0 1 31 1 0 252 511 63

PAGE 72

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 230 7.65 8.50 1/32 96 12 3 32 11 3 10 10 14 44 12 3 230.5 7.66 8.51 1/32 81 29 8 14 3 4 15 8 13 36 14 4 231 7.66 8.52 1/16 112 32 1 18 11 6 21 7 14 38 26 5 231.5 7.67 8.53 1/16 53 21 1 17 5 3 9 10 14 14 8 5 232 7.68 8.54 1/64 65 23 7 14 4 1 8 11 13 28 20 7 232.5 7.69 8.55 1/32 101 12 10 17 11 7 23 14 13 48 22 7 233 7.69 8.56 1/16 148 17 2 14 14 4 20 13 13 33 14 5 233.5 7.70 8.57 1/32 107 15 5 13 10 5 16 12 14 37 12 6 234 7.71 8.58 1/2 92 26 1 27 4 2 21 17 26 26 28 0 234.5 7.71 8.59 1/32 132 32 4 39 11 3 15 12 15 24 53 4 235 7.72 8.60 1/16 119 23 4 20 14 2 18 6 14 28 26 6 235.5 7.73 8.61 1/16 135 25 6 13 9 5 21 20 23 37 39 8 236 7.73 8.62 1/16 94 19 5 18 3 8 20 4 16 34 21 11 236.5 7.74 8.63 1/32 92 15 0 23 7 4 14 5 5 31 10 10 237 7.75 8.65 1/16 129 52 6 46 20 6 15 9 17 53 21 6 237.5 7.76 8.66 1/64 122 36 2 26 9 5 21 8 33 19 37 7 238 7.76 8.67 1/32 77 31 2 43 6 1 15 11 9 29 12 3 238.5 7.77 8.68 1/8 52 37 3 36 6 2 12 13 5 28 21 1 239 7.78 8.69 1/32 46 34 8 19 1 1 14 6 7 27 12 0 239.5 7.78 8.70 1/32 63 61 7 40 15 1 15 18 6 14 16 4 240 7.79 8.71 1/8 64 57 13 30 10 2 28 15 18 44 20 1 240.5 7.80 8.72 1/16 97 62 9 25 3 3 26 13 11 34 15 4 241 7.80 8.73 1/2 58 53 6 20 9 5 20 6 11 28 7 3 241.5 7.81 8.74 1/32 105 91 17 59 11 5 23 8 11 49 14 4 242 7.82 8.75 1/16 50 53 9 39 4 14 7 13 25 9 3 14 242.5 7.83 8.76 1/16 50 66 11 26 5 1 22 8 21 30 25 14 64

PAGE 73

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 230 7.65 8.50 230.5 7.66 8.51 231 7.66 8.52 231.5 7.67 8.53 232 7.68 8.54 232.5 7.69 8.55 233 7.69 8.56 233.5 7.70 8.57 234 7.71 8.58 234.5 7.71 8.59 235 7.72 8.60 235.5 7.73 8.61 236 7.73 8.62 236.5 7.74 8.63 237 7.75 8.65 237.5 7.76 8.66 238 7.76 8.67 238.5 7.77 8.68 239 7.78 8.69 239.5 7.78 8.70 240 7.79 8.71 240.5 7.80 8.72 241 7.80 8.73 241.5 7.81 8.74 242 7.82 8.75 242.5 7.83 8.76 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 48 14 0 18 0 2 0 22 1 0 0 0 20 1 35 10 0 4 0 2 1 32 2 0 0 0 18 1 38 9 0 6 0 0 0 16 2 0 0 0 16 2 32 3 2 7 0 1 0 20 3 0 0 0 9 1 26 11 0 8 0 2 0 20 1 1 0 0 19 1 39 3 0 14 0 2 0 19 0 1 0 0 16 2 43 9 0 14 0 1 0 18 0 0 0 0 14 3 37 12 0 15 0 2 0 25 0 0 0 0 23 1 47 6 0 13 0 2 1 19 1 0 0 0 29 0 57 10 1 13 1 8 0 19 0 0 0 0 24 0 40 3 0 10 0 1 0 17 1 2 0 0 13 3 35 8 0 11 0 2 1 14 1 0 0 0 39 2 23 7 0 12 0 1 0 17 3 1 0 0 21 4 33 6 0 8 0 0 0 15 1 0 0 0 5 4 53 9 2 19 0 2 0 22 2 1 0 0 12 1 32 5 0 10 0 0 0 31 0 0 0 0 26 1 17 5 0 21 2 1 1 24 0 0 0 0 12 0 20 7 0 14 0 0 0 14 2 0 0 0 13 2 22 11 0 4 0 1 0 18 1 0 0 0 11 3 32 10 0 9 1 2 1 74 1 1 0 0 11 3 38 6 0 22 0 4 0 27 3 0 0 0 21 3 34 11 0 28 0 5 0 36 3 1 0 0 22 6 40 12 0 20 0 5 0 33 0 0 0 0 21 2 39 17 0 23 0 2 0 37 1 0 0 0 21 6 5 0 0 14 0 1 0 25 0 3 0 0 17 1 31 21 0 15 0 2 0 23 0 1 0 0 12 3 65

PAGE 74

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 230 7.65 8.50 230.5 7.66 8.51 231 7.66 8.52 231.5 7.67 8.53 232 7.68 8.54 232.5 7.69 8.55 233 7.69 8.56 233.5 7.70 8.57 234 7.71 8.58 234.5 7.71 8.59 235 7.72 8.60 235.5 7.73 8.61 236 7.73 8.62 236.5 7.74 8.63 237 7.75 8.65 237.5 7.76 8.66 238 7.76 8.67 238.5 7.77 8.68 239 7.78 8.69 239.5 7.78 8.70 240 7.79 8.71 240.5 7.80 8.72 241 7.80 8.73 241.5 7.81 8.74 242 7.82 8.75 242.5 7.83 8.76 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 57 221 22 0 0 3 1 54 0 0 355 734 29 74 9 0 0 1 0 18 0 0 315 465 33 126 9 0 0 10 1 22 0 0 362 581 21 95 2 0 0 2 1 37 0 0 228 396 35 94 5 0 0 0 0 40 0 0 270 464 38 173 5 0 0 1 0 57 0 0 363 655 52 153 4 0 0 1 1 50 0 0 382 660 59 131 6 0 0 0 0 59 0 0 343 622 22 64 1 0 0 0 0 28 0 1 360 504 45 219 9 0 0 0 0 38 0 1 454 789 72 152 7 0 0 0 0 57 0 0 354 658 32 172 7 0 0 5 0 124 2 0 413 796 78 184 5 0 0 0 0 87 0 0 317 696 43 154 8 0 1 5 1 56 0 0 279 556 55 190 14 0 0 11 1 77 0 0 490 851 67 152 10 0 0 5 0 89 0 0 403 753 23 125 5 0 0 4 0 46 0 0 310 525 18 109 7 0 0 6 0 26 0 0 273 454 24 87 2 0 0 3 0 36 0 0 232 398 39 138 0 0 12 12 1 54 0 0 391 661 41 133 3 2 0 14 0 143 0 0 402 762 52 128 14 0 0 92 2 39 1 0 420 776 21 92 5 0 0 83 1 23 0 0 336 584 59 179 11 0 0 7 1 67 0 0 516 867 38 118 3 0 0 14 0 22 0 0 288 501 72 127 4 0 0 1 1 84 0 0 372 676 66

PAGE 75

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 243 7.83 8.77 1/16 59 82 7 24 7 1 14 12 21 33 35 8 243.5 7.84 8.78 1/8 66 55 4 21 5 0 23 8 11 29 16 7 244 7.85 8.79 1/8 90 71 12 40 12 2 20 13 17 42 14 20 244.5 7.85 8.80 1/16 98 65 7 38 10 4 23 13 47 43 10 22 245 7.86 8.81 1/4 88 85 15 59 14 2 24 14 24 65 39 15 245.5 7.87 8.82 1/8 113 114 15 38 19 9 24 16 16 47 24 14 246 7.87 8.83 1/32 125 91 9 52 11 5 6 25 21 58 28 19 246.5 7.88 8.84 1/16 103 95 3 13 14 5 13 32 17 74 31 14 247 7.89 8.85 1/16 87 86 2 21 12 5 2 24 17 57 32 10 247.5 7.90 8.86 1/32 64 50 1 10 10 4 3 21 13 32 22 8 248 7.90 8.87 1/16 92 69 8 24 14 9 9 25 21 51 32 14 248.5 7.91 8.88 1/16 51 78 14 14 11 8 12 8 14 49 32 14 249 7.92 8.89 1/16 46 54 5 17 13 8 8 4 6 29 21 4 249.5 7.92 8.90 1/8 70 76 6 14 18 9 8 12 14 63 46 5 250 7.93 8.91 1/32 80 46 5 23 17 10 12 10 5 35 36 17 250.5 7.94 8.92 1/8 89 77 13 17 14 13 10 13 12 45 22 9 251 7.95 8.94 1/4 77 67 9 23 11 5 5 12 11 51 30 6 251.5 7.97 8.95 1/16 68 80 14 35 16 12 16 4 16 50 35 8 252 7.98 8.96 1/16 54 34 9 15 19 9 10 13 11 29 21 10 252.5 7.99 8.98 1/16 73 61 8 23 11 4 4 11 13 40 28 6 253 8.00 8.99 1/8 87 69 10 44 10 8 15 8 17 45 32 13 253.5 8.01 9.01 1/16 52 53 12 34 9 3 11 12 10 21 28 5 254 8.03 9.02 1/8 57 71 12 28 8 7 10 7 19 32 44 17 254.5 8.04 9.04 1/8 59 39 5 5 15 7 6 4 15 19 21 8 255 8.05 9.05 1/4 75 39 11 13 13 10 14 4 18 31 25 15 255.5 8.06 9.06 1/16 68 51 8 25 6 10 8 6 14 53 30 14 67

PAGE 76

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 243 7.83 8.77 243.5 7.84 8.78 244 7.85 8.79 244.5 7.85 8.80 245 7.86 8.81 245.5 7.87 8.82 246 7.87 8.83 246.5 7.88 8.84 247 7.89 8.85 247.5 7.90 8.86 248 7.90 8.87 248.5 7.91 8.88 249 7.92 8.89 249.5 7.92 8.90 250 7.93 8.91 250.5 7.94 8.92 251 7.95 8.94 251.5 7.97 8.95 252 7.98 8.96 252.5 7.99 8.98 253 8.00 8.99 253.5 8.01 9.01 254 8.03 9.02 254.5 8.04 9.04 255 8.05 9.05 255.5 8.06 9.06 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 37 6 0 16 0 8 0 24 4 2 0 0 17 2 16 13 0 17 0 5 1 13 2 1 0 0 14 0 22 13 0 17 0 1 0 29 0 2 0 0 14 3 12 0 0 1 4 1 0 0 0 0 0 0 11 4 45 15 0 16 0 8 0 19 2 0 0 0 9 2 41 13 0 18 0 7 0 41 0 2 0 0 13 3 28 11 0 26 0 7 0 20 5 1 0 0 15 2 41 10 2 27 0 1 0 14 0 1 0 0 20 1 36 11 0 20 0 6 0 26 1 0 0 0 17 4 37 2 0 15 0 2 0 22 1 1 0 0 8 1 41 8 0 20 1 0 0 15 2 0 0 0 18 2 42 8 0 13 0 5 0 11 1 0 0 0 12 1 22 5 0 10 0 4 0 12 0 0 0 0 16 1 44 3 3 20 0 8 0 21 0 0 0 0 7 3 57 2 1 10 0 3 0 17 3 1 0 0 14 1 29 6 0 16 0 3 0 9 0 0 0 0 0 4 26 9 1 24 0 11 0 26 2 0 0 0 14 4 17 3 1 7 0 6 1 14 8 0 0 0 6 1 28 6 1 16 0 0 0 19 0 1 0 0 6 4 28 7 0 13 0 7 0 12 0 0 0 0 8 2 34 13 0 21 3 10 0 24 2 1 0 0 20 1 45 6 3 28 0 2 0 12 0 0 0 0 14 1 37 13 1 24 0 3 0 15 0 1 0 0 13 2 29 4 3 15 0 0 0 27 3 0 0 0 12 0 43 17 1 20 0 4 0 19 1 0 0 0 7 0 21 27 0 7 0 0 0 11 0 0 0 0 7 2 68

PAGE 77

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 243 7.83 8.77 243.5 7.84 8.78 244 7.85 8.79 244.5 7.85 8.80 245 7.86 8.81 245.5 7.87 8.82 246 7.87 8.83 246.5 7.88 8.84 247 7.89 8.85 247.5 7.90 8.86 248 7.90 8.87 248.5 7.91 8.88 249 7.92 8.89 249.5 7.92 8.90 250 7.93 8.91 250.5 7.94 8.92 251 7.95 8.94 251.5 7.97 8.95 252 7.98 8.96 252.5 7.99 8.98 253 8.00 8.99 253.5 8.01 9.01 254 8.03 9.02 254.5 8.04 9.04 255 8.05 9.05 255.5 8.06 9.06 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 71 190 7 0 0 12 4 91 0 0 400 794 75 186 9 0 0 1 0 85 0 0 313 683 97 228 6 0 0 2 2 78 0 0 437 867 72 155 2 0 0 24 1 44 0 0 398 711 66 162 1 0 0 34 1 42 0 0 549 866 82 164 8 0 0 9 1 73 0 0 571 924 98 208 2 4 0 7 3 58 0 0 548 945 118 192 2 4 0 17 7 77 0 0 510 948 119 200 2 2 0 5 5 100 0 0 455 909 71 98 5 0 0 5 3 45 0 0 318 554 97 138 3 3 0 3 5 46 0 0 455 770 67 123 0 0 0 4 6 58 0 0 385 656 47 107 0 0 0 1 55 0 0 268 495 80 207 2 0 0 2 4 84 0 0 440 829 64 156 1 0 0 1 5 17 0 0 390 649 75 156 3 1 0 14 5 10 0 0 397 665 77 157 1 0 0 14 7 18 0 0 406 698 58 159 3 1 0 10 2 27 0 0 411 678 61 114 0 1 0 2 1 62 0 0 305 556 56 151 1 0 0 6 1 22 0 1 350 597 88 170 0 0 0 2 4 22 0 0 466 773 90 164 0 0 0 1 3 5 0 0 346 624 66 151 0 0 0 2 4 7 0 0 406 651 56 96 6 0 0 0 1 96 0 0 284 551 90 127 1 0 0 10 4 114 0 1 374 727 91 115 1 2 0 3 4 81 0 0 359 665 69

PAGE 78

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 256 8.08 9.08 1/16 80 62 17 25 9 10 14 8 9 41 27 24 256.5 8.09 9.09 1/8 44 43 12 41 12 8 10 4 10 32 22 15 257 8.10 9.11 1/16 67 53 25 37 11 10 20 7 12 39 43 21 257.5 8.11 9.12 1/8 47 36 20 43 7 6 10 3 9 24 48 16 258 8.12 9.14 1/16 60 39 18 32 13 11 16 0 9 44 40 27 258.5 8.14 9.15 1/16 58 37 22 27 13 9 15 2 15 25 30 13 259 8.15 9.16 1/32 47 46 13 32 18 5 14 3 8 39 27 6 259.5 8.16 9.18 1/16 71 38 9 27 12 13 12 2 9 31 28 9 260 8.17 9.19 1/32 72 33 2 27 17 4 15 2 7 51 38 9 260.5 8.18 9.21 1/8 55 62 12 23 9 4 18 3 21 37 23 13 261 8.20 9.22 1/16 53 67 8 31 14 6 14 2 13 40 26 7 261.5 8.21 9.24 1/16 89 44 6 26 12 5 12 1 10 37 21 7 262 8.22 9.25 1/8 102 45 14 24 8 5 14 2 16 26 32 13 262.5 8.23 9.27 1/16 94 61 9 24 6 3 12 2 10 28 25 20 263 8.25 9.28 1/16 89 86 16 29 10 10 12 4 10 30 19 19 263.5 8.26 9.29 1/32 66 53 7 31 18 3 8 3 4 33 20 16 264 8.27 9.31 1/32 99 49 13 28 10 8 15 1 6 44 43 19 264.5 8.28 9.32 1/16 60 33 3 11 10 1 11 1 15 24 33 6 265 8.29 9.34 1/8 68 71 3 18 8 1 5 5 12 34 36 12 265.5 8.31 9.35 1/8 89 96 4 7 27 10 3 12 8 20 49 37 266 8.32 9.37 1/8 55 65 5 23 10 4 11 3 21 31 29 7 266.5 8.33 9.38 1/16 61 89 7 10 9 16 7 3 13 30 23 17 267 8.34 9.39 1/16 56 33 6 19 5 8 9 5 25 34 36 22 267.5 8.35 9.41 1/16 68 61 2 14 9 5 2 8 25 37 13 48 268 8.37 9.42 1/8 84 60 1 17 9 11 7 3 12 30 48 19 268.5 8.38 9.44 1/8 69 47 7 34 6 9 4 1 8 15 31 8 70

PAGE 79

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 256 8.08 9.08 256.5 8.09 9.09 257 8.10 9.11 257.5 8.11 9.12 258 8.12 9.14 258.5 8.14 9.15 259 8.15 9.16 259.5 8.16 9.18 260 8.17 9.19 260.5 8.18 9.21 261 8.20 9.22 261.5 8.21 9.24 262 8.22 9.25 262.5 8.23 9.27 263 8.25 9.28 263.5 8.26 9.29 264 8.27 9.31 264.5 8.28 9.32 265 8.29 9.34 265.5 8.31 9.35 266 8.32 9.37 266.5 8.33 9.38 267 8.34 9.39 267.5 8.35 9.41 268 8.37 9.42 268.5 8.38 9.44 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 34 11 0 21 0 6 0 19 1 0 0 0 13 2 23 8 0 10 0 1 0 16 0 0 0 0 15 1 34 8 0 22 0 4 0 32 0 1 0 0 23 3 20 12 1 20 0 1 0 16 1 0 0 0 11 1 25 6 0 22 0 1 0 14 1 1 0 0 16 2 19 7 0 15 0 2 0 13 1 0 0 0 4 1 43 5 0 24 0 2 0 27 0 0 0 0 8 1 28 7 0 34 0 2 0 40 1 0 0 0 2 2 28 5 1 21 1 3 1 26 1 0 0 0 14 2 19 2 0 15 1 3 0 21 1 0 0 0 9 0 15 3 0 23 0 1 0 15 0 0 0 0 11 0 14 4 0 19 0 3 0 17 1 1 0 0 6 2 27 12 1 21 0 2 0 18 0 2 2 2 2 1 23 6 1 19 1 2 0 17 1 1 4 1 10 3 19 15 0 12 0 0 1 12 2 0 3 1 4 0 38 17 0 19 0 1 0 33 0 0 4 1 16 0 38 6 0 15 0 2 0 31 1 0 2 3 9 1 25 10 0 13 0 3 0 20 0 0 2 3 13 3 33 5 0 20 12 2 0 26 0 1 11 6 3 0 8 55 7 0 0 2 1 28 2 10 13 6 3 4 27 8 0 19 0 0 0 12 5 0 4 5 7 3 17 16 0 16 0 0 0 18 3 1 3 4 10 1 53 17 2 24 4 4 0 20 2 0 4 2 36 5 5 1 15 1 0 0 17 1 0 0 3 6 108 4 26 6 1 15 0 3 0 10 2 0 3 5 123 5 61 4 0 9 0 2 0 15 0 2 3 5 124 1 71

PAGE 80

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 256 8.08 9.08 256.5 8.09 9.09 257 8.10 9.11 257.5 8.11 9.12 258 8.12 9.14 258.5 8.14 9.15 259 8.15 9.16 259.5 8.16 9.18 260 8.17 9.19 260.5 8.18 9.21 261 8.20 9.22 261.5 8.21 9.24 262 8.22 9.25 262.5 8.23 9.27 263 8.25 9.28 263.5 8.26 9.29 264 8.27 9.31 264.5 8.28 9.32 265 8.29 9.34 265.5 8.31 9.35 266 8.32 9.37 266.5 8.33 9.38 267 8.34 9.39 267.5 8.35 9.41 268 8.37 9.42 268.5 8.38 9.44 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 137 200 0 0 0 5 4 145 0 0 418 924 110 118 0 1 0 0 2 46 0 0 311 604 171 298 1 3 0 0 3 500 0 0 446 1448 118 149 5 0 0 5 2 238 0 0 340 869 75 160 2 0 0 1 1 33 0 0 379 669 64 83 2 0 0 1 3 20 0 1 324 502 103 49 1 0 0 0 1 174 0 0 359 696 130 126 0 2 0 8 3 260 0 0 373 906 82 108 3 0 0 1 0 142 0 0 364 716 54 60 1 0 0 1 0 82 0 0 342 549 52 85 1 0 0 2 2 68 0 0 338 559 33 47 33 0 0 4 0 28 0 0 329 482 105 104 1 0 0 1 5 74 0 0 388 681 64 75 1 0 0 2 6 79 0 0 370 610 69 84 0 0 0 2 0 52 0 0 399 610 68 100 1 1 0 4 5 193 0 0 375 763 51 89 1 1 0 12 7 135 0 0 433 739 21 38 4 0 0 3 1 196 0 0 284 563 20 6 0 0 0 3 0 4 0 0 389 425 4 1 0 0 0 7 2 9 0 0 494 524 24 37 0 0 0 6 0 60 0 0 344 481 6 13 0 0 0 10 4 14 0 0 363 421 6 8 0 0 0 4 0 5 0 0 390 454 4 10 1 0 0 1 2 18 0 0 341 489 10 0 0 0 0 0 0 7 0 0 372 517 2 0 0 0 0 0 0 3 0 0 340 470 72

PAGE 81

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 269 8.39 9.45 1/8 91 50 8 20 22 7 8 3 6 22 25 14 269.5 8.40 9.47 1/16 100 77 5 34 9 7 13 1 11 35 33 6 270 8.42 9.48 1/16 91 45 7 16 8 5 9 1 10 35 24 10 270.5 8.43 9.50 1/32 115 49 11 23 8 2 12 7 15 25 22 5 271 8.44 9.51 1/8 84 57 8 33 8 15 12 2 19 23 38 8 271.5 8.45 9.53 1/8 74 76 8 23 16 10 7 10 16 35 36 16 272 8.46 9.55 1/16 95 61 8 23 14 6 10 1 11 31 35 12 272.5 8.47 9.56 1/16 131 64 4 25 11 4 11 0 17 31 39 10 273 8.49 9.58 1/16 91 70 6 26 8 8 25 13 30 28 9 38 273.5 8.50 9.60 1/4 122 111 3 23 17 7 15 7 24 35 23 9 274 8.51 9.61 1/16 66 49 8 20 10 2 14 1 16 49 25 6 274.5 8.52 9.63 1/16 68 74 3 20 5 2 15 4 20 20 29 7 275 8.53 9.64 1/16 88 68 0 12 9 4 5 0 12 38 30 7 275.5 8.54 9.66 1/16 112 87 2 13 12 11 9 3 29 54 47 16 276 8.56 9.68 1/16 71 45 2 10 12 9 8 0 18 39 30 6 276.5 8.57 9.69 1/16 80 50 2 11 12 8 13 0 20 40 36 8 277 8.58 9.71 1/8 88 91 2 14 11 10 13 1 10 35 23 4 277.5 8.59 9.73 1/16 77 64 4 7 15 6 13 1 11 26 38 11 278 8.60 9.74 1/16 80 60 0 22 12 4 19 1 11 27 27 4 278.5 8.61 9.76 1/8 88 93 8 19 11 10 12 2 11 41 35 11 279 8.63 9.78 1/8 76 84 6 13 11 6 12 1 8 36 35 15 279.5 8.64 9.79 1/8 124 119 7 28 14 8 11 1 14 50 45 8 280 8.65 9.81 1/16 92 87 7 15 10 7 15 0 9 36 42 9 280.5 8.66 9.83 1/32 89 66 0 18 8 8 8 1 8 24 37 8 281 8.67 9.84 1/8 71 95 3 23 10 10 10 4 16 45 54 8 281.5 8.69 9.86 1/8 82 95 7 11 6 7 8 2 19 44 48 10 73

PAGE 82

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 269 8.39 9.45 269.5 8.40 9.47 270 8.42 9.48 270.5 8.43 9.50 271 8.44 9.51 271.5 8.45 9.53 272 8.46 9.55 272.5 8.47 9.56 273 8.49 9.58 273.5 8.50 9.60 274 8.51 9.61 274.5 8.52 9.63 275 8.53 9.64 275.5 8.54 9.66 276 8.56 9.68 276.5 8.57 9.69 277 8.58 9.71 277.5 8.59 9.73 278 8.60 9.74 278.5 8.61 9.76 279 8.63 9.78 279.5 8.64 9.79 280 8.65 9.81 280.5 8.66 9.83 281 8.67 9.84 281.5 8.69 9.86 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 36 7 0 17 0 1 0 15 0 0 4 2 176 2 49 3 2 8 0 0 0 19 1 1 3 4 92 2 78 4 0 11 0 3 0 26 1 1 3 2 120 2 42 7 0 11 0 1 0 25 1 2 4 2 28 3 41 14 1 20 0 5 1 26 2 0 3 3 24 0 35 23 0 11 0 3 0 22 0 0 3 5 13 0 32 19 0 17 0 0 0 17 1 1 8 8 16 1 44 9 0 21 1 4 0 23 2 0 6 4 9 2 10 1 0 8 0 0 1 15 0 0 5 4 15 3 44 15 0 13 0 3 1 26 0 1 8 3 19 14 17 10 0 19 0 0 0 22 1 0 4 2 10 2 11 10 1 12 0 1 0 26 5 0 2 3 9 0 31 10 0 20 0 1 0 20 0 0 3 1 3 2 35 10 0 23 0 2 0 18 0 1 4 2 16 3 23 5 0 15 0 0 1 22 2 1 1 1 5 1 23 10 0 18 0 0 0 19 1 1 1 2 12 3 37 7 0 19 0 0 0 23 2 0 3 4 0 3 29 7 0 11 0 0 0 22 0 1 6 2 5 0 42 12 0 12 0 6 0 32 0 1 3 3 8 0 31 9 0 20 1 2 0 31 1 0 6 1 4 0 34 19 0 16 0 2 0 30 1 2 6 4 20 0 34 20 0 21 1 6 0 20 0 0 5 3 0 0 35 16 0 21 0 1 0 16 1 0 6 2 11 2 37 7 0 24 0 4 0 17 0 5 8 0 9 1 28 13 0 31 0 6 0 21 0 1 7 2 11 2 28 8 1 20 0 5 0 20 2 0 5 2 0 0 74

PAGE 83

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 269 8.39 9.45 269.5 8.40 9.47 270 8.42 9.48 270.5 8.43 9.50 271 8.44 9.51 271.5 8.45 9.53 272 8.46 9.55 272.5 8.47 9.56 273 8.49 9.58 273.5 8.50 9.60 274 8.51 9.61 274.5 8.52 9.63 275 8.53 9.64 275.5 8.54 9.66 276 8.56 9.68 276.5 8.57 9.69 277 8.58 9.71 277.5 8.59 9.73 278 8.60 9.74 278.5 8.61 9.76 279 8.63 9.78 279.5 8.64 9.79 280 8.65 9.81 280.5 8.66 9.83 281 8.67 9.84 281.5 8.69 9.86 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 5 0 0 0 0 0 0 0 0 0 358 541 0 0 1 0 0 0 0 0 0 0 421 516 2 0 0 0 0 0 0 5 0 0 390 519 0 0 0 0 0 0 0 2 0 0 389 422 1 2 0 0 0 0 1 0 0 0 423 451 2 4 0 0 0 0 0 0 0 0 429 448 2 2 2 0 0 0 0 10 0 0 410 443 2 9 0 0 0 3 2 36 0 0 461 524 5 0 0 0 0 0 5 39 0 0 396 463 19 0 0 0 0 1 3 0 0 0 510 566 0 2 0 0 0 0 1 0 0 0 341 356 1 0 0 0 0 0 1 13 0 0 338 362 0 2 0 0 0 5 1 46 0 0 359 418 0 0 0 0 0 3 0 0 0 0 490 512 0 0 2 0 0 0 2 0 0 0 321 331 0 0 2 0 0 0 1 0 0 0 355 373 2 0 1 0 0 0 1 50 0 0 397 454 0 0 0 0 0 0 0 43 0 0 351 399 0 0 2 0 0 0 0 19 0 0 378 407 1 0 0 0 0 0 0 13 0 0 443 461 0 0 0 0 0 0 0 0 0 0 417 437 0 0 0 0 0 1 1 5 0 0 539 546 0 0 0 0 0 0 0 5 0 0 427 445 0 0 0 0 0 0 0 39 0 0 377 426 0 2 0 0 0 0 8 22 0 0 458 503 1 0 0 0 0 2 0 10 0 0 430 443 75

PAGE 84

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 282 8.70 9.88 1/8 64 58 1 12 9 6 7 0 7 26 44 6 282.5 8.71 9.89 1/8 84 88 3 3 9 3 9 4 4 35 42 9 283 8.72 9.91 1/4 100 120 1 7 12 11 7 7 5 43 46 9 283.5 8.73 9.92 1/16 66 83 1 7 12 6 8 3 7 16 42 4 284 8.74 9.94 1/16 110 92 2 9 20 8 16 0 8 21 57 10 284.5 8.76 9.96 1/16 94 63 5 12 3 6 5 6 24 29 38 3 285 8.77 9.97 1/8 82 92 4 7 14 4 15 5 24 25 42 8 285.5 8.78 9.99 1/16 86 76 5 6 15 11 11 1 13 36 36 11 286 8.79 10.01 1/8 95 73 4 9 10 3 3 11 7 32 32 14 286.5 8.80 10.02 1/8 120 107 10 23 10 5 5 2 40 51 74 21 287 8.81 10.04 1/8 76 55 12 27 17 4 16 7 12 22 31 7 287.5 8.83 10.06 1/16 63 70 4 23 8 6 8 2 10 32 42 6 288 8.84 10.07 1/16 74 106 8 45 10 7 14 4 17 36 49 10 288.5 8.85 10.09 1/16 61 90 21 71 8 5 19 4 101 40 40 5 289 8.86 10.11 1/8 58 62 16 57 9 2 4 5 13 58 21 9 289.5 8.87 10.12 1/16 38 51 11 48 10 2 4 4 6 20 23 8 290 8.89 10.14 1/4 95 120 24 77 12 5 18 3 13 38 59 10 290.5 8.90 10.15 1/32 42 44 17 61 13 5 14 4 11 26 30 10 291 8.91 10.17 1/8 63 64 14 54 13 5 15 4 14 44 29 2 291.5 8.93 10.18 1/16 65 47 8 43 9 6 13 0 8 40 32 8 292 8.94 10.19 1/8 85 50 9 62 4 19 12 0 11 40 22 2 292.5 8.96 10.21 1/16 50 48 13 30 4 5 10 1 13 36 29 9 293 8.97 10.22 1/16 70 108 11 44 7 14 9 1 9 30 38 14 293.5 8.98 10.24 1/16 83 72 12 53 15 12 14 0 6 18 41 8 294 9.00 10.25 1/32 56 61 14 44 16 7 4 2 4 19 36 5 294.5 9.01 10.26 1/16 51 95 26 60 9 5 9 2 9 30 41 6 76

PAGE 85

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 282 8.70 9.88 282.5 8.71 9.89 283 8.72 9.91 283.5 8.73 9.92 284 8.74 9.94 284.5 8.76 9.96 285 8.77 9.97 285.5 8.78 9.99 286 8.79 10.01 286.5 8.80 10.02 287 8.81 10.04 287.5 8.83 10.06 288 8.84 10.07 288.5 8.85 10.09 289 8.86 10.11 289.5 8.87 10.12 290 8.89 10.14 290.5 8.90 10.15 291 8.91 10.17 291.5 8.93 10.18 292 8.94 10.19 292.5 8.96 10.21 293 8.97 10.22 293.5 8.98 10.24 294 9.00 10.25 294.5 9.01 10.26 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 15 6 0 11 0 2 0 12 1 1 3 1 10 0 15 12 1 7 0 2 0 15 0 2 4 3 7 0 22 8 0 17 0 1 0 24 1 0 8 2 13 2 16 3 0 9 0 3 0 23 0 0 6 2 28 1 16 6 0 15 0 3 0 27 1 0 4 1 13 1 23 5 0 16 0 11 1 17 1 0 8 3 18 1 20 3 1 14 0 2 1 23 1 1 4 4 22 1 21 9 0 14 0 2 0 13 4 0 7 2 31 1 29 3 0 11 0 1 0 23 0 0 4 4 11 0 19 6 0 34 0 6 0 36 1 1 2 1 28 1 25 2 0 18 0 3 0 22 1 0 5 2 44 0 26 4 0 17 0 4 0 31 0 0 4 1 42 0 10 3 0 16 0 2 0 14 0 0 8 4 26 3 23 2 0 30 0 9 3 33 0 0 11 3 44 0 35 3 0 23 0 5 0 20 0 0 9 1 34 0 39 0 0 15 0 4 0 17 0 0 8 3 33 0 30 7 0 17 0 3 0 25 4 1 14 2 17 0 22 3 0 15 0 2 0 19 1 1 7 0 3 0 9 6 0 13 0 0 0 20 2 1 6 2 18 0 19 17 0 13 0 0 0 18 0 1 11 2 55 0 25 13 0 21 0 3 0 30 4 0 9 3 120 2 27 5 0 13 0 1 0 6 1 0 5 3 15 0 33 9 0 19 0 1 0 24 2 0 6 1 21 0 28 6 0 20 0 1 0 22 0 0 7 1 38 0 16 5 0 12 0 0 0 14 1 1 6 2 19 0 14 8 0 24 2 0 0 17 1 1 5 0 36 1 77

PAGE 86

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 282 8.70 9.88 282.5 8.71 9.89 283 8.72 9.91 283.5 8.73 9.92 284 8.74 9.94 284.5 8.76 9.96 285 8.77 9.97 285.5 8.78 9.99 286 8.79 10.01 286.5 8.80 10.02 287 8.81 10.04 287.5 8.83 10.06 288 8.84 10.07 288.5 8.85 10.09 289 8.86 10.11 289.5 8.87 10.12 290 8.89 10.14 290.5 8.90 10.15 291 8.91 10.17 291.5 8.93 10.18 292 8.94 10.19 292.5 8.96 10.21 293 8.97 10.22 293.5 8.98 10.24 294 9.00 10.25 294.5 9.01 10.26 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 0 0 0 0 0 0 2 36 0 0 292 340 2 3 0 0 0 1 1 9 0 0 354 377 0 0 0 0 0 1 3 90 0 0 451 560 0 0 0 0 0 1 1 96 0 0 317 444 0 0 0 0 0 1 2 47 0 0 426 490 1 1 0 0 0 2 5 83 0 0 373 484 0 0 0 0 0 0 3 49 0 1 397 472 0 0 0 0 0 0 0 13 0 1 380 425 0 0 0 0 0 4 0 0 0 0 368 383 0 0 0 0 0 2 1 0 0 0 574 606 0 0 0 0 0 1 7 0 0 0 364 416 0 0 0 0 0 0 1 119 0 0 361 523 0 0 0 0 0 1 2 122 0 2 439 593 0 0 0 0 0 2 1 96 0 0 579 722 0 0 0 0 0 0 0 67 0 0 410 511 0 0 0 0 0 0 0 18 0 0 311 362 0 0 0 0 0 1 0 0 0 0 577 595 0 0 0 0 0 0 0 2 0 0 347 352 0 0 0 0 0 0 0 0 0 0 380 398 0 0 0 0 0 1 0 0 0 0 360 416 0 0 0 0 0 1 2 7 0 0 424 556 0 0 0 0 0 0 0 0 0 0 309 324 0 0 0 0 0 0 0 1 0 0 450 472 0 0 0 0 0 1 0 2 0 0 419 460 0 0 0 0 0 0 0 0 0 0 325 344 0 0 0 0 0 7 4 18 0 0 415 481 78

PAGE 87

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) fraction Globigerinoides ruber (white variety) Globigerinoides ruber (pink variety) Globigerinoides sacculifer Globigerinoides sacculifer (without sac) Menar della merar dii Globor otalia tumida Globigerinella aequilaterals Globigerinella calida Orbulina universa Neogloboquadrina dutertr ei Globor otalia crassiformis Globor otalia truncatulinoides 295 9.03 10.28 1/16 89 75 27 59 12 11 9 6 27 50 47 11 295.5 9.04 10.29 1/16 63 43 10 48 5 7 8 0 12 37 39 8 296 9.05 10.31 1/16 57 53 5 62 5 3 4 12 5 18 23 5 296.5 9.07 10.32 1/16 51 47 15 55 4 6 6 2 2 27 19 7 297 9.08 10.33 1/16 53 77 26 44 6 5 16 4 3 33 27 7 297.5 9.10 10.35 1/32 45 80 9 54 11 4 7 3 7 16 53 8 298 9.11 10.36 1/8 43 76 10 46 13 6 4 5 7 25 39 9 298.5 9.12 10.38 1/16 45 47 10 32 11 3 7 4 1 19 35 6 299 9.14 10.39 1/16 105 89 6 42 15 2 15 4 4 38 34 16 299.5 9.15 10.40 1/32 90 75 11 29 17 7 24 2 12 25 25 5 300 9.17 10.42 1/32 52 42 9 26 9 7 7 1 12 32 19 2 300.5 9.18 10.43 1/8 96 94 5 31 7 4 9 1 13 51 34 3 301 9.19 10.44 1/16 104 56 3 14 8 2 9 1 7 32 36 0 301.5 9.21 10.46 1/16 91 63 1 7 19 7 2 1 13 42 32 11 302 9.22 10.47 1/4 84 67 3 9 5 13 6 3 19 32 16 8 302.5 9.24 10.49 1/16 100 89 2 6 11 8 4 1 25 44 20 13 303 9.25 10.50 1/16 91 64 1 3 10 3 13 3 5 29 18 14 303.5 9.26 10.51 1/16 92 85 6 11 8 5 11 2 7 28 32 14 304 9.28 10.53 1/16 78 59 3 15 9 5 5 3 20 23 15 9 79

PAGE 88

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 295 9.03 10.28 295.5 9.04 10.29 296 9.05 10.31 296.5 9.07 10.32 297 9.08 10.33 297.5 9.10 10.35 298 9.11 10.36 298.5 9.12 10.38 299 9.14 10.39 299.5 9.15 10.40 300 9.17 10.42 300.5 9.18 10.43 301 9.19 10.44 301.5 9.21 10.46 302 9.22 10.47 302.5 9.24 10.49 303 9.25 10.50 303.5 9.26 10.51 304 9.28 10.53 Globigerina bulloides Obliquloculata pullenentina Globor otalia digitata Globigerina falconensis Globigerinoides conglobatus Globigerina rubescens Orbulina bilobata Globigerinita glutinata Candeina nitida Sphaer oidinella dehiscens Neogloboquadrina pachyderma Globoconella inata foram frags benthics 25 10 0 21 0 0 0 24 0 0 3 1 23 1 12 4 2 13 0 0 0 20 0 0 2 1 11 0 7 5 0 15 0 1 0 21 0 0 5 1 30 2 9 3 0 15 0 2 0 19 0 0 5 1 11 1 7 6 0 6 0 1 0 19 1 1 5 0 30 0 18 4 0 15 0 1 0 20 1 0 8 1 31 3 13 5 0 26 1 0 0 18 2 1 10 2 42 0 21 2 0 14 0 0 0 16 0 2 9 2 32 0 35 12 0 40 0 1 0 22 1 0 11 2 41 0 27 9 0 18 0 1 0 23 1 2 8 0 67 0 27 3 1 8 1 1 1 18 0 1 7 3 38 0 28 20 0 12 0 0 0 26 0 0 5 3 46 0 24 9 0 9 0 0 0 18 1 1 4 1 35 0 17 4 0 14 0 1 0 19 2 2 4 1 18 1 12 17 0 5 0 0 0 10 1 2 2 1 12 0 12 18 0 13 0 0 0 29 3 2 2 2 21 1 8 13 0 6 1 0 0 11 1 0 3 2 4 1 15 19 0 12 0 0 0 18 0 1 2 3 14 1 22 20 1 17 1 1 0 13 1 0 6 3 28 0 80

PAGE 89

Appendix C: (Continued) Depth (cm) Radiocarbon (kyr) Calendar (kyr) 295 9.03 10.28 295.5 9.04 10.29 296 9.05 10.31 296.5 9.07 10.32 297 9.08 10.33 297.5 9.10 10.35 298 9.11 10.36 298.5 9.12 10.38 299 9.14 10.39 299.5 9.15 10.40 300 9.17 10.42 300.5 9.18 10.43 301 9.19 10.44 301.5 9.21 10.46 302 9.22 10.47 302.5 9.24 10.49 303 9.25 10.50 303.5 9.26 10.51 304 9.28 10.53 pteropods pteropod fragments radiolarians gastropods sponge spicules authogenic material biogenic material mudclasts worm tubes unknown forams total forams total grains 0 0 0 0 0 7 0 15 0 0 507 553 0 0 0 0 0 5 12 12 0 0 334 374 0 0 0 0 0 2 0 44 0 0 307 385 0 0 0 0 0 4 4 32 0 0 295 347 2 1 0 0 0 1 0 24 0 0 347 405 0 0 0 0 0 0 8 32 0 0 365 439 0 0 0 0 0 5 4 36 0 0 361 448 0 0 0 0 0 6 2 42 0 0 286 368 0 0 0 0 0 6 5 10 0 0 494 556 0 0 0 0 0 3 2 8 0 0 411 491 0 0 0 0 0 3 2 6 0 0 289 338 0 0 0 0 0 0 0 6 0 0 442 494 0 0 0 0 0 3 5 3 0 0 339 385 0 0 0 0 0 0 0 15 0 0 353 387 0 0 0 0 0 0 0 0 0 0 315 327 0 0 0 0 0 2 0 0 0 0 404 428 0 0 0 0 0 0 0 0 0 0 299 304 0 0 0 0 0 0 0 10 0 0 371 396 0 0 0 0 0 0 0 8 0 0 329 365 81

PAGE 90

82 Appendix D: Geochemical Data

PAGE 91

0.45 0.09 Depth (cm) Calendar (kyr) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 190 7.02 2.0 49.6 4.79 26.3 0.81 0.03 -1.69 0.08 0.95 0.08 190.5 7.05 4.0 381.0 4.93 26.6 3.2 406.2 4.74 4.84 0.13 26.2 26.4 0.30 0.93 0.01 -1.57 0.03 1.14 0.09 191 7.07 3.1 330.4 5.05 26.9 6.6 379.9 4.75 4.90 0.21 26.2 26.5 0.48 0.81 0.01 -1.41 0.02 1.35 0.12 191.5 7.09 3.5 365.2 4.77 26.2 3.3 335.1 4.83 4.80 0.05 26.4 26.3 0.11 1.07 0.01 -1.39 0.02 1.24 0.04 192 7.11 3.2 398.3 5.35 27.5 1.03 0.01 -1.60 0.03 1.29 0.03 192.5 7.13 1.9 250.6 4.81 26.3 0.85 0.01 -1.66 0.02 0.99 0.02 193 7.16 6.2 291.0 5.40 27.6 2.2 295.8 4.93 5.16 0.33 26.6 27.1 0.71 0.94 0.01 -2.01 0.03 0.91 0.18 193.5 7.18 3.1 210.0 4.97 26.7 2.7 176.3 4.77 4.87 0.14 26.2 26.5 0.32 0.62 0.01 -1.81 0.03 0.91 0.09 194 7.20 1.7 205.7 4.70 26.1 3.2 392.9 5.05 4.87 0.25 26.9 26.5 0.57 0.84 0.01 -1.58 0.01 1.01 0.13 194.5 7.22 1.3 40.3 4.87 26.5 0.3 70.6 4.81 4.84 0.04 26.3 26.4 0.09 0.93 0.01 -1.74 0.02 0.94 0.04 195 7.25 2.4 201.6 4.86 26.4 5.4 307.3 4.97 4.91 0.08 26.7 26.6 0.19 0.76 0.02 -1.69 0.02 0.98 0.06 195.5 7.27 1.4 83.2 5.11 27.0 1.4 68.3 4.75 4.93 0.26 26.2 26.6 0.58 1.02 0.02 -1.81 0.02 0.99 0.14 196 7.29 0.5 50.7 3.92 24.0 1.08 0.02 -1.46 0.02 0.72 0.02 196.5 1.5 116.8 4.84 26.4 0.79 0.01 -1.90 0.02 0.77 0.02 197 7.31 4.8 76.1 4.99 26.7 1.9 81.2 5.06 5.03 0.04 26.9 26.8 0.10 0.95 0.02 -1.45 0.02 1.29 0.04 197.5 7.33 2.5 63.1 5.02 26.8 0.99 0.02 -1.76 0.02 0.99 0.02 198 7.36 3.9 99.4 5.28 27.4 0.90 0.02 -1.61 0.02 1.25 0.02 198.5 7.38 2.2 75.2 5.26 27.3 1.9 84.2 4.90 5.08 0.25 26.5 26.9 0.56 0.91 0.02 -1.88 0.04 0.88 0.15 199 7.40 2.2 74.0 4.84 26.4 3.0 21.8 4.72 4.78 0.08 26.1 26.3 0.19 0.90 0.00 -1.79 0.02 0.82 0.06 199.5 7.42 5.1 108.0 4.65 26.0 0.66 0.01 -1.52 0.04 1.05 0.04 200 7.45 1.9 118.8 4.90 26.5 1.1 138.6 5.23 5.07 0.23 27.2 26.9 0.50 1.07 0.02 -1.71 0.04 0.99 0.14 200.5 7.47 5.5 124.0 5.28 27.4 83

PAGE 92

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 2.9 136.1 5.22 5.25 0.05 27.2 27.3 0.10 0.51 0.02 -1.78 0.01 1.09 0.03 201 7.49 3.2 94.8 5.15 27.1 2.5 36.8 5.77 5.46 0.44 28.3 27.7 0.89 0.45 0.02 -1.35 0.01 1.45 0.19 201.5 7.51 3.3 86.7 4.98 26.7 3.9 76.9 4.82 4.90 0.12 26.3 26.5 0.26 1.02 0.00 -1.55 0.03 1.18 0.08 202 7.53 5.1 110.0 5.47 27.8 4.0 136.7 5.32 5.39 0.11 27.4 27.6 0.23 0.78 0.02 -1.60 0.02 1.35 0.06 202.5 7.56 3.6 165.7 5.02 26.8 3.5 133.7 5.12 5.07 0.07 27.0 26.9 0.15 0.65 0.01 -1.83 0.02 0.91 0.05 203 7.58 4.9 141.6 5.10 27.0 5.1 107.1 5.39 5.24 0.20 27.6 27.3 0.43 1.00 0.02 -1.89 0.01 0.89 0.10 203.5 7.60 4.5 114.9 5.04 26.8 3.4 115.7 5.21 5.12 0.12 27.2 27.0 0.26 1.13 0.01 -1.89 0.01 0.87 0.06 204 7.62 3.1 133.9 5.35 27.5 6.0 141.4 5.09 5.22 0.18 27.0 27.2 0.39 0.77 0.01 -2.07 0.02 0.83 0.10 204.5 7.65 2.3 207.7 4.88 26.5 6.0 207.7 5.50 5.19 0.44 27.8 27.1 0.94 0.73 0.01 -1.51 0.02 1.18 0.21 205 7.67 1.9 121.6 5.16 27.1 -0.1 158.7 5.08 5.12 0.06 26.9 27.0 0.13 0.84 0.01 -1.90 0.02 0.91 0.04 205.5 7.69 3.7 83.1 5.22 27.2 1.9 136.7 5.28 5.25 0.04 27.4 27.3 0.09 0.71 0.01 -1.85 0.01 0.99 0.02 206 7.71 1.0 101.7 4.93 26.6 1.4 87.9 5.49 5.21 0.40 27.8 27.2 0.85 0.60 0.01 -2.34 0.02 0.36 0.20 206.5 7.74 -0.4 104.3 5.21 27.2 5.6 109.6 5.47 5.34 0.18 27.8 27.5 0.38 0.39 0.01 -2.01 0.02 0.83 0.10 207 7.76 1.8 139.9 5.56 27.9 3.3 122.3 5.53 5.54 0.02 27.9 27.9 0.05 1.10 0.03 -1.99 0.02 1.00 0.02 207.5 7.78 6.2 214.4 5.16 27.1 2.5 231.3 5.40 5.28 0.17 27.6 27.4 0.35 0.70 0.02 -1.74 0.01 1.07 0.08 208 7.80 1.7 181.1 4.97 26.7 2.8 178.0 5.15 5.06 0.13 27.1 26.9 0.28 0.89 0.01 -1.74 0.02 0.99 0.08 208.5 7.82 1.8 79.0 4.75 26.2 4.0 52.2 4.95 4.85 0.14 26.6 26.4 0.32 1.09 0.02 -1.65 0.02 0.98 0.08 209 7.85 -1.7 76.0 4.94 26.6 2.6 127.7 4.85 4.89 0.06 26.4 26.5 0.15 0.89 0.02 -1.86 0.03 0.85 0.06 84

PAGE 93

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 209.5 7.87 -0.3 129.8 4.94 26.6 -2.8 135.5 5.15 5.05 0.14 27.1 26.9 0.32 0.81 0.01 -1.73 0.04 0.98 0.10 210 7.89 1.7 145.9 4.92 26.6 3.8 127.0 5.07 4.99 0.10 26.9 26.7 0.23 0.98 0.02 -1.56 0.01 1.14 0.06 210.5 7.91 4.8 158.9 4.68 26.0 14.0 188.3 4.76 4.72 0.06 26.2 26.1 0.14 0.53 0.01 -1.97 0.02 0.61 0.05 211 7.93 -0.4 163.5 4.74 26.2 2.3 158.5 4.83 4.79 0.06 26.4 26.3 0.14 0.84 0.01 -1.72 0.01 0.90 0.04 211.5 7.94 2.5 64.6 5.15 4.99 0.23 27.1 1.05 0.03 -1.79 0.01 1.02 0.01 212 7.96 3.6 154.7 5.22 27.2 1.2 93.0 5.01 5.12 0.15 26.8 27.0 0.32 0.70 0.01 -1.96 0.01 0.88 0.08 212.5 7.97 -1.7 129.1 4.80 26.3 0.0 195.6 4.83 4.81 0.02 26.4 26.3 0.05 0.60 0.01 -1.66 0.03 0.98 0.04 213 7.99 0.7 159.1 5.12 27.0 1.5 127.4 5.15 5.13 0.02 27.1 27.1 0.04 0.63 0.01 -1.68 0.03 1.11 0.03 213.5 8.00 2.5 136.6 4.90 26.5 4.2 98.7 4.79 4.84 0.08 26.3 26.5 0.17 0.99 0.01 -1.78 0.01 0.91 0.05 214 8.02 3.0 178.1 4.81 26.3 -1.3 163.8 4.54 4.68 0.20 25.7 26.0 0.47 0.86 0.01 -1.71 0.02 0.94 0.11 214.5 8.03 2.6 68.1 4.54 25.7 4.9 137.6 4.39 4.47 0.11 25.3 25.5 0.26 0.52 0.00 -1.54 0.04 0.97 0.09 215 8.05 -0.7 155.6 4.61 4.50 0.15 25.8 0.53 0.00 -1.54 0.00 1.01 0.00 216 8.08 3.9 128.1 4.69 26.1 2.2 152.1 5.11 4.90 0.29 27.0 26.5 0.67 0.87 0.01 -1.29 0.02 1.31 0.15 216.5 8.09 1.4 108.6 4.77 4.94 0.24 26.2 0.61 0.00 -1.88 0.00 0.75 0.00 217 8.11 5.0 108.5 4.53 25.7 1.8 107.6 4.59 4.56 0.04 25.8 25.7 0.10 0.52 0.00 -1.40 0.00 1.12 0.02 218 8.13 5.4 175.8 4.66 26.0 0.3 105.5 4.33 4.50 0.24 25.2 25.6 0.58 1.07 0.00 -1.36 0.00 1.22 0.12 218.5 8.15 0.4 104.9 4.46 25.5 0.0 0.0 5.07 4.77 0.43 26.9 26.2 1.02 0.66 0.02 -1.53 0.03 0.94 0.23 219 8.16 3.8 149.7 5.05 26.9 0.30 0.00 -1.77 0.00 0.99 0.00 219.5 8.18 -0.3 159.9 5.07 26.9 5.2 155.0 4.75 4.91 0.22 26.2 26.6 0.50 0.69 0.01 -1.29 0.01 1.48 0.11 220 8.19 5.2 167.4 5.06 26.9 0.68 0.00 -1.45 0.00 1.32 0.00 85

PAGE 94

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 220.5 8.21 3.6 82.5 4.69 26.0 0.56 0.00 -1.89 0.00 0.70 0.00 221 8.22 1.5 113.4 5.20 27.2 1.2 175.3 4.78 4.99 0.30 26.3 26.7 0.67 0.70 0.00 -2.12 0.00 0.71 0.13 221.5 8.24 2.1 136.1 4.43 25.4 4.4 132.4 4.91 4.67 0.34 26.6 26.0 0.82 0.75 0.00 -1.49 0.00 0.97 0.16 222 8.25 4.61 25.9 4.74 4.67 0.09 26.2 26.0 0.22 0.72 0.00 -1.36 0.00 1.19 0.04 222.5 8.27 5.05 26.9 0.62 0.01 -1.36 0.02 1.40 0.02 223 8.28 -0.4 177.9 4.88 26.5 3.2 239.3 4.62 4.75 0.19 25.9 26.2 0.44 0.73 0.00 -1.36 0.00 1.33 0.09 223.5 8.30 0.2 159.4 4.42 25.4 3.5 163.2 4.98 4.70 0.39 26.7 26.0 0.92 0.47 0.00 -1.42 0.00 1.04 0.18 224 8.31 -2.1 117.7 5.00 26.8 -1.7 173.8 5.09 5.04 0.06 26.9 26.8 0.13 0.73 0.00 -1.31 0.00 1.43 0.03 224.5 8.33 -0.7 160.9 4.75 26.2 -0.7 165.4 5.41 5.08 0.47 27.6 26.9 1.03 0.62 0.00 -1.73 0.00 0.89 0.21 225 8.34 -1.7 99.8 5.13 5.27 0.20 27.0 0.51 0.00 -1.62 0.01 1.18 0.01 225.5 8.36 -2.3 157.0 5.04 26.8 -2.9 228.5 4.85 4.95 0.14 26.4 26.6 0.31 0.78 0.00 -1.93 0.01 0.82 0.07 226 8.37 1.0 214.4 4.92 26.6 0.7 160.5 4.89 4.91 0.02 26.5 26.5 0.05 1.05 0.00 -1.76 0.00 0.95 0.01 226.5 8.39 -1.2 191.5 5.05 26.9 -1.7 187.7 5.26 5.15 0.15 27.3 27.1 0.31 0.79 0.00 -2.19 0.00 0.57 0.06 227 8.40 -2.5 140.6 5.19 27.2 -1.5 134.1 4.99 5.09 0.15 26.7 27.0 0.32 0.65 0.00 -1.94 0.00 0.89 0.06 227.5 8.42 -0.1 218.2 4.92 26.6 -0.6 168.6 5.16 5.04 0.16 27.1 26.8 0.36 0.79 0.02 -2.60 0.03 0.10 0.10 228 8.43 -2.3 162.1 5.20 27.2 -1.2 137.1 5.10 5.15 0.08 27.0 27.1 0.16 0.94 0.01 -2.02 0.01 0.81 0.04 228.5 8.44 -1.0 173.8 4.83 26.4 -4.7 178.5 4.77 4.80 0.05 26.2 26.3 0.11 1.23 0.01 -1.97 0.03 0.69 0.05 229 8.46 -0.3 168.1 5.19 27.2 -0.7 201.3 4.88 5.03 0.22 26.5 26.8 0.48 0.90 0.01 -1.91 0.02 0.91 0.12 229.5 8.47 0.4 180.7 5.16 27.1 0.2 204.3 4.98 5.07 0.13 26.7 26.9 0.29 0.74 0.01 -2.36 0.01 0.45 0.07 86

PAGE 95

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 230 8.49 0.2 171.7 4.76 26.2 -0.9 117.4 4.89 4.83 0.09 26.5 26.4 0.21 0.48 0.01 -2.02 0.02 0.61 0.06 230.5 8.50 -1.9 187.7 5.31 27.4 -4.1 264.1 4.97 5.14 0.24 26.7 27.1 0.52 0.53 0.01 -1.84 0.01 1.04 0.11 231 8.51 2.5 182.2 4.98 26.7 -3.6 312.5 5.28 5.13 0.21 27.4 27.0 0.45 0.61 0.01 -1.99 0.02 0.74 0.11 231.5 8.52 -0.6 270.8 4.84 26.4 -1.1 224.7 5.28 5.06 0.31 27.4 26.9 0.69 0.41 0.01 -1.90 0.02 0.76 0.16 232 8.53 -3.9 173.1 4.91 26.6 -3.5 199.0 5.22 5.06 0.22 27.2 26.9 0.48 1.03 0.00 -1.87 0.03 0.83 0.12 232.5 8.54 0.6 148.4 5.00 26.8 1.0 132.7 4.94 4.97 0.04 26.6 26.7 0.09 0.73 0.00 -1.53 0.01 1.21 0.03 233 8.55 1.1 166.1 4.88 26.5 -0.3 156.4 4.62 4.75 0.19 25.9 26.2 0.44 0.19 0.02 -1.28 0.03 1.41 0.12 233.5 8.56 0.2 184.2 4.82 26.4 3.0 68.7 5.00 4.91 0.13 26.8 26.6 0.28 0.92 0.01 -1.37 0.03 1.29 0.09 234 8.57 -0.3 141.9 4.97 26.7 -1.8 168.4 4.95 4.96 0.02 26.6 26.7 0.04 0.62 0.02 -1.61 0.00 1.11 0.01 234.5 8.58 4.93 26.6 4.74 4.83 0.13 26.2 26.4 0.30 0.91 0.01 -1.42 0.02 1.29 0.08 235 8.59 1.3 162.3 4.48 25.5 0.3 161.5 5.01 4.74 0.37 26.8 26.2 0.87 0.43 0.01 -1.73 0.01 0.75 0.18 235.5 8.60 0.0 127.7 5.07 26.9 1.9 119.2 4.79 4.93 0.20 26.3 26.6 0.45 0.59 0.02 -1.58 0.02 1.19 0.11 236 8.61 -2.0 192.1 4.71 26.1 0.9 179.5 4.78 4.74 0.05 26.3 26.2 0.12 0.62 0.01 -1.43 0.01 1.17 0.04 236.5 8.62 2.3 153.1 5.13 27.0 0.72 0.02 -1.24 0.02 1.56 0.02 237 8.63 0.2 159.3 3.91 24.0 0.62 0.02 -1.27 0.03 0.90 0.03 237.5 8.65 -1.0 160.4 4.33 25.2 2.4 184.5 4.59 4.46 0.19 25.8 25.5 0.47 0.79 0.01 -1.32 0.02 1.09 0.12 238 8.66 -1.5 208.0 4.97 26.7 1.6 191.0 4.85 4.91 0.08 26.4 26.5 0.19 0.49 0.01 -1.39 0.01 1.34 0.05 238.5 8.67 4.71 26.1 4.32 4.52 0.27 25.1 25.6 0.67 0.83 0.02 -1.33 0.02 1.27 0.16 239 8.68 -3.4 171.9 4.45 25.5 87

PAGE 96

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 0.4 225.2 5.18 4.82 0.52 27.2 26.3 1.20 0.78 0.02 -1.32 0.02 1.15 0.26 239.5 8.69 1.8 197.8 4.66 26.0 0.8 131.3 4.99 4.82 0.23 26.7 26.4 0.53 0.33 0.01 -1.57 0.01 1.01 0.12 240 8.70 0.6 171.0 5.41 27.6 -0.7 111.3 4.89 5.15 0.37 26.5 27.1 0.79 0.77 0.01 -1.31 0.03 1.61 0.19 240.5 8.71 -0.5 169.7 4.40 25.3 -0.5 116.5 4.71 4.55 0.22 26.1 25.7 0.53 1.05 0.02 -1.41 0.02 1.03 0.12 241 8.72 -3.2 96.6 5.10 4.91 0.28 27.0 0.61 0.01 -1.53 0.02 1.26 0.02 241.5 8.73 4.60 25.8 4.76 4.68 0.12 26.2 26.0 0.27 0.65 0.02 -1.47 0.03 1.08 0.09 242 8.74 0.6 161.4 5.22 27.2 -3.6 144.3 5.11 5.17 0.07 27.0 27.1 0.16 0.65 0.01 -1.66 0.01 1.18 0.04 242.5 8.75 0.9 140.7 5.01 26.8 0.9 142.3 5.14 5.08 0.09 27.1 26.9 0.20 0.67 0.01 -1.82 0.01 0.92 0.05 243 8.76 1.5 224.1 4.95 26.6 1.8 139.9 4.69 4.82 0.19 26.0 26.3 0.43 1.03 0.01 -1.59 0.01 1.13 0.10 243.5 8.77 -5.9 101.6 4.81 26.3 -1.1 129.2 5.28 5.04 0.33 27.4 26.8 0.74 0.52 0.01 -1.28 0.01 1.36 0.16 244 8.78 -0.1 151.2 5.04 26.8 -0.4 165.1 5.23 5.14 0.13 27.3 27.1 0.29 0.67 0.01 -1.56 0.03 1.20 0.09 244.5 8.79 1.0 201.0 5.18 27.1 0.6 116.0 4.70 4.94 0.34 26.1 26.6 0.75 0.73 0.02 -1.40 0.01 1.42 0.16 245 8.80 2.7 135.4 4.83 26.4 0.9 230.6 5.20 5.02 0.26 27.2 26.8 0.58 0.67 0.02 -1.32 0.05 1.34 0.17 245.5 8.81 1.1 175.1 5.89 28.6 0.85 0.01 -1.69 0.03 1.43 0.03 246 8.82 0.0 178.1 4.81 26.3 0.0 190.3 4.74 4.77 0.04 26.2 26.2 0.10 0.49 0.02 -1.46 0.03 1.19 0.05 246.5 8.83 -0.4 213.8 4.45 25.5 0.1 172.8 4.76 4.61 0.22 26.2 25.8 0.53 0.91 0.01 -1.39 0.02 1.08 0.12 247 8.84 -1.8 202.9 4.60 25.8 -1.4 180.2 4.67 4.63 0.05 26.0 25.9 0.12 0.63 0.02 -1.45 0.02 1.09 0.04 247.5 8.85 0.5 209.1 4.88 26.5 -1.0 242.3 4.97 4.92 0.06 26.7 26.6 0.14 248 8.86 -0.1 170.9 4.66 26.0 0.5 209.0 4.95 4.81 0.21 26.6 26.3 0.47 88

PAGE 97

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 248.5 8.87 -2.7 154.6 4.67 26.0 -1.9 195.0 4.77 4.72 0.07 26.2 26.1 0.16 0.56 0.01 -1.00 0.02 1.58 0.06 249 8.88 -1.2 224.0 4.77 26.2 -0.3 156.6 5.00 4.89 0.16 26.8 26.5 0.37 0.77 0.01 -1.14 0.02 1.49 0.10 249.5 8.89 10.7 123.4 4.94 26.6 250 8.90 1.9 -12.7 4.94 26.6 4.64 25.9 5.08 4.89 0.23 26.9 26.5 0.52 0.74 0.01 -1.24 0.02 1.48 0.13 250.5 8.91 -1.2 -10.9 4.40 25.3 0.77 0.02 -1.36 0.01 1.09 0.01 251 8.92 0.1 -16.5 4.70 26.1 0.84 0.02 -1.19 0.04 1.41 0.04 251.5 8.94 -0.6 -7.0 5.30 27.4 0.44 0.02 -1.40 0.01 1.47 0.01 252 8.95 -0.3 -12.3 5.21 27.2 -1.60 0.01 1.24 0.01 252.5 8.96 -0.1 -13.2 5.12 27.0 0.81 0.01 -1.59 0.01 1.20 0.01 253 8.98 0.6 -16.1 4.90 26.5 0.84 0.02 -1.32 0.02 1.37 0.02 253.5 8.99 4.97 26.7 4.65 4.81 0.22 26.0 26.3 0.51 0.29 0.01 -1.33 0.03 1.40 0.14 254 9.01 0.1 -26.0 5.03 26.8 1.01 0.01 -1.48 0.02 1.27 0.02 254.5 9.02 -1.6 -20.4 4.91 26.6 -2.2 -20.9 4.89 4.90 0.01 26.5 26.5 0.03 0.62 0.02 -1.61 0.03 1.09 0.03 255 9.04 0.9 -41.2 5.13 27.0 0.80 0.01 -1.73 0.01 1.07 0.01 255.5 9.05 -0.5 -10.9 4.53 25.7 0.85 0.01 -1.39 0.03 1.12 0.03 256 9.06 0.6 -29.2 4.67 26.0 0.77 0.01 -1.68 0.01 0.90 0.01 256.5 9.08 0.2 -14.3 4.91 26.6 0.59 0.01 -1.71 0.04 0.99 0.04 257 9.09 -1.3 21.3 4.81 26.3 0.8 9.3 4.54 4.68 0.19 25.7 26.0 0.46 0.77 0.02 -1.25 0.04 1.40 0.13 257.5 9.11 -0.7 -37.1 5.11 27.0 0.49 0.01 -1.64 0.03 1.15 0.03 258 9.12 -0.5 10.8 4.72 26.1 0.65 0.01 -1.81 0.02 0.80 0.02 258.5 9.14 1.0 -5.6 4.37 25.3 0.76 0.02 -1.69 0.03 0.74 0.03 259 9.15 -0.4 -16.8 4.73 26.1 0.63 0.02 -1.37 0.02 1.24 0.02 259.5 9.16 -0.2 33.3 4.64 25.9 0.4 3.4 4.37 4.51 0.19 25.3 25.6 0.47 0.88 0.01 -1.38 0.03 1.19 0.12 260 9.18 -2.2 18.7 4.72 26.1 0.64 0.02 -1.71 0.03 0.90 0.03 260.5 9.19 -1.5 -5.0 4.70 26.1 0.62 0.01 -1.53 0.02 1.06 0.02 261 9.21 0.59 0.02 -1.65 0.02 0.02 261.5 9.22 -0.6 -11.0 4.98 26.7 0.41 0.02 -1.83 0.03 0.90 0.03 89

PAGE 98

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 262 9.24 3.0 41.3 4.83 26.4 -1.3 14.9 4.62 25.9 4.72 4.72 0.11 26.1 26.1 0.25 0.44 0.02 -1.53 0.03 1.13 0.08 262.5 9.25 -2.7 -0.6 4.87 26.5 0.58 0.02 -1.18 0.01 1.50 0.01 263 9.27 -3.6 10.1 5.07 26.9 0.69 0.02 -1.69 0.04 1.08 0.04 263.5 9.28 1.4 5.9 5.14 27.1 0.57 0.01 -1.55 0.02 1.25 0.02 264 9.29 -3.0 23.2 4.64 25.9 0.28 0.01 -1.60 0.01 0.96 0.01 264.5 9.31 -0.8 35.4 5.04 26.9 -0.5 45.1 5.11 5.08 0.05 27.0 26.9 0.11 0.79 0.01 -1.67 0.04 1.09 0.06 265 9.32 1.3 23.7 4.83 26.4 0.79 0.02 -1.51 0.04 1.15 0.04 265.5 9.34 -1.9 15.3 4.52 25.6 0.56 0.03 -1.81 0.02 0.69 0.02 266 9.35 2.0 45.4 4.33 25.2 0.61 0.01 -1.66 0.01 0.75 0.01 266.5 9.37 -4.1 124.2 3.95 24.1 0.81 0.02 -1.05 0.02 1.14 0.02 267 9.38 0.0 74.9 4.39 25.3 -0.5 187.2 4.40 4.39 0.01 25.3 25.3 0.02 0.50 0.01 -1.53 0.02 0.90 0.02 267.5 9.39 2.8 133.8 4.19 24.8 0.61 0.01 -1.00 0.02 1.33 0.02 268 9.41 2.1 74.3 4.43 25.4 0.73 0.02 -1.48 0.02 0.98 0.02 268.5 9.42 1.7 68.6 4.19 24.8 0.83 0.01 -1.15 0.02 1.18 0.02 269 9.44 0.5 41.6 3.92 24.1 269.5 9.45 3.3 97.7 4.31 25.1 1.0 64.9 4.19 4.25 0.09 24.8 24.9 0.23 270 9.47 -2.1 58.5 4.39 25.3 0.72 0.01 -1.07 0.03 1.37 0.03 270.5 9.48 1.1 147.8 4.23 24.9 0.53 0.02 -1.04 0.01 1.31 0.01 271 9.50 1.0 33.8 4.11 24.6 0.48 0.01 -1.05 0.03 1.24 0.03 271.5 9.51 4.8 54.6 4.39 25.3 0.82 0.02 -1.00 0.02 1.44 0.02 272 9.53 2.0 30.2 4.49 25.6 1.6 -8.9 4.20 4.35 0.21 24.8 25.2 0.53 0.90 0.01 -1.29 0.03 1.20 0.13 272.5 9.55 0.5 55.9 4.52 25.6 0.69 0.02 -1.36 0.03 1.14 0.03 273 9.56 1.7 11.3 4.44 25.4 0.92 0.01 -1.10 0.02 1.37 0.02 273.5 9.58 0.8 65.4 4.58 25.8 0.61 0.02 -1.04 0.02 1.50 0.02 274 9.60 0.1 26.5 3.72 23.5 0.53 0.01 -1.28 0.03 0.78 0.03 274.5 9.61 3.7 61.5 4.75 26.2 3.1 63.4 4.73 4.74 0.02 26.1 26.2 0.04 0.48 0.01 -1.26 0.03 1.37 0.04 275 9.63 -0.4 36.1 4.47 25.5 0.30 0.02 -1.20 0.04 1.29 0.04 275.5 9.64 0.9 8.6 4.38 25.3 0.76 0.01 -1.16 0.02 1.27 0.02 90

PAGE 99

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 276 9.66 5.5 35.0 4.56 25.7 0.89 0.01 -1.52 0.03 1.00 0.03 276.5 9.68 2.4 32.0 4.69 26.0 0.82 0.01 -1.62 0.04 0.97 0.04 277 9.69 2.7 74.5 4.13 24.6 1.4 20.4 3.82 3.97 0.22 23.8 24.2 0.61 1.02 0.02 -1.13 0.02 1.17 0.15 277.5 9.71 -2.5 163.9 4.70 26.1 0.89 0.02 -1.50 0.02 1.09 0.02 278 9.73 1.7 151.3 4.65 25.9 4.77 26.2 4.50 4.64 0.13 25.6 25.9 0.32 0.65 0.02 -1.71 0.02 0.86 0.08 278.5 9.74 1.1 47.6 4.48 25.5 0.65 0.02 -1.68 0.02 0.81 0.02 279 9.76 1.1 100.4 4.75 26.2 0.73 0.02 -1.39 0.02 1.23 0.02 279.5 9.78 -1.0 101.5 4.55 25.7 1.9 165.1 4.56 4.55 0.01 25.7 25.7 0.01 0.75 0.01 -1.74 0.03 0.78 0.03 280 9.79 0.3 98.3 4.68 26.0 0.98 0.01 -1.81 0.01 0.78 0.01 280.5 9.81 -0.2 91.4 4.84 26.4 0.78 0.01 -1.19 0.02 1.48 0.02 281 9.83 1.6 115.0 4.39 25.3 4.36 25.2 4.55 4.43 0.10 25.7 25.3 0.07 0.87 0.01 -1.15 0.01 1.29 0.02 281.5 9.84 1.4 73.2 4.56 25.7 0.48 0.01 -1.44 0.03 1.09 0.03 282 9.86 -0.1 137.4 4.66 26.0 1.2 64.9 4.58 4.62 0.06 25.8 25.9 0.14 0.81 0.01 -1.20 0.01 1.38 0.04 282.5 9.88 3.5 151.6 4.49 25.5 0.78 0.01 -1.87 0.01 0.62 0.01 283 9.89 1.2 21.0 4.43 25.4 0.81 0.01 -1.67 0.02 0.79 0.02 283.5 9.91 1.8 103.4 4.38 25.3 0.94 0.01 -1.66 0.02 0.77 0.02 284 9.92 -0.2 141.8 4.17 24.7 0.91 0.02 -1.11 0.02 1.21 0.02 284.5 9.94 3.0 218.6 4.41 25.3 -0.1 194.7 4.32 4.36 0.06 25.1 25.2 0.15 0.84 0.01 -1.35 0.01 1.09 0.04 285 9.96 0.6 92.4 4.18 24.8 0.89 0.01 -1.03 0.02 1.29 0.02 285.5 9.97 0.9 106.1 4.37 25.3 0.93 0.01 -1.23 0.01 1.19 0.01 286 9.99 -0.2 111.4 4.46 25.5 0.94 0.01 -1.36 0.03 1.12 0.03 286.5 10.01 1.9 97.0 4.80 26.3 4.64 25.9 4.41 4.62 0.20 25.4 25.9 0.48 0.92 0.01 -1.10 0.02 1.55 0.11 287 10.02 -0.5 103.4 4.55 25.7 287.5 10.04 -1.0 71.5 4.49 25.6 0.80 0.01 -1.43 0.02 1.06 0.02 288 10.06 -1.9 54.1 4.41 25.4 0.79 0.01 -1.25 0.02 1.20 0.02 91

PAGE 100

Appendix D: (Continued) 0.45 0.09 Depth (cm) Calendar (ka) Intensity (Ba) Intensity (Mn) Mg/Ca (mmol/mol) A verage Mg/Ca of replicates Mg-SST (C) A verage Mg-SST of replicates 13 C G. ruber (VPDB) 18 O G. ruber (VPDB) 18 O Seawater (VSMOW) 288.5 10.07 0.1 94.7 4.10 24.5 0.80 0.02 -1.04 0.02 1.24 0.02 289 10.09 2.1 10.1 4.04 24.4 0.92 0.02 -1.12 0.04 1.13 0.04 289.5 10.11 1.2 79.2 4.12 24.6 1.9 83.5 4.38 4.25 0.18 25.3 0.65 0.01 -1.16 0.02 1.13 0.02 290 10.12 4.0 -10.5 4.22 24.9 0.60 0.01 -1.17 0.02 1.18 0.02 290.5 10.14 3.2 27.3 3.92 24.0 4.36 25.2 4.49 4.26 0.30 25.6 24.6 0.80 0.92 0.02 -1.01 0.02 1.29 0.18 291 10.15 3.7 155.0 4.63 25.9 0.71 0.02 -1.32 0.02 1.24 0.02 291.5 10.17 0.7 149.3 3.77 23.6 0.74 0.02 -0.64 0.01 1.45 0.01 292 10.18 1.4 61.3 3.98 24.2 3.9 224.2 4.11 4.04 0.09 24.6 24.4 0.25 0.79 0.01 -1.16 0.02 1.05 0.07 292.5 10.19 -1.1 159.5 4.19 24.8 0.72 0.01 -1.28 0.01 1.05 0.01 293 10.21 0.5 147.4 4.70 26.1 0.52 0.02 -1.74 0.02 0.86 0.02 293.5 10.22 -0.3 42.1 4.31 25.1 0.24 0.02 -1.28 0.02 1.12 0.02 294 10.24 -1.9 109.6 4.01 24.3 0.71 0.01 -0.96 0.02 1.27 0.02 294.5 10.25 -0.8 119.5 3.91 24.0 2.2 177.2 3.88 3.89 0.02 24.0 24.0 0.06 0.46 0.01 -1.01 0.02 1.16 0.03 295 10.26 1.6 147.2 4.33 25.1 0.61 0.02 -1.60 0.02 0.81 0.02 295.5 10.28 1.3 57.5 3.61 23.1 0.68 0.02 -1.20 0.02 0.79 0.02 296 10.29 1.1 74.2 4.81 26.3 0.84 0.02 -1.01 0.02 1.63 0.02 296.5 10.31 0.0 96.8 4.55 25.7 0.61 0.01 -1.38 0.02 1.14 0.02 297 10.32 -3.5 35.1 4.75 26.2 0.4 89.1 4.35 4.55 0.28 25.2 25.7 0.69 0.61 0.02 -1.28 0.01 1.34 0.15 297.5 10.33 -1.7 73.0 4.25 24.9 0.78 0.03 -1.38 0.04 0.98 0.04 298 10.35 0.5 148.0 4.06 24.5 0.59 0.02 -1.21 0.02 1.05 0.02 298.5 10.36 0.2 113.3 4.28 25.0 0.41 0.01 -1.09 0.02 1.29 0.02 299 10.38 -0.8 81.3 3.95 24.1 0.56 0.01 -0.83 0.02 1.36 0.02 299.5 10.39 -0.3 91.9 4.09 24.5 1.6 204.4 4.08 4.08 0.01 24.5 24.5 0.03 0.61 0.01 -1.16 0.03 1.12 0.07 302.5 10.49 4.29 25.0 4.64 4.46 0.25 25.9 25.5 0.61 0.38 0.01 -1.31 0.03 1.07 0.15 92

PAGE 101

93 Appendix E: 18 O GOM and Estimated Salinities

PAGE 102

Calendar age (ka) Change in sea-level (m) 18 O G. ruber (VPDB) Change in 18 O seawater 18 O GOM ( VSMOW) Estimated Salinity (-3.5 ) Estimated Salinity (-7 ) Estimated Salinity (-15 ) 7 11.97 0.85 0.10 0.75 32.56 34.03 35.00 7.025 12.14 0.98 0.10 0.87 33.51 34.57 35.28 7.05 12.31 1.11 0.10 1.01 34.56 35.17 35.58 7.075 12.48 1.27 0.10 1.17 35.74 35.85 35.93 7.1 12.65 1.28 0.10 1.17 35.80 35.88 35.94 7.125 12.82 1.08 0.11 0.97 34.25 35.00 35.49 7.15 12.99 0.87 0.11 0.76 32.66 34.08 35.03 7.175 13.16 0.86 0.11 0.75 32.56 34.03 35.00 7.2 13.33 0.98 0.11 0.87 33.49 34.56 35.27 7.225 13.50 0.95 0.11 0.84 33.24 34.42 35.20 7.25 13.67 0.97 0.11 0.86 33.39 34.50 35.24 7.275 13.84 0.82 0.11 0.71 32.23 33.84 34.91 7.3 14.01 0.79 0.12 0.67 31.94 33.67 34.82 7.325 14.15 1.13 0.12 1.02 34.59 35.19 35.59 7.35 14.23 1.11 0.12 0.99 34.38 35.07 35.53 7.375 14.32 1.16 0.12 1.04 34.78 35.30 35.65 7.4 14.41 0.95 0.12 0.83 33.16 34.37 35.18 7.425 14.50 0.99 0.12 0.87 33.45 34.54 35.26 7.45 14.59 1.37 0.12 1.25 36.39 36.23 36.11 7.475 14.68 1.10 0.12 0.98 34.28 35.02 35.50 7.5 14.77 1.33 0.12 1.21 36.07 36.04 36.02 7.525 14.85 1.28 0.12 1.16 35.70 35.83 35.91 7.55 14.94 1.26 0.12 1.13 35.49 35.71 35.85 7.575 15.03 1.06 0.12 0.93 33.95 34.83 35.41 7.6 15.12 0.95 0.13 0.83 33.13 34.35 35.17 7.625 15.21 0.89 0.13 0.77 32.69 34.10 35.04 7.65 15.30 0.88 0.13 0.75 32.57 34.03 35.00 7.675 15.39 1.16 0.13 1.03 34.72 35.27 35.63 7.7 15.52 0.96 0.13 0.83 33.14 34.36 35.17 94

PAGE 103

Appendix E: (Continued) Calendar age (ka) Change in sea-level (m) 18 O G. ruber (VPDB) Change in 18 O seawater 18 O GOM ( VSMOW) Estimated Salinity (-3.5 ) Estimated Salinity (-7 ) Estimated Salinity (-15 ) 7.725 15.68 0.76 0.13 0.62 31.60 33.48 34.72 7.75 15.84 0.70 0.13 0.57 31.15 33.22 34.59 7.775 15.99 0.97 0.13 0.84 33.25 34.42 35.20 7.8 16.15 1.10 0.13 0.96 34.17 34.95 35.47 7.825 16.31 1.04 0.14 0.91 33.76 34.72 35.35 7.85 16.46 1.00 0.14 0.86 33.42 34.52 35.25 7.875 16.62 0.90 0.14 0.76 32.67 34.09 35.03 7.9 16.78 1.10 0.14 0.96 34.17 34.95 35.47 7.925 16.94 0.85 0.14 0.71 32.24 33.85 34.91 7.95 17.09 0.97 0.14 0.83 33.15 34.37 35.17 7.975 17.25 0.91 0.14 0.76 32.65 34.08 35.03 8 17.41 1.05 0.14 0.91 33.74 34.71 35.34 8.025 17.56 0.90 0.15 0.76 32.60 34.05 35.01 8.05 17.72 0.95 0.15 0.81 32.98 34.27 35.12 8.075 17.88 1.17 0.15 1.02 34.60 35.20 35.59 8.1 18.03 1.07 0.15 0.92 33.89 34.79 35.39 8.125 18.19 1.32 0.15 1.16 35.73 35.85 35.92 8.15 18.35 1.19 0.15 1.04 34.74 35.28 35.64 8.175 18.51 1.06 0.15 0.91 33.78 34.72 35.35 8.2 18.66 1.32 0.15 1.16 35.72 35.84 35.92 8.225 18.82 0.75 0.16 0.59 31.32 33.32 34.64 8.25 18.98 0.98 0.16 0.82 33.08 34.33 35.15 8.275 19.13 1.36 0.16 1.20 36.03 36.02 36.01 8.3 19.78 1.29 0.16 1.12 35.41 35.66 35.83 8.325 20.96 1.32 0.17 1.15 35.60 35.77 35.89 8.35 22.14 1.12 0.18 0.94 33.98 34.84 35.41 8.375 23.32 0.88 0.19 0.68 32.03 33.72 34.85 8.4 24.50 0.75 0.20 0.55 31.00 33.14 34.55 8.425 25.67 0.56 0.21 0.35 29.49 32.27 34.11 95

PAGE 104

Appendix E: (Continued) Calendar age (ka) Change in sea-level (m) 18 O G. ruber (VPDB) Change in 18 O seawater 18 O GOM ( VSMOW) Estimated Salinity (-3.5 ) Estimated Salinity (-7 ) Estimated Salinity (-15 ) 8.45 25.87 0.73 0.21 0.51 30.75 32.99 34.48 8.475 25.40 0.70 0.21 0.49 30.53 32.86 34.41 8.5 24.94 0.67 0.21 0.47 30.39 32.79 34.37 8.525 24.47 0.87 0.20 0.66 31.89 33.64 34.81 8.55 24.01 1.16 0.20 0.96 34.15 34.94 35.46 8.575 23.54 1.24 0.20 1.05 34.82 35.33 35.66 8.6 23.08 1.07 0.19 0.88 33.53 34.58 35.28 8.625 22.65 1.25 0.19 1.06 34.94 35.39 35.69 8.65 22.37 1.26 0.19 1.08 35.06 35.46 35.73 8.675 22.09 1.25 0.18 1.07 35.01 35.43 35.71 8.7 21.82 1.25 0.18 1.07 35.00 35.43 35.71 8.725 21.54 1.17 0.18 0.99 34.40 35.08 35.54 8.75 21.27 1.10 0.18 0.92 33.86 34.77 35.38 8.775 21.00 1.19 0.17 1.02 34.62 35.21 35.60 8.8 20.72 1.33 0.17 1.16 35.68 35.82 35.91 8.825 20.45 1.19 0.17 1.02 34.63 35.21 35.60 8.85 20.18 1.18 0.17 1.01 34.54 35.17 35.58 8.875 20.50 1.50 0.17 1.33 37.00 36.58 36.29 8.9 21.24 1.50 0.18 1.32 36.96 36.55 36.28 8.925 21.97 1.23 0.18 1.05 34.83 35.33 35.66 8.95 22.70 1.43 0.19 1.24 36.31 36.18 36.09 8.975 23.41 1.28 0.19 1.09 35.16 35.52 35.76 9 23.80 1.35 0.20 1.15 35.65 35.80 35.90 9.025 24.11 1.23 0.20 1.03 34.68 35.24 35.62 9.05 24.43 1.09 0.20 0.89 33.64 34.65 35.32 9.075 24.74 0.98 0.21 0.78 32.78 34.15 35.06 9.1 25.05 1.17 0.21 0.96 34.15 34.94 35.46 9.125 25.32 1.06 0.21 0.85 33.35 34.48 35.23 9.15 24.85 0.92 0.21 0.71 32.25 33.85 34.91 96

PAGE 105

Appendix E: (Continued) Calendar age (ka) Change in sea-level (m) 18 O G. ruber (VPDB) Change in 18 O seawater 18 O GOM ( VSMOW) Estimated Salinity (-3.5 ) Estimated Salinity (-7 ) Estimated Salinity (-15 ) 9.175 24.12 1.14 0.20 0.94 34.02 34.87 35.43 9.2 24.44 0.99 0.20 0.79 32.85 34.20 35.09 9.225 25.65 0.99 0.21 0.77 32.72 34.12 35.05 9.25 26.83 1.09 0.22 0.87 33.47 34.55 35.27 9.275 27.81 1.29 0.23 1.06 34.93 35.38 35.69 9.3 28.02 1.11 0.23 0.88 33.56 34.60 35.29 9.325 27.73 1.11 0.23 0.88 33.52 34.58 35.28 9.35 27.48 0.84 0.23 0.62 31.53 33.44 34.70 9.375 27.30 0.92 0.23 0.69 32.13 33.78 34.88 9.4 27.12 1.12 0.23 0.89 33.65 34.65 35.32 9.425 26.95 1.09 0.22 0.87 33.44 34.53 35.26 9.45 26.77 1.25 0.22 1.03 34.72 35.26 35.63 9.475 26.60 1.40 0.22 1.18 35.86 35.92 35.96 9.5 26.42 1.32 0.22 1.10 35.22 35.55 35.77 9.525 26.25 1.37 0.22 1.15 35.65 35.80 35.90 9.55 26.08 1.23 0.22 1.01 34.56 35.17 35.58 9.575 25.90 1.31 0.21 1.09 35.17 35.53 35.76 9.6 25.73 1.35 0.21 1.14 35.53 35.73 35.86 9.625 25.55 1.27 0.21 1.06 34.91 35.37 35.68 9.65 25.38 1.28 0.21 1.07 35.03 35.45 35.72 9.675 25.35 1.09 0.21 0.88 33.53 34.59 35.28 9.7 26.79 1.03 0.22 0.81 33.00 34.28 35.13 9.725 28.60 1.07 0.24 0.83 33.19 34.39 35.18 9.75 29.46 0.85 0.24 0.60 31.41 33.37 34.67 9.775 29.77 1.05 0.25 0.81 33.00 34.28 35.13 9.8 30.08 0.79 0.25 0.55 30.99 33.13 34.54 9.825 30.38 1.25 0.25 1.00 34.43 35.10 35.55 9.85 30.69 1.21 0.25 0.95 34.12 34.92 35.45 9.875 31.00 1.20 0.26 0.94 34.04 34.88 35.43 97

PAGE 106

Appendix E: (Continued) Calendar age (ka) Change in sea-level (m) 18 O G. ruber (VPDB) Change in 18 O seawater 18 O GOM ( VSMOW) Estimated Salinity (-3.5 ) Estimated Salinity (-7 ) Estimated Salinity (-15 ) 9.9 31.30 0.72 0.26 0.46 30.33 32.75 34.35 9.925 31.61 0.91 0.26 0.64 31.75 33.56 34.77 9.95 31.92 1.14 0.26 0.88 33.51 34.57 35.28 9.975 32.22 1.24 0.27 0.98 34.29 35.02 35.50 10 32.53 1.17 0.27 0.89 33.66 34.66 35.32 10.025 32.84 1.37 0.27 1.10 35.21 35.55 35.77 10.05 33.14 1.17 0.28 0.90 33.69 34.67 35.33 10.075 33.45 1.21 0.28 0.93 33.92 34.81 35.40 10.1 33.76 1.20 0.28 0.92 33.82 34.75 35.37 10.125 34.06 1.19 0.28 0.90 33.74 34.70 35.34 10.15 34.37 1.29 0.29 1.00 34.50 35.14 35.56 10.175 34.68 1.32 0.29 1.03 34.68 35.24 35.62 10.2 34.98 1.07 0.29 0.78 32.80 34.16 35.07 10.225 35.29 0.96 0.29 0.67 31.93 33.67 34.82 10.25 35.54 1.19 0.30 0.89 33.63 34.64 35.31 10.275 35.76 0.91 0.30 0.62 31.52 33.43 34.70 10.3 35.97 1.21 0.30 0.91 33.78 34.73 35.36 10.325 36.18 1.24 0.30 0.94 34.01 34.86 35.42 10.35 36.39 1.05 0.30 0.75 32.56 34.03 35.00 10.375 36.60 1.23 0.30 0.93 33.94 34.82 35.40 10.4 36.81 1.20 0.31 0.89 33.63 34.64 35.31 10.425 37.03 1.13 0.31 0.83 33.14 34.36 35.17 10.45 37.24 1.15 0.31 0.84 33.23 34.41 35.20 10.475 37.45 1.16 0.31 0.85 33.33 34.47 35.22 10.5 37.66 1.18 0.31 0.86 33.42 34.52 35.25 98

PAGE 107

Appendix F: Table of Correlation Coefficients 99

PAGE 108

Table 2. Correlation Coefficients between MD02-2550 proxy records, solar variability proxy record and regional hydrologic proxy records. Correlation coefficients 14 C Lake Miragoane 18 O ostracod % Ti Cariaco Mg/Ca SST 0.030 0.310 0.150 18 O GOM 0.001 0.050 0.010 % G. sacculifer 0.160 0.012 0.003 100

PAGE 109

Appendix G: Spectral Analysis 101

PAGE 110

102 Centennial and Sub-centennial Vari ability in the Early Holocene We performed spectral analysis on the Mg/Ca-SST (Fig. 8) and the 18 O GOM (Fig. 9) record using the multitaper method (MTM) (G hil, 2002). Due to small variations in the sedimentation rate during this interval, the sampling interval was not constant with time. The average sampling interval was 15 years (N yquist frequency of 1/30 years). Both the SST and the 18 O GOM time series were resampled at 25 years with linear detrending and pre-whitened using Analyseries (Paillard et al., 1996) to allow for MTM analysis. The Mg/Ca-SST and the 18 O GOM time series both contain concentrations of variance near 160 and 80 years, significant at the 99 % confidence level. The SST record also contains (> 95 % confidence level) significant periods at 770, 230, 160, 130, 80 and 70 years while the 18 O GOM record contains periods at 670, 500, 330, 170, 150, 110 and 80 years. The different peaks present in the 18 O GOM and the SST records suggest that E-P processes and the influence of episodic flooding from the Mississippi River system are de-coupled from SST. Proxy records for solar variability ( 14 C production and 10 Be) in the early Holocene contain a significant 208 year period (Stuiv er et al., 1991). Application of the MTM spectral analysis to the atmospheric 14 C record for the 10.5 ka interval (Fig. 10) reveals significant periods (>99% conf idence level) at 700, 360, 200, 130, 85, 70, 60 and 50 years. The 18 O GOM record may share the 670, 330, and 80 concentrations of variance with the 14 C record; whereas the SST record may share the 230, 80 and 70 concentrations of variance with the 14 C record. In particular, the Mg/Ca-SST period

PAGE 111

Appendix G: (Continued) 103 near 230 years may indicate the influence of the 208 the Suess cycle. However, the low coherence to the atmospheric 14 C record suggests other processes are also important in modulating sub-centennial sc ale climate variability. There are additional records indicating po ssible sensitivity to solar variations on the centennial scale. These include % G. sacculifer from Gyre 97-6 from the GOM containing 300, 250, 230, and 170 year peri ods (Poore et al., 2003). Our % G. sacculifer from Orca Basin contain concentrations of variance at 260, 190, and 80 year periods. Icerafting records from sub-polar regions indicate peaks at 500, 300, and 200 year concentrations of variance (Bond et al., 2001) and late Ho locene records from the Yucatan Peninsula exhibit peak s at the 200 year period (Hode ll et al., 2001). Together these records indicate the influence of solar variability on centennial -scale climate change by solar variability. The 18 O GOM and Mg/Ca-SST time series from the Orca Basin contain 70 and 80 year periods, which may be related to th e Atlantic Multidecadal Oscillation (AMO) Index. The AMO is a 65 80 year oscillation in instrumental records of North American temperature. The warm and cool phases of th e AMO contribute as much as 10 % to the Mississippi river ou tflow, which may suggest an AMO influence on the 18 O GOM (Endfield et al., 2001). We speculate that th e strong period at 70-80 year in the SST and the 18 O GOM records may indicate a persistent AMO in the early Holocene.

PAGE 112

Appendix G: (Continued) 104 Figure 8. Spectral analysis of the MD02-2550 Mg/Ca-SST time series using the Multitaper method (MTM)(Ghil et al., 2002). Arrows indicate spectral peaks significant at the > 90% confidence level; numbers above the arrows indicate corresponding period. 0.010.111010005101520 90 % CL 95 % CL 99 % CLPowerFrequency (cycles/kyr) 7702301601308070

PAGE 113

Appendix G: (Continued) 105 Figure 9. Spectral analysis of the MD02-2550 8 OGOM time series using MTM (Ghil et al., 2002). Arrows indicate spectral peaks significant at the > 90% confidence level; numbers above the arrows indicate corresponding period. 0.010.111010005101520 90 % CL 95 % CL 99 % CLPowerFrequency (cycles/kyr) 5001601108012090

PAGE 114

Appendix G: (Continued) 106 Figure 10. Spectral analysis of the delta 14 C time series for the 7-10.5 ka interval using MTM (Ghil et al., 2002). Arrows indicate spectral peaks significant at the > 90% confidence level; numbers above the arrows indicate corresponding period 110100100010405101520 90 % CL 95 % CL 99 % CLPowerFrequency (cycles/kyr)70036020060150130857050