USF Libraries
USF Digital Collections

A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials

MISSING IMAGE

Material Information

Title:
A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials
Physical Description:
Book
Language:
English
Creator:
Gishe, Jemal Emina
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla
Publication Date:

Subjects

Subjects / Keywords:
Continuous q-Jacobi polynomials
Lowering operator
Generating function
Weight function
Rodrigues formula
Discriminant
Dissertations, Academic -- Mathematics -- Doctoral -- USF
Genre:
bibliography   ( marcgt )
theses   ( marcgt )
non-fiction   ( marcgt )

Notes

Abstract:
Two problems related to orthogonal polynomials and special functions are considered. For q greater than 1 it is known that continuous q-Jacobi polynomials are orthogonal on the imaginary axis. The first problem is to find proper normalization to form a system of polynomials that are orthogonal on the real line. By introducing a degree reducing operator and a scalar product one can show that the normalized continuous q-Jacobi polynomials satisfies an eigenvalue equation. This implies orthogonality of the normalized continuous q-Jacobi polynomials. As a byproduct, different results related to the normalized system of polynomials, such as its closed form,three-term recurrence relation, eigenvalue equation, Rodrigues formula and generating function will be computed. A discriminant related to the normalized system is also obtained. The second problem is related to recent results of Dilcher and Stolarky on resultants of Chebyshev polynomials. They used algebraic methods to evaluate the resultant of two combinations of Chebyshev polynomials of the second kind. This work provides an alternative method of computing the same resultant and also enables one to compute resultants of more general combinations of Chebyshev polynomials of the second kind. Resultants related to combinations of Chebyshev polynomials of the first kind are also considered.
Thesis:
Dissertation (Ph.D.)--University of South Florida, 2006.
Bibliography:
Includes bibliographical references.
System Details:
System requirements: World Wide Web browser and PDF reader.
System Details:
Mode of access: World Wide Web.
Statement of Responsibility:
by Jemal Emina Gishe.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains 63 pages.
General Note:
Includes vita.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 001796876
oclc - 156940372
usfldc doi - E14-SFE0001620
usfldc handle - e14.1620
System ID:
SFS0025938:00001


This item is only available as the following downloads:


Full Text

PAGE 1

and ResultantsofChebyshevPolynomials by JemalEminaGishe Adissertationsubmittedinpartialfulllment oftherequirementsforthedegreeof DoctorofPhilosophy DepartmentofMathematics CollegeofArtsandSciences UniversityofSouthFlorida MajorProfessor:MouradE.H.Ismail,Ph.D. BorisShekhtman,Ph.D. MasahikoSaito,Ph.D. BrianCurtin,Ph.D. DateofApproval: July13,2006 Keywords:continuousq-Jacobipolynomials,loweringoperator,generatingfunction,weightfunction,Rodriguesformula,discriminant. cCopyright2006,JemalEminaGishe

PAGE 3

IwanttothankDr.MasahikoSaito,Dr.BorisShekhtmanandDr.BrianCurtinmysupervisingcommitteeandDr.DavidRabsonChairpersonofmydefense,whoreadthemanuscriptwithvaluablecomments.IamgratefultoallassistanceIob-tainedfromtheMathematicsdepartmentatUniversityofSouthFlorida;nancially,academicallyandemotionally. Thereareamplewonderfulfriendsinthecourseofmylifewhoinuencedandbelievedinme.JemalDubie,AbduroKelu,A.Hebo,HussienHamda,JimTremmelandMuratThuranareamongthefewtomention. Mywholelifeishighlyindebtedtothesupportandloveofmyfamily.MydreamisrealizedwiththeencouragementandgreatsupportofmyparentsEminaGisheandSinbaChawicha.Theircourage,sacriceandprayertobroughtmeup,inuencedmeandaresourceofmyinspirations.Itisalsoablessingtohaveanintelligent,fullofwondersandcaringbrotherlikeAhmed.Hisdeterminationandstrengthtocopeupwithdiculties,fearlesstoghtinjusticeagainsthimselfandothers,giftednaturetomakefunarefewofhisqualitiestomention. Finally,loveandemotionalsupportIobtainfrommywonderfulwifeZebenayM.Kedirissovaluabletoreachthislevel.HercourageandstrengthtoproperlycareforourprecioussonAnatoliinmyabsenceforyearsandhervisionsoflifewhichhelpedmestaythecourseareafewofherblessedworkthatIcannotaordnottomention.

PAGE 4

1Introduction1 1.1Backgroundandmotivation.......................1 1.2Basics,denitionsandnotation.....................7 1.3Generalpropertiesoforthogonalpolynomials..............10 2AFiniteFamilyofq-OrthogonalPolynomials15 2.1Continuousq-Jacobipolynomials....................16 2.2ThepolynomialsQn...........................25 2.3TheLoweringoperator..........................27 2.4Discriminants...............................38 3ResultantsofChebyshevPolynomials41 3.1Preliminaries...............................41 3.2Chebyshevpolynomialsofsecondkind.................45 3.3Chebyshevpolynomialsofrstkind...................53 References62 AbouttheAuthorEndPagei

PAGE 5

and ResultantsofChebyshevPolynomials JemalEminaGisheAbstract ThesecondproblemisrelatedtorecentresultsofDilcherandStolarky[10]onresultantsofChebyshevpolynomials.TheyusedalgebraicmethodstoevaluatetheresultantoftwocombinationsofChebyshevpolynomialsofthesecondkind.ThisworkprovidesanalternativemethodofcomputingthesameresultantandalsoenablesonetocomputeresultantsofmoregeneralcombinationsofChebyshevpolynomialsofthesecondkind.ResultantsrelatedtocombinationsofChebyshevpolynomialsoftherstkindarealsoconsidered.ii

PAGE 6

Thestudyoforthogonalpolynomialsandspecialfunctionsisanoldbranchofmathematics.Butthebeginningofstudyoforthogonalpolynomialsasadisciplinecanbedatedbackto1894whenStieltjespublishedapaperaboutmomentprobleminrelationtocontinuedfraction.Stieltjesconsideredaboundednon-decreasingfunction(x)intheinterval[0;1)suchthatitsmomentsgivenbyR10xnd(x),forn=0;1;2;:::hasapriorgivensetofvaluesfngasfollows,Z10xnd(x)=n: SimilarresultswhichprecededtheworkofStelieltjesarethoseofChebyshevin1855,whichdiscussedintegralsoftypeR1p(y)

PAGE 7

Manymathematiciansmadeimportantcontributionstothiseldofmathematics.Tomentionafew,Euler'sgammaandbetafunctions;Besselfunctions;PolynomialsofLegenderre,Jacobi,LaguerreandHermite.Mostofthesefunctionswereintro-ducedtosolvespecicproblems.Forexample,Euler'sgammaandbetafunctionsarediscoveredbyEulerinthelate1720's,intheprocessoflookingforafunctionofcontinuousvariablexthatequalsn!whenx=nforanintegern.BesselfunctionsJ(x)=1Xn=0(1)n(x=2)+2n dx2+1 dx+(12

PAGE 8

Inthe1970'sthestudyoforthogonalpolynomialwastakentoanewlevelwithRichardAskey'sleadershipintheareaofspecialfunctionswhileatthesametimeGeorgeAndrewwasadvancingq-seriesandtheirapplicationstonumbertheoryandcombinatorics.TheseadvancementisduetostrongteamworkofMouradIsmail,M.Rahman,G.Gasperamongthefewtomention. Orthogonalpolynomialsandspecialfunctionshaveavarietyofapplicationsinmanyareas.Oneareaisinsolvingdierentialequations.Thesystemsofclassi-calorthogonalpolynomials(suchasJacobi,Hermite,Laguerre)satisfysecondorderdierentialequations.Forexample,Poissonfoundthatthethetafunctionu(x;t)=1Xen2t+inx @x2=@u @t;

PAGE 9

Thebeginningofq-polynomialsisrelatedtotheworkofRogersandRamanujanofthelate19thandearly20thcentury.InthisregardtheRogers-Ramanujanidentities(fornotationreferto(1.2)),1Xn=0qn2 (q;q4;q5)1 (q2;q3;q5)1 (tei;tei;q)1:4

PAGE 10

ThecombinatorialstatementoftheRogers-Ramanujanidentitieswasindepen-dentlydiscoveredbyMacMahonandShurduring1920's.Thecombinatorialinter-pretationofRogers-RamanujanfollowsinthesamewayasEulerinterpretationoftheidentity1Xn=0qn (q;q)1 (q;q)1; Thereisawidevarietyofworkaboutq-seriesinrelationtocombinatoricsandnumbertheory,andtheirapplications,especiallyinrelationtopartitiontheory. Thesystemsofq-orthogonalpolynomialssatisfyasecondorderdierenceequa-tion.HeretheAskey-Wilsonandsomeotherdierenceoperators,usuallycalledraisingandloweringoperators,playtheroleofdierentialoperator.Denitionsoftheseoperators,aregiveninChapter2. ThesecondpartofthedissertationisaboutresultantsrelatedtoChebyshevpoly-nomials.Thetheoryofresultantisanoldandmuchstudiedtopicinwhatusedtobecalledthetheoryofequations[9].DicksonintroducedresultantinhisbookNewFirstCourseintheTheoryofEquation[9]publishedin1939,byconsideringtwofunctionsf(x)=amxm++a0andg(x)=bnxn++b0wheream6=0and5

PAGE 11

Fromtheaboveparagraphweobservethataresultantisascalarfunctionoftwopolynomialswhichisnonzeroifandonlyifthepolynomialsarerelativelyprime.Theresultantoftwopolynomialsisingeneralacomplicatedfunctionoftheircoe-cient.Butthereisanexceptionallyelegantformulaforresultantoftwocyclotomicpolynomialsn(x)(theuniquemonicpolynomialwhoserootsaretheprimitiventhrootofunity).Ithasdegree(n)andwrittenasn(x)=nYk=1;(k;n)=1(xe2ik n); Nowwebrieyintroducethecorecontentofthedissertationandthemethodsusedtosolvetheproblems.Inchapter2,wefollowthestandardnotationbyIsmailasin[14].Insections2:1and2:2,webrieyreviewtheconstructionofcontinuousq-Jacobi6

PAGE 12

Insection2:3,weintroducetheassociatedloweringoperatorandapplythisopera-tortothenormalizedsystemofpolynomials.Here,wedenearelatedscalarproductandshowthatthenormalizedsystemofpolynomialsareeigenfunctionsunderthisscalarproduct.Thiswillleadustoshowtheorthogonalityofnormalizedsystemofpolynomials.Asabyproduct,wewillcomputeaclosedform,three-termrecur-rencerelation,aneigenvalueequation,Rodriguesformulaandageneratingfunctionofthenormalizedcontinuousq-Jacobipolynomials.Asclassicalorthogonalpolyno-mialssatisfysecond-orderdierentialequations,thissystemofpolynomialssatisesasecond-orderdierenceequationswheretheloweringandraisingoperatorstobedenedwillplaytheroleofdierentialoperatorinthelatercase.Inthelastsectionofthischapterwecomputediscriminant,usinganeleganttechniqueintroducedbyIsmail,relatedtothenormalizedpolynomials. Inthelastchapter,wecomputeresultantsofcombinationsofdierentformsrelatedtoChebyshevpolynomialsofrstandsecondkind.Therstsectionofthischapterdealswiththepreliminaries.InthesecondsectionwestateandprovidedierentprooffortheresultantsoftwocombinationsofChebyshevpolynomialsofsecondkindduetoK.DilcherandK.B.Stolarsky[10]andgeneralizetheirresult.ThelastsectionofthischapterdealswiththecorrespondingresultsforChebyshevpolynomialsofrstkind.1.2Basics,denitionsandnotation

PAGE 13

Theq-shiftedfactorialsaredenedas(a;q)0:=1;(a;q)n:=nYk=1(1aqk1)(1.1) forn=1;2;:::;or1,andthemultipleq-shiftedfactorialsaredenedby(a1;a2;:::;ak;q)n:=kYj=1(aj;q)n:(1.2) Thebasichypergeometricseriesisdenedasrsa1;a2;:::;arb1;b2;:::;bsq;z!=rs(a1;a2;:::;ar;b1;b2;:::;bs;q;z)=1Xn=0(a1;a2;:::;ar;q)n 2)n(s+1r): Thenotionofq-shiftedfactorialsandhypergeometricseriesintroducedaboveareextensionsofshiftedandmultishiftedfactorialsbecauseonecanverifythatlimq!1(qa;q)n Thisimpliesthatlimq!1rsqa1;qa2;;qarqb1;qb2;;qbsq;z(1q)s+1r!=rFsa1;a2;;arb1;b2;;bs(1)s+1rz!;rs+18

PAGE 14

(z;q)1;jzj<1;(1.5) BelowisaLemmathatgivesimportantidentitiesinvolvingq-shiftedfactorialswhichwillbeusedinthecourseofthisdissertation.Lemma1.2.2

PAGE 15

ak;(1.9)(a;q)nk=(a;q)n 2k(k+1)nk;(1.10)(a;q1)n=(1=a;q)n(a)nqn(n1)=2:(1.11) 2(1qn=a)(1qn1=a)(1q=a) (1qnk=a)(1qn1k=a)(1q=a)=(1)kqnk+k(k1) 2(q=a;q)n(11=a)(1q=a)(1q1k=a) (1qnk=a)(1qn1k=a)(1q1k=a): existsforalln0.Existenceheremeansthattheresultingintegralsareniteforallnon-negativeintegersn. Then'sarecalledthemomentswithrespecttotheweightfunctionw(x).Inmostcasestheweightfunctionsaresupportedontheniteinterval.Wementionfew10

PAGE 16

Givenaweightfunctionw(x),thenthmonicorthogonalpolynomials(denotedbyQn(x))areconstructedsothattheysatisfyZRQn(x)xkw(x)dx=0;k=0;:::;n1:(1.13) TheaboveequationisequivalenttoZRQn(x)pk(x)w(x)dx=0;k=0;:::;n1; Weintroducethedeterminantn=01n12n+1::::::nn+12n:(1.15) Theexistenceoforthogonalsystemcanbestatedalsoasfollows.11

PAGE 17

foranypositivepolynomialQ(x).Then,themomentintegralispositivedeniteifandonlyifallitsmomentsarerealandn>0. NextistheFundamentalrecurrenceformulawhichstatesthatallsystemsoforthogonalpolynomialssatisesathree-termrecurrencerelation.Fortheproofreferto[14].Theorem1.3.5 withorthogonalityZRn(x)m(x)d(x)=nn;m;(1.19) thenCn>0andn=C1Cn.Itisalsopossibletonotethatforthemoniccasen=n

PAGE 18

Anotherimportantconsiderationinorthogonalpolynomialsisaboutpropertiesofitszeros.Thezerosofsystemoforthogonalpolynomialsaresimpleandinterlace.BelowisatheoremonChristoel-Darbouxidentitieswhichareusedtoverifyaboutthesimplicityandinterlacingpropertiesofzerosoforthogonalpolynomials.Theorem1.3.7

PAGE 21

TheAskey-Wilsonpolynomialsarebuiltthroughthemethodofattachment,whichinvolvesgeneratingfunctionsandsummationtheoremstogetneworthogonalorbiorthogonalfunctions.Webrieyexplainthemethodofattachmentusingthecon-structionofAl-Salam-Chiharapolynomials. Theorthogonalityrelationofcontinuousq-Ultrasphericalpolynomialscanbewrit-teninanequivalentintegralformofZ0(t1ei;t1ei;t2ei;t2ei;e2i;e2i;q)1 Toconstructpolynomialspn(x;t1;t2jq)orthogonalwithrespecttotheweightfunctionw1(x;t1;t2jq)=(e2i;e2i;q)1

PAGE 22

Withtheabovemotivationconcerningthemethodofattachment,thepolynomialsorthogonalwithrespecttotheweightfunctionwhosetotalmassisgivenbytheAskey-Wilsonq-betaintegral,Z0(e2i;e2i;q)1 Thissystemofpolynomialssatisfythefollowingorthogonalityrelationundertheassumptionthatift1,t2,t3,t4arereal,oroccurincomplexconjugatepairsifcomplex,thenmaxfjt1j;jt2j;jt3j;jt4jg<1.Itisknownthat1 2Z11w(x) wherew(x):=w(x;t1;t2;t3;t4jq)=(e2i;q)1 (t1t2;t1t3;t1t4;;q)n;17

PAGE 23

(1t1t2t3t4q2n2)(1t1t2t3t4q2n1): (q1=2q1=2)(z1=z)=2;(2.5) wherex=(z+1=z)=2andf(z)=f((z+1=z)=2):Herex=cosandonecanobservethatz=ei. TheexpansionformulaisanimportantnotionrelatedtotheAskey-Wilsonop-eratorDq.TheAskey-WilsonoperatorDqactsnicelyon(aei;aei;q)n.The(aei;aei;q)nareviewedasthebasisforq-polynomialswhichisanaloguetothebasisxnforclassicalpolynomials.Indeed,forapolynomialsofdegreentheexpan-sionformulaisf(x)=nXk=0fk(aei;aei;q)k;18

PAGE 24

andxk=1 2aqk=2+qk=2 2+1 4,t2=q1 2+3 4,t3=q1 2+1 4,t4=q1 2+3 4inthedenitionoftheAskey-Wilsonpolynomialsafterre-normalizingitfollowsthat,forn=1;2;:::,P(;)n(xjq)=(q+1;q)n 2+1 4ei;q1 2+1 4eiq+1;q1 2(++1);q1 2(++2)q;q!;(2.6) wherex=cos. Theabovepolynomialsarecalledcontinuousq-Jacobipolynomialsandsolvethenormalizedrecurrencerelationxpn(x)=pn+1(x)+1 2[q1 2+1 4+q1 21 4(An+Cn)]pn(x)+1 4An1Cnpn1(x);(2.7) whereP(;)n(xjq)=2nq(1 2+1 4)n(qn+++1;q)n 2++1);q(1 2++2);q)npn(x);(2.8) 2(++1))(1+qn+1 2(++2)) 2+1 4(1q2n+++1)(1q2n+++2);(2.9) andCn=q1 2+1 4(1qn)(1qn+)(1+qn+1 2(+))(1+qn+1 2(++1)) (1q2n++)(1q2n+++1):(2.10) For1 2and1 2,thecontinuousq-Jacobipolynomialshavetheorthogonalityformula19

PAGE 25

2Z11w(x) 2(++2);q1 2(++3);q)1 2(++1);q1 2(++2);q)1(1q++1)(q+1;q+1;q1 2(++3);q)n 2(++1);q)nq(+1 2)nmn; 2+1 4ei;q1 2+3 4ei;q1 2+1 4ei;q1 2+3 4ei;q)12: Forq>1,thecontinuousq-JacobipolynomialsfP(;)n(xjq)gareorthogonalontheimaginaryaxis.Itispossibletorenormalizeinordertoformasystemofpolynomialsorthogonalontherealline. FirstwewilllookatJacobiandq-Hermitepolynomials,forwhichsimilarresultshavealreadybeenconsideredbyM.Ismail.Example2.1.1 (++2): TheclosedformofJacobipolynomialshashypergeometricrepresentationP(;)n(x)=(+1)n

PAGE 26

Usingthechangeofparameters=a+bi,=abi,x!ix,appliedtotherecurrencerelationofJacobipolynomialsandredeningpn(ix)

PAGE 27

(tei;tei;q)1; gives Withtheabovemotivationwenowlookbacktocontinuousq-Jacobipolynomialsforq>1.Forq>1,thesystemofpolynomialsfP(;)n(x)gareorthogonalontheimaginaryaxisandweneedtorenormalizeinordertomakethesepolynomialsorthogonalontherealline.AfterdierenttrialsandrecallingLemma2.0.10,the22

PAGE 28

Thepropernormalizationistomakethefollowingchangeofparametersi:q1 2+1 4:=A=a+bi;(2.11)ii:q1 2+1 4:=B=abi(2.12) andreplacexbyix.Withthisthethree-termrecurrencerelation(2.7)becomesixpn(ix)=pn+1(ix)+iC1pn(ix)+C2pn1(ix):(2.13) TheMapleoutputshowsthatthevaluesofC1andC2arerealconstantsandisin-cludedbelow.Dividing(2.13)byin+1wehavexpn(ix)

PAGE 29

(1q2n2(a2+b2)2)(1q2n1(a2+b2)2)2(1q2n(a2+b2))(1qn)(1+qn(a2+b2)[(1qn1=2a2)2+(1+qn1=2b2)2+2q2n1a2b21]:24

PAGE 30

whereix=cosand=

PAGE 31

(1s1s2s3s4p2n2)(1s1s2s3s4p2n1);(2.17) andBn=s1+s11s11An4Yj=2(1s1sjpn)s1Cn Nowreplacepby1=qandsjbyi=tj,1j4,respectivelyin(2.17)and(2.18)anddenotethetransformedAn,BnandCnbyA0n,B0nandC0n.Thus,A0n=(t1t2t3t4q3n)(1t1t2t3t4qn1) (1t1t2t3t4q2n1)(1t1t2t3t4q2n);C0n=q33n(1qn)Q1j
PAGE 32

Herethepositivityconditionoftherecurrencerelationissuchthat,A00n1C00n>0:(2.24) Itfollowsthatfrom(2.19)and(2.23)thepositivityconditionholdsfor1t1t2t3t4qn2<0: Theaboveinequalityholdsonlyfornitelymanyn,andhencethisnormalizationgivesnitelymanypolynomialsassuggestedbyRouthinLemma2.0.10.Forpurposeofthepositivityconditionofweightfunctionconsideredlaterinthissection,thepairst1andt3,t2andt4areassumedtobecomplexconjugates.2.3TheLoweringoperator (q1=2q1=2)[(z+z1)=2];(2.26)(Af)(x)=1 2[^f(q1=2z)+^f(q1=2z)];(2.27) with^f(z)=f(zz1

PAGE 33

Weintroduceinnerproductwithrespecttow(x)=1 (u2+1)=2 ^g(u)du=Z10^f(u) ^g(q1=2u) (q1=2u2+q1=2)=2duZ10^f(u) ^g(q1=2u) (q1=2u2+q1=2)=2du: wherex=sinh,formabasisinthevectorspaceofallpolynomialsoverC.Theresultofapplyingtheloweringoperatortofn(xjq)gisgivenbythefollowinglemma.Lemma2.3.2 1q(q1=2ae;q1=2ae;q)n1:(2.33)28

PAGE 34

(q1=2q1=2)cosh=2a(1qn) 1q(q1=2ae;q1=2ae;q)n1:2Theorem2.3.3 (1q)(q1=2t1e;q1=2t1e;q)k1=2qn+1 2(1qn)(1qn1t1t2t3t4) (1q)(qt1t2;qt1t3;qt1t4;q)n1

PAGE 35

2+1 4ei;q1 2+3 4ei;q1 2+1 4ei;q1 2+3 4ei;q)12;(2.35) where1=2and1=2.TointroducetheweightfunctionofthepolynomialsQnmakethechangeofparameters(2.11)and(2.12)toobtainw(xjq)=(e2i;q)1 (iAe;q1=2iAe;iBe;q1=2iBe;q)1: itfollowsthatw(x;tjq)=(e2;e2;q)1 Withthis,weintroducetheweightfunction~w(x;tjq)=w(x;tjq) cosh:

PAGE 36

(1q)[1+3+2x(14)]:(2.38) (q1=2q1=2)[(1+q1e2)Q4j=1(1tje) (1+e2)(q1=2e+q1=2e(1+q1e2)Q4j=1(1+tje) (1+e2)(q1=2e+q1=2e]=2~w(x;tjq) (q1=2q1=2)[q1=2e

PAGE 37

(q1)[2sinh(41)13] whichimpliestheresultofthetheorem.2Theorem2.3.5 ~w(x;tjq)=2q(1n)=2 ~w(x;tjq)=(t1t2;t1t3;t1t4;q)n ~w(x;tjq)[2sinh(1qk4)+(qkt1+t2+t3+t4)+qkt1(t2t3+t2t4+t3t4)+t2t3t4]:

PAGE 38

whichimpliesthefollowingtheorem.Theorem2.3.6 ~w(x;tjq)=4(1qn)(1qn14)

PAGE 39

Proof.Firstweshowthatalleigenvaluesarereal.Tothecontraryconsiderthattheaboveeigenvalueproblemhascomplexeigenvalueanditscorrespondingeigenfunc-tionisy.Then,yisaneigenfunctionwitheigenvalue.Withthis,()ZRy(x)

PAGE 40

cosh;(2.43) ~w(x;tjq)=4(1qn)(1qn14) 2q(1n)=2Dq[~w(x;q1=2tjq)Qn1(x;q1=2tjq)]=(1q)2 2Dnq~w(x;qn=2tjq):35

PAGE 41

2Dnq~w(x;qn=2tjq):(2.45) Ageneratingfunctionforasequenceofpolynomialsfpn(x)gisaseriesoftheform1Xn=0npn(x)zn=P(x;z)(2.46) forsomesuitablemultipliersfng.Ifnandpn(x)in(2.46)areassignedandwecandeterminethesumfunctionP(x;z)asanitesumofproductsofanitenumberofknownspecialfunctionsofoneargument,wesaythegeneratingfunctionisknown.Generatingfunctionsplayanimportantroleinthestudyoforthogonalpolynomials.Forexample,someorthogonalpolynomialsaredenedusinggeneratingfunction.Belowarefewsuchpolynomials. TheLegendrepolynomialsPn(x)aregivenas(12xt+t2)1=2=1Xn=0Pn(x)tn; ToconstructthegeneratingfunctionofthepolynomialsQn(x;tjq),itisimpor-tanttomentionthefollowinghypergeometricidentitiesortransformationformulaswhosedetailsaregivenin[14,Chapter12].36

PAGE 42

dn(de=bc;df=bc;q)n whereabc=defqn1,andaqn;qn=(q=a;q)n(a)nqn(n+1)=2;(2.48)(a;q)nk Nowtakinga=t1e,b=t1e,c=qn1t1t2t3t4,d=t1t2,e=t1t3,f=t1t4andapplying(2.47)wehaveQn(sinh;tjq)=(t1t2;q1ne=t3;q1ne=t4;q)nqn1et3t4n430@qn;t1e;t2e;q1n=t3t4t1t2;q1ne=t3;q1ne=t4q;q1A:(2.50) Applying(2.48)wehaveq1ne=t3;q1ne=t4;qn=t3e;t4e;qn(t3t4)nqn(n1)e2n;(2.51) andfrom(2.49)itfollowsthat(qn;q1n=t3t4;q)k Applying(2.51)and(2.52),(2.50)becomesQn(sinh;tjq) (q;t1t2;t3t4;q)n=nXk=0(t1e;t2e;q)k Thelastequationabovegivesthefollowinggeneratingfunctionforthepolynomi-alsQn(x;tjq).37

PAGE 43

(q;t1t2;t3t4;q)ntn=210@t1e;t2et1t2q;te1A210@t3e;t4et3t4q;te1A:(2.54) beapolynomialofdegreenwithleadingcoecient.ThendiscriminantDofg, isdenedby[Dickson,1939]D(g):=2n2Y1j
PAGE 44

Inordertocomputethediscriminantofthepolynomialsunderconsiderationwerstre-normalizetothemoniccase.Wesubstitute(2.11)and(2.12)into(2.7),(2.9)and(2.10),thenapply(2.8)andlet= (1qn)(1qn+1)qn1(x;tjq);(2.60) wherean=(1qnt1t2)(1qn1t1t2t3t4) (1+qn1t2t3)(1+qnt1t3):(2.61) Theclosedformofqn(x;tjq)isqn(x;tjq)=(t1t2;q)n Wecanevaluateqn(x;tjq)atx1=(t1t11)=2andx2=(t3t13)=2.Indeed,qn(x1;tjq)=(t1t2;q)n

PAGE 45

Equatingtheleadingcoecientgivesa=4t1t3q1n 1q:(2.68) Applying(2.63)in(2.67)wehaveax1=b+c(1qn) (1+qn1t1t2);ax2=b+ct3(1qn) Thetheoremfollowsbysolvingtheabovesystemofequations.2Theorem2.4.3

PAGE 46

InthischapterresultantsofdierentformsoflinearcombinationsofChebyshevpolynomialsareconsidered.TheresultingresultantsareexpressibleintermsofChebyshevpolynomialswhosecoecientsandargumentsarerationalfunctionsofthecoecientsinthelinearcombinations.Resultantoftwotermlinearcombination41

PAGE 47

Wefollowclassicaldenitionofresultants.Alternativedenitionsarealsogiven,suchastheonebyH.U.Gerber[12].Denition3.1.1 Belowisatheoremwhichisequivalenttotheabovedenitionandfollowingareworkingcorollaries.Fordetailsandproofsonecanreferto[2].42

PAGE 48

Corollary3.1.3followsfromTheorem3.1.2andusuallycalledfactorizationformula.Thisistheformulawewillbeusinginthecourseofthediscussion.Corollary3.1.4 Equations(3.3)and(3.4)easilyfollowfrom(3.1). ThefollowingmethodisduetoI.Schur,thesketchoftheproofisincludedandifdetailsareneededonecanreferto[21]underdiscriminantsofclassicalpolynomials.Theorem3.1.5

PAGE 49

Withrn(x)=nQnj=1(xj)thenRes(rn(x);sn1(x))=n1nnYj=1sn1(j)=n1n[nYj=1rn1(j)][nYj=1An(j)]:(3.9)44

PAGE 50

Themotivationforthisapproachcamefromtheworkof[15]onthediscriminantsofgeneralorthogonalpolynomials.Inthenextsection,dierentderivationoftheDilcher-Stolarskyresultsisgiven,seeTheorem3.2.4.Then,generalformofcombi-nationsofresultantsofChebyshevpolynomialsofthreeandmoretermsaregiven.InthelastsectionsimilarresultsareestablishedforChebyshevpolynomialsoftherstkind.3.2Chebyshevpolynomialsofsecondkind (3 2)nP(1=2;1=2)n(x) andusuallydenedasUn(x)=sin(n+1) where,x=cosandUltrasphericalpolynomialsarespecialJacobipolynomialswith=.Lemma3.2.2 2m;n:(3.12)45

PAGE 51

WiththeabovemotivationaboutChebyshevpolynomialsofsecondkind,aresultofDilcherandStolarsky[10]isstatedanddierentshortproofisgiven.Thetechniqueandapproachusedhereenabletogeneralizetheresultof[10]andcomputedierentformsofcombinationsofChebyshevpolynomialsofbothrstandsecondkind.Theorem3.2.4 22n(n1)dn(h;k);(3.13) ApplyingthesetwodenitionstheresultofTheorem3.2.4reducestoshowRes(rn(x);sn1(x))=(1)n(n1) 22n(n1)dn(h;k):46

PAGE 52

wherethecoecientsAn(x)andBn(x)willbeevaluatedbelow.Equation(3.16)togetherwithdenitionsofrn(x),sn(x)and(3.11)impliesthatUn1(x)+hUn2(x)=An(x)(Un1(x)+kUn2(x))+Bn(x)(2xUn1(x)Un2(x)+kUn1(x)): 1+k2+2xk;Bn(x)=kh ForlaterusewerewritetheaboveresultforAn(x)asAn(x)=h kx1+hk Thepolynomialrn(x)hasdegreenwithleadingcoecient2n.Thus,rn(x)=2nnYj=1(xxj):

PAGE 53

SinceUn(x)=(1)nUn(x)whichfollowsfromLemma3.1.6andapplyingdenitionofrn(x)itfollowsthatnYj=1sn1(xj)=nhn Tocompletetheproofitremainstocomputen.HereweapplySchur'sresult,Theorem3.1.5aboutthediscriminantoftheclassicalpolynomialswhichismentionedintheintroductionpart. FrominitialconditionsandrecurrencerelationofChebyshevpolynomialsofsec-ondkinditfollowsthatr0(x)=1,r1(x)=2x+k,and2xr1(x)r2(x)=2x(U1(x)+ku0(x))(U2(x)+kU1(x))=U0(x)+2xkU0(x)kU1(x)=r0(x):

PAGE 54

andf(x):=1+(bx+h)(2x+ax+k);g(x):=1+(ax+k)(2x+ax+k):(3.23)Theorem3.2.5 (2+a)22(n1)(n2)Res(f(x);Un(x;a;k)): anditcanbeeasilyveriedthatAn(x)=1+(bx+h)(2x+ax+k) 1+(ax+k)(2x+ax+k);Bn(x)=(ab)x+kh ForlaterusewerewritetheaboveresultforAn(x)asAn(x)=b a(xc1)(xc2) (xd1)(xd2);(3.26) wherecjanddjforj=1;2arerespectivelyzerosoffandgdenedin(3.23).From(3.22)weobservethatUn(x;a;k)ispolynomialofdegreenwithleadingcoef-cient2n1(2+a)andhencewecanassumethat,Un(x;a;k)=2n1(2+a)nYj=1(xxj;n):(3.27)49

PAGE 55

Wenowcomputen.Frominitialconditionsandthree-termrecurrencerelationofChebyshevpolynomialsofsecondkindandusingrepresentation(3.24)itisclearthatU0(x;a;k)=1andU1(x;a;k)=(2+a)x+k.MoreoverUn(x;a;k)satisesthethree-termrecurrencerelation2xUn(x;a;k)=Un+1(x;a;k)+Un1(x;a;k):(3.29) Itfollowsthatn=nYj=1Un1(xj;n;a;k)=2n(n2)(2+a)nnYj=1(xj;nx1;n1)(xj;nxn1;n1)=21(2+a)Un(x1;n1;a;k)Un(xn1;n1;a;k)=(1)n121(2+a)nYj=1Un2(xj;n1;a;k)=(1)n121(2+a)n1: 221n(2+a)n1:(3.30)50

PAGE 56

Clearly,(b(a+2))nUn(c1;a;k)Un(c2;a;k)=Res(f(x);Un(x;a;k)); Theresultofthetheoremnowfollowsfrom(3.31)and(3.32).2Corollary3.2.6 HenceonecanevaluateinclosedformtheresultantsofpolynomialsoftheformP2j=0cjUnjandP2j=0djUnj.51

PAGE 57

Thisisintuitivelyclearforthefollowingreason.Theleft-handsideof(3.34)isapolynomialofdegreem+n1andbyrepeatedusingof(3.11)itcanbeexpressedasP3mk=0kUn+m1k(x)andthereisnolossofgeneralityinassuming0=1,thatisf(x)=2mxm+:ByequatingcoecientsofvariousUj's,wend3m+1linearequationsinthecoecientsoff,gandh.Thetotalnumberofcoecientsinf,g,andhis2(m+1)+mcoecients.Sinceonecoecienthasalreadybeenspeciedweonlyhave3m+1unknownsand3m+1equations,sotheproblemistractableingeneral.ThecaseofChebyshevpolynomialsofrstkindismoretransparent,seeRemark3.3.6. Letx1;x2;:::;xnbethezerosof~vn(x),thatis~vn(x)=2nnYj=1(xxj):(3.35) Moreoverweletf(x)=2mmYk=1(xfk);g(x)=mYk=1(xgk):(3.36) ThefactthatnYj=1g(xj) (xjfk)=n ~vn(fk); ~vn(fk)~n;(3.37) where~n:=nYj=1~vn1(xj)52

PAGE 58

(1 2)nP(1=2;1=2)n; where,x=cosforn=0;1;2;:::.Lemma3.3.2

PAGE 59

2hx+p Onecanexpresssn1(x)asalinearcombinationofrn1(x)andrn(x).Indeed,sn1(x)=An(x)rn1(x)+Bn(x)rn(x):(3.42) andsincefTn(x)gandfUn(x)gsatisfythesamerecurrencerelationfrom(3.17)itfollowsthatAn(x)=1+h(2x+k) 1+k(2x+k);Bn(x)=kh

PAGE 60

kx1+hk From(3.40)weobservethatrn(x)isapolynomialofdegreenwithleadingcoecient2n1.Letfyjgnj=1bezerosofrn(x).Therefore,rn(x)=2n1nYj=1(xyj):(3.44) Applyingthisin3.42itfollowsthatsn1(yj)=An(yj)rn1(yj): 2h yj(1+k2) 2knYj=1rn1(yj)=nhn 2h 2k=nhn 2h+kTn1(1+hk) 2h 2k+kTn1(1+k2) 2k; ChebyshevpolynomialsofrstkindalsohavethepropertyTnz+z1

PAGE 61

Onecaneasilyverifythatthepolynomialsfrn(x)gsatisfytherecurrencerelation2xrn(x)=rn+1(x)+rn1(x): Thetheoremnowfollowsfrom(3.2)and(3.48).2 WithsimilarargumentbeforeitispossibletoexpressTn1(x;b;h)asalinearcom-binationofTn1(x;a;k)andTn(x;a;k).Indeed,Tn1(x;b;h)=An(x)Tn1(x;a;k)+Bn(x)Tn(x;b;k):(3.50) Applying(3.49)itfollowsthatTn1(x)+(bx+h)Tn2(x)=An(x)fTn1(x)+(bx+h)Tn2(x)g+Bn(x)f2xTn1(x)Tn2(x)+(ax+k)Tn1(x)g:56

PAGE 62

1+(ax+k)(2x+ax+k);(3.51)Bn(x)=(ab)x+kh ThisimpliesAn(x)=b a(xc1)(xc2) (xd1)(xd2);(3.53) wherecianddifori=1;2arerespectivelyzerosofquadraticfunctionsofnumeratoranddenominatorofrightsideof(3.51)orrespectivelyzerosoffandgdenedin(3.23). From(3.49)weobservethatTn(x;a;k)isapolynomialofdegreenwithleadingcoecient2n2(2+a).HencewecanassumethatTn(x;a;k)=2n2(2+a)nYj=1(xyj;n):(3.54) TheevaluationofTn1(x;b;h)atthezerosofTn(x;a;k)isgivenbyTn1(yj;n;b;h)=An(yj;n)Tn1(yj;n;a;k):(3.55) Thistogetherwith(3.53)impliesthatnYj=1Tn1(yj;n;b;h)=bn

PAGE 63

AsintheproofofTheorem3.2.5weapplyT0(x;a;k)=1andT1(x;a;k)=(a+1)x+k,three-termrecurrencerelationofChebyshevpolynomialsofrstkindandinductiontoshowthatthesequenceofpolynomialsfTn(x;a;k)gsatisesthefollowingthree-termrecurrencerelation.2xTn(x;a;k)=Tn+1(x;a;k)+Tn1(x;a;k):(3.58) Therefore,n=nYj=1Tn1(yj;n;a;k)=2n3(2+a)nYj=1(yj;ny1;n1)(yj;nyn1;n1)=21nYj=1Tn(y1;n1;a;k)Tn(yn1;n1;a;k)=(1)n121n1: Theabovediscussionimpliesthefollowingtheorem.Theorem3.3.5

PAGE 64

(1=2)nP(1=2;1=2)n(x);(3.61) andUn(x)=(n+1)! (3=2)nP(1=2;1=2)n(x):(3.62) ItfollowsfromthefollowingorthogonalityrelationssatisedbytheabovementionedpolynomialsthatZ11Tn(x)Tm(x)(1x2)1=2dx=0;Z11Un(x)Um(x)(1x2)1=2dx=0;59

PAGE 65

Theexpansionformula(1x)n [[17],p.262]containstheexpansionsofpowersof1xinChebyshevpolynomialsoftherstandsecondkinds,sinceP(;)n(x)=(1)nP(;)n(x)fromLemma3.1.6.Thetermk=0in(3.63)when==1=2seemstobeindeterminatebutcanbefoundbylimitingproceduretobe1=n!.Thus,(1x)n (1=2)k(n+k)!Tk(x):(3.64)Remark3.3.6 and~w(x)=mXj=0djTnj(x):(3.66) AsperRemark3.2.8,ingeneral,thereexistpolynomialsf,gandhofdegreem,mandm1respectivelysuchthatf(x)~wn1=g(x)~vn1(x)+h(x)~vn(x):(3.67) Inthiscasetheanalysisismadesimplerbyexpandingf,gandhinpowersof1x,applying(3.63)andusingTn(x)Tm(x)=1 2[Tm+n(x)+Tmn(x)](3.68) whichfollowsfromthetrigonometricidentitycoscos=1 2[cos(+)+cos(+)]60

PAGE 66

SinceTn(x)=2n1xn+,welet~vn(x)=2n1nYj=1(xxj);f(x)=2mmYk=1(xfk) andg(x)=mYk=1(xgk): ~vn(fk); ~vn(fk)~n;

PAGE 67

G.E.Andrews,R.AskeyandR.Roy,SpecialFunctions.Cambridge,1999.[2] T.M.Apostol,TheresulatantsofthecyclotomicpolynomialsFm(ax)andFn(bx),Math.Comp.29(1975),16,MR0366801(51:3047).[3] R.Askey,Conitiuousq-Hermitepolynomialswhenq>1,InD.Stanton(Ed.),q-SeriesandPartitions,IMAvolumesinMathematicsandItsApplication(pp.151158),NewYork,Springer-Verlag,1989.[4] R.AskeyandJ.Wilson,SomebasichypergeometricorthogonalpolynomialsthatgeneralizesJacobipolynomials.Amer.Math.Soc.,Providence,1985.[5] S.Barnett,MatricesincontrolTheory,2nded.,Krieger,Malabar,Florida,1984.[6] S.Barnett,PolynomialsandLinearControlSystems,MarcelDekker,NewYork,1983.[7] Y.ChenandM.Ismail,LadderOperatorsandDieretialEquationsforOrthog-onalPolynomials.J.Phys.A30(1997),78177829.[8] T.S.Chihara,AnintroductiontoOrthogonalPolynomials,GordonandBreachSciencePublishers,Inc.,NewYork,1978.[9] L.E.Dickson,NewFirstCourseontheTheoryofEquations,Wiley,NewYork,1939.[10] K.Dilcher,andK.B.Stolarsky,ResulatntsandDiscriminantsofChebyshevandrelatedpolynomials,TransactionoftheAmer.Math.Soc.357,no.3(2004),965981.S0002-9947(04)03687-6.[11] I.M.Gelfand,M.M.Kapranov,andA.V.Zelevinsky,Discriminants,Resula-tants,andMultidimensionalDeterminants,BirkhuserBoston,Boston,1994.62

PAGE 68

H.U.Gerber,Wronskiformulaandresultantoftwopolynomilas,thisMONTHLY,91(1984)644646.[13] M.E.H.Ismail,Anelectrostaticmodelforzerosofgeneralorthogonalpolyno-mials,PacicJ.Math.193(2000),355369.[14] M.Ismail,ClassicalandQuantumOrthogonalPolynomialsinonevariable.Cam-bridge,2005.[15] M.E.H.Ismail,Discriminantsandfunctionsofthesecondkindoforthogonalpolynomials,ResultsinMath.34(1998),132149.[16] R.KoekoekandR.Swarttouw,TheAskey-Schemeofhypergeometricorthogonalpolynomialsanditsq-analogues.reportsoftheFacultyofTechnicalMathematicsandInformation94-05,DelftUniversityofTechnology,Delft,1999.[17] E.D.Rainville,SpecialFunctions.NewYork,1960.[18] D.P.Roberts,DiscriminantsofsomePainlevepolynomials,toappear.[19] E.Routh,Onsomepropertiesofcertainsolutionsofadierentialequationofthesecondorder,Proc.LondonMath.Soc.16(1884),245261.[20] J.ShohatandJ.D.Tamarkin,TheproblemofMoments.revisededition,Amer.Math.Soc.,providence,1950[21] G.Szego,OrthogonalPolynomials,fourthedition,AmericanMathematicalSo-ciety,Providence,RhodeIsland,1975.[22] G.N.Watson,AtreatiseonthetheoryofBesselfunctions,2nded.,TheUni-versityPress,Cambridge,1958.63

PAGE 69

IntheFall2001hewasadmittedtoagraduateprograminmathematicsatUniver-sityofSouthFlorida,TampawhereheworkedundersupervisorProf.MouradIsmail.HisscholarlyinterestsareAnalysis,OrthogonalPolynomialsandSpecialFunctions.


xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam Ka
controlfield tag 001 001796876
003 fts
005 20070724135004.0
006 m||||e|||d||||||||
007 cr mnu|||uuuuu
008 070724s2006 flu sbm 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0001620
040
FHM
c FHM
035
(OCoLC)156940372
049
FHMM
090
QA36 (ONLINE)
1 100
Gishe, Jemal Emina.
2 245
A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials
h [electronic resource] /
by Jemal Emina Gishe.
260
[Tampa, Fla] :
b University of South Florida,
2006.
3 520
Two problems related to orthogonal polynomials and special functions are considered. For q greater than 1 it is known that continuous q-Jacobi polynomials are orthogonal on the imaginary axis. The first problem is to find proper normalization to form a system of polynomials that are orthogonal on the real line. By introducing a degree reducing operator and a scalar product one can show that the normalized continuous q-Jacobi polynomials satisfies an eigenvalue equation. This implies orthogonality of the normalized continuous q-Jacobi polynomials. As a byproduct, different results related to the normalized system of polynomials, such as its closed form,three-term recurrence relation, eigenvalue equation, Rodrigues formula and generating function will be computed. A discriminant related to the normalized system is also obtained. The second problem is related to recent results of Dilcher and Stolarky on resultants of Chebyshev polynomials. They used algebraic methods to evaluate the resultant of two combinations of Chebyshev polynomials of the second kind. This work provides an alternative method of computing the same resultant and also enables one to compute resultants of more general combinations of Chebyshev polynomials of the second kind. Resultants related to combinations of Chebyshev polynomials of the first kind are also considered.
502
Dissertation (Ph.D.)--University of South Florida, 2006.
504
Includes bibliographical references.
516
Text (Electronic dissertation) in PDF format.
538
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
500
Title from PDF of title page.
Document formatted into pages; contains 63 pages.
Includes vita.
590
Adviser: Mourad E. H. Ismail, Ph.D.
653
Continuous q-Jacobi polynomials.
Lowering operator.
Generating function.
Weight function.
Rodrigues formula.
Discriminant.
690
Dissertations, Academic
z USF
x Mathematics
Doctoral.
773
t USF Electronic Theses and Dissertations.
4 0 856
u http://digital.lib.usf.edu/?e14.1620