USF Libraries
USF Digital Collections

The solubility of Triton X-114 And Tergitol 15-S-9 in high pressure carbon dioxide solutions

MISSING IMAGE

Material Information

Title:
The solubility of Triton X-114 And Tergitol 15-S-9 in high pressure carbon dioxide solutions
Physical Description:
Book
Language:
English
Creator:
Smeltzer, Brandon
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla
Publication Date:

Subjects

Subjects / Keywords:
Cloud point
Phase
Supercritical
Surfactant
Template
Dissertations, Academic -- Chemical Engineering -- Masters -- USF
Genre:
bibliography   ( marcgt )
theses   ( marcgt )
non-fiction   ( marcgt )

Notes

Abstract:
ABSTRACT: In the sol gel production of high surface area catalyst, the template, a surfactant, is the key component of the process. A template too soluble in the supercritical drying-extraction process can yield a catalyst with a lower surface area. A template completely insoluble in the supercritical drying-extraction process can lead to a longer calcinations step and lower catalyst surface area. Template recovery also enhances the economic feasibility of plant scale production of high surface area catalyst. For these reasons knowing surfactant solubility in supercritical media is important.The solubility of surfactants tert-octylphenoxypolyethoxyethanol (commercially available and hereafter referred to as Triton X-114) and alkyloxypolyethyleneoxyethanol (commercially available and hereafter referred to as Tergitol 15-S-9) in supercritical carbon dioxide and ethanol entrainer have been determined at five-degree increments from 35°C to 50°C. The solubility of the surfactants wa s determined by charging a variable volume cloud point system with the entrainer-surfactant mixture followed by liquid carbon dioxide. With the resulting stirred homogeneous mixture heated to temperature, cloud point pressures were observed as the phase analyzer cell was pressurized by adjusting the variable volume. An average of five values for cloud point pressure is reported here. The mixture behaviors were modeled using the Improved Rackett equation and the Peng-Robinson-Stryjek-Vera (PRSV) equation of state with Wong-Sandler (WS) mixing rules. For the Carbon Dioxide (CO2) (1) -- Ethanol/Triton X-114 (2) mixtures studied, compositions ranged from 93.2 mol% CO2 to 97.7 mol% CO2. The solubility of Triton X-114 ranged from 0.02 mol% to 0.05 mol% at temperatures ranging from 35°C to 50°C. Cloud point pressures observed for this system range from 95 bar to 143 bar. For the CO2 (1) --^ Ethanol/Tergitol 15-S-9 (2) mixtures studied, compositions ranged from 92.3 mol% CO2 to 94.4 mol % CO2. The solubility of Tergitol 15-S-9 ranged from 0.02 mol% to 0.03 mol% at temperatures ranging from 35°C to 50°C. Cloud point pressures observed for this system range from 89 to 154 bar.
Thesis:
Thesis (M.A.)--University of South Florida, 2005.
Bibliography:
Includes bibliographical references.
System Details:
System requirements: World Wide Web browser and PDF reader.
System Details:
Mode of access: World Wide Web.
Statement of Responsibility:
by Brandon Smeltzer.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains 118 pages.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 001789574
oclc - 137708553
usfldc doi - E14-SFE0001454
usfldc handle - e14.1454
System ID:
SFS0025773:00001


This item is only available as the following downloads:


Full Text

PAGE 1

TheSolubilityofTritonX-114andTergitol15-S-9inHigh-PressureCarbonDioxideSolutionsbyBrandonSmeltzerAthesissubmittedinpartialfulfillmentoftherequirementsforthedegreeofMasterofScienceinChemicalEngineeringDepartmentofChemicalEngineeringCollegeofEngineeringUniversityofSouthFloridaMajorProfessor:AydinK.Sunol,Ph.D.SerminG.Sunol,Ph.D.CarlJ.Biver,Ph.D.DateofApproval:December8,2005Keywords:cloudpoint,phase,supercritical,surfactant,templateCopyright2006,BrandonSmeltzer

PAGE 2

DedicationIdedicatethisworktomyfamilyforteachingmethepowerofacollegeeducation.Thanksforbelievinginmeandmakingmebelieveinmyself.

PAGE 3

AcknowledgmentsThereareseveralpeopleIamthankfultoforbeingabletodothisresearch.FirstandforemostImustthankDr.AydinSunolfortheopportunitytodoresearch.Dr.Sunolsguidancehasmademyresearchexperienceveryrewarding.IwouldliketothankDr.SerminSunolforteachingmehowtoresearchpreviouslypublishedworksforrelevantinformation.IwouldalsoliketothankRaquelCarvalloforansweringanendlessnumberofquestionsregardingexperimentalsetupsandmodeling.Raquelwasalsoniceenoughtoextendherlibraryprivilegestometoassistmybackgroundresearch.IwouldliketothankHaitaoLiforlettingmeusethesyringepumpforaslongasnecessarytoconductexperiments.IoweadebtofgratitudetoNaveedAslamforhisassistanceinmodelingmysystemswithhisMATLABprogramforthePRSVequationofstatewithWSmixingrules.

PAGE 4

iTableofContentsListofTablesiiiListofFiguresivListofEquationsviListofSymbolsxiiiAbstractxviiChapter1Introduction1Chapter2BackgroundandTheory52.1AHistoricalPerspectiveoftheSupercriticalPhenomena52.2Surfactants62.3SupercriticalSolubilityDeterminationMethods112.4PublishedWorksonSurfactantSolubilityinSupercriticalCarbonDioxide152.5EntrainerSolubilityinSupercriticalCarbonDioxide17Chapter3PhaseEquilibriumModeling193.1PhaseEquilibrium193.2ExcessFunctions223.3Liquid-LiquidEquilibrium,Vapor-LiquidEquilibrium,andLiquid-Liquid-VaporEquilibrium233.4ActivityCoefficientModels323.5TheModel413.6CriticalPropertyEstimation483.7PhaseBehaviorClassification50Chapter4Experimental534.1Equipment534.2ExperimentalSet-Up624.3ProcedureandMaterials634.4Clean-Up64

PAGE 5

iiChapter5ResultsandDiscussion675.1AComparisonoftheImprovedRackettEquationtothePRSVEquation675.2CriticalPropertyEstimationofSurfactants705.3CarbonDioxideandSurfactantBinarySystems705.4CarbonDioxide-Ethanol-TritonX-114TernarySystem715.5CarbonDioxide-Ethanol-Tergitol15-S-9TernarySystem735.6ErrorIntroduction74Chapter6Conclusions,Recommendations,andFutureDirections786.1Conclusions786.2Recommendations796.3FutureDirections81References83Appendices86AppendixAChemicalMSDS87AppendixBIREandPRSVComparison109AppendixCCriticalPropertyEstimation111AppendixDSampleCalculations116

PAGE 6

iiiListofTablesTable1.CriticalPropertiesofSurfactants70Table2.TernaryMixtureCompositionsStudiedwithTritonX-11471Table3.ObservedCloudPointPressuresofTritonX-114Mixtures71Table4.StandardDeviationsofCloudPointPressureMeasurements72Table5.TernaryMixtureCompositionsStudiedwithTergitol15-S-973Table6.ObservedCloudPointPressuresofTergitol15-S-9Mixtures73Table7.StandardDeviationsofCloudPointPressureMeasurements74Table8.CarbonDioxideLiquidMolarVolumeCalculationComparison110Table9.JobackGroupContributionFactorsforTritonX-114111Table10.JobackGroupContributionFactorsforTergitol15-S-9112

PAGE 7

ivListofFiguresFigure1.NormalMicelleFormation/ReverseMicelleFormation10Figure2.DynamicExperimentalSet-Up12Figure3.StaticExperimentalSet-Up13Figure4.PhaseBehaviorofCarbonDioxide-Ethanol18Figure5.AlgorithmforIsothermalFlashCalculations30Figure6.AlgorithmforLLVIsothermalFlashCalculations31Figure7.NRTLActivityCoefficientDependenceon12Value36Figure8.PhaseBehaviorClassifications52Figure9.SPM20SuperPhaseMonitor54Figure10.TheSolubilityCell55Figure11.FixedFritSetting56Figure12.MovableFritSetting57Figure13.SPM20SuperPhaseMonitorController58Figure14.ISCO100DXSyringePump59Figure15.LaudaEcolineLow-TemperatureThermostatRE-12060Figure16.ISCO100DXSyringePumpCoolingJacketSet-Up61Figure17.ExperimentalSet-Up62Figure18.MolarVolumeComparison68Figure19.ErrorComparisonoftheImprovedRackettEquationandthePRSV69

PAGE 8

vFigure20.P-xDiagramofTritonX-114inCarbonDioxide-Ethanol72Figure21.P-xDiagramofTergitol15-S-9inCarbonDioxide-Ethanol74

PAGE 9

viListofEquationsEquation1.Gibbs-DuhemEquation19Equation2.Gibbs-DuhemEquationatConstantPressureandTemperature19Equation3.GibbsFreeEnergyatEquilibriumInvolvingtheDistributionofComponentsBetweenTwoPhasesatConstantPressureandTemperature19Equation4.SimplificationofGibbsFreeEnergyatEquilibriumInvolvingtheDistributionofComponentsBetweenTwoPhasesatConstantPressureandTemperature20Equation5.EqualityofChemicalPotentialsofAllSpeciesatEquilibrium20Equation6.ChemicalPotentialofSpecies20Equation7.IdealGasEquation20Equation8.ChemicalPotentialofaSpeciesatIdealGasConditions20Equation9.ChemicalPotentialofaSpeciesasaFunctionofFugacity20Equation10.ChangeinChemicalPotentialatIsothermalConditions21Equation11.ChangeinChemicalPotentialofComponent1inTwo-PhaseEquilibrium21Equation12.ChangeinChemicalPotentialofComponent2inTwo-PhaseEquilibrium21Equation13.EqualityofStandardStatesofChemicalPotentialinTwo-PhaseEquilibrium21Equation14.EqualityofStandardStatesofFugacitiesinTwo-PhaseEquilibrium21Equation15.EqualityofFugacityofSpeciesinTwoPhases21

PAGE 10

viiEquation16.FugacityCoefficient21Equation17.FugacityCoefficientforaPureSubstance22Equation18.ExcessGibbsEnergy22Equation19.MaxwellRelationshipforExcessEntropy22Equation20.MaxwellRelationshipforExcessEnthalpy22Equation21.MaxwellRelationshipforExcessVolume22Equation22.Gibbs-DuhemEquationinTermsofExcessFunctions23Equation23.Gibbs-DuhemEquationinTermsofExcessFunctionsatEquilibrium23Equation24.GibbsEnergyofMixingforLiquid-LiquidMiscibility23Equation25.DerivativeofGibbsEnergyofMixingforLiquid-LiquidMiscibility23Equation26.VolumeChangeinMixing24Equation27.EqualityofFugacitiesofComponent1inLiquid-LiquidMixture25Equation28.EqualityofFugacitiesofComponent2inaLiquid-LiquidMixture25Equation29.ActivityCoefficientEquation25Equation30.ActivityCoefficientEquationattheStandardState25Equation31.EqualityofFugacitiesinVaporandLiquidPhase26Equation32.FugacityEqualityDuringVapor-LiquidEquilibrium26Equation33.DistributionCoefficient26Equation34.DistributionCoefficientatIdealGasConditions26Equation35.DistributionCoefficientofNon-IdealSystems27Equation36.IndividualComponentMaterialBalanceforIsothermalFlashConditions27

PAGE 11

viiiEquation37.MaterialBalanceforVaporPhaseatIsothermalFlashCondtions27Equation38.MaterialBalanceforAllComponentsatIsothermalFlashConditions27Equation39.LLVEMaterialBalance27Equation40.DistributionCoefficientinFirstLiquidPhase28Equation41.DistributionCoefficientinSecondLiquidPhase28Equation42.MolarFractionofFirstLiquidPhase28Equation43.Non-linearEquationtoDetermineMolarFractionofFirstLiquidPhase28Equation44.Non-linearEquationtoDetermineVaportoFeedRatio,28Equation45.TotalMolsofLiquid1Phase28Equation46.TotalMolsofLiquid2Phase28Equation47.VaporPhaseCompositionofLLVEIsothermalFlash28Equation48.CompositionofLiquid1PhaseofLLVEIsothermalFlash29Equation49.CompositionofLiquid2PhaseofLLVEIsothermalFlash29Equation50.ExcessGibbsEnergyforvanLaarActivityCoefficientModel32Equation51.ActivityCoefficientofComponent1UsingvanLaarActivityCoefficientModel32Equation52.ActivityCoefficientofComponent2UsingvanLaarActivityCoefficientModel32Equation53.ParameterAinvanLaarActivityCoefficientModel32Equation54.ParameterBinvanLaarActivityCoefficientModel32Equation55.ActivityCoefficientofComponent1UsingRegularSolutionsTheory33Equation56.ActivityCoefficientofComponent2UsingRegularSolutionsTheory33

PAGE 12

ixEquation57.VolumeFractionofComponent1inRegularSolutionsTheory34Equation58.VolumeFractionofComponent2inRegularSolutionsTheory34Equation59.ExcessGibbsEnergyUsingWilsonEquation34Equation60.ActivityCoefficientofComponent1UsingWilsonEquation34Equation61.ActivityCoefficientofComponent2UsingWilsonEquation34Equation62.12parameterofWilsonEquation35Equation63.21parameterofWilsonEquation35Equation64.GibbsEnergyofCell1inNRTLActivityCoefficientModel35Equation65.GibbsEnergyofCell2inNRTLActivityCoefficientModel35Equation66.ExcessGibbsEnergyofCellsinNRTLActivityCoefficientModel35Equation67.RatioofLocalMoleFractionx21tox11inNRTLActivityCoefficientModel36Equation68.RatioofLocalMoleFractionx12tox22inNRTLActivityCoefficientModel36Equation69.LocalMoleFractionx21inNRTLActivityCoefficientModel37Equation70.LocalMoleFractionx12inNRTLActivityCoefficientModel37Equation71.ExcessGibbsEnergyofMixtureinNRTLActivityCoefficientModel37Equation72.DimensionlessLocalInteractionEnergyParameter21forNRTLActivityCoefficientModel37Equation73.DimensionlessLocalInteractionEnergyParameter12forNRTLActivityCoefficientModel37Equation74.DimensionlessNon-randomnessInteractionEnergyParameterG21forNRTLActivityCoefficientModel37Equation75.DimensionlessNon-randomnessInteractionEnergyParameterG12forNRTLActivityCoefficientModel37

PAGE 13

xEquation76.ActivityCoefficientofComponent1UsingNRTLActivityCoefficientModel38Equation77.ActivityCoefficientofComponent2UsingNRTLActivityCoefficientModel38Equation78.TotalExcessGibbsEnergyUsingUNIQUACActivityCoefficientModel38Equation79.CombinatorialExcessGibbsEnergyUsingUNIQUACActivityCoefficientModel39Equation80.SegmentFractionforUNIQUACActivityCoefficientModel39Equation81.AreaFractionforUNIQUACActivityCoefficientModel39Equation82.ResidualExcessGibbsEnergyUsingUNIQUACActivityCoefficientModel39Equation83.MoleculeSegmentEnergyDifferencejiDimensionlessParameter39Equation84.ActivityCoefficientEquationforUNIFACActivityCoefficientModel40Equation85.CombinatorialActivityCoefficientforUNIFACActivityCoefficientModel40Equation86.SurfaceAreaandVolumeParameterRelationshipUsingUNIFACActivityCoefficientModel41Equation87.ResidualActivityCoefficientforUNIFACActivityCoefficientModel41Equation88.ResidualGroupActivityCoefficientforUNIFACActivityCoefficientModel41Equation89.MoleculeSegmentInteractionEnergyParameter41Equation90.Peng-RobinsonEquationofState42Equation91.Peng-Robinson-Stryjek-Vera(PRSV)EquationofState42Equation92.CompressibilityFactor42Equation93.CubicFormofPRSVEquationofState42

PAGE 14

xiEquation94.DimensionlessAttractiveForceCorrectionofPRSV42Equation95.DimensionlessRepulsiveForceCorrectionofPRSV42Equation96.RepulsiveForceCorrectionofPRSV43Equation97.AttractiveForceCorrectionofPRSV43Equation98.-DimensionlessFunctionofReducedTemperature43Equation99.PRSVConstantCharacteristicofaSubstance43Equation100.AcentricFactorFunction44Equation101.ReducedTemperatureEquation44Equation102.ExcessHelmholtzEnergyatInfinitePressureRelationshiptoExcessGibbsEnergy44Equation103.Wong-SandlerMixingRuleforaMixture44Equation104.Wong-SandlerMixingRuleforijComponent44Equation105.RepulsiveForceCorrectionofMixturebyWong-SandlerMixingRules45Equation106.AttractiveForceCorrectionofMixturebyWong-SandlerMixingRules45Equation107.ExcessGibbsEnergyRelationshiptoActivityCoefficients45Equation108FugacityCoefficient45Equation109.VaporMoleFractionEquation45Equation110.WagnerEquationforEthanolVaporPressure46Equation111.ReducedTemperatureParameterofWagnerEquation46Equation112.PoyntingFactor46Equation113.RackettEquation46Equation114.CriticalCompressibilityFactor46

PAGE 15

xiiEquation115.MoleFractionBalance46Equation116.VaporPhaseMoleBalance47Equation117.ImprovedRackettEquation47Equation118.CriticalTemperatureEstimationUsingJobackMethod49Equation119.CriticalPressureEstimationUsingJobackMethod49Equation120.CriticalVolumeEstimationUsingJobackMethod49Equation121.AcentricFactor49

PAGE 16

xiiiListofSymbolsNotationa,bPRSVequationofstateparametersaActivityofspeciesaEquationofstateenergyparameter(forWong-Sandlermixingrules)bEquationofstateexcludedvolumeparameter(forWong-Sandlermixingrules)A,BDimensionlesstermsinPRSVEquationofStateA,BVanLaarActivityCoefficientParametersCConstantforWong-SandlerMixingRulesfFugacity(bar)FFeed(mol/time)gGibbsenergy(J/mol)GGibbsenergy(J/mol)HEnthalpy(J/mol)kBinaryinteractioncoefficient(forWong-Sandlermixingrules)KVLEratiolVolumetosurfacearearationNumberofatomsinamoleculePPressureofmixture,barqSurfacefactor

PAGE 17

xivrVolumefactorRUniversalGasConstantSEntropy(J/molK)TTemperatureofmixture,KuAverageinteractionenergy(J/mol)UInteractionenergy(J/mol)VMolarvolume,cm3/molxLiquidmolefractionsyVapormolefractionszCoodinationnumberzMolefractioninfeedZCompressibilityfactorGreekLettersFunctionofacentricfactorandthereducedtemperatureRatioofvaportofeedActivitycoefficientChangeinapropertyofacomponentActivitycoefficientSolubilityparameterAreafractionofaspeciesWilsonequationactivitycoefficientparameter0Functionofacentricfactor

PAGE 18

xvChemicalpotentialMolarvolumeNumberofgroupsinmixtureUnitlessenergydifferenceparameterforUNIQUACModelReducedtemperatureratioFugacitycoefficientUnitlessenergydifferenceparameterorUNIFACModelAcentricfactorSubscript0PurecomponentpropertybBoilingpointcCriticalpropertyiComponentinmixturejComponentinmixturemMolarvolumemixMixturepropertyPPressurerReducedpropertyRARackettequationparameterTTemperaturexMoleFraction

PAGE 19

xviSuperscript0Purecomponentproperty InfinitedilutionOnecomponentinmixtureOnecomponentinmixturecCriticalpropertyCCombinationEExcesspropertyexExcesspropertykComponentofmixtureLLiquidphaseRResidualsatSaturationconditionVVaporphase

PAGE 20

xviiTheSolubilityofTritonX-114andTergitol15-S-9inHigh-PressureCarbonDioxideSolutionsBrandonSmeltzerABSTRACTInthesolgelproductionofhighsurfaceareacatalyst,thetemplate,asurfactant,isthekeycomponentoftheprocess.Atemplatetoosolubleinthesupercriticaldrying-extractionprocesscanyieldacatalystwithalowersurfacearea.Atemplatecompletelyinsolubleinthesupercriticaldrying-extractionprocesscanleadtoalongercalcinationsstepandlowercatalystsurfacearea.Templaterecoveryalsoenhancestheeconomicfeasibilityofplantscaleproductionofhighsurfaceareacatalyst.Forthesereasonsknowingsurfactantsolubilityinsupercriticalmediaisimportant.Thesolubilityofsurfactantstert-octylphenoxypolyethoxyethanol(commerciallyavailableandhereafterreferredtoasTritonX-114)andalkyloxypolyethyleneoxyethanol(commerciallyavailableandhereafterreferredtoasTergitol15-S-9)insupercriticalcarbondioxideandethanolentrainerhavebeendeterminedatfive-degreeincrementsfrom35oCto50oC.Thesolubilityofthesurfactantswasdeterminedbychargingavariablevolumecloudpointsystemwiththeentrainer-surfactantmixturefollowedbyliquidcarbondioxide.Withtheresultingstirredhomogeneousmixtureheatedtotemperature,cloudpointpressureswereobservedasthephaseanalyzercellwaspressurizedbyadjustingthevariablevolume.Anaverageoffivevaluesforcloudpoint

PAGE 21

xviiipressureisreportedhere.ThemixturebehaviorsweremodeledusingtheImprovedRackettequationandthePeng-Robinson-Stryjek-Vera(PRSV)equationofstatewithWong-Sandler(WS)mixingrules.FortheCarbonDioxide(CO2)(1)Ethanol/TritonX-114(2)mixturesstudied,compositionsrangedfrom93.2mol%CO2to97.7mol%CO2.ThesolubilityofTritonX-114rangedfrom0.02mol%to0.05mol%attemperaturesrangingfrom35oCto50oC.Cloudpointpressuresobservedforthissystemrangefrom95barto143bar.FortheCO2(1)Ethanol/Tergitol15-S-9(2)mixturesstudied,compositionsrangedfrom92.3mol%CO2to94.4mol%CO2.ThesolubilityofTergitol15-S-9rangedfrom0.02mol%to0.03mol%attemperaturesrangingfrom35oCto50oC.Cloudpointpressuresobservedforthissystemrangefrom89to154bar.

PAGE 22

1Chapter1IntroductionSupercriticalfluidspossessinterestingandindustryapplicablecharacteristicsthatsetthemapartfromtypicalsolvents.Thelackofsurfacetension,themobilityofagas,andthesolvationpowerofaliquidarethreeuniquepropertiesthatmakesupercriticalfluidsveryattractiveastunablesolvents(15.McHugh&Krukonis1986).Supercriticalfluidscanbeusedfortheselectiverecoveryofsolutesbyadjustingpressureandtemperature.Oneengineeringfieldwhereselectivesoluterecoverycanhaveamajoreconomicimpactisnovelcatalystdesign.Oneofthekeycomponentsinporousaerogelcatalystproductionisthetemplate-asurfactant,inthiscasetert-octylphenoxypolyethoxyethanol(commerciallyavailableasTritonX-114)andalkyloxypolyethyleneoxyethanol(commerciallyavailableasTergitol15-S-9).Atemplatetoosolubleinasupercriticalfluidwillberemovedtooeasilyfromtheporouscatalyststructureandresultincollapsedpores.Toomanycollapsedporesyieldacatalystwithalowsurfacearea.Atemplatecompletelyinsolubleinasupercriticalfluidwillnotberemoveduntilacalcinationprocess.Atemplatecompletelyinsolubleinasupercriticalfluidisharmfulincatalystsynthesisbecausethecalcinationprocessmayhavetobeextendedtoallowforthetemplatetobreakdown.

PAGE 23

2Forthesereasons,thesolubilityofthesurfactantsTritonX-114andTergitol15-S-9insupercriticalcarbondioxideisimportant.Efficienttemplaterecoverywithrecyclablesupercriticalcarbondioxidecanbringtheplantscaleproductionofporouscatalystclosertorealitywiththeimprovementofeconomicfeasibility.Toacquiretheimportantsurfactantsolubilitydatatwodifferentexperimentalmethodscanbeemployed,astaticexperimentalset-uporadynamicexperimentalset-up.Thestaticexperimentalset-upcanyieldP-T-xdata.Thedynamicexperimentalset-upcanyieldP-T-x-ydata(4.Dieters&Schneider1986).Thestaticexperimentalset-upworksquitewellforliquidorsolidsolubilityexperiments,particularlywhendataisneededquickly.Thedynamicexperimentalset-upismostusefulforsolidsolubilitydetermination.Thedynamicexperimentalset-upisnotnecessarilyagoodchoiceforliquidsolubilityexperimentsforafewreasons:thesupercriticalsolventcanpushtheliquidofinterestoutofthesolubilitycellwithoutsolubilizingit;phasechangescangoundetected;thesolubilityofthesupercriticalsolventintheliquidofinterestcannotbemeasured;experimentalset-upsformulti-componentmixturesmayrequireamoreelaboratedesigntoensurethatthecomponentsofthemixturearenotimproperlyremovedduringtheexperimentalrun(15.McHugh&Krukonis1986).Inthestatic(alsocalledsynthetic)experimentalset-up,knownamountsofsubstancesaretransferredintothesolubilitycell.Themixturecompositionisthendeterminedfromtheinitialconditions.Thesolubilitycellisthenbroughtuptotheexperimentaltemperatureandpressurizeduntilahomogeneousphaseisobserved.Datathatcanbeascertainedfromastaticexperimentalset-upincludeP-xdiagramsandT-xdiagrams.Oneaspectofthestaticexperimentalset-upthatresearchersfavoristheability

PAGE 24

3togetsolubilitydataatvarioustemperatureswithjustoneexperimentalrun.Conversely,thestaticexperimentalset-upisnotfavorabletoresearcherswhenvapor-liquidequilibrium(VLE)dataisneeded(4.Deiters&Schneider1986).Inthedynamic(alsocalledanalytical)experimentalset-upthesupercriticalsolventflowsatasettemperatureandpressurethroughasolubilitycellcontainingaknownamountofthesoluteofinterest.Theresultingmixturethenflowsthroughananalyticaldevice(aspectrometerUV/VisorIR,agaschromatogram,ormassspectrometer)andacollectionchamber.Solutesolubilityisthendeterminedbyinterpretingthechromatographandcomparingitwiththemassofsoluterecoveredfromthecollectionchamber.Datathatcanbeascertainedfromthedynamicexperimentalset-upincludeP-x-ydiagramsandT-x-ydiagrams(4.Deiters&Schneider1986).Thedynamicexperimentalset-upthatappealstotheresearcherbecause:datacanbeacquiredrapidly,theexperimentsareeasilyreproducible,andformostcasesthesamplingmechanismisfairlysimple(15.McHugh&Krukonis1986).Thefollowingchapterswillexplainthebackgroundtheorytotheexperiments,theexperimentalset-upandprocedure,andfinallytheresults,discussions,andfuturedirectionswherethisresearchcanbeapplied.Chapter2willfurtherdiscussthespecificdetailsofcomponentsolubilityinsupercriticalmedia,particularlycarbondioxide.Adiscussionofsurfactantsandtheirpropertieswillbepresentedhereaswell.Thetwomethodsforsolubilitydeterminationinsupercriticalfluidswillbediscussed.Previouslypublishedworkonsurfactantsolubilityinsupercriticalfluidswillbepresented.Adiscussiononthesolubilityofethanolinsupercriticalcarbondioxidewillbepresented.

PAGE 25

4Chapter3willdiscussphaseequilibrium.Thefocusofthephaseequilibriumdiscussionwillbeliquid-liquidequilibrium,vapor-liquidequilibrium,liquid-liquid-vaporequilibriumandthemodelsusedtodescribethem.Chapter4willdiscusstheexperimentalset-upforsupercriticalsolubilitydeterminationandtheexperimentalmethodused.Chapter5willpertaintotheresultsanalysisanddiscussionsoftheexperiments.Datawillbepresentedintableandgraphform.Chapter6isdedicatedtoconclusionsandthefuturedirectionsthatdirectlyinvolvethisresearch.

PAGE 26

5Chapter2BackgroundandTheoryThepurposeofthischapteristoexplainseveralthings:thesupercriticalphenomenon,surfactantproperties,somewayssupercriticalsolubilitycanbedetermined,publishedworksonsurfactantsolubilityinsupercriticalcarbondioxide,andthesolubilityofethanolinsupercriticalcarbondioxide.2.1AHistoricalPerspectiveoftheSupercriticalPhenomenaSupercriticalfluidtechnologyisabranchofchemicalengineeringthathasbeeninusesinceitsdiscoveryin1822,byBaronCaginarddelaTour.DelaTourconductedhigh-pressureexperimentsinvolvingaflintballsealedinacannonbarrelwithethanol.ChangesinthesoundoftheballhittingthebarrelwallweredocumentedanddelaTourinformedthescientificcommunityofwhatisknownasthecriticalpoint.Dr.ThomasAndrewsdidthefirstmajorinvestigationsofcarbondioxideasasupercriticalfluid.Dr.Andrewsreportedthecriticalvaluesofcarbondioxidetobe30.92oCand73atmospheres(15.McHugh&Krukonis1986).ThevaluesreportedbyDr.Andrewsareveryclosetotheacceptedpublishedvaluesforcarbondioxideof31.1oCand73.8bars(21.Prausnitz&Lichtenthaler&Azevedo1999).In1879,HannayandHogarthpresentedtheirexperimentalresultsforthesolubilityofseveralinorganicsaltsin

PAGE 27

6ethanolusingamodifiedversionofDr.Andrewsexperimentalset-up.HannayandHogarthconcludedthatsolubilitycouldbepressuredependent.Goreauthoredtheearliestpublishedpaperregardingtheuseofliquidcarbondioxideasasolventin1861.Goredescribedliquidcarbondioxideasbeingaverypoorsolvent.Villardinvestigatedtheeffectivenessoffourcompoundsassupercriticalfluids:carbondioxide,ethylene,nitrousoxide,andmethanein1896(15.McHugh&Krukonis1986).AlfredW.Francispublishedoneofthemostextensivestudiesconcerningthesolventpowerofliquidcarbondioxidein1954.Francisstudiedthesolubilityof261individualsubstanceswithcarbondioxideandconstructedternarydiagramsfor464systems.ThetemperaturerangeforFrancisstudyis21oCto26oCwithapressurenear65atmospheres.TheworkdonebyFrancisisanexcellentstartingpointforsupercriticalseparationexperimentsinvolvingcarbondioxidebecausearelativeeffectivenessofseparationcanbediscernedfromhisdatabeforeanexperimentisdone(6.Francis1954).2.2SurfactantsSurfactantsareauniqueclassofchemicalsinpartbecauseoftheircomplexchemicalstructuresandtheirresultingphysicalproperties.Surfactantisshorthandforsurface-activeagent.Thehighestconcentrationofasurfactantcanbefoundatthesurfaceofasolutionascomparedtothebulksolution.Theessentialpurposeofasurfactantistowetasolidsurfacethusallowingforcontactbetweenthesolidsurfaceandanotherliquid.Thecontactbetweenthesolidsurfaceandanotherliquidisaccomplished

PAGE 28

7becausethesurfactantactuallylowersthesurfacetensionoftheliquid,allowingittoenterareasthatwouldotherwisebeblockedtoit(20.Porter1991).Surfactantsbelongtoagroupofchemicalscalledamphiphilesbecausetheycontainhydrophobicandhydrophilicpartsortails.Thehydrophobictailofasurfactantisusuallyalonghydrocarbonchain.Thehydrophilictailofthesurfactantisusuallyafunctionalgroupwithahighaffinityforwater(29.Texter1999).Scientistshaveseveraldifferentwaystocategorizesurfactants,whichincludephysicalstateandionicity.Thephysicalstateofasurfactantatroomtemperaturehasamajorinfluenceonthepropertiesthatthesurfactantexhibits.Thecrystallinestructureofasurfactanthasadirecteffectonthewettingcapabilitiesofthesurfactant.Packingcanbearrangedheadtoheadandtailtotailorheadtotailinmonolayersorbilayers.Theleveltowhichthepackingisordereddictatesthelocationofthepolarandnon-polarheads.Somesurfactantsexhibitpolymorphismtheabilitytohavemorethanonestablecrystallinestructure.Thesolidphasesmaydiffercompletelyinstructureattheunitcelllevelorinaone-dimensionaldirectionwiththestackingoflayers(29.Texter1999).Oneofthemajordifferencesbetweencrystallineandliquidsurfactantsatroomtemperatureistheorderwithinthechemicalstructure.Crystallinestructurescanexhibitlongrangeandshort-rangeorder.Liquidsurfactantshoweveronlyexhibitshort-rangeorder.Surfactantsthathavenolong-termorderaretermedisotropic(29.Texter1999).Besidesthephysicalstate,anotherwaytoclassifysurfactantsisbyionicity.Ionicityconcernsthechargeassociatedwiththesurfactant.Anionicsurfactantshaveanegativechargeonthelongchain.Thethreemostcommonanionicgroupsarethesulfonate(-SO3-),thecarboxylate(-CO2-),andthesulfate(-OSO3-).Arrangedaccording

PAGE 29

8totheirhydrophilictendencies,thecarboxylateisthemosthydrophilicfollowedbythesulfonate,thenthesulfate.Anionicsurfactantsareutilizedinavarietyofindustriesincluding:paints,textiles,petroleum,householddetergents,paper,polishes,shampoos,personalcaresoaps,andcosmetics(20.Porter1991).Nonionicsurfactantscontainaheadgroupthathasnochargeassociatedwithit.Repeatingunitsofethyleneoxideinthesurfactantstructurearemostcommoninthenonionicsurfactants.Hydrationwithnonionicsurfactantscontainingethyleneoxidegroupsisbelievedtooccuratarateofthreewatermoleculesforeveryethyleneoxideunit.Nonionicsurfactantshaveapplicationsinvariousindustriesincluding:petroleum,shampoos,textiles,householdcleaners,paper,andcosmetics(20.Porter1991).Cationicsurfactantshaveapositivechargeonthelongchain.Cationicsurfactantsareagoodsourceofhydrogenbonds.Cationicsurfactantsareemployedinaplethoraofchemicalindustriesincluding:textiles,biocides,petroleum,haircare,fertilizers,andlubricants(20.Porter1991).Zwitterionicsurfactantscancarrypositiveornegativechargedependingonthesurroundingconditions.Zwitterionicsurfactantsarealsocalledampoterics.Zwitterionicsurfactantshaveawiderangeofapplicationsinvariousindustriesincluding:dish-washingsoap,handsoap,petroleum,textiles,firefighting,carwashingsoap,andfabricsofteners(20.Porter1991).Inadditiontothequalitativeclassificationmethodsappliedtosurfactantsafewquantitativemethodshavebeendevelopedtoaidinprocessdesigndecisions.Perhapsthemostwellknownquantitativepropertiesofsurfactantsarethehydrophilelipophilebalancenumber(HLB),thecriticalmicelleconcentration(CMC),andtheKraftpoint.

PAGE 30

9Eachofthesequantitativepropertiesgivesgreatinsightintothephysicalcomplexitiesofsurfactants.TheHLBofasurfactantisameasureofeffectivenessofasurfactantinwater-oilsystemsemulsificationandisbasedonthechemicalstructureofthesurfactant.TheHLBishydrophilicpercentofthesurfactantinmolarconcentrationdividedbyfive.Thescalegoesfromzerototwenty.Zerorepresentsasurfactantcompletelyinsolubleinwater.Twentycorrespondstoasurfactantcompletelysolubleinwater.ThusanHLBnumberoftenmeansthesurfactanthasanequalaffinityforwaterandoil.ItshouldbenotedthattheHLBnumberisaverygoodfordescribingthebehaviorofnonionicsurfactants,butitdoesnotapresentagooddescriptionforionicsurfactantbehaviorinwater-oilsystems(20.Porter1991).HowevermodificationshavebeenmadetotheHLBcalculationssoitcanbeappliedsuccessfullytosurfactantsthatcarryacharge(29.Texter1999).TheCMCofasurfactantisthelowestconcentrationatwhichasurfactantwillgathertogetherandformmicellesastructuredarrangementofsurfactantmolecules.Micellescantaketheseveralshapes:cylindrical,bilayers,spherical,vesicles,rodlike,ellipsoidal,andreversemicelles.Whenmicellesformtheyfunctionjustlikebulkymolecules.Normalmicellesformwhenthepolarheadgroupsofthesurfactantformacirclewiththenon-polartailsfillinginthecircle.Reversemicellesformwhenthepolarheadgroupsofthesurfactantsbandtogetherwiththenon-polartailsontheoutsideofthecircle.Figure1showsanillustrationofnormalmicellesandreversemicelles.Thesizeofthemicellesthatformdependthenumberofsurfactantmoleculesinvolvedcalledtheaggregatenumber-inthemicelleformation.

PAGE 31

10 Figure1.a).NormalMicelleFormationb).ReverseMicelleFormation(29.Texter1999)ThereareseveralmethodsavailabletotheresearchertodeterminetheCMCofasurfactantincluding:density,refractiveindex,specificheat,viscosityandx-raydiffraction(29.Texter1999).ThechemicalstructuredictatestheCMCofasurfactant.Withregardtothehydrophilicgroup,theCMCisrelativelyunaffectedbyachargedheadgroup.TheCMCofanethoxylatednon-ionicsurfactantislowerthanachargedhydrophilicgroup.AnethyleneoxidegroupadditiontoasurfactantincreasestheCMC.TheCMCincreaseswiththeinclusionofpolaratomsinthehydrophobicgroup.AdecreaseintheCMCisseenwhenthenumberofcarbonsinthehydrophobicgroupincreases(20.Porter1991).CloselyassociatedwiththeCMCofasurfactantistheKraftpoint.TheKraftpointisthetemperaturewherethesolubilityofthesurfactantinwaterisequivalenttotheCMC.AbovetheKraftpointmicellesformeasily,whereasbelowtheKraftpointthesurfactantsolubilityinwateristoolowformicelledevelopment(29.Texter1999).

PAGE 32

112.3SupercriticalSolubilityDeterminationMethodsTherearetwodifferentmethodsemployedtodeterminecomponentsolubilityinasupercriticalfluid-adynamicmethodandastaticmethod.Bothmethodswillbediscussedinthissection.Benefitsanddrawbacksforeachtypeofexperimentalset-upwillbepresented.Thedynamicmethodforcomponentsolubilityinasupercriticalfluidistermedsuchbecausethesupercriticalfluidisconstantlypumpedthroughacellcontainingthesolidorliquidofinterest.Figure2showsadiagramofadynamicexperimentalset-upforsolubilitydetermination.Anequilibriumcellischargedwithaknownweightofthecompoundofinterest.Thesolventispumpedintothesystematroomtemperatureandthencompressedtothedesiredoperatingpressure.Theflowingsolventreachesthedesiredtemperatureintherecirculatedenvironmentpriortotheequilibriumcell.Aflowratelowenoughtoallowequilibriumbetweentheliquidorsolidofinterestandthesupercriticalsolventismaintained.Theequilibriumcellispackedwithglassbeadsand/orsteelwooltoensurethatnosoluteleavesthecellunlessithassolubilizedintothesupercriticalmedia.TheamountofsoluteinthesupercriticalfluidcanthenbedeterminedbypassingthemixturethroughaUVdetectortodetectabsorbanceorbyusingacoldtrapcollectorandweighingitscontents.

PAGE 33

12 Figure2.DynamicExperimentalSet-Up(15.McHugh&Krukonis1986)Thedynamicset-uphasafewcharacteristicsthatmakeitthemethodofchoicefortheexperimenter-asignificantamountofsolubilitydatacanbeascertainedquickly;theexperimentscanbereproducedwithoutdifficulty;supercriticalfluidstrippingdatacanbeaccumulatedquickly;theset-upcanbebuiltinhouse.Thedynamicset-upisnotwithoutconstraintshowever.Clogging,anywhereinthesystem,withthesolutecanleadtoinaccuratesolubilitymeasurements.Phasechangesmayoccurthatgounnoticedintheequilibriumcellorthepiping.Thedensityofthesupercriticalfluidphasecancausethesupercriticalfluidtopushthesoluteoutoftheequilibriumcell;hencethesolubilitymeasurementswillbetoohigh.Tooffsetallofthesepotentialerrorintroductionsinexperimentalsolubilitymeasurementsadaptationstothedynamicset-upcanbemade.Alongwiththedynamicset-upforsolubilityexperiments,thereisalsoastaticexperimentalset-upforsolubilitydetermination.Theset-upiscalledstaticbecauseaknownquantityofthesupercriticalfluidispumpedintotheequilibriumcell.Figure3showsastaticexperimentalset-upforsolubilitydetermination.Inthestaticset-up,a

PAGE 34

13knownweightofsoluteisputintoavariablevolumeequilibriumcell.Theequilibriumcellisthenpumpedfullofpressurizedsolventatambienttemperature.Amagneticstirrerisusedtomakethemixturehomogeneous.Themixtureisheatedbyanairbath.Amanualpumpthenpressurizesthemixtureuntilnodiscernablesolutecanbeobservedintheviewcell. Figure3.StaticExperimentalSet-Up(15.McHugh&Krukonis1986)Thestaticexperimentalset-uphasseveralappealingcharacteristicsthatmakeitaviablerouteforempiricaldatacollection:phasechangescanbevisuallyestablished;solubilitycanbeacquiredwithoutsampling(UV/VisorIRdetector);pressureandtemperatureadjustmentscanbemadeeasilyandquickly.Thestaticset-uphowever,hasonemajorconstraint-theviewcellscanfailathigherpressureslimitingthepressurerangeunderwhichexperimentscanbeconducted(15.McHugh&Krukonis1986).

PAGE 35

14Variationstothedynamicandstaticexperimentalset-upshavebeendonebynumerousauthorstoimproveexperimentalaccuracyandtoincreasethetypeofdatathatcanbeacquiredduringanexperiment.Legret,Richon,andRenonpublishedanexperimentalmethodinvolvingthestaticexperimentalset-upallowingforaccurateP-T-x-ymeasurementsinapressurerangeof10-1000barandatemperaturerangeof-40oC-160oC.Theauthorsfocusforthisworkcenteredonsamplingthesystemsatexperimentalconditionswithadetachable15Lcell.The15Lsamplecellrepresentedonly0.015%ofthetotalvolumeofthesolubilitycell.Thedetachablecellisthenconnectedtoagaschromatograph,vaporized,andanalyzed.ThemethodwastestedonthepreviouslystudiedbinarysystemN2-n-Heptanesystemtodeterminethedependabilityofthenewexperimentalset-up.Asnotedbytheauthors,themostsignificantaspectoftheexperimentsisthesamplemethod.Disturbingthephaseandthermalequilibriumbytakingalargesamplevolumewillaltertheresultsobtainedbythegaschromatograph(12.Legret&Richon&Renon1981).Meskel-Lesavre,Richon,andRenondevelopedastaticexperimentalset-upinanefforttoeliminatetheneedforanequationofstateentirely.Theaforementionedauthorsexperimentalset-upmeasuresthesaturatedliquidphasemolarvolumeaswellasthebubblepressureofamixturedirectly.Theexperimentalmethodinvolveschargingthesolubilitycellwithaknownamountofliquidsolutewhichisthencooledtothepointofcrystallizationunderavacuum.Theamountofthegaseouscomponentaddedtothesystemisbasedonthesaturationpressureoftheliquidcomponentatthetemperatureinsidethesolubilitycell.Thecellisthenreweighedtodeterminetheamountofgaseouscomponentaddedtothesolubilitycell(16.Meskel-Lesavre&Richon&Renon1981).

PAGE 36

15Sane,Taylor,Sun,andThieshavedevelopedasemi-continuousflowsystemwithamicrosamplerfordeterminingcomponentsolubilityinsupercriticalfluids.Theauthorspurposeforcreatingasemi-flowapparatuswasdueinparttothematerialwhosesolubilitywasexamined5,10,15,20-tetrakis(3,5-bis(trifluoromethyl)phenyl)porphyrin(TBTPP)insupercriticalcarbondioxide.TheTBTPPwasmanufacturedinhousebytheauthors.Thedynamicexperimentalset-upforsolubilitydeterminationwasnotusedbecauseofthecostandtimeinvolvedinproducinglargequantitiesofTBTPP.Thestaticexperimentalset-upwasnotusedduetoaccuracyissueswithspectroscopicanalyticaltechniques.First,equilibriumbetweenTBTPPandsupercriticalcarbondioxideisachievedinavariablevolumeviewcell.Onceequilibriumhasbeenachieved,pure,heatedcarbondioxideissuppliedtothepistonsideofthesolubilitycellbyasyringepump.Thisnewsupplyofcarbondioxidepushesthemixtureinsidethesolubilitycellouttowardthesampleloop.Theauthorstestedtheaccuracyofthesemi-continuousflowsystemwithphenanthrene-supercriticalcarbondioxideexperimentsandobtainedresultscomparabletoliteraturevalues(24.Saneetal.2004).2.4PublishedWorksonSurfactantSolubilityinSupercriticalCarbonDioxideSomestudiesonthesolubilityofseveralsurfactantsinsupercriticalcarbondioxidehavebeencompletedandpublished.KramerandThodoshavepublishedseveralstudiesonfattyacidsurfactantsolubilityinsupercriticalcarbondioxide.In1988,KramerandThodospublisheddataonthesolubilityof1-hexadecanolandpalmiticacidinsupercriticalcarbondioxidefrom45oCto65oC.Theauthorsusedadynamicset-upfortheseexperiments.Cloudpointpressuresrangedfrom142barto416barforthe1-

PAGE 37

16hexadecanol-carbondioxidesystemwithasolubilityrangeinmolefractionfrom0.0019to0.0281.Cloudpointpressuresforthepalmiticacid-carbondioxidesystemrangedfrom142barto575bar.Thesolubilityrangeinmolefractionforthissystemis0.00052to0.0596(9.Kramer&Thodos1988).In1989,KramerandThodospublisheddataonthesolubilityof1-octadecanolandstearicacidinsupercriticalcarbondioxidefrom45oCto65oC.Onceagain,theauthorsusedadynamicset-upfortheseexperiments.Cloudpointpressuresrangedfrom140barto453barforthe1-octadecanol-carbondioxidesystemwithasolubilityrangeinmolefractionfrom0.00104to0.0319.Cloudpointpressuresforthestearicacid-carbondioxidesystemrangedfrom145barto468bar.Thesolubilityrangeinmolefractionforthissystemis0.00079to0.0147(10.Kramer&Thodos1989).KeithConsaniandRichardSmithdidperhapsthemostextensivestudyonsurfactantsolubilityinsupercriticalcarbondioxidein1990.ConsaniandSmithconductedsolubilityexperimentson135surfactantsinsupercriticalcarbondioxideat50oC.Theauthorsemployedthestaticexperimentalset-upforsolubilitydeterminationusingaboutonegramofsurfactantforeachexperiment.Perhapsthemostsignificantfeatureofthisstudyisthevastnumberofsurfactantcategoriestested:polyoxylatedcompounds,acids,quaternarysalts,amines,alkylphosphates,acidsalts,siliconmaterials,hydroxycompounds,andmiscellaneoussurfactants.Oneotherfactthatisimportanttotakenoticeofisthatnoentrainerwasusedinanyoftheexperimentsconducted.Unfortunately,ConsaniandSmithonlyconductedthestudyasaqualitativeanalysisreportingsolubilityas:miscible,partiallysoluble,andinsoluble(3.Consani&Smith1990).Nevertheless,theConsaniandSmithstudycanbeusedinmuchthesame

PAGE 38

17wayFrancis1954carbondioxidestudyisusedasaguideforsurfactantsolubilityinsupercriticalcarbondioxide.SincethepublicationoftheConsaniandSmithstudyonthesolubilityofseveralclassesofsurfactants,verylittlepublisheddatacanbefoundconcerningthisareaofresearch.Liuetal.publishedastudyin2001,onthesolubilityoftetraethyleneglycoln-laureletherinsupercriticalcarbondioxidewithn-pentanolasanentrainer.Theauthorsusedastaticexperimentalset-uptomonitortheeffectsofcarbondioxidedensity,entrainerconcentration,andincreasingpressureonthesolubilitytetraethyleneglycoln-laureletherinsupercriticalcarbondioxideandn-pentanol.Dataforcloudpointpressure,mixturedensity,entrainerconcentration,andsolubilityasweightpercentagearepresentedfor40oCand50oC(14.Liuetal.2001).In2003,Liuetal.publishedastudyontheeffectsofentrainerchoiceonthesolubilityofsurfactantLs-54insupercriticalcarbondioxide.TheauthorspresentsolubilitydataofLs-54insupercriticalcarbondioxideandLs-54-entrainerinsupercriticalcarbondioxidefrom35oCto50oC.Theentrainerstestedwere1-propanol,benzylalcohol,n-heptanol,andn-pentanol(13.Liuetal.2003).2.5EntrainerSolubilityinSupercriticalCarbonDioxideThechoiceofentrainerforsupercriticalsolubilityexperimentscanbeatrickydecisionfortheexperimentertomake.Theentrainershouldbesolubleinthesupercriticalmedia,inthiscasecarbondioxideaswellashavetheabilitytosolubilizethethirdsubstrate.Averycommonchoiceforentrainerisethanol.Therefore,knowledgeofthesolubilityofethanolinsupercriticalcarbondioxideisimportant.

PAGE 39

18Inhis1954publication,Francisreportedethanoltobemisciblewithcarbondioxide.RecallthattheconditionsforFrancisexperimentswereatemperatureof21oCto26oCandapressureatabout65atmospheres.In1996Chany-YihDayetal.publishedastudyonthephaseequilibriumofcarbondioxideandethanol.Theauthorsofthispaperranexperimentswithvariouscompositionsfrom8.6barto79.2barattemperaturesrangingfrom18oCto40oC(2.Chang-Yih&Chang&Chen1996).Figure4showsphasebehaviorofacarbondioxide-ethanolsystemabovethecriticaltemperatureofcarbondioxideasobservedbyChany-YihDayetal. P-x-yDiagramofCO2+Ethanol010203040506070809000.20.40.60.81x1,y1MoleFractions P r e s s u r e ( b a r ) 308.11K 308.11K 313.14K 313.14K Figure4.PhaseBehaviorofCarbonDioxide-Ethanol(2.Chany-YihDayetal.1996)Theauthorspublishedresultsshowthatethanolissolubleinsupercriticalcarbondioxideatrelativelylowpressuresandatvariouscompositions.

PAGE 40

19Chapter3PhaseEquilibriumModelingThischapterwillpresentbackgroundonphaseequilibriumaswellasadetaileddescriptionofthemodelusedtoexplainthebehaviorofcarbondioxide-ethanol-surfactantsystems.Everyequationofthemodelwillbepresented.Adiscussionoftheerrorassociatedwithacubicequationofstatewillalsobepresentedhereaswell.3.1PhaseEquilibriumInordertoachievethermodynamicequilibriumtheGibbs-DuhemEquationmustbesatisfied: iiidxVdPSdT0 1whereiisthechemicalpotentialofcomponenti.ThechemicalpotentialofaspeciesisaconceptthatGibbsdevelopedtohelpsolvephaseequilibriumissuesconcerningcomponentdistributionbetweenphases(21.Prausnitz&Lichtenthaler&Azevedo1999).AtconstantpressureandtemperaturetheEquation1simplifiesto iiidx0 2Whenphaseequilibriumoccursbetweentwophases,thedistributionofcomponentsbetweenthetwophasesataconstantpressureandtemperaturecanberepresentedas: iiidndG12 3

PAGE 41

20Atequilibrium,GibbsfreeenergyisataminimumsotheleftsideofEquation3iszeroleaving: 21ii 4Whenthetransferofmorethanonecomponentintooneofthephasespresentoccurs,Equation4takesthefollowingform: kiii...21 5TheconceptoffugacitywasdevelopedG.N.LewisinordertosimplifytheconceptofchemicalpotentialproposedbyGibbsbecausenodirectmeasurementofthechemicalpotentialofaspeciesispossible(21.Prausnitz&Lichtenthaler&Azevedo1999).Underidealconditionsforapuregas,Lewisfoundthefollowingrelationship: iTiP 6Fromtheidealgasequation P RTi 7PluggingEquation7intoEquation6andthenintegratingtheresultyieldsthefollowingrelationship: 00ln P PRTii 8Equation8onlyworksforpureidealgases.Moreimportantlythough,Equation8makesGibbsabstractchemicalpotentialafunctionofpressureaneasilymeasurablequantity.Lewisnamedafunctioncalledfugacity,f,andcharacterizeditsimilarlyinEquation9: 00lniiiiffRT 9

PAGE 42

21Equation9canbeusedtodeterminethechangeinchemicalpotentialofaspeciesunderisothermalconditionsregardlessofphase(solid,liquid,vapor),purity,orideality.UtilizingLewisfugacityconcept,phaseequilibriumcanberepresentedas: 00lniiiiffRT 10and 00lniiiiffRT 11PluggingEquations10and11intoEquation9,theresultisthefollowing: 0000lnlniiiiiiffRTffRT 12Ifthestandardstatesaretakentobethesame:00ii 13and00iiff 14SubstitutionofEquations13and14intoEquation12yieldthefollowingresultatequilibrium:iiff 15Atequilibriumthefugacityofcomponentiinthephaseisequaltothefugacityofcomponentiinthephase.Lewisalsodefinedthefugacitycoefficient,,adimensionlessratioas: Pyfii 16

PAGE 43

22Foranidealgas,thefugacitycoefficient,,isequalto1(21.Prausnitz&Lichtenthaler&Azevedo1999).Forapuresubstancethefugacitycoefficientcanbecalculatedbyusingthefollowingequation: PPdPPZdPPRTVRT0011ln 173.2ExcessFunctionsWhendealingwithmixtures,deviationsfromidealitywilloccurwhetherpositiveornegative.Inordertoaccountforthedeviationsfromidealityexcessfunctionsforthermodynamicrelationshavebeendeveloped.Ifamixtureisatidealconditionstheexcessfunctionsareequaltozero.TheexcessGibbsenergytakestheform:xPTsameatsolutionidealxPTatsolutionactualEGGG,,,, 18TheGibbsenergyofthemixturecanbedeterminedfromanequationofstate.FromMaxwellrelationswecanobtainexcessentropy,enthalpy,andvolume(21.Prausnitz&Litchenthaler&Azevedo1999): ExPESTG, 19 2,THTTGExPE 20 ExTEVPG, 21

PAGE 44

23IntermsofexcessfunctionsEquations1and2become: iEiiEEdxdPVdTS0 22and iEiidx0 233.3Liquid-LiquidEquilibrium,Vapor-LiquidEquilibrium,andLiquid-Liquid-VaporEquilibriumOftentimes,mixturescomposedofmorethantwocomponentsareofscientificinterest.Theabilitytorepresentthephaseequilibriumofamixtureaccuratelyiscrucialtoprocessdesignoptimization.Severaltypesofphaseequilibriumexist:liquid-liquidequilibrium(LLE),liquid-solidequilibrium(LSE),liquid-vaporequilibrium(VLE),liquid-liquid-vaporequilibrium(LLVE),liquid-solid-vaporequilibrium(LSVE).ThefocusofthisdiscussionwillbeLLE,VLE,andLLVE.OneformofequilibriumthatisimportantforachemicalengineertobeawareofisLLE.TwoliquidsaremiscibleiftwomathematicalrelationshipsshownasEquations24and25aresimultaneouslysatisfied:0mixG 24 0,22xTmixxG 25wheremixistheGibbsfreeenergyofmixingatconstantcompositionandtemperature.Increasingordecreasingthepressureofthemixturecanhaveadirecteffectonthemiscibilityofasystem.Changesinpressurecancreateamiscibilitygapinanotherwise

PAGE 45

24misciblesystem.Onthecontrary,changesinpressurecanmakeanotherwiseimmisciblesystempartiallyorcompletelymiscible.ItshouldalsobenotedthatthevolumechangeofmixingisalsoafunctionofpressureasshowninEquation26: mixxTmixVPG, 26Pressureisnottheonlyvariablethathasanaffectonthemiscibilityofliquidmixtures,temperaturealsoplaysarole.Mixtureshaveacertaintemperaturecalledtheconsolutetemperature,Tc,orthecriticalsolutiontemperature.Thecriticalsolutiontemperatureisthemaximumtemperatureatwhichamixturecanexistattwophases.Thecriticalsolutiontemperaturecanbeamaximumcalledtheuppercriticalsolutiontemperature(UCST)oraminimumcalledthelowercriticalsolutiontemperature(LCST).UCSTsaremorecommonlyobservedversusLCSTsexperimentally.LCSTsareusuallyobservedinmixturesthatcontaincomponentswherehydrogenbondingisstrong(21.Prausnitz&Lichenthaler&Azevedo1999).TheLCSTisahighertemperaturecomparedtotheUCST(15.McHugh&Krukonis1986).InadditiontotheLCSTandtheUCST,upperandlowercriticalendpoints(UCEPandLCEPrespectively)existformixtures.TheLCEPisthepointatwhichagasandliquidformonesupercriticalphasewithasub-criticalsolid.TheLCEPhappenswherethecriticalmixturecurveconvergesonthelowtemperatureportionofthesolid-liquid-gasline.TheUCEPforsupercriticalfluid-solidmixturesisthepointwhereonephaseisformedwiththesupercriticalgas-liquidandthesub-criticalsolidphase.Forliquid-supercriticalfluidmixtures,theUCEPisthepointwherethesupercriticalgas-liquidformonephasewithasub-criticalliquidwithariseintemperature.TheUCEPfor

PAGE 46

25supercriticalfluid-solidmixtureshappenswherethecriticalmixturecurveconvergesonthehightemperatureportionofthesolid-liquid-gasline.TheUCEPforsupercriticalfluid-liquidmixtureshappenswherethecriticalmixturecurveconvergesonthehightemperatureportionoftheliquid-liquid-gascurve(15.McHugh&Krukonis1986).Iftwoliquidphasesarepresent,thecompositionsofthetwophases,designatedandrespectively,aredeterminedbytheequalityofcomponentfugacityineachphaseforeachphase: 1111xx 27 2222xx 28TheactivitycoefficunitconcentrationusuallymolfractionasshowninEquation29(21.Prausnitz&Lichenthaler&Azevedo1999): iiixa 29Theactivityofcomponenti,ai,isdefinedastherelationofthefugacityofcomponentiatsomeP,T,andxitothefugacityatstandardstateasshowninEquation30: 00,,,,,,xPTfxPTfxPTaiii 30Severalmodelsexisttodetermineactivitycoefficientsformixtures:vanLaar,RegularSolutions,Wilson,NRTL,UNIQUAC,UNIFAC.Eachmodelhasitsownsetofequationsforcalculatingtheactivitycoefficientofcomponenti(21.Prausnitz&Lichenthaler&Azevedo1999).

PAGE 47

26AlongwithunderstandingLLE,understandingVLEisjustascrucialbecauseseveralsystemsexistasvaporandliquidphasessimultaneously.Equation15holdsforVLEwithandrepresentingtheliquidandvaporphaserespectively:LiViff 31Intermsofthecomponentfugacitywhenonephaseexists,Equation31takestheform: PPLisatisatiiiViisatdPRTVPxPyexp 32TheexponentialtermontherighthandsideofEquation32iscalledthePoyntingfactor.ThePoyntingfactoraccountsforthefactthattheliquidisatpressureP,notthevaporpressureoftheliquid.Atlowpressures,thePoyntingfactorisveryclosetoone(30.Walas1985).AnothermethodtodetermineVLEisbyflashcalculation.FlashcalculationofVLEisanextensionofthevaporizationequilibriumratio(VER).EquationshowstheVER,whichisalsoknownasthedistributioncoefficient,Ki: iiixyK 33Thetri-folddependenceofKioncomposition,temperature,andpressurerequiressuccessivesubstitutionmethodstodeterminesolutionstoVLEcalculations.AgoodstartingapproximationforsolvingVLEproblemsusingVERaretheidealvaluesofKi.Equation34showshowidealvaluesofKiaredetermined: P PKsatii 34

PAGE 48

27Fornon-idealsystemsKvaluestaketheform: PFactorPoyntingPKiVisatisatiiiViLi 35Whenamixtureisatconditionsbetweenthebubblepointandthedewpoint,thephaseequilibriumcanbetabulatedbyflashcalculations.Flashcalculationscanbedoneatfixedconditions:enthalpyandpressure,entropyandpressure,ortemperatureandpressure(30.Walas1985).Forthefixedtemperatureandpressureconditions,Equations36and37showthematerialbalance:iiiVyLxFz 36iiixKy 37CombiningEquations36and37togetheratflashconditionsyieldsEquation38: 0111iiKz 38where=V/F.Aninitialvalueof=1willgiveasolutionthatconverges(30.Walas1985).WhendealingwithLLVE,athreephaseisothermalflashcalculationcanbedonetodeterminethecompositionsofeachphase.ForLLVE,thematerialbalanceofEquation36takestheform: 2211iiiixLxLVyFz 39

PAGE 49

28Sincetherearetwoliquidphases,therearetwoKvaluesforeachcomponent,oneforeachliquidphase: 11iiixyK 40 22iiixyK 41Anewparameter, 211 L L L 42followingequations: iiiiiiKKKKz011111211 43 iiiiiiKKKKKz01111121221 44calculated.Thetwoliquidphasebalancestaketheformofequations45and46: VFLi1 45 12iiLVFL 46Thevaporphasecompositionstaketheform: 21111iiiiKKzy 47

PAGE 50

29Theliquidphasecompositionstaketheform: 1211111iiiiiKKKzx 48 2122111iiiiiKKKzx 49LLVEcalculationscanbecarriedoutwithsubstitutionmethodssuchasNewton-Rhapson(25.Seader&Henley1998).Itshouldalsobenotedthattheaforementionedauthorsconventionhadalreadybeensetforthepurposesofthisthesis.

PAGE 51

30ThealgorithmforisothermalflashcalculationsisshowninFigure5:Figure5.AlgorithmforIsothermalFlashCalculations(25.Seader&Henley1998).ItshouldbenotedthealgorithmpresentedinFigure5isforcomposition-dependentK-values. Estimateofx,y CalculateK=f(x,y,T,P) Iteratively Calculatexandy Compareestimatedandcalculatedvaluesofxandy Newestimateofxandy EstimateKvalues StartF,zfixedP,Tofequilibriumphasesfixed Converged Notconverged

PAGE 52

31WhendealingwithaternaryLLVsystem,athreephaseisothermalflashiscarriedout.Figure6showsthealgorithmforaternaryLLVsystemisothermalflash:Figure6.AlgorithmforLLVIsothermalFlashCalculations(25.Seader&Henley1998). Searchforthree-phasesolution Searchfor 21 L L solution Searchfor 1 L V solution Single-phasesolution StartF,zfixedP,Tofequilibriumphasesfixed Solutionfoundwith 10 10 Solutionfoundwith 10 1 Solutionfoundwith 10 10or > 1 Vapor > 1 liquid Solutionnotfound Solutionnotfound Solutionnotfound

PAGE 53

323.4ActivityCoefficientModelsTheactivitycoefficientmodelsmentionedinsection3.3deserveamoredetailedexplanation.Thissectionwillpresentsomedetailsforeachactivitycoefficientmodel.Activitycoefficientscanbedeterminedexperimentallybymeasuringvariousproperties:vaporpressurelowering,freezingpointdepression,boilingpointelevation,andosmoticpressure(31.Walas1985).ThevanLaarmodelforactivitycoefficientsusesareciprocalformoftheexcessGibbsenergyasabasisforactivitycoefficientdetermination: 2111BxAxGRTex 50Theactivitycoefficientsarethengivenby: 22121lnBxAxBxA 51 22112lnBxAxAxB 52whereAisgivenbyEquation53: 2112211lnln1lnlnxxA 53andBisgivenbyEquation54: 2221122lnln1lnlnxxB 54AcoupleimportantpointsshouldbenotedregardingthevanLaaractivitycoefficientmodelassumptions:mixturesconsistofmoleculesofthesamesizeandshape

PAGE 54

33andthevanderWaalsequationofstatecanaccuratelydescribethemixturebehavior(23.Sandler1999).ThevanLaarmodelisnowviewedasanempiricalmodelforactivitycoefficientsduetopoorrepresentationwithvanderWaalsparameters(31.Walas1985).TheRegularSolutionsTheorycomesfromScatchardandHildebrandwhodeterminedsomeveryimportantpropertiesofmixtures:excessvolumeisnearlyzero,excessentropyisnearlyzero,andveryfewmixtureswereactuallywellrepresentedbythevanderWaalsequationofstate.Scatchardproposedusingtheexperimentalchangeintheinternalenergyonvaporizationversusanequationofstatetocalculatetheinternalenergychangeinvaporization(23.Sandler1999).TheRegularSolutionTheoryrepresentsthechangeintheinternalenergyonvaporizationasaratiotovolume.Thisratioofthechangeintheinternalenergyonvaporizationtovolumeiscalledthesolubilityparameter,.ActivitycoefficientsfromtheRegularSolutionsTheorytakethefollowingform: 2212211ln RT VL 55and 2212122ln RT VL 56InEquations55and56LV1andLV2aretheliquidmolarvolumesofcomponent1andcomponent2.

PAGE 55

34Theterms1and2arethevolumefractionsofthemixturearedefinedbyEquations57and58: LLLVxVxVx2211111 57and LLLVxVxVx2211222 58PerhapsthemostattractivefeatureoftheRegularSolutionTheoryisthatactivitycoefficientscanbeascertainedbasedsolelyonknowledgeofthepureliquidmolarvolumes.However,theRegularSolutionTheoryisnotgoodtousewhendealingwithmixturesofpolarliquidsbecauseoftheaforementionedassumptions(31.Walas1985).TheWilsonequationtakesintoaccounttheinteractionsbetweenmolecules.Thisinteractionischaracterizedintermsofprobabilities,i.e.theprobabilityoffindingacertainmoleculewithinalocalvicinityofanothermolecule.TheWilsonequationforactivitycoefficientsinvolvesatwoparameterequationfortheexcessGibbsenergyofamixture.TheexcessGibbsenergyusingtheWilsonequationisgivenby: 2121221211lnlnxxxxxx RT Gex 59TheactivitycoefficientsusingtheWilsonequationforGibbsexcessenergyisgivenby: 2121221212121221211lnlnxxxxxxxx 60 2121121212111221212lnlnxxxxxxxx 61

PAGE 56

351221canbedeterminedifinfinitedilutionactivitycoefficientsforbothcomponentsareknownasshowninEquations62and63:211211lnln 62122121lnln 63TheWilsonequationforactivitycoefficientsmodelsmixturesofpolarandnon-polarsubstancesverywell.TheWilsonequationcanalsobeusedtomodelmulti-componentmixturesusingonlybinaryparameters.Unfortunately,theWilsonequationalsohascertainchallenges:neitherparametercanbenegativeiftheentirecompositionrangeistobecharacterized,liquid-liquidimmiscibilitycannotbedescribed,andmultiplerootscanexistforanactivitycoefficientwhosevalueisbelowone(31.Walas1985).TheNRTL(Non-RandomTwoLiquid)equationforactivitycoefficientsdevelopedbyRenonandPrausnitzinvolvesthreeparameters(,12,21).NRTLisbasedonatwo-celltheory.Thetwo-celltheorydescribesaliquidmixtureascellsofmoleculesofliquidoneandliquidtwoenvelopedbyothercellsofthesamemolecules(31.Walas1985).TheGibbsenergyofthetwocellsisgivenas: 21211111gxgxg 64and 222212122gxgxg 65Itshouldbenotedthatg11andg22arethepurecomponentGibbsenergiesandthatg12istaketobeequaltog21.TheexcessGibbsenergyofthecellsisthendescribedbyEquation66: 22121221121211ggxxggxxgex 66

PAGE 57

36InEquationx12andx21arethelocalmolefractionsandaredefinedasfollows: RTgxRTgxxx/exp/exp11121211221121 67 RTgxRTgxxx/exp/exp22121121212212 68The12terminEquations67and68isacharacteristicconstantrepresentingthenon-randomnessofthemixture.Itshouldbenotedthat12valuesrangingfrom0.1to0.5donothavethatgreatofanaffectontheactivitycoefficient.Figure7showshowthevalueof12changestheactivitycoefficientofaparticularspecies.AccordingtoRenonandPrausnitz,usingvaluesrangingfrom0.2to0.47for12shouldgivesatisfactoryresults(31.Walas1985). Figure7.NRTLActivityCoefficientDependenceon12Value(31.Walas1985).

PAGE 58

37Thelocalmolefractionsx21andx12canbefoundbysolvingthefollowingequations: RTggxxRTggxx//exp11211221112112221 69 RTggxxRTggxx//exp22121212221212112 70PuttingEquations69and70intoEquation66theexcessGibbsenergyforthesystembecomesEquation71: 211212122121212121xxGGGxxGxxRTGex 71Equation59isaslightlysimplifiedform.Theterms21,12,G21,andG22mustbedefined.Theterms21and12takethefollowingform: RTgg/111221 72 RTgg/221212 73ThetermsG21andG22takethefollowingform: 211221expG 74 121212expG 75

PAGE 59

38TheactivitycoefficientsbasedontheNRTLequationtaketheformofEquations76and77: 221211212221212121221lnGxxGGxxGx 76and 221212121212121212212lnGxxGGxxGx 77TheNRTLequationforactivitycoefficientsoffersexcellentmodelingcapabilitiesconcerningliquid-liquidequilibrium.NRTLcanbeextendedtomulti-componentmixturesusingonlydataforbinarypairswithoutmuchdifficulty.PerhapsthebiggestsetbackwiththeNRTLequationisthenecessityofthreeparameters.HavingthreeparametersallowsforNRTLtomodelexperimentaldatawithgreateraccuracythenvanLaarandWilson(31.Walas1985).TheUNIQUAC(UniversalQuasi-Chemical)equationforactivitycoefficientsdevelopedbyAbramsandPrausnitzisamodelbaseduponstatisticalmechanicsandassociationofgroups.UNIQUACcalculatestheexcessGibbsenergyofamixtureasafunctionofthedifferencesinmoleculesizeaswellastheenergydifferencesbetweenthemolecules.EquationshowshowtheexcessGibbsenergyforamixtureiscalculated: RT residualG RT ialcombinatorG RT Gexexex 78ThecombinatorialportionofEquation66representsthedifferenceintheshapesandsizesofthemolecules.TheresidualportionofEquation78representstheenergydifferencebetweenthemolecules(23.Sandler1999).

PAGE 60

39ThecombinatorialpartofEquation78iscalculatedbyusingthefollowingequation: iiiiiiiiiexqxzxxRTialcombinatorGln2ln 79Equation79hasseveralpartsthatmustalsobedefined.The termrepresentsthesegmentfractionofspeciesiandisdefinedbythefollowingequation: jjiiirxrx 80InEquation79,zrepresentstheaveragecoordinationnumber,whichisusuallytakenasten. jjiiiqxqx 81TheqterminEquation79representsthesurfacefactorofaparticularsegmentofthemoleculesbeingstudied.TherterminEquation80representsthevolumefactorofaparticularsegmentofthemoleculesbeingstudied.Theqandrtermsaredeterminedthroughcrystallographyexperiments(31.Walas1985).TheresidualcomponentinEquation78isdeterminedbythefollowingequation: jijiiexxq RT residualGln 82Thetermjitakestheenergydifferencesbetweenthemoleculesegmentsintoaccountandisdefinedas: RT uujjijji ln 83

PAGE 61

40InEquation83,uijistheaverageinteractionenergybetweentwoparticularsegmentsofthemolecules.TheUNIQUACequationcanbeutilizedtodescribemulti-componentmixturesusingonlybinaryparameters.Liquid-liquidphaseequilibriumcanbedescribedsufficientlyusingUNIQUAC.MixturesofvastlydifferentmolecularsizescanbecharacterizedwithUNIQUACwithouttoomuchdifficulty.ChallengesfortheUNIQUACequationincludeoccasionalpoorrepresentationofamixtureandthemathematicalintricacyoftheequations(31.Walas1985).AlongthesamelineastheUNIQUACequation,theUNIFAC(UNIQUACFunctionalGroupActivityCoefficients)equation,developedbyFredenslund,Jones,andPrausnitzalsoreliesonstatisticalmechanicsandassociationofgroups.TheUNIFACequationinvolvesthesumofacombinatorialandresidualcomponenttocalculatetheactivitycoefficientofeachcomponentshowninEquation85:RiCiilnlnln 84ThecombinatorialcomponentofEquation84isdefinedas: ijjiiiiiiiiCilxxlqzxln2lnln 85TheonlynewaspectofEquation73ascomparedtotheUNIQUACequationisthelterm.EveryothercomponentofthecombinatorialpartoftheUNIFACequationisthesameasintheUNIQUACequation.ThelterminEquation85isafunctioninvolvingthesurfaceareaandvolumeparametersofthemoleculesegment.

PAGE 62

41ThelterminEquation85isdefinedas: 1 2 iiiirzqrl 86TheresidualcomponentofEquation72isdefinedas: kikkikRivlnlnln 87Thetermkrepresentstheresidualgroupactivitycoefficient,whilethetermk(i)representstheresidualactivitycoefficientofgroupkinasolutionthatonlyhasmoleculesofcomponenti.Thektermisdefinedbythefollowingequation: mnnmnkmmmmkmkkqln1ln 88Thek(i)termisalsodefinedbyEquation88,justinvolvingthegroupsofeachindividual TaRTUUmnnnmnmnexpexp 89Theinteractionenergiesbetweenthevariousmoleculesegmentscanbelookedupincharts(7.Fredenslund&Jones&Prausnitz1975).3.5TheModelThemodelusedtodescribethesesystemswasthePeng-Robinson-Stryjek-Vera(PRSV)equationofstatewithWong-Sandler(WS)mixingrules.TheimprovedPeng-RobinsonequationofstateproposedbyStryjekandVeraabbreviatedPRSV(27.Stryjek

PAGE 63

42&Vera1986),offersacoupleofminoradjustmentsthatallowformoreaccuratevapor-liquidequilibriumcalculations.ThePeng-Robinson(PR)equationofstate(18.Peng&Robinson1976)hasbeenoneofthemodelsofchoiceusedtodescribechemicalsystembehavior.ThePRequationofstateisaslightadjustmenttotheattractiveandrepulsiveforcesrepresentedbyvanderWaalshardsphereequation.ThePRequationofstatetakesthefollowingform: )()()()(bvbbvvTabvRTP 90ThePRSVequationofstatetakestheform: )()()(bvbbvvabvRTP 91Equations90and91areoftenexpressedintermsofthecompressibilityfactorZ,whichtakestheform: RT PvZ 92So,Equation91representedintermsofequation92takesacubicform:0)()23()1(32223BBABZBBAZBZ 93WhereAandBarerepresentedasfollows: 222 T R aPA 94 RT bPB 95Equation93generatesuptothreerootsforZdependingonthenumberofphasespresentinthesystem.ThelowestpositivevalueofZinthetwo-phaseregionrepresentsthe

PAGE 64

43molarvolumeoftheliquid.ThehighestpositivevalueofZinthetwo-phaseregionrepresentsthemolarvolumeofthevapor.Therepulsiveforcecorrectionb,isrepresentedby: ccPRTb077796.0 96Therepulsiveforcecorrection,b,takesintoaccounttheforcesbetweenmoleculeswhentheycollidewitheachother.Thefrequencyandforceofthesemolecularcollisionsdirectlyaffectstheoverallpressureofasystem.Additionally,asaresultofthefrequentcollisionsbetweenmolecules,thetruevolumeoccupiedbythemoleculeswouldbesmaller.Thetruevolumewouldalsobesmalleriftheengineermadetheassumptionthatthemoleculesareperfectspheres.Meanwhile,attractiveforcesbetweenmoleculeslowertheforceandfrequencyofthemolecularcollisions.Theattractiveforcesbetweenthemoleculesmustalsobetakenintoaccountformodelaccuracy.Theattractiveforcecorrectiona,isrepresentedby: ccPTRa22457235.0 97Thetermisrepresentedby: )]1(1[)21()21(rT 98hereisonlyafunctionoftheacentricfactor,.TheimprovementsuggestedbyStryjekandVeraoccurswith.HereStryjekandVerarepresentas:)7.0)(1(5.010rrTT 99

PAGE 65

44Theterm0isrepresentedasafunctionoftheacentricfactor:3200196554.017131848.04897153.1378893.0 100Theacentricfactorisessentiallyameasureofhowtheforcesaroundamoleculecauseittodepartfromsphericalsymmetry.Tr,thereducedtemperature,withTandTcinKelvintakestheform: crTTT 101Theterm1isuniquetoeverycompound.Wong-Sandlermixingrules(32.Wong&Sandler1992)areemployedtoimprovetheaccuracyofmodelingbinarysystembehavior.ThemixingrulesarebasedonthesettingtheexcessHelmholtzfreeenergyatinfinitepressuretoanactivitycoefficientmodelusingthefollowingapproximation: iEiEiEiExTaxPhighTaxbarPTaxbarPTg,,,,1,,1, 102TheWong-Sandler(WS)mixingrulestakethefollowingform: ijjimmRTabxxRTab)()( 103 )1( 2 )()()(ijjjiiijkRTabRTabRTab 104wherekijisaninteractionparameter.

PAGE 66

45ItshouldbenotedthatEquation103onlygivesonevalueforthelefthandsideoftheequation.InordertodeterminebmandamofEquation103thefollowingequationsareused: iiiiEiijjjimRTbaxCRTaRTabxxb1 105 CxabaxbaiEiiiimm 106where 62322.0212lnCforPRSVequationofstate.TheexcessGibbsenergyisgivenbythefollowingequation: iiexxRTGln 107SincetheexcessHelmholtzenergyisequaltotheexcessGibbsenergy,pluggingtheanswerfromEquation107intoEquations105and106issufficientformodelingpurposes.Thefugacitycoefficientofthecomponentiinthemixture,i,isdeterminedbythefollowingequation: )414.0ln()414.2ln(2828.2)ln()1()ln(BZBZBBAAxBABZZBBijijiii 108Thefugacitycoefficientisthenusedtocalculatesolubilityinthesupercriticalfluidinthefollowingequation: PfactorPoyntingTPxyisatiii)exp()( 109

PAGE 67

46Psat(T)isthevaporpressureofthecompoundofinterestattheexperimentaltemperature.TheWagnerequationforethanolvaporpressure(19.Poling&Prausnitz&OConnell2001)takesthefollowingform: 55.25.1588.18762.417831.168587.8lnTTPcr 110Thetermisdefinedbythefollowingequation: cTT 111ThePoyntingfactorinEquation109isrepresentedas RT VPPfactorPoyntingmsat)( 112Themolarvolume,Vm,isfoundbyusingtheRackettEquation(22.Rackett1970): cTccmPZRTVr])1(1[)72( 113Zcisthecriticalcompressibilityfactorandisrepresentedby: ccccRTVPZ 114Theliquidphasemolarcompositionsarerepresentedbyx1,x2,andx3.Carbondioxideisx1.Ethanolisx2.Thesurfactantisx3.Theliquidphasemolarcompositionthustakestheshape: 1321xxx 115

PAGE 68

47Thevaporphasemolarcompositionsarerepresentedbyy1,y2,andy3wherecarbondioxideisy1,ethanolisy2,andthesurfactantisy3.Thevaporphasemolarcompositiontakestheform: 1321yyy 116Itshouldbenotedthatacubicequationofstatedoesnotgenerateeverythermodynamicpropertyofacompoundormixtureaccurately.Inparticular,theliquidmolarvolumesthatthePRSVequationofstatecalculatescanbeasignificantsourceoferrorinanalysis.StryjekandVerareportliquidmolarvolumeerrorsnohigherthan8%forparaffinsoflowmolecularweight.Errorsassociatedwithbutanethroughheptanestayinasmallrange6%.Higherhydrocarbonshavelargerandnegativeerrorsforliquidmolarvolumes.Themolarvolumeerrorassociatedwithpolarcompoundscanbehighaswell.Forexample,methanolhasanaveragedeviationof20%betweentheactualliquidmolarvolumeandthePRSVcalculatedliquidmolarvolume.Deviationsrangingfrom2%to4%arecommonforalcoholsofhighermolecularweightthanmethanol(27.Stryjek&Vera1986).BecausetheerrorassociatedwiththeliquidmolarvolumespredictedbythePRSVequationofstatecanbeveryhigh,thePRSVequationofstateisnotusedtodeterminetheamountofliquidcarbondioxideusedineachexperimentalrun.InsteadtheImprovedRackettEquation(26.Spencer&Danner1972)isused.TheImprovedRackettEquationtakestheform: cTracmPZRTVr])1(1[)72( 117

PAGE 69

48Zraisaconstantthatisdeterminedexperimentallyforeachcompound.ForcarbondioxideZraisreportedas0.2736.TheaveragepercentdeviationinliquidmolarvolumesusingtheImprovedRackettequationis0.72%(26.Spencer&Danner1972).3.6CriticalPropertyEstimationOftentimeswhenengineerslooktomodelingobservedphasebehavioranequationofstateinvolvingpurecomponentdataisutilized.Somecubicequationsofstateusepurecomponentcriticalproperties(Pc,Tc,Vc,Zcconsequentphasebehaviorofmixtures.Frequentlythough,thecriticalpropertiesforonecomponentarenotavailable.Fortunately,methodsexistthatallowforareasonablygoodestimationofpurecomponentcriticalproperties.OnesuchmethodforcriticalpropertyestimationthathasbeenemployedsuccessfullyistheJobackgroupcontributionmethod(28.Tester&Modell1997).TheJobackmethodbreaksdownmoleculesintocertainfunctionalgroups.Aparticularvalueforeachfunctionalgroupisthenassignedwithrespecttocriticalpressure,criticaltemperature,criticalvolume,andthenormalboilingtemperature.TheJobackgroupcontributionmethodforcriticalpropertyestimationwasoriginallytestedonover400compounds.Jobackalsodevelopedagroupcontributionmethodtodetermine:enthalpyofformation,Gibbsfreeenergyofformation,andtheidealgasstateheatcapacity(28.Tester&Modell1997).

PAGE 70

49Toestimatethecriticaltemperatureonabsolutescale,Jobackproposesthefollowingequation: 2965.584.jjjTijTijbcccvvTT 118ThecriticalpressureinunitsofbarisfoundbyEquation119: 20032.113.01jPijaccjvnP 119wherenaistheactualnumberofatomsinthemolecule.Thecriticalvolumeinunitsofcm3/molisgivenas: jVijccjvV5.17 120Theterm ijvinEquations118-120representsthenumberofgroupsofthetypejincompoundi.ThesummationterminEquations118-120includesallthegroupsfoundincompoundi.Theterms,,ccPTandcjVcanbefoundinchartsprovidedbyJoback(28.Tester&Modell1997).Onemorepropertycrucialtodevelopinganaccuratemathematicalmodelistheacentricfactor.Theacentricfactorofacompoundcanbeestimatedbyusingthecompoundboilingpointandthecalculatedvaluesforcriticaltemperatureandcriticalpressure.Theacentricfactoriscalculatedbythefollowingequation: 1013.1log17310ccbcbPTTTT 121

PAGE 71

50InEquation121theunitsforTbandTcareKelvinwhiletheunitsforPcarebar(28.Tester&Modell1997).3.7PhaseBehaviorClassificationAnaccurateanalyticalmodelcaneliminatetheneedforexcessiveexperimentalruns.Ideally,theanalyticalmodelisdevelopedtodescribephasebehavior,thencarefullyplannedandexecutedexperimentscanbeusedtoadjustthemodelparameters.Theanalyticalmodelcanbeusedtodeterminewhattypeofclassificationthesystemofinterestfallsinto.Binarymixturesfallintosixcategories:typeI,typeII,typeIII,typeIV,typeVandtypeVI.TypeIphasebehaviorisusuallyexhibitedbycomponentswithsimilarcriticalpropertiesorchemicalstructures.Thecriticalmixturecurveofatype-Ibinarysystemmovesfromthecriticalpointoftheheaviercomponenttothecriticalpointofthelightercomponent.TypeIIphasebehaviorhasthreephaseequilibrium(LLV).ThethreephaseequilibriumendswithaUCEPwhenthetemperatureisbeloweithercomponentscriticaltemperature.Betweenthecriticalpointsofthetwocomponents,thephasebehaviorissimilartothatoftype-Imixtures.Amiscibilitygapexistsfortype-IIbinarysystemsatlowtemperatures(15.McHugh&Krukonis1986).TypeIIIphasebehaviorisdisplayedbymixtureswithcriticalpropertiesthataresignificantlydifferent.Intype-IIIphasebehavior,athreephaseequilibrium(LLV)occursnearthemorevolatilecomponentcriticalpoint.TheLLVequilibriumfortype-IIIsystemsisanalogoustothatoftype-IIsystemsbelowtheLCST.Type-Iphasebehaviorcanbeseenattemperaturesfarbelowthecriticaltemperatureofthemorevolatile

PAGE 72

51component.Twobranchesofthecriticalmixturecurveexistforatype-IIIbinarysystem.Onepartofthecriticalmixturecurvestartsatthecriticalpointofthemorevolatilecomponent,crossestheLLVline,andendswiththeLCST.TheotherpartofthecriticalmixturecurvestartsatthelessvolatilecriticalpointandendswithaUCEP(15.McHugh&Krukonis1986).Type-IVbehaviorisseeninsystemswherethecriticalmixturecurvehastwobranches.However,comparedtotype-IIIbehavior,thecriticalmixturecurveatthemorevolatilecomponentdoesnotcrosstheLLVline.ThecriticalmixturebranchforthemorevolatilecomponentendswithaUCEP.Forthelessvolatilecomponent,thecriticalmixturecurvebeginsatthelowervolatilecomponentscriticalpointandendswithaLCEP.Atype-IVmixtureaboveitscriticalpressurecandivideintotwophaseswithapressureincrease(15.McHugh&Krukonis1986).Type-Vphasebehaviorissimilartothatoftype-IIIexceptliquid-liquidimmiscibilitybelowtheLCSTdoesnotexist(15McHugh&Krukonis1986).Type-VIphasebehaviorisseenwhentwocriticalmixturecurvesexist.Onecriticalmixturecurverunsbetweenthecriticalpointsofbothcomponents.ThesecondcriticalmixturecurverunsbetweentheLCEPandtheUCEP(17.Ozdemir1994).Figure8showsallofthephasebehaviorclassifications

PAGE 73

52 Figure8.PhaseBehaviorClassifications(17.Ozdemir1994)Ternarymixturephasebehavioriscategorizedintothreegroups:typeI,typeII,andtypeIII.ThegroupsaredistinguishedbytheLLVregionsthatexistforthemixture.TypeIphasebehaviorisexhibitedbyternarysystemsthatdonothaveanimmiscibilityregionforLLVequilibrium.TypeIIphasebehaviorisexhibitedbyternarysystemsthathaveamiscibilitygapintheliquidphase.TypeIIIphasebehaviorisexhibitedbyternarysystemswherethemiscibilitygapoftheLLVequilibriumtouchesabinaryaxisofapressure-compositiondiagram(15.McHugh&Krukonis1986).

PAGE 74

53Chapter4ExperimentalTheexperimentalset-upfordeterminingthesolubilityofTritonX-114andTergitol15-S-9insupercriticalcarbondioxidehasbeendescribedbrieflyinthetheorychapter,butwillbedescribedinmoredetailhere.Theequipmentpurchasedandusedwillbediscussedaswellastheprocedureandmaterialsusedfortheexperiments.4.1EquipmentInordertodeterminesurfactantsolubilityinsupercriticalcarbondioxideaSPM20SuperPhaseMonitor,showninFigure9,waspurchasednewfromTharTechnologiesinPittsburgh,Pennsylvania.

PAGE 75

54 Figure9.SPM20SuperPhaseMonitor(30.TharTechnologies2004)TheSuperPhaseMonitorcontainstwosapphirewindows,oneforacameraandoneforalightsource.ThesolubilitycellshowninFigure7ismadeoutof316stainlesssteelandcanbeadjustedfromaminimumof5mltoamaximumof15ml.

PAGE 76

55 Figure10.TheSolubilityCell(30.TharTechnologies2004)SolubilityexperimentscanbedoneunderoneoftwosettingswiththeSPM20SuperPhaseMonitor.Figure11andFigure12showbothset-ups,onebeingafixedfritsettingandtheotherbeingamovablefritsetting.Thefixedfritsettingallowsforexperimentstobedoneataconstantvolume.Themovablefritsettingallowsforexperimentstobedonewithanadjustablevolume.Theexperimentsconductedinthisstudyweredonewiththemovablefritsetting.

PAGE 77

56 Figure11.FixedFritSetting(30.TharTechnologies2004)

PAGE 78

57 Figure12.MovableFritSetting(30.TharTechnologies2004)Theoperatingpressureandtemperaturelimitsmonitoredbythecontroller,showninFigure13are413barand150oC,withanerrorof0.1barand0.1oC,respectively.

PAGE 79

58 Figure13.SPM20SuperPhaseMonitorController(30.TharTechnologies2004)

PAGE 80

59PrecedingtheSPM20SuperPhaseAnalyzerisanIsco100DXSyringePump(100mlvolume)showninFigure14. Figure14.Isco100DXSyringePump(8.Isco1999)Figure15showsaLaudaEconolineLow-TemperatureThermostatRE120thatcirculatesantifreezecoolstheIsco100DXSyringePump. CO2

PAGE 81

60 Figure15.LaudaEconolineLow-TemperatureThermostatRE-120(11.Lauda1999)Figure16showshowthecirculatingantifreezecoolsthecarbondioxide.

PAGE 82

61 Figure16.Isco100DXSyringePumpCoolingJacketSet-Up(8.Isco1999)ARuskamanualpumpisconnectedtotheSPM20SuperPhaseAnalyzertoprovidepressureduringexperimentalruns.TheRuskamanualpumpischargedwithdeionizedwaterandhasanoperatingpressurelimitof10,000psi(689bar).TheIscoSyringePump,theLow-TemperatureThermostat,andtheRuskamanualpumpwereallpreviouslypurchasedforearlierprojects.

PAGE 83

624.2ExperimentalSet-Up Figure17.ExperimentalSet-UpFigure17showstheexperimentalset-upusedforthisresearchinitsentirety.Thestaticexperimentalset-upwaschosenforafewreasons.Solubilitydatacanbequicklyandeasilyobtainedatseveraltemperatureswithoneexperimentalrun.Pressureinsidethesolubilitycellcanbeadjustedquicklyandeasilywithavariablevolumecell.Anyphasechangescanbedeterminedvisually,sopassingasampleofthemixturethroughaUV/VisorIRdetectorisnotnecessary.

PAGE 84

63Furthermore,inaccuratesolubilitymeasurementsmaybeobservedusingthedynamicexperimentalset-upbecausethesurfactantsofinterestforthisresearcharebothliquidsatroomtemperature.Thesupercriticalfluid-entrainermixturemayactuallypushthesurfactantoutofthesolubilitycellwithoutsolubilizingit.Clogginginthepipingcanalsooccurwiththedynamicexperimentalset-up.4.3ProcedureandMaterialsCarbondioxideispumpedintoanIsco100DXSyringePump.ALaudaEconolineLow-TemperatureThermostatRE120coolssyringepumpto3oCbycirculatingantifreeze.Thecoolingofthesyringepumpisdonetoensurethatthecarbondioxideisintheliquidphasewhenitispumpedintothesolubilitycell.Thesurfactant,TritonX-114orTergitol15-S-9(Aldrich)isweighedinabeakerthentransferredtotheopensolubilitycell.Thebeakerisreweighedandrecorded.HPLCgradeethanol(Aldrich),theentrainer,isweighedinaseparatebeakerandtransferredtothesolubilitycell.Theethanolbeakerisreweighedandrecorded.ThesolubilitycellisthenbroughttoaminimumvolumeusingaRuskamanualpumpwhilestillopen.Adjustingthesolubilitycelltoaminimumvolumeisdonesothatthepresenceofaircanbeconsiderednegligible.Thesolubilitycellisthensealedwiththemagneticstirrer.Low-pressurecarbondioxideispumpedintothesolubilitycellwhiletheoutletvalveisopentovacatethesolubilitycellofaircompletely.Theoutletvalveisclosedandliquidcarbondioxideispumpedintothesolubilitycell.Onceliquidcarbondioxideisvisibleonthetelevision,thesolubilitycellvolumeisslowlyexpanded

PAGE 85

64toitsmaximumvolume.Liquidcarbondioxideflowintothesolubilitycellisshutoffwhenthepressureinsidethesolubilitycellincreasesonetotwobarspersecond.Thepressureinsidethesolubilitycellisallowedtoreachequilibrium.Afterfivetotenminutes,theinitialpressureandtemperaturearerecorded.Thesolubilitycellisthenshiftedtoahorizontalpositionsuchthattheliquid-liquidinterfaceisvisibleinthecameraviewcell.Themagneticstirreristurnedontoachievehomogeneityandthesolubilitycellisheatedtotemperature(35oC,40oC,45oC,50oC)withthecontrollerandheatingelement.Oncethemixturereachestheexperimenttemperatureslistedabovethemagneticstirreristurnedoff.ARuskamanualpumpthenpressurizesthesolubilitycellbyforcinganincompressiblefluid(deionizedwater)tomovethepistoninsidethevariablevolumesolubilitycell.Pressurizationcontinuesuntilacloudisobservedintheviewcellandthemixturebecomesclearagainwithnodiscernableliquid-liquidinterface.Thisprocedureiscontinueduntilfivecloudpointpressureshavebeenrecordedattheexperimenttemperature.Theaverageofthesepressuresisreportedherewithitsstandarddeviation.Whenthemixtureisheatedfromoneexperimentaltemperaturetothenextexperimentaltemperaturethemagneticstirreristurnedon.4.4Clean-UpInbetweeneachexperimenttodeterminesurfactantsolubilityinsupercriticalcarbondioxide,thesolubilitycellundergoesadetailedcleaningprocess.Thecleaningprocessisnecessarytoensurethatnocontaminationoccursinsubsequentruns.Aftersufficientdatapointshavebeencollectedatexperimentaltemperaturestheheatingelementisturnedoffandthecellisreturnedtoaverticalposition.Theoutletvalveofthe

PAGE 86

65solubilitycellisopenedsuchthatdepressurizationoccursatapproximatelytwotothreebarsperminute.Theslowdepressurizationrateisnecessarytopreventcloggingintheoutletvalveandline.Oncepressureinsidethesolubilitycelliscompletelyreleased,themagneticstirrerisunsealedfromthetopofthemachine.Thesolubilitycellistheninverted180otoremovetherestoftheethanol-surfactantmixture.Thecamera,inletandoutletvalves,thermocouple,andlightareunpluggedfromthesolubilitycell.ThesolubilitycellisthenunscrewedfromthebaseoftheSupercriticalPhaseAnalyzer.Thetwoo-ringsonthebottomofthesolubilitycellareremovedandrinsedthoroughlywithdeionizedwaterfollowedbydenaturedethanol(Fischer).Theo-ringsarethenallowedtoair-dry.Thefritonthemovablepistonisunscrewednext.Thefritiswashedthoroughlywithdeionizedwaterfollowedbydenaturedethanol.Thefritisthenallowedtoair-dry.Thepistonisrinsedwithdeionizedwaterfollowedbydenaturedethanol,wipeddry.Thepistonisthenallowedtoair-dry.Thestirrerisremovedfromthemagneticstirrerandrinsedthoroughlywithdeionizedwaterfollowedbydenaturedethanol.Thestirreristhenallowedtoair-dry.Thesolubilitycellcapthathousesthestirrerisrinsedthoroughlywithdeionizedwaterfollowedbydenaturedethanol.Thesolubilitycellcapisthenallowedtoair-dry.Thesolubilitycellisrinsedthoroughlywithdeionizedwaterfollowedbydenaturedethanol.Thesolubilitycellisthenallowedtoair-dry.Air-dryingtimesforallcomponentswereaminimumoftenminutes.Afterair-dryingiscomplete,thesolubilitycellcomponentsarereassembled.Asecondcleaningisdoneatthispointwithpurecarbondioxide.Liquidcarbondioxideis

PAGE 87

66pumpedintothesolubilitycell,whichisatitsmaximumvolume.Theflowofliquidcarbondioxideisshutoffoncethesolubilitycellisfullasevidentfrompressureincreasesofonetotwobarspersecondnotedonthecontroller.Themagneticstirreristurnedontoimprovecleaningefficiency.Thissolubilitycellcleaningprocesswithliquidcarbondioxidecontinuesfortenminutes,thenthesolubilitycellisdepressurizedtwotothreebarsperminute.Afterthepurecarbondioxidecleaningprocess,themagneticstirrerandthesolubilitycellareremovedfromtheSupercriticalPhaseMonitorandonceagainallowedtoair-dry.

PAGE 88

67Chapter5ResultsandDiscussionThissectionwillusedtopresenttheexperimentalresults.AdiscussionabouttheaccuracyoftheimprovedRackettequationforliquidmolarvolumescomparedtovaluesobtainedbythePRSVequationofstatewillbepresented.Resultswillbepresentedforbinaryandtertiarysystems.Adiscussionaboutthefactorsthatcaninfluencecomponentsolubilityinsupercriticalcarbondioxidewillalsobegiven.5.1AComparisonoftheImprovedRackettEquationtothePRSVEquationFurtherdiscussionabouttheaccuracyoftheImprovedRackettEquationmolarvolumescomparedtothePRSVequationofstatemolarvolumesiswarranted.AspreviouslymentionedinchaptertwotheerrorassociatedwithmolarvolumecalculationsusingthePRSVequationofstatecanbeveryhighgreaterthan20%(18.Stryjek&Vera1986).Incomparison,theaveragerelativedeviationoftheImprovedRackettEquationislessthan1%(17.Spencer&Danner1972).TheImprovedRackettEquationwasusedinthedataanalysisoftheseexperimentsduetonoteddifferenceinerrorversusthePRSVequationofstate.Forcarbondioxidefrom0oCto31oC,theerrorassociatedwiththeImprovedRackettEquationmolarvolumestoexperimentalcarbondioxidemolarvolumesrangedfrom0.07%to5.4%difference.Forthesamepressureandtemperaturerangementioned

PAGE 89

68abovetheerrorassociatedwiththePRSVequationofstatemolarvolumesrangedfrom26.9%to28.6%comparedtoexperimentalcarbondioxidemolarvolumes.Figure18showshowtheImprovedRackettEquationandthePRSVequationofstatecomparetoexperimentalcarbondioxidemolarvolumemeasurements(1.Angus&Armstrong&deReuck1976). MolarVolumeComparisonforCarbonDioxide020406080100120140024681012141618202224262830Temperature(Celsius) M o l a r V o l u m e ( c m 3 / m o l ) CO2Tables IRE PRSV Figure18.MolarVolumeComparisonAsFigure18shows,molarvolumevaluestabulatedbytheImprovedRackettEquationarealmostthesameastheexperimentalmeasurementstakenforcarbondioxideuptothecriticaltemperature.ThemolarvolumevaluestabulatedfromthePRSVequationofstateareveryinaccuraterelativetothevaluesprovidedbytheImprovedRackettEquation.AboveroomtemperaturethePRSVmolarvolumevaluesbecomesignificantlyinaccurate.

PAGE 90

69Figure19showsanerrorcomparisonoftheImprovedRackettEquationtothePRSVequationofstaterelativetorealmolarvolumesofcarbondioxideobservedexperimentally. ErrorComparisonforCO2MolarVolumes-10-50510152025303540 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0Temperature(Celsius) % D i f f e r e n c e IRE PRSV Figure19.ErrorComparisonoftheImprovedRackettEquationandthePRSVAsFigure19showstheerrorassociatedwiththeImprovedRackettEquationisverysmallrightuptothecriticaltemperatureofcarbondioxide.Themaximumerroris-5.4%at31oC.TheerrorassociatedwithPRSVissignificantrelativetotheImprovedRackettEquation,withaminimumerrorof1.58%at0oCandamaximumerrorof34.12%at31oC.DuetothesignificanterrorsassociatedwiththePRSVequationofstateformolarvolumecalculations,PRSVwasnotusedtocalculatetheamountofcarbondioxidepresentattheinitialconditionsoftheexperimentsconductedforthiswork.InsteadtheImprovedRackettEquationwasusedtodeterminethemolarvolumesofcarbondioxideandhencetheamountofcarbondioxideattheinitialconditionsoftheexperimentruns.

PAGE 91

705.2CriticalPropertyEstimationofSurfactantsInordertodevelopmathematicalmodelstorepresentthephasebehaviorofthebinaryandternarysystemsofinterestforthisresearch,thecriticalproperties(pressure,temperature,andvolume)forthesurfactantshadtobeestimated.TheJobackMethodwasusedtoestimatethecriticalpropertiesofTritonX-114andTergitol15-S-9.Table1showsthecriticalpropertiesofTritonX-114andTergitol15-S-9accordingtotheJobackmethodandtheacentricfactors:Table1.CriticalPropertiesofSurfactantsChemicalTc(Kelvin)Pc(bar)Vc(cm3mol-1) TritonX-114613.816.89981759.50.2012 Tergitol15-S-9734.875.52331952.5-0.2200 SamplecalculationsfordeterminingthecriticalpropertiesaswellastheacentricfactorsofthesurfactantscanbefoundinAppendixC.5.3CarbonDioxideandSurfactantBinarySystemsExperimentswereconductedwithcarbondioxideandbothsurfactants,TritonX-114andTergitol15-S-9asbinarysystems.Atalltemperatures,35oCto50oC,thesurfactantTritonX-114isinsolubleinsupercriticalcarbondioxideupto320bar.SimilarresultswereobtainedwiththecarbondioxideTergitol15-S-9binarysystem.Tergitol15-S-9isinsolubleinsupercriticalcarbondioxideupto320baratalltemperaturesfrom35oCto50oC.Pressurizationbeyond320barforbothsystemswasnot

PAGE 92

71achievedbecausethevariablevolumecellhadalreadyreachedthefive-milliliterminimumvolume.5.4CarbonDioxideEthanolTritonX-114TernarySystemTheadditionofethanolasanentrainertothecarbondioxide-TritonX-114mixtureallowsforTritonX-114tobecomesolubleinsupercriticalcarbondioxide.Variouscompositionswereexaminedfortheternarymixture.Table2displaysthemixturecompositionsstudiedforthiswork.Table2.TernaryMixtureCompositionsStudiedwithTritonX-114Mixturex1x2x3 10.97690.02290.0002 20.93210.06750.0004 30.94660.05300.0005 Carbondioxideisrepresentedbyx1.Ethanolisrepresentedbyx2.TritonX-114isrepresentedbyx3.Observedcloudpointpressuresforthecarbondioxide-ethanol-TritonX-114ternarymixturesrangefrom95.6barat35oCto143.8barat50oC.Table3showsthecloudpressuresreportedinbars,observedforeachmixtureateachtemperature.Table3.ObservedCloudPointPressuresofTritonX-114MixturesMixtureCloudPointPressure(bar) @35oC@40oC@45oC@50oC 199.9114.7128.6143.1 2n/an/a129.1143.8 395.6107.4122.2134.3 Cloudpointpressuresarenotreportedformixturetwoat35oCand40oCbecauseonephasehadalreadybeenachievedbeforetheexperimenttemperaturehadbeenattained.Figure16showsaP-xdiagramforTritonX-114inthecarbondioxide-ethanolmixture.

PAGE 93

72 P-xDiagramTritonX-114SolubilizedinCO2+Ethanol80901001101201301401500.000150.000250.000350.000450.00055MoleFractionTritonX-114 C l o u d P o i n t P r e s s u r e ( b a r ) 35C 40C 45C 50C Figure20.P-xDiagramofTritonX-114inCarbonDioxide-EthanolAsFigure20andTable3indicate,thecloudpointpressureoftheternarymixtureincreasesasthetemperatureofthemixtureincreases.Asmentionedinchapterfour,fivemeasurementsforcloudpointpressureweretakenforeachtemperature.Thiswasdonetoensureaccuracyandprecisioninobservations.Onemeasureofprecisionisstandarddeviation.Alowerstandarddeviationofmeasurementsmeansprecisionhasbeenachieved.Thehigheststandarddeviationincloudpointpressuremeasurementsatanytemperatureforthisstudyis0.2588bar.Table4showsthestandarddeviationsofthecloudpointpressuremeasurementsinbarsforeachmixtureateachtemperature.Table4.StandardDeviationsofCloudPointPressureMeasurementsMixtureStandardDeviation(bar) @35oC@40oC@45oC@50oC 10.25880.12250.10950.1871 2n/an/a0.23450.1414 30.12260.20740.07070.1817

PAGE 94

735.5CarbonDioxideEthanolTergitol15-S-9SystemTheadditionofethanolasanentrainertothecarbondioxide-Tergitol15-S-9mixtureallowsforTergitol15-S-9tobecomesolubleinsupercriticalcarbondioxide.Variouscompositionsoftheternarymixturewerestudied.Table5showsthecompositionsofternarymixturesexaminedinthisstudy.Table5.TernaryMixtureCompositionsStudiedwithTergitol15-S-9Mixturex1x2x3 10.94410.05570.0002 20.92310.07660.0003 Inthiscasecarbondioxideisrepresentedbyx1.Ethanolisrepresentedbyx2.Tergitol15-S-9isrepresentedbyx3.Observedcloudpointsforthesemixturesrangefrom89.58barto154.36bar.Table6displaystheobservedcloudpointpressuresinbaroftheternarymixturesTable6.ObservedCloudPointPressuresofTergitol15-S-9MixturesMixtureCloudPointPressure(bar) @35oC@40oC@45oC@50oC 1125.3154.4127.3116.0 289.6120n/an/a Cloudpointpressuresarenotreportedformixturetwobecauseonephasehadalreadybeenachievedbeforetheexperimenttemperaturecouldbeattained.FigureshowsaP-xdiagramforthecarbondioxide-ethanol-Tergitol15-S-9system.

PAGE 95

74 CloudPointPressurevs.MolFractionTergitol15-S-9Solubilized 7585951051151251351451551650.00020.000250.00030.00035 MolFractionofTergitol15-S-9 C l o u d P o i n t P r e s s u r e ( b a r ) 35C 40C 45C 50C Figure21.P-xDiagramforTergitol15-S-9inCarbonDioxide-EthanolMixtureAsfigure21indicates,Tergitol15-S-9issolubleinasupercriticalcarbondioxideethanolentrainedmixture.Again,insuringaccuracyandprecisioninresultreproductioniscrucialtoconductinggoodexperiments.Thestandarddeviationforthecloudpointmeasurementsofeachternarymixturecanbeusedasaguidetothisend.Table7showsthestandarddeviationsofthecloudpointmeasurementsinbarforeachmixtureateachexperimenttemperature.Table7.StandardDeviationsofCloudPointPressureMeasurementsMixtureStandardDeviation(bar) @35oC@40oC@45oC@50oC 10.23020.13420.37820.1483 20.27020.1789n/an/a 5.6ErrorIntroductionNoexperimentalanalysiswouldbecompletewithoutadiscussionconcerningareaswhereerrorcanbeintroducedintotheinvestigation.Inadditiontoidentifyingwhereerrorcanoccur,theproperactiontoreducetheerrormustalsobeidentifiedand

PAGE 96

75taken.Errorreductioniscrucialtothescientificcommunityforsmall-scaleexperimentalresultstobereproducedonapilotplantorafull-scaleplantlevel.Thefirstplaceerrorcanoccurinthesereportedexperimentsisinmeasuringthemassesofethanolandthesurfactant.Wheneachchemicalisputintothesolubilitycell,somewillstayinsidethegraduatedcylinder.Toaccountforthissmallbutcrucialvolume,thegraduatedcylinderscontainingtheethanolandsurfactantseparatelymustbereweighed.Thisnewgraduatedcylindermassisthensubtractedfromthemassofthegraduatedcylinderwiththeentirechemicalinittoobtainthecorrectweightandvolume.Inadditiontocorrectingmassandvolumeamountsanothermajorsourceoferrorfortheseexperimentsistheobservationofthecloudpointpressureforthemixtures.Theobservationofthecloudpointphenomenaisleftuptotheeyeoftheexperimenter.Tolessenthechancethattheexperimenterobservedanincorrectvalueforcloudpointpressure,severalcloudpointpressuremeasurementsarerecordedforeachexperimentaltemperature.Fivemeasurementsforcloudpointpressurewererecordedforeachexperimentaltemperature.Theaverageofthefivemeasurementswasthentakenandiswhatisreportedinthiswork.Asidefromthehumanerrormentionedaboveerrorcanalsooccurfromthepressureandtemperaturereadingsprovidedbythecontroller.TheSPM20Controllerreportspressurereadingsaccurateto0.1bars.TheSPM20Controllerreportstemperaturereadingsaccurateto0.1oC.Experimentalerrorcanalsobeafactorwhenaccountingforthemassbalanceofcarbondioxideleavingthesyringepumpandenteringthesolubilitycell.Thetransferlinefromthesyringepumptothesolubilityusedinthisinvestigationhasavolumeof

PAGE 97

761.966ml.Thetransferlinewasnotinsulatedforanyoftheexperimentsconductedforthisresearch.Atemperaturegradientispresentfromthesyringepumptothesolubilitycell.Accompanyingthistemperaturegradientisthevolumeexpansionofcarbondioxideasitflowsfromthesyringepumptothesolubilitycell.Thetemperaturegradientcanhaveasignificanteffectonthemassofcarbondioxidetransferredintothesolubilitycell.Recallthesyringepumpiscooledto-3oC.Theinitialtemperaturesrecordedforthesolubilityexperimentsareallaroundroomtemperature,25oC.Thisequatestoa28oCtemperaturedifference.At-3oC,themolarvolumeofliquidcarbondioxideaccordingtotheIREis46.87cm3mol-1.At25oC,themolarvolumeofliquidcarbondioxideis61.36cm3mol-1accordingtotheIRE.The28oCtemperaturedifferencefromthesyringepumptothesolubilitycelltranslatestoadifferenceof14.49cm3mol-1fortheliquidcarbondioxidemolarvolume.Sofora15mlsolubilitycellthe28oCtemperaturegradientleadstoadifferenceof0.0756molsofcarbondioxideinthecell.Thisamountcanseeminsignificantwithinitself,howeverwhendealingwithsolubilitycompositioncalculations,errorscanbesubstantial.Applyingthesametemperaturesattheinitialpressureof73.4barforoneexperimentalrun,at-3oCthecarbondioxideliquidmolarvolumeaccordingtothePRSVequationofstateis44.89cm3mol-1.At25oCthecarbondioxideliquidmolarvolumeaccordingtothePRSVequationofstateis63.69cm3mol-1.ThedifferenceinthecarbondioxideliquidmolarvolumeaccordingtothePRSVequationofstateis18.80cm3mol-1.Sofora15mlsolubilitycellthe28oCtemperaturegradientleadstoadifferenceof0.0986molsofcarbondioxideinthecell.Onceagaincompositioncalculationscanhavehugeerrorsassociatedwiththemifthistemperaturegradientisnottakenintoaccount.

PAGE 98

77Alongwiththeerrorthatcanoccurintheexperimentalstagesofinvestigation,errorcanalsobeintroducedinthenumericalanalysisofexperimentaldata.Amajorsourceoferrorfornumericalanalysisisthechoiceforanequationofstate.ThePRSVequationofstatewasusedforthiswork.However,asmentionedearlierinthischapter,thePRSVequationofstateisnotagoodchoiceforcalculatingliquidmolarvolumes.Thus,theamountofcarbondioxideintroducedintothesolubilitycellattheinitialconditionswascalculatedusingamuchmoreaccurateequationforliquidmolarvolumestheImprovedRackettEquation.TheImprovedRackettEquationisnotfreeoferroritself,nonethelessrelativetoPRSVmolarvolumecalculationstheImprovedRackettEquationprovidessignificantlymoreaccurateliquidmolarvolumevalues.Thechoiceofactivitycoefficientmodelcanalsoleadtosignificanterrorsduringdataanalysis.TheUNIFACmodelwaschosenforthisworkbecausenobinarydatawereavailableforthecarbondioxide-surfactantsystemsortheethanol-surfactantsystems.

PAGE 99

78Chapter6Conclusions,Recommendations,andFutureDirectionsThepurposeofthischapteristopresenttheconclusionsofthisresearch.Recommendationsforimprovingthestaticexperimentalset-upforsupercriticalsolubilitydeterminationwillbepresented.Futuredirectionsforfurtherresearchwillbegiven.Possibleindustrialapplicationswillalsobeoffered.6.1ConclusionsThemostimportantconclusionthatcanbemadefromthisresearchisthatthesurfactantsTritonX-114andTergitol15-S-9aresolubleinsupercriticalcarbondioxidewithethanolasanentrainer.However,bothTritonX-114andTergitol15-S-9areinsolubleinsupercriticalcarbondioxidealone.Anotherimportantconclusionfromthisresearchthathasalsobeensubstantiatedinotherpublishedworksisthatliquidmolarvolumescalculatedfromcubicequationsofstatearehighlyerroneous.Recallforthisresearch,thePRSVequationofstatewasused.Inefforttoreducetheerrorresultingfrommodelingequations,amoreaccurateequationshouldbeusedforcalculatingliquidmolarvolumes.TheRackettEquationandtheImprovedRackettEquationwereusedinthisresearch,astheerrorsassociatedwiththemaresubstantiallylessthanacubicequationofstate.

PAGE 100

796.2RecommendationsAcrucialpartofdeterminingcomponentsolubilityinsupercriticalsolventsistheexperimentalset-upused.Anyexperimentalset-uphasroomforoptimizationandthestaticmethodforsupercriticalsolubilityusedforthisresearchisnoexception.Optimizationisnecessarytohelpeliminateexperimentalerror.Inordertooptimizethestaticexperimentalset-upforsupercriticalsolubilityIwouldmakethefollowingrecommendations:1.Insulationofthetransferlinefromthesyringepumptotheinletofthesolubilitycellcanhelpcontroltemperaturefluctuationsthatmayoccur.Temperaturefluctuationsathigherpressurescansignificantlyaffectthedensityofthesupercriticalsolvent.Whilemassisconserved,volumeisnot.Ifthesupercriticalsolventdensityiskeptconstantfromthesyringepumptothesolubilitycell,moreaccuratemeasurementsformasscanbemade.Ifmoreaccuratemeasurementsformasscanbemade,moreaccuratecalculationsformixturecompositionscanbemade.2.Addasamplingdevicetodrawoffaminimalamountofmixtureatexperimentalconditionsforvaporphaseanalysis.Thestaticexperimentalset-upisexcellentforgatheringP-T-xdata.However,thestaticexperimentalset-upisnotthebestset-upforgatheringP-T-x-ydata.Addingamicro-litersamplerconnectedtoaUV/VisorIRdetector,possiblyevenamassspectrometercanyieldvaporphasecompositions.Itmustbekeptinmindthatifananalyticaldeviceisaddedtoastaticexperimentalset-up,specialprecautionsmustbetakentoensurethatthere

PAGE 101

80isnopressureortemperaturefluctuationwithinthemixtureascomponentsolubilityispressureandtemperaturedependent.Pressureortemperaturefluctuationscanresultinthecomponentcondensingorrecrystallizinginthetransferlinefromthesolubilitycelltotheanalyticaldevice.Componentcondensationorrecrystallizationinthetransferlinebeforereachingtheanalyticaldevicecanresultinerroneoussolubilitydata.Thesamplingdevicewillbeparticularlyusefultodeterminepartitioncoefficientsforeachcomponentinvolvedinthisstudy.Relationshipsofthepartitioncoefficientscanthenbedevelopedasafunctionofpressure,temperatureorinitialmixtureconditions.3.Insteadofaddingtheentrainerandsurfactanttothesolubilitycellfirst,andfollowingwiththesupercriticalsolvent,mixtheentrainerwiththesupercriticalsolventinthesyringepumpandaddthebinarymixturetothesolubilitycellcontainingthesurfactant.Theentrainerandsupercriticalsolventwouldbeonephaseenteringthesolubilitycell.TheentrainerwouldbedrawnfromaHPLCpumpatapredeterminedflowrate.Perhapsthemostattractiveaspectofthisset-upalterationistheeliminationofweighingtheentrainerbeforeconductingtheexperiment.Anadditionalcautionmustbetakenforthischange,thevolumeofmixingforCO2-ethanolmustbewellcharacterizedforthecompositionandtemperaturerangesusedinexperiments.Significanterrorsinthevolumeofmixingwillseverelyaffectsolubilitycalculations.

PAGE 102

814.Thepresenceofwaterinthealcoholentrainercanseverelydistortsolubilitymeasurements.Thecloudpointpressuresobtainedwithwaterimpuritieswouldmostlikelybehigherduetotheincreaseinhydrogenbondingbetweenthesurfactantandwaterandbetweenthealcoholentrainerandwater.Understandinghowwaterimpuritiesaffectthecloudpointpressuresoftheternarysystemsisvitaltoapplyingthefundamentaldatagatheredfromthisresearchtoanindustrialprocess.Surfactantrecoveryisafunctionofoperatingpressure.Ahigheroperatingpressuretranslatestohigheroperatingcosts.Inordertoeliminatethepossiblewatercontamination,aproceduretodrythealcoholshouldbecarriedout.6.3FutureDirectionsDrawingupontheseconclusionsandrecommendations,futuredirectionsforsurfactantsolubilityinsupercriticalcarbondioxidewithethanolasanentrainerincluderunningsolubilityexperimentswiththeideassuggestedforoptimization:insulatingthetransferline,addinganon-lineanalyticaldevicetoobtainP-T-x-ydata,andmixingthesupercriticalsolventandentrainerinthesyringepumppriortofillingthesolubilitycell.Thepurposeofattemptingthevariousoptimizationtechniquesistominimizethenumberofwayswhereexperimentalerrorcouldyieldincorrectresults.Anotherareawheresurfactantsolubilityinasupercriticalsolvent,particularlycarbondioxide,withanentrainer,wouldbeespeciallyimportantisinsol-gelsynthesisofhighlyporousnoblemetalcatalyst,e.g.platinum,withatemplatethesurfactant.Noblemetalcatalystscanbeveryexpensive,soincreasingthesurfaceareaofthecatalystby

PAGE 103

82includingasurfactantcanlowertheamountofnoblemetalcatalystnecessaryforaprocesslikehydrogenationreactions.

PAGE 104

83References1.Angus,S.&Armstrong,B.&deReuck,K.M.(1976).InternationalThermodynamicTablesoftheFluidState.,vol.3CarbonDioxide.Oxford:PergamonPress.2.Chany-YihDay,&Chang,ChiehmingJ.&Chen,Chiu-Yang.(1996).PhaseEquilibriumofEthanol+CO2andAcetone+CO2ElevatedPressures.TheJournalofChemicalandEngineeringData,41,839-843.3.Consani,K.&Smith,R.(1990).ObservationsontheSolubilityofSurfactantsandRelatedMoleculesinCarbonDioxideat50oC.TheJournalofSupercriticalFluids,3,51-65.4.Deiters,U.K.&Schneider,G.M.(1986).HighPressurePhaseEquilibria:ExperimentalMethods.FluidPhaseEquilibria,29,145-160.5.Figuiere,P.&Hom,J.F.&Laugier,S.&Renon,H.&Richon,D.&Szwarc,H.Vapor-LiquidEquilibriaupto40,000kPaand400oC:ANewStaticMethod.AIChEJournal,Vol.26(5),872-875.6.Francis,Alfred.(1954).TernarySystemsofLiquidCarbonDioxide.TheJournalofPhysicalChemistry,58,1099-1114.7.Fredenslund,A.,Jones,R.L.&Prausnitz,J.M.(1975).Group-ContributionEstimationofActivityCoefficientsinNonidealLiquidMixtures.AIChEJournal,Vol.21(6),1086-1099.8.Isco,Inc.(1999).IscoDSeriesSyringePumpsOperationsManual.9.Kramer,Anatoly&Thodos,George.(1988).Solubilityof1-HexadecanolandPalmiticAcidinSupercriticalCarbonDioxide.TheJournalofChemicalandEngineeringData,33,230-234.10.Kramer,Anatoly&Thodos,George.(1989).Solubilityof1-OctadecanolandStearicAcidinSupercriticalCarbonDioxide.TheJournalofChemicalandEngineeringData,34,184-187.11.LaudaDR.R.WobserGMBH&Co.(1999).OperatingInstructionsEconolineUS-VersionLowTemperatureThermostats.

PAGE 105

8412.Legret,D.&Richon,D.&Renon,H.(1981).VaporLiquidEqulibriaupto100MPa:ANewApparatus.AIChEJournal,Vol.27(2),203-207.13.Liu,Juncheng&Han,Buxing&Zhang,Jianling&Mu,Tiancheng&Li,Ganzuo&Wu,Weize&Yang,Guanying(2003).EffectofCosolventonthePhaseBehaviorofNon-FluorousLs-54SurfactantinSupercriticalCO2.FluidPhaseEquilibria,212,265-271.14.Liu,Juncheng&Han,Buxing&Li,Ganzuo&Liu,Zhimin&He,Jun&Yang,Guanying(2001).SolubilityoftheNon-IonicSurfactantTetraethyleneGlycolN-LaurelEtherinSupercriticalCO2withN-Pentanol.FluidPhaseEquilibria,187-188,247-254.15.McHugh,M.&Krukonis,V.(1986).SupercriticalFluidExtraction:PrinciplesandPractice.Massachusetts:Butterworth.16.Meskel-Lesavre,M.&Richon,D.&Renon,H.(1981).NewVariableVolumeCellforDeterminingVapor-LiquidEquilibriaandSaturatedLiquidMolarVolumesbytheStaticMethod.IndustrialandEngineeringChemistryFundamentals20,284-289.17.Ozdemir,Cagatay.(1994).MastersThesis.UniversityofSouthFlorida.18.Peng,D.Y.&Robinson,Donald.(1976).ANewTwo-ConstantEquationofState.IndustrialEngineeringandChemistryFundamentals,15(1)59-64.19.Poling,BruceE.&Prausnitz,J.&OConnell,J.P.(2001).ThePropertiesofGasesandLiquids.NewYork:MacGrawHill.20.Porter,M.R.(1991).HandbookofSurfactants.NewYork:Chapman&Hall.21.Prausnitz,J.&Lichtenthaler,R.&GomesdeAzevedo,E.(1999)MolecularThermodynamicsofFluid-PhaseEquilibria:ThirdEdition.NewJersey:Prentice-Hall.22.Rackett,Harold.(1970).EquationofStateForSaturatedLiquids.TheJournalofChemicalandEngineeringData,15(4),514-517.23.Sandler,S.(1999).ChemicalandEngineeringThermodynamics.NewYork:JohnWiley&Sons.24.Sane,Amporn,&Taylor,Shelby&Sun,Ya-Ping,&Thies,MarkC.(2004).ASemicontinuousFlowApparatusforMeasuringtheSolubilityofOpaqueSolidsInSupercriticalSolutions.JournalofSupercriticalFluids,28,277-285.

PAGE 106

8525.Seader,J.D.&Henley,E.J.(1998).SeparationProcessPrinciples.NewJersey:JohnWiley&Sons.26.Spencer,C.F.&Danner,R.P.(1972).ImprovedEquationforPredictionofSaturatedLiquidDensity.TheJournalofChemicalandEngineeringData,17(2),236-241.27.Stryjek,R.,&Vera,J.H.(1986).AnImprovedPeng-RobinsonEquationofStateforPureCompoundsandMixtures.TheCanadianJournalofChemicalEngineering,64,323-333.28.Tester,J.&Modell,M.(1997).ThermodynamicsandItsApplications.NewJersey:Prentice-Hall.29.Texter,J.(1999).CharacterizationofSurfactants.InLange,K.R.(Ed.)Surfactants:APracticalHandbook(pp.1-68).Cincinnati:HanserGardnerPublications.30.TharTechnologies,Inc.(2004).SPM20PhaseMonitorOperationManual.31.Walas,StanleyM.(1985).PhaseEquilibriainChemicalEngineering.London:ButterworthPublishers.32.Wong,D.S.H.&Sandler,S.(1992).ATheoreticallyCorrectMixingRuleforCubicEquationsofState.AIChEJournal,38(5),671-680.

PAGE 107

86Appendices

PAGE 108

87AppendixAChemicalMSDSThefollowingareMSDSofeachchemicalusedintheexperimentsofthiswork.CARBONICINDUSTRIES--CARBONDIOXIDE-CO2MATERIALSAFETYDATASHEETNSN:6830011002215Manufacturer'sCAGE:63140PartNo.Indicator:APartNumber/TradeName:CARBONDIOXIDE-CO2GeneralInformationCompany'sName:CARBONICINDUSTRIESCORPCompany'sStreet:3340ROSEBUDRDCompany'sCity:LOGANVILLECompany'sState:GACompany'sCountry:USCompany'sZipCode:30249Company'sEmergPh#:404-979-0250,CHEMTREC800-424-9300Company'sInfoPh#:404-979-0250RecordNo.ForSafetyEntry:006TotSafetyEntriesThisStk#:006Status:SEDateMSDSPrepared:18JUN90SafetyDataReviewDate:13OCT92MSDSSerialNumber:BPHRRHazardCharacteristicCode:NKUnitOfIssue:EAIngredients/IdentityInformationProprietary:NOIngredient:CARBONDIOXIDEIngredientSequenceNumber:01Percent:>99.5NIOSH(RTECS)Number:FF6400000CASNumber:124-38-9OSHAPEL:5000PPMACGIHTLV:5000PPM/30000STEL;93OtherRecommendedLimit:NOTKNOWN

PAGE 109

88AppendixA(Continued)Physical/ChemicalCharacteristicsAppearanceAndOdor:COLORLESSANDODORLESSGASORLIQUID.BoilingPoint:-109F,-78CMeltingPoint:N/AVaporPressure(MMHg/70F):838PSIGVaporDensity(Air=1):SEESUPSpecificGravity:1.5240(SEESUP)DecompositionTemperature:UNKNOWNEvaporationRateAndRef:N/ASolubilityInWater:V/V@60F&0PSIGCorrosionRate(IPY):UNKNOWNFireandExplosionHazardDataFlashPoint:N/ALowerExplosiveLimit:N/AUpperExplosiveLimit:N/AExtinguishingMedia:INERTANDNONFLAMMABLE.SpecialFireFightingProc:N/AUnusualFireAndExplHazrds:CONFINEMENTOFCARBONDIOXIDEINVESSELSORCONTAINERSOFIMPROPERDESIGNCANRESULTINEXPLOSIONORRUPTUREFROMOVERPRESSURIZATION.ReactivityDataStability:YESCondToAvoid(Stability):NOTAPPLICABLEMaterialsToAvoid:CAUSESVIOLENTPOLYMERIZATIONOFACRYLALDEHYDEORETHYLENEIMINE.HazardousDecompProducts:HEATINGABOVE1700CCAUSESDECOMPOSITIONTOCARBONMONOXIDEANDOXYGEN.HazardousPolyOccur:NOConditionsToAvoid(Poly):NOTAPPLICABLEHealthHazardDataLD50-LC50Mixture:NOTKNOWNRouteOfEntry-Inhalation:YESRouteOfEntry-Skin:YESRouteOfEntry-Ingestion:YES

PAGE 110

89AppendixA(Continued)HealthHazAcuteAndChronic:INHALATION:SIMPLEASPHYXIANT.HIGHCONCENTRATIONSINAIRCANREDUCEOXYGENNECESSARYTOSUPPORTLIFE.EYES/SKIN:CONTACTWITHSOLIDORLIQUIDCAUSESFROSTBITE.Carcinogenicity-NTP:NOCarcinogenicity-IARC:NOCarcinogenicity-OSHA:NOExplanationCarcinogenicity:NONESigns/SymptomsOfOverexp:INHALATION:SHORTNESSOFBREATH,HEADACHE,DIZZINESS,RINGINGINEAR.ASPHYXIANTINHIGHCONCENTRATION.EYES/SKIN:CONTACTWITHSOLIDORLIQUIDPRODUCESBURNINGSENSATIONANDFROSTBITEOCCURSWITHINSEVERALSECONDS.MedCondAggravatedByExp:ANYCONDITIONTHATWOULDBEAGGRAVATEDBYAREDUCEDQUANTITYOFNORMALQUALITYBREATHINGAIR.Emergency/FirstAidProc:EYES:FLUSHWITHLARGEAMOUNTSOFWATERFORATLEAST15MIN(FPA).INHALATION:DONOTATTEMPTTOREMOVEINDIVIDUALFROMSCENEOFOVEREXPOSUREWITHOUTUTILIZINGPROPERRESCUEEQUIPMENT.PROVIDEVICTIMWITHPLENTYOFFRESHAIRWHILEKEEPINGTHEPERSONWARM,DRY,ANDQUIET.IFBREATHINGHASSTOPPED,GIVEARTIFICIALRESPIRATION.GETMEDICALATTENTION.PrecautionsforSafeHandlingandUseStepsIfMatlReleased/Spill:EVACUATEAREAOFSPILLORRELEASE,EMPLOYEMERGENCYFIRSTAIDPROCEDURES,PROVIDEPLENTYOFFRESHAIR.REMOVEDRYICERESIDUALANDALLOWTOSUBLIMEINSECURED,WELL-VENTILATEDAREAANDCONTACTTHEMANUFACTURER'SSAFETYDEPARTMENT.WasteDisposalMethod:ALLOWCARBONDIOXIDETORELEASE,SUBLIMEORDISSIPATEINTHEOPENAIR.AVOIDRELEASINGINCOURTYARDSORINDOORSORANYAREASWHEREHEAVYCARBONDIOXIDEVAPORSCANACCUMULATE.Precautions-Handling/Storing:LIQUID/VAPORSTORAGECONTAINERSAREUNDERHIGHPRESSURE.DONOTMISHANDLEORABUSETHEM.USEONLYCONTAINERSANDEQUIPMENTDESIGNEDFORCARBONDIOXIDE.OtherPrecautions:AVOIDDIRECTSKINCONTACTWITHDRYICEORVENTINGCO*2LIQUIDORVAPOR.USEPROTECTIVEEQUIPMENTANDCLOTHINGANDGETPROPERTRAININGBEFOREHANDLINGCARBONDIOXIDE.

PAGE 111

90AppendixA(Continued)RespiratoryProtection:SELF-CONTAINEDBREATHINGAPPARATUS,USEINSTRICTACCORDANCEWITHTHEMANUFACTURER'SRECOMMENDATIONSVentilation:PASSIVESYSTEM:FLOORLEVEL,OPENINGSTOOUTDOORS.ELECTRICALFANS:REMOVECO*2FROMFLOOR/LOWAREAS,EXHAUSTOUTDOORS.ProtectiveGloves:HEAVYTERRYCLOTHTYPE.EyeProtection:CHEMICALSAFETYGOGGLES(FPA)OtherProtectiveEquipment:HARDHATS&EARPROTECTIONSHOULDBEWORNWHENWORKINGWITHPRESSURIZEDCARBONDIOXIDE.WorkHygienicPractices:PERSONSHANDLINGCARBONDIOXIDESHOULDBEFULLYTRAINEDINADVANCE.Suppl.Safety&HealthData:VAPORDENSITY:0.1234LB/FT3@32F&1ATM.SPECIFICGRAVITY:@32F&1ATMINGASPHASE.TransportationDataTransDataReviewDate:93053DOTPSNCode:CVKDOTProperShippingName:CARBONDIOXIDE,REFRIGERATEDLIQUIDDOTClass:2.2DOTIDNumber:UN2187DOTLabel:NONFLAMMABLEGASIMOPSNCode:DOJIMOProperShippingName:CARBONDIOXIDE,REFRIGERATEDLIQUIDIMORegulationsPageNumber:2111IMOUNNumber:2187IMOUNClass:2(2.2)IMOSubsidiaryRiskLabel:-IATAPSNCode:FHMIATAUNIDNumber:2187IATAProperShippingName:CARBONDIOXIDE,REFRIGERATEDLIQUIDIATAUNClass:2.2IATALabel:NON-FLAMMABLEGASAFIPSNCode:FHMAFIProp.ShippingName:CARBONDIOXIDE,REFRIGERATEDLIQUIDAFIClass:2.2AFIIDNumber:UN2187AFIBasicPacRef:6-6,6-15AdditionalTransData:USEONLYCONTAINERSANDEQUIPMENTSPECIFICALLYDESIGNATEDFORCARBONDIOXIDE.LIQUIDANDVAPORSTORAGECONTAINERSAREUNDERHIGHPRESSURE.DONOTMIS-HANDLE

PAGE 112

91AppendixA(Continued)ORABUSECONTAINERS.LabelDataLabelRequired:YESTechnicalReviewDate:15OCT92LabelDate:15OCT92LabelStatus:GCommonName:CARBONDIOXIDE-CO2ChronicHazard:NOSignalWord:CAUTION!AcuteHealthHazard-Slight:XContactHazard-Slight:XFireHazard-None:XReactivityHazard-None:XSpecialHazardPrecautions:ACUTE:EYESANDSKIN:CONTACTWITHSOLIDORLIQUIDMAYCAUSEFROSTBITE.INHALATION:HIGHCONCENTRATIONOFCARBONDIOXIDECANREDUCETHEOXYGENCONTENTNECESSARYTOSUPPORTLIFE.INHALATIONMAYCAUSEHEADACHE,DIZZINESS,ANDSHORTNESSOFBREATH.CHRONIC:DELAYEDHAZARDNOTDETERMINED.FIRSTAID:EYES:FLUSHWITHLARGEAMOUNTSOFWATERFORATLEAST15MIN(FPA).INHALATION:REMOVEPATIENTTOFRESHAIR.IFBREATHINGHASSTOPPED,GIVEARTIFICIALRESPIRATION,GETMEDICALATTENTION.LIQUIDANDGASSTORAGECONTAINERSAREUNDERHIGHPRESSURE.USEONLYCONTAINERSANDEQUIPMENTSPECIFICALLYDESIGNEDFORCARBONDIOXIDE.ProtectEye:YProtectSkin:YProtectRespiratory:YLabelName:CARBONICINDUSTRIESCORPLabelStreet:3340ROSEBUDRDLabelCity:LOGANVILLELabelState:GALabelZipCode:30249LabelCountry:USLabelEmergencyNumber:404-979-0250

PAGE 113

92AppendixA(Continued)MaterialSafetyDataSheetEthylAlcoholACC#91791Section1-ChemicalProductandCompanyIdentificationMSDSName:EthylAlcoholCatalogNumbers:S75119,S75120,S556CA4Synonyms:EthylAlcohol;EthylHydrate;EthylHydroxide;FermentationAlcohol;GrainAlcohol;Methylcarbinol;MolassesAlcohol;SpiritsofWine.CompanyIdentification:FisherScientific1ReagentLaneFairLawn,NJ07410Forinformation,call:201-796-7100EmergencyNumber:201-796-7100ForCHEMTRECassistance,call:800-424-9300ForInternationalCHEMTRECassistance,call:703-527-3887Section2-Composition,InformationonIngredientsCAS#ChemicalNamePercentEINECS/ELINCS64-17-5Ethylalcohol70200-578-67732-18-5Water30231-791-2HazardSymbols:FRiskPhrases:11Section3-HazardsIdentificationEMERGENCYOVERVIEWAppearance:colorlessclearliquid.FlashPoint:16.6degC.Flammableliquidandvapor.Maycausecentralnervoussystemdepression.Causessevereeyeirritation.Causesrespiratorytractirritation.Causesmoderateskinirritation.Thissubstancehascausedadversereproductiveandfetaleffectsinhumans.Warning!Maycauseliver,kidneyandheartdamage.TargetOrgans:Kidneys,heart,centralnervoussystem,liver.

PAGE 114

93AppendixA(Continued)ContinuedPotentialHealthEffectsEye:Causessevereeyeirritation.Maycausepainfulsensitizationtolight.Maycausechemicalconjunctivitisandcornealdamage.Skin:Causesmoderateskinirritation.Maycausecyanosisoftheextremities.Ingestion:Maycausegastrointestinalirritationwithnausea,vomitinganddiarrhea.Maycausesystemictoxicitywithacidosis.Maycausecentralnervoussystemdepression,characterizedbyexcitement,followedbyheadache,dizziness,drowsiness,andnausea.Advancedstagesmaycausecollapse,unconsciousness,comaandpossibledeathduetorespiratoryfailure.Inhalation:Inhalationofhighconcentrationsmaycausecentralnervoussystemeffectscharacterizedbynausea,headache,dizziness,unconsciousnessandcoma.Causesrespiratorytractirritation.Maycausenarcoticeffectsinhighconcentration.Vaporsmaycausedizzinessorsuffocation.Chronic:Maycausereproductiveandfetaleffects.Laboratoryexperimentshaveresultedinmutageniceffects.Animalstudieshavereportedthedevelopmentoftumors.Prolongedexposuremaycauseliver,kidney,andheartdamage.Section4-FirstAidMeasuresEyes:Immediatelyflusheyeswithplentyofwaterforatleast15minutes,occasionallyliftingtheupperandlowereyelids.Getmedicalaid.Gentlylifteyelidsandflushcontinuouslywithwater.Skin:Getmedicalaid.Flushskinwithplentyofwaterforatleast15minuteswhileremovingcontaminatedclothingandshoes.Washclothingbeforereuse.Flushskinwithplentyofsoapandwater.Ingestion:DoNOTinducevomiting.Ifvictimisconsciousandalert,give2-4cupfulsofmilkorwater.Nevergiveanythingbymouthtoanunconsciousperson.Getmedicalaid.Inhalation:Removefromexposureandmovetofreshairimmediately.Ifnotbreathing,giveartificialrespiration.Ifbreathingisdifficult,giveoxygen.Getmedicalaid.DoNOTusemouth-to-mouthresuscitation.breathingisdifficult,giveoxygen.Getmedicalaid.DoNOTusemouth-to-mouthresuscitation.NotestoPhysician:Treatsymptomaticallyandsupportively.Personswithskinoreyedisordersorliver,kidney,chronicrespiratorydiseases,orcentralandperipheralnervoussytemdiseasesmaybeatincreasedriskfromexposuretothissubstance.Antidote:Replacefluidandelectrolytes.Section5-FireFightingMeasuresGeneralInformation:Containerscanbuilduppressureifexposedtoheatand/orfire.Asinanyfire,wearaself-containedbreathingapparatusinpressure-demand,MSHA/NIOSH(approvedorequivalent),andfullprotectivegear.Vaporsmayformanexplosivemixturewithair.Vaporscantraveltoasourceofignitionandflashback.Willburnifinvolvedinafire.

PAGE 115

94AppendixA(Continued)FlammableLiquid.Canreleasevaporsthatformexplosivemixturesattemperaturesabovetheflashpoint.Usewaterspraytokeepfire-exposedcontainerscool.Containersmayexplodeintheheatofafire.ExtinguishingMedia:Forsmallfires,usedrychemical,carbondioxide,watersprayoralcohol-resistantfoam.Forlargefires,usewaterspray,fog,oralcohol-resistantfoam.Usewaterspraytocoolfire-exposedcontainers.Watermaybeineffective.DoNOTusestraightstreamsofwater.FlashPoint:16.6degC(61.88degF)AutoignitionTemperature:363degC(685.40degF)ExplosionLimits,Lower:3.3vol%Upper:19.0vol%NFPARating:(estimated)Health:2;Flammability:3;Instability:0Section6-AccidentalReleaseMeasuresGeneralInformation:UseproperpersonalprotectiveequipmentasindicatedinSection8.Spills/Leaks:Absorbspillwithinertmaterial(e.g.vermiculite,sandorearth),thenplaceinsuitablecontainer.Removeallsourcesofignition.Useaspark-prooftool.Provideventilation.Avaporsuppressingfoammaybeusedtoreducevapors.Section7-HandlingandStorageHandling:Washthoroughlyafterhandling.Useonlyinawell-ventilatedarea.Groundandbondcontainerswhentransferringmaterial.Usespark-prooftoolsandexplosionproofequipment.Avoidcontactwitheyes,skin,andclothing.Emptycontainersretainproductresidue,(liquidand/orvapor),andcanbedangerous.Keepcontainertightlyclosed.Avoidcontactwithheat,sparksandflame.Avoidingestionandinhalation.Donotpressurize,cut,weld,braze,solder,drill,grind,orexposeemptycontainerstoheat,sparksoropenflames.Storage:Keepawayfromheat,sparks,andflame.Keepawayfromsourcesofignition.Storeinatightlyclosedcontainer.Keepfromcontactwithoxidizingmaterials.Storeinacool,dry,well-ventilatedareaawayfromincompatiblesubstances.Flammables-area.Donotstorenearperchlorates,peroxides,chromicacidornitricacid.Section8-ExposureControls,PersonalProtectionEngineeringControls:Useexplosion-proofventilationequipment.Facilitiesstoringorutilizingthismaterialshouldbeequippedwithaneyewashfacilityandasafetyshower.Useadequategeneralorlocalexhaustventilationtokeepairborneconcentrationsbelowthepermissibleexposurelimits.ExposureLimitsChemicalNameACGIHNIOSHOSHA-FinalPELsEthylalcohol

PAGE 116

95AppendixA(Continued)1000ppmTWA1000ppmTWA;1900mg/m3TWA3300ppmIDLH1000ppmTWA;1900mg/m3TWAWaterOSHAVacatedPELs:Ethylalcohol:1000ppmTWA;1900mg/m3TWAWater:NoOSHAVacatedPELsarelistedforthischemical.PersonalProtectiveEquipmentEyes:WearappropriateprotectiveeyeglassesorchemicalsafetygogglesasdescribedbyOSHA'seyeandfaceprotectionregulationsin29CFR1910.133orEuropeanStandardEN166.Skin:Wearappropriateprotectiveglovestopreventskinexposure.Clothing:Wearappropriateprotectiveclothingtopreventskinexposure.Respirators:ArespiratoryprotectionprogramthatmeetsOSHA's29CFR1910.134andANSIZ88.2requirementsorEuropeanStandardEN149mustbefollowedwheneverworkplaceconditionswarrantarespirator'suse.Section9-PhysicalandChemicalPropertiesPhysicalState:ClearliquidAppearance:colorlessOdor:Mild,ratherpleasant,likewineorwhispH:Notavailable.VaporPressure:59.3mmHg@20degCVaporDensity:1.59EvaporationRate:Notavailable.Viscosity:1.200cP@20degCBoilingPoint:78degCFreezing/MeltingPoint:-114.1degCDecompositionTemperature:Notavailable.Solubility:Miscible.SpecificGravity/Density:0.790@20CMolecularFormula:C2H5OHMolecularWeight:46.0414Section10-StabilityandReactivityChemicalStability:Stableundernormaltemperaturesandpressures.ConditionstoAvoid:Incompatiblematerials,ignitionsources,excessheat,oxidizers.IncompatibilitieswithOtherMaterials:Strongoxidizingagents,acids,alkalimetals,ammonia,hydrazine,peroxides,sodium,acidanhydrides,calciumhypochlorite,chromylchloride,nitrosylperchlorate,brominepentafluoride,perchloricacid,silvernitrate,mercuricnitrate,potassium-tert-butoxide,magnesiumperchlorate,acidchlorides,platinum,uraniumhexafluoride,silveroxide,iodineheptafluoride,acetylbromide,disulfuryldifluoride,tetrachlorosilane+water,acetylchloride,permanganicacid,ruthenium(VIII)oxide,uranylperchlorate,potassiumdioxide.

PAGE 117

96AppendixA(Continued)HazardousDecompositionProducts:Carbonmonoxide,irritatingandtoxicfumesandgases,carbondioxide.HazardousPolymerization:Willnotoccur.Section11-ToxicologicalInformationRTECS#:CAS#64-17-5:KQ6300000CAS#7732-18-5:ZC0110000LD50/LC50:CAS#64-17-5:Draizetest,rabbit,eye:500mgSevere;Draizetest,rabbit,eye:500mg/24HMild;Draizetest,rabbit,skin:20mg/24HModerate;Inhalation,mouse:LC50=39gm/m3/4H;Inhalation,rat:LC50=20000ppm/10H;Oral,mouse:LD50=3450mg/kg;Oral,rabbit:LD50=6300mg/kg;Oral,rat:LD50=9000mg/kg;Oral,rat:LD50=7060mg/kg;CAS#7732-18-5:Oral,rat:LD50=>90mL/kg;Carcinogenicity:CAS#64-17-5:ACGIH:A4-NotClassifiableasaHumanCarcinogenCAS#7732-18-5:NotlistedbyACGIH,IARC,NIOSH,NTP,orOSHA.Epidemiology:Ethanolhasbeenshowntoproducefetotoxicityintheembryoorfetusoflaboratoryanimals.Prenatalexposuretoethanolisassociatedwithadistinctpatternofcongenitalmalformationsthathavecollecetivelybeentermedthe"fetalalcoholsyndrome".Teratogenicity:Oral,Human-woman:TDLo=41gm/kg(female41week(s)afterconception)EffectsonNewborn-Apgarscore(humanonly)andEffectsonNewborn-otherneonatalmeasuresoreffectsandEffectsonNewborn-drugdependence.ReproductiveEffects:Intrauterine,Human-woman:TDLo=200mg/kg(female5day(s)pre-mating)Fertility-femalefertilityindex(e.g.#femalespregnantper#spermpositivefemales;#femalespregnantper#femalesmated).Neurotoxicity:Noinformationavailable.Mutagenicity:DNAInhibition:Human,Lymphocyte=220mmol/L.;CytogeneticAnalysis:Human,Lymphocyte=1160gm/L.;CytogeneticAnalysis:Human,Fibroblast

PAGE 118

97AppendixA(Continued)=12000ppm.;CytogeneticAnalysis:Human,Leukocyte=1pph/72Hgm/L.;CytogeneticAnalysis:Human,Fibroblast=12000ppm.;CytogeneticAnalysis:Human,Leukocyte=1pph/72H(Continuous).;SisterChromatidExchange:Human,Lymphocyte=500ppm/72H(Continuous).OtherStudies:StandardDraizeTest(Skin,rabbit)=20mg/24H(Moderate)StandardDraizeTest:Administrationintotheeye(rabbit)=500mg(Severe).Section12-EcologicalInformationEcotoxicity:Fish:Rainbowtrout:LC50=12900-15300mg/L;96Hr;Flow-through@24-24.3CRainbowtrout:LC50=11200mg/L;24Hr;Fingerling(Unspecified)ria:Phytobacteriumphosphoreum:EC50=34900mg/L;5-30min;MicrotoxtestWhenspilledonlanditisapttovolatilize,biodegrade,andleachintothegroundwater,butnodataontheratesoftheseprocessescouldbefound.Itsfateingroundwaterisunknown.Whenreleasedintowateritwillvolatilizeandprobablybiodegrade.Itwouldnotbeexpectedtoadsorbtosedimentorbioconcentrateinfish.Environmental:Whenreleasedtotheatmosphereitwillphotodegradeinhours(pollutedurbanatmosphere)toanestimatedrangeof4to6daysinlesspollutedareas.Rainoutshouldbesignificant.Physical:Noinformationavailable.Other:Noinformationavailable.Section13-DisposalConsiderationsChemicalwastegeneratorsmustdeterminewhetheradiscardedchemicalisclassifiedasahazardouswaste.USEPAguidelinesfortheclassificationdeterminationarelistedin40CFRParts261.3.Additionally,wastegeneratorsmustconsultstateandlocalhazardouswasteregulationstoensurecompleteandaccurateclassification.RCRAP-Series:Nonelisted.RCRAU-Series:Nonelisted.Section14-TransportInformationUSDOTIATARID/ADRIMOCanadaTDGShippingName:EthanolNoinformationavailable.HazardClass:3UNNumber:UN1170PackingGroup:IISection15-RegulatoryInformationUSFEDERALTSCA

PAGE 119

98AppendixA(Continued)CAS#64-17-5islistedontheTSCAinventory.CAS#7732-18-5islistedontheTSCAinventory.Health&SafetyReportingListNoneofthechemicalsareontheHealth&SafetyReportingList.ChemicalTestRulesNoneofthechemicalsinthisproductareunderaChemicalTestRule.Section12bNoneofthechemicalsarelistedunderTSCASection12b.TSCASignificantNewUseRuleNoneofthechemicalsinthismaterialhaveaSNURunderTSCA.SARACERCLAHazardousSubstancesandcorrespondingRQsNoneofthechemicalsinthismaterialhaveanRQ.SARASection302ExtremelyHazardousSubstancesNoneofthechemicalsinthisproducthaveaTPQ.SARACodesCAS#64-17-5:acute,chronic,flammable.Section313NochemicalsarereportableunderSection313.CleanAirAct:Thismaterialdoesnotcontainanyhazardousairpollutants.ThismaterialdoesnotcontainanyClass1Ozonedepletors.ThismaterialdoesnotcontainanyClass2Ozonedepletors.CleanWaterAct:NoneofthechemicalsinthisproductarelistedasHazardousSubstancesundertheCWA.NoneofthechemicalsinthisproductarelistedasPriorityPollutantsundertheCWA.NoneofthechemicalsinthisproductarelistedasToxicPollutantsundertheCWA.OSHA:NoneofthechemicalsinthisproductareconsideredhighlyhazardousbyOSHA.STATECAS#64-17-5canbefoundonthefollowingstaterighttoknowlists:California,NewJersey,Pennsylvania,Minnesota,Massachusetts.CAS#7732-18-5isnotpresentonstatelistsfromCA,PA,MN,MA,FL,orNJ.WARNING:ThisproductcontainsEthylalcohol,achemicalknowntothestateofCaliforniatocausebirthdefectsorotherreproductiveharm.CaliforniaNoSignificantRiskLevel:Noneofthechemicalsinthisproductarelisted.European/InternationalRegulationsEuropeanLabelinginAccordancewithECDirectivesHazardSymbols:F

PAGE 120

99AppendixA(Continued)RiskPhrases:R11Highlyflammable.SafetyPhrases:S16Keepawayfromsourcesofignition-Nosmoking.S33Takeprecautionarymeasuresagainststaticdischarges.S7Keepcontainertightlyclosed.S9Keepcontainerinawell-ventilatedplace.WGK(WaterDanger/Protection)CAS#64-17-5:0CAS#7732-18-5:Noinformationavailable.Canada-DSL/NDSLCAS#64-17-5islistedonCanada'sDSLList.CAS#7732-18-5islistedonCanada'sDSLList.Canada-WHMISThisproducthasaWHMISclassificationofB2,D2A,D2B.CanadianIngredientDisclosureListCAS#64-17-5islistedontheCanadianIngredientDisclosureList.ExposureLimitsCAS#64-17-5:OEL-AUSTRALIA:TWA1000ppm(1900mg/m3)OEL-BELGIUM:TWA1000ppm(1880mg/m3)OEL-CZECHOSLOVAKIA:TWA1000mg/m3;STEL5000mg/m3OEL-DENMARK:TWA1000ppm(1900mg/m3)OEL-FINLAND:TWA1000ppm(1900mg/m3);STEL1250ppm(2400mg/m3)OEL-FRANCE:TWA1000ppm(1900mg/m3);STEL5000ppOEL-GERMANY:TWA1000ppm(1900mg/m3)OEL-HUNGARY:TWA1000mg/m3;STEL3000mg/m3OEL-THENETHERLANDS:TWA1000ppm(1900mg/m3)OEL-THEPHILIPPINES:TWA1000ppm(1900mg/m3)OEL-POLAND:TWA1000mg/m3OEL-RUSSIA:STEL1000mg/m3OEL-SWEDEN:TWA1000ppm(1900mg/m3)OEL-SWITZERLAND:TWA1000ppm(1900mg/m3)OEL-THAILAND:TWA1000ppm(1900mg/m3)OEL-TURKEY:TWA1000ppm(1900mg/m3)OEL-UNITEDKINGDOM:TWA1000ppm(1900mg/m3)JAN9OELINBULGARIA,COLOMBIA,JORDAN,KOREAcheckACGIHTLVOELINNEWZEALAND,SINGAPORE,VIETNAMcheckACGITLVSection16-AdditionalInformationMSDSCreationDate:4/17/2001Revision#1Date:4/17/2001

PAGE 121

100AppendixA(Continued)Tergitol15-S-9SurfactantMaterialSafetyDataSheetSection1.ChemicalProductandCompanyIdentificationCommonName/TradeNameTergitol15-S-9SurfactantCatalogNumber(s).T1261CAS#68131-40-8or84133-50-6RTECSWZ5600000CI#NotAvailableManufacturer:SpectrumLaboratoryProducts14422S.SanPedroStreetGardena,CA90248Synonym:SecondaryAlcoholEthoxylateChemicalName:AlkyloxypolyethyleneoxyethanolChemicalFamily:PolyethyleneGlycolEthersINCASEOFEMERGENCYCALLCHEMTREC(24hr)800-424-9300ChemicalFormula:C12-14H25-29-O(C2H4-O)xHSupplier:SpectrumLaboratoryProducts14422S.SanPedroStreetGardena,CA90248CommercialName(s)Tergitol15-S-9SurfactantTSCA:TSCA8(b)inventory:Secondaryalcoholethoxylate;PolyethyleneGlycolHealthHazard:2FireHazard:1Reactivity:0Tergitol15-S-9Surfactant:ToxicologicalDataonIngredientsORAL(LD50):Acute:2380mg/kg[Rat].DERMAL(LD50):Acute:2000mg/kg[Rabbit].1)Alcohols,C12-14-secondary126950-60-5<22)PolyethyleneGlycol25322-68-3<33)Secondaryalcoholethoxylate84133-50-6>97Section2.CompositionandInformationonIngredientsExposureLimitsTWA(mg/m3)STEL(mg/m3)CEIL(mg/m3)%byWeightCAS#Hazardousincaseofskincontact(permeator),ofeyecontact(irritant),ofingestion,ofinhalation.Slightlyhazardousincaseofskincontact(irritant).

PAGE 122

101AppendixA(Continued)Repeatedorprolongedexposureisnotknowntoaggravatemedicalcondition.Section3.HazardsIdentificationPotentialAcuteHealthEffectsPotentialChronicHealthEffectsCARCINOGENICEFFECTS:Notavailable.MUTAGENICEFFECTS:Notavailable.TERATOGENICEFFECTS:Notavailable.DEVELOPMENTALTOXICITY:NotavailableTergitol15-S-9SurfactantSection4.FirstAidMeasuresIngestion:DoNOTinducevomitingunlessdirectedtodosobymedicalpersonnel.Nevergiveanythingbymouthtoanunconsciousperson.Loosentightclothingsuchasacollar,tie,beltorwaistband.Getmedicalattentionifsymptomsappear.EyeContact:Checkforandremoveanycontactlenses.Incaseofcontact,immediatelyflusheyeswithplentyofwaterforatleast15minutes.Coldwatermaybeused.Getmedicalattention.SkinContact:Incaseofcontact,immediatelyflushskinwithplentyofwater.Covertheirritatedskinwithanemollient.Removecontaminatedclothingandshoes.Coldwatermaybeused.Washclothingbeforereuse.Thoroughlycleanshoesbeforereuse.Getmedicalattention.SeriousSkinContact:Washwithadisinfectantsoapandcoverthecontaminatedskinwithananti-bacterialcream.Seekimmediatemedicalattention.Inhalation:Ifinhaled,removetofreshair.Ifnotbreathing,giveartificialrespiration.Ifbreathingisdifficult,giveoxygen.Getmedicalattention.SeriousInhalation:NotAvailableSeriousIngestion:NotAvailableSection5.FireandExplosionDataFlammabilityoftheProduct:Maybecombustibleathightemperature.ProductsofCombustion:Theseproductsarecarbonoxides(CO,CO2).FlashPoints:CLOSEDCUP:193C(379.4F).(Pensky-Martens.)OPENCUP:243C(469.4F)(Cleveland.).Auto-IgnitionTemperature:Notavailable.FireFightingMediaandInstructionsSMALLFIRE:UseDRYchemicalpowder.LARGEFIRE:Usewaterspray,fogorfoam.Donotusewaterjet.FireHazardsinPresenceofVariousSubstancesSlightlyflammabletoflammableinpresenceofopenflamesandsparks,ofheat.Non-flammableinpresenceofshocks.FlammableLimits:Notavailable.ExplosionHazardsinPresenceofVariousSubstancesRisksofexplosionoftheproductinpresenceofmechanicalimpact:Notavailable.Risksofexplosionoftheproductinpresenceofstaticdischarge:Notavailable.

PAGE 123

102AppendixA(Continued)SpecialRemarksonFireHazards:Notavailable.SpecialRemarksonExplosionHazardsSmallSpill:Dilutewithwaterandmopup,orabsorbwithaninertdrymaterialandplaceinanappropriatewastedisposalTergitol15-S-9SurfactantSection7.HandlingandStoragePrecautions:Keepcontainertightlyclosed.Keepcontainerinacool,well-ventilatedarea.Donotstoreabove25C(77F).Keepawayfromheat.Keepawayfromsourcesofignition.Emptycontainersposeafirerisk,evaporatetheresidueunderafumehood.Groundallequipmentcontainingmaterial.Donotingest.Donotbreathegas/fumes/vapor/spray.Wearsuitableprotectiveclothing.Incaseofinsufficientventilation,wearsuitablerespiratoryequipment.Ifingested,seekmedicaladviceimmediatelyandshowthecontainerorthelabel.Avoidcontactwithskinandeyes.Keepawayfromincompatiblessuchasoxidizingagents,acids,alkalis.Section8.ExposureControls/PersonalProtectionEngineeringControls:Provideexhaustventilationorotherengineeringcontrolstokeeptheairborneconcentrationsofvaporsbelowtheirrespectivethresholdlimitvalue.Ensurethateyewashstationsandsafetyshowersareproximaltothework-stationlocation.PersonalProtection:Splashgoggles.Labcoat.Vaporrespirator.Besuretouseanapproved/certifiedrespiratororequivalent.Gloves.PersonalProtectioninCaseofaLargeSpill:Splashgoggles.Fullsuit.Vaporrespirator.Boots.Gloves.Aself-containedbreathingapparatusshouldbeusedtoavoidinhalationoftheproduct.Suggestedprotectiveclothingmightnotbesufficient;consultaspecialistBEFOREhandlingthisproduct.ExposureLimitsNotavailable.Section9.PhysicalandChemicalPropertiesPhysicalStateandAppearance:Liquid.MolecularWeight:Notavailable.pH(1%soln/water):Notavailable.BoilingPoint:250C(482F)MeltingPoint:6C(42.8F)SpecificGravity:1.006(Water=1)VaporDensity:>1(Air=1)VaporPressure:0kPa(@20C)Volatility:Notavailable.OdorThreshold:Notavailable.DispersionProperties:Seesolubilityinwater.Solubility:Easilysolubleincoldwater,hotwater.Water/OilDist.Coeff.:Notavailable.

PAGE 124

103AppendixA(Continued)Ionicity(inWater):Notavailable.Taste:Notavailable.Odor:Mild(Slight.)Color:Colorless.ClearSection10.StabilityandReactivityDataStability:Theproductisstable.Incompatibilitywithvarioussubstances:Reactivewithoxidizingagents,acids,alkalis.InstabilityTemperature:Notavailable.ConditionsofInstability:Excessheat,incompatiblematerialsCorrosivity:NotavailableSpecialRemarksonReactivity:Normallyunreactive.However,avoidstronbasesathightemperatures,strongacids,strongoxidizingagentsandmaterials,reactivewithhydroxylcompounds.SpecialRemarksonCorrosivity:NotavailablePolymerization:WillnotoccurSection11.ToxicologicalInformationRoutesofEntry:Absorbedthroughskin.Dermalcontact.Eyecontact.ToxicitytoAnimals:Acuteoraltoxicity(LD50):2380mg/kg[Rat].Acutedermaltoxicity(LD50):2000mg/kg[Rabbit].ChronicEffectsonHumans:Notavailable.OtherToxicEffectsonHumans:Hazardousincaseofskincontact(permeator),ofingestion,ofinhalation.Slightlyhazardousincaseofskincontact(irritant).SpecialRemarksonToxicitytoAnimals:Notavailable.SpecialRemarksonChronicEffectsonHumans:MaycontaintraceamountsofEthyleneoxide,Acetaldehyde,1,4-dioxane,andFormaldehydewhichacancausecancer.Maycauseadversereproductiveeffectsandbirthdefectsbasedonanimalstudies.SpecialRemarksonotherToxicEffectsonHumans:AcutePotentialHealthEffects:Skin:Maycauseskinirritation.WidespreadcontactmayresultintheabsorptionofpotentiallyharmfulamountsEyes:Causesmoderatetosevereeyeirritationandconjunctivitis.Cornealinjurymayoccur.Inhalation:Maycauserespiratorytractirritation.Short-termharmfulhealtheffectsarenotexpectedfromvaporgeneratedatambienttemperature.Aerosolcanbehazardousifinhaled.Mayaffectbehaviorandrespiration.Symptomsmayincludehyperactivity,decreasedmotoractivity,audiblerespiration,mouthbreathing,anddistendedabdomen.

PAGE 125

104AppendixA(Continued)Ingestion:Maycauseirritationofthedigestivetract(mouth,throat,esophagus,andstomach)withpainordiscomfortintheabdomen,nausea,vomiting,diarrhea,salivation,andmayaffectmetabolism(emaciation).Mayalsoaffectbehavior.Symptomsmayincludesluggishness,prostration.Aspirationintothelungsmayoccurduringingestionorvomiting,resultinginlunginjury.ChronicPotentialHealthEffects:Skin:Repeatedorprolongedskincontactmaycausedermatits.Prolongedcontactmayalsocausemoresevereirritation.Section12.EcologicalInformationEcotoxicity:Notavailable.BOD5andCOD:Notavailable.ProductsofBiodegradation:Possiblyhazardousshorttermdegradationproductsarenotlikely.However,longtermdegradationproductsmayarise.ToxicityoftheProductsofBiodegradation:Theproductsofdegradationarelesstoxicthantheproductitself.SpecialRemarksontheProductsofBiodegradation:Notavailable.Tergitol15-S-9SurfactantSection13.DisposalConsiderationsWasteDisposalWastemustbedisposedofinaccordancewithfederal,stateandlocalenvironmentalcontrolregulations.Section14.TransportInformationDOTClassificationNotaDOTcontrolledmaterial(UnitedStates).Identification:Notapplicable.SpecialProvisionsforTransport:Notapplicable.Section15.OtherRegulatoryInformationandPictogramsOtherRegulations:NotavailableOtherClassificationsWHMIS(Canada):NotcontrolledunderWHMIS(Canada).DSCL(EEC):R21-Harmfulincontactwithskin.R36-Irritatingtoeyes.S2-Keepoutofthereachofchildren.S36/37-Wearsuitableprotectiveclothingandgloves.S46-Ifswallowed,seekmedicaladviceimmediatelyandshowthiscontainerorlabel.

PAGE 126

105AppendixA(Continued)MATERIALSAFETYDATASHEETANATRACE,INC.ChemicalEmergency(24hr):434WESTDUSSELDRIVE-WithinU.S.&Canada(800-424-9300)MAUMEE,OHIO43537-International(703-527-3887)TELEPHONE(419)891-3030EffectiveDate:12/13/1996Revised:07/15/2004FAX(419)891-3037-----IDENTIFICATION-----NAME:(TRITONX-114)ANAPOE-X-114CATALOG#APX114CAS#9036-19-5SYNONYMSCHARGERE*ETHOXYLATEDOCTYLPHENOL*ETHYLANCP*IGEPALCA*IGEPALCA520*NEUTRONYX622*NEUTRONYX675*NONIDETP40*NONIONHS206*NONIONHS208*NP-40*OCTYLPHENOXYPOLY(ETHOXYETHANOL)*TERT-OCTYLPHENOXYPOLY(ETHOXYETHANOL)*OCTYLPHENOXYPOLY(ETHYLENEOXY)ETHANOL*TERT-OCTYLPHENOXYPOLY(OXYETHYLENE)ETHANOL*OP1062*POLYETHYLENEGLYCOLMONO(OCTYLPHENYL)ETHER*POLYETHYLENEGLYCOLOCTYLPHENYLETHER*POLY(ETHYLENEOXIDE)OCTYLPHENYLETHER*POLY(OXY-1,2-ETHANEDIYL),ALPHA-((1,1,3,3-TETRAMETHYLBUTYL)PHENYL)-OMEGA-HYDROXY-(9CI)*POLYOXYETHYLENEMONOOCTYLPHENYLETHER*POLY(OXYETHYLENE)OCTYLPHENOLETHER*POLY(OXYETHYLENE)OCTYLPHENYLETHER*SECOPALOP20*SYNPERONICOP*SYNPERONICOP10*T45*T45(POLYGLYCOL)*TRITONX15*TRITONX114*TRITONX207*-----TOXICITYHAZARDS-----RTECSNO:MD0907600GLYCOLS,POLYETHYLENE,MONO((1,1,3,3-TETRAMETHYLBUTYL)PHENYL)ETHERIRRITATIONDATAEYE-RBT1%SEVJAPMA838,428,49TOXICITYDATAORL-RATLD50:4190MG/KG

PAGE 127

106AppendixA(Continued)FCTOD722,665,84IPR-RATLD50:770MG/KGFCTOD722,665,84ORL-MUSLD50:3500MG/KGJAPMA838,428,49IVN-MUSLD50:70MG/KGJAPMA838,428,49REVIEWS,STANDARDS,ANDREGULATIONSNOHS1974:HZD81435;NIS250;TNF42544;NOS129;TNE388256NOES1983:HZDX5849;NIS227;TNF35278;NOS160;TNE687698;TFE226942EPATSCACHEMICALINVENTORY,JUNE1990EPATSCATESTSUBMISSION(TSCATS)DATABASE,MARCH1992ONLYSELECTEDREGISTRYOFTOXICEFFECTSOFCHEMICALSUBSTANCES(RTECS)DATAISPRESENTEDHERE.SEEACTUALENTRYINRTECSFORCOMPLETEINFORMATION.-----HEALTHHAZARDDATA-----ACUTEEFFECTSMAYBEHARMFULBYINHALATION,INGESTION,ORSKINABSORPTION.VAPORORMISTISIRRITATINGTOTHEEYES,MUCOUSMEMBRANESANDUPPERRESPIRATORYTRACT.CAUSESSKINIRRITATION.TOTHEBESTOFOURKNOWLEDGE,THECHEMICAL,PHYSICALANDTOXICOLOGICALPROPERTIESHAVENOTBEENTHOROUGHLYINVESTIGATED.FIRSTAIDINCASEOFCONTACT,IMMEDIATELYFLUSHEYESWITHCOPIOUSAMOUNTSOFWATERFORATLEAST15MINUTES.INCASEOFCONTACT,IMMEDIATELYWASHSKINWITHSOAPANDCOPIOUSAMOUNTSOFWATER.ININHALED,REMOVETOFRESHAIR.IFNOTBREATHINGGIVEARTIFICIALRESPIRATION.IFBREATHINGISDIFFICULT,GIVEOXYGEN.IFSWALLOWED,WASHOUTMOUTHWITHWATERPROVIDEDPERSONISCONSCIOUS.CALLAPHYSICIAN.WASHCONTAMINATEDCLOTHINGBEFOREREUSE.-----PHYSICALDATA-----SPECIFICGRAVITY:1.058APPEARANCEANDODOR

PAGE 128

107AppendixA(Continued)COLORLESSLIQUID-----FIREANDEXPLOSIONHAZARDDATA-----FLASHPOINT:>230BY:EXTINGUISHINGMEDIAWATERSPRAY.CARBONDIOXIDE,DRYCHEMICALPOWDERORAPPROPRIATEFOAM.SPECIALFIREFIGHTINGPROCEDURESWEARSELF-CONTAINEDBREATHINGAPPARATUSANDPROTECTIVECLOTHINGTOPREVENTCONTACTWITHSKINANDEYES.UNUSUALFIREANDEXPLOSIONSHAZARDSEMITSTOXICFUMESUNDERFIRECONDITIONS.-----REACTIVITYDATA----INCOMPATIBILITIESSTRONGOXIDIZINGAGENTSHAZARDOUSCOMBUSTIONORDECOMPOSITIONPRODUCTSTOXICFUMESOF:CARBONMONOXIDE,CARBONDIOXIDE-----SPILLORLEAKPROCEDURES-----STEPSTOBETAKENIFMATERIALISRELEASEDORSPILLEDWEARRESPIRATOR,CHEMICALSAFETYGOGGLES,RUBBERBOOTSANDHEAVYRUBBERGLOVES.COVERWITHDRYLIMEORSODAASH,PICKUP,KEEPINACLOSEDCONTAINERANDHOLDFORWASTEDISPOSAL.VENTILATEAREAANDWASHSPILLSITEAFTERMATERIALPICKUPISCOMPLETE.WASTEDISPOSALMETHODDISSOLVEORMIXTHEMATERIALWITHACOMBUSTIBLESOLVENTANDBURNINACHEMICALINCINERATOREQUIPPEDWITHANAFTERBURNERANDSCRUBBER.OBSERVEALLFEDERAL,STATE,ANDLOCALLAWS.-----PRECAUTIONSTOBETAKENINHANDLINGANDSTORAGE-----CHEMICALSAFETYGOGGLES.COMPATIBLECHEMICAL-RESISTANTGLOVES.NIOSH/MSHA-APPROVEDRESPIRATOR.SAFETYSHOWERANDEYEBATH.MECHANICALEXHAUSTREQUIRED.DONOTBREATHEVAPOR.AVOIDCONTACTWITHEYES,SKINANDCLOTHING.WASHTHOROUGHLYAFTERHANDLING.IRRITANT.KEEPTIGHTLYCLOSED.STOREINACOOLDRYPLACE.LABELPRECAUTIONARYSTATEMENTS:IRRITANT

PAGE 129

108AppendixA(Continued)IRRITATINGTOEYES,RESPIRATORYSYSTEMANDSKIN.INCASEOFCONTACTWITHEYES,RINSEIMMEDIATELYWITHPLENTYOFWATERANDSEEKMEDICALADVISE.COMMENTSTHISBULLETINISFORYOURGUIDANCEANDISBASEDUPONINFORMATIONANDTESTSBELIEVEDTOBERELIABLE.ANATRACEMAKESNOGUARANTEEOFTHEACCURACYORCOMPLETENESSOFTHEDATAANDSHALLNOTBELIABLEFORANYDAMAGESTHERETO.THEDATAAREOFFEREDSOLELYFORYOURCONSIDERATION,INVESTIGATION,ANDVERIFICATION.THESESUGGESTIONSSHOULDNOTBECONFUSEDWITHEITHERSTATE,MUNICIPAL,ORINSURANCEREQUIREMENTS,ORWITHNATIONALSAFETYCODESANDCONSTITUTENOWARRANTY.ANYUSEOFTHESEDATAANDINFORMATIONMUSTBEDETERMINEDBYTHEUSERTOBEINACCORDANCEWITHAPPLICABLEFEDERALSTATEANDLOCALREGULATIONS.

PAGE 130

109AppendixBIREandPRSVComparisonThediscrepanciesthatthePRSVequationofstatepossesseswhencalculatingthemolarvolumeofaliquiddeservemoreattention.BelowinTable9isacomparisonofmolarvolumesascollectedexperimentally,andcalculatedusingtheImprovedRackettEquationandthePRSVequationofstate.ErrorcomparisonsoftheImprovedRackettEquationandthePRSVequationofstatetothevaluefromthecarbondioxidetablesarealsogiven.AsTable8shows,theImprovedRackettEquationisamuchbetterchoiceforcalculatingtheliquidmolarvolumesofcarbondioxide.OnlywhenroomtemperatureisreacheddotheImprovedRackettEquationandthePRSVequationofstateexhibitrelativelysameerrorincalculation.AllthevaluesreportedfortheCO2tables,theImprovedRackettEquation,andPRSVhaveunitsofcm3mol-1.

PAGE 131

110AppendixB(Continued)Table8.CarbonDioxideLiquidMolarVolumeCalculationComparisonTCelsiusT(K)CO2TablesIREValuesPRSVValues%DifferenceIRE%DifferencePRSV 0273.1547.60747.72260.4230.2421.581 1274.1547.84348.02360.4740.3762.049 2275.1548.18148.33360.5240.3152.283 3276.1548.51948.65260.5740.2752.552 4277.1548.85748.98260.6240.2562.862 5278.1549.19449.32360.6750.2633.217 6279.1549.56949.67660.7260.2173.522 7280.1549.97250.04260.7770.1413.807 8281.1550.37650.42260.8290.0914.140 9282.1550.77950.81760.8810.0744.533 10283.1551.18351.22760.9330.0874.981 11284.1551.66451.65660.985-0.0165.308 12285.1552.15652.10461.037-0.1005.675 13286.1552.64852.57361.090-0.1436.121 14287.1553.13953.06561.143-0.1396.653 15288.1553.70453.58361.197-0.2257.100 16289.1554.32154.13161.250-0.3507.528 17290.1554.93954.71061.304-0.4168.060 18291.1555.55655.32761.358-0.4128.720 19292.1556.25355.98661.412-0.4759.331 20293.1557.00356.69361.467-0.5439.965 21294.1557.75457.45861.521-0.51310.781 22295.1558.50558.29061.576-0.36811.817 23296.1559.84459.20461.632-1.07011.884 24297.1560.99960.21861.687-1.28012.588 25298.1562.15361.36161.743-1.27413.694 26299.1563.6562.67361.799-1.53514.560 27300.1565.60764.21961.855-2.11615.023 28301.1567.56766.11361.911-2.15216.374 29302.1570.17568.59261.967-2.25617.295 30303.1574.07472.30862.024-2.38417.982 31304.1586.95782.26062.081-5.40134.120

PAGE 132

111AppendixCCriticalPropertyEstimationTheJobackGroupContributionMethodforCriticalConstants(Tester&Modell)wasusedtoestimatethecriticaltemperature,criticalpressure,andcriticalvolumeofthetwosurfactantsexaminedinthisstudyTritonX-114andTergitol15-S-9.Table9showsthegroupsthatmakeupthemoleculeofTritonX-114andthevaluesassociatedwiththemforcriticalpropertyestimation.Table9.JobackGroupContributionFactorsforTritonX-114GroupNumberofGroupsTc(K)Pc(bar)Vc(cm3mol-1) OH10.07410.011228 CH330.0141-0.001265 O80.01680.001518 CH2200.01890.0056 CH(ring)40.00820.001141 C(ring)20.01430.000832 C(non-ring)10.00670.004327

PAGE 133

112AppendixC(Continued)Table10showsthegroupsthatmakeupthemoleculeofTergitol15-S-9andthevaluesassociatedwiththemforcriticalpropertyestimation.Table10.JobackGroupContributionFactorsforTergitol15-S-9GroupNumberofGroupsTc(K)Pc(bar)Vc(cm3mol-1) OH10.07410.011228 CH310.0141-0.001265 O90.01680.001518 CH2300.01890.0056 Equation118inChapter3isusedtoestimatethecriticaltemperatureofTritonX-114andTergitol15-S-9: 2965.584.jjjTijTijbcccvvTT

PAGE 134

113AppendixC(Continued)TritonX-114 0189.0200168.080141.030741.01 jTijcjv 0067.010143.020082.04 6969.0 jTijcjv CKKCTooc66.34081.6136969.06969.0965.0584.15.2732002Tergitol15-S-9 jijv0189.0300168.090141.010741.01 8064.0 jTijcjv CKKCTooc72.46187.7348064.08064.0965.0584.15.2732502ThecriticalpressureofTritonX-114andTergitol15-S-9wasestimatedusingEquation119fromChapter3: 20032.113.01jPijaccjvnPTritonX-114 0200015.080012.030112.01 jPijcjv 0043.010008.020011.04 0299.0 jPijcjv

PAGE 135

114AppendixC(Continued) barPc8998.60299.0930032.113.012Tergitol15-S-9 jPijcjv0300015.090012.010112.01 0235.0 jPijcjv barPc523.50235.01050032.113.012ThecriticalvolumesofTritonX-114Tergitol15-S-9wereestimatedusingEquation108fromChapter3: jVijccjvV5.17TritonX-114 135.759,127132241456201886532815.17molcmVcTergitol15-S-9 135.952,156301896512815.17molcmVc

PAGE 136

115AppendixC(Continued)TheacentricfactorsofTritonX-114andTergitol15-S-9weredeterminedusingEquation121fromChapter3: 1013.1log17310ccbcbPTTTTTritonX-114 2012.01013.18998.6log81.61315.473181.61315.4737310Tergitol15-S-9 22.01013.1523.5log87.73415.523187.73415.5237310

PAGE 137

116AppendixDSampleCalculationsThefollowingaresamplecalculationsofthenumericalanalysisinvolvedinthiswork.Calculationswillbepresentedfor:liquidmolarvolume(IREandPRSV),thepercenterrorforeachliquidmolarvolumecalculationcomparedtocarbondioxidetables,liquidmolefractions,averageandstandarddeviationofcloudpointpressure.InitialConditionsPinitial=73.4barTinitial=24.3oC0.2608gramsethanol0.0299gramsTritonX-114Densities0.79gcm-3ethanol1.052gcm-3TritonX-114LiquidMolarVolumeCalculationsIRE cTracmPZRTVr])1(1[)72( 97765.025.30415.2733.24KKCTor molcmbarKKmolcmbarVm3])97765.01(1[3546.608.732736.025.30414.83)72(APRSVMATLABProgramCO2+EthanolBinarySystemwasusedaspurecomponentsystemforCO2molarvolumecalculation:x1=1x2=0.AttheinitialpressureandtemperaturePRSVMATLABprogramreturnsonevalueforZ,indicatingjustonephaseispresentliquid.ThePRSVMATLABprogramreportsZ=0.18304.

PAGE 138

117AppendixD(Continued) P ZRTV molcmbarKKmolcmbarV3367.614.7345.29714.8318304.0PercentErrorofIREandPRSVCalculationstoCO2TableValuesFromtheCO2molarvolumeTables(1.Angus&Armstrong&deRueck1976),theinterpolatedmolarvolumeofliquidCO2attheabovelistedinitialconditionsis58.527cm3mol-1.%ErrorIRE error mol cmmolcmmolcm%45.3%100*527.58527.58546.60333%ErrorPRSV error mol cmmolcmmolcm%37.5%100*527.58527.5867.61333LiquidMoleFractionsCO2Volume=15cm3-0.2608gethanol 0.0299gTritonX-114 =14.6415cm30.79gcm-31.052gcm-3MolesofCO2=14.6415cm3 =0.241824molesofCO260.546cm3mol-1Molesofethanol=0.2608grams =0.005661molesofethanol46.07gramsmole-1MolesofTritonX-114=0.0299grams =4.79167e-5molesofTritonX-114624gramsmole-1

PAGE 139

118AppendixD(Continued)x1=0.241824molesCO 2 (0.241824molesCO2+0.005661molesethanol+4.79167e-5molesTritonX-114)x1=0.9769x2=0.005661molesethanol (0.241824molesCO2+0.005661molesethanol+4.79167e-5molesTritonX-114)x2=0.02287x3=4.79167e-5molesTritonX-114 (0.241824molesCO2+0.005661molesethanol+4.79167e-5molesTritonX-114)x3=1.94320e-4AverageandStandardDeviationofCloudPointPressureObservedcloudpointpressuresinbarsforthissystemat40oCare:114.5,114.55,114.7,114.7,and114.8. barbarbarbarbarbarAverage65.114 5 8.1147.1147.11455.1145.114 StandardDeviation2s 465.1148.11465.1147.11465.1147.11465.11455.11465.1145.114222222215.0barsStandardDeviation 2s 215.0barbar1225.0


xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam Ka
controlfield tag 001 001789574
003 fts
005 20070605095040.0
006 m||||e|||d||||||||
007 cr mnu|||uuuuu
008 070605s2005 flu sbm 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0001454
040
FHM
c FHM
035
(OCoLC)137708553
049
FHMM
090
TP145 (ONLINE)
1 100
Smeltzer, Brandon.
4 245
The solubility of Triton X-114 And Tergitol 15-S-9 in high pressure carbon dioxide solutions
h [electronic resource] /
by Brandon Smeltzer.
260
[Tampa, Fla] :
b University of South Florida,
2005.
3 520
ABSTRACT: In the sol gel production of high surface area catalyst, the template, a surfactant, is the key component of the process. A template too soluble in the supercritical drying-extraction process can yield a catalyst with a lower surface area. A template completely insoluble in the supercritical drying-extraction process can lead to a longer calcinations step and lower catalyst surface area. Template recovery also enhances the economic feasibility of plant scale production of high surface area catalyst. For these reasons knowing surfactant solubility in supercritical media is important.The solubility of surfactants tert-octylphenoxypolyethoxyethanol (commercially available and hereafter referred to as Triton X-114) and alkyloxypolyethyleneoxyethanol (commercially available and hereafter referred to as Tergitol 15-S-9) in supercritical carbon dioxide and ethanol entrainer have been determined at five-degree increments from 35¨C to 50¨C. The solubility of the surfactants wa s determined by charging a variable volume cloud point system with the entrainer-surfactant mixture followed by liquid carbon dioxide. With the resulting stirred homogeneous mixture heated to temperature, cloud point pressures were observed as the phase analyzer cell was pressurized by adjusting the variable volume. An average of five values for cloud point pressure is reported here. The mixture behaviors were modeled using the Improved Rackett equation and the Peng-Robinson-Stryjek-Vera (PRSV) equation of state with Wong-Sandler (WS) mixing rules. For the Carbon Dioxide (CO2) (1) -- Ethanol/Triton X-114 (2) mixtures studied, compositions ranged from 93.2 mol% CO2 to 97.7 mol% CO2. The solubility of Triton X-114 ranged from 0.02 mol% to 0.05 mol% at temperatures ranging from 35¨C to 50¨C. Cloud point pressures observed for this system range from 95 bar to 143 bar. For the CO2 (1) --^ Ethanol/Tergitol 15-S-9 (2) mixtures studied, compositions ranged from 92.3 mol% CO2 to 94.4 mol % CO2. The solubility of Tergitol 15-S-9 ranged from 0.02 mol% to 0.03 mol% at temperatures ranging from 35¨C to 50¨C. Cloud point pressures observed for this system range from 89 to 154 bar.
502
Thesis (M.A.)--University of South Florida, 2005.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
538
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
500
Title from PDF of title page.
Document formatted into pages; contains 118 pages.
590
Adviser: Aydin K. Sunol, Ph.D.
653
Cloud point.
Phase.
Supercritical.
Surfactant.
Template.
690
Dissertations, Academic
z USF
x Chemical Engineering
Masters.
773
t USF Electronic Theses and Dissertations.
0 856
u http://digital.lib.usf.edu/?e14.1454