USF Libraries
USF Digital Collections

Assessment of biogeochemical deposits in landfill leachate drainage systems phase II

MISSING IMAGE

Material Information

Title:
Assessment of biogeochemical deposits in landfill leachate drainage systems phase II
Physical Description:
Book
Language:
English
Creator:
Saleh, Abdul R. Mulla
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla
Publication Date:

Subjects

Subjects / Keywords:
Lysimeters
Sulfate-reducing bacteria
Iron-reducing bacteria
Leachate saturation zone
Precipitate
X-ray diffraction
Scanning electron microscopy
Dissertations, Academic -- Civil Engineering -- Doctoral -- USF
Genre:
bibliography   ( marcgt )
theses   ( marcgt )
non-fiction   ( marcgt )

Notes

Abstract:
ABSTRACT: Land disposal of solid waste is a vital component of any solid waste management system. Design, operation and closure of municipal solid waste (MSW) landfills are required by regulations to control leachate and gases generated during the life, closure,and post-closure of the facility. Clogging of leachate drainage and removal systems in landfills is a common phenomenon and has been acknowledged in several landfills throughout the United States and abroad. This project was conducted in two phases. Phase I was completed in February of 2005 and Phase II was completed in August of 2006. Leachate characteristics data obtained in Phase I was processed and analyzed, along with supplementary data obtained in Phase II on liquid and solid phase testing. Leachate samples from the landfill and lysimeters indicated the presence of iron and sulfate-reducing bacteria. These bacteria are known to facilitate biologically induced precipitate formation.The mechanism by which biologically ind uced precipitate may form begins with oxidizing acetate by iron and sulfate-reducing bacteria, reducing sulfate to sulfide and ferric iron to ferrous, and then forming calcium carbonate, iron sulfate, and possibly dolomite and other minerals.The results show that the clogging mechanism is driven by two major processes: transformation of volatile acids to substrates by iron and sulfate-reducing bacteria causing local pH and total carbonate to increase, which accelerate calcium carbonate precipitation, and thermodynamically favored reactions in supersaturated conditions based on saturation indices of calcium, sulfide, iron, and other species with respect to minerals. For each 1 mg of consumed volatile acids there were 1.7 mg of calcium, 0.28 mg of sulfate, and 0.03 mg of iron removed. Field and lysimeter precipitate samples were analyzed (using X-Ray Diffraction, Scanning Electron microscopy, and Electron Dispersive Spectroscopy) and correlated with geochemical modeling of leachate const ituents. Precipitate analyses showed the presence of calcium carbonate, brushite (calcium phosphate),and dolomite, where as geochemical modeling showed that calcium carbonate, hydroxyapatite (complex of calcium phosphate), dolomite, pyrite, and siderite may be formed from field and lysimeter leachate constituents. The results also showed that submerged and stagnant conditions in the leachate collction systems accelerate the precipitation process.
Thesis:
Dissertation (Ph.D.)--University of South Florida, 2006.
Bibliography:
Includes bibliographical references.
System Details:
System requirements: World Wide Web browser and PDF reader.
System Details:
Mode of access: World Wide Web.
Statement of Responsibility:
by Abdul R. Mulla Saleh.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains 369 pages.
General Note:
Includes vita.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 001916022
oclc - 180875208
usfldc doi - E14-SFE0001787
usfldc handle - e14.1787
System ID:
SFS0026105:00001


This item is only available as the following downloads:


Full Text

PAGE 1

Assessment of Biogeochemical Deposits in Landfill Leachate Drainage Systems Phase II by Abdul R. Mulla Saleh A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Civil and Environmental Engineering College of Engineering University of South Florida Co-Major Professor: Robert Carnahan, Ph.D. Co-Major Professor: Jerry Murphy, Ph.D. Noreen Poor, Ph.D. Scott Campbell, Ph.D. Mahmoud Nachabe, Ph.D. Date of Approval: October 11, 2006 Keywords: lysimeters, sulfate-reducing b acteria, iron-reducing bacteria, leachate saturation zone, precipitat e, x-ray diffraction, scanning electron microscopy Copyright 2006, Abdul R. Mulla Saleh

PAGE 2

Acknowledgments I would like to acknowledge Dr. Jerry Murphy and Dr. Robert Carnahan for their continued support and advice throughout this research project. I would also like to acknowledge John Booth (Director of Palm Beach Solid Waste Authority-SWA), John Schert (Director of Bill Hinkley Center for Solid and Hazardous Waste Management), Bill Howard (Chief Technical Officer of CDM), and Boyd Ramsey (Vice president of GSE lining) for their support and funding of this project. I would like to extend my thanks to the Committee Members: Dr. Noreen Poor, Dr. Mahmoud Nachabe, Dr. Scott Campbell, and Dr. Dewey Rundus for their assistance and guidance. I also would like to acknowledge Dr. Thomas Pichler from the Geology Department for his continued support and in identifying state-of-the-art geochemical modeling software, and Dr. Audrey Levine for her contribution to the Phase I of this project. I also would like to thank Bob Worobel (Assistant Director of SWA) for his support and feedback throughout the project, and Ralph Calistri with Florida Jet Clean for his contribution in video imaging lysimeter leachate collection pipes. I also would like to thank Catherine High and Cherine Chehab with USF, and my colleagues at CDM Joseph Viciere, Aamod Sonawane, and Tammy Hayes for their support.

PAGE 3

i Table of Contents List of Tables iv List of Figures vi Abstract xii Chapter One Introduction 1 1.1 Motivation for Research 1 1.2 Purpose for Research 2 1.3 Research Hypothese 2 1.4 Scope of Research 4 1.5 Presentation of Research 6 1.6 Results and Implications 7 Chapter Two Literature Review 8 2.1 Liner System Configuration 8 2.2 Clogging Mechanisms 10 2.2.1 Sedimentation 11 2.2.2 Biological Clogging 11 2.2.3 Chemical and Biological Precipitation 15 2.2.4 Landfills as Fixed-Film Reactors 16 2.3 Precipitate of CaCO3 in Natural Environment 16 2.4 Biochemical Process 18 2.5 Bioreactor Concept 22 2.6 Leachate Chemistry 26 2.7 Clogging of Leachate Drainage Systems 34 2.8 Boone County Landfill 35 2.8.1 Physical Analyses 37 2.8.2 Chemical Analysis 38 2.9 SWA Landfill 42 2.9.1 Background 42 2.9.2 Environmental Conditions 43 2.9.3 Optical Petrography 44 2.9.4 Fluorescence and Cathodoluminscence Microscopy 45 2.9.5 X-Ray Diffraction Analysis 45 2.9.6 Trace Element Analysis 45

PAGE 4

ii 2.9.7 Scanning Electron Microscopy (SEM) 47 2.9.8 Evaluation of Solid Phase Testing 47 2.9.9 Evaluation of Leachate Quality Data 47 2.10 Discussion 49 Chapter Three Experimental Method and Material 52 3.1 Experimental Method 52 3.1.1 Phase I 52 3.1.2 Phase II 53 3.2 Materials 54 3.2.1 Phase I 54 3.2.1.1 Waste Placement and Startup 56 3.2.1.2 Lysieters Operation 58 3.2.2 Phase II 59 3.3 Luiquid Phase Testing 61 3.3.1 Phase I 61 3.3.2 Phase II 61 3.4 Biological Testing 62 3.4.1 Phase I 62 3.4.2 Phase II 63 3.5 Testing Procedure 64 3.6 Solid Phase Testing 64 3.6.1 Phase I 64 3.6.2 Phase II 64 3.7 Geochemical Modeling 65 3.7.1 Phase I 65 3.7.2 Phase II 65 3.8 Modeling Concept 66 3.9 Modeling Parameters 71 Chapter Four Results and Analysis 72 4.1 Liquid Phase Testing 72 4.1.1 Phase I Data Process and Analysis 72 4.1.2 Phase II Results and Analysis 81 4.2 Biological Testing 89 4.3 Clogging Mechnism 90 4.4 Phase II Solid Phase Testing 91 4.4.1 Field Samples Testing 92 4.4.2 Laboratory Samples Testing 101 4.5 Geochemical Modeling 110 4.6 Summary Results 116 Chapter Five Conclusions 120 Chapter Six Recommendations 122

PAGE 5

iii References 123 Appendices 127 Appendix A: Phase I Leachate Characteristics Data 128 Appendix B: Phase II Leachate Characteristics Data 154 Appendix C: Field Leachate Characteristics Data 159 Appendix D: X-Ray Diffraction (X RD) Test Results on Field and Lysimeters Sample 160 Appendix E: SEM and EDS Test Results for Field and Lysimeters Samples 170 Appendix F: Geochemical Modeling Results for Field and Lysimeters Leachate Samples 184 About the Author End Page

PAGE 6

iv List of Tables Table 2-1 Key Leachate Quality Parameters and their Changes Across the Reactors 28 Table 2-2 Key Parameters Used for Geochemical Modeling on Leachate Sampled at Different Times, from the Same Location 33 Table 2-3 Chemical Composition of Samples 34 Table 2-4 Results of Chemical Analysis of Cemented Material (1) Size Distribution in Insolubles, Size Weight in (g) 39 Table 2-5 Horizontal Distance of Leachate Backup Relative to Cemented Area 1.98 m (6.5 ft) to 4.11 m (13.5 ft) 41 Table 2-6 Summary Calculations of the Leachate Saturation State Saturation Data (IAP/KSP) are with Respect to Calcite 48 Table 3-1 Distribution of Waste Materials Used in Each Lysimeter 56 Table 3-2 Field Capacity of Each Type of Lysimeter 58 Table 3-3 Distribution of Waste Materials Used in Each Lysimeter 60 Table 3-4 Parameters Monitored on Leachate Samples from Laboratory Lysimeters 62 Table 4-1 Summary of Leachate Characteristics Trend 77 Table 4-2 Summary of Submerged Leachate Characteristics Trend 85 Table 4-3 Mineral Identification in Tested Field Samples 93 Table 4-4 Solid Phase Testing Summary Results 117 Table 4-5 Solid Phase Testing and Modeling Summary 118

PAGE 7

v Table A-1 R2 Phase I Leachate Characteristics Data 128 Table A-2 R3 Phase I Leachate Characteristics Data 131 Table A-3 R4 Phase I Leachate Characteristics Data 135 Table A-4 R5 Phase I Leachate Characteristics Data 138 Table A-5 R6 Phase I Leachate Characteristics Data 142 Table A-6 R7 Phase I Leachate Characteristics Data 146 Table A-7 R8 Phase I Leachate Characteristics Data 150 Table B-1 R3 Phase II Leachate Characteristics Data 154 Table B-2 R5 Phase II Leachate Characteristics Data 155 Table B-3 R6 Phase II Leachate Characteristics Data 156 Table B-4 R7 Phase II Leachate Characteristics Data 157 Table B-5 R8 Phase II Leachate Characteristics Data 158 Table C-1 Cells 4 and 6 Leachate Characteristics Data 159

PAGE 8

vi List of Figures Figure 2-1 Typical Liner and Leachate Collection System, Reinhart et al. (1998) 10 Figure 2-2 Permeameter Design, Rohde and Gibbs (1990) 13 Figure 2-3 Metabolic Pathway in Refuse Decomposition, Senior (1995) 19 Figure 2-4 BIOCELL Process and Schematic Representation of Tow-Particle Model of ASSF, Kalyuzhnyi et al. (1995) 21 Figure 2-5 Stabilization Time in Bioreact or Concept, Pohland et al. (1999) 26 Figure 2-6 Calcium Concentration at Calcite Saturation as a Function of pH, Showing Contours of Constant Log Pco2 and the Line for Calcite Alone 31 Figure 2-7 Calcium Ion Concentration-pH Relationship for Deep, Wet, Bioactive Leachate 32 Figure 2-8 Clog Samples Boone County Landfill (left), Keele Valley Landfill (right) 34 Figure 2-9 Crust Sediment Buildup in a 5 cm (2 in.) Force Main in an Ash Landfill in Florida 35 Figure 2-10 Boone County Landfill Leachate Collection System Schematic, EPA (October 1983) 36 Figure 2-11 The Two Large Gravel Sediment Sample Mass, EPA (October 1983) 37 Figure 2-12 Red Cement Microstructures with Trace of Manganese in EDS Spectra, EPA (October 1983) 38

PAGE 9

vii Figure 3-1 Lysimeter Dedign for the La boratory Experiment, Levine et al. (2005) 55 Figure 3-2 Lysimeters R3 through R8, Phase II 59 Figure 3-3 BART Reactors for SER and IRB Testing 63 Figure 3-4 React Modeling Concept, Bethke (2005) 67 Figure 3-5 Variation in Free Energy G with Reaction Progress, Bethke (2005) 69 Figure 3-6 Procedure Flowchart for Mineral Precipitatation (GWB), Bethke (2005) 70 Figure 4-1 Selected Parameters for R2 Leachate Data 73 Figure 4-2 Selected Parameters for R3 Leachate Data (Including Phase II) 74 Figure 4-3 Selected Parameters for R4 Leachate Data 74 Figure 4-4 Selected Parameters for R6 Leachate Data (Including Phase II) 75 Figure 4-5 Selected Parameters for R7 Leachate Data (Including Phase II) 75 Figure 4-6 Selected Parameters for R8 Leachate Data (Including Phase II) 76 Figure 4-7 Leachate Chemistry Variations for R8 79 Figure 4-8 Reduction Rates for Volatile Acid, Calcium, Sulfate, and Iron 80 Figure 4-9 R3 Performance (April May 2006) 82 Figure 4-10 R5 Performance (April May 2006) 83 Figure 4-11 R6 Performance (April August 2006) 83 Figure 4-12 R7 Performance (April August 2006) 84 Figure 4-13 R8 Performance (April August 2006) 84 Figure 4-14 Variation of pH within R6, R7, and R8 86 Figure 4-15 Variation of Temperature within R6, R7, and R8 86

PAGE 10

viii Figure 4-16 Variation of ORP within R6, R7, and R8 87 Figure 4-17 Variation of DO within R6, R7, and R8 87 Figure 4-18 SRB and IRB Tests on R7 Leachate Sample Using BART 90 Figure 4-19 Field Precipitate Samples: S1-10 Leachate Header Line, S2Leachate Recirculation (jetting) Pipe, S3Leachate Pump Station Railing, and S5Cell 6 Manhole 92 Figure 4-20 Sample S1 Brushite and Calcium Carbonate Peaks 94 Figure 4-21 Sample S2 Calcium Carbonate Peaks 94 Figure 4-22 Sample S3 Calcium Carbonate and Brushite Peaks 95 Figure 4-23 Sample S5 Calcium Carbonate and Calsite Mg-rich (Dolomite) 95 Figure 4-24 S1 Sample Calcium Carbonate Crystals and Sulfur 96 Figure 4-25 Sulfure Detected in S1 Sample 96 Figure 4-26 Calcium Carbonate Crystals in S1 Sample 97 Figure 4-27 Calcium and Phosphorous Along with Traces of Sulfur, Iron, Aluminum Detected in S1 Sample 97 Figure 4-28 Calcium Carbonate Crystals in Sample S2, Recieculation Pipe 98 Figure 4-29 Calcium and Traces of Fe, P, Mg, and Cl in Sample S2 98 Figure 4-30 Calcium Phosphate Crystals in Sample S3, Pump Station 99 Figure 4-31 Calcium, Phosphate, Sulfur and Traces of Iron, Al, and Cl Detected in Sample S3 99 Figure 4-32 Crystal Formation in Sample S5, Cell 6 Manhole (Calcite, Mg-rich Calcite) 100 Figure 4-33 Ca, and Traces of Fe, S, Mg and Cl Detected in Sample S5, Cell 6 Manhole 100 Figure 4-34 Crystal Formation in Sample S5, Cell 6 Manhole (Calcium Carbonate) 101

PAGE 11

ix Figure 4-35 Video Taping Activity 102 Figure 4-36 R1, 100% Ash 102 Figure 4-37 R5, 100% Ash 102 Figure 4-38 R3, Mixed Waste 102 Figure 4-39 R4, Layered Waste 102 Figure 4-40 R4, Layered Waste (B) 102 Figure 4-41 R2, Mixed Waste 103 Figure 4-42 R6, 100% MSW 103 Figure 4-43 R7, Mixed Waste 103 Figure 4-44 R8, Layered Waste 103 Figure 4-45 R4 (Layered Waste) Precipitate 104 Figure 4-46 R4 (Layered Waste) Pipe 104 Figure 4-47 R4 Precipitate and Pipe 104 Figure 4-48 R4 Percipitate Sample 104 Figure 4-49 R7 (Mixed) Pipe Precipitate 104 Figure 4-50 R7 (Mixed) Dry Pipe 104 Figure 4-51 R7, Precipitate Sample 105 Figure 4-52 R8, (Layered) Pipe 105 Figure 4-53 R4 Precipitate, Calcite and Quartz 106 Figure 4-54 Quartz and Calcite Crystals in R4 Sample 107 Figure 4-55 Si Detected in R4 Sample 107 Figure 4-56 Calcium Carbonate Crystals in R2 Sample 108 Figure 4-57 Ca Detected in R2 Sample 108

PAGE 12

x Figure 4-58 Calcium Carbonate Crystals in R7 Sample 109 Figure 4-59 Ca, Fe, Cl, and Other Elements Detected in R7 Sample 109 Figure 4-60 Selected Species Concentrations (pH 1-13) for Cell 6 Sample 111 Figure 4-61 Selected Species Concentrations (pH 4-8) for Cell 6 Sample 111 Figure 4-62 Minerals Saturation and Precipitate Formation in Cell 6 Leachate Sample 113 Figure 4-63 Selected Species in Reduced Environmen of Cell 6 Leachate 113 Figure 4-64 Selected Species Concentrations (pH 1-13) for R7 114 Figure 4-65 Possible Mineral Precipitation in R7 115 Figure 4-66 Selected Species Concentrations with Eh Variation for R7 Leachate 115 Figure 4-67 Selected Species Concentrations in Reduced Environment for R7 Leachate 116 Figure D-1 XRD Results for Field Sample S1 (Leachate Header Pipe) 160 Figure D-2 XRD Results for Field Sample S2 (Leachate Recirculation/ Jetting Pipe) 162 Figure D-3 XRD Results for Field Sample S3 (Leachate Pump Station Railing 164 Figure D-4 XRD Results for Field Sample S4 (Cell 6 Manhole) 166 Figure D-5 XRD Results for Lysimeter R4 Sample 168 Figure E-1 SEM Field Sample S1-1 170 Figure E-2 SEM Field Sample S1-2 170 Figure E-3 SEM Field Sample S1-3 171 Figure E-4 SEM Field Sample S2-1 171 Figure E-5 SEM Field Sample S3-1 172

PAGE 13

xi Figure E-6 SEM Field Sample S5-1 172 Figure E-7 SEM Field Sample S5-2 173 Figure E-8 SEM Field Sample S5-3 173 Figure E-9 SEM Lysimeter Sample R4-1 Powder 174 Figure E-10 SEM Lysimeter Sample R4-2 Powder 174 Figure E-11 SEM Lysimeter Sample R4-1 Solid 175 Figure E-12 SEM Lysimeter Sample R4-2 Solid 175 Figure E-13 SEM Lysimeter Sample R7-1 176 Figure E-14 SEM Lysimeter Sample R7-2 176 Figure E-15 SEM Lysimeter Sample R7-2 177 Figure E-16 SEM Lysimeter Sample R2-1 177 Figure E-17 EDS Field Sample S1-2 178 Figure E-18 EDS Field Sample S1-b 178 Figure E-19 EDS Field Sample S2-b 179 Figure E-20 EDS Field Sample S3-b 179 Figure E-21 EDS Field Sample S3-a 180 Figure E-22 EDS Field Sample S4-a 180 Figure E-23 EDS Field Sample S5-b 181 Figure E-24 EDS Lysimeter Sample R7-b 181 Figure E-25 EDS Lysimeter Sample R7-a 182 Figure E-26 EDS Lysimeter Sample R7-c 182 Figure E-27 EDS Lysimeter Sample R2-a 183

PAGE 14

xii Assessment of Biogeochemical Deposits In Landfill Leachate Drainage Systems Phase II Abdul R. Mulla Saleh ABSTRACT Land disposal of solid waste is a vital component of any solid waste management system. Design, operation and closure of municipal solid waste (MSW) landfills are required by regulations to control leachate and gases generated during the life, closure, and post-closure of the facility. Clogging of leachate drainage and removal systems in landfills is a common phenomenon and has been acknowledged in several landfills throughout the United States and abroad. This project was conducted in two phases. Phase I was completed in February of 2005 and Phase II was completed in August of 2006. Leachate characteristics data obtained in Phase I was processed and analyzed, along with supplementary data obtained in Phase II on liquid and solid phase testing. Leachate samples from the landfill and lysimeters indicated the presence of iron and sulfate-reducing bacteria. These bacteria are known to facilitate biologically induced precipitate formation. The mechanism by which biologically induced precipitate may form begins with oxidizing acetate by iron and sulfate-reducing bacteria, reducing sulfate to

PAGE 15

xiii sulfide and ferric iron to ferrous, and then forming calcium carbonate, iron sulfate, and possibly dolomite and other minerals. The results show that the clogging mechanism is driven by two major processes: transformation of volatile acids to substrates by iron and sulfate-reducing bacteria causing local pH and total carbonate to increase, which accelerate calcium carbonate precipitation, and thermodynamically favored reactions in supersaturated conditions based on saturation indices of calcium, sulfide, iron, and other species with respect to minerals. For each 1 mg of consumed volatile acids there were 1.7 mg of calcium, 0.28 mg of sulfate, and 0.03 mg of iron removed. Field and lysimeter precipitate samples were analyzed (using X-Ray Diffraction, Scanning Electron microscopy, and Electron Dispersive Spectroscopy) and correlated with geochemical modeling of leachate constituents. Precipitate analyses showed the presence of calcium carbonate, brushite (calcium phosphate), and dolomite, where as geochemical modeling showed that calcium carbonate, hydroxyapatite (complex of calcium phosphate), dolomite, pyrite, and siderite may be formed from field and lysimeter leachate constituents. The results also showed that submerged and stagnant conditions in the leachate collction systems accelerate the precipitation process.

PAGE 16

1 Chapter One Introduction This chapter presents an overview of regulatory requirements and performance standards for Class I municipal solid waste landfills, and summarizes clogging mechanisms in leachate collection and removal systems. This chapter also provides background information on several landfills that have experienced clogging in their leachate drainage systems, which will be the focus of this research. Goals and objectives of this research will also be presented in this chapter. 1.1 Motivation for Research A Class I landfill in Florida (that receives incineration ash, MSW, and water and wastewater sludge byproduct), has experienced an unusual case of calcite formation in the leachate drainage system. The landfill is divided into contiguous cells, which have been constructed separately over the life of the landfill. Perforated pipes, located at the bottom of the cells, collect generated leachate from the disposed material in the landfill. The collected leachate is then conveyed through a series of gravity flow pipes and pumped into a deep injection well system for disposal. The perforated pipes are only partially filled with leachate. The remaining void space is filled with landfill gas, which is composed mainly of methane and carbon dioxide.

PAGE 17

2 In March of 1999, a loss of leachate flow from the disposal cell indicated that the pipes were blocked. Inspection of the leachat e collection piping system downstream from cell revealed the presence of a layer of a hard mineral substance that filled 25% to 100% of the pipe's cross section area. The precipitate blocking the pipes was found to extend in the gravity flow pipes from 120 m (394 feet) outside the cell to 40 m (131 feet) into the cell. The cell was constructed in 1995 and 1996, and waste was first deposited in the cell in September 1996. Therefore, the precipitate must have been formed over a period of 2.5 years or less. Two other similar incidents occurred, in the Boone County landfill, Kentucky, USA, 1983, and Keele Valley landfill, Canada, 1998. 1.2 Purpose of Research The purpose of this research is to explore the mechanisms by which deposits are formed in leachate collection systems, and to determine measures to minimize the impact of deposit formation on long term performance. 1.3 Research Hypotheses Precipitate formation in MSW landfills is a common phenomenon that takes several years to develop. The formation of precipitate is driven by biogeochemical mechanisms. Precipitate deposits usually contain organic materials in the form of filamentous, slime, and other organic complexes (biomass). According to Cooke et al. (1995), deposit forming biochemical reactions take place in anaerobic conditions, and are influenced by sulfate and iron-reducing bacteria. The reduction of sulfate, and volatile fatty acids (VFA) or carbohydrates forms hydrogen sulfide. Iron, which is initially present as ferric (Fe+++) compounds in MSW, is reduced by

PAGE 18

3 iron-reducing bacteria to the ferrous state (Fe++). The iron as free dissolved ions (Fe++) in aqueous leachate has a tendency to become attached to soil particles, tied up in organic complexes. The sulfide ions may react with ferrous ions to form insoluble precipitate, which in conjunction with the organic biomass, can fill the interstices of the leachate collection envelop (perforated pipe surrounded with gravel media). In the chemical reactions, supersaturation of calcium, in addition to the presence of bio-carbonate as a byproduct of the waste decomposition, forms calcium carbonate precipitates. Two physical chemical factor s influence these reactions: pH (low pH enhances the free iron concentration) and redox potential (the electrochemical potential controls reduction or oxidation reactions). In the two cases of calcium carbonate precipitate (Boone County and SWA landfills) presented in Section 1.1, two important factors were common in both cases. The first one is saturation condition of the leachate collection system in the cells, which provided high moisture, thereby accelerating the degradation of the waste. Sulfatereducing bacteria activity increases under saturated/submerged conditions, which accelerate reactions that are thermodynamically favored, but otherwise may be abiotically slow. The second factor is the increase of gas pressure within the waste mass in the cell allowing gassing of the liquid leachate (dissolved CO2), which decreases the pH. As the leachate discharges to a manhole or a collection point, degassing of the leachate occurs to reach CO2 partial pressure equilibrium with the atmosphere. This will increase the pH, thereby increasing the potential for forming calcium carbonate precipitate if calcium

PAGE 19

4 concentration is in a supersaturation state. Dissolving CO2 in leachate also increases the bicarbonate concentration in the leachate, thereby influencing the potential for calcium carbonate precipitate formation. The hypotheses for this research were set as follows: 1. Mechanism of precipitate formation involves a series of biochemical reactions influenced by sulfate and iron-reducing bacteria, and a relationship exists between consumed volatile acids and reduction of dissolved species forming precipitates and minerals. 2. Conditions exist in the in leachate collection system that thermodynamically favor precipitate formation in leachate as determined by solubility equilibrium constants and saturation indices. 3. Rate of precipitate formation varies, within a cell, with changes in leachate chemistry and characteristics with time (generally less precipitate formation as the landfill sges). 1.4 Scope of Research This research project was conducted in two phases. Phase I was completed in February of 2005 and Phase II was completed in August of 2006. Phase I work, entitled Assessment of Biogeochemical Deposits in Landfill Leachate Collection Systems, Levine et al. (2005), prepared for Florida Center for Solid and Hazardous Waste Management, concentrated on the first objective of the research: laboratory lysimeter testing and data collection. The Phase I project involved the following three components, according to Levine et al. (2005): 1) analysis of leachates and clog material from a class I landfill; 2) conduct of laboratory lysimeter tests to compare

PAGE 20

5 leachate characteristics from monofills of MSW or combustion residues to leachates generated by mixtures of MSW, combustion residues, and residuals from water and wastewater treatment; and 3) conduct of batch leaching tests to evaluate dominant constituents that leach from combustion residues generated by Waste-to-Energy (WTE) facilities. During Phase I, eight lysimeters were operated over an eight-month period. Chemical tests were conducted throughout the operation period identifying changes in leachate characteristics. The work performed in Phase II included processing and analyzing the data from Phase I, along with supplementary data and testing to meet the remaining four objectives of this research, which were to: 1. Confirm the role of iron and sulfate-reducing bacteria in influencing precipitate formation, 2. Investigate the mechanism by which deposit and precipitate are formed in leachate collection and removal systems, and influence of submerged (stagnant) conditions, 3. Explore the relationship between acetic acid utilization and reduction in calcium, sulfate, and iron concentrations in the leachate, and

PAGE 21

6 4. Perform geochemical modeling on leachate chemical constituents to correlate precipitate formation (liquid phase/solid phase) on samples from both the landfill and laboratory experiments. Five of the eight lysimeters were re-conditioned to conduct the second phase of the research. The lysimeters were operated using similar procedures in Phase I, and as described in Section 3, Experimental Methods and Materials. Solid phase tests were performed on field and laboratory samples to identify present minerals and elemental composition of the precipitates. Geochemical modeling was then performed on field and laboratory leachate samples to identify possible mineral precipitate and correlate results to the findings of the actual solid phase testing results. Leachate data obtained from the lysimeter testing was analyzed and a time-line of changes in leachate chemistry was developed to identify the mechanism that lead to clog formation. The data obtained in the submerged, stagnant conditions were analyzed to investigate the impact of these conditions on accelerating the process of precipitate formation. Minerals and elemental composition of precipitate samples, along with geochemical modeling were compared to explore the reliability of leachate modeling in predicting precipitate formation. 1.5 Presentation of Research Literature review is presented in Chapter Two, experimental methods and material are presented in Chapter Three, results and analyses are included in Chapter Four, and conclusions and recommendations are shown in Chapters Five and Six, respectively.

PAGE 22

7 1.6 Results and Implications By understanding the mechanisms of the chemical/biochemical precipitation in leachate collection systems, steps can be taken to control or avoid the clogging phenomenon. Based on the results of this research, recommendations will be made pertaining to design and operation of leachate collection and discharge systems in landfills to enhance their long-term performance.

PAGE 23

8 Chapter Two Literature Review Landfills are very complex environments and sustain numerous biochemical and physicochemical reactions during sequential phases of solid waste transformation and stabilization. Through these reactions in spatial and temporal dimensions, waste constituents are released and converted into intermediate, and then end products that appear as leachate and gas during the life cycle of the landfill, Pohland et al. (1999). Within this chapter, the biochemical processes in MSW landfills will be reviewed, and the phenomena of calcium carbonate precipitate in leachate collection systems will be investigated. 2.1 Liner System Configuration Design, operation and closure of municipal solid waste (MSW) landfills are regulated by the Resource Conservation and Recovery Act (RCRA) Subtitle D requirements, of the United States Environmental Protection Agency (USEPA). Municipal solid waste landfills are classified as Class I by Subtitle D regulations, which require controlling leachate and gases generated during the life, closure, and post-closure of the facility. Class I landfills can receive household waste, commercial waste, ash residue from solid waste incineration (waste-t o-energy-plants), and water and wastewater sludge byproducts. Leachate is generated by water percolating through the waste layers,

PAGE 24

9 and contains organic, dissolved, and suspended materials that reflect the characteristics of the waste deposited in the landfill. Leachate collection and drainage systems are critical elements of the landfill since they provide protection of the groundwater. Liner and leachate collection systems are two major components influencing the performance of landfills. The purpose of the liner system is to provide a barrier layer to contain the waste, and to prevent generated leachate from percolating into the groundwater. The function of the leachate collection system is to adequately collect and discharge the generated leachate from the landfill and minimize the hydraulic head on the liner system, subsequently enhancing the performance of the liner and leachate collection systems. According to the Subtitle D regulations, the liner system for MSW landfills must consist, at a minimum, of a composite liner system. The composite liner system includes an upper geomembrane liner and a lower compacted soil liner. A 1.5 mm (0.06 in.) highdensity polyethylene (HDPE) geomembrane is normally used for the upper portion of the liner system, and 0.61 m (2 ft.) of compacted soil, with maximum saturated hydraulic conductivity of l x 10-7cm/sec (3.94 x 10-8 in/sec), is commonly used for the lower portion of the liner system. The leachate collection system is used above the liner system in landfills, and is meant to function in a free flowing gravitational mode for the entire active and post-closure care periods (usually between 30 and 50 years). The leachate collection system consists of: Drainage material (sand, gravel or a geonet with geotextile filter and protective sand cover) that protects the liner and collects leachate; Collection pipe network that collects and drains the generated leachate; and

PAGE 25

10 A sump or a low point where the collected leachate exits the landfill (by pumping or gravity flow). Figure 2-1 shows a cross-section of a typical liner and leachate collection system. Figure 2-1 Typical Liner and Leachate Co llection System, Reinhart et al. (1998) 2.2 Clogging Mechanisms Geosynthetic materials are often used in the design of the liner and leachate collection systems. Although state-of-the-art techniques are applied in the design, for both natural and geosynthetic materials, the general focus is usually for short-term performance. Since periods of 30 to 50 years, and in some cases longer are expected, long-term concerns for maintaining gravity flow within the system have to be addressed, Missmer et al. (2000). If the leachate collection system clogs, it leads to hydraulic head build-up creating a zone of waste saturation within the waste. This will adversely impact the performance of the leachate collection system, increasing the potential for leakage

PAGE 26

11 through the liner or leachate seepage along the side slopes. In addition, this phenomenon may have an adverse impact on leachate chemistry by creating stagnant zones, which has the potential to accelerate biological and chemical reactions that may result in precipitate formation, affecting the performance of the leachate collection and removal system. A geotextile fabric is incorporated in almost every leachate collection system design in one form or another--either on top of a geonet layer and/or around a gravel envelope where a perforated pipe is placed. Several mechanisms are attributed to geotextile filter clogging, which include sedime ntation, biological growth, and chemical and biochemical precipitation. 2.2.1 Sedimentation Sedimentation clogging of porous media and geotextile fabrics is attributed to suspended solids and particles transport through the filter media (sand or geotextile). Particles clogging can occur by straining and non-straining mechanisms, according to Reinhart et al. (1998). This mechanism takes place when particles of comparable size to the filtration media pass through the media, which results in mechanical entrapment in the pore space of the media. The non-straining clogging is caused by very small particles (micron and submicron particles), which are intercepted due to physicochemical forces between the particles and the media. 2.2.2 Biological Clogging Biological clogging of natural porous media, as well as that of leachate collection systems in landfills, has long been documented. Several research studies were conducted to analyze the clogging mechanism and long-term impacts on saturated hydraulic

PAGE 27

12 conductivity of such filters and drainage media. The presence of large numbers of microorganisms in landfill leachate is attributed to the biological clogging of porous media in landfills, Koerner and Koerner (1990). Cancelli and Cazzoffi, as cited in Rohd and Gibb (1990), exposed non-woven geotextiles to leachate flow under aerobic conditions over a period of three hours and observed substantial reduction in permeability normal to the plane of the fabric. The decrease in the permeability was attributed to the deposition of suspended solids on the surface of the geotextile and within its pore structure. Koerner and Koerner (1990) immersed geotex tiles in municipal landfill leachate under anaerobic conditions for 4 to 11 months; once removed, the geotextiles displayed 5 to 20 percent reductions in flow capacity. Koerner and Koerner also determined that sand/geotextile systems subjected to an aerobic flow of leachate for 4 to 11 months demonstrated a decrease in flow rates of 12 to 100 percent. Rohde and Gribb (1990) hypothesized that bacteria contribute to the clogging of filter systems through metabolic activities leading to the deposition of layers of biofouling material. Since this cannot be the case in a system free of viable microorganisms, it may be possible to draw inferences about the role of bacteria in the clogging of geotextiles by comparing biologically active and inactive systems. To achieve this, four identical permeameters were constructed and injected with leachate obtained from a nearby MSW landfill. A biological inhibitor, mercuric chloride, was chosen to be added to one of the columns. On their preliminary work, Rohde and Gribb (1990) found a dark layer of deposits on the soils. When these deposits were exposed to dilute HCL, vapors with sulfuric odors evolved, suggesting that the precipitate consisted of ferrous sulfate salts, and was possibly the result of microbial sulfate reduction. To test

PAGE 28

13 this hypothesis, sodium molybdate, a specific inhibitor for sulfate-reducing bacteria, was selected to be added to a second column. The remaining two columns were not altered. Figure 2-2 shows a design of the columns used in the experiment. No statistically significant differences in the flow rates were observed in the four columns. The dominant mechanism in the reduction of flow in both the contaminated and uncontaminated and unpoisoned columns was the accumulation of particles in the top of the sand layers. Figure 2-2 Permeameter Design, Rohde and Gibbs (1990)

PAGE 29

14 The addition of sodium molybdate to one the columns resulted in an obvious reduction of black solids, indicating that the presence of these solids was related to the presence of sulfate-reducing bacteria. A similar response was noticed when mercuric chloride was used. Upon exposure of the dark deposits to the atmosphere, the dark deposits disappeared almost immediately. This suggests that these deposits were ferrous sulfate salts; which are known to develop unde r anaerobic cond itions as a result of the microbial sulfate reduction process, and are readily oxidized under atmospheric conditions. Rohde and Gribb (1990) also noticed that mercuric chloride appeared to be effective in controlling bacterial growth for the majority of the testing period, as no viable bacteria grew on agar plates incubated aerobically or anaerobically until the final plating. Plating after 12 weeks of flow indicat ed a substantial number of viable bacteria in the mercuric chloride poisoned column, suggesting an increasing population of mercury-resistant bacteria. Aerobic and anaerobic bacteria in the influent leachate were consistently on the order of 106 Heterotrophic Plate Count (HPC)/ml and 105 HPC/ml, respectively, indicating that a relatively stable number of bacteria were introduced to the system over time. Keorner and Keorner (1990) conducted a biological growth study in geotextile filters used in landfill leachate collection systems. The study included different types of geotextiles, both with and without sand cover on top of the geotextiles. The following conclusions were obtained from the study: 1. Columns with sand above the geotextiles clogged considerably more than those with the geotextile alone. Twenty-three percent of the flow was retained for sand/geotextile versus 34% flow retained for geotextiles alone. If

PAGE 30

15 the heat-bonded non-woven fabrics are eliminated from the geotextile group, the flow rate retained by the geotextile group is 45%, suggesting that geotextiles can certainly clog less than those covered with natural soil material. 2. Of the geotextiles evaluated, the highest flow was retained by the light weight needled non-woven (38%), then the he avy weight needle d non-woven (34.2%), followed by the woven monofilament (31.9%). The non-woven heat-bonded had the lowest retained flow of only 10%. 3. It was also found that leachate with high total solids (TS) and BOD5 concentrations have the lowest retained flow. 2.2.3 Chemical and Biological Precipitation At the Sixth International Landfill Symposium, which was held in 1997 in Sardinia, the main focus was performance of landfill leachate drainage systems, in particular the clogging of leachate collection systems. Several studies were conducted in this field and led investigators to believe that the rate of clogging of leachate drainage systems is controlled by changes in leachate chemistry, primary calcium concentrations, and chemical oxygen demand (COD), Jefferis and Bath (1999). The work performed by Rowe (1997), as cited in Jefferis and Bath (1999), has shown that about 50% of the material that caused clogging, by dry weight, was calcium carbonate. Therefore, it is important to understand the conditions under which calcium carbonate deposition can occur. Types of minerals that may be formed as precipitates include calcium carbonate, iron sulfate, and magnesium rich calcite (dolomite).

PAGE 31

16 2.2.4 Landfills as Fixed-Film Reactors Cooke et al. (2000) developed a model to predict the progression of clogging in leachate collection systems by presenting a leachate flow path as a fixed-biofilm reactor. A transport model was developed to track acetate, propionate, butyrate, calcium, and suspended biomass. The model was based on the findings of Rittmann et al (1996) and Fleming et al (1999), and showed that the clogging of drainage systems is being caused by the transport of microorganisms, organic acids, and dissolved minerals into the drainage system, where microbial activity causes the accumulation of biomass and is a major cause of the precipitation of minerals attached to porous media. This model links biomass growth and calcium carbonate precipitation to the utilization of organic acids, using an existing biofilm kinetics model and an experimentally derived relationship between COD removal and calcium carbonate precipitated. 2.3 Precipitate of CaCO3 in Natural Environment Sulfate-reducing bacteria also play a major role in forming calcium carbonate and dolomite precipitate in natural environment. Murry and Irvine (1895), as cited in Deelman (2005), after analyzing numerous samples of mud-waters and comparing these with analyses of the overlying sea wa ter, found that the alkalinity of the mudwaters (due to the presence of carbonate) was increased in a most striking manner when compared with the water immediately overlying the mud, and depended directly upon the chemical changes that had taken place in the sea-water salts in the water associated with the blue mud. The principal increase in alkalinity was due to the de-oxidation (reduction) of sulfate by the organic matters in the mud.

PAGE 32

17 Beijerinck (1985), as cited in Langmuir (1997), described how bacterial sulfate reduction was often seen to lead the precipitates of calcium carbonate and iron (II) carbonate. A small amount of hydrogen sulfide gas dissolved in the culturing medium will prevent the development of almost any other bacterium. This may explain the aggressive nature of sulfate-reducing bact eria, where methanogenic bacteria would not co-exist effectively with sulfate-reducing bacteria in the waste degradation process. According to Clypool and Kaplan (1974) and Berner (1980), as cited in Deelman (2005), sulfate reduction and methanogenesis are the most common anoxic biogeochemical processes in early digenesis of marine sediment. Microbial decomposition of organic matter by sulfate-reducing bacteria can be simply represented by the reaction: 2CH2O + SO24 2HCO3 + H2S (1) Subsequently, calcium, which is drawn in from seawater and used in carbonate cementation: Ca2+ + HCO3 CaCO3 + H+ (2) According to Hoppe-Seyler (1886), as cited in Deelman (2005), the organic decomposition of cellulose yields methane and carbon dioxide gas. Furthermore, their work described how a small amount of calcium acetate dissolved in river water and infected with trace of river mud, would lead to microbial production of calcium carbonate, carbon dioxide and methane according to: Ca(C2H3O2)2 + H2O CaCO3 + CO2 + 2CH4 (3) Stumm and Morgan (1995) described how organisms produce significant chemical differentiation in the formation of solid phases. The precipitation of carbonate

PAGE 33

18 by organic organisms has long been acknowledged. It appears that those metastable mineral phases and amorphous hydrous phases are initial nucleation products of crystalline compounds in biological mineral precipitates. Several processes are involved in the formation of a solid phase from an oversaturated solution. Usually three steps can be distinguished, according to Stumm and Morgan (1995): The interaction between ions or molecules leads to the formation of a critical cluster or nucleus. Nucleation corresponds to the formation of the new centers from which spontaneous growth can occur. The nucleation process determines the size and distribution of crystals produced. Subsequently, material is deposited on these nuclei, and crystallites are formed (crystal growth). Large crystals may eventually be formed from fine crystallites by a process called ripening. 2.4 Biochemical Process Waste decomposition is a dynamic process and involves numerous biochemical reactions. The major process involved in waste decomposition is the fermentation of primary substrates, which include paper and vegetable wastes, to sugars and alcohols. The produced sugars and alcohols are then converted to carboxylic acid, which upon further degradation will produce methane and carbon dioxide gases. Figure 2-3 illustrates representation of these processes. The main reactions relating to the transformation of mass between the substances are shown below, Senior (1995). It should be noted that these reactions were developed to provide a way to relate the mass transfer between compounds, and they do not represent the precise reactions.

PAGE 34

19 Hydrolysis and fermentation of carbohydrate, n=1, (CH2O)3n + 2H2O 2H(CH2)nOH + nCO2 + nH2O (4) Figure 2-3 Metabolic Pathway in Refuse Decomposition, Senior (1995) Degradation of proteins, the intermediate stage of fermentation being ignored C46H 77O17N12S+ {19.95}H2O {0.42} C69H132O32 (5) + {5.19}CH3COOH + {6.545}CO2 + 12NH3 + H2S Degradation of fats, the intermediate stage of hydrolysis being ignored C55H104O6+ {27.27}H2O {0.587} C69H138O32 (6) + {27.27}CH3OOH + {24.27}H2

PAGE 35

20 Acidogenesis from glucose C6H12O6 + (6 2n)H2O H(CH2)n + (11 3n)H2 + (5 n)CO2 (7) Acidogenesis from alchohols CH3(CH2)nOH + H2O H(CH2)n + COOH + 2H2 (8) Breakdown of carboxylic acids, n = 2,3,4,5 H(CH2)COOH + 2(n 1)H2O CH3COOH + 3(n 1)H2 (9) + (n -1)CO2 Breakdown of acetic acid CH3COOH CH4 + CO2 (10) Consumption of hydrogen 4H2 + CO2 CH4 + 2H2O (11) As fermentation proceeds, CO2 H2, CH4, H2S, and NH3 are released with the relative proportions as a function of landfill age. Similar simplified biochemical reactions were developed for an Anaerobic Solid State Fermentation Model (ASSF), by using the seed and waste modeling concept. This concept is based on mixing digested waste material as a seed and fresh waste material as waste in a BIOCELL, which incl udes a leachate collection and recirculation system, and a gas-venting pipe. The digested material has low biodegradability and a relatively high methanogenic activity, where as the fresh waste has high biodegradability and low methanogenic activity. Figure 2-4 shows the BIOCELL process and schematic representation of the ASSF model, Kalyuzhnyi et al. (1995). Since the main biodegradable components of the waste are carbohydrates (cellulose, hemicellulose) and proteins, it was estimated that the biodegradable portion is

PAGE 36

21 about 60% carbohydrates (representing formula C6H12O6) and 40% proteins (represented by C4H6ON). By combining these two formulas, the stoichiometric formula of biodegradable matter can be expressed as C5.2H9.6O4N0.4. It was also found that volatile fatty acids (VFA) were detected as a major product in the leachate and their ratios were used in developing the sequencing of the fermentation reactions. Lactate, ethanol, methanol, and formate were detected in minor quantities and were neglected to simplify the model, Kalyuzhnyi et al. (1995). Figure 2-4 BIOCELL Process and Schematic Representation of Two-Particle Model of ASSF, Kalyuzhnyi et al. (1995) The general reaction sequence of transfor mation by different groups of anaerobic bacteria is presented in the following equations, on molar bases, Kalyuzhnyi et al. (1995): Hydrolysis (C5.2H7.6O3N0.4)n nC5.2H9.6O4N0.4 (12)

PAGE 37

22 Acidogenesis C5.2H9.6O4N0.4 4NH4 + +1.331 CH3COO+0.312C2H5COO+ 0.05C4H9COO+ 0.436HCO3 + 0.304H2 + 1.958H+ (13) Acetogenesis Equation Go kJ/reaction C4H9COO+ 2H2O CH3COO+ C2H5COO+ 2H2 + H+ +48.1 (14) C3H7COO+ 2H2O 2CH3COO+ 2H2 + H+ +48.1 (15) C2H5OO+ 2H2O CH3COO-+ HCO3 + 3H2 +76.1 (16) H2 + 0.5HCO3 + 0.25H+0.25CH3COO+ H2O -26.1 (17) Methanogenesis CH3COO+ H2O CH4 + HCO3 -31.0 (18) H2 + 0.25HCO3 + 0.25H+ 0.25CH4 + 0.75H2O -33.9 (19) 2.5 Bioreactor Concept Waste transformation and stabilization may be expedited by applying leachate recirculation and extraction of generated gases. This is a relatively new concept in landfill design, and is called a "bioreactor" concept. By increasing the moisture content to optimum of the waste mass during fermentation and extracting the generated gases, the fermentation process time could be reduced by as much as than 50% or more, Pohland et al. (1999). The principal operational concept is based on management and control of the moisture influx and the inherent microbially-mediated transformation reactions in each landfill unit as they progress through the sequential phases of landfill stabilization. Representative redox half-reactions during waste stabilization in landfill bioreactors are presented as follows, Pohland et al. (1999):

PAGE 38

23 Oxidation (electron donating reactions)1 Gok/reaction Caproat Propionate CH3(CH2)4COO+ 2H2O 2CH3CH2COO+ H+ + 2.5H2 +48.3 Caproat Acetate CH3(CH2)4COO+4H2O 3CH3COO+ H+ + 4H2 +2H +96.7 Caproate Butryate + Acetate CH3(CH2)4COO+ 2H2O CH3(CH2)2COO+CH3COO+ +48.4 H++2.5H2 Propionate Acetate CH3CH2COO+ 3H2O CH3COO+ HCO3+ H+ + 3H2 +76.1 Butyrate Acetate CH3CH2CH2COO+ 2H20 2CH3COO+ H+ + 2H2 48.1 Ethanol Acetate CH3CH2OH + H2O CH3COO+ H+ + 2H2 +9.6 Lactate Acetate CH3CHOHCOO+ 2H2O CH3COO+ HCO3 + H+ +2H2 -4.2 Acetate Methane CHCOO+ H2O HCO3 + CH4 -31.0 Reduction (electron accepting reaction)1 Go kJ/reaction HCO3 Acetate 2HCO3 + 4H2 + H+ CH3COO+ 4H2O -104.6 HCO3 Methane HCO3 + 4H2 + H+ CH4 + 3H2O -135.6

PAGE 39

24 Sulfate Sulfide SO4 -+4H2+H+ HS-+4H2O -151.9 CHCOO+ SO4 + H+ 2HCO3 + H2S -59.9 Nitrate Ammonia NO3 +4H2 + 2H+ NH4 +3H2O -599.6 CH3COO-+ NO3 + H+ + H2O 2HCO3 + NH4 -511.4 Nitrate Nitrogen gas 2NO3 + 5H2 + H+ N2 + 6H2O -1120.5(1) (1) pH 7, 1 atm, 1 kg/mol activity, 25C Gibbs free energy, Go, shown in the half reactions above, determines how the redox equations proceed in sequential reactions to maximize waste stabilization in a bioreactor concept. The change in Gibbs free energy includes enthalpy and entropy contributions: Go = Ho T So The enthalpy ( Ho) and entropy (T So) changes of the reaction in aqueous systems vary greatly; and Gibbs free energy provides the only general description of the driving force for reaction. The magnitude a nd direction of the driving force, Stumm and Morgan (1995). The negative sign means the reaction proceeds as written (from left to right), and a positive sign means that the reaction will proceed in the other direction (right to left), and the absolute value indicates spontaneous reaction favored (thermodynamically favored reaction sequencing). However, if moisture could not be controlled to provide the proper thermodynamically-favored reactions to stabilize the

PAGE 40

25 waste, then the bioreactor performance would not result in accelerated waste stabilization. Hydrogen plays an important role in bioreactor landfills, regulating reaction opportunities to optimize waste fermentation as shown in the oxidation and reduction equations. Controlling the moisture and temperature in bioreactor landfills controls hydrogen accumulation to less than 10-4 atom, which is ideal to control and optimize reaction sequencing and intermediate processes for accelerated waste decomposition. Hydrogen accumulation is detrimental to the optimization process if accumulated over 10-4 atom, which results in a cessation or reversal of the normal reaction tendency, and an interruption of the stabilization process, as evidenced by leachate characteristics that arise during acidogenesis without significan t gas production, Pohland et al. (1999). Hydrogen accumulation is controlled by interspecies transfer and/or utilization by electron acceptors (sulfate, nitrate, and other electron acceptors) in a reduced environment. Figure 2-5 shows stabilization time in a bioreactor.

PAGE 41

26 Figure 2-5 Stabilization Time in Biorea ctor Concept, Pohland et al. (1999) Sulfates, as electron acceptors, are particularly important because their reduction provides not only a mechanism to retrieve excess hydrogen, but also as attenuators to heavy metals through the formation of soluble sulfide precipitates that are retained in the waste mass under existing reducing conditions (low oxidation reduction potential, ORP) during leachate recirculation, as shown in Ph ase IV of the waste stabilization, Figure 25. 2.6 Leachate Chemistry Clogging of leachate collection systems is driven by conversion of volatile fatty acids, primarily acetic acid, and production of CO2. Consumption of volatile acids and hydrogen causes the local pH to rise and increases total carbonate in the leachate. These reactions allow or accelerate the chemical precipitation of CaCO3, the dominant

PAGE 42

27 inorganic species in the "slimes" found in leachate collection systems, Rittman et al. (1996). Slimes are waste products from bacteria metabolism, consisting of long stringy molecules. Slimes provide a protective environment and nutrients for bacteria growth and nucleation. A laboratory test using reactors, which simulated actual landfill conditions to the extent possible, was performed with actual leachate collected from the Keele Valley Landfill in Toronto, Canada. The leachate was delivered to the reactors, infiltrating a 0.15-m (0.49 ft) thick layer of composted refuse, placed over a 0.76-cm (0.3 in) thick clear stone "drainage layer." Influent and effluent were sampled for key leachate parameters, Rittman et al. (1996), as shown in Table 2-1.

PAGE 43

28 Table 2-1 Key Leachate Quality Parameters and their Changes Across the Reactors Leachate Leachate Parameters Influent Effluent Chang Temperature, C 28 28 0 pH 7.05 8.5 +1.45 COD, mg/l 12,000 2,000 -10,000 VFA, mg/l 7,800 1,200 -6,600 Total ALK, mg/l as CaCO3 8,100 7,400 -700 Bicarbonate AKL, mg/1 as CaCO3 2,600 6,500 -3,900 BASE(3), mg/1 as CaCO3 9,100 7,500 -1,600 SO4 2-, mg S/1 0 0 0 CT C03, mole/1 5.2x10-2 1.3x10-1 +7.8x10-2 CO3 2-, mole/l 7.6x10-5 4.5x103 +4.42x10-3 Equilibrium Cat +, mg/1(1) 19 0.3 -18.7 Cat +, mg/l 800 250 -550 Cat +-BASE, mg/l as CaCO3 2,000 625 -1,550 S.I. 1.3 2.4 +1.1 H2CO3, moles/1(2) 7.0x10-3 6.3x10-4 -7.3x10-3 Equillbrium PCO2, atom(2) 0.23 0.02 -0.21 (1) Assuming solubility-product equilibrium with CO3 2-. (2) Assuming Henry's Law Equilibrium with H2CO3. (3) The total base (BASE) was computed by adding 0.125 times the concentration of VFA to Total AlK. According to Rittman et al. (1996), COD removal allowed or accelerated the precipitation of CaCO3, which is the major inorganic removal component of the "clog slimes" in leachate drainage systems. The removal of acetic acid and its replacement with H2CO3 (weak acid) resulted in a major increase in the pH and removal of CTC03. This caused a large increase in CO3 2concentration, which allowed or accelerated CaCO3 precipitate. The study also showed that the solution phase was significantly out of equilibrium with CaCO3 and gas-phase CO2. This suggests that the rate of CaCO3 biodegradation may have been controlled by the dissolution of the produced CO2 gas due to the

PAGE 44

29 biodegradation of the VFAs, as well as by the kinetics of CaCO3 precipitation, Rittman et al. (1996). Jefferis and Bath (1999) developed a relationship between calcium ion concentration, pH, and partial pressure of carbon dioxide (Pco2) using carbonate system equilibria, as follows: Dissolution of CO2 in water forming carbonic acid CO2 + H2O H2CO3 (20) In water, the carbonic acid dissociates giving hydrogen and bicarbonate ions H2CO3 H+ + HCO3 (21) HCO3 H+ + CO3 2(22) Dissolution of calcium carbonate by acid can be represented as follows: CaCO3 + 2H+ Ca2+ + CO2(gas) + H2O (23) From the above, a mass action equation can be written: [ Ca2 + ] Pco2 = K1 [H+] hence, log [Ca2+ ] = log k1 + 2 x pH log Pco2 (24) This relationship between pH and Ca2+ is strictly based on calcium ion activity when the solution is in equilibrium (saturated) with solid calcium carbonate. In this relationship, hydrogen ion is delivered only fr om the dissociation of carbonic acid, and no external source of H+ such the dissociation of fatty acids contributing to the pH ( calcite alone line ). Based on this relationship, Appelo and Postma (1996), as cited in Jefferis and Bath (1999), developed the following equation: log [Ca2 + ] = 1/3 log k2 + 1/3 log Pco2 (25)

PAGE 45

30 Hence, combining equations 24 and 25: log [Ca2 + ] = (log k1 + log k2) / 4 pH / 2 (26) Equations 24 and 26 present Ca2 + calculations as a function of pH, which is a readily measured parameter. Figure 2-6 shows a plot of equations24 and 26, for typical values of log k1 and log k2 (9.74 and 8.5, respectively). From equation 24 and Figure 2-6, point A, which has a calcium ion concentration of 100 mg/l, a pH of 6.17, and Pco2 of 0, is considered to be saturated with respect to calcite. Any other point will be either undersaturated or supersaturated. Figure 2-6 also shows that a change in the pH from 6 to 7 (line BC), which could occur during the transition from acetogenic to methanogenic stage of a landfill (at a constant Pco2), would cause a100-fold reduction in calcium ion concentration at calcite equilibrium, Jefferis and Bath (1999). Same analysis apply to line CD, which has a constant pH and varing Pco2.

PAGE 46

31 Figure 2-6 Calcium Concentration at Calcite Saturation as a Function of pH, Showing Contours of Constant Log Pco2 and the Line for Calcite Alone A similar analysis was performed on actual leachate data obtained from deep, saturated, bioactive landfills. The results are shown on Figure 2-7, which shows that all data points for the deep, saturated, bioactive landfills plot above the "calcite alone" line. Analysis of data from many other similar landfills shows that almost all analyzed leachate samples have similar behavior. Since the results plotted on or above the "calcite alone" line implies that an additional source of hydrogen ion, other than that provided from carbon dioxide solution in equilibrium with calcite, and/or an additional source of calcium ion other than calcite, contributed to the concentrations and pH change. Degradation of volatile fatty acid will provide the additional hydrogen ion in the landfill leachate, and other sources of calcium could be from concrete debris, or ash residue, Jefferis and Bath (1999).

PAGE 47

32 Figure 2-7 Calcium Ion Concentration pH Relationship for Deep, Wet, Bioactive Leachate The question of whether to avoid the use of limestone as a major constituent of leachate drainage systems has been addressed by Manning and Robinson (1999). Geochemical modeling was performed on leachate key parameters representing low and high pH. These parameters are shown in Table 2-2, for leachate sampled at different times from one location, Manning and Robinson (1999).

PAGE 48

33 Table 2-2 Key Parameters Used for Geochemical Modeling on Leachate Sampled at Different Times, from the Same Location Date of Sample Chemical Species March 1994December1995 pH pH units5.9 7.4 ammoniacal nitrogen mg N/L505 916 alkalinity mg/l 1044010500 Sulfate mg/1 1259 <10 chloride m g /l 1488 2397 Sodium mg/1 1190 1484 potassium mg/1 532 1064 magnesium mg/l 450 379 Calcium mg/l 3070 862 carbonate (calculated) mg/l 6264 6300 ammonium (calculated) mg/1 649 1178 The SOLMINEQ88 model was used, with the following parameters: pH, Na, K, Mg, Ca, Cl, and sulfate. The model was used to calculate the species present in the solution and their relative abundances, and then to calculate saturation indices (SI) for minerals. The saturation indices were calculated as follows, Manning and Robinson (1999): SI = log ( IAP/SP ) Where: IAP = ion activity product, moles/liter SP = solubility product (Drever, 1997), moles/liter The results of this study indicated that the use of limestone aggregate in leachate drainage systems has no substantial dissolution of calcium carbonate once the leachate achieves calcite saturation. The leachate appears to reach calcite saturation for the majority of the operational phases, including the periods with low pH.

PAGE 49

34 2.7 Clogging of Leachate Drainage Systems The clogging phenomenon of leachate drainage systems seems to occur in ash landfills as well as MSW landfills. However the rate at which the clogging occurs varies depending on the type of waste, leachate chemistry, and the ambient environment, all of which facilitate chemical reactions. Several landfills in the United States and abroad have experienced this clogging phenomenon. Some of these cases and summary of precipitate analysis are shown in Table 2-1 and as shown in Figure 2-8. Table 2-3 Chemical Composition of Samples Boone Co Keele Valley Landfill in Lab. Study KY, USA Canada Germaney Canada Analysis EPA Fleming et al Brune et al. Rowe et al. (% dry wt.) (1983) (1998) (1994) (2002) Calcium 20 24 21 27 Carbonate 30 34 47 Silica 21 16 Magnesium 5 3 1 1 Iron 2 15 8 4___________ Figure 2-8 Clog Samples Boone County Landfill (left), Keele Valley Landfill (right)

PAGE 50

35 Precipitate formation was also experienced in a 5 mm (2 in.) leachate force main in one of Floridas ash landfills, as shown in Figure 2-9. Figure 2-9 Crust Sediment Buildup in a 5 cm (2 in.) Force Main in an Ash Landfill in Florida 2.8 Boone County Landfill In the early 1970s, USEPA raised a concern about clogging of leachate collection systems in landfills especially in hazardous waste landfills. Repair or replacement of clogged leachate collection systems is costly and a potential health hazard, particularly if it is a hazardous waste site. A literature search indicated that all of the agricultural drainage systems over 40 years in service had required maintenance. A frequency analysis showed that an average service life of 12 years is expected before repairs or partial replacements are required for these systems. Most of the clogging phenomena seem to occur at the drain junctions, and physical factors for drain failure tend to be predominant. Since landfills operate in a harsher environment, this period may be decreased depending on leachate constituents and chemical/biochemical activities, US EPA (EPA-60012-83-109, 1983).

PAGE 51

36 Five test cells were constructed in the Boone County landfill, Kentucky, in 1971 to study and evaluate performance of the leachate drainage systems. When Test Cell 1 was uncovered after 9 years of testing (September 1980), a section of partially cemented gravel was discovered in the drain envelop (perforated drainage pipe in a gravel media, wrapped with a geotextile fabric) extending from 1.98 m (6.5 ft) to 4.11 m (13.5 ft) from the collection sump (bulkhead). Figure 2-10 shows a schematic of the leachate collection system. Figure 2-10 Boone County Landfill Leachate Collection System Schematic, EPA (October 1983) The gravel sample consisted of a small amount of loose, rounded pea-stones plus two or three large masses of similar stones firmly held together at contact points between the stones by a thin layer of red-brown cement. The largest of these cemented aggregates was a flat, disk shaped mass approximately 12 cm (4.7 in) across and 5 cm (1.9 in) in thickness, US EPA (EPA-60012-83-109, 1983). It a ppeared to be graded or classified with large, individual stones of 1 to 2 cm (0.39 to 0.79 in) in diameter on one side, and

PAGE 52

37 smaller stones of 0.5 to 1.0 cm (0.197 to 0.39 in) on the other. A photograph of the two large masses of the material is shown in Figure 2-11. Figure 2-11 The Two Large Gravel Sediment Sample Mass, EPA (October 1983) Physical and chemical analyses were performed on the collected sample from the test cell. These analyses and the results are summarized in the following sections. 2.8.1 Physical Analyses The physical analyses consisted of scanning electron microscopy, optical microscopy, and X-ray diffraction and fluorescen ce analysis. Preliminary results showed the cementing agent for the small stones is lik ely a co-precipitated mixture of calcium carbonate and an insoluble iron hydroxide. Figur e 2-12 shows the microstructure of the cemented material as observed by the scanni ng electron microscope (SEM). Also shown

PAGE 53

38 in Figure 2-12 is the spectrum of elements de tected by the energy dispersive spectroscopy (EDS). Figure 2-12 Red Cement Microstructures with Trace of Manganese in EDS Spectra, EPA (October 1983) 2.8.2 Chemical Analysis During the chemical investigation phase, it was determined that dilute hydrochloric acid would not affect the gravel but would dissolve the material holding it together. To determine the composition of the gravel material, a portion of the sample was treated with a known excess of acid and separated into acid-soluble and insoluble fractions. The soluble fraction was subjected to qualitative emission spectrographic analysis to identify the principal metal species content. One hundred grams of the cemented gravel was treated with a known amount of standardized hydrochloric acid and

PAGE 54

39 boiled for thirty minutes for complete dissolution of the cemented material and to drive off formed carbon dioxide. The insoluble portion was filtered and dried for sieve analysis. The results of these analyses are shown in Table 2-4. Table 2-4 Results of Chemical Anal ysis of Cemented Material (1) Size Distribution in Insolubles, Size Weight in (g) Size Weight (g) 2.0 mm, (#10 Sieve) 94.015 g 2.0 mm 0.84 mm (through #10, on #20) 0.640 g 0.84 mm, 0.25 mm (through #20, on #60) 0.933g 0.25 mm (through #60) 1.070 g Elemental Composition of Dissolved Material Element Weight in (g) Ca 0.851 g Fe 0.551 g Mg 0.103 g Mn 0.020 g P 0.240 g (1) Weight sample taken = 100.488 Weight insolubles remaining = 96.958 Apparent sample dissolved = 3.530 The cemented material was believed to principally consist of calcium-ironmagnesium product containing significant pr oportions of carbonate and phosphate. In addition a large proportion of fine silica appears to be dispersed in the cement. Conclusions of this research are summarized as follows, US EPA (EPA-60012-83-109, 1983): The lack of significant X-ray diffraction patterns suggests that the cement is an amorphous material rather than composed of discrete crystalline phases. Calcium carbonate seems to contribute to the precipitate. The iron role may have been an active agent in precipitate formation, or may only be present as discrete oxide particles which have been carried along.

PAGE 55

40 Additional investigation on chemical and physical characterization with emphasis on elucidating the role of the fine silica particles and the distribution needs to be performed. The role of the iron also needs to be investigated in this process. Tests to determine the presence and distribution of organic materials would provide some evidence as to the possible role of biochemical mechanisms. A critical question that needs to be answered is why the cemented material occurred only in a limited portion from 1.98 to 3.96 m (6.5 to 13 ft) above the collection sump of the upper drain. One explanation is that the conditions in the deposited waste above the section were different from that everywhere else in the landfill and caused the deposits only in a limited region. There were insufficient data to evaluate this hypothesis. Reviewing the operational logs of Test Cell 1, it was discovered that in the first seven months of operation of the cell, special procedures were implemented in connection to the leachate drainage system. During the first three months (from 6/11 to 8/27/71), the upper pipe was closed off in order to force leachate flow into the lower pipe. This procedure would cause leachate to back up in the pipe until all additional flow was routed to the lower drain. For the following four months (8/28 to 12/27/71), leachate was sampled and the collection system drained almost weekly for sampling. This operational procedure caused the leachate to back up in the pipe.

PAGE 56

41 Calculations were made to show the horizontal distance of leachate backup and leachate analysis data. The results are shown in Table 2-5. Table 2-5 Horizontal Distance of Leachate Backup Relative to Cemented Area 1.98 m (6.5 ft) to 4.11 m (13.5 ft) Date V(1)' X(ft)Z pH Fe3 Ak14 Hard4 Ca3 Mg3 8/28/71 125 above 32 6.3 42 927 1320 444 63 9/6 20 12 6.3 42 927 1320 444 63 9/13 38 above 17 5.4 42 1630 2960 1010 132 9/20 22 13 5.4 190 1460 289 117 144 9/27 15 11 5.4 190 1460 289 117 144 10/4 2 below 5.4 190 1460 289 117 144 10/11 36 above 16 5.5 190 1730 4080 223 133 10/18 0 0 5.5 190 1730 4080 223 133 10/25 0 0 5.5 190 1730 4080 223 133 11/4 0.4 below 5.5 190 1730 4080 223 133 11/11 1 below 5.5 190 1730 4080 223 133 11/18 1 below 5.5 190 1730 4080 223 133 12/6 11 9 5.3 75 1130 1130 1170 152 12/13 125 above 32 5.4 227 631 4310 1190 243 12/20 14 10 5.4 252 768 4120 1240 244 12/27 126 above 32 5.6 262 1980 1980 1500 275 1/3/72 127 above 32 5.6 262 1980 1980 1500 275 1/10 202 above 32 5.6 262 1980 1980 1500 275 1/17 276 above 32 5.6 262 1980 1980 1500 275 Peak (high) 7.7 616 8870 7500 2360 374 Concentrations: (low) 5.101 10/73 3/73 1/73 10/73 11/72 (1) V (1) Volume of obtained leachate sample from the upper pipe in liters. (2) X(ft) -) Horizontal distance of leachate backup in the upper pipe. (3) Units in mg/l (4) Units in mg/l as CaCO3 Table 2-5 shows that six of the first seven and the last four values for X are at or above the location of the cemented gravel, 1.98 m (6.5 ft) to 4.1 m (13.5 ft) from the sump. The five intervening values represent an insignificant quantity of leachate

PAGE 57

42 sampling. The three highest values of leachate samples were taken at an X value of about 9.75 m (32 ft), which is the length of the leachate collection pipe. This correlation may suggest that the cementation may have occurred, or at least initiated, during the time of the unique operation of the test cell (backing up the leachate in the upper pipe). It was recommended that further investigation, including laboratory study, is necessary before more definite conclusions can be reached. It should be possible to simulate the conditions in the test cell to determine their effect on the gravel surrounding the upper pipe. 2.9 SWA Landfill 2.9.1 Background The SWA Landfill, Florida, is a Class I landfill (that receives incineration ash, MSW, and water and wastewater sludge byproduct), and has experienced an unusual case of calcite formation in the leachate drainage system. The landfill is divided into contiguous cells, which have been constructed separately over the life of the landfill. Perforated pipes, located at the bottom of the cells, collect generated leachate from the disposed material in the landfill. The collected leachate is then conveyed through a series of gravity flow pipes and pumped into a deep injection well system for disposal. The perforated pipes are only partially filled with leachate. The remaining void space is filled with landfill gas, which is composed mainly of methane and carbon dioxide. In March of 1999, a loss of leachate flow from the disposal cell indicated that the pipes were blocked. Inspection of the leachat e collection piping system downstream from cell revealed the presence of a layer of a hard mineral substance that filled 25% to 100% of the pipe's cross section area. The precipitate blocking the pipes was found to extend in

PAGE 58

43 the gravity flow pipes from 120 m (394 feet) outside the cell to 40 m (131 feet) into the cell. It should be noted that this situation is very similar to the Boone County and Keele Valley landfills. The cell was constructed in 1995 and 1996, and waste was first deposited in the cell in September 1996. Therefore, the precipitate must have been formed over a period of 2.5 years or less. 2.9.2 Environmental Conditions The following summarizes the environmental conditions of the solid waste disposal cells at the landfill: 1. Cell 6 received MSW, ash from the nearby incinerator, biosolids from a local waste water treatment facility, and lime sludge from water treatment byproduct. It is estimated that approximately 40% of the deposited waste is ash. Other cells have similar waste mixes but with different ratios. 2. Vertical gas wells have been installed in the cells, including Cell 6. 3. Most of the gas wells have not been effective due to high level of liquid buildup within the perforated section, and/or the wells being installed in the deposited ash, which may inhibit gas movement. 4. All leachate collection pipes in the cells were videotaped to determine whether there was a blockage in the pipes. It was found that all cells had about 10% blockage in the pipes, except Cell 6 that showed 100% blockage of flow, which was abnormal. 5. During heavy rainfall experienced in 1999, and due to leachate discharge limitations, the valve downstream of Cell 6 was closed and the rainwater was stored in the cell for an approximately 3 months (submerged, stagnant conditions).

PAGE 59

44 6. Chemical analyses of leachate collected from all cells were performed regularly since the problem was discovered. The precipitate was found to be composed of calcium carbonate (CaCO3), which is present as the mineral low-magnesium calcite, Missmer (2000). Extensive investigations were performed on samples obtained from the precipitate to characterize the precipitate as to its composition and possible origin. The analytical tests and a summary of the results are presented as follows: Thin section optical petrography Fluorescence and cathodoluminescence microscopy Light stable isotope analysis X-ray diffractometry Trace element analysis (electron Dispersive Spectroscopy)) Scanning electron microscopy Quantitative analysis of saturation state of existing leachate water quality data 2.9.3 Optical Petrography This is the most useful technique for studying the origin of rocks as it allows for identification of minerals and crystal textur es and fabrics. According to Missmer (2000), the results of this test show that the textures in the precipitate are distinctly different from that which would be expected to have formed by purely physical (non-biological) precipitation in supersaturated solutions. The presence of textile textures strongly suggests that calcite precipitation was influenced by activities of bacteria. The presence

PAGE 60

45 of iron sulfide in the precipitate is evidence that sulfate reduction has influenced calcite precipitation. 2.9.4 Fluorescence and Cathodoluminscence Microscopy This has been shown to be a useful tool for elucidating the history and origin of carbonate rocks, which reveals features not visible with normal light microscopy (Dravis and Yurewice, 1985). Fluorescence is the property of a material to emit light when excited by visible or ultraviolet light. The origin of fluorescence in calcite is believed to be caused by the inclusion of organic matter in the calcite material (Dravis and Yurewicw). The precipitate demonstrated a strong presence of fluorescenece. This suggests that the calcite contains abundant inclusions of organic matter. The cathodoluminescence observations provide qualitative evidence that the leachate chemistry varied during the formation of the precipitate. Precipitate formation was clearly not a one-time event. 2.9.5 X-Ray Diffraction Analysis This is a highly accurate method of mineral identification. Five samples were analyzed using the X-Ray powder diffraction method. The results indicated that calcite is the only mineral identified in the five samples. 2.9.6 Trace Element Analysis Stable isotope and trace element geochemistry were performed on precipitate samples. Both oxygen and carbon stable isotopes have minor, but measurable, tendencies to be incorporated into mineral crystals or gas phases at different ratios than those present in solutions, which is referred to as fractionation. Fractionation amounts of stable isotopes vary depending on the reaction involved and temperature.

PAGE 61

46 The 18O/16O and 13C/12C ratios of calcite cements can provide information on the origin, temperature, and reaction history of waters from which they precipitate. The results showed high 13C values (23.2 to 26.8 per mil) of the samples, which indicates that the carbon isotope ratio of leachate water was affected by bacteria methanogenesis. The increase in the 13C values in the leachate is likely due primarily to bacterial methanogensis that occurred within the deposited material in the landfill cells rather than to a reaction in the leachate collection system. The oxygen isotope data indicated that the leachate from which the calcite precipitated was meteoric (rain) water that was modified by either fluid-rock interaction in the landfill or by mixing with more saline waters. Neither the oxygen or carbon isotopic data revealed any evidence of unusual conditions related to the calcite precipitation. Trace element composition of calcite crystals can provide information on the chemistry of the pore waters from which they precipitated. Trace element analyses of calcite and limestone samples are routinely performed using several techniques including inductively coupled plasma spectrometry, atomic absorption spectrometry, and X-ray fluorescence analysis. Test results indicated the presence of iron and manganese in the calcite, which is evidence for reducing conditions during calcite precipitation. The electron microprobe data also confirmed the presence of iron sulfide mineral in the precipitate samples. The presence of iron sulfide also indicated that the precipitate was biologically induced. Iron sulfide mineral precipitation is often the result of bacterial sulfate reduction in iron and organic matter rich environment, Missmer (2000).

PAGE 62

47 2.9.7 Scanning Electron Microscopy (SEM) The objectives of the SEM investigation were: (1) to obtain additional information on the structure of the precipitate, and (2) to provide an independent evaluation of whether or not the precipitate may have been biologically induced. It was concluded that microbial activity might be involved in the formation of the precipitate, Missmer (2000). 2.9.8 Evaluation of Solid Phase Testing It was concluded that most likely the calcite precipitate was biologically-induced in a reduced environment due to the presence of iron manganese and iron sulfide. These types of precepitstes are often the result of b acterial sulfate reduction in iron and organic rich environment. Further testing was recommended to explore the role of iron and sulfate-reducin g bacteria in forming these precipitates. 2.9.9 Evaluation of Leachate Quality Data The calcite mineralogy of the precipitate is unequivocal evidence that the leachate in the piping system was at times supersaturated with respect to calcite (Ref. 5). The calcite saturation state in the leachate can be calculated from the pH, alkalinity, and elemental concentration data. Table 2-6 summarizes the results of the saturation state calculations of the calcite.

PAGE 63

48 Table 2-6 Summary Calculations of the Leachate Saturation State Saturation Data (IAPIKSP) are with Respect to Calcite Date pHAlklinityCalciumIAP/KSPIAP/KSPa East Side Cell 6/Class 1 7/20/99 6.56 894 8100 20.60 22.49 4/27/99 7.92 1860 141 23.20 23.92 4/20/99 8.02 2020 124 28.05 28.68 2/4/99 6.48 2880 2180 22.48 21.83 10/12/99 6.08 882 7340 6.25 6.82 4/30/98 6.68 1950 171 3.88 3.68 4/29/97 6.81 3090 312 12.89 11.48 East Side Cells 4&6/Class 1 7/20/99 6.86 786 613 5.80 6.21 4/20/99 6.34 925 3300 6.52 7.07 2/4/99 6.34 4090 990 7.61 8.25 10/21/98 6.39 1040 3500 8.09 8.74 4/30/98 6.40 1010 3670 8.07 8.74 4/29/97 6.32 822 4100 5.86 6.41 10/3/95 6.5 14.5 71.9 0.01 0.01 ____________________________________________________________________ NOTES: Alkalinity is in mg/1 as CaCO3 Calcium is in mg/1 IAP/KSP = saturation state (ion activity product) calculated without considering the CaHCO3 + complex. IAP/KSPa was calculated including the CaHCO3 + complex. The saturation state data reveals that there has been considerable variability in the degree of supersaturation with respect to calcite in the leachate from both within and between landfill cells over time. The data shows that very high degrees of supersaturation (IAP/Ksp > 10) of leachate have occurred at times in Cells 1,5,6,7,8, and the southeast and west sides of the Class III area. On the other hand, the leachate from the northwest side of Cell 1, and the south sides of Cells 2 and 3, has been either undersaturated with respect to calcite or has only low degrees of calcite supersaturation.

PAGE 64

49 In summary, the leachate quality data indicates that very high degrees of calcite supersaturation have occurred in Cell 6 and some other cells. Calcite precipitation would be thermodynamically favored to occur in the highly saturated Cell 6 leachate. Based on the results of this investigation, the following were recommended to further understand the biochemical and chemical activities that influenced calcium calcite precipitation, and possible control measures: A more detailed analysis of the leachate quality data should be performed using a solution-mineral equilibrium program, such as WATEQ4F or an equivalent, in order to confirm the calcite saturation state of the leachate. Additional investigation should be conducted on the potential biological influence of calcite precipitation in the leachate collection system. An assessment of the fill material in Cell 6 should be conducted to identify the cause of calcite supersaturation. 2.10 Discussion Based on the presented literature, calcium carbonate precipitate occurred at the Boone County landfill in the late 1970s, and at the SWA landfills in the late 1990s. Very similar chemical composition was identified for both precipitates. The precipitate at the Boone County landfill was believed to be a calcium-iron magnesium product containing significant proportions of carbonate and phosphate. At the SWA landfill, the precipitate was identified as calcium carbonate, which is present as the mineral-low-magnesium calcite. The presence of iron sulfide mineral in the precipitate was confirmed by the electron microprobe results.

PAGE 65

50 Identifying similarities and dissimilarities of the environmental conditions, at both landfills, under which the precipitate occurred may provide an insight to develop a hypotheses for this research. Both landfills seem to have the following common conditions: 1. Allowing leachate backup in the cell, submerging the leachate collection system for a few months. 2. Lack of, or ineffective, gas collection and control system, which allowed LFG pressure buildup within the cell. 3. Precipitate formation in the Boone County case was limited to 1.98 m (6.5 ft) to 7.0 m (23 ft) from the collection sump of the upper drain (believed to be within the submerged portion); whereas the precipitate in the SWA landfill case extended 40 m (131 ft) from the sump (manhole) into the cell, and 119.8 m (393 ft) outside the cell (downstream of the manhole) in the gravity leachate line. 4. The precipitates in both cases have similar chemical composition, calcite with iron mangnesium, believed to be influenced by sulfate-reducing bacteria. Dissimilarities between the two cells include: 1. Deposited waste at the Boone County landfill was classified as MSW, but it is not clear whether biosolids were included in the waste stream; whereas deposited waste at the SWA landfill included MSW, sludge from the wastewater treatment plant, and MSW ash residue. It is estimated that approximately 40% of the deposited waste was ash. 2. A landfill gas control system was not implemented in the Boone County landfill (was not required by regulations in the early in the 1970s); whereas a LFG

PAGE 66

51 control system was installed at SWA landfill. However, the system was not effective, which could be attributed to installation of the gas wells in the ash deposited area or that high leachate levels in the wells caused the wells to be ineffective.

PAGE 67

52 Chapter Three Experimental Method and Materials This section presents the hypothesis for this experiment, documentation for the experimental method and associated materials th at were used in implementing the laboratory testing, and analytical methods performed to obtain results. 3.1 Experimental Method The experimental method consisted of constructing and operating lysimeters with different waste matrices in a labor atory setting to study precipitate formation. The experiment was conducted in two phases, as follows: 3.1.1 Phase I Eight lysimeters were constructed and packed with different waste mixes and operated for approximately eight months. Phase I involved the following three components: 1) testing of leachates and clog material from a class I landfill; 2) conduct of laboratory lysimeter tests to compare leachate characteristics from monofills of MSW or combustion residues to leachates generated by mixtures of MSW, combustion residues, and residuals from water and wastewater treatment; and 3) conduct of batch leaching tests to evaluate dominant constituents that leach from combustion residues generated by Waste-to-Energy (WTE) facilities, Levine et al.

PAGE 68

53 (2005). The data collected in Item 2 of the Phase I work was also used to complement the data collected in Phase II, to evaluate the biological-geochemical mechanisms. 3.1.2 Phase II Phase II of the experiment entailed reconditioning five of the original eight lysimeters. Reconditioning was necessary since the lysimeters were inactive between phases of the experiment. Once the lysimeters were stabilized after reconditioning, changes in the leachate quality and the associated precipitate/clog formation were assessed while the leachate collection system was submerged with leachate. The five lysimeters were operated over a period of six months. The leachate characteristics data, obtained in Phase I, were analyzed in Phase II. A timeline was constructed identifying the time at which precipitate formation was detected. Variations in leachate constituents throughout the established timeline were analyzed, and a series of equations depicting chemical reactions that lead to precipitate formation were developed. Testing for biological activities was performed on both liquid phase and solid phase to confirm that precipitate formation was biologically-mediated. Solid phase testing of clog samples obtained from the actual landfill was also performed to identify elemental composition and minerals present in the samples. A geochemical model was used to simulate precipitate and complexes formation in the reduced leachate environment and correlate results to the liquid and solid phase testing.

PAGE 69

54 3.2 Materials 3.2.1 Phase I As described in Levine et al. (2005), eight lysimeters were constructed to evaluate impacts of different waste components and mixtures on clog formation. Each lysimeter consisted of a 1.4 m (4 ft) high, 30 cm (12 in) diameter PVC pipe to contain the wastes underlain by a leachate collection system and capped with valves to allow for gas collection. The liner and leachate collection systems were designed to simulate the existing liner and leachate collection systems at Palm Beach Solid Waste Authoritys (SWA) landfill, North County Resource Recovery Facility, Palm Beach County, Florida. Sampling ports were installed at the leachate collection system, gas taps, and two locations along th e body of the r eactor. The leachate collection system was designed to simulate field conditions and consisted of a perforated 3.8 cm ( 1 in) diameter PVC pipe containing two rows of 0.95 cm (0.375 in) diameter openings 15 cm (6 in) apart and separated at an angle of 120. The lysimeters were lined with 1.53 mm (60-mil) thick HDPE liners (Agru America, Inc.). The leachate collection pipes were surrounded by 5 to 6.4 cm (2 to 2 in) gravel and geotextiles were used above and below the gravel layers. The drainage system separating the waste from the leachate collection pipe was 12.7 cm (5 in) of granular material (2.5 to 3.8 cm, 1 to 1 inch gravel or Cholee sand). A 12.7 cm (5 in) layer of sand below the leachate collection pipes was used to provide support. The Viton t ubing used for leachate recirculation had an ID of 0.645 cm (0.25 in), OD of 0.8cm (0.3125 in), and wall thickness of 0.08 cm (0.03125) inches.

PAGE 70

55 A pump and leachate reservoirs were attached to each lysimeter to manage the leachate. The lysimeters were designed in groups of four with the main difference between the two groups being the material that covered the drainage system. In lysimeters 1-4 (group a), A 12.7 cm (5 in) gravel was placed over the leachate collection pipes; whereas in lysimeters 5-8 (group b), a 12.7 cm (5 in) layer of sand was used. A diagram of the main features of the lysimeters is shown in Figure 3-1. Figure 3-1 Lysimeter Design for the Labo ratory Experiment, Levine et al. (2005) After construction of the lysimeters and before placement of waste material, the lysimeters were testing for leaks. The leak testing consisted of filling each lysimeter with about 20 liters of water, shutting all valves, and observing the lysimeters for evidence of leaks over a 24 hour period. All leaks were sealed with sealants (Marine Adhesive Sealant 5200 or State Formuflex Clear Adhesive Sealant with UV inhibitor) and the process was repeated until all apparent leaks were sealed. The waste materials were obtained from SWAs landfill facility which included processed municipal solid waste (MSW), bottom ash and fly ash from the RDF

PAGE 71

56 combustion facility, and residuals from nearby water and wastewater treatment facilities. The distribution of waste matrices in each lysimeter is shown in Table 3-1. Table 3-1 Distribution of Waste Ma terials Used in Each Lysimeter WTEcashTreatment p rocess residualsdNumber Descriptiona MSWb Fly ash Bottom ash Water treatment: lime softenin g Wastewater Treatment: Biosolids 1 Ash 1 0%20% 80% 0% 0% 5 Ash 2 0%20% 80% 0% 0% 2 MSW 1 100% 0%0%0%0% 6 MSW 2 100%0% 0% 0% 0% 3 Mixture 1 60%6% 24% 5% 5% 7 Mixture 2 60%6% 24% 5%5% 4 Layer 1 60%6% 24% 5% 5% 8 Layer 2 60%6% 24% 5% 5% a Group 1: gravel above the leachate collection pipe ; Group 2: sand above the leachate collection pipe; b 25 ft3 of processed municipal solid waste obtained from SWA in April 2004; c 10 ft3 of bottom ash and 5 ft3 of fly ash from Waste-to-Energy Facility (RDF) at SWA obtained in April 2004; ; d 1 ft3 of Residuals from water and wastewater treatment facilities in SWA service area obtained in April 2004. 3.2.1.1 Waste Placement and Startup The ash (Ash 1 and Ash 2) and MSW (MSW 1 and MSW 2) monofill lysimeters were filled with the waste material to a depth of about 0.76 m ( 2.5 ft) above the drainage layer (after compaction). About 181 kg of combustion residues (159 kg bottom ash and 22 kg fly ash) were mixed and placed in each of the ash monofills and 143 kg of MSW were placed in each of the MSW monofills, Levine et al. (2005). As described in Levine et al. (2005), th e lysimeters containing combinations of ash, MSW, and treatment process residuals were set up in two different ways: either mixed or layers. The contents of each lysimeter consisted of 60% MSW (86 kg) with the

PAGE 72

57 remaining mass derived from residues from RDF combustion and from water and wastewater treatment plants. The mixtur es (Mix 1 and Mix 2) were derived by combining the materials according to the mass distribution shown in Table 3-1 in a 60 L container and manually mixing the contents. For the lysimeters containing layers, four discrete layers were set up that consisted of two layers of MSW separated by treatment process residuals and overlain by combustion residues (fly ash and bottom ash). The layers (Layer 1 and Layer 2) were developed by first subdividing the MSW into two similar portions by weight. The first layer of MSW (30%) was placed at the bottom of the lysimeter, overlain by a layer of treatment process residuals (5% water treatment sludge and 5% wastewater process residuals). The third layer from the bottom consisted of the remainder of the MSW (30%) and the top layer (30%) consisted of fly ash (6%) and bottom ash (24%). Each waste layer was manually compacted prior to capping off the lysimeters. After emplacement of the wastes, distilled water was applied to each lysimeter to saturate the wastes. A measured quantity of water was slowly added to the top of each lysimeter until the wastes were completely submerged. The lysimeters were covered and allowed to absorb the water for a 72 hour period. Following the absorption period, the liquid was drained by gravity and the volume of water recovered was measured. The difference between the amount of distilled water added and the amount of water recovered was considered to be the net field capacity of each lysimeter, equal to the water absorbed by the wastes to reach field capacity. The estimated liquid to solid ratios needed to reach field capacity for each type of lysimeter are shown in Table 3-2, Levine et al. (2005).

PAGE 73

58 Table 3-2 Field Capacity of Each Type of Lysimeter Lysimetera Volume Added, L Volume Recovered, L Volume Absorbed, L Liquid:Solid Ratio, g/g Ash 1; Ash 2 40 24 16 0.09 MSW 1; MSW 2 70 52 18 0.13 Mix 1; Mix 2 60 43 17 0.11 Layer 1; Layer 2 50 33 17 0.11 After the field capacity test, the lysimeter caps were installed. Four liters of distilled water were applied to each lysimeter through the leachate application system to produce leachate and initiate waste degradation. Three liters of leachate were recirculated every 24 hours using the recirc ulation pumps and the leachate application system. This mode of operation was intended to simulate rainfall and provide alternating cycles of flooding and draining within each lysimeter in an effort to accelerate the leaching reactions and provide adequate moisture for biological activity. In addition, the use of the leachate application system provided even distribution of recirculated leachate. 3.2.1.2 Lysimeters Operation As described in Levine et al. (2004), the lysimeters were operated over an eight month period, recirculating generated leachate in each lysimeter at a rate of three liters per day. The lysimeters were tested to identify biological activity, assess redox conditions, concentrations of electron acceptors, dissolved mineral content, and buffer capacities. For the first two months of operation, lysimeters were monitored daily for pH,

PAGE 74

59 conductivity, temperature, oxidation-reduction potential, volatile acids, and alkalinity. A more complete characterization was conducted twice per week. After two months of operation, the sampling frequency was reduced to twice per week for routine monitoring and once per week for complete characterization. The amount of leachate that was withdrawn for each sampling event was replaced with an equal amount of distilled water to maintain a relatively constant volume of liquid within each lysimeter. 3.2.2 Phase II For the submerged conditions testing performed in Phase II, five lysimeters were reconditioned on March of 2006 (R3, R5, R6, R7, and R8). These lysimeters were used because they reflect the actual liner and leachate collection systems for SWA landfill (group b in Figure 1-3). The lysimeters were fitted with clear plastic tubing, leachate sampling and shut-off valves, gas shut-off valves, leachate reservoir (5-liter glass bottle), and peristalic recirculation pumps, as shown in Figure 3-2. Figure 3-2 Lysimeters R3 through R8, Phase II

PAGE 75

60 The gases from the lysimeters were conveyed in clear plastic tubing and immersed in a clear glass bottle with 10% saline solution. The pH was tested once a month and the solution was adjusted as needed. Since the lysimeters used in this phase had not been operated for a period of time they were reconditioned and operated as follows. The lysimeters were brought up to field capacity and injected with one liter of landfill leachate obtained from the SWA landfill, Cell 4. When the lysimetrs were restarted, approximately 5 liters of leachate/distilled water was in each reservoir. Leachate was recirculated in each lysimeter at a rate of 3 liters per day, and sampled for parameters at approximately two week interval, and the results incorporated into the Phase I data set for lysimeters R3, R5, and R6 through R8. The same operational and testing parameters for Phase I were used for Phase II. Table 33 shows distribution of waste in the lysimeter R5 through R8. Table 3-3 Distribution of Waste Ma terials Used in Each Lysimeter WTEcashTreatment p rocess residualsdNumber Descriptiona MSWb Fly ash Bottom ash Water treatment: lime softenin g Wastewater Treatment: Biosolids 3 Mixture 1 60%6% 24% 5% 5% 5 Ash 2 0% 20% 80% 0% 0% 6 MSW 2 100% 0% 0% 0% 0% 7 Mixture 2 60% 6% 24% 5% 5% 8 Layer 2 60% 6% 24% 5% 5% The five lysimeters were operated with leachate circulation from April 1 through May 30, 2006, then Lysimeters R6, R7, and R8, were operated under submerged conditions from June 1 through August 17, as follows:

PAGE 76

61 R6 and R8 were operated under submerged flow conditions where leachate head above the discharge pipe was maintained at approximately 6 inches. This was accomplished by rising the plastic tubing by approximately 6 inches above the pipe and discharging to the leachate reservoir, with the gas shut-off valve closed. R7 was operated under submerged no flow conditions (stagnant) with no leachate discharge, and the gas shut-off valve closed. The purpose of operating the lysimeters under submerged conditions is to evaluate whether submerged (leachate saturated zone) conditions has an impact in accelerating biological activities and precipita te formation. As described previously, these conditions appear to accelerate clog formation as indicated in the literature search. 3.3 Liquid Phase Testing 3.3.1 Phase I Liquid phase testing in Phase I was perf ormed as described in Section 3.4.1.2, and Reference 17. Same testing parameters were used for Phases I and II. 3.3.2 Phase II Leachate sampling in Phase II was conducted in a similar manner to Phase I. An equal volume of distilled water was added to each lysimeter after samples were obtained. Leachate samples were collected every two weeks and tested for parameters shown in Table 3-4. A summary of the tests performed, detection limits, and monitoring frequency are shown also shown in Table 3-4.

PAGE 77

62 Table 3-4 Parameters Monitored on Leachate Samples from Laboratory Lysimeters Test Methoda Detection Limit Frequency pH Laboratory Probe 0.1 pH unit Twice/week Temperature Laboratory Probe 0.1 o C Twice/week ORP Laboratory Probe 1 mV Twice/week DO Laboratory Probe 0.1 mg/L Twice/week Total Alkalinity SM 2320 B. As CaCO3 mg/L Two Weeks Ammonia Nitrogen EPA 350.1 0.01 mg/l N Two Weeks Chloride EPA 300.0 0.1 mg/l Two Weeks Nitrate-Nitrate Nitrogen EPA 300.0 0.005 mg/l N Two Weeks Sulfate EPA 300.0 0.1 mg/l Two Weeks Total Kjeldohl Nitrogen EPA 351.2 0.05 mg/l N Two Weeks Total Nitrogen Calculations 0.05 mg/l N Two Weeks Total Organic Carbon EPA 415.1 1 mg/L Two Weeks Total Phosphorous EPA 365.2 0.03 mg/L P Two Weeks Total Volatile Solids EPA 160.4 10 mg/L Two Weeks Total Solids EPA 160.3 10 mg/L Two Weeks Calcium EPA 200.7 0.1 mg/L Two Weeks Iron EPA 200.7 0.02 mg/L Two Weeks Iron, Dissolved EPA 200.7 0.02 mg/L Two Weeks Potassium EPA 200.7 0.1 mg/L Two Weeks Magnesium EPA 200.7 0.1 mg/L Two Weeks Sodium EPA 200.7 0.1 mg/L Two Weeks Dissolved Silica (SiO2) EPA 200.7 0.02 mg/L Two Weeks aSouthern Analytical Laboratories, Inc (2006). 3.4 Biological Testing 3.4.1 Phase I Phase I concentrated on microbiological testing and monitoring of bacteria using staining and other techniques for DNA extraction. Based on the results, future research was recommended in this area, Levine et al. (2005).

PAGE 78

63 3.4.2 Phase II In Phase II, Biological Activity Reaction Test (BART) was used to identify sulfate and iron-reducing bacteria in the liquid phase (leachate) and solid phase (precipitate). BART is a simple and effective method for identifying and monitoring population and size/or activity of specific group of bacteria, including Iron-Reducing Bacteria (IRB), Sulfate-Reducing Bacteria (SRB), and Heterotrophic Aerobic Bacteria (HAB) the three most important agents involved in biofouling, clogging, and corrosion. The BART bioreactor contains nutrients in the base a column and a ball, as shown in Figure 3-3. The ball restricts the amount of oxygen entering the water/liquid column, so that aerobic organisms grow around the ball and anaerobic organisms grow deep down in the water/liquid column. By changing the nutrients in the base of the column, different organisms are encouraged to grow. BART determines the presence and activity levels. Figure 3-3 BART Reactors for SRB and IRB Testing

PAGE 79

64 The primary objective of the BART tests conducted in this research was to identify the presence of SRB and IRB in both the liquid and solid phases. 3.5 Testing Procedure A 20 ml of sample was poured into the targeted test tube (SRB or IRB), capped, and monitored for 10 days. The reactions relate to the growth events of bacteria include one or more of the following: formation of cloud, slimes, color changes, development of gassing, and precipitation. The observed reactions for each BART are matched to the manufacturer interpretation chart. The sequence of the reaction indicates the type of bacteria present in the sample. The number of days of delay to test positive is related to the probable population of bacteria in the BART. For solid phase testing, a 10 mg of powder sample was dissolved in approximately 20 ml of distilled water. Liquid phase and solid phase of field samples, and samples obtained from the lysimeters were tested for SRB and IRB. 3.6 Solid Phase Testing 3.6.1 Phase I Only Scanning Electron Microscopy (SEM ) and Energy Dispersive Sepctroscopy (EDM) were performed on the solid phase sa mples obtained from the landfill site and laboratory lysimeters. X-ray di ffraction was not performed on th ese samples, Levine et al. (20005). 3.6.2 Phase II Solid phase testing was performed on solid field samples, as well as samples obtained from the lysimeters. Solid phase testing included X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS)

PAGE 80

65 performed on samples obtained from the fiel d and laboratory lysimeters. The XRD tests were conducted at the USF Environmental Laboratory in Tampa, and the SEM tests were conducted at USF Marien Sciences laborator y in St. Petersburg campus. XRD analysis identifies the minerals present in the samples, and SEM identifies the structural formation of the precipitate, whereas EDS identifies the elemental composition of the precipitate. 3.7 Geochemical Modeling 3.7.1 Phase I No geochemical modeling was performed in Phase I. 3.7.2 Phase II The presence of calcite mineralogy and elemental analysis of the precipitate in landfill leachate collection systems reported in Section 2, Literature Search, are strong evidence that the leachate in the landfill was at times supersaturated with respect to calcite. Leachate chemistry is very complicated and undergoes through several phases during decomposition of waste. During these phases, volatile acids are converted to substrate by SRB and IRB, the substrate is then consumed by methanogenic bacteria to produce CO2 and CH4, along with other trace gases. Also present in the leachate are calcium ions, CO2 and its partial pressure, alkalinity, and carbonate system species. Therefore, geochemical modeling can be an effective tool to trace reactions path, equilibrium, and pH through out these phases. The selected computer program for geochemical modeling was The Geochemists Workbench, Release 6.0, (GWB). The program contains a set of software tools for manipulating chemical reactions, calculating stability diagrams and the equilibrium states

PAGE 81

66 of natural waters and fluids, tracing reaction processes, modeling reactive transport, and plotting the results of the calculations, Bethke (2005). The Reaction Module (REACT) of the GWB was used to simulate the reactions that might occur in the leachate geochemical environment. React is a flexible program that models equilibrium states and geochemical processes in systems that contain an aqueous fluid. The React program can calcula te the equilibrium distribution of aqueous species in a fluid, a fluids saturation state with respect to minerals, and fugacity of gases dissolved in it. In addition, the program can trace the evolution of a system as it undergoes reversible or irreversible reaction in an open or closed systems, either at a given temperature or polythermally. React can also integrate kinetic rate laws and simulate the fractionation of stable isotopes in reacting system Bethke (2005). 3.8 Modeling Concept React begins simulation by calculating the initial equilibrium state of geochemical systems that contains an aqueous fluid. The program calculates the equilibrium distribution of aqueous species in a fluid, the fluid saturation state with respect to minerals, the sorption of aqueous species onto various types of surfaces, and the fugacities of gases dissolved in the fluid. The model also accounts for changes in the system by adding, or removing, reactant to vary the systems composition, changing the temperature, or varying the fugacity of gases in an external buffer, as shown in Figure 34.

PAGE 82

67 Figure 3-4 React Modeling Concept, Bethke (2005) The following briefly describes the main equations used in the model. Mass Action Equations Each independent reaction in the system has an associated equilibrium constant Kj at the temperature of interest, so the mass action equation takes the form of, Bethke (1996): aw vwj i ( i mi )vij k ak vkj m fm vmj (1) Kj = j mj where: Kj = equilibrium constant aw = water activity vwj, vij, vkj = reaction coefficient, secondary species i = activity coefficient, basic species mi = molalities of basic species ak = mineral activity fm = gas fugacity = product function, the analog in multiplication to the summation

PAGE 83

68 Mass Balance Equations The mass balance equations express conservation of mass in terms of the components in the basis. The mass of each chemical component is distributed among the species and minerals that make up the system. The water component is present in free water molecules of the solvent and as the water required to make up the secondary species. Each mole of species Aj is composed of vwj moles of the water component. The mole number Mw of water water component is given by, Bethke (1996): Mw = nw (55.5 + j vwj mj ) (2) where: Mw = mole number of water component nw = solvent mass, kg vwj = reaction coefficient, secondary species mi = molalities of basic species, add 55.5 (55.5087) is the number of moles of H2O in a kg of water. Similarly, mass balance for species component I, then, expresses as: Mi = nw (mi + j vij mj ) in terms of the solvent mass nw (3) and the molalities mi and mj Mineral component in the system, then: Mk = nk + nw j vkj mj (4) where: nk = mole number of the mineral corresponding to the component Mass balance of gas component, then: Mm = nw j vmj mj (5) where: vmj = reaction coefficient Mineral Saturation State Once the distribution of the species in the fluid is calculated, the degree of which it is undersaturated or supersaturated with respect to various minerals can be determined. For

PAGE 84

69 any mineral into thermodynamic data base, the following reaction can be written, Bethke (2005): Al vwl Aw + j vil Ai + k vkl Ak + m vml Am (6) where: Al = mineral can be formed by combining components in the basis vwl, vil, vkl, vml = mineral reaction coefficients The reaction presented in equation (6) has an activity product Ql in the form: aw wl i ( i mi )vil k ak vkl m fm vml (7) Ql = al Since this equation has the same form as the mass action equation, the reaction is in equilibrium if Ql equals the reactions equilibrium constant Kl. in this case, the fluid is saturated with respect Al. The fluid is undersaturated if Ql is less than Kl. This indicates that the reaction has not preceded to the right far enough to reach the saturation point, either because the water has not been in contact with sufficient amount the mineral or has not reacted with the mineral long enough. Values of Ql greater than Kl, on the other hand, indicate that the reaction needs to proceed to the left to reach equilibrium. In this case the fluid is super saturted with respect to the mineral, Bethke (1996). Figure 3-5 Variation in Free Energy G with Reaction Progress, Bethke (2005)

PAGE 85

70 For the general reaction bB + cC dD + eE. The reaction equilibrium point is the minimum along the free energy curve. A fluids saturation with respect to a mineral Al is commonly expressed in terms of saturation index: SIl = log Ql log Kl = log (Ql /Kl) Which is the ratio of activity product to equilibrium constant, expressed as a logarithm ratio for this equation, an undersaturation mineral has a negative saturation index, a supersaturated mineral has a positive index, and a mineral at the point of saturation has a saturation index of zero. A positive saturation index indicates that the calculated state of the system is a metastable equilibrium because of the thermodynamics drive for the reaction to precipitate the supersaturated mineral. The following flowchart summarizes the steps used in calculating saturation indices, Bethke (1996). Figure 3-6 Procedure Flowchart for Mineral Precipitation (GWB), Bethke (1996)

PAGE 86

71 3.9 Modeling Parameters Leachate parameters for reaction modeling were set to account for oxidation and reduction (Redox) reactions held in redox disequilibrium, sorption into mineral surfaces, kinetics for mineral precipitate and bacterial activities, and acetate as a reactant with sliding (varying) pH and temperature, Bethke (2005). Built-in thermodynamic (thermo.dat) data was used, which calculates activity coefficient using B-dot equation. The B-dot equation is an extended form of the Debye-Huckel equation, which applies at higher concentrations and wide range of temp erature. The B-dot equation takes the form, Bethke (2005): A zi2 (I)0.5 Log i = + Bo I 1 + ao I B (I)0.5 Where: i = activity coefficient zi = ion with electrical charge I = solution ionic strength, molal (25 C), A = coefficient function, varies wtith temperature B = coefficient function, varies wtith temperature Bo = coefficient function, varies wtith temperature ao = ion size parameter, constant for each species

PAGE 87

72 Chapter Four Results and Analysis This section summarizes lysimeters leachate test results obtained in Phase I of this research, provides additional data obtained in Phase II, from both liquid and solid phase testing. This section also presents the mechanism by which precipitate is believed to be formed, and impact of saturated (submerged) conditions on leachate stabilization and precipitate formation. The work performed in Phase II of this research included investigation of the role of iron and sulfate-reducing bacteria in influencing precipitate formation, investigation of the mechanism by which deposit and precipitate are formed in leachate collection and removal systems, exploring the relationship between volatile acid utilization and reduction in calcium, sulfate, and iron concentrations during leachate stabilization phases, and introduction of a model for leachate equilibrium system that can be used as a tool to evaluate leachate characteristics and to predict precipitate formation in leachate drainage systems. 4.1 Liquid Phase Testing 4.1.1 Phase I Data Process and Analysis Leachate characteristics data obtained from Phase I was processed for analysis. The process considered data points that show complete chemical analysis per testing

PAGE 88

73 period, since some of the parameters were tested more frequently than other, especially in the beginning of the experiment. The processed leachate characteristic data, including Phase II data (for Lysimeters R8) are shown in Appendix A. Appendix B shows leachate characteristic data obtained in Phase II for R3, R5, R6, R7, and R8. Selected parameters from the processed leachate sampling data that may contribute to calcium carbonate precipitati on were plotted for MSW waste containing lysimeters (all lysimeters except R1 and R5, 100% ash). These parameters include total alkalinity, calcium, volatile acids, iron, sulfate, and pH. Variations of the selected parameters for lysimeters R2, R3, and R4 are shown in Figures 4-1 through 4-3, respectively. R2MSW Waste1 10 100 1000 100005-M a y 7-M ay 13-M ay 20-May 27-May 7-Jun 21Jun 5Jul 19Jul 2-Aug 16-Aug 30-Aug 13S e p 2 7 -S e p 11-Oct 26O ct 8N ov 22N ovDurationConcentration (mg/L)0 2 4 6 8pH Total Alkalinity (mg/L CaCO3) Volatile Acids (mg/L Acetic Acid) Sulfate (mg/L) Calcium (mg/L) Iron (mg/L) pH Figure 4-1 Selected Parameters for R2 Leachate Data Breaks shown in the graphs mean either tests were not conducted or results were not reported in Phase I data.

PAGE 89

74 R3-Mixed Waste0 0 1 10 100 1000 100005-M a y 7-M a y 13-M ay 2 0 M ay 2 7 M ay 7J un 21J un 5-Jul 19Jul 2-Aug 16-Aug 30-Aug 13S ep 27-Sep 11-O c t 26-Oct 8 -Nov 22N o v 17Apr 15-May 16-J un 16Jul 15-AugDurationConcentration (mg/L)0 2 4 6 8pH Volatile Acids (mg/L Acetic Acid) Sulfate (mg/L) Calcium (mg/L) Iron (mg/L) Total Alkalinity (mg/L CaCO3) pH Figure 4-2 Selected Parameters for R3 Leachate Data (Including Phase II) R-4 Layered Waste1 10 100 1000 100005-May 7-May 13-May 20-May 27-May 31-May 7Jun 21Jun 28-Jun 5Jul 19Jul 26-Jul 2-Aug 16-Aug 30-Aug 13S e p 27S e p 11-Oct 26-Oct 8-Nov 22-NovDurationConcentration (mg/L)0 2 4 6 8pH Volatile Acids (mg/L Acetic Acid) Sulfate (mg/L) Calcium (mg/L) Iron (mg/L) Total Alkalinity (mg/L CaCO3) pH Figure 4-3 Selected Parameters for R4 Leachate Data

PAGE 90

75 Variations of the selected parameters for lysimeters R6 through R8 are shown in Figures 4-4 through 4-6, respectively. R6-MSW Waste0 1 10 100 1000 100005-M a y 7-M a y 13-M ay 2 0 M ay 2 7 M ay 7Jun 21Jun 5Jul 19-Jul 2-Aug 16-Aug 30-Aug 13-Sep 27S ep 11-O c t 26-Oct 8 N ov 22-No v 17-A pr 15-May 16-Jun 16-Jul 15-AugDurationConcentration (mg/L)0 2 4 6 8pH Volatile Acids (mg/L Acetic Acid) Sulfate (mg/L) Calcium (mg/L) Iron (mg/L) Total Alkalinity (mg/L CaCO3) pH Figure 4-4 Selected Parameters for R6 Leachate Data (Including Phase II) R7-Mixed Waste0 0 1 10 100 1000 100005 May 7-May 13-May 20 May 2 7 -Ma y 7 J u n 2 1J un 5-Jul 1 9J ul 2 Aug 1 6 -Aug 30-Aug 13 Sep 27 Sep 1 1 -Oct 26-Oct 8 -Nov 2 2N ov 17 Apr 1 5 -Ma y 1 6 -Jun 16 J ul 1 5 -Au gDurationConcentration (mg/L)0 2 4 6 8pH Volatile Acids (mg/L Acetic Acid) Sulfate (mg/L) Calcium (mg/L) Iron (mg/L) Total Alkalinity (mg/L CaCO3) pH Figure 4-5 Selected Parameters for R7 Leachate Data (Including Phase II)

PAGE 91

76 R8-Layered Waste0 0 1 10 100 1000 100005-May 7-May 13M ay 20M ay 27M ay 7Ju n 21-J un 5J ul 19Jul 2 -Aug 16-Aug 30Aug 1 3-Sep 2 7-Sep 11Oct 26O c t 8-Nov 2 2-Nov 17-Apr 15M ay 16J un 16-Jul 15AugDurationConcentration (mg/L)0 2 4 6 8pH Volatile Acids (mg/L Acetic Acid) Sulfate (mg/L) Calcium (mg/L) Iron (mg/L) Total Alkalinity (mg/L CaCO3) pH Figure 4-6 Selected Parameters for R8 Leachate Data (Including Phase II) A general trend can be observed in reduction of volatile acids, sulfate, iron, and calcium, as depicted in Figures 4-1 through 4-6. A timeline was established for the data to analyze changes in leachate characteristics and to identify when precipitate formation occurred, approximately 4 months from the startup date of the lysimeters. To better understand changes in leachate constituents and chemistry that lead to precipitate formation, the data was analyzed to establish a trend between startup date of the operation (May 5th data analysis) until clog formation was experienced 4 months later (September 13 data analysis). Table 4-1 shows a summary of leachate characteristics trend (Phase I and Phase II data) during the operation period. The data indicates that between the interval of the startup date (May 5, 2004) and precipitate formation (September 13, 2004) of the timeline, reduction in calcium, sulfate, and iron concentrations have occurred while volatile acid (acetic acid) is consumed under reduced environment.

PAGE 92

77 Table 4-1 Summary of Leachate Characteristics Trend Element/ Concentrations in mg/l Species (mg/L) (1) R1 R2 R3 R4 R5 R6 R7 R8 5 May 04 (Phase I) pH 11.5 5.7 6.5 6.2 11.5 6.5 6.8 6.9 Acetic Acid 17 1950 875 575 17 1025 600 675 Calcium 4361 2707 2962 2485 3796 1899 2320 2219 Sulfate 123 59 719 39 177 222 449 186 Iron 0.2 35 39 19.3 0.2 49 29 18.5 Nitrogen 2.5 270 190 280 5.4 140 190 120 Phosphorous 5.8 98 5 31 4.1 27 1 13 Magnesium 0.023 60 124 143 .004 27 121 65 Potassium 659 75 190 308 254 27.3 124 169 13 September 04 (Phase I). pH 11.7 6.2 6.5 6.4 11.6 6.6 6.5 6.4 Acetic Acid 17 1250 17 17 17 17 33 17 Calcium 1176 1460 844 853 1179 733 762 1095 Sulfate 100 0 90 93 95 0 0 0 Iron 0.1 31 4 0.4 0.2 2.1 2.0 0.5 Nitrogen 10 130 56 56 10 58 94 58 Phosphorous 4.5 26.6 4.8 6.4 3.9 9.4 8.2 8 Magnesium 0.012 91 199 321 .016 48 152 209 Potassium 1232 203 229 224 1152 134.4 132 207 29 November 04 (Phase I) pH 11.9 6.6 6.6 6.4 11.9 6.7 6.6 6.4 Acetic Acid 17 50 17 17 17 33 17 17 Calcium 639 552 612 791 641 569 637 881 Sulfate 0 0 0 0 0 0 0 0 Iron 0.2 5.0 2.0 0.4 0.3 1.1 1.0 0.3 Nitrogen 9 72 62 96 10 42 96 76 Phosphorous 3.3 2.5 3.1 4.8 2.4 0.6 5.7 5 Magnesium 0.034 62 166 290 .012 43 139 881 Potassium 1494 172 148 240 1341 159.5 140 238 7 April 06 (Phase II) pH ------6.8 ---12.3 7.0 7.0 6.6 Acetic Acid ------0 ---0 0 0 0 Calcium ------1100 ---200 370 850 1100 Sulfate ------1600 ---14 63 800 1000 Iron ------0.5 ---0.04 11.7 0.08 0.1 Nitrogen ------260 ---9.8 200 177 283 Phosphorous ------0.17 ---0.03 1.2 0.04 0.18 Magnesium ------140 ---1 35 110 190 Potassium ------350 ---610 300 250 340

PAGE 93

78 Table 4-1(Continued) 30 May 06 (Phase II) pH ------7.1 ---12.1 7.1 7.1 6.9 Acetic Acid ------0 ---0 0 0 0 Calcium ------1300 ---230 390 970 1200 Sulfate ------1400 ---16 1 750 1100 Iron ------0.08 ---0.07 7.9 0.1 0.1 Nitrogen ------207 ---5.7 161 75 214 Phosphorous ------0.13 ---0.02 1.1 0.25 0.38 Magnesium ------150 ---1 35 110 200 Potassium ------230 ---570 210 160 220 14 August 06 (PhaseII) pH ---------------7.1 7.0 7.0 Acetic Acid ---------------0 0 0 Calcium ---------------530 1500 1600 Sulfate ---------------0 670 1100 Iron ---------------0.54 0.61 0.04 Nitrogen ---------------170 31 79 Phosphorous ---------------2.1 0.19 0.25 Magnesium ---------------46 170 320 Potassium ---------------380 320 390 (1) Lysimeters R1 and R5-Ash only, R4 and R6MSW only, R2 and R7Mixed, and R3 and R8, layered. (2) Only R3 and R5 through R8 were used in Phase II. R6, R7, R8 were used to evaluate Saturated/submerged conditions (from May 30 through August 14, 2006). A general trend can be observed from Table 4-1. Consumption of acetic acid during the start up period and precipitate formation is associated with noticeable reduction in concentrations of calcium, sulfate, and iron, especially in the organic contained lysimeters. This leads to believe that there is a relationship between acetic acid consumption and reduction in these concentrations (calcium, sulfate, and iron). The period after precipitate formation occurred to the end of the experiment, the reduction in these concentrations was much lower. To better define this relationship, data from lysimeter R8 was used since this lysimeter closely represents the SAWs landfill waste matrix and liner system conditions.

PAGE 94

79 Acetic acid concentration in R8 was reduced from 675 mg/l to 17 mg/l in the four-month period, where precipitate was first observed. Calcium concentration was reduced from 2219 mg/l to 1059 mg/l during this period. Sulfate and iron concentrations were reduced from 186 mg/l and 18.5 mg/l to 0.0 mg/l and 0.5mg/l, respectively, as well. These parameters, along with concentrations of total nitrogen, magnesium, potassium, and total phosphorous were plotted to depict the changes over the study period, as shown in Figure 4-7. R8 Layered Waste1 10 100 10005-May 6M ay 7M ay 11-May 13-May 17M ay 20M ay 24-May 27-May 31-May 7-J un 14-Jun 21-Jun 28-J u n 5 Jul 12J u l 19J u l 2 6Jul 2-Aug 9Aug 16Aug 23-Aug 30-Aug 8Sep 13Sep 20-Sep 27-Sep 4O ct 11O ct 18-Oct 26-Oct 1N ov 8N ov 15-Nov 22-Nov 29N ovDurationConcentration (mg/L)/100 2 4 6 8pH Volatile Acids Sulfate Calcium Total Alkalinity Magnesium Potassium Total Nitrogen pH Iron Phosphorus Figure 4-7 Leachate Chemistry Variations for R8 Total nitrogen concentrations dropped from 190 mg/l to 58 mg/l during this period, and total phosphorous concentrations reduced from 44 mg/l to 8 mg/l. There are also small reductions in magnesium and potassium concentrations from 236 and 252 mg/l to 209 and 207 mg/l, respectively.

PAGE 95

80 Variations of the concentration shown in Figure 4-7 are based on the sampling events, in which the number of days varies between sampling events. An average reduction rates in mg/l-day were established for acidic acid, calcium, sulfate, and iron (which believed to be major contributors to precipitate fromation). Figure 4-8 shows average reduction rates of these parameters, for Lysimeter R8, after four months of operation where precipitate formed in the leachate tubes (129 days, designated by suffix 1), and until the end of the experiment (additional 77 days, designated by suffix 2). The slope of the line indicates the rate of reduction in concentrations. Figure 4-8 shows that the average rate of volatile acids consumption during the first four months was 5.0 mg/l-day, where as, reduction in concentrations of calcium, sulfate, and iron, were 8.58 mg/l-day, 1.42 mg/l-day, and 0.14 mg/l-day, respectively. Figure 4-8 Reduction Rates for Volatile Acid, Calcium, Sulfate, and Iron Removal Rates of Ca, SO4, & Fe and V. Acid Consumption y = 8.58x y = 4E -14x + 657.62 y = 2.78x + 759.8 y= 1.42x y = 186.02 y = 18.34 y = 0.14x y = 5.02x0 200 400 600 800 1000 1200 1400 1600 0 50 100 150 200 Duration (days) Volatile Acid 1 Calcium 1 Sulfate 1 Iron 1 Volatile Acid 2 Calcium 2 Sulfate 2 Iron 2 Reduction in Concentrations mg/L

PAGE 96

81 This indicates that for each one mg/l of consumed volatile acids, there are 1.7 mg/l of calcium, 0.28 mg/l of sulfate, and 0.03 mg/l of iron removed. Similarly, for the remaining duration, the concentrations of volatile acids, sulfate, and iron are almost constant (horizontal line), however, the rate of reduction in calcium continued at a rate of 3.16 mg/l-day throughout the remaining period of the experiment. This could be attributed to the high concentrations of calcium and shift in equilibrium of the system, or other possible reactions that cause calcium minerals precipitation, especially calcium carbonate. This will be investigated later in this section through solid phase testing and geochemical modeling. 4.1.2 Phase II Results and Analysis First samples on Phase II were obtained on April 17, 2006, after approximately 7 weeks of reconditioning and inoculating the lysimeters with leachate obtained from the landfill. As indicated previously, the results of Phase II data were incorporated into Phase I data as shown in Table 4-1 and Figures 4-2, 4-4, 4-5 and 4-6. Phase II data seems to reasonably follow the trend towards the end of Phase I, considering that the lysimeters had been inactive for over 6 months and went through the reconditioning process. It is very important to note that these reactions (waste stabilization reactions) are slow and take years to develop in actual landfills. Two leachate samples were obtained from the landfill, Cells 4 and 6, and analyzed for the same parameters used for evaluation of leachate characteristics. The results are shown in Appendix C. The leachate sample from Cell 6 contained high concentrations of volatile acids, where as Cell 4 leachate has none. This can be attributed to that Cell 4 has been closed (for receiving waste) for approximately ten years and has

PAGE 97

82 reached the methanogenic steady-state phase (Figure 2-3). Cell 6 is being closed now and it appears to be under methanogenic unsteady-state phase, as shown in Figure 2-3. The lysimeters were inoculated with sample from Cell 4, matured (older) leachate, which has similar characteristics to leachate parameters towards the end of Phase I. Lysimeters R3 and R5 were monitored from April 17 through May 2006. Performance of R3 and R5, containing mixed waste and ash only, respectively, is shown in Figures 4-9 and 4-10. R3 (Mixwd Waste) Performance0 200 400 600 800 1000 1200 1400 1600 180017-Apr1-May15-May30-May Duration Concentrations (mg/L)4 5 6 7 8pH Total Alkalinity (mg/L CaCO3) Total Nitrogen (mg/L N) Total Phosphorus (mg/L PO4) Sulfate (mg/L) Magnesium (mg/L) Potassium (mg/L) pH Calcium (mg/L) Iron (mg/L) Figure 4-9 R3 Performance (April May 2006)

PAGE 98

83 R5 (Ash) Performance0 200 400 600 800 1000 1200 1400 1600 180017-Apr1-May15-May30-May DurationConcentrations (mg/L)6 8 10 12 14pH Total Alkalinity (mg/L CaCO3) Total Nitrogen (mg/L N) Total Phosphorus (mg/L PO4) Sulfate (mg/L) Magnesium (mg/L) Iron (mg/L) Potassium (mg/L) pH Calcium (mg/L) Figure 4-10 R5 Performance (April May 2006) Only Lysimeters R6, R7, and R8 were operated for the submerged conditions from May 30, 2006 until August 14, 2006. Lysimeter R3 showed the highest ORP, and it would take longer to reach a reduced conditions. Performance of lysimeters R6 through R8 is shown in Figures 4-11 through 4-13, respectively. R6 (MSW) Performance0 200 400 600 800 1000 1200 1400 17-Apr1-May15-May30-May16-Jun4-Jul16-Jul30-JulDuationConcentrations (mg/L) 4 5 6 7 8pH Total Alkalinity (mg/L CaCO3) Total Nitrogen (mg/L N) Total Phosphorus (mg/L PO4) Sulfate (mg/L) Calcium (mg/L) Magnesium (mg/L) Iron (mg/L) Potassium (mg/L) pH Figure 4-11 R6 Performance (April August 2006)

PAGE 99

84 R7 (Mixed) Performance0 200 400 600 800 1000 1200 140017-Apr1-May15-May30-May16-Jun4-Jul16-Jul30-JulDurationConcentrations (mg/L)4 5 6 7 8pH Total Alkalinity (mg/L CaCO3) Total Nitrogen (mg/L N) Total Phosphorus (mg/L PO4) Sulfate (mg/L) Calcium (mg/L) Magnesium (mg/L) Potassium ( m g /L ) p H Iron ( m g /L ) Figure 4-12 R7 Performance (April August 2006) R8 (Layered) Performance0 200 400 600 800 1000 1200 1400 1600 17-Apr1-May15-May30-May16-Jun4-Jul16-Jul31-JulDurationConcentrations (mg/L)4 5 6 7 8pH Total Alkalinity (mg/L CaCO3) Total Nitrogen (mg/L N) Total Phosphorus (mg/L PO4) Sulfate (mg/L) Calcium (mg/L) Magnesium (mg/L) Iron (mg/L) Potassium (mg/L) pH \ Figure 4-13 R8 Performance (April August 2006) On May 30, Lysimeters R6, R7, and R8 were operated under submerged conditions until August 14 (for 10 weeks), last sampling event. Lysimeters R6 and R8 were operating under submerged flow conditions (where leachate head was maintained about 15.2 to 17.8 cm (6 to 7 in) above the leachate pipes), where as lysimeter R7 was

PAGE 100

85 operating under submerged, stangant (no discharge) conditions. In general, leachate analysis results were comparable for the three lysimeters with respect to leachate chemistry. Increase in alkalinity, calcium and potassium concentrations, and reduction in total nitrogen. Concentrations of sulfate, iron, and phosphorous maintain about the same. Table 4-2 shows a summary of the results. Table 4-2 Summary of Submerged Leachate Characteristics Trend Element/ May 30 August 14 Species (mg/L) (1)R6 R7 R8 R6 R7 R8 pH 7.1 7.1 6.9 7.1 7.0 7.0 Temperature (c) 23.8 23.0 21.7 25.3 24.8 24.3 ORP (mv) -29 114 134 -93 3 39 DO 0.3 0.6 0.6 0.4 0.6 0.7 Alkalinity 1100 780 420 1300 1000 720 Calcium 390 790 1200 530 1500 1600 Sulfate 1 750 1100 0 670 1100 Iron 7.9 0.1 0.1 14 0.61 0.04 Nitrogen 161 75 214 170 31 79 Phosphorous 1.1 0.25 0.38 2.1 0.19 0.25 Potassium 210 160 220 380 320 390 (1) R6 100% MSW, R7 mixed waste, and R8 layered waste Performance of the three lysimeters was compared with respect to pH, temperature, ORP, and dissolved oxygen, as shown in Figures 4-14 through 4-17, respectively.

PAGE 101

86 pH Variation Within R6-R8 Leachate6 6.2 6.4 6.6 6.8 7 7.2 7.4 17-Apr1-May15-May30-May16-Jun4-Jul16-Jul30-Jul14-Aug Duration pH R6 R7 R8 Figure 4-14 Variation of pH within R6, R7, and R8 Temperature Variation Within R6-R8 Leachate10 15 20 25 30 17-Apr1-May15-May30-May16-Jun4-Jul16-Jul30-Jul14-Aug DurationTemperaure C R6 R7 R8 Figure 4-15 Variation of Temperature within R6, R7, and R8

PAGE 102

87 ORP Variation Within R6-R8 Leachate-150 -100 -50 0 50 100 150 20017-Apr1-May15-May30-May16-Jun4-Jul16-Jul30-Jul14-Aug DurationORP m V R6 R7 R8 Figure 4-16 Variation of ORP within R6, R7, and R8 DO Variation Within R6-R8 Leachate0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 17-Apr1-May15-May30-May16-Jun4-Jul16-Jul30-Jul14-Aug DurationDO mg/ L R6 R7 R8 Figure 4-17 Variation of DO within R6, R7, and R8 Increase in alkalinity and temperature indicates that the reactions may have been accelerated under the submerged (saturated) conditions, which is consistent with other findings in Boon County landfill, Kentucky, and SWA landfill in Florida. ORP measurements for lysimeter R6 were reduced from -29 to -93 (-93 is the lowest ORP measurement for R6 during the experiment duration). This could be attributed to an

PAGE 103

88 increase in activities of biological and chemical reactions within the saturated zone. Furthermore, comparing lysimeters R7 and R8 (R7 under submerged no flow condition, R8 under submerged flow condition), ORP measurements of the two lysimeters were comparable before the submerged conditions. Submerged no flow conditions (R7) seems to accelerate the reduction in ORP measurements compared to the submerged flow condition (R8), although the time of the experiment is short compared to the actual duration in the field. This could be sttributed to that R7 being operating in a thermodynamically closed system (no leachate recirculation), where as leachate were circulated in R8 (with leachate circulation could be considered an open system). Comparing R7 and R8 performance before and after submerged conditions, where: Both lysimeter containing similar waste and went through approximately 8 weeks of reconditioning period, 6 weeks of recirculation period, and 10 weeks of submerged condition period. Lysimeter R7 was operated under submerged no flow condition, and Lysimeter R8 was operated under submerged flow condition. The following observations can be made: 1. Temperature and pH at the end of the submerged condition were comparable, pH of 7.0 and temperature of 24.8C and 24.3C for R7 and R8, respectively. 2. ORP measurements for R7 reduced from 114 mv to 3 mv, a reduction of 97%, and R8 measurements were reduced from 134 to 39, a reduction of 70%.

PAGE 104

89 This indicates that the submerged condition may contribute to accelerating the chemical reactions that lead to precipitate formation. Furthermore, the submerged, stagnant condition may reach the reduced environment sooner than the submerged flow condition. Experiencing early indications of solid phase precipitate formation in R7, sooner than that in R8, could be attributed to the submerged no flow conditions. It should be noted that these chemical reactions require long period of time to develop, months or even years. The results in this experiment were obtained within only 10 weeks of the submerged conditions. Therefore, it is anticipated that the impact of the submerged, stagnant conditions will be even more significant if the duration were in terms of months or years, which is consistent with previous findings in CDM Porject Files (1999) and USEPA-60012-83-109 (1983). 4.2 Biological Testing In Phase II, Biological Activity Reaction Tests (BARTs) were used to identify the presence of SRB and IRB in leachate and solid samples from the lysimeters and from the landfill site. The results indicated the presence of these bacteria in the leachate and in the clog material obtained from the site. BART tests were also conducted on leachate samples obtained from lysimeters R3, R6, R7, and R8, and on field samples obtained from the manhole at the low end of Cell 4, and from the manhole of Cell 6. All samples showed positive results between 3 to 6 days after incubation, which indicates that the bacteria were present in low population. BART tests were also performed on the solid phase of the clog samples (from the main leachate header line downstream from Cell 6, and Cell 6 manhole). The tests on

PAGE 105

90 both samples indicated the presence of SRB and IRB; however, the population at the time of testing was low. Figure 4-18 shows BART test tubes for R7 samples. Figure 4-18 SRB and IRB Tests on R7 Leachate Sample Using BART The black sediment ring at the bottom of the BART black test tube indicates the peresence of sulfate-reducing bacteria. The dark brown color solution and the reddish color foams at the top of the ball, in the BART red test tube indicate the presence of ironreducing bacteria. 4.3 Clogging Mechanism Based on the results obtained in the experiment and the referenced research material on natural calcium carbonate deposits, the following equations can be derived to simulate the precipitate formation, under the acidic phase of the process (where the acidic acid is consumed):

PAGE 106

91 1. Reaction of acetate with sulfate mediated by SRB: SRB CH3COO+ SO4 2+ H+ H2S + 2HCO3 2. Reaction of acetate with ferric iron mediated by IRB: IRB CH3COO+ 8Fe3+ + 2H2O 2CO2 + 8Fe2+ + 7H+ 3. Calcium carbonate formation: Ca+ + HCO3 CaCO3(s) + H+ 4. Iron Sulfide formation: Fe2+ + H2S FeS(s) + 2H+ Based on these equations and data obtained in this research, a stoichiomerty relationship could be developed. However, measurements of CO2 and H2S concentrations were not an objective of this research. 4.4 Phase II Solid Phase Testing Solid phase testing in Phase I was limited to scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of precipitate material obtained from the lysimeters tubing and field samples. In Phase II, the solid phase testing included X-Ray Diffraction (XRD) in addition to SEM and EDS on samples obtained from the piping system in the lysimeters and recently obtained samples from different locations at the landfill. The XRD test identifies the dominant minerals present in the precipitate material, SEM test is used to analyze the surface characteristics of the deposited material, and SEM is used to identify elemental composition and distribution in the clog sample. The solid phase testing was designed to analyze samples from the field in parallel with samples obtained from the lysimeter, performing geochemical modeling to simulate

PAGE 107

92 precipitate formation on leachate samples from the field and the lysimeters, and to correlate the results for the tests and modeling. The following sections describe the solid phase testing for field and laboratory samples performed in Phase II. Geochemical modeling is presented in Section 4.7. 4.4.1 Field Samples Testing Four samples were obtained from different locations at the landfill site. The first sample, S1, was obtained from the main 10 header pipe outside of Cell 6. Sample S2 was obtained from leachate recirculation pipi ng used in jetting and cleaning of the main leachate collection pipes. The third sample, S3, was obtained from leachate pump station railing near Cell 6, and sample S5 was obtained from Cell 6 manhole (constructed on top of clogged header pipe, which was replaced). S1 S3 S5 Figure 4-19 Field Precipitate Samples: S1 10 Leachate Header Line, S2Leachate Recirculation (jetting) Pipe, S3Leachate Pump Station Railing, and S5Cell 6 Manhole S2

PAGE 108

93 Results of the XRD of these samples are summarized in Table 13. It was interesting to detect minerals Brushite (calcium Phosphate) and dolomite as possible precipitate at the landfill site. Table 4-3 Mineral Identification in Tested Field Samples Sample Mineral Emp. Formula Chemical Composition S1 Brushite& CaH5O6P CaHPO4(H2O) Calcium Carbonate CCaO3 CaCO3 S2 Calcium Carbonate& CCaO3 CaCO3 S3 Brushite CaH5O6P CaHPO4 (H2O) S5 Calcium Carbonate CCaO3 CaCO3 Calcite, Mg-rich CCa0.86Mg0.14O3 (Ca,Mg)CO3 Finding calcium carbonate (calcite) in the field samples is consistent with the results of previous studies performed on samples from the landfill. However, finding Brushite and Magnesium-rich Calcite indicates that there must be sufficient amount of phosphate and magnesium in the samples. It should be noted that samples generally are not homogeneous and results of XRD may vary between selected points. Sample of XRD are shown in Figures 37 through 40. The results of the X-Ray Diffraction tests are shown in Appendix D.

PAGE 109

94 Position [2Theta] 10 20 30 40 50 Counts 0 2500 10000 22500 Brushite Brushite Calcium Carbonate Calcium Carbonate; Brushite Brushite Calcium Carbonate; Brushite Brushite Brushite Calcium Carbonate Brushite Calcium Carbonate Brushite Brushite Calcium Carbonate; Brushite Brushite Calcium Carbonate Calcium Carbonate Calcium Carbonate; Brushite Brushite Brushite Brushite Calcium Carbonate; Brushite Calcium Carbonate; Brushite Calcium Carbonate; Brushite Figure 4-20 Sample S1 Brushite and Calcium Carbonate Peaks Position [2Theta] 10 20 30 40 50 Counts 0 2500 10000 22500 Calcium Carbonate Calcum Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcum Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Figure 4-21 Sample S2 Calcium Carbonate Peaks

PAGE 110

95 Position [2Theta] 10 20 30 40 50 Counts 0 2500 10000 22500 Brushite Brushite Calcum Carbonate Calcum Carbonate; Brushte Brushite Calcum Carbonate; Brushite Brushite Calcum Carbonate Calcium Carbonate Brushite Calcium Carbonate; Brushte Calcum Carbonate Calcium Carbonate Calcium Carbonate; Brushte Brushite Calcium Carbonate; Brushite Calcium Carbonate; Brushite Calcum Carbonate; Brushite Figure 4-22 Sample S3 Calcium Carbonate and Brushite Peaks Position [2Theta] 10 20 30 40 50 Counts 0 2500 10000 22500 Calcium Carbonate; Calcite, Mg-rich Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate; Calcite, Mg-rich Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate; Calcite, Mg-rich Figure 4-23 Sample S5 Calcium Carbonate and Calcite Mg-rich (Dolomite)

PAGE 111

96 SEM and EDS results on the field samples are shown in Appendix E, respectively. Samples of the results are hown in the following figures. Figure 4-24 S1 Sample Calcium Carbonate Crystals and Sulfur Figure 4-25 Sulfur Detected in S1 Sample

PAGE 112

97 Figure 4-26 Calcium Carbonate Crystals in S1 Sample Figure 4-27 Calcium and Phosphorous Along with Traces of Sulfur, Iron, Aluminum Detected in S1 Sample

PAGE 113

98 Figure 4-28 Calcium Carbonate Crystals in Sample S2, Recirculation Pipe Figure 4-29 Calcium and Traces of Fe, P, Mg, and Cl in Sample S2

PAGE 114

99 Figure 4-30 Calcium Phosphate Crystals in Sample S3, Pump Station Figure 4-31 Calcium, Phosphate, Sulfur and Tr aces of Iron, Al, and Cl Detected in Sample S3

PAGE 115

100 Figure 4-32 Crystal Formation in Sample S5, Cell 6 Manhole (Calcite, Mg-rich Calcite) Figure 4-33 Ca, and Traces of Fe, S, Mg and Cl Detected in Sample S5, Cell6 Manhole

PAGE 116

101 Figure 4-34 Crystal Formation in Sample S5, Cell 6 Manhole (Calcium Carbonate) Although precipitates are not homogeneous, by performing XRD, SEM, and EDS, a correlation between minerals composition and elemental analysis was established. 4.4.2 Laboratory Samples Testing Once sampling events for liquid testing was completed, the caps of the leachate collection pipes of the lysimeters were cut and inside the pipes were video taped to observe any sediment buildup or clog formati on. Images taken during the video screening revealed that ash only lysimeters (R1 and R5) have minor growth, appears to be biological, at the end of the pipe. Lysi meters containing MSW only (R2 and R6),

PAGE 117

102 containing mixed waste (R3 and R7), and layered waste (R4 and R8) revealed some amount of biological growth and sediment The following figures (4-35 through 4-40) show images of the pipes during the video taping activities. Figure 4-35 Video Tapping Activity Figure 4-36 R1, 100% Ash Figure 4-37 R5, 100% Ash Figure 4-38 R3, Mixed Waste Figure 4-39 R4, Layered Waste Figure 4-40 R4, Layered Waste (B)

PAGE 118

103 The following figures (4-41 through 4-44) show images of the pipes during video taping activities. Figure 4-41 R2, Mixed Waste Figure 4-42 R6, 100% MSW Figure 4-43 R7, Mixed Waste Figure 4-44 R8, Layered Waste The pipes were removed from the lysimeters and observed for biological growth and sediment formation. A large (rock-like) precipitate, along with gravel-like sediments were recovered from R4 (layered waste), and a dry sediment was scraped from the invert of R2 pipe (mixed Waste). Two small, bl ack, wet, sediments were obtained from R7 (mixed waste) that was operating under submerged no flow condition for approximately 6 weeks. The samples were placed in small containers for testing. The following figures show images of the removed pipes.

PAGE 119

104 Figure 4-45 R4 (Layered Waste) Precipitate Figure 4-46 R4 (Layered Waste) Pipe Figure 4-47 R4 Precipitate and Pipe Figure 4-48 R4 Precipitate Sample Figure 4-49 R7 (Mixed) Pipe Precipitate Figure 4-50 R7 (Mixed) Dry Pipe

PAGE 120

105 Figure 4-51 R7 Precipitate Sample Figure 4-52 R8 (Layered) Pipe A large amount of precipitate was recovered from R4, solid precipitate, about 1 long and 0.5 in diameter, and sediment as shown in Figures 4-69 and 4-70. A small amount of samples were recovered from R2 (mixed waste) and R7 (mixed waste also). The samples (from R2 and R7) were not large enough to perform XRD, SEM and DES were performed on these samples. X-Ray Diffraction test performed on samp les obtained from R4 indicated the presence of quartz (silica oxide) and calcite. The presence of quartz in the sample was not expected, and it could be attributed to additional experimental activities performed during Phase I. Figure 4-75 depicts the X-Ray Diffraction results.

PAGE 121

106 Position [2Theta] 10 20 30 40 50 Counts 0 10000 40000 90000 160000 Quartz Quartz Calcite Quartz Quartz; Calcite Quartz Quartz Quartz Calcite Calcite Quartz Quartz Quartz Quartz Quartz; CalciteFigure 4-53 R4 Precipitate, Calcite and Quartz Samples obtained from R2 and R7 we re not sufficient to perform X-Ray diffraction testing. SEM and EDS were perfor med on samples from R2, R4, and R7. The following figures show the results of these tests.

PAGE 122

107 Figure 4-54 Quartz and Calcite Crystals in R4 Sample Figure 4-55 Si Detected in R4 Sample

PAGE 123

108 Figure 4-56 Calcium Carbonate Crystals in R2 Sample Figure 4-57 Ca Detected in R2 Sample

PAGE 124

109 Figure 4-58 Calcium Carbonate Crystals in R7 Sample Figure 4-59 Ca, Fe, Cl, and Other Elements Detected in R7 Sample

PAGE 125

110 The results of XRD and DES analysis of the field and laboratory samples showed close correlation between elemental analysis and precipitated minerals, as discussed in Section 4.8, Summary of Results. 4.5 Geochemical Modeling Geochemical modeling, using Geochemist Wok Bench (GWB) React model, was performed on samples from the landfill, and Lysimeter R7. The purpose of the geochemical modeling is to develop a model for leachate chemistry and to study the variation of its chemical characteristics with pH, temperature, ORP, and precipitate formation for field and laboratory obtained data. Chemical analysis was performed on a sample obtained from Cell 6 of the landfill. The sample was analyzed for the same parameters used in laboratory leachate analysis. The model was performed using the result of the chemical analysis of the sample, with a pH ranging between 1 and 13, and a temperature variation between 25 C and 80 C (maximum reported temperature within the landfill mass). The pH variation between 1 and 13 was modeled to predict leachate equilibrium model within this range. A practical pH range for leachate equilibrium model is between 4 and 8. The results of the chemical analysis (for Cell 6 and Cell 4) are shown in Appendix C. A printout of the input and output data is shown in Appendix F. Since the model considers all species present in the leachate (shown in the output results in Appendix F), only selected dominant species were plotted for clarity. These species are acetate, calcium, carbonate, bicarbonate, sulfate, iron, and calcium carbonate. The output results of the model include concentration of species at different pH, SI, and precipitate (mineral formation). Figures 4-82 and 4-83 show concentrations of the selected species with varying pH.

PAGE 126

111 Figure 4-60 Selected Species Concentrations (pH 1-13) for Cell 6 Sample Figure 4-61 Selected Species Concentrations (pH 4-8) for Cell 6 Sample Mulasaehar Sat Sep 02 2006 12345678910111213 5 0 5 0 0 5pHSome species (log mg/kg)Selected Species Concentrations in Landfill Cell 6 Leachate CH3COO-CO3 --Ca++CaCO3Fe++Fe+++HCO3 -SO4 -Mulasalehar Sat Sep 02 2006 45678 0 0 0 0 10pHSome species (log mg/kg)Selected Species Concentrations in Landfill Cell 6 Leachat CH3COO-CO3 --Ca++CaCO3Fe++Fe+++HCO3 -SO4 -

PAGE 127

112 The model shows that at pH of 5.34, at temperature 44.9oC, and Eh of -0.1756, possible precipitates are calcite (CaCO3), hydroxyapatite (Ca10(PO4)(OH)2, and pyrite (FeS2). At pH of 7.0, temperature 52.5o C, and Eh of -0.2982, possible precipitates are sidrite (FeCO3), dolomite (MgCO3), and calcite (CaCO3). Analysis of the field sample S1, obtained from the main leachate collection pipe in Cell 6, using XRD, SEM, and EDS indicated the presence of calcite (CaCO3) and brushite CaHPO4(H2O)2, which is a complex phosphate of calcium Ca5(PO4)3OH, similar to the hydroxyapatite predicted using the model. It is possible for the other precipitate in the model, pyrite, siderite, and dolomite to be present in the landfill sample in very small quantities since the concentrations of iron and magnesium are low, and did not show as predominant minerals during XRD testing. Figures 4-84 and 4-85 show selected mineral species and Eh variation, and saturation index (Q/K) of the minerals precipitated.

PAGE 128

113 Figure 4-62 Minerals Saturation and Precipitate Formation in Cell 6 Leachate Sample Figure 4-63 Selected Species in Reduced Environment of Cell 6 Leachate Mullasalehar Sat Sep 02 2006 45678 0 10pHSaturation, some minerals (log Q/K)SI and Minerals Precipitation in Landfill Cell 6 Leachate Calcite Dolomite Hydroxyapatite Pyrite Mulasaehar Tue Oct 2 2006 8006004002000 0 10Eh (mV)Some species (log mg/kg)Selected Species in Reduced Environment, Cell 6 Leachate CO3 --Ca++CaCO3Fe++Fe+++HCO3 -SO4 -

PAGE 129

114 Similarly, the model was performed on R7 leachate parameters. The model was performed for a pH range between 1 and 13, and a temperature variation between 22 C and 25 C. The results indicated that at a pH of 7.0, at a temperature of 23.5 C, and Eh of 0.4023 volts, possible precipitate are hydroxyapatite, calcite, and dolomite. Elemental analysis of the obtained sample showed presence of calcium as a dominant element, then iron, silica, chloride, and carbon, with some magnesium, phosphorous, sulfur and potassium. It is possible for calcite, dolomite and hyroxyapatite to precipitate, as the model predicted. The following figures show some selected species concentrations with varying pH, saturation indices and predicted mineral precipitation, and concentrations variation with respect to Eh. Figure 4-86 shows selected species concentrations for R7. Figure 4-64 Selected Species Concentrations (pH 1-13) for R7 Mulasalehar Sun Sep 03 2006 12345678910111213 0 5 10pHSome species (log mg/kg)Selected Species Concentrations in Lysimeter R7 Leachate CO3 --Ca++CaCO3Fe++Fe+++HCO3 -SO4 -

PAGE 130

115 Figure 4-65 Possible Mineral Precipitation in R7 Figure 4-66 Selected Species Concentrations with Eh Variation for R7 Leachate Mulasalehar Thu Sep 07 2006 8007006005004003002001000 0 10Eh (mV)Saturation, some minerals (log Q/K)SI and Possible Minerals Precipitation in R7 Lysimeter Calcite Dolomite Hydroxyapatite Mulasalehar Tue Oct 2 2006 8007006005004003002001000 0 0 0 0 10Eh (mV)Some species (log mg/kg)Selected Species and Eh, R7 Leachate CO3 --Ca CaCO3Fe Fe HCO3 -SO4 --

PAGE 131

116 Due to the short operation period of lysimeter R7, a reduced environment did not develop, therefore, the concentrations verses Eh plot has a different shape that the results shown for Cell 6 leachate. If the operation period increased to allow reaching a reduced environment, the plot will be as shown in Figure 4-89, which was obtained by modeling R7 leachate parameters under reduced environment. Figure 4-67 Selected Species Concentrations in Reduced Environment for R7 Leachate 4.6 Summary of Results Results of the solid phase testing performed on samples obtained from the field and from lysimetrs are summarized in Table 4-4. Table 4-4 indicates that XRD and DEM of field samples (S1, S2, S3, and S5) and a laboratory sample (R4), show close correlation between elemental composition and identified minerals detected in the Mulasalehar Tue Oct 2 2006 800600400200 0000 0 10Eh (mV)Some species (log mg/kg)Selected Species in Reduced Environment, R7 Leachate CO3 --Ca++CaCO3Fe++Fe+++HCO3 -SO4 -

PAGE 132

117 samples. It is possible that other minerals could be precipitated, but could not be identified due to the small quantity present in the precipitate and/or the sample being non-homogeneous. XRD was not performed on R2 and R7 samples due to the insufficient amount of samples collected for XRD testing. However, the EDS results show that calcium carbonate, calcium phosphate, iron sulfite, and dolomite are possible to precipitate in R2 and R7 leachate sample. Table 4-4 Solid Phase Testing Summary Results Sample XRD EDS S1, Main Leachate Header Pipe CaCO3 Ca, p, S, Traces Fe, CaHPO4(H2O) S2, Recirculation Pipe CaCO3 Ca, Traces P, S S3, Leachate Pump Station CaCO3 Ca, P, S, Traces Al, CaHPO4(H2O) Cl, and Fe S5, Cell 6 Manhole CaCO3 Ca, Traces Mg, P, S, (Ca.Mg)CO3 and Fe R7, Mixed Waste ----Ca, Fe, C, Traces Mg, P, and S R2, Mixed Waste ----Ca, Traces Mg, P Si, and Fe R4, Layered Waste SiO2 Si, Traces Ca, Mg, CaCO3 Fe, and Al Ca HPO4(H2O) Brushite (Calcium Phosphate) Ca10(PO4)(OH)2 Hydroxyapatite (Complex Phosphate of Calcium) MgCa(CO3) Dolomite FeS2 Iron Sulfide (Pyrite) FeCO3 Sidrite Results of geochemical modeling performed on the leachate field sample obtained from the downstream manhole of Cell 6 (Cell 4/6 manhole, receiving leachate from Cell 4 also) are shown in Table 15. Table 15 also shows XRD and DEM test results performed

PAGE 133

118 on field samples S1 (from the main header pipe) and S5 (from a manhole constructed on top of the header pipe in Cell 6). Geochemical modeling and DEM test results performed on the laboratory sample obtained from R7 are also shown in Table 4-5. Table 4-5 Solid Phase Testing and Modeling Summary Sample XRD EDS GWB Modeling S1, Main Pipe CaCO3 Ca, p, S, Traces Fe, CaCO3,MgCa(CO3)2 CaHPO4(H2O) Ca10(PO4)(OH)2 FeS2 & FeCO3 S5, Cell 6 Manhole CaCO3 Ca, Traces Mg, P, S, CaCO3,MgCa(CO3)2 (Ca.Mg)CO3 and Fe Ca10(PO4)(OH)2 FeS2 & FeCO3 R7, Mixed ----Ca, Fe, C, Traces CaCO3 Mg, P, and S Ca10(PO4)(OH)2 MgCa(CO3)2 CaHPO4(H2O) Brushite (Calcium Phosphate) Ca10(PO4)(OH)2 Hydroxyapatite (Complex Phosphate of Calcium) MgCa(CO3) Dolomite FeS2 Iron Sulfide (Pyrite) FeCO3 Sidrite X-Ray Diffraction testing performed on fiel d samples S1 and S5 revealed that the minerals calcite, calcium phosphate (brushite), and magnesium-rich calcite are present in the precipitate. Geochemical modeling of the field leachate sample indicated the presence of calcite, hydroxyapatite (a complex phosphate of calcium), dolomite, pyrite (iron sulfide), and siderite. The model predicted pyrite and sidrite in addition to what was identified through the XRD test. This could be attributed to the presence of these minerals in small quantities, or simply were not present in the sample. Geochemical modeling results of leachate sample obtained from R7 indicated that minerals calcite, brushite, and dolomite may precipitate in the leachate piping. Although

PAGE 134

119 XRD could not be performed on precipitate sample obtained from R7 (due to the insufficient sample quantity), based on DES test results, it is very possible for these minerals to precipitate. In conclusion, the results indicate that geochemical modeling can be used as a tool to predict leachate equilibrium chemistry and possible precipitate formation. Although the model prediction included more minerals than detected by XRD, the elemental analysis shows that it is possible for other minerals to precipitate as predicted by the model. However, these precipitates may be in a very small quantity that could not be identified by XRD, or simply was not present in the sample.

PAGE 135

120 Chapter Five Conclusions This research project investigated the mechanism by which deposits and precipitates are formed in leachate collection systems, and identified the role of iron and sulfate-reducing bacteria in precipitate formation. This research also explored the relationship between acetic acid utilization and reduction in calcium, sulfate, and iron concentrations in leachate, and introduced the use of geochemical modeling in predicting mineral and precipitate formation. The following conclusions can be reached from this research: 1. Sulfate and iron-reducing bacteria play an important role in biologically induced precipitate in a reduced environment. These reactions raised the local pH, produced bicarbonate that may react with calcium to form calcium carbonate and reduced sulfide and ferrous ions that may react to produce insoluble precipitate (pyrite), and other complexes. 2. A relationship was established between acetate utilization and reduction in calcium, iron and sulfate concentrations, with a time-line indicating when the precipitate is initiated with respect to the duration of the experiment, and a mechanism was introduced.

PAGE 136

121 3. The results indicated that in addition to biologically-induced precipitate formation during volatile acids utilization, saturation indices play a role in precipitate formation that is thermodynamically favored. However, the rate of precipitatation during acetate utilization (biologically favored) is much higher than that favored thermodynamically based on pH and species concentrations. 4. Minerals in field and laboratory precipitate samples were identified using XRD, and correlated with EDS test results and geochemical modeling of leachate parameters. Dominate minerals in the samples were able to be identified by the use of geochemical modeling. 5. A leachate equilibrium model was introduced using GWB model that helps in calculating saturation indices of species and predicting precipitate formation in the system.

PAGE 137

122 Chapter Six Recommendations Several recommendations can be made based on the outcome of this research, pertaining to design, operation, and management of leachate collection systems: 1. Co-mingled waste (MSW and ash mainly) disposal provides almost a perfect environment for precipitate formation. Therefore, separate monofill cells may reduce potential clogging. 2. Saturation zone of leachate seems to accelerate biological activities and precipitate formation in a thermodynamically-closed environment (no flow condition). Designing leachate collection syst em at a slope that promotes gravity flow, and maintaining a scouring velocity, prevents the formation of saturation zones and submerged conditions within the leachate collection systems and reduces the potential for precipitate formation. 3. Leachate monitoring for indicator parameters, such as volatile acids, metals, and other site specific parameters (similar to the ones used in this research) is recommended to determine at what phase the landfill is operating at with respect to the waste stabilization time-line. 4. Geochemical modeling can be used to evaluate leachate parameters and anticipate possible potential precipitate formation.

PAGE 138

123 References 1. Benjamin, Mark M. 2002. Water Chemistry McGraw-Hill Series in Water Resources and Environmental Engineering. 2. Bethke, Craig M. 1996. Geochemical reaction modeling, concept and applications University of Illinois, Urbana-Champaign, published by Oxford University Press, New York/Oxford, 1996. 3. Bethke, Craig M. 2005. The Geochemists Workbench Releace 6.0, GWB Essentials Guide Hydrology Program, University of Illinois, USA, Printed June 4, 2005. 4. Cagatay, M., N., Ozocan, M. and Gungor, E. 2004. Pore-water and sediment geochemistry in the Marmara Sea (Turkey): early digenesis and diffusive fluxes. Geology Department, Istanbul Technical University, Ayazga 80626, Istanbul, Turkey. Geochemistry: Exploration, Environment, Analysis, 2004, Vol, 4, pp. 213-225. 5. CDM, Project Files. 1999 to present Solid Waste Authority of Palm Beach County Class I Landfill. 6. Dury, Williams, J. 1999. Treatment of acid mine drainage with anaerobic solidsubstrate reactors. Water Environmental Research Journal, 1999, Vol. 71, 1244. 7. Cooke, A. J., Rowe, R. K., and Rittmann, B. E. 2000. Modeling clogging of landfill drainage systems. In Proceedings of the 6th Environmental Engineering Specialty Conference of the CSCE & 2nd Spring Conference of the Geoenvironmental Division of Canada Geotechnical Society, London, Ontario. June 7, 2000, pp. 74-80. 8. Cooke, A. J., Rowe, R. K., and Fellow, ASCE, B. E. Rittmann, VanGulck, J., and Millward, S. 2001. Biofilm growth and mineral precipitation in synthetic leachat columns. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, October 2001, Paper No. 22327.

PAGE 139

124 9. Deelman J. C. 2005 Low-temperature formation of dolmite and magnesite Version 2.1 (2005), Compact Disc Publications, Eindhoven, The Netherlands, pp. 177-190 and 278-329. 10. Jefferis, S.A., and Bath, A. 1999. Rationalising the debate on calcium carbonate clogging and dissolution in landfill drainage materials. In Proceedings of Sardinia 99, Seventh International Waste Management and Landfill Symposium, Cogliari, Italy, 4-8 October 1999. 11. Fleming, I. R., Row, R. K., and Cullimore, D. R. 1999. Field observation of clogging in a landfill leachate collection system Canadian Journal of Geotechnical Engineering, 1999, Vol. 36, pp. 685-707. 12. Johnson, C. A., Kaeppeli, M., Brandenberger, S., Ulrich, A., and Bauman, W. 1999. Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash, Part II: The geochemistry of leachate from Landfill Lostorf, Switzerland. Journal of Contaminant Hydrology, 1999, Vol. 40, pp. 329-259. 13. Johnson, C. A., Richner G. A., Vitvar, T, Schittli, N., and Eberhard, M. 1998. Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash, Part I: The hydrology of Landfill Lostrof, Switzerland. Journal of Contaminant Hydrology, 1999, Vol. 33, pp. 361-376. 14. Kalyuzhnyi, S., Veeken, A. and Hamelers, B. 1999. Two-particle model of anaerobic solid state fermentation. In proceedings of II International Symposium on Anaerobic Digestion of Solid Waste, Barcelona, 15-17 June, 1999. 15. Koerner, G. R. and Koerner R. M.1990. Biological activity and potential remediation involving geotextile landfill leachate filters. Geosynthetic Testing for Waste Containment Applications, ASTM STP 1081, R. M. Koerner. Ed., American Society for Testing and Materials, Philadelphia, 1990. 16. Komnitsas, K., Bartzas, G., and Paspaliaris, I. 2006. Modeling of reaction front progress in fly ash permeable reactive barriers. Environmental Forensics, 2006 Vol. 7, pp. 219-231. 17. Langmuir, Donald, 1997, Aqueous Environmental Geochemistry Published by Prentice Hall. 18. Levine, A. D., Harwood, V., J., and Mulla Saleh, A. 2005. Assessment of biogeochemical deposits in landfill drainage systems. Report prepared for Florida Center for Solid and Hazardous Waste Management, February 2005.

PAGE 140

125 19. Manning, D. A. C. and Robinson, N. 1999. Leachate mineral reactions: Implications for drainage system stability and clogging. In proceedings of the Sardinia 99, Seventh International Waste Management and Landfill Symposium, Sardinia, Italy, 4-8 October 1999. 20. Missmer International, CDM. 2000. Leachate collection syste precipitate characterization. Report prepared for The Solid Waste Authority of Palm Beach County Class I Landfill, January 2000. 21. Pohland, F. G., and Kim, J. C. 1999. Microbially-mediated attenuation potential of landfill bioreactor systems. In proceedings of II International Symposium on Anaerobic Digestion of Solid Waste, Barcelona, 15-17 June, 1999. 22. Reinhart, D., and Townsend, T. 1998. Assessment of leachate collection system clogging at Florida municipal solid waste landfills. Report prepared for Florida Center for Solid and Hazardous Waste Management, June 1998. 23. Rittman, B. E., Fleming, I. R., and Rowe, R. K. 1996. Leachate chemistry: Its implication for clogging. In proceedings of the North American Water Congress, Aneheim, California, June 22-28, 1996. 24. Rohde, J. R., and Gribb, M. M. 1990. Bi ological and particulate clogging of geotextile/soil filter systems. Geosynthetic Testing for Waste Containment Applications, ASTM STP 1081, Robert M. Koerner, editor, American Society for Testing and Materials, Philadelphia, 1990. 25. Ramke, H. G. 1989. Leachate collection system, in: Christensen, Th. H.; Cossu, R.; Stegmann, R., (ed), 1989. Sanitary landfilling: Process, Technology and Environmental Impact, Academic Press, London, 1990. 26. Rowe, R. K. 2005. Long-term performance of contaminant barrier systems. Geotechnique Journal, September 2005, Vol. 55, No. 9, pp. 631-678. 27. Rowe, R. K., VanGulck, J. and Millward S. 2002. Biologically induced clogging of a granular medium permeated with synthetic leachate. Canadian Journal of Environmental Engineering and Science, 2002, Vol.1, pp.135-156. 28. Senior, Eric. 1995. Microbiology of Landfill Sites Second Edition, Lewis Publishers, by CRC Press, Inc. 1995. 29. Stumm, W, and Morgan J. 1995. Aquatic Chemistry Third Edition, Environmental Science and Technology, A Wiley-Intersciences Series of Texts and Monographs.

PAGE 141

126 30. US EPA, 1991. Landfill leachate clogging of geotextile (and Soil) filters, EPA/ 60012-911025, July 1991. 31. US EPA, 1983. Potential clogging of landfill drainage systems. Sponsored by Municipal Environmental Research Laboratory, Cincinnati, Ohio, EPA-6001283-109, October 1983. 32. Vadevivere, Philippe, and Baveye, Philippe. 1992. Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns. Soil Science Society of America Journal, 1992, Vol.15. pp. 1-13, 1992.

PAGE 142

127 Appendices

PAGE 143

128 Appendix A: Phase I Leachate Characteristics Data Table A-1 R2 Phase I Leachate Characteristics Data R2-MSW1 5-May 6-May 7-May 11-May 13-May 17-May General Quality pH 5.72 5.8 5.86 6.05 5.53 5.51 Turbidity (NTU) 337 413 288 290 244 167 Total Akalinity (mg/L CaCO3) 2520 3440 2667 3267 3500 3967 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 8933 9407 9153 10613 10127 9953 Solids (TVS) (mg/L) 4967 5553 5267 6967 5067 5787 Total Nitrogen (mg/L N) 270 270 350 340 280 270 Total Phosphorus (mg/L PO4) 98 58 76 82 74 86 Silica (mg/L SiO2) 301 286 282 323 291 330 Inorganic Anions Chloride (mg/L) 311 333 296 314 261.62 289.85 Sulfate (mg/L) 595 591 466 266 141.21 69.49 Inorganic Cations Calcium (mg/L) 1023 1075 911 1078 1084 1294 Magnesium (mg/L) 60 64 53 61 74 83 Copper (mg/L) 0.241 0.09 0.078 0.082 0.067 0.076 Iron (mg/L) 35 42 28 33 35 56 Manganese (mg/L) 7.327 8.276 6.581 7.11 7.586 8.987 Zinc (mg/L) 4.219 3.818 3.922 0.391 0.232 0.155 Potassium (mg/L) 75 61 47 52 115 131 Sodium (mg/L) 249 179 149 220 428 366 R2-MSW1 20-May 24-May 27-May 31-May 7-Jun 14-Jun General Quality pH 5.48 5.44 5.52 5.51 5.42 5.5 Turbidity (NTU) 101 497 156 238 275 207 Total Akalinity (mg/L CaCO3) 4000 4367 4533 4800 4767 5300 Volatile Acids (mg/L Acetic Acid) 1300 1475 Solids (TS) (mg/L) 11487 12147 12753 12733 14433 13413 Solids (TVS) (mg/L) 6900 5987 7653 6400 8653 6640 Total Nitrogen (mg/L N) 290 270 290 280 310 310 Total Phosphorus (mg/L PO4) 73 68 70 68 64 89 Silica (mg/L SiO2) 326 373 290 302 321 283 Inorganic Anions Chloride (mg/L) 317.42 434.87 346.35 411.86 449.2 408.7 Sulfate (mg/L) 25.37 20.67 20.84 42.3 33.61 Inorganic Cations Calcium (mg/L) 1515 1842 1863 2137 2309 2485 Magnesium (mg/L) 94 96 84 91 94 99 Copper (mg/L) 0.063 0.08 0.096 0.084 0.085 0.09 Iron (mg/L) 69 67 80 99 118 153 Manganese (mg/L) 10.029 9.766 9.67 10.419 10.814 11.241 Zinc (mg/L) 0.105 0.189 0.208 0.187 0.208 0.188 Potassium (mg/L) 184 168 150 164 168 168 Sodium (mg/L) 449 409 412 428 439 416

PAGE 144

129 Appendix A: (Continued) Table A-1 (Continued) R2-MSW1 21-Jun 28-Jun 5Jul 12-Jul 19-Jul 26-Jul General Quality pH 5.38 5.51 5.51 5.8 6.67 6.84 Turbidity (NTU) 158 107 107 275 358 272 Total Akalinity (mg/L CaCO3) 4833 5200 4900 5000 4900 4900 Volatile Acids (mg/L Acetic Acid) 1475 1525 1950 1925 1700 1100 Solids (TS) (mg/L) 13787 14780 14960 15033 14500 12187 Solids (TVS) (mg/L) 8287 7273 8707 7727 9167 5860 Total Nitrogen (mg/L N) 330 310 370 340 340 250 Total Phosphorus (mg/L PO4) 72 71 84 52 43 41 Silica (mg/L SiO2) 277 263 214 293 365 420 Inorganic Anions Chloride (mg/L) 355.37 295.85 347.5 286.01 251.29 239.87 Sulfate (mg/L) 52.34 41.52 56.14 9.74 Inorganic Cations Calcium (mg/L) 2707 2291 2227 1939 1565 1622 Magnesium (mg/L) 110 100 93 104 91 94 Copper (mg/L) 0.137 0.097 0.067 0.087 0.093 0.107 Iron (mg/L) 174 132 143 142 42 18 Manganese (mg/L) 11.643 11.197 11.206 11.071 7.447 4.561 Zinc (mg/L) 0.214 0.159 0.139 0.173 0.183 0.122 Potassium (mg/L) 216 167 172 191 144 156 Sodium (mg/L) 468 382 451 635 339 468 R2-MSW1 2-Aug 9-Aug 16-Aug 23-Aug 30-Aug 8-Sep General Quality pH 7.07 6.65 6.54 6.52 6.24 6.19 Turbidity (NTU) 339 499 495 356 441 519 Total Akalinity (mg/L CaCO3) 4833 3933 3833 3800 3500 3367 Volatile Acids (mg/L Acetic Acid) 825 625 1100 1000 1175 1300 Solids (TS) (mg/L) 10580 10067 10593 10920 11427 11533 Solids (TVS) (mg/L) 5760 5013 5380 6133 6827 6173 Total Nitrogen (mg/L N) 270 230 160 130 124 116 Total Phosphorus (mg/L PO4) 43.7 45.1 48.2 48 50 24.4 Silica (mg/L SiO2) 401 620 628 553 683 790 Inorganic Anions Chloride (mg/L) 221.57 297.95 268.89 281.42 302.31 219.84 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 1680 1521 1403 1359 1579 1549 Magnesium (mg/L) 104 100 94 86 91 91 Copper (mg/L) 0.075 0.199 0.117 0 0 0.071 Iron (mg/L) 34 22 61 35 52 54 Manganese (mg/L) 1.464 1.819 3.954 5.315 6.049 5.069 Zinc (mg/L) 0.125 0.138 0.191 0.083 0.115 0.123 Potassium (mg/L) 196 165 153 113 127 187 Sodium (mg/L) 497 437 445 411 471 417

PAGE 145

130 Appendix A: (Continued) Table A-1 (Continued) R2-MSW1 13-Sep 20-Sep 27-Sep 4-Oct 11-Oct 18-Oct General Quality pH 6.19 6.26 6.44 6.78 6.67 6.88 Turbidity (NTU) 557 531 515 455 411 268 Total Akalinity (mg/L CaCO3) 3100 3233 3533 3533 3267 2833 Volatile Acids (mg/L Acetic Acid) 1250 1300 700 600 100 33 Solids (TS) (mg/L) 11800 11527 10840 8487 6140 5300 Solids (TVS) (mg/L) 6020 6707 6013 4493 3087 2613 Total Nitrogen (mg/L N) 130 136 120 110 106 116 Total Phosphorus (mg/L PO4) 26.6 51 42 30 32 7 Silica (mg/L SiO2) 798 749 679 577 524 498 Inorganic Anions Chloride (mg/L) 231.81 201.23 297.24 244.76 212.5 246.19 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 1460 1499 1247 1241 673 346 Magnesium (mg/L) 91 89 77 84 72 186 Copper (mg/L) 0.053 0.073 0.025 0 0.013 0 Iron (mg/L) 31 34 33 11 8 9 Manganese (mg/L) 6.135 5.926 4.8 1.458 0.195 0.194 Zinc (mg/L) 0.099 0.222 0.097 0.045 0.082 0.108 Potassium (mg/L) 203 167 158 177 169 167 Sodium (mg/L) 453 397 388 431 418 410 R2-MSW1 26-Oct 1-Nov 8-Nov 15-Nov 22-Nov 29-Nov General Quality pH 6.62 6.61 6.81 6.41 6.69 6.62 Turbidity (NTU) 324 259 195 135 118 167 Total Akalinity (mg/L CaCO3) 2467 2700 2571 2633 2533 2467 Volatile Acids (mg/L Acetic Acid) 33 33 36 33 50 50 Solids (TS) (mg/L) 4860 4687 4500 4360 4307 4027 Solids (TVS) (mg/L) 2147 2180 2113 1993 1960 1840 Total Nitrogen (mg/L N) 110 120 110 92 90 72 Total Phosphorus (mg/L PO4) 4.4 7.2 10.6 2.5 2.4 2.5 Silica (mg/L SiO2) 437 419 343 292 253 225 Inorganic Anions Chloride (mg/L) 60.05 275.51 283.86 261.86 133.34 291.69 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 493 929 551 595 573 552 Magnesium (mg/L) 79 86 62 67 63 62 Copper (mg/L) 0 0 0.052 0.008 0.076 0.049 Iron (mg/L) 8 9 5 6 6 5 Manganese (mg/L) 0.202 0.16 0 0.161 0.291 0.406 Zinc (mg/L) 0.094 0.113 0.066 0.065 0.006 0.186 Potassium (mg/L) 172 194 169 182 167 172 Sodium (mg/L) 484 483 368 420 332 326

PAGE 146

131 Appendix A: (Continued) Table A-2 R3 Phase I Leachate Characteristics Data R3-Mixed 1 5-May 6-May 7-May 11-May 13-May 17-May General Quality pH 6.59 6.6 6.68 6.71 6.13 6.02 Turbidity (NTU) 179 215 211 128 196 153 Total Akalinity (mg/L CaCO3) 2933 2507 2967 3667 3633 3867 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 8487 10353 11080 10620 10900 10958 Solids (TVS) (mg/L) 3573 4633 4800 4840 4500 4990 Total Nitrogen (mg/L N) 190 210 240 230 190 110 Total Phosphorus (mg/L PO4) 5 8 9 5 7 4 Silica (mg/L SiO2) 210 253 262 272 260 327 Inorganic Anions Chloride (mg/L) 1005 1141 1129 995 937 927 Sulfate (mg/L) 564 689 719 305 84 Inorganic Cations Calcium (mg/L) 1117 1382 1555 1669 1704 2028 Magnesium (mg/L) 124 165 186 191 178 195 Copper (mg/L) 0.384 0.378 0.3 0.134 0.157 0.145 Iron (mg/L) 16 20 18 7 5 17 Manganese (mg/L) 2.139 2.442 2.467 2.577 2.887 3.812 Zinc (mg/L) 0.167 0.135 0.175 0.159 0.181 0.192 Potassium (mg/L) 190 160 153 130 105 110 Sodium (mg/L) 286 359 421 371 350 434 R3-Mixed 1 20-May 24-May 27-May 31-May 7-Jun 14-Jun General Quality pH 5.87 5.93 5.95 6.04 6.62 6.78 Turbidity (NTU) 115 430 79.5 117 238 216 Total Akalinity (mg/L CaCO3) 3767 4000 4533 4333 4067 3200 Volatile Acids (mg/L Acetic Acid) 875 375 Solids (TS) (mg/L) 14307 14940 14780 14853 11373 11107 Solids (TVS) (mg/L) 7593 6227 7273 6533 5867 4760 Total Nitrogen (mg/L N) 90 100 90 90 60 50 Total Phosphorus (mg/L PO4) 7 8 7 6 0 0 Silica (mg/L SiO2) 277 229 191 172 112 199 Inorganic Anions Chloride (mg/L) 1208 1626 1197 1351 1482 1257 Sulfate (mg/L) 21 14 15 Inorganic Cations Calcium (mg/L) 2590 2853 2962 2921 1888 1244 Magnesium (mg/L) 224 240 225 219 210 204 Copper (mg/L) 0.105 0.091 0.102 0.095 0.091 0.081 Iron (mg/L) 20 38 35 39 21 17 Manganese (mg/L) 4.367 4.679 4.614 4.42 1.108 0.598 Zinc (mg/L) 0.18 0.225 0.21 0.177 0.148 0.156 Potassium (mg/L) 153 141 127 119 115 111 Sodium (mg/L) 417 404 415 488 365 391

PAGE 147

132 Appendix A: (Continued) Table A-2 (Continued) R3-Mixed 1 21-Jun 28-Jun 5Jul 12-Jul 19-Jul 26-Jul General Quality pH 6.61 6.58 6.52 6.57 6.75 6.72 Turbidity (NTU) 191 116 113 188 171 142 Total Akalinity (mg/L CaCO3) 2833 2700 2633 2500 2233 2200 Volatile Acids (mg/L Acetic Acid) 325 350 425 350 300 67 Solids (TS) (mg/L) 8600 7580 7287 7240 6213 5147 Solids (TVS) (mg/L) 3960 2867 3073 2800 2227 1720 Total Nitrogen (mg/L N) 50 60 60 50 40 30 Total Phosphorus (mg/L PO4) 0 3 5 5 6.2 6 Silica (mg/L SiO2) 217 191 126 188 143 156 Inorganic Anions Chloride (mg/L) 1330 1516 1890 1088 701 992 Sulfate (mg/L) 19 16 Inorganic Cations Calcium (mg/L) 1320 1044 1103 1006 768 753 Magnesium (mg/L) 227 188 194 258 135 174 Copper (mg/L) 0.119 0.063 0.054 0.072 0.068 0.056 Iron (mg/L) 14 13 15 17 16 5 Manganese (mg/L) 0.398 0.429 0.635 0.272 0.705 0.125 Zinc (mg/L) 0.117 0.111 0.112 0.123 0.103 0.101 Potassium (mg/L) 150 106 110 155 83 95 Sodium (mg/L) 460 443 352 520 219 324 R3-Mixed 1 2-Aug 9-Aug 16-Aug 23-Aug 30-Aug 8-Sep General Quality pH 6.66 6.3 6.39 6.75 6.6 6.59 Turbidity (NTU) 157 162 101 103 116 182 Total Akalinity (mg/L CaCO3) 2033 2033 2033 2033 2033 1833 Volatile Acids (mg/L Acetic Acid) 17 33 33 33 33 17 Solids (TS) (mg/L) 5493 5527 5513 5333 5273 5140 Solids (TVS) (mg/L) 2013 2140 1967 1993 1960 1927 Total Nitrogen (mg/L N) 48 48 46 44 48 44 Total Phosphorus (mg/L PO4) 5.9 6.2 6 6 2.2 2.6 Silica (mg/L SiO2) 147 142 122 132 124 160 Inorganic Anions Chloride (mg/L) 994 1038 1110 1087 1087 1034 Sulfate (mg/L) 90 Inorganic Cations Calcium (mg/L) 860 787 831 837 805 842 Magnesium (mg/L) 191 176 186 182 172 181 Copper (mg/L) 0.055 0.092 0.079 0 0 0.044 Iron (mg/L) 4 5 11 7 6 5 Manganese (mg/L) 0.036 0.17 0.3 0.486 0.703 0.505 Zinc (mg/L) 0.094 0.106 0.127 0.062 0.068 0.03 Potassium (mg/L) 119 94 101 84 77 130 Sodium (mg/L) 449 376 400 376.9 401 377.4

PAGE 148

133 Appendix A: (Continued) Table A-2 (Continued) R3-Mixed 1 13-Sep 20-Sep 27Sep 4-Oct 11-Oct 18-Oct General Quality pH 6.51 6.66 6.67 6.38 6.62 6.7 Turbidity (NTU) 154 158 137 122 118 70.2 Total Akalinity (mg/L CaCO3) 1867 2000 2000 1933 1967 1933 Volatile Acids (mg/L Acetic Acid) 17 17 17 33 33 33 Solids (TS) (mg/L) 5160 5187 5007 5127 5093 5160 Solids (TVS) (mg/L) 1973 1933 1967 1940 2187 2367 Total Nitrogen (mg/L N) 56 58 58 64 66 62 Total Phosphorus (mg/L PO4) 4.8 9.8 9 8 9.4 2.6 Silica (mg/L SiO2) 152 141 139 137 137 131 Inorganic Anions Chloride (mg/L) 968 970 1052 1073 951 849 Sulfate (mg/L) 46 Inorganic Cations Calcium (mg/L) 844 752 831 737 537 424 Magnesium (mg/L) 199 173 177 166 164 301 Copper (mg/L) 0.028 0.021 0.018 0 0 0 Iron (mg/L) 4 3 3 3 3 2 Manganese (mg/L) 0.168 0.31 0.203 0.228 0.071 0.107 Zinc (mg/L) 0.021 0.049 0.019 0.02 0.074 0.094 Potassium (mg/L) 229 138 139 136 144 133 Sodium (mg/L) 475.8 367.8 374.8 360.2 352.6 376.4 R3-Mixed 1 26-Oct 1-Nov 8-Nov 15-Nov 22-Nov 29-Nov General Quality pH 6.55 6.49 6.58 6.32 6.26 6.56 Turbidity (NTU) 189 147 107 101 102 102 Total Akalinity (mg/L CaCO3) 1867 1833 1821 2067 1800 1800 Volatile Acids (mg/L Acetic Acid) 33 17 18 17 33 17 Solids (TS) (mg/L) 5060 5067 4853 4767 4800 4527 Solids (TVS) (mg/L) 2087 2193 2167 2000 2080 1920 Total Nitrogen (mg/L N) 60 70 66 70 70 62 Total Phosphorus (mg/L PO4) 1.8 1 4.4 2.4 1.4 3.1 Silica (mg/L SiO2) 115 123 114 130 113 103 Inorganic Anions Chloride (mg/L) 799 681 831 785 149 904 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 590 651 416 658 668 612 Magnesium (mg/L) 184 187 156 159 171 166 Copper (mg/L) 0 0 0.034 0 0.027 0.034 Iron (mg/L) 2 3 2 2 2 2 Manganese (mg/L) 0.127 0.164 0 0.03 0.28 0.333 Zinc (mg/L) 0.102 0.089 0.041 0.065 0.023 0.189 Potassium (mg/L) 135 140 129 146 144 148 Sodium (mg/L) 435.2 405.6 313.7 364.6 324.3 299.5

PAGE 149

134 Appendix A: (Continued) Table A-2 (Continued) R3-Mixed 1 17-Apr 1-May 15-May 30-May General Quality pH 6.8 6.8 7 7.1 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 650 550 460 520 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 7800 8900 8800 8600 Solids (TVS) (mg/L) 1240 2000 2400 2100 Total Nitrogen (mg/L N) 260 240 258 207 Total Phosphorus (mg/L PO4) 0.17 0.14 0.11 0.13 Silica (mg/L SiO2) 33 37 34 39 Inorganic Anions Chloride (mg/L) 2500 2300 2200 2100 Sulfate (mg/L) 1600 1400 1400 1400 Inorganic Cations Calcium (mg/L) 1100 1400 1300 1300 Magnesium (mg/L) 140 150 140 150 Copper (mg/L) Iron (mg/L) 0.51 0.04 0.04 0.08 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 350 300 280 230 Sodium (mg/L) 840 1400 790 690

PAGE 150

135 Appendix A: (Continued) Table A-3 R4 Phase I Leachate Characteristics Data R4-Layered 1 5-May 6-May 7-May 11-May 13-May 17-May General Quality pH 6.23 6.29 6.26 6.33 5.82 5.84 Turbidity (NTU) 195 167 119 120 177 112 Total Akalinity (mg/L CaCO3) 1387 1200 1400 1633 1633 1833 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 10427 10887 10967 10860 11526 11333 Solids (TVS) (mg/L) 3133 3740 3813 3793 4400 4040 Total Nitrogen (mg/L N) 280 220 200 160 120 80 Total Phosphorus (mg/L PO4) 31 22 20 23 19 10 Silica (mg/LSiO2) 385 270 267 431 252 397 Inorganic Anions Chloride (mg/L) 2663 2679 2696 2535 2327 2608 Sulfate (mg/L) 352 403 439 230 118 35 Inorganic Cations Calcium (mg/L) 1691 1770 1698 1784 1964 2233 Magnesium (mg/L) 143 162 167 193 199 221 Copper (mg/L) 0.081 0.053 0.12 0.062 0.106 0.115 Iron (mg/L) 9.58 4.02 4.30 1.64 2.34 9.53 Manganese (mg/L) 2.901 2.871 2.751 2.584 2.641 3.381 Zinc (mg/L) 0.133 0.118 0.132 0.083 0.134 0.136 Potassium (mg/L) 308 284 243 220 208 219 Sodium (mg/L) 628 590 523 589 453 622 R4-Layered 1 20-May 24-May 27-May 31-May 7-Jun 14-Jun General Quality pH 5.7 5.92 6 6.13 6.44 6.48 Turbidity (NTU) 101 342 133 160 160 145 Total Akalinity (mg/L CaCO3) 1833 2067 2300 2533 2633 2367 Volatile Acids (mg/L Acetic Acid) 575 350 Solids (TS) (mg/L) 13333 13453 11907 11393 9987 9867 Solids (TVS) (mg/L) 5353 5240 4527 4487 3780 3760 Total Nitrogen (mg/L N) 60 40 60 70 50 70 Total Phosphorus (mg/L PO4) 15 14 13 12 1 1 Silica (mg/LSiO2) 261 283 306 286 205 161 Inorganic Anions Chloride (mg/L) 2994 3180 2686 3019 3211 2727 Sulfate (mg/L) 60 26 15 13 Inorganic Cations Calcium (mg/L) 2470 2484 2485 2293 1713 1631 Magnesium (mg/L) 227 265 270 282 285 294 Copper (mg/L) 0.08 0.085 0.082 0.07 0.08 0.064 Iron (mg/L) 17.14 19.32 14.86 11.50 8.82 8.57 Manganese (mg/L) 3.453 3.245 2.429 1.534 1.021 0.908 Zinc (mg/L) 0.126 0.158 0.152 0.145 0.141 0.157 Potassium (mg/L) 247 251 250 246 226 222 Sodium (mg/L) 545 634 650 610 681 626

PAGE 151

136 Appendix A: (Continued) Table A-3 (Continued) R4-Layered 1 21-Jun 28-Jun 5-Jul 12-Jul 19-Jul 26-Jul General Quality pH 6.48 6.6 6.5 6.52 6.46 6.54 Turbidity (NTU) 115 71.9 90.9 126 99.6 87.9 Total Akalinity (mg/L CaCO3) 2267 2133 2067 2133 2100 2200 Volatile Acids (mg/L Acetic Acid) 300 167 117 133 117 475 Solids (TS) (mg/L) 9633 8293 8627 8933 8987 7520 Solids (TVS) (mg/L) 3360 2407 2433 3160 3200 2100 Total Nitrogen (mg/L N) 30 90 80 60 60 20 Total Phosphorus (mg/L PO4) 1 5 9 7 7.8 8 Silica (mg/LSiO2) 155 143 111 145 120 126 Inorganic Anions Chloride (mg/L) 3108 4085 4354 2699 2434 2435 Sulfate (mg/L) 32 25 20 Inorganic Cations Calcium (mg/L) 1502 1326 1203 1056 825 1038 Magnesium (mg/L) 305 291 279 378 293 307 Copper (mg/L) 0.071 0.051 0.052 0.063 0.063 0.066 Iron (mg/L) 6.47 4.90 3.91 4.19 1.75 2.13 Manganese (mg/L) 0.421 0.395 0.18 0.336 0.291 0.349 Zinc (mg/L) 0.105 0.092 0.108 0.091 0.127 0.1 Potassium (mg/L) 267 218 194 242 171 183 Sodium (mg/L) 776 703 627 714 596 571 R4-Layered 1 2-Aug 9-Aug 16-Aug 23-Aug 30-Aug 8-Sep General Quality pH 6.63 6.23 6.33 6.59 6.35 6.52 Turbidity (NTU) 90.2 74.2 68.4 55.3 69.7 107 Total Akalinity (mg/L CaCO3) 2133 1867 1900 1967 1867 1700 Volatile Acids (mg/L Acetic Acid) 17 17 17 17 17 17 Solids (TS) (mg/L) 7873 7453 7040 7320 7547 7407 Solids (TVS) (mg/L) 2140 2047 1567 1993 2273 2067 Total Nitrogen (mg/L N) 48 42 38 38 40 44 Total Phosphorus (mg/L PO4) 8.1 8.2 7.4 8.8 4.4 5.4 Silica (mg/LSiO2) 108 101 84 109 111 116 Inorganic Anions Chloride (mg/L) 2591 2164 2548 2248 2400 2425 Sulfate (mg/L) 92 93 Inorganic Cations Calcium (mg/L) 1273 1022 1004 1061 1083 1095 Magnesium (mg/L) 368 288 294 310 305 314 Copper (mg/L) 0.049 0.076 0.083 0 0 0.04 Iron (mg/L) 0.35 0.43 0.97 0.41 0.80 0.28 Manganese (mg/L) 0.065 0.106 0.446 0.321 0.776 0.304 Zinc (mg/L) 0.089 0.096 0.106 0.059 0.07 0.023 Potassium (mg/L) 242 168 177 165 162 230 Sodium (mg/L) 809 582 653 671 644 645

PAGE 152

137 Appendix A: (Continued) Table A-3 (Continued) R4-Layered 1 13-Sep 20-Sep 27-Sep 4-Oct 11-Oct 18-Oct General Quality pH 6.44 6.53 6.49 6.37 6.48 6.53 Turbidity (NTU) 93.8 84.5 101 84.3 102 44.3 Total Akalinity (mg/L CaCO3) 1700 1867 1867 1800 1800 1733 Volatile Acids (mg/L Acetic Acid) 17 17 17 17 17 17 Solids (TS) (mg/L) 7313 7233 7033 7293 7420 7487 Solids (TVS) (mg/L) 2193 2080 2047 2360 2647 2820 Total Nitrogen (mg/L N) 56 66 68 76 78 86 Total Phosphorus (mg/L PO4) 6.4 12.4 12 2.8 11.4 3.2 Silica (mg/LSiO2) 131 124 129 110 111 105 Inorganic Anions Chloride (mg/L) 2215 2180 2223 2157 1936 1982 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 853 1003 995 960 892 658 Magnesium (mg/L) 321 311 306 289 275 300 Copper (mg/L) 0.027 0.023 0.004 0 0 0 Iron (mg/L) 0.44 0.77 0.58 0.72 0.35 0.34 Manganese (mg/L) 0.169 0.245 0.124 0.297 0.086 0.093 Zinc (mg/L) 0.022 0.045 0.008 0.012 0.062 0.091 Potassium (mg/L) 224 237 226 219 230 214 Sodium (mg/L) 715 685 686 692 748 654 R4-Layered 1 26-Oct 1-Nov 8-Nov 15-Nov 22-Nov 29-Nov General Quality pH 6.37 6.36 6.36 6.15 6.34 6.43 Turbidity (NTU) 108 102 77.4 72.2 67.8 75.4 Total Akalinity (mg/L CaCO3) 1600 1667 1714 1667 1690 1667 Volatile Acids (mg/L Acetic Acid) 17 17 18 17 17 17 Solids (TS) (mg/L) 7380 7447 7167 7133 7153 7153 Solids (TVS) (mg/L) 2453 2920 2673 2627 2660 2653 Total Nitrogen (mg/L N) 78 88 84 96 102 96 Total Phosphorus (mg/L PO4) 3.8 3.6 5.2 2.8 2.4 4.8 Silica (mg/LSiO2) 84 79 87 104 99 90 Inorganic Anions Chloride (mg/L) 1843 1621 2157 1603 1517 2143 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 777 890 800 873 802 791 Magnesium (mg/L) 294 320 279 296 275 290 Copper (mg/L) 0 0 0 0 0.04 0.033 Iron (mg/L) 0.37 0.24 0.25 0.48 0.39 0.43 Manganese (mg/L) 0.153 0.241 0 0.228 0.279 0.46 Zinc (mg/L) 0.093 0.085 0.005 0.052 0 0.185 Potassium (mg/L) 221 257 220 246 218 240 Sodium (mg/L) 684 718 641 739 561 600

PAGE 153

138 Appendix A: (Continued) Table A-4 R5 Phase I Leachate Characteristics Data R5-Ash 2 5-May 6-May 7May 11-May 13-May 17-May General Quality pH 11.54 11.63 11.49 11.9 11.63 11.4 Turbidity (NTU) 0.36 0.23 0.29 0.54 0.21 0.4 Total Akalinity (mg/L CaCO3) 1227 1413 1633 1733 1967 1833 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 11120 12933 15873 14707 11540 13115 Solids (TVS) (mg/L) 3087 3027 3347 3347 1547 2673 Total Nitrogen (mg/L N) 5.4 4.2 4.9 5.9 6 5.7 Total Phosphorus (mg/L PO4) 4.1 6.5 7.9 16.5 6.3 3 Silica (mg/L SiO2) 2.4 1.2 19.4 14 8 7 Inorganic Anions Chloride (mg/L) 4150 4776 5844 4328 3663 5067 Sulfate (mg/L) 155 174 177 122 94 58 Inorganic Cations Calcium (mg/L) 2657 3157 3792 2757 2567 3252 Magnesium (mg/L) 0.004 0.009 0.009 0.003 0.775 0.549 Copper (mg/L) 0.108 0.138 0.16 0.156 0.115 0.135 Iron (mg/L) 0.201 0.217 0.237 0.186 0.197 0.241 Manganese (mg/L) 0.073 0.065 0.073 0.067 0.054 0.034 Zinc (mg/L) 0.298 0.323 0.325 0.338 0.11 0.322 Potassium (mg/L) 254 320 425 393 481 522 Sodium (mg/L) 568 766 804 832 1142 1274 R5-Ash 2 20-May 24-May 27-May 31-May 7-Jun 14-Jun General Quality pH 11.71 11.46 11.5 11.5 11.64 11.73 Turbidity (NTU) 0.134 3.05 0.21 0.186 0.145 0.363 Total Akalinity (mg/L CaCO3) 1867 1767 1767 1800 1800 1833 Volatile Acids (mg/L Acetic Acid) 8 17 Solids (TS) (mg/L) 12520 13727 12847 12640 12953 12047 Solids (TVS) (mg/L) 1687 1553 1167 1493 1367 1340 Total Nitrogen (mg/L N) 0 10 0 10 0 10 Total Phosphorus (mg/L PO4) 7.3 3.3 5.2 6.8 5.8 4.8 Silica (mg/L SiO2) 7 2 3 3 2 8 Inorganic Anions Chloride (mg/L) 5018 5655 5471 5363 5276 5314 Sulfate (mg/L) 68 31 33 31 32 27 Inorganic Cations Calcium (mg/L) 2787 4526 2190 2154 2043 2194 Magnesium (mg/L) 0.069 0.129 0.003 0.005 0.002 0.004 Copper (mg/L) 0.155 0.125 0.121 0.128 0.127 0.126 Iron (mg/L) 0.19 0.274 0.164 0.154 0.111 0.122 Manganese (mg/L) 0.033 0.032 0.023 0.028 0.023 0.028 Zinc (mg/L) 0.335 0.246 0.247 0.296 0.235 0.302 Potassium (mg/L) 636 644 687 743 825 1092 Sodium (mg/L) 1426 1506 1384 1668 1726 2210

PAGE 154

139 Appendix A: (Continued) Table A-4 (Continued) R5-Ash 2 21-Jun 28-Jun 5Jul 12-Jul 19-Jul 26-Jul General Quality pH 11.85 11.86 11.86 11.84 11.94 11.96 Turbidity (NTU) 0.318 0.23 3.32 0.794 0.506 0.801 Total Akalinity (mg/L CaCO3) 1800 1800 1833 1867 1867 2000 Volatile Acids (mg/L Acetic Acid) 17 17 17 17 33 17 Solids (TS) (mg/L) 11940 12313 12093 12793 12153 11473 Solids (TVS) (mg/L) 920 953 833 1380 867 967 Total Nitrogen (mg/L N) 0 0 20 10 0 0 Total Phosphorus (mg/L PO4) 5.6 7.3 9.2 3.8 3.5 3.1 Silica (mg/L SiO2) 3 1 0 5 7 8 Inorganic Anions Chloride (mg/L) 5531 6891 8209 4978 4130 4368 Sulfate (mg/L) 30 30 24 Inorganic Cations Calcium (mg/L) 2014 1888 1590 1472 1237 1346 Magnesium (mg/L) 0.001 0.013 0.003 0.019 0.021 0.019 Copper (mg/L) 0.11 0.105 0.107 0.139 0.127 0.13 Iron (mg/L) 0.139 0.166 0.185 0.143 0.148 0.099 Manganese (mg/L) 0.016 0.02 0.013 0.022 0.024 0.024 Zinc (mg/L) 0.253 0.172 0.204 0.237 0.193 0.213 Potassium (mg/L) 1205 1103 1015 902 801 923 Sodium (mg/L) 2264 2068 2038 1886 1634 1838 R5-Ash 2 2-Aug 9-Aug 16-Aug 23-Aug 30-Aug 8-Sep General Quality pH 11.93 11.72 11.79 11.87 11.71 11.97 Turbidity (NTU) 0.21 0.807 1.37 0.74 0.63 1.47 Total Akalinity (mg/L CaCO3) 1933 1933 1933 2033 2000 1800 Volatile Acids (mg/L Acetic Acid) 17 33 17 17 17 17 Solids (TS) (mg/L) 11947 12140 12200 12127 12040 11180 Solids (TVS) (mg/L) 740 1173 960 833 867 713 Total Nitrogen (mg/L N) 8 10 8 9 8 7 Total Phosphorus (mg/L PO4) 3.8 4.6 4.7 4.2 2.7 2.6 Silica (mg/L SiO2) 3 3 1 8 3 2 Inorganic Anions Chloride (mg/L) 4206 4487 4605 4469 4868 4216 Sulfate (mg/L) 95 Inorganic Cations Calcium (mg/L) 1395 1425 1298 1116 1269 1366 Magnesium (mg/L) 0.018 0.018 0.019 0.018 0.007 0.009 Copper (mg/L) 0.099 0.136 0.146 0.013 0.005 0.125 Iron (mg/L) 0.35 0.274 0.226 0.148 0.17 0.028 Manganese (mg/L) 0.019 0.025 0.028 0 0 0 Zinc (mg/L) 0.176 0.234 0.261 0.24 0.237 0.207 Potassium (mg/L) 1077 1066 1049 1035 1037 1122 Sodium (mg/L) 2060 2280 2178 2547 2666 2673

PAGE 155

140 Appendix A: (Continued) Table A-4 (Continued) R5-Ash 2 13-Sep 20-Sep 27-Sep 4-Oct 11-Oct 18-Oct General Quality pH 11.62 11.84 11.69 11.67 11.78 11.93 Turbidity (NTU) 0.259 0.93 1.09 1.14 1.08 0.446 Total Akalinity (mg/L CaCO3) 1833 1967 2033 2033 2067 2100 Volatile Acids (mg/L Acetic Acid) 17 33 33 33 17 17 Solids (TS) (mg/L) 11700 11400 11627 11580 11600 11293 Solids (TVS) (mg/L) 1107 887 840 833 1020 973 Total Nitrogen (mg/L N) 10 9 8 9 10 9 Total Phosphorus (mg/L PO4) 3.9 6.2 6.3 1.2 6.2 2 Silica (mg/L SiO2) 5 7 6 5 2 4 Inorganic Anions Chloride (mg/L) 4183 4209 4512 4955 4314 3262 Sulfate (mg/L) 460 Inorganic Cations Calcium (mg/L) 1179 1176 1105 1088 960 896 Magnesium (mg/L) 0.016 0.005 0.01 0.016 0.01 0.011 Copper (mg/L) 0.086 0.098 0.058 0.019 0.019 0.004 Iron (mg/L) 0.154 0.135 0.098 0.142 0.106 0.119 Manganese (mg/L) 0.008 0 0 0 0.011 0.007 Zinc (mg/L) 0.172 0.252 0.148 0.141 0.184 0.214 Potassium (mg/L) 1152 1150 1199 1171 1184 1213 Sodium (mg/L) 2352 2485 2525 2869 2554 1620 R5-Ash 2 26-Oct 1-Nov 8-Nov 15-Nov 22-Nov 29-Nov General Quality pH 11.94 11.94 11.91 11.93 11.93 11.95 Turbidity (NTU) 1.47 0.885 0.27 0.21 0.38 0.88 Total Akalinity (mg/L CaCO3) 2167 2167 2250 2200 2133 2100 Volatile Acids (mg/L Acetic Acid) 33 33 36 33 17 33 Solids (TS) (mg/L) 11393 11367 10940 11000 10700 10720 Solids (TVS) (mg/L) 827 933 633 787 820 780 Total Nitrogen (mg/L N) 11 10 11 10 10 10 Total Phosphorus (mg/L PO4) 1.1 2.5 3.1 1.3 0.9 2.4 Silica (mg/L SiO2) 1 0 5 0 2 2 Inorganic Anions Chloride (mg/L) 3174 1896 4115 1237 3727 3775 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 836 838 683 641 651 641 Magnesium (mg/L) 0.008 0.009 0 0 0.038 0.012 Copper (mg/L) 0 0 0.035 0.025 0.057 0.087 Iron (mg/L) 0.102 0.112 0.178 0.165 0.32 0.261 Manganese (mg/L) 0.003 0.001 0 0 0.034 0.028 Zinc (mg/L) 0.239 0.273 0.176 0.209 0.274 0.344 Potassium (mg/L) 1303 1253 1189 1276 1214 1341 Sodium (mg/L) 2219 1879 1693 1735 1851 1880

PAGE 156

141 Appendix A: (Continued) Table A-4 (Continued) R5-Ash 2 17-Apr 1-May 15-May 30-May General Quality pH 12.3 12.3 12.1 12.1 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 1300 1300 1300 1300 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 5500 5200 5700 5800 Solids (TVS) (mg/L) 270 370 510 770 Total Nitrogen (mg/L N) 9.8 6.5 6.3 5.7 Total Phosphorus (mg/L PO4) 0.03 0.01 0.02 0.02 Silica (mg/L SiO2) 8.3 9.6 11 12 Inorganic Anions Chloride (mg/L) 2300 2200 2200 2200 Sulfate (mg/L) 14 15 16 16 Inorganic Cations Calcium (mg/L) 200 250 250 230 Magnesium (mg/L) 1 1 1 1 Copper (mg/L) Iron (mg/L) 0.04 0.04 0.04 0.07 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 610 630 630 570 Sodium (mg/L) 1400 1400 1500 1400

PAGE 157

142 Appendix A: (Continued) Table A-5 R6 Phase I Leachate Characteristics Data R6-MSW 2 5-May 6-May 7-May 11-May 13-May 17-May General Quality pH 6.45 6.35 6.48 6.59 5.98 6 Turbidity (NTU) 160 295 265 243 134 101 Total Akalinity (mg/L CaCO3) 2347 2800 2700 3133 3400 3767 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 5473 6680 7053 7807 8193 7491 Solids (TVS) (mg/L) 3007 4320 4347 4600 4927 4318 Total Nitrogen (mg/L N) 140 180 150 170 160 160 Total Phosphorus (mg/L PO4) 27 33 37 37 42 39 Silica (mg/L SiO2) 177 195 196 208 208 268 Inorganic Anions Chloride (mg/L) 107 126 118 107 135 97 Sulfate (mg/L) 178 192 222 64 36 Inorganic Cations Calcium (mg/L) 648 850 902 996 1356 1329 Magnesium (mg/L) 27 34 35 37 56 56 Copper (mg/L) 0.027 0.034 0.057 0.061 0.085 0.076 Iron (mg/L) 7.23 8.57 16.72 19.36 26.99 49.09 Manganese (mg/L) 3.617 4.481 4.811 5.406 5.871 7.378 Zinc (mg/L) 0.1 0.089 0.132 0.099 0.122 0.125 Potassium (mg/L) 27.3 28.6 28.3 27.6 82.5 76.9 Sodium (mg/L) 60 106 106 81 176 209 R6-MSW 2 20-May 24-May 27-May 31-May 7-Jun 14-Jun General Quality pH 5.84 5.98 6.32 6.61 6.73 6.88 Turbidity (NTU) 60.1 239 226 289 254 335 Total Akalinity (mg/L CaCO3) 3900 4233 4533 4600 4467 4100 Volatile Acids (mg/L Acetic Acid) 550 375 Solids (TS) (mg/L) 9740 10560 10553 10580 10687 10213 Solids (TVS) (mg/L) 4707 5927 4887 6080 5173 6013 Total Nitrogen (mg/L N) 180 160 150 160 120 100 Total Phosphorus (mg/L PO4) 39 37 31 24 5 11 Silica (mg/L SiO2) 256 247 233 204 245 228 Inorganic Anions Chloride (mg/L) 86 191 181 192 156 170 Sulfate (mg/L) 12 13 11 Inorganic Cations Calcium (mg/L) 1586 1779 1899 1840 1899 1600 Magnesium (mg/L) 60 59 56 61 74 60 Copper (mg/L) 0.064 0.071 0.086 0.078 0.089 0.079 Iron (mg/L) 40.67 35.69 25.54 20.20 21.49 32.20 Manganese (mg/L) 7.595 7.656 7.469 5.608 4.202 4.266 Zinc (mg/L) 0.081 0.15 0.146 0.149 0.15 0.155 Potassium (mg/L) 83.4 94.3 83.6 94.5 95.2 88.2 Sodium (mg/L) 174 173 198 279 207 207

PAGE 158

143 Appendix A: (Continued) Table A-5 (Continued) R6-MSW 2 21-Jun 28-Jun 5Jul 12-Jul 19-Jul 26-Jul General Quality pH 6.74 7.07 6.83 6.59 6.33 6.24 Turbidity (NTU) 221 258 194 239 116 80.5 Total Akalinity (mg/L CaCO3) 3867 3833 3700 3367 3100 3033 Volatile Acids (mg/L Acetic Acid) 425 400 475 525 950 1025 Solids (TS) (mg/L) 10000 8027 7513 9020 9360 9120 Solids (TVS) (mg/L) 4987 4267 3347 5340 4827 5627 Total Nitrogen (mg/L N) 60 50 60 60 40 40 Total Phosphorus (mg/L PO4) 5 7 11 20.1 20.4 20.7 Silica (mg/L SiO2) 193 155 100 168 160 161 Inorganic Anions Chloride (mg/L) 62 120 155 134 86 88 Sulfate (mg/L) 18 Inorganic Cations Calcium (mg/L) 1715 1118 1339 1504 1341 1319 Magnesium (mg/L) 37 50 54 67 54 53 Copper (mg/L) 0.04 0.062 0.057 0.085 0.069 0.075 Iron (mg/L) 9.79 19.27 22.60 31.71 24.07 28.24 Manganese (mg/L) 0.602 1.724 3.314 3.869 4.713 5.25 Zinc (mg/L) 0.09 0.099 0.104 0.118 0.137 0.121 Potassium (mg/L) 60.2 82.1 85.3 119.8 78.7 84.7 Sodium (mg/L) 83 176 174 270 186 205 R6-MSW 2 2-Aug 9-Aug 16-Aug 23-Aug 30-Aug 8-Sep General Quality pH 6.5 6.38 6.61 6.83 6.77 6.93 Turbidity (NTU) 87.7 90.3 142 172 202 362 Total Akalinity (mg/L CaCO3) 2833 2933 2933 3300 3333 2700 Volatile Acids (mg/L Acetic Acid) 775 800 625 400 100 17 Solids (TS) (mg/L) 9080 8860 8167 6727 5347 5647 Solids (TVS) (mg/L) 4400 5067 4347 3493 2460 1520 Total Nitrogen (mg/L N) 48 42 40 42 46 42 Total Phosphorus (mg/L PO4) 19.7 20.4 20.5 18.9 8.2 7.8 Silica (mg/L SiO2) 145 147 137 155 183 150 Inorganic Anions Chloride (mg/L) 89 90 91 87 95 90 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 1597 1432 1255 1278 1134 1347 Magnesium (mg/L) 61 57 54 54 50 56 Copper (mg/L) 0.068 0.085 0.087 0 0 0.044 Iron (mg/L) 34.88 16.52 25.98 5.31 4.10 1.65 Manganese (mg/L) 2.918 3.602 4.173 2.481 2.31 0.821 Zinc (mg/L) 0.127 0.133 0.131 0.063 0.066 0.025 Potassium (mg/L) 121 97.9 96.1 76.1 80.5 165.3 Sodium (mg/L) 197 195 201 180 190.1 265.8

PAGE 159

144 Appendix A: (Continued) Table A-5 (Continued) R6-MSW 2 13-Sep 20-Sep 27-Sep 4-Oct 11-Oct 18-Oct General Quality pH 6.59 6.89 6.8 6.81 6.88 6.94 Turbidity (NTU) 210 215 207 167 155 97.4 Total Akalinity (mg/L CaCO3) 2733 2867 2867 2733 2567 2567 Volatile Acids (mg/L Acetic Acid) 17 33 33 33 33 33 Solids (TS) (mg/L) 4540 4300 4553 4787 4133 3860 Solids (TVS) (mg/L) 1940 1580 1713 1653 1813 1807 Total Nitrogen (mg/L N) 58 66 62 64 64 58 Total Phosphorus (mg/L PO4) 9.4 14.8 14.6 3.6 13.2 3.2 Silica (mg/L SiO2) 168 182 175 141 154 152 Inorganic Anions Chloride (mg/L) 98 88 103 99 97 78 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 733 792 741 743 725 424 Magnesium (mg/L) 48 47 44 41 44 51 Copper (mg/L) 0.019 0.019 0 0 0 0.002 Iron (mg/L) 2.13 1.54 2.50 2.63 2.26 1.03 Manganese (mg/L) 0.222 0.481 0.249 0.357 0.149 0.158 Zinc (mg/L) 0.025 0.074 0.001 0.001 0.072 0.093 Potassium (mg/L) 134.4 137.9 133.9 128.1 139.6 146 Sodium (mg/L) 167.4 158 162.3 158 170.9 213.1 R6-MSW 2 26-Oct 1-Nov 8-Nov 15-Nov 22-Nov 29-Nov General Quality pH 6.75 6.77 6.8 6.74 6.87 6.73 Turbidity (NTU) 218 194 137 61.6 72.4 122 Total Akalinity (mg/L CaCO3) 2133 2400 2179 2167 2167 2067 Volatile Acids (mg/L Acetic Acid) 17 33 18 33 33 33 Solids (TS) (mg/L) 3520 3960 3533 3553 3593 3440 Solids (TVS) (mg/L) 1547 1160 1427 1487 1447 1420 Total Nitrogen (mg/L N) 48 48 46 46 42 42 Total Phosphorus (mg/L PO4) 2.2 0.8 2.4 0.7 0.9 0.6 Silica (mg/L SiO2) 138 130 122 122 108 116 Inorganic Anions Chloride (mg/L) 73 39 110 78 94 70 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 508 686 535 524 588 569 Magnesium (mg/L) 48 49 48 43 43 43 Copper (mg/L) 0 0 0.012 0 0.03 0.049 Iron (mg/L) 1.16 1.02 0.95 1.76 0.83 1.12 Manganese (mg/L) 0.188 0.291 0.086 0.383 0.448 0.709 Zinc (mg/L) 0.098 0.092 0.028 0.054 0.168 0.2 Potassium (mg/L) 145.7 148.1 161.3 153.1 158.9 159.5 Sodium (mg/L) 246.1 193.8 150.5 196.5 146.5 132

PAGE 160

145 Appendix A: (Continued) Table A-5 (Continued) R6-MSW 2 17-Apr 1-May 15-May 30-May 16-Jun 4-Jul General Quality pH 7 7 7.1 7.1 7.2 7.2 Turbidity (NTU) Total Alkalinity (mg/L CaCO3) 1100 1200 1100 1100 1000 1200 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 3700 3700 3700 4000 3500 3700 Solids (TVS) (mg/L) 500 760 1000 1100 1000 1100 Total Nitrogen (mg/L N) 200 210 180 161 130 140 Total Phosphorus (mg/L PO4) 1.2 1.3 0.86 1.1 1.6 2.4 Silica (mg/L SiO2) 34 41 45 44 41 39 Inorganic Anions Chloride (mg/L) 1500 1300 1200 1200 1100 1100 Sulfate (mg/L) 63 1 1 1 19 1 Inorganic Cations Calcium (mg/L) 370 290 350 390 360 570 Magnesium (mg/L) 35 37 30 35 32 50 Copper (mg/L) Iron (mg/L) 11.7 1.5 1.4 7.9 11.4 11.5 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 300 310 270 210 260 390 Sodium (mg/L) 520 530 460 400 440 630 R6-MSW 2 16-Jul 30-Jul 14-Aug General Quality pH 7.3 7 7.1 Turbidity (NTU) Total Alkalinity (mg/L CaCO3) 1100 1200 1300 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 4200 3600 3400 Solids (TVS) (mg/L) 1600 1100 Total Nitrogen (mg/L N) 160 150 170 Total Phosphorus (mg/L PO4) 2.5 1.5 2.1 Silica (mg/L SiO2) 43 46 46 Inorganic Anions Chloride (mg/L) 1100 1200 1200 Sulfate (mg/L) 0 0 0 Inorganic Cations Calcium (mg/L) 430 450 530 Magnesium (mg/L) 39 37 46 Copper (mg/L) Iron (mg/L) 0.57 0.49 0.54 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 280 290 380 Sodium (mg/L) 540 470 610

PAGE 161

146 Appendix A: (Continued) Table A-6 R7 Phase I Leachate Characteristics Data R7-Mixed 2 5-May 6-May 7-May 11-May 13-May 17-May General Quality pH 6.84 6.87 6.81 6.9 6.27 6.44 Turbidity (NTU) 118 135 161 120 163 160 Total Akalinity (mg/L CaCO3) 2320 2533 2700 3133 3300 3800 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 7160 7680 8347 8033 9360 8838 Solids (TVS) (mg/L) 3087 3147 3447 4040 3807 3753 Total Nitrogen (mg/L N) 190 220 220 210 180 110 Total Phosphorus (mg/L PO4) 1 1.4 2 14 11 14 Silica (mg/L SiO2) 217 232 241 349 245 424 Inorganic Anions Chloride (mg/L) 1021 953 1007 882 869 882 Sulfate (mg/L) 449 398 345 54 25 17 Inorganic Cations Calcium (mg/L) 944 1118 1272 1354 1672 1898 Magnesium (mg/L) 121 130 141 144 151 157 Copper (mg/L) 0.16 0.34 0.139 0.121 0.18 0.15 Iron (mg/L) 1.83 1.96 0.80 2.50 6.74 25.26 Manganese (mg/L) 1.201 1.342 1.596 1.856 2.582 3.16 Zinc (mg/L) 0.119 0.15 0.116 0.111 0.148 0.139 Potassium (mg/L) 124 117 119 107 103 97 Sodium (mg/L) 291 314 294 299 298 306 R7-Mixed 2 20-May 24-May 27-May 31-May 7-Jun 14-Jun General Quality pH 6.11 6.28 6.4 6.52 6.71 6.93 Turbidity (NTU) 103 154 142 163 240 269 Total Akalinity (mg/L CaCO3) 3633 4033 4567 4800 4033 3333 Volatile Acids (mg/L Acetic Acid) 400 350 Solids (TS) (mg/L) 12447 13540 12200 12360 8293 6973 Solids (TVS) (mg/L) 4980 5453 4420 4847 2440 2127 Total Nitrogen (mg/L N) 150 120 130 150 100 130 Total Phosphorus (mg/L PO4) 10 14 16 20 1 1 Silica (mg/L SiO2) 274 261 282 208 89 159 Inorganic Anions Chloride (mg/L) 1258 1324 1227 1147 1197 1050 Sulfate (mg/L) 26 12 Inorganic Cations Calcium (mg/L) 2320 2292 2327 1866 1147 1091 Magnesium (mg/L) 175 190 187 186 179 169 Copper (mg/L) 0.114 0.091 0.087 0.084 0.075 0.079 Iron (mg/L) 26.57 28.95 22.31 23.28 15.05 18.30 Manganese (mg/L) 3.381 2.291 1.789 1.231 0.496 0.458 Zinc (mg/L) 0.124 0.148 0.162 0.152 0.15 0.153 Potassium (mg/L) 123 119 122 121 115 109 Sodium (mg/L) 354 295 313 314 366 318

PAGE 162

147 Appendix A: (Continued) Table A-6 (Continued) R7-Mixed 2 21-Jun 28-Jun 5Jul 12-Jul 19-Jul 26-Jul General Quality pH 6.75 6.74 6.61 6.64 6.59 6.66 Turbidity (NTU) 260 222 331 252 193 150 Total Akalinity (mg/L CaCO3) 3267 3300 3367 3233 3133 3200 Volatile Acids (mg/L Acetic Acid) 375 375 575 525 600 450 Solids (TS) (mg/L) 7647 8147 8333 8840 8587 7027 Solids (TVS) (mg/L) 2820 3140 3287 3947 3740 2707 Total Nitrogen (mg/L N) 120 100 110 120 100 80 Total Phosphorus (mg/L PO4) 0 9 11 8 8.8 8.8 Silica (mg/L SiO2) 138 153 55 149 126 126 Inorganic Anions Chloride (mg/L) 1215 1252 1263 912 884 813 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 1087 1149 1318 1123 1068 1099 Magnesium (mg/L) 169 162 174 170 171 154 Copper (mg/L) 0.062 0.067 0.068 0.077 0.073 0.069 Iron (mg/L) 17.26 13.70 14.32 23.28 18.54 5.15 Manganese (mg/L) 0.519 0.688 0.983 0.91 0.724 0.506 Zinc (mg/L) 0.103 0.105 0.115 0.109 0.335 0.107 Potassium (mg/L) 118 104 113 103 103 91 Sodium (mg/L) 282 297 339 276 279 281 R7-Mixed 2 2-Aug 9-Aug 16-Aug 23-Aug 30-Aug 8-Sep General Quality pH 6.8 6.67 6.72 6.77 6.57 6.75 Turbidity (NTU) 160 152 170 149 177 302 Total Akalinity (mg/L CaCO3) 2833 2933 2733 2467 2633 2367 Volatile Acids (mg/L Acetic Acid) 275 67 33 33 33 17 Solids (TS) (mg/L) 6740 6113 5787 5587 5367 5227 Solids (TVS) (mg/L) 2120 2267 2053 2080 2053 1853 Total Nitrogen (mg/L N) 92 84 84 84 92 86 Total Phosphorus (mg/L PO4) 9 9.4 9 9.6 6 7.2 Silica (mg/L SiO2) 115 117 98 112 122 145 Inorganic Anions Chloride (mg/L) 806 921 925 852 907 889 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 1186 1063 994 997 965 1053 Magnesium (mg/L) 174 156 159 159 150 156 Copper (mg/L) 0.067 0.081 0.071 0 0 0.047 Iron (mg/L) 2.88 4.53 3.00 2.33 2.81 1.29 Manganese (mg/L) 0.045 0.218 0.375 0.411 0.745 0.418 Zinc (mg/L) 0.097 0.107 0.117 0.062 0.073 0.035 Potassium (mg/L) 119 90 99 78 76 117 Sodium (mg/L) 329 261 407 311 311 304

PAGE 163

148 Appendix A: (Continued) Table A-6 (Continued) R7-Mixed 2 13-Sep 20-Sep 27Sep 4-Oct 11-Oct 18-Oct General Quality pH 6.54 6.68 6.51 6.67 6.53 6.66 Turbidity (NTU) 240 242 202 171 141 123 Total Akalinity (mg/L CaCO3) 2200 2333 2533 2300 2433 2367 Volatile Acids (mg/L Acetic Acid) 33 17 17 17 17 17 Solids (TS) (mg/L) 5160 5007 5193 5087 5260 4973 Solids (TVS) (mg/L) 1867 1887 2007 1900 2360 2253 Total Nitrogen (mg/L N) 94 108 102 110 116 114 Total Phosphorus (mg/L PO4) 8.2 13.6 14.2 5.6 14.2 5.6 Silica (mg/L SiO2) 116 124 130 124 142 133 Inorganic Anions Chloride (mg/L) 820 641 860 820 826 428 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 762 795 869 792 632 396 Magnesium (mg/L) 152 148 146 141 134 162 Copper (mg/L) 0.019 0.015 0 0 0 0 Iron (mg/L) 2.01 1.20 9.26 3.76 4.84 2.38 Manganese (mg/L) 0.125 0.199 0.219 0.144 0.102 0.081 Zinc (mg/L) 0.033 0.056 0.006 0.021 0.079 0.093 Potassium (mg/L) 132 125 124 135 112 132 Sodium (mg/L) 309 291 285 288 268 343 R7-Mixed 2 26-Oct 1-Nov 8-Nov 15-Nov 22-Nov 29-Nov General Quality pH 6.56 6.62 6.58 6.54 6.72 6.59 Turbidity (NTU) 233 249 142 111 124 146 Total Akalinity (mg/L CaCO3) 1933 1933 2107 1913 1967 1967 Volatile Acids (mg/L Acetic Acid) 17 17 18 22 17 17 Solids (TS) (mg/L) 4953 4913 4660 4673 4467 4353 Solids (TVS) (mg/L) 2033 2180 1893 1940 2047 1873 Total Nitrogen (mg/L N) 106 110 100 100 98 96 Total Phosphorus (mg/L PO4) 5 5 7 3.8 3 5.7 Silica (mg/L SiO2) 110 96 113 94 92 78 Inorganic Anions Chloride (mg/L) 537 589 716 522 685 502 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 516 572 685 647 634 637 Magnesium (mg/L) 160 156 150 140 138 139 Copper (mg/L) 0 0 0.011 0 0.037 0.039 Iron (mg/L) 1.69 1.30 1.14 1.20 0.81 0.98 Manganese (mg/L) 0.108 0.141 0 0 0.133 0.323 Zinc (mg/L) 0.103 0.097 0.055 0.059 0.164 0.186 Potassium (mg/L) 132 132 147 136 136 140 Sodium (mg/L) 380 333 299 330 248 240

PAGE 164

149 Appendix A: (Continued) Table A-6 (Continued) R7-Mixed 2 17-Apr 1-May 15-May 30-May 16-Jun 4-Jul General Quality pH 7 6.9 6.9 7.1 7.1 7.2 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 710 600 680 780 790 820 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 5800 6400 6400 6400 5800 5800 Solids (TVS) (mg/L) 1610 1600 1800 1600 1400 1500 Total Nitrogen (mg/L N) 177 130 104 75 57 44 Total Phosphorus (mg/L PO4) 0.04 0.26 0.25 0.25 0.2 0.21 Silica (mg/L SiO2) 32 39 39 37 36 34 Inorganic Anions Chloride (mg/L) 1900 1800 1600 1600 1500 1580 Sulfate (mg/L) 800 780 690 750 710 710 Inorganic Cations Calcium (mg/L) 850 930 910 970 920 1300 Magnesium (mg/L) 110 110 110 110 110 150 Copper (mg/L) Iron (mg/L) 0.076 0.04 0.1 0.1 0.08 0.06 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 250 210 210 160 210 280 Sodium (mg/L) 650 590 600 560 600 820 R7-Mixed 2 16-Jul 30-Jul 14-Aug General Quality pH 7.2 6.9 7 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 870 880 1000 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 6900 6700 5500 Solids (TVS) (mg/L) 2600 2300 1400 Total Nitrogen (mg/L N) 42 33 31 Total Phosphorus (mg/L PO4) 0.23 0.092 0.19 Silica (mg/L SiO2) 34 34 36 Inorganic Anions Chloride (mg/L) 1700 1700 1700 Sulfate (mg/L) 730 700 670 Inorganic Cations Calcium (mg/L) 960 920 1500 Magnesium (mg/L) 120 110 170 Copper (mg/L) Iron (mg/L) 0.25 0.46 0.61 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 210 210 320 Sodium (mg/L) 580 590 920

PAGE 165

150 Appendix A: (Continued) Table A-7 R8 Phase I Leachate Characteristics Data R8-Layered 2 5-May 6-May 7-May 11-May 13-May 17-May General Quality pH 6.19 6.19 6.16 6.27 5.77 5.92 Turbidity (NTU) 225 224 236 211 266 236 Total Akalinity (mg/L CaCO3) 1520 1467 1533 1767 1900 2300 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 5767 8140 8700 8020 9493 8526 Solids (TVS) (mg/L) 2527 3453 3433 3647 3887 3672 Total Nitrogen (mg/L N) 120 170 190 150 120 60 Total Phosphorus (mg/L PO4) 13 16 20 30 22 23 Silica (mg/L SiO2) 173 238 273 335 333 498 Inorganic Anions Chloride (mg/L) 1570 1695 1608 1292 1375 917 Sulfate (mg/L) 178 186 126 15 15 Inorganic Cations Calcium (mg/L) 1426 1509 1498 1487 1633 2057 Magnesium (mg/L) 65 74 77 90 107 123 Copper (mg/L) 0.046 0.044 0.048 0.066 0.086 0.075 Iron (mg/L) 10.38 5.33 6.03 10.68 12.00 17.90 Manganese (mg/L) 2.732 2.736 2.535 2.176 2.162 2.515 Zinc (mg/L) 0.07 0.156 0.092 0.102 0.101 0.114 Potassium (mg/L) 169 158 162 125 118 143 Sodium (mg/L) 372 281 341 305 362 413 R8-Layered 2 20-May 24-May 27-May 31-May 7-Jun 14-Jun General Quality pH 5.92 6.21 6.26 6.22 6.3 6.4 Turbidity (NTU) 196 158 120 144 144 153 Total Akalinity (mg/L CaCO3) 2200 2467 2667 2733 2667 2500 Volatile Acids (mg/L Acetic Acid) 675 650 Solids (TS) (mg/L) 11033 11247 10927 10953 10580 10027 Solids (TVS) (mg/L) 5080 4127 4447 4133 4860 4013 Total Nitrogen (mg/L N) 100 80 80 60 70 90 Total Phosphorus (mg/L PO4) 26 18 31 44 3 7 Silica (mg/L SiO2) 442 342 259 239 154 171 Inorganic Anions Chloride (mg/L) 1892 2120 2341 2400 2091 2114 Sulfate (mg/L) 83 23 17 13 Inorganic Cations Calcium (mg/L) 2050 2088 1886 2099 2219 2086 Magnesium (mg/L) 127 139 132 148 162 169 Copper (mg/L) 0.072 0.073 0.075 0.084 0.079 0.087 Iron (mg/L) 18.48 12.49 10.99 11.43 10.89 13.68 Manganese (mg/L) 2.393 1.889 1.365 1.481 1.433 1.658 Zinc (mg/L) 0.098 0.137 0.143 0.134 0.155 0.212 Potassium (mg/L) 146 176 163 175 180 174 Sodium (mg/L) 364 465 472 450 513 475

PAGE 166

151 Appendix A: (Continued) Table A-7 (Continued) R8-Layered 2 21-Jun 28-Jun 5-Jul 12-Jul 19-Jul 26-Jul General Quality pH 6.37 6.5 6.45 6.45 6.4 6.62 Turbidity (NTU) 122 95.3 90.8 188 137 102 Total Akalinity (mg/L CaCO3) 2333 2400 2433 2333 2200 2367 Volatile Acids (mg/L Acetic Acid) 575 450 500 500 500 300 Solids (TS) (mg/L) 9847 9320 8993 7793 9160 7787 Solids (TVS) (mg/L) 4253 3433 3533 1087 3393 2433 Total Nitrogen (mg/L N) 60 40 40 70 60 50 Total Phosphorus (mg/L PO4) 1 8 9 8 8 8 Silica (mg/L SiO2) 158 138 81 122 276 122 Inorganic Anions Chloride (mg/L) 2759 2697 3002 1839 1684 1837 Sulfate (mg/L) 12 Inorganic Cations Calcium (mg/L) 2047 1654 1640 1849 1205 1257 Magnesium (mg/L) 183 157 166 236 157 165 Copper (mg/L) 0.049 0.05 0.052 0.08 0.067 0.07 Iron (mg/L) 6.08 3.55 3.34 3.78 0.72 0.60 Manganese (mg/L) 1.262 1.204 1.166 0.893 0.704 0.408 Zinc (mg/L) 0.115 0.113 0.11 0.103 0.109 0.104 Potassium (mg/L) 191 151 160 252 132 144 Sodium (mg/L) 573 398 491 699 437 524 R8-Layered 2 2-Aug 9-Aug 16-Aug 23-Aug 30-Aug 8-Sep General Quality pH 6.61 6.47 6.46 6.69 6.44 6.6 Turbidity (NTU) 101 101 117 102 108 143 Total Akalinity (mg/L CaCO3) 2233 2267 2133 2000 2167 1933 Volatile Acids (mg/L Acetic Acid) 117 50 33 17 17 17 Solids (TS) (mg/L) 7540 7307 7220 6807 7040 6800 Solids (TVS) (mg/L) 2240 1740 1620 1587 1880 1660 Total Nitrogen (mg/L N) 44 42 36 38 42 42 Total Phosphorus (mg/L PO4) 8 9 8 7 6 7 Silica (mg/L SiO2) 115 201 106 117 131 127 Inorganic Anions Chloride (mg/L) 1970 1911 1988 1875 1865 2041 Sulfate (mg/L) 90 91 Inorganic Cations Calcium (mg/L) 1219 1229 1196 1284 1306 1357 Magnesium (mg/L) 171 178 188 196 196 209 Copper (mg/L) 0.073 0.079 0.07 0 0 0.047 Iron (mg/L) 0.67 0.70 1.02 1.75 0.92 0.36 Manganese (mg/L) 0.301 0.291 0.556 0.649 1.015 0.519 Zinc (mg/L) 0.097 0.117 0.107 0.07 0.077 0.029 Potassium (mg/L) 148 141 159 138 130 208 Sodium (mg/L) 521 410 533 535 554 550

PAGE 167

152 Appendix A: (Continued) Table A-7 (Continued) R8-Layered 2 13-Sep 20-Sep 27-Sep 4-Oct 11-Oct 18-Oct General Quality pH 6.42 6.52 6.37 6.48 6.45 6.48 Turbidity (NTU) 125 127 163 138 122 116 Total Akalinity (mg/L CaCO3) 1833 2067 2133 2067 2067 2067 Volatile Acids (mg/L Acetic Acid) 17 17 17 17 17 17 Solids (TS) (mg/L) 6880 6727 6747 6867 7120 7040 Solids (TVS) (mg/L) 1907 1587 1733 1807 2627 2707 Total Nitrogen (mg/L N) 58 74 88 100 100 104 Total Phosphorus (mg/L PO4) 8 15 15 6 14 7 Silica (mg/L SiO2) 134 143 169 158 170 170 Inorganic Anions Chloride (mg/L) 1698 1425 1912 1725 1657 1952 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 1095 1038 1140 1046 1519 749 Magnesium (mg/L) 209 194 204 185 221 212 Copper (mg/L) 0.018 0.022 0 0 0 0 Iron (mg/L) 0.53 0.42 0.83 1.11 0.63 0.70 Manganese (mg/L) 0.337 0.375 0.262 0.233 0.144 0.141 Zinc (mg/L) 0.033 0.056 0.003 0.01 0.078 0.088 Potassium (mg/L) 207 195 227 207 262 226 Sodium (mg/L) 655 543 289 607 721 570 R8-Layered 2 26-Oct 1-Nov 8-Nov 15-Nov 22-Nov 29-Nov General Quality pH 6.45 6.46 6.41 6.37 6.57 6.44 Turbidity (NTU) 157 152 106 65.9 73.9 99.3 Total Akalinity (mg/L CaCO3) 1633 1667 1643 1724 1633 1600 Volatile Acids (mg/L Acetic Acid) 17 17 18 17 17 17 Solids (TS) (mg/L) 7060 6820 6600 6460 6567 6400 Solids (TVS) (mg/L) 2153 2693 2353 2380 2547 2327 Total Nitrogen (mg/L N) 88 94 90 82 74 76 Total Phosphorus (mg/L PO4) 6 6 8 4 3 5 Silica (mg/L SiO2) 143 124 123 109 93 76 Inorganic Anions Chloride (mg/L) 1747 1676 2085 299 1521 1033 Sulfate (mg/L) Inorganic Cations Calcium (mg/L) 904 964 896 926 869 881 Magnesium (mg/L) 213 218 186 185 179 185 Copper (mg/L) 0 0 0.004 0 0.046 0.053 Iron (mg/L) 0.71 0.57 0.45 0.85 0.42 0.27 Manganese (mg/L) 0.222 0.25 0.015 0.252 0.354 0.55 Zinc (mg/L) 0.093 0.082 0.03 0.081 0.167 0.202 Potassium (mg/L) 216 211 206 209 217 238 Sodium (mg/L) 598 623 547 612 487 500

PAGE 168

153 Appendix A: (Continued) Table A-7 (Continued) R8-Layered 2 17-Apr 1-May 15-May 30-May 16-Jun 4-Jul General Quality pH 6.6 6.7 6.7 6.9 6.9 7 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 300 290 110 420 450 540 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 7900 8300 8400 8500 7700 7300 Solids (TVS) (mg/L) 1890 1700 2200 2300 1900 2000 Total Nitrogen (mg/L N) 283 250 236 214 170 144 Total Phosphorus (mg/L PO4) 0.18 0.38 0.36 0.38 0.27 0.42 Silica (mg/L SiO2) 30 32 32 28 28 34 Inorganic Anions Chloride (mg/L) 2700 2500 2400 2300 2000 2100 Sulfate (mg/L) 1000 1000 1100 1100 980 1000 Inorganic Cations Calcium (mg/L) 1100 1200 1100 1200 1100 1500 Magnesium (mg/L) 190 190 200 200 200 280 Copper (mg/L) Iron (mg/L) 0.1 0.04 0.09 0.1 0.05 0.04 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 340 300 290 220 270 370 Sodium (mg/L) 880 800 820 730 750 1000 R8-Layered 2 16-Jul 30-Jul 14-Aug General Quality pH 7.2 6.9 7 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 600 620 720 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 9000 7100 6600 Solids (TVS) (mg/L) 3500 1300 1200 Total Nitrogen (mg/L N) 125 104 79 Total Phosphorus (mg/L PO4) 0.43 0.21 0.25 Silica (mg/L SiO2) 30 36 30 Inorganic Anions Chloride (mg/L) 2100 2200 2200 Sulfate (mg/L) 1000 1100 1100 Inorganic Cations Calcium (mg/L) 1100 1100 1600 Magnesium (mg/L) 200 230 320 Copper (mg/L) Iron (mg/L) 0.04 0.04 0.04 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 260 270 390 Sodium (mg/L) 680 740 1100

PAGE 169

154 Appendix B: Phase II Leachate Characteristics Data Table B-1 R3 Phase II Leachate Characteristics Data R3-Mixed 17-Apr 1-May 15-May 30-May General Quality pH 6.8 6.8 7 7.1 Temperatue, C 22.1 21.4 22.6 23.9 ORP, mv 164 202 178 162 DO mg/l 0.8 0.9 1.4 1 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 650 550 460 520 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 7800 8900 8800 8600 Solids (TVS) (mg/L) 1240 2000 2400 2100 Total Nitrogen (mg/L N) 260 240 258 207 Total Phosphorus (mg/L PO4) 0.17 0.14 0.11 0.13 Silica (mg/L SiO2) 33 37 34 39 Inorganic Anions Chloride (mg/L) 2500 2300 2200 2100 Sulfate (mg/L) 1600 1400 1400 1400 Inorganic Cations Calcium (mg/L) 1100 1400 1300 1300 Magnesium (mg/L) 140 150 140 150 Copper (mg/L) Iron (mg/L) 0.51 0.04 0.04 0.08 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 350 300 280 230 Sodium (mg/L) 840 1400 790 690

PAGE 170

155 Appendix B: (Continued) Table B-2 R5 Phase II Leachate Characteristics Data General Quality pH 12.3 12.3 12.1 12.1 Temperatue, C 21.7 21.4 21.9 22.4 ORP, mv -139 -121 -127 -130 DO mg/l 2.1 2.7 2.2 2.3 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 1300 1300 1300 1300 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 5500 5200 5700 5800 Solids (TVS) (mg/L) 270 370 510 770 Total Nitrogen (mg/L N) 9.8 6.5 6.3 5.7 Total Phosphorus (mg/L PO4) 0.03 0.01 0.02 0.02 Silica (mg/L SiO2) 8.3 9.6 11 12 Inorganic Anions Chloride (mg/L) 2300 2200 2200 2200 Sulfate (mg/L) 14 15 16 16 Inorganic Cations Calcium (mg/L) 200 250 250 230 Magnesium (mg/L) 1 1 1 1 Copper (mg/L) Iron (mg/L) 0.04 0.04 0.04 0.07 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 610 630 630 570 Sodium (mg/L) 1400 1400 1500 1400

PAGE 171

156 Appendix B: (Continued) Table B-3 R6 Phase II Leachate Characteristics Data R6-MSW 17-Apr 1-May 15-May 30-May 16-Jun General Quality pH 7 7 7.1 7.1 7.2 Temperatue, C 21.7 21.5 21.8 23.8 23.4 ORP, mv -85 -77 -45 -29 -18 DO mg/l 0.5 0.6 0.5 0.3 1.1 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 1100 1200 1100 1100 1000 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 3700 3700 3700 4000 3500 Solids (TVS) (mg/L) 500 760 1000 1100 1000 Total Nitrogen (mg/L N) 200 210 180 161 130 Total Phosphorus (mg/L PO4) 1.2 1.3 0.86 1.1 1.6 Silica (mg/L SiO2) 34 41 45 44 41 Inorganic Anions Chloride (mg/L) 1500 1300 1200 1200 1100 Sulfate (mg/L) 63 1 1 1 19 Inorganic Cations Calcium (mg/L) 370 290 350 390 360 Magnesium (mg/L) 35 37 30 35 32 Copper (mg/L) Iron (mg/L) 11.7 1.5 1.4 7.9 11.4 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 300 310 270 210 260 Sodium (mg/L) 520 530 460 400 440 R6-MSW 4-Jul 16-Jul 30-Jul 14-Aug General Quality pH 7.2 7.3 7 7.1 Temperatue, C 23 24.4 26 25.3 ORP, mv -60 -56 -73 -93 DO mg/l 0.4 0.5 0.4 0.4 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 1200 1100 1200 1300 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 3700 4200 3600 3400 Solids (TVS) (mg/L) 1100 1600 1100 710 Total Nitrogen (mg/L N) 140 160 150 170 Total Phosphorus (mg/L PO4) 2.4 2.5 1.5 2.1 Silica (mg/L SiO2) 39 43 46 46 Inorganic Anions Chloride (mg/L) 1100 1100 1200 1200 Sulfate (mg/L) 1 0 0 0 Inorganic Cations Calcium (mg/L) 570 430 450 530 Magnesium (mg/L) 50 39 37 46 Copper (mg/L) Iron (mg/L) 11.5 0.57 0.49 0.54 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 390 280 290 380 Sodium (mg/L) 630 540 470 610

PAGE 172

157 Appendix B: (Continued) Table B-4 R7 Phase II Leachate Characteristics Data R7-Mixed 17-Apr 1-May 15-May 30-May 16-Jun 4-Jul General Quality pH 7 6.9 6.9 7.1 7.1 7.2 Temperatue, C 21.6 21.4 21.8 23 22.1 22.6 ORP, mv 89 137 134 114 37 22 DO mg/l 0.6 0.8 0.6 0.6 1.4 0.9 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 710 600 680 780 790 820 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 5800 6400 6400 6400 5800 5800 Solids (TVS) (mg/L) 1610 1600 1800 1600 1400 1500 Total Nitrogen (mg/L N) 177 130 104 75 57 44 Total Phosphorus (mg/L PO4) 0.04 0.26 0.25 0.25 0.2 0.21 Silica (mg/L SiO2) 32 39 39 37 36 34 Inorganic Anions Chloride (mg/L) 1900 1800 1600 1600 1500 1580 Sulfate (mg/L) 800 780 690 750 710 710 Inorganic Cations Calcium (mg/L) 850 930 910 970 920 1300 Magnesium (mg/L) 110 110 110 110 110 150 Copper (mg/L) Iron (mg/L) 0.076 0.04 0.1 0.1 0.08 0.06 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 250 210 210 160 210 280 Sodium (mg/L) 650 590 600 560 600 820 R7-Mixed 16-Jul 30-Jul 14-Aug General Quality pH 7.2 6.9 7 Temperatue, C 22.4 25.4 24.8 ORP, mv 17 31 3 DO mg/l 0.7 0.6 0.6 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 870 880 1000 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 6900 6700 5500 Solids (TVS) (mg/L) 2600 2300 1400 Total Nitrogen (mg/L N) 42 33 31 Total Phosphorus (mg/L PO4) 0.23 0.092 0.19 Silica (mg/L SiO2) 34 34 36 Inorganic Anions Chloride (mg/L) 1700 1700 1700 Sulfate (mg/L) 730 700 670 Inorganic Cations Calcium (mg/L) 960 920 1500 Magnesium (mg/L) 120 110 170 Copper (mg/L) Iron (mg/L) 0.25 0.46 0.61 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 210 210 320 Sodium (mg/L) 580 590 920

PAGE 173

158 Appendix B: (Continued) Table B-5 R8 Phase II Leachate Characteristics Data R8-Layered 17-Apr 1-May 15-May 30-May 16-Jun 4-Jul General Quality pH 6.6 6.7 6.7 6.9 6.9 7 Temperatue, C 21.7 21.2 21.6 21.7 23 21.9 ORP, mv 107 144 139 134 81 77 DO mg/l 0.5 0.7 0.8 0.6 1.1 1.1 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 300 290 110 420 450 540 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 7900 8300 8400 8500 7700 7300 Solids (TVS) (mg/L) 1890 1700 2200 2300 1900 2000 Total Nitrogen (mg/L N) 283 250 236 214 170 144 Total Phosphorus (mg/L PO4) 0.18 0.38 0.36 0.38 0.27 0.42 Silica (mg/L SiO2) 30 32 32 28 28 34 Inorganic Anions Chloride (mg/L) 2700 2500 2400 2300 2000 2100 Sulfate (mg/L) 1000 1000 1100 1100 980 1000 Inorganic Cations Calcium (mg/L) 1100 1200 1100 1200 1100 1500 Magnesium (mg/L) 190 190 200 200 200 280 Copper (mg/L) Iron (mg/L) 0.1 0.04 0.09 0.1 0.05 0.04 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 340 300 290 220 270 370 Sodium (mg/L) 880 800 820 730 750 1000 R8-Layered 16-Jul 30-Jul 14-Aug General Quality pH 7.2 6.9 7 Temperatue, C 21.5 25.1 24.3 ORP, mv 70 65 39 DO mg/l 0.9 0.6 0.7 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 600 620 720 Volatile Acids (mg/L Acetic Acid) Solids (TS) (mg/L) 9000 7100 6600 Solids (TVS) (mg/L) 3500 1300 1200 Total Nitrogen (mg/L N) 125 104 79 Total Phosphorus (mg/L PO4) 0.43 0.21 0.25 Silica (mg/L SiO2) 30 36 30 Inorganic Anions Chloride (mg/L) 2100 2200 2200 Sulfate (mg/L) 1000 1100 1100 Inorganic Cations Calcium (mg/L) 1100 1100 1600 Magnesium (mg/L) 200 230 320 Copper (mg/L) Iron (mg/L) 0.04 0.04 0.04 Manganese (mg/L) Zinc (mg/L) Potassium (mg/L) 260 270 390 Sodium (mg/L) 680 740 1100

PAGE 174

159 Appendix C: Field Leachate Characteristics Data Table C-1 Cells 4 and 6 Leachate Characteristics Data Field Leachate Analysis Cell 4 Cell 4/6 General Quality pH 7.3 6.7 Temperatue, C 12.7 15.9 ORP, mv 135 -179 DO mg/l 1.1 0.3 Turbidity (NTU) Total Akalinity (mg/L CaCO3) 2200 1700 Volatile Acids (mg/L Acetic Acid) Acetic Acid (mg/L) 0.50 39 Lactic Acid (mg/L0 7.00 210 n-Butyric Acid mg/L) 0.65 31 Proponic Acid (mg/L) 0.17 720 Pyruvic Acid (mg/L) 2.70 11 Solids (TS) (mg/L) 49000 56000 Solids (TVS) (mg/L) 15000 14000 Total Nitrogen (mg/L N) 2100 2200 Total Phosphorus (mg/L PO4) 0.54 0.31 Silica (mg/L SiO2) 56 59 Inorganic Anions Chloride (mg/L) 29000 32000 Sulfate (mg/L) 0.10 5 Inorganic Cations Calcium (mg/L) 1700 5200 Magnesium (mg/L) 470 25 Copper (mg/L) Iron (mg/L) 4.8 47 Potassium (mg/L) 2900 4000 Sodium (mg/L) 9400 8600

PAGE 175

160 Appendix D: X-Ray Diffraction (XRD) Te st Results for Field and Lysimeters Samples Position [Theta] 10 20 30 40 50 Counts 0 2500 10000 22500 Brushite Brushite Calcium Carbonate Calcium Carbonate; Brushite Brushite Calcium Carbonate; Brushite Brushite Brushite Calcium Carbonate Brushite Calcium Carbonate Brushite Brushite Calcium Carbonate; Brushite Brushite Calcium Carbonate Calcium Carbonate Calcium Carbonate; Brushite Brushite Brushite Brushite Calcium Carbonate; Brushite Calcium Carbonate; Brushite Calcium Carbonate; Brushite Figure D-1 XRD Results for Field Sample S1 (Leachate Header Pipe) Pattern List: Visible Ref. Code Score Compound Name Displacement [2Th.] Scale Factor Chemical Formula 01-0851108 75Calcium Carbonate 0.0000.998 Ca C O3 01-0720713 52Brushite 0.0000.079 Ca H P O4 ( H2 O )2

PAGE 176

161 Appendix D: (Continued) Peak List: Pos. [2Th.] Height [cts] FWHM [2Th.] d-spacing [] Rel. Int. [%] 11.6907 2309.10 0.14767.569817.43 21.0020 1265.13 0.14764.230054.07 23.1290 2528.21 0.19683.845648.13 26.7063 92.32 0.29523.338080.30 29.4775 31083.56 0.19683.03027100.00 30.5981 899.25 0.14762.921802.89 31.4919 752.04 0.14762.840882.42 34.2154 643.01 0.14762.620732.07 34.5164 368.86 0.09842.598561.19 36.0794 3971.08 0.19682.4895012.78 36.9457 170.99 0.14762.433090.55 39.5158 4843.73 0.19682.2805715.58 41.6479 367.17 0.19682.168611.18 42.1631 626.94 0.14762.143302.02 43.2715 4356.51 0.19682.0909414.02 45.3311 95.47 0.14762.000610.31 47.2058 1552.27 0.14761.925444.99 47.5900 5077.01 0.19681.9107916.33 48.6029 4714.10 0.24601.8733115.17 50.2680 217.38 0.19681.815090.70 50.8291 134.29 0.19681.796370.43 53.6148 140.40 0.14761.709420.45 56.6747 797.22 0.24601.624182.56 57.4905 2411.96 0.24601.603067.76 58.1226 281.85 0.18001.585810.91

PAGE 177

162 Appendix D: (Continued) Position [Theta] 10 20 30 40 50 Counts 0 2500 10000 22500 Calcium Carbonate Calcium Carbonate Calcum Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Figure D-2 XRD Results for Field Sample S2 (Leachate Recirculation/Jetting Pipe) Pattern List: Visible Ref. Code Score Compound Name Displacemen t [2Th.] Scale Factor Chemical Formula 01-085-1108 90Calcium Carbonate 0.0000.986 Ca C O3

PAGE 178

163 Appendix D: (Continued) Peak List: Pos. [2Th.] Height [cts] FWHM [2Th.] d-spacing [] Rel. Int. [%] 23.1181 2318.13 0.19683.847427.55 26.6615 711.03 0.14763.343582.32 29.4720 30703.06 0.19683.03082100.00 31.4938 1296.14 0.14762.840724.22 36.0809 3261.23 0.19682.4894010.62 39.5194 4409.55 0.19682.2803714.36 43.2840 3642.96 0.19682.0903611.87 47.2136 1534.99 0.14761.925145.00 47.5940 5844.44 0.24601.9106419.04 48.6123 4516.26 0.19681.8729714.71 56.6996 573.39 0.24601.623531.87 57.5316 1575.64 0.29521.602015.13 58.1427 359.78 0.24001.585311.17

PAGE 179

164 Appendix D: (Continued) Position [Theta] 10 20 30 40 50 Counts 0 2500 10000 22500 Brushte Brushte Calcium Carbonate Calcium Carbonate; Brushite Brushite Calcium Carbonate; Brushte Brushite Calcium Carbonate Calcium Carbonate Brushite Calcium Carbonate; Brushite Calcum Carbonate Calcum Carbonate Calcium Carbonate; Brushte Brushite Calcum Carbonate; Brushite Calcium Carbonate; Brushite Calcium Carbonate; Brushite Figure D-3 XRD Results for Field Sample S3 (Leachate Pump Station Railing) Pattern List: Visible Ref. Code Score Compound Name Displacemen t [2Th.] Scale Factor Chemical Formula 01-085-1108 78Calcium Carbonate 0.0000.963 Ca C O3 01-072-0713 45Brushite 0.0000.071 Ca H P O4 ( H2 O )2

PAGE 180

165 Appendix D: (Continued) Peak List: Pos. [2Th.] Height [cts] FWHM [2Th.] d-spacing [] Rel. Int. [%] 11.6938 2469.38 0.14767.567787.82 20.9521 1354.74 0.14764.240014.29 23.1060 2672.47 0.14763.849418.47 25.9557 100.77 0.39363.432880.32 29.4672 31558.13 0.14763.03130100.00 30.5641 368.05 0.14762.924971.17 31.4883 831.27 0.14762.841202.63 34.3235 152.14 0.59042.612730.48 36.0594 3846.81 0.14762.4908312.19 37.4531 103.54 0.14762.401290.33 39.4961 5602.16 0.19682.2816617.75 42.1062 133.15 0.14762.146060.42 43.2568 4217.74 0.14762.0916113.36 47.1874 1688.05 0.14761.926155.35 47.5893 5250.30 0.19681.9108116.64 48.5902 5480.33 0.24601.8737717.37 50.2762 249.89 0.19681.814820.79 56.6425 828.61 0.19681.625032.63 57.4804 2213.75 0.29521.603327.01 58.1604 202.31 0.36001.584870.64

PAGE 181

166 Appendix D: (Continued) Position [Theta] 10 20 30 40 50 Counts 0 2500 10000 22500 Calcium Carbonate; Calcite, Mg-rich Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate; Calcite, Mg-rich Calcium Carbonate Calcium Carbonate Calcium Carbonate Calcium Carbonate; Calcite, Mg-rich Figure D-4 XRD Results for Field Sample S4 (Cell 6 Manhole) Pattern List: Visible Ref. Code Score Compound Name Displacemen t [2Th.] Scale Factor Chemical Formula 01-085-1108 92Calcium Carbonate 0.0000.994 Ca C O3 00-043-0697 32Calcite, Mgrich 0.0000.113 ( Ca Mg ) C O3

PAGE 182

167 Appendix D: (Continued) Peak List: Pos. [2Th.] Height [cts] FWHM [2Th.] d-spacing [] Rel. Int. [%] 23.1216 2118.28 0.19683.846857.48 26.6098 117.08 0.14763.349960.41 29.4758 28318.64 0.19683.03044100.00 31.5029 709.88 0.19682.839922.51 36.0791 3200.66 0.19682.4895211.30 39.5106 4428.53 0.19682.2808515.64 43.2709 3600.16 0.19682.0909612.71 47.2068 1379.01 0.14761.925404.87 47.5851 4643.16 0.24601.9109716.40 48.6050 4019.28 0.29521.8732314.19 56.6758 544.64 0.29521.624151.92 57.4992 1683.59 0.29521.602845.95 58.1644 207.06 0.18001.584770.73

PAGE 183

168 Appendix D: (Continued) Position [Theta] 10 20 30 40 50 Counts 0 10000 40000 90000 160000 Quartz Quartz Calcite Quartz Quartz; Calcite Quartz Quartz Quartz Calcite Calcite Quartz Quartz Quartz Quartz Quartz; Calcte Figure D-5 XRD Results for Lysimeter R4 Sample Pattern List: Visible Ref. Code Score Compound Name Displacemen t [2Th.] Scale Factor Chemical Formula 01-085-0795 71Quartz 0.0000.626 Si O2 01-072-1652 8Calcite 0.0000.006 Ca C O3

PAGE 184

169 Appendix D: (Continued) Peak List: Pos. [2Th.] Height [cts] FWHM [2Th.] d-spacing [] Rel. Int. [%] 20.8951 18135.94 0.14764.2514410.73 26.6895 168956.90 0.14763.34015100.00 29.4508 794.78 0.14763.032960.47 33.2727 118.64 0.29522.692790.07 36.6168 10556.07 0.14762.454196.25 39.5358 8031.98 0.19682.279464.75 40.3575 3738.74 0.14762.234932.21 42.5199 4846.51 0.19682.126142.87 45.8643 2657.19 0.14761.978581.57 47.5694 48.53 0.59041.911570.03 48.5476 44.84 0.29521.875310.03 50.2091 10583.52 0.19681.817096.26 50.6997 234.82 0.14761.800650.14 54.9238 4980.55 0.19681.671742.95 55.3831 912.31 0.14761.658960.54 57.2707 192.50 0.24001.607360.11

PAGE 185

170 Appendix E: SEM and EDS Test Result s for Field and Lysimeters Samples Figure E-1 SEM Field Sample S1-1 Figure E-2 SEM Field Sample S1-2

PAGE 186

171 Appendix E: (Continued) Figure E-3 SEM Field Sample S1-3 Figure E-4 SEM Field Sample S2-1

PAGE 187

172 Appendix E: (Continued) Figure E-5 SEM Field Sample S3-1 Figure E-6 SEM Field Sample S5-1

PAGE 188

173 Appendix E: (Continued) Figure E-7 SEM Field Sample S5-2 Figure E-8 SEM Field Sample S5-3

PAGE 189

174 Appendix E: (Continued) Figure E-9 SEM Lysimeter Sample R4-1 Powder Figure E-10 SEM Lysimeter Sample R4-2 Powder

PAGE 190

175 Appendix E: (Continued) Figure E-11 SEM Lysimeter Sample R4-1 Solid Figure E-12 SEM Lysimeter Sample R4-2 Solid

PAGE 191

176 Appendix E: (Continued) Figure E-13 SEM Lysimeter Sample R7-1 Figure E-14 SEM Lysimeter Sample R7-2

PAGE 192

177 Appendix E: (Continued) Figure E-15 SEM Lysimeter Sample R7-3 Figure E-16 SEM Lysimeter Sample R2-1

PAGE 193

178 Appendix E: (Continued) Figure E-17 EDS Field Sample S1-2 Figure E-18 EDS Field Sample S1-b

PAGE 194

179 Appendix E: (Continued) Figure E-19 EDS Field Sample S2-b Figure E-20 EDS Field Sample S3-b

PAGE 195

180 Appendix E: (Continued) Figure E-21 EDS Field Sample S3-a Figure E-22 EDS Field Sample S4-a

PAGE 196

181 Appendix E: (Continued) Figure E-23 EDS Field Sample S5-b Figure E-24 EDS Lysimeter Sample R7-b

PAGE 197

182 Appendix E: (Continued) Figure E-25 EDS Lysimeter Sample R7-a Figure E-26 EDS Lysimeter Sample R7-c

PAGE 198

183 Appendix E: (Continued) Figure E-27 EDS Lysimeter Sample R2-a

PAGE 199

Appendix F: Geochemical Modeling Resu lts for Field and Lysimeters Samples 184 Landfill Cell 6 Input File

PAGE 200

Appendix F: (Continued) 185 Landfill Cell 6 Output Results Initial equilibrium constants: Aqueous species (O-phth)-+ 5*H2O + 7.5*O2(aq) = 8*HCO3+ 6*H+ log K = 542.9553 CH3COO+ 2*O2(aq) = 2*HCO3+ H+ log K = 146.7879 CH4(aq) + 2*O2(aq) = H2O + HCO3+ H+ log K = 144.1270 CO2(aq) + H2O = HCO3+ H+ log K = -6.3838 CO3-+ H+ = HCO3log K = 10.3593 Ca++ = Ca++ log K = 0.0000 CaCH3COO+ + 2*O2(aq) = Ca++ + 2*HCO3+ H+ log K = 147.9596 CaCO3 + H+ = Ca++ + HCO3log K = 7.1436 CaCl+ = Cl+ Ca++ log K = -0.7041 CaHCO3+ = Ca++ + HCO3log K = -1.2077 CaHPO4 = Ca++ + HPO4-log K = -2.7465 CaOH+ + H+ = H2O + Ca++ log K = 12.6910 CaPO4+ H+ = Ca++ + HPO4-log K = 5.8497 CaSO4 = SO4-+ Ca++ log K = -2.3299 Cl= Cllog K = 0.0000 ClO4= Cl+ 2*O2(aq) log K = 15.7474 Fe(OH)2 + 2*H+ = 2*H2O + Fe++

PAGE 201

Appendix F: (Continued) 186 log K = 21.4219 Fe(OH)2+ + 2*H+ = 2*H2O + Fe+++ log K = 5.6801 Fe(OH)3 + 3*H+ = 3*H2O + Fe+++ log K = 12.0183 Fe(OH)3+ 3*H+ = 3*H2O + Fe++ log K = 34.2454 Fe(OH)4+ 4*H+ = 4*H2O + Fe+++ log K = 21.6711 Fe(SO4)2= 2*SO4-+ Fe+++ log K = -5.3799 Fe++ = Fe++ log K = 0.0000 Fe+++ = Fe+++ log K = 0.0000 Fe2(OH)2++++ + 2*H+ = 2*H2O + 2*Fe+++ log K = 2.9555 Fe3(OH)4(5+) + 4*H+ = 4*H2O + 3*Fe+++ log K = 6.3107 FeCO3 + H+ = HCO3+ Fe++ log K = 6.6595 FeCO3+ + H+ = HCO3+ Fe+++ log K = 0.6326 FeCl+ = Cl+ Fe++ log K = -0.3813 FeCl++ = Cl+ Fe+++ log K = -1.4769 FeCl2 = 2*Cl+ Fe++ log K = -0.0975 FeCl2+ = 2*Cl+ Fe+++ log K = -2.1243 FeCl3 = 3*Cl+ Fe+++ log K = -1.1249 FeCl4= 4*Cl+ Fe+++ log K = 0.8049

PAGE 202

Appendix F: (Continued) 187 FeH2PO4+ = H+ + HPO4-+ Fe++ log K = -9.9180 FeH3SiO4++ + H+ = 2*H2O + SiO2(aq) + Fe+++ log K = 0.5820 FeHCO3+ = HCO3+ Fe++ log K = -1.3020 FeHPO4 = HPO4-+ Fe++ log K = -3.6021 FeHSO4++ = SO4-+ H+ + Fe+++ log K = -3.7047 FeOH+ + H+ = H2O + Fe++ log K = 10.1824 FeOH++ + H+ = H2O + Fe+++ log K = 2.1950 FePO4+ H+ = HPO4-+ Fe++ log K = 4.9121 FeSO4 = SO4-+ Fe++ log K = -2.2056 FeSO4+ = SO4-+ Fe+++ log K = -4.1090 H(O-phth)+ 5*H2O + 7.5*O2(aq) = 8*HCO3+ 7*H+ log K = 537.5493 H+ = H+ log K = 0.0000 H2(O-phth) + 5*H2O + 7.5*O2(aq) = 8*HCO3+ 8*H+ log K = 534.4576 H2(aq) + .5*O2(aq) = H2O log K = 46.1159 H2P2O7-+ H2O = 2*H+ + 2*HPO4-log K = -12.1037 H2PO4= H+ + HPO4-log K = -7.2078 H2S(aq) + 2*O2(aq) = SO4-+ 2*H+ log K = 131.3391 H2SO4 = SO4-+ 2*H+ log K = 1.0231

PAGE 203

Appendix F: (Continued) 188 H2SiO4-+ 2*H+ = 2*H2O + SiO2(aq) log K = 22.9171 H3P2O7+ H2O = 3*H+ + 2*HPO4-log K = -14.3070 H3PO4 = 2*H+ + HPO4-log K = -9.3530 H3SiO4+ H+ = 2*H2O + SiO2(aq) log K = 9.8124 H4P2O7 + H2O = 4*H+ + 2*HPO4-log K = -15.0986 HCH3COO + 2*O2(aq) = 2*HCO3+ 2*H+ log K = 141.9881 HCO3= HCO3log K = 0.0000 HCl = Cl+ H+ log K = 6.1504 HP2O7--+ H2O = H+ + 2*HPO4-log K = -5.4028 HPO4-= HPO4-log K = 0.0000 HS+ 2*O2(aq) = SO4-+ H+ log K = 138.3727 HSO4= SO4-+ H+ log K = -1.9877 K+ = K+ log K = 0.0000 KCl = Cl+ K+ log K = 1.5876 KHPO4= K+ + HPO4-log K = -1.0393 KSO4= SO4-+ K+ log K = -0.8533 Mg++ = Mg++ log K = 0.0000 Mg4(OH)4++++ + 4*H+ = 4*H2O + 4*Mg++

PAGE 204

Appendix F: (Continued) 189 log K = 39.6485 MgCO3 + H+ = Mg++ + HCO3log K = 7.4490 MgCl+ = Cl+ Mg++ log K = -0.1527 MgH2PO4+ = Mg++ + H+ + HPO4-log K = -8.7183 MgHCO3+ = Mg++ + HCO3log K = -1.0130 MgHPO4 = Mg++ + HPO4-log K = -2.9101 MgOH+ + H+ = H2O + Mg++ log K = 11.7943 MgPO4+ H+ = Mg++ + HPO4-log K = 5.8520 MgSO4 = SO4-+ Mg++ log K = -2.2330 Na+ = Na+ log K = 0.0000 NaCO3+ H+ = Na+ + HCO3log K = 9.8493 NaCl = Cl+ Na+ log K = 1.6003 NaH3SiO4 + H+ = 2*H2O + Na+ + SiO2(aq) log K = 8.6623 NaHCO3 = Na+ + HCO3log K = -0.1332 NaHPO4= Na+ + HPO4-log K = -1.1484 NaOH + H+ = H2O + Na+ log K = 14.1956 NaSO4= SO4-+ Na+ log K = -0.6930 O2(aq) = O2(aq) log K = 0.0000

PAGE 205

Appendix F: (Continued) 190 OH+ H+ = H2O log K = 13.9962 P2O7---+ H2O = 2*HPO4-log K = 4.0043 PO4--+ H+ = HPO4-log K = 12.3230 S-+ 2*O2(aq) = SO4-log K = 152.2826 S2-+ H2O + 3.5*O2(aq) = 2*SO4-+ 2*H+ log K = 244.5515 S3-+ 2*H2O + 5*O2(aq) = 3*SO4-+ 4*H+ log K = 337.3778 S4-+ 3*H2O + 6.5*O2(aq) = 4*SO4-+ 6*H+ log K = 427.6550 S5-+ 4*H2O + 8*O2(aq) = 5*SO4-+ 8*H+ log K = 520.7954 S6-+ 5*H2O + 9.5*O2(aq) = 6*SO4-+ 10*H+ log K = 614.2530 SO4-= SO4-log K = 0.0000 SiO2(aq) = SiO2(aq) log K = 0.0000 Minerals Akermanite + 6*H+ = 3*H2O + 2*Ca++ + Mg++ + 2*SiO2(aq) log K = 45.1809 Amrph^silica = SiO2(aq) log K = -2.7206 Andradite + 12*H+ = 6*H2O + 3*Ca++ + 3*SiO2(aq) + 2*Fe+++ log K = 32.8546 Anhydrite = SO4-+ Ca++ log K = -4.2739 Antarcticite = 6*H2O + 2*Cl+ Ca++ log K = 4.1113 Anthophyllite + 14*H+ = 8*H2O + 7*Mg++ + 8*SiO2(aq) log K = 67.7337 Antigorite + 48*H+ = 39.5*H2O + 24*Mg++ + 17*SiO2(aq)

PAGE 206

Appendix F: (Continued) 191 log K = 241.8949 Aragonite + H+ = Ca++ + HCO3log K = 1.8752 Arcanite = SO4-+ 2*K+ log K = -1.6980 Artinite + 3*H+ = 5*H2O + 2*Mg++ + HCO3log K = 19.9394 Bassanite = .5*H2O + SO4-+ Ca++ log K = -3.6445 Bischofite = 6*H2O + 2*Cl+ Mg++ log K = 4.5295 Brucite + 2*H+ = 2*H2O + Mg++ log K = 16.4439 Burkeite + H+ = 2*SO4-+ 6*Na+ + HCO3log K = 9.6453 Ca(OH)2(c) + 2*H+ = 2*H2O + Ca++ log K = 22.5837 Ca2Cl2(OH)2^H2O + 2*H+ = 3*H2O + 2*Cl+ 2*Ca++ log K = 26.3351 Ca2Si3O8^5/2H2O + 4*H+ = 4.5*H2O + 2*Ca++ + 3*SiO2(aq) log K = 23.3110 Ca2SiO4(gamma) + 4*H+ = 2*H2O + 2*Ca++ + SiO2(aq) log K = 37.5108 Ca2SiO4^7/6H2O + 4*H+ = 3.167*H2O + 2*Ca++ + SiO2(aq) log K = 36.9055 Ca3Si2O7^3H2O + 6*H+ = 6*H2O + 3*Ca++ + 2*SiO2(aq) log K = 60.2193 Ca3SiO5 + 6*H+ = 3*H2O + 3*Ca++ + SiO2(aq) log K = 74.0119 Ca4Cl2(OH)6^13H2O + 6*H+ = 19*H2O + 2*Cl+ 4*Ca++ log K = 68.4031 Ca4Si3O10^3/2H2O + 8*H+ = 5.5*H2O + 4*Ca++ + 3*SiO2(aq) log K = 64.8345 Ca5Si6O17^11/2H2O + 10*H+ = 10.5*H2O + 5*Ca++ + 6*SiO2(aq) log K = 65.8903

PAGE 207

Appendix F: (Continued) 192 Ca5Si6O17^21/2H2O + 10*H+ = 15.5*H2O + 5*Ca++ + 6*SiO2(aq) log K = 64.0332 Ca5Si6O17^3H2O + 10*H+ = 8*H2O + 5*Ca++ + 6*SiO2(aq) log K = 69.6062 Ca6Si6O18^H2O + 12*H+ = 7*H2O + 6*Ca++ + 6*SiO2(aq) log K = 92.4973 CaCl2^2H2O = 2*H2O + 2*Cl+ Ca++ log K = 8.0955 CaCl2^4H2O = 4*H2O + 2*Cl+ Ca++ log K = 4.8904 CaCl2^H2O = H2O + 2*Cl+ Ca++ log K = 8.2302 CaSO4^1/2H2O(beta) = .5*H2O + SO4-+ Ca++ log K = -3.4759 CaSi2O5^2H2O + 2*H+ = 3*H2O + Ca++ + 2*SiO2(aq) log K = 9.9451 Calcite + H+ = Ca++ + HCO3log K = 1.7105 Carnallite = 6*H2O + 3*Cl+ Mg++ + K+ log K = 4.4551 Chalcedony = SiO2(aq) log K = -3.7384 Chloromagnesite = 2*Cl+ Mg++ log K = 22.0101 Chrysotile + 6*H+ = 5*H2O + 3*Mg++ + 2*SiO2(aq) log K = 31.5391 Cristobalite = SiO2(aq) log K = -3.4587 Cronstedt-7A + 10*H+ = 7*H2O + SiO2(aq) + 2*Fe+++ + 2*Fe++ log K = 16.1458 Diopside + 4*H+ = 2*H2O + Ca++ + Mg++ + 2*SiO2(aq) log K = 20.9561 Dolomite + 2*H+ = Ca++ + Mg++ + 2*HCO3log K = 2.5162 Dolomite-dis + 2*H+ = Ca++ + Mg++ + 2*HCO3log K = 4.0615

PAGE 208

Appendix F: (Continued) 193 Dolomite-ord + 2*H+ = Ca++ + Mg++ + 2*HCO3log K = 2.5162 Enstatite + 2*H+ = H2O + Mg++ + SiO2(aq) log K = 11.4631 Epsomite = 7*H2O + SO4-+ Mg++ log K = -1.8146 Fayalite + 4*H+ = 2*H2O + SiO2(aq) + 2*Fe++ log K = 19.0480 Fe(OH)2(ppd) + 2*H+ = 2*H2O + Fe++ log K = 12.8532 Fe(OH)3(ppd) + 3*H+ = 3*H2O + Fe+++ log K = 4.9004 Fe2(SO4)3(c) = 3*SO4-+ 2*Fe+++ log K = 0.8186 FeO(c) + 2*H+ = H2O + Fe++ log K = 11.3642 FeSO4(c) = SO4-+ Fe++ log K = 2.6386 Ferrite-2-Ca + 10*H+ = 5*H2O + 2*Ca++ + 2*Fe+++ log K = 56.8239 Ferrite-Ca + 8*H+ = 4*H2O + Ca++ + 2*Fe+++ log K = 21.5736 Ferrite-Mg + 8*H+ = 4*H2O + Mg++ + 2*Fe+++ log K = 21.1395 Ferrosilite + 2*H+ = H2O + SiO2(aq) + Fe++ log K = 7.4101 Forsterite + 4*H+ = 2*H2O + 2*Mg++ + SiO2(aq) log K = 28.1458 Gaylussite + 2*H+ = 5*H2O + Ca++ + 2*Na+ + 2*HCO3log K = 11.2253 Goethite + 3*H+ = 2*H2O + Fe+++ log K = 0.5093 Graphite + H2O + O2(aq) = HCO3+ H+ log K = 67.8025 Greenalite + 6*H+ = 5*H2O + 2*SiO2(aq) + 3*Fe++

PAGE 209

Appendix F: (Continued) 194 log K = 22.5660 Gypsum = 2*H2O + SO4-+ Ca++ log K = -4.4515 Halite = Cl+ Na+ log K = 1.5915 Hedenbergite + 4*H+ = 2*H2O + Ca++ + 2*SiO2(aq) + Fe++ log K = 19.4253 Hematite + 6*H+ = 3*H2O + 2*Fe+++ log K = 0.0613 Hexahydrite = 6*H2O + SO4-+ Mg++ log K = -1.5814 Huntite + 4*H+ = Ca++ + 3*Mg++ + 4*HCO3log K = 10.7498 Hydromagnesite + 6*H+ = 6*H2O + 5*Mg++ + 4*HCO3log K = 31.5635 Hydrophilite = 2*Cl+ Ca++ log K = 11.8192 Hydroxyapatite + 4*H+ = H2O + 5*Ca++ + 3*HPO4-log K = -11.5357 Jarosite-K + 6*H+ = 6*H2O + 2*SO4-+ K+ + 3*Fe+++ log K = -8.8924 K2CO3^3/2H2O + H+ = 1.5*H2O + 2*K+ + HCO3log K = 13.4719 K8H4(CO3)6^3H2O + 2*H+ = 3*H2O + 8*K+ + 6*HCO3log K = 28.0846 KMgCl3 = 3*Cl+ Mg++ + K+ log K = 21.4516 KMgCl3^2H2O = 2*H2O + 3*Cl+ Mg++ + K+ log K = 14.1429 KNaCO3^6H2O + H+ = 6*H2O + K+ + Na+ + HCO3log K = 10.3216 Kainite = 3*H2O + Cl+ SO4-+ Mg++ + K+ log K = -0.1162 Kalicinite = K+ + HCO3log K = 0.3306

PAGE 210

Appendix F: (Continued) 195 Kieserite = H2O + SO4-+ Mg++ log K = -0.1137 Larnite + 4*H+ = 2*H2O + 2*Ca++ + SiO2(aq) log K = 38.9725 Lawrencite = 2*Cl+ Fe++ log K = 9.0469 Leonhardtite = 4*H2O + SO4-+ Mg++ log K = -0.8500 Lime + 2*H+ = H2O + Ca++ log K = 32.7042 MHSH(Mg1.5) + H+ = H2O + SO4-+ 1.5*Mg++ log K = 9.1637 Magnesite + H+ = Mg++ + HCO3log K = 2.4353 Magnetite + 8*H+ = 4*H2O + 2*Fe+++ + Fe++ log K = 10.3159 Melanterite = 7*H2O + SO4-+ Fe++ log K = -2.3771 Mercallite = SO4-+ K+ + H+ log K = -1.3783 Merwinite + 8*H+ = 4*H2O + 3*Ca++ + Mg++ + 2*SiO2(aq) log K = 68.2458 Mg2Cl(OH)3^4H2O + 3*H+ = 7*H2O + Cl+ 2*Mg++ log K = 26.1066 MgCl2^2H2O = 2*H2O + 2*Cl+ Mg++ log K = 12.8972 MgCl2^4H2O = 4*H2O + 2*Cl+ Mg++ log K = 7.4581 MgCl2^H2O = H2O + 2*Cl+ Mg++ log K = 16.2510 MgOHCl + H+ = H2O + Cl+ Mg++ log K = 16.0519 MgSO4(c) = SO4-+ Mg++ log K = 5.0183 Minnesotaite + 6*H+ = 4*H2O + 4*SiO2(aq) + 3*Fe++ log K = 13.8558

PAGE 211

Appendix F: (Continued) 196 Mirabilite = 10*H2O + SO4-+ 2*Na+ log K = -1.0925 Misenite = 7*SO4-+ 8*K+ + 6*H+ log K = -10.6037 Molysite = 3*Cl+ Fe+++ log K = 13.4926 Monohydrocalcite + H+ = H2O + Ca++ + HCO3log K = 2.7051 Monticellite + 4*H+ = 2*H2O + Ca++ + Mg++ + SiO2(aq) log K = 29.7504 Na2Si2O5 + 2*H+ = H2O + 2*Na+ + 2*SiO2(aq) log K = 18.1493 Na2SiO3 + 2*H+ = H2O + 2*Na+ + SiO2(aq) log K = 22.2734 Na3H(SO4)2 = 2*SO4-+ 3*Na+ + H+ log K = -0.7981 Na4SiO4 + 4*H+ = 2*H2O + 4*Na+ + SiO2(aq) log K = 66.5526 Na6Si2O7 + 6*H+ = 3*H2O + 6*Na+ + 2*SiO2(aq) log K = 101.7427 NaFeO2(c) + 4*H+ = 2*H2O + Na+ + Fe+++ log K = 19.8798 Nesquehonite + H+ = 3*H2O + Mg++ + HCO3log K = 5.4286 O-phth acid(c) + 5*H2O + 7.5*O2(aq) = 8*HCO3+ 8*H+ log K = 533.0087 Pirssonite + 2*H+ = 2*H2O + Ca++ + 2*Na+ + 2*HCO3log K = 11.3878 Portlandite + 2*H+ = 2*H2O + Ca++ log K = 22.5837 Pseudowollastonite + 2*H+ = H2O + Ca++ + SiO2(aq) log K = 14.0088 Pyrite + H2O + 3.5*O2(aq) = 2*SO4-+ 2*H+ + Fe++ log K = 217.4346 Pyrrhotite + 2*O2(aq) = SO4-+ .25*Fe+++ + .625*Fe++

PAGE 212

Appendix F: (Continued) 197 log K = 130.6156 Quartz = SiO2(aq) log K = -4.0098 Rankinite + 6*H+ = 3*H2O + 3*Ca++ + 2*SiO2(aq) log K = 51.9533 Sepiolite + 8*H+ = 11*H2O + 4*Mg++ + 6*SiO2(aq) log K = 30.9560 Siderite + H+ = HCO3+ Fe++ log K = -0.2225 Strengite + H+ = 2*H2O + HPO4-+ Fe+++ log K = -14.1225 Sulfur-Rhmb + H2O + 1.5*O2(aq) = SO4-+ 2*H+ log K = 93.2484 Sylvite = Cl+ K+ log K = 0.9568 Tachyhydrite = 12*H2O + 6*Cl+ Ca++ + 2*Mg++ log K = 17.4432 Talc + 6*H+ = 4*H2O + 3*Mg++ + 4*SiO2(aq) log K = 21.5306 Thenardite = SO4-+ 2*Na+ log K = -0.2399 Tremolite + 14*H+ = 8*H2O + 2*Ca++ + 5*Mg++ + 8*SiO2(aq) log K = 61.6119 Tridymite = SiO2(aq) log K = -3.8441 Troilite + 2*O2(aq) = SO4-+ Fe++ log K = 134.6050 Vivianite + 2*H+ = 8*H2O + 2*HPO4-+ 3*Fe++ log K = -11.3992 Whitlockite + 2*H+ = 3*Ca++ + 2*HPO4-log K = -9.9086 Wollastonite + 2*H+ = H2O + Ca++ + SiO2(aq) log K = 13.6177 Wustite + 2*H+ = H2O + .106*Fe+++ + .841*Fe++ log K = 12.3839

PAGE 213

Appendix F: (Continued) 198 Gases CH4(g) + 2*O2(aq) = H2O + HCO3+ H+ log K = 141.3215 CO2(g) + H2O = HCO3+ H+ log K = -7.8187 H2(g) + .5*O2(aq) = H2O log K = 43.0139 H2S(g) + 2*O2(aq) = SO4-+ 2*H+ log K = 130.3979 O2(g) = O2(aq) log K = -2.8844 S2(g) + 2*H2O + 3*O2(aq) = 2*SO4-+ 4*H+ log K = 200.4032 Steam = H2O log K = 1.5080 Surface species Oxides CaO + 2*H+ = H2O + Ca++ Fe2O3 + 6*H+ = 3*H2O + 2*Fe+++ FeO + 2*H+ = H2O + Fe++ HCl = Cl+ H+ K2O + 2*H+ = H2O + 2*K+ MgO + 2*H+ = H2O + Mg++ Na2O + 2*H+ = H2O + 2*Na+ P2O5 + 3*H2O = 4*H+ + 2*HPO4-SO3 + H2O = SO4-+ 2*H+ SiO2 = SiO2(aq) Step # 696 Xi = 0.2000 Time = 1.73491e+007 secs (200.8 days) Temperature = 36.0 C Pressure = 1.013 bars pH = 3.400 log fO2 = -69.543 Eh = -0.0470 volts pe = -0.7655 Ionic strength = 0.829338 Activity of water = 0.972731 Solvent mass = 1.007171 kg Solution mass = 1.062537 kg Solution density = 1.029 g/cm3 Chlorinity = 0.896177 molal Dissolved solids = 52107 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 14.85 mg/kg as CaCO3

PAGE 214

Appendix F: (Continued) 199 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.0470 0.7655 e+ Fe+++ = Fe++ 0.4057 6.6135 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO1.027 0.2568 15.17 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.2742 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.9299 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 3.541e-066 2.291e-010 0.0000 microbe-2 6.000e-007 3.019e-016 -59.03 0.0000 Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Graphite 0.3711 -0.431 4.457 1.963 Hematite 0.0002059 -3.686 0.03288 0.006233 Quartz 0.0009031 -3.044 0.05426 0.02049 (total) 4.544 1.990 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------

PAGE 215

Appendix F: (Continued) 200 Cl0.8357 2.809e+004 0.6109 0.2920 Na+ 0.3675 8008. 0.6604 0.6150 K+ 0.1006 3729. 0.6109 1.2113 CO2(aq) 0.09823 4098. 1.0000 1.0078 Ca++ 0.07365 2798. 0.2297 1.7716 CH4(aq) 0.07080 1077. 1.2124 1.0663 CaCl+ 0.05512 3946. 0.6604 1.4389 NaCl 0.003931 217.8 1.0000 2.4055 KCl 0.0009465 66.89 1.0000 3.0239 Mg++ 0.0007885 18.17 0.3020 3.6232 H+ 0.0004936 0.4716 0.8065 3.4000 MgCl+ 0.0002322 13.15 0.6604 3.8143 Fe++ 0.0002175 11.51 0.2297 4.3014 HCO30.0001590 9.199 0.6815 3.9650 FeCl+ 0.0001479 12.80 0.6604 4.0102 SiO2(aq) 7.829e-005 4.459 1.2124 4.0226 CaHCO3+ 4.559e-005 4.369 0.7078 4.4912 NaHCO3 2.926e-005 2.330 1.0000 4.5337 FeCl2 2.532e-005 3.043 1.0000 4.5965 H2PO49.535e-006 0.8766 0.6604 5.2009 H2S(aq) 1.033e-006 0.03337 1.0000 5.9859 HCH3COO 5.277e-007 0.03004 1.0000 6.2776 MgHCO3+ 4.280e-007 0.03461 0.6604 6.5488 H3PO4 3.926e-007 0.03647 1.0000 6.4061 FeH2PO4+ 3.000e-007 0.04346 0.6604 6.7031 FeHCO3+ 1.296e-007 0.01436 0.6604 7.0676

PAGE 216

Appendix F: (Continued) 201 MgH2PO4+ 8.759e-008 0.01007 0.6604 7.2377 CH3COO3.066e-008 0.001716 0.6815 7.6800 CaHPO4 1.173e-008 0.001513 1.0000 7.9308 NaHPO49.057e-009 0.001021 0.6604 8.2232 HPO4-6.769e-009 0.0006159 0.1505 8.9918 H2(aq) 5.865e-009 1.121e-005 1.2124 8.1481 FeOH++ 4.269e-009 0.0002948 0.1907 9.0892 FeCl++ 3.642e-009 0.0003152 0.1907 9.1582 FeCl2+ 2.428e-009 0.0002917 0.6604 8.7949 KHPO41.567e-009 0.0002007 0.6604 8.9850 Fe(OH)2+ 1.461e-009 0.0001245 0.6604 9.0154 HS5.568e-010 1.745e-005 0.6370 9.4502 HCl 4.792e-010 1.656e-005 1.0000 9.3195 CaCO3 4.640e-010 4.402e-005 1.0000 9.3335 Fe+++ 3.620e-010 1.916e-005 0.0774 10.5525 FeHPO4 2.514e-010 3.618e-005 1.0000 9.5996 MgHPO4 2.373e-010 2.705e-005 1.0000 9.6247 NaH3SiO4 1.552e-010 1.737e-005 1.0000 9.8091 FeCl3 9.409e-011 1.447e-005 1.0000 10.0264 OH8.552e-011 1.379e-006 0.6370 10.2638 CO3-8.168e-011 4.646e-006 0.1707 10.8556 H3SiO47.136e-011 6.433e-006 0.6604 10.3268 CaCH3COO+ 4.736e-011 4.450e-006 0.6604 10.5048 CaOH+ 3.204e-011 1.734e-006 0.6604 10.6746 FeOH+ 2.191e-011 1.513e-006 0.6604 10.8396 NaCO31.255e-011 9.873e-007 0.6604 11.0816

PAGE 217

Appendix F: (Continued) 202 FeH3SiO4++ 1.071e-011 1.533e-006 0.1907 11.6896 NaOH 8.321e-012 3.155e-007 1.0000 11.0798 MgOH+ 3.668e-012 1.437e-007 0.6604 11.6157 MgCO3 3.241e-012 2.590e-007 1.0000 11.4893 H2P2O7-2.080e-012 3.469e-007 0.1505 12.5043 Fe(OH)3 1.970e-012 1.996e-007 1.0000 11.7054 FeCO3 1.888e-012 2.073e-007 1.0000 11.7240 FeCO3+ 1.340e-012 1.471e-007 0.6604 12.0531 FeCl41.065e-012 1.996e-007 0.6604 12.1528 CaPO41.317e-013 1.687e-008 0.6604 13.0605 H3P2O73.178e-014 5.331e-009 0.6604 13.6781 HP2O7--1.210e-014 2.007e-009 0.0128 15.8098 FePO43.496e-015 4.998e-010 0.6604 14.6366 MgPO41.814e-015 2.051e-010 0.6604 14.9215 Fe2(OH)2++++ 5.986e-016 8.268e-011 0.0192 16.9405 PO4--1.135e-016 1.022e-011 0.0128 17.8377 H4P2O7 5.467e-017 9.224e-012 1.0000 16.2622 SO4-5.155e-018 4.694e-013 0.1505 18.1101 CaSO4 3.124e-018 4.031e-013 1.0000 17.5053 Fe(OH)41.996e-018 2.344e-013 0.6604 17.8800 NaSO41.498e-018 1.691e-013 0.6604 18.0046 Fe(OH)2 6.445e-019 5.490e-014 1.0000 18.1908 KSO45.469e-019 7.007e-014 0.6604 18.4423 P2O7---3.688e-019 6.080e-014 0.0004 21.8242 H2SiO4-1.225e-019 1.093e-014 0.1505 19.7340 S-1.196e-019 3.635e-015 0.1907 19.6418

PAGE 218

Appendix F: (Continued) 203 HSO46.416e-020 5.903e-015 0.6604 19.3729 MgSO4 3.468e-020 3.957e-015 1.0000 19.4599 FeSO4 6.479e-021 9.329e-016 1.0000 20.1885 Fe3(OH)4(5+) 3.618e-022 8.079e-017 0.0020 24.1445 S2-3.676e-024 2.234e-019 0.1505 24.2570 FeSO4+ 6.269e-025 9.027e-020 0.6604 24.3830 H2SO4 2.498e-026 2.323e-021 1.0000 25.6023 Fe(OH)37.289e-028 7.384e-023 0.6604 27.3175 FeHSO4++ 3.387e-028 4.909e-023 0.1907 28.1897 S3-2.210e-029 2.015e-024 0.1505 29.4779 H(O-phth)1.876e-029 2.937e-024 0.6604 28.9069 H2(O-phth) 5.975e-030 9.409e-025 1.0000 29.2237 (O-phth)-7.535e-031 1.172e-025 0.1505 30.9453 S4-5.010e-032 6.090e-027 0.1505 32.1225 Mg4(OH)4++++ 1.819e-037 2.849e-032 0.0192 38.4580 S5-1.582e-037 2.404e-032 0.1505 37.6231 Fe(SO4)29.735e-042 2.288e-036 0.6604 41.1919 S6-2.438e-043 4.446e-038 0.1505 43.4352 O2(aq) 2.621e-073 7.949e-069 1.2124 72.4979 ClO43.461e-161 3.263e-156 0.6370 160.6566 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Hematite 0.0000 sat Mirabilite -18.8807 Graphite 0.0000 sat Arcanite -18.9728 Quartz -0.1921 Thenardite -19.0777 Tridymite -0.3479 Hedenbergite -19.1486 Chalcedony -0.4538 KMgCl3^2H2O -19.3843 Goethite -0.5028 MgCl2^H2O -19.7155 Cristobalite -0.7198 Diopside -19.9393 Amrph^silica -1.4022 Epsomite -20.0771 Strengite -1.9041 Melanterite -20.1905

PAGE 219

Appendix F: (Continued) 204 Pyrite -2.1466 Hexahydrite -20.1924 Halite -2.5193 Artinite -20.1941 Sylvite -2.5626 Na2SiO3 -20.1976 Pyrrhotite -3.6444 Na2Si2O5 -20.2628 Calcite -3.8901 Leonhardtite -20.7932 Aragonite -4.0535 Kieserite -21.3078 Siderite -4.4404 Mercallite -21.6105 Fe(OH)3(ppd) -4.7943 Minnesotaite -21.7452 Monohydrocalcite -4.9273 Greenalite -22.1013 Sulfur-Rhmb -5.5979 Kainite -23.0648 Kalicinite -5.8665 Mg2Cl(OH)3^4H2O -23.1207 Whitlockite -6.0518 Ca2Cl2(OH)2^H2O -23.1555 Magnesite -6.3402 Molysite -23.9653 Troilite -6.5230 Monticellite -24.3446 Antarcticite -6.5702 Forsterite -24.5265 CaCl2^4H2O -7.2224 Huntite -24.5641 Magnetite -7.2286 FeSO4(c) -24.5869 FeO(c) -8.2948 Ca2Si3O8^5/2H2O -24.7647 Ferrosilite -8.5624 Chloromagnesite -25.2147 Dolomite -8.6647 MgSO4(c) -26.1747 Dolomite-ord -8.6647 KMgCl3 -26.3174 Bischofite -8.7022 Lime -26.4788 Nesquehonite -9.3788 Talc -27.1024 Wustite -9.6954 Tachyhydrite -27.8045 Hydroxyapatite -9.7971 O-phth acid(c) -27.9763 Fe(OH)2(ppd) -9.8234 MHSH(Mg1.5) -28.5349 Dolomite-dis -10.1334 Andradite -28.6846 CaCl2^2H2O -10.1826 Chrysotile -28.6993 CaCl2^H2O -10.2549 Ca2SiO4^7/6H2O -29.6176 Carnallite -10.2725 Ca2SiO4(gamma) -30.1087 MgCl2^4H2O -11.4298 Larnite -31.5050 Enstatite -11.7769 Akermanite -38.1886 Wollastonite -12.1273 Jarosite-K -38.6597 Vivianite -12.4156 Na3H(SO4)2 -41.0858 Pseudowollastoni -12.4943 Sepiolite -41.3796 Brucite -12.5961 Rankinite -43.0158 CaSi2O5^2H2O -12.8438 Hydromagnesite -43.3848 Lawrencite -13.3973 Ferrite-2-Ca -44.5740 Hydrophilite -13.6584 Burkeite -50.6813 KNaCO3^6H2O -13.6945 Ca3Si2O7^3H2O -51.2285 Cronstedt-7A -14.4213 Ca4Si3O10^3/2H2O -54.5783 Gypsum -15.4372 Merwinite -55.3614 Anhydrite -15.4849 Ca4Cl2(OH)6^13H2 -55.7738 Ferrite-Ca -15.6495 K8H4(CO3)6^3H2O -56.8045 MgOHCl -15.8315 Na4SiO4 -57.5394 Pirssonite -15.8848 Ca3SiO5 -60.2304 Bassanite -16.1192 Ca5Si6O17^21/2H2 -61.6255 Gaylussite -16.1618 Ca5Si6O17^11/2H2 -63.0659 CaSO4^1/2H2O(bet -16.2747 Tremolite -65.2118 NaFeO2(c) -16.4589 Ca5Si6O17^3H2O -66.4740 MgCl2^2H2O -16.5450 Anthophyllite -74.5369 K2CO3^3/2H2O -16.7569 Fe2(SO4)3(c) -74.7009 Ca(OH)2(c) -16.7782 Ca6Si6O18^H2O -83.2850

PAGE 220

Appendix F: (Continued) 205 Portlandite -16.7782 Na6Si2O7 -90.1203 Ferrite-Mg -16.9721 Misenite -148.3530 Fayalite -17.1272 Antigorite -223.5536 Gases fugacity log fug. ----------------------------------------------CH4(g) 61.37 1.788 CO2(g) 3.440 0.537 Steam 0.05671 -1.246 H2S(g) 1.348e-005 -4.870 H2(g) 9.395e-006 -5.027 S2(g) 5.008e-025 -24.300 O2(g) 2.864e-070 -69.543 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CO2(aq) 0.0278631 0.0278631 Ca++ 0.129741 0.129741 Cl0.902603 0.902603 Fe++ 0.000393933 0.000393933 Graphite 0.142616 0.142616 H+ 0.000250956 0.000250956 H2O 56.0496 56.0496 H2S(aq) 1.04104e-006 1.04104e-006 H3PO4 1.04189e-005 1.04189e-005 Hematite 6.17968e-009 6.17968e-009 K+ 0.102306 0.102306 Mg++ 0.00102859 0.00102859 Na+ 0.374079 0.374079 SiO2(aq) 7.88516e-005 7.88516e-005 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.130 0.130 4.89e+003 Cl0.903 0.903 3.01e+004 Fe++ 0.000394 0.000394 20.7 Fe+++ 1.24e-008 1.24e-008 0.000650 H+ 0.171 0.171 162. H2O 55.9 55.9 9.47e+005 HCO30.170 0.170 9.79e+003 HPO4-1.04e-005 1.04e-005 0.941 K+ 0.102 0.102 3.76e+003 Mg++ 0.00103 0.00103 23.5 Na+ 0.374 0.374 8.09e+003 O2(aq) -0.143 -0.143-4.30e+003 SO4-1.04e-006 1.04e-006 0.0941 SiO2(aq) 7.89e-005 7.89e-005 4.46 (Calculation of Kd values assumes mineral content of system is fully defined.)

PAGE 221

Appendix F: (Continued) 206 Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.1297 0.1297 4894. Carbon 0.1705 0.1705 1927. Chlorine 0.9026 0.9026 3.012e+004 Hydrogen 112.1 112.1 1.063e+005 Iron 0.0003939 0.0003939 20.71 Magnesium 0.001029 0.001029 23.53 Oxygen 56.11 56.11 8.448e+005 Phosphorus 1.042e-005 1.042e-005 0.3037 Potassium 0.1023 0.1023 3765. Silicon 7.885e-005 7.885e-005 2.084 Sodium 0.3741 0.3741 8094. Sulfur 1.041e-006 1.041e-006 0.03141

PAGE 222

Appendix F: (Continued) 207 Step # 839 Xi = 0.2992 Time = 2.5912e+007 secs (299.907 days) Temperature = 41.5 C Pressure = 1.013 bars pH = 4.590 log fO2 = -68.232 Eh = -0.1242 volts pe = -1.9904 Ionic strength = 0.831031 Activity of water = 0.972772 Solvent mass = 1.011470 kg Solution mass = 1.067274 kg Solution density = 1.025 g/cm3 Chlorinity = 0.892368 molal Dissolved solids = 52287 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 247.42 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.1242 1.9904 e+ Fe+++ = Fe++ 0.1772 2.8383 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.9000 0.3842 22.69 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.2102 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.6327 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 3.728e-097 2.282e-010 0.0000 microbe-2 6.000e-007 1.860e-022 -38.63 0.0000 Minerals isolated

PAGE 223

Appendix F: (Continued) 208 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Graphite 0.6133 -0.212 7.366 3.244 Hematite 0.0002059 -3.686 0.03288 0.006233 Pyrite 1.889e-009 -8.724 2.266e-007 4.522e008 Quartz 0.0009031 -3.044 0.05426 0.02049 (total) 7.453 3.271 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8347 2.805e+004 0.6095 0.2935 Na+ 0.3651 7954. 0.6595 0.6184 CO2(aq) 0.1004 4189. 1.0000 0.9981 K+ 0.1001 3711. 0.6095 1.2144 CH4(aq) 0.07671 1166. 1.2072 1.0334 Ca++ 0.07563 2873. 0.2272 1.7649 CaCl+ 0.05184 3711. 0.6595 1.4661 NaCl 0.004346 240.7 1.0000 2.3619 HCO30.002596 150.1 0.6808 2.7526 KCl 0.001007 71.17 1.0000 2.9968 CaHCO3+ 0.0007961 76.28 0.7074 3.2493 Mg++ 0.0007893 18.18 0.2995 3.6263 NaHCO3 0.0004300 34.24 1.0000 3.3665 MgCl+ 0.0002204 12.48 0.6595 3.8376 Fe++ 0.0001952 10.33 0.2272 4.3531 FeCl+ 0.0001646 14.24 0.6595 3.9643 SiO2(aq) 7.795e-005 4.439 1.2072 4.0264

PAGE 224

Appendix F: (Continued) 209 H+ 3.181e-005 0.03039 0.8071 4.5905 FeCl2 2.767e-005 3.324 1.0000 4.5579 H2PO49.366e-006 0.8609 0.6595 5.2092 MgHCO3+ 7.188e-006 0.5812 0.6595 5.3242 FeHCO3+ 1.693e-006 0.1875 0.6595 5.9521 H2S(aq) 1.016e-006 0.03280 1.0000 5.9933 HCH3COO 5.922e-007 0.03370 1.0000 6.2275 CH3COO5.338e-007 0.02987 0.6808 6.4396 FeH2PO4+ 2.888e-007 0.04184 0.6595 6.7202 CaHPO4 2.019e-007 0.02604 1.0000 6.6948 NaHPO41.819e-007 0.02051 0.6595 6.9209 CaCO3 1.389e-007 0.01318 1.0000 6.8573 HPO4-1.051e-007 0.009558 0.1482 7.8077 MgH2PO4+ 9.309e-008 0.01070 0.6595 7.2119 KHPO42.974e-008 0.003807 0.6595 7.7075 H3PO4 2.627e-008 0.002440 1.0000 7.5805 CO3-2.224e-008 0.001265 0.1683 8.4268 HS9.929e-009 0.0003112 0.6358 8.1997 H2(aq) 8.864e-009 1.693e-005 1.2072 7.9706 MgHPO4 3.958e-009 0.0004512 1.0000 8.4025 FeHPO4 3.806e-009 0.0005476 1.0000 8.4196 NaCO32.906e-009 0.0002286 0.6595 8.7175 NaH3SiO4 2.655e-009 0.0002972 1.0000 8.5759 OH1.910e-009 3.079e-005 0.6358 8.9155 H3SiO41.260e-009 0.0001136 0.6595 9.0804 CaCH3COO+ 9.654e-010 9.069e-005 0.6595 9.1961

PAGE 225

Appendix F: (Continued) 210 MgCO3 9.355e-010 7.475e-005 1.0000 9.0290 CaOH+ 7.797e-010 4.218e-005 0.6595 9.2889 FeOH+ 3.996e-010 2.759e-005 0.6595 9.5791 FeCO3 3.360e-010 3.689e-005 1.0000 9.4736 NaOH 1.831e-010 6.940e-006 1.0000 9.7374 Fe(OH)2+ 9.844e-011 8.383e-006 0.6595 10.1876 MgOH+ 8.870e-011 3.473e-006 0.6595 10.2329 HCl 5.541e-011 1.915e-006 1.0000 10.2564 CaPO43.685e-011 4.717e-006 0.6595 10.6143 FeOH++ 1.560e-011 1.077e-006 0.1883 11.5320 Fe(OH)3 2.766e-012 2.801e-007 1.0000 11.5582 H2P2O7-2.590e-012 4.319e-007 0.1482 12.4158 FePO48.681e-013 1.241e-007 0.6595 12.2422 FeCl++ 8.092e-013 7.002e-008 0.1883 12.8171 FeCl2+ 5.416e-013 6.507e-008 0.6595 12.4471 MgPO44.881e-013 5.518e-008 0.6595 12.4923 HP2O7--2.348e-013 3.893e-008 0.0123 14.5390 Fe+++ 6.430e-014 3.403e-009 0.0759 14.3118 FeCO3+ 4.318e-014 4.741e-009 0.6595 13.5455 FeH3SiO4++ 3.190e-014 4.564e-009 0.1883 14.2213 PO4--3.005e-014 2.705e-009 0.0123 15.4320 FeCl3 2.214e-014 3.404e-009 1.0000 13.6548 H3P2O72.581e-015 4.329e-010 0.6595 14.7690 SO4-1.414e-015 1.288e-010 0.1482 15.6786 CaSO4 9.099e-016 1.174e-010 1.0000 15.0410 NaSO44.154e-016 4.687e-011 0.6595 15.5623

PAGE 226

Appendix F: (Continued) 211 Fe(OH)2 3.121e-016 2.658e-011 1.0000 15.5058 FeCl42.803e-016 5.251e-011 0.6595 15.7331 KSO41.524e-016 1.952e-011 0.6595 15.9978 P2O7---1.117e-016 1.841e-011 0.0004 19.3747 S-4.758e-017 1.446e-012 0.1883 17.0478 H2SiO4-4.667e-017 4.162e-012 0.1482 17.1601 Fe(OH)44.593e-017 5.392e-012 0.6595 16.5187 MgSO4 9.788e-018 1.117e-012 1.0000 17.0093 FeSO4 1.593e-018 2.294e-013 1.0000 17.7977 HSO41.345e-018 1.237e-013 0.6595 18.0521 H4P2O7 2.869e-019 4.838e-014 1.0000 18.5423 Fe2(OH)2++++ 6.460e-021 8.920e-016 0.0185 21.9215 S2-1.261e-021 7.665e-017 0.1482 21.7284 Fe(OH)37.458e-024 7.554e-019 0.6595 23.3082 H2SO4 4.050e-026 3.765e-021 1.0000 25.3925 FeSO4+ 3.627e-026 5.222e-021 0.6595 25.6212 S3-6.194e-027 5.646e-022 0.1482 27.0372 H(O-phth)4.803e-028 7.516e-023 0.6595 27.4993 (O-phth)-2.857e-028 4.444e-023 0.1482 28.3732 Fe3(OH)4(5+) 1.531e-028 3.418e-023 0.0019 30.5407 S4-1.180e-029 1.434e-024 0.1482 29.7572 H2(O-phth) 9.349e-030 1.472e-024 1.0000 29.0292 FeHSO4++ 1.269e-030 1.838e-025 0.1883 30.6219 Mg4(OH)4++++ 1.032e-031 1.616e-026 0.0185 32.7180 S5-3.159e-035 4.800e-030 0.1482 35.3296 Fe(SO4)21.551e-040 3.645e-035 0.6595 39.9901

PAGE 227

Appendix F: (Continued) 212 S6-4.152e-041 7.569e-036 0.1482 41.2109 O2(aq) 5.032e-072 1.526e-067 1.2072 71.2165 ClO41.880e-158 1.772e-153 0.6358 157.9225 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Graphite 0.0000 sat K2CO3^3/2H2O -14.4940 Pyrite 0.0000 sat Greenalite -14.6128 Hematite 0.0000 sat Diopside -14.7629 Quartz -0.2779 NaFeO2(c) -14.9887 Tridymite -0.4290 Artinite -15.0320 Goethite -0.5121 MgCl2^2H2O -16.2700 Chalcedony -0.5350 Arcanite -16.6040 Cristobalite -0.7944 Thenardite -16.6350 Hydroxyapatite -0.9988 Mirabilite -16.7111 Whitlockite -1.0142 Na2SiO3 -17.5727 Calcite -1.4032 Epsomite -17.6894 Amrph^silica -1.4520 Na2Si2O5 -17.7177 Aragonite -1.5660 Hexahydrite -17.7449 Siderite -1.9900 Melanterite -17.8408 Pyrrhotite -2.1828 Leonhardtite -18.3003 Monohydrocalcite -2.4586 Kieserite -18.7221 Halite -2.5310 Monticellite -18.9941 Sylvite -2.6118 KMgCl3^2H2O -19.1527 Strengite -3.2148 Forsterite -19.1554 Dolomite-ord -3.6716 MgCl2^H2O -19.3591 Dolomite -3.6716 Mg2Cl(OH)3^4H2O -19.3742 Magnesite -3.8039 Talc -19.4890 Troilite -4.1007 Ca2Si3O8^5/2H2O -19.7088 Magnetite -4.6456 Mercallite -20.4921 Fe(OH)3(ppd) -4.7517 Ca2Cl2(OH)2^H2O -20.5077 Kalicinite -4.8255 Kainite -20.5878 Dolomite-dis -5.1043 Chrysotile -20.9059 Sulfur-Rhmb -5.6641 Andradite -20.9962 FeO(c) -5.6914 FeSO4(c) -21.9799 Ferrosilite -6.0541 MgSO4(c) -23.4659 Antarcticite -6.5775 Lime -23.5222 Nesquehonite -6.8730 Ca2SiO4^7/6H2O -24.2373 CaCl2^4H2O -7.1801 MHSH(Mg1.5) -24.5395 Fe(OH)2(ppd) -7.2335 Ca2SiO4(gamma) -24.6801 Wustite -7.4569 Chloromagnesite -24.7408 Vivianite -7.6347 KMgCl3 -25.9188 Bischofite -8.6551 Larnite -26.0456 Enstatite -9.1449 Molysite -27.2683 Cronstedt-7A -9.4189 Tachyhydrite -27.5382 Wollastonite -9.5075 O-phth acid(c) -27.8816 Pseudowollastoni -9.8632 Akermanite -30.1730 Brucite -9.8923 Hydromagnesite -30.5390 CaCl2^2H2O -10.0346 Sepiolite -31.3490

PAGE 228

Appendix F: (Continued) 213 CaCl2^H2O -10.0824 Rankinite -34.9462 Carnallite -10.2927 Jarosite-K -37.3649 CaSi2O5^2H2O -10.3893 Na3H(SO4)2 -37.6105 Pirssonite -11.2430 Ferrite-2-Ca -38.7843 MgCl2^4H2O -11.2975 Ca3Si2O7^3H2O -43.1193 Gaylussite -11.7151 Burkeite -43.6921 KNaCO3^6H2O -11.7371 Ca4Si3O10^3/2H2O -43.9626 Fayalite -12.0141 Merwinite -44.5463 Ferrite-Ca -12.8635 Tremolite -47.2747 Anhydrite -12.9799 K8H4(CO3)6^3H2O -48.1177 Gypsum -12.9834 Ca4Cl2(OH)6^13H2 -48.5740 Lawrencite -13.1920 Ca5Si6O17^21/2H2 -48.9583 Hydrophilite -13.4035 Ca5Si6O17^11/2H2 -50.2266 Bassanite -13.6140 Ca3SiO5 -51.7726 CaSO4^1/2H2O(bet -13.7632 Na4SiO4 -51.8931 Ca(OH)2(c) -14.0144 Ca5Si6O17^3H2O -53.5019 Portlandite -14.0144 Anthophyllite -56.3843 Hedenbergite -14.0496 Ca6Si6O18^H2O -67.4347 Ferrite-Mg -14.1516 Fe2(SO4)3(c) -74.1672 MgOHCl -14.2904 Na6Si2O7 -81.5976 Minnesotaite -14.4095 Misenite -139.4418 Huntite -14.4305 Antigorite -161.3775 Gases fugacity log fug. ----------------------------------------------CH4(g) 69.45 1.842 CO2(g) 3.941 0.596 Steam 0.07615 -1.118 H2S(g) 1.576e-005 -4.803 H2(g) 1.437e-005 -4.843 S2(g) 8.805e-025 -24.055 O2(g) 5.866e-069 -68.232 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CO2(aq) 0.0278629 0.0278629 Ca++ 0.129741 0.129741 Cl0.902603 0.902603 Fe++ 0.000393413 0.000393413 Graphite 0.155189 0.155189 H+ -0.00384368 -0.00384368 H2O 56.3044 56.3044 H2PO41.04189e-005 1.04189e-005 Hematite 5.98393e-011 5.98393e-011 K+ 0.102306 0.102306 Mg++ 0.00102859 0.00102859 Na+ 0.374079 0.374079 Pyrite 5.18632e-007 5.18632e-007 SiO2(aq) 7.88516e-005 7.88516e-005 In fluid Sorbed Kd

PAGE 229

Appendix F: (Continued) 214 Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.130 0.130 4.87e+003 Cl0.903 0.903 3.00e+004 Fe++ 0.000394 0.000394 20.6 Fe+++ 1.20e-010 1.20e-010 6.26e-006 H+ 0.179 0.179 169. H2O 56.1 56.1 9.47e+005 HCO30.183 0.183 1.05e+004 HPO4-1.04e-005 1.04e-005 0.937 K+ 0.102 0.102 3.75e+003 Mg++ 0.00103 0.00103 23.4 Na+ 0.374 0.374 8.06e+003 O2(aq) -0.155 -0.155-4.65e+003 SO4-1.04e-006 1.04e-006 0.0934 SiO2(aq) 7.89e-005 7.89e-005 4.44 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.1297 0.1297 4872. Carbon 0.1831 0.1831 2060. Chlorine 0.9026 0.9026 2.998e+004 Hydrogen 112.6 112.6 1.063e+005 Iron 0.0003939 0.0003939 20.61 Magnesium 0.001029 0.001029 23.42 Oxygen 56.36 56.36 8.449e+005 Phosphorus 1.042e-005 1.042e-005 0.3024 Potassium 0.1023 0.1023 3748. Silicon 7.885e-005 7.885e-005 2.075 Sodium 0.3741 0.3741 8058. Sulfur 1.037e-006 1.037e-006 0.03116

PAGE 230

Appendix F: (Continued) 215 Step # 841 Xi = 0.3000 Time = 2.59805e+007 secs (300.7 days) Temperature = 41.5 C Pressure = 1.013 bars pH = 4.600 log fO2 = -68.222 Eh = -0.1249 volts pe = -2.0002 Ionic strength = 0.831053 Activity of water = 0.972772 Solvent mass = 1.011502 kg Solution mass = 1.067313 kg Solution density = 1.025 g/cm3 Chlorinity = 0.892340 molal Dissolved solids = 52291 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 253.01 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.1249 2.0002 e+ Fe+++ = Fe++ 0.1753 2.8082 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.8989 0.3853 22.75 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.2097 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.6303 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 2.107e-097 2.280e-010 0.0000 microbe-2 6.000e-007 1.659e-022 -38.47 0.0000 Minerals isolated

PAGE 231

Appendix F: (Continued) 216 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Graphite 0.6152 -0.211 7.389 3.254 Hematite 0.0002059 -3.686 0.03288 0.006233 Pyrite 1.189e-008 -7.925 1.427e-006 2.848e007 Quartz 0.0009031 -3.044 0.05426 0.02049 (total) 7.476 3.281 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8347 2.805e+004 0.6095 0.2935 Na+ 0.3650 7953. 0.6595 0.6185 CO2(aq) 0.1004 4188. 1.0000 0.9982 K+ 0.1001 3710. 0.6095 1.2145 CH4(aq) 0.07679 1167. 1.2071 1.0330 Ca++ 0.07564 2873. 0.2272 1.7649 CaCl+ 0.05181 3709. 0.6595 1.4664 NaCl 0.004349 240.9 1.0000 2.3616 HCO30.002654 153.5 0.6808 2.7430 KCl 0.001008 71.21 1.0000 2.9966 CaHCO3+ 0.0008142 78.01 0.7074 3.2396 Mg++ 0.0007892 18.18 0.2995 3.6264 NaHCO3 0.0004392 34.97 1.0000 3.3573 MgCl+ 0.0002203 12.48 0.6595 3.8378 Fe++ 0.0001950 10.32 0.2272 4.3536 FeCl+ 0.0001647 14.25 0.6595 3.9640 SiO2(aq) 7.795e-005 4.439 1.2071 4.0264

PAGE 232

Appendix F: (Continued) 217 H+ 3.112e-005 0.02973 0.8071 4.6000 FeCl2 2.769e-005 3.326 1.0000 4.5577 H2PO49.355e-006 0.8599 0.6595 5.2098 MgHCO3+ 7.349e-006 0.5942 0.6595 5.3146 FeHCO3+ 1.728e-006 0.1913 0.6595 5.9434 H2S(aq) 9.957e-007 0.03216 1.0000 6.0019 HCH3COO 5.927e-007 0.03373 1.0000 6.2272 CH3COO5.461e-007 0.03056 0.6808 6.4297 FeH2PO4+ 2.884e-007 0.04177 0.6595 6.7208 CaHPO4 2.063e-007 0.02661 1.0000 6.6854 NaHPO41.861e-007 0.02099 0.6595 6.9110 CaCO3 1.453e-007 0.01378 1.0000 6.8377 HPO4-1.073e-007 0.009760 0.1482 7.7986 MgH2PO4+ 9.303e-008 0.01069 0.6595 7.2122 KHPO43.041e-008 0.003894 0.6595 7.6977 H3PO4 2.568e-008 0.002385 1.0000 7.5903 CO3-2.325e-008 0.001322 0.1683 8.4075 HS9.962e-009 0.0003122 0.6358 8.1983 H2(aq) 8.895e-009 1.699e-005 1.2071 7.9691 MgHPO4 4.043e-009 0.0004609 1.0000 8.3933 FeHPO4 3.885e-009 0.0005590 1.0000 8.4106 NaCO33.034e-009 0.0002386 0.6595 8.6988 NaH3SiO4 2.716e-009 0.0003040 1.0000 8.5661 OH1.958e-009 3.156e-005 0.6358 8.9048 H3SiO41.289e-009 0.0001162 0.6595 9.0704 CaCH3COO+ 9.888e-010 9.289e-005 0.6595 9.1857

PAGE 233

Appendix F: (Continued) 218 MgCO3 9.783e-010 7.817e-005 1.0000 9.0095 CaOH+ 7.997e-010 4.327e-005 0.6595 9.2779 FeOH+ 4.090e-010 2.824e-005 0.6595 9.5691 FeCO3 3.501e-010 3.844e-005 1.0000 9.4559 NaOH 1.876e-010 7.113e-006 1.0000 9.7267 Fe(OH)2+ 9.634e-011 8.204e-006 0.6595 10.1970 MgOH+ 9.097e-011 3.562e-006 0.6595 10.2219 HCl 5.446e-011 1.882e-006 1.0000 10.2639 CaPO43.850e-011 4.928e-006 0.6595 10.5953 FeOH++ 1.492e-011 1.030e-006 0.1883 11.5515 Fe(OH)3 2.773e-012 2.809e-007 1.0000 11.5570 H2P2O7-2.590e-012 4.318e-007 0.1482 12.4160 FePO49.061e-013 1.295e-007 0.6595 12.2236 FeCl++ 7.566e-013 6.547e-008 0.1883 12.8464 MgPO45.098e-013 5.763e-008 0.6595 12.4734 FeCl2+ 5.065e-013 6.084e-008 0.6595 12.4763 HP2O7--2.400e-013 3.979e-008 0.0123 14.5298 Fe+++ 6.002e-014 3.177e-009 0.0758 14.3418 FeCO3+ 4.200e-014 4.612e-009 0.6595 13.5576 PO4--3.139e-014 2.825e-009 0.0123 15.4132 FeH3SiO4++ 3.046e-014 4.357e-009 0.1883 14.2416 FeCl3 2.071e-014 3.184e-009 1.0000 13.6837 H3P2O72.525e-015 4.234e-010 0.6595 14.7786 SO4-1.450e-015 1.320e-010 0.1482 15.6680 CaSO4 9.329e-016 1.204e-010 1.0000 15.0302 NaSO44.258e-016 4.804e-011 0.6595 15.5516

PAGE 234

Appendix F: (Continued) 219 Fe(OH)2 3.278e-016 2.792e-011 1.0000 15.4844 FeCl42.625e-016 4.917e-011 0.6595 15.7617 KSO41.562e-016 2.001e-011 0.6595 15.9871 P2O7---1.167e-016 1.923e-011 0.0004 19.3560 S-4.894e-017 1.487e-012 0.1883 17.0356 H2SiO4-4.894e-017 4.364e-012 0.1482 17.1396 Fe(OH)44.709e-017 5.528e-012 0.6595 16.5079 MgSO4 1.003e-017 1.144e-012 1.0000 16.9986 FeSO4 1.631e-018 2.349e-013 1.0000 17.7874 HSO41.350e-018 1.242e-013 0.6595 18.0503 H4P2O7 2.745e-019 4.630e-014 1.0000 18.5615 Fe2(OH)2++++ 5.895e-021 8.141e-016 0.0185 21.9613 S2-1.270e-021 7.720e-017 0.1482 21.7253 Fe(OH)38.027e-024 8.130e-019 0.6595 23.2762 H2SO4 3.984e-026 3.703e-021 1.0000 25.3997 FeSO4+ 3.474e-026 5.002e-021 0.6595 25.6400 S3-6.106e-027 5.566e-022 0.1482 27.0434 H(O-phth)4.928e-028 7.711e-023 0.6595 27.4882 (O-phth)-2.996e-028 4.659e-023 0.1482 28.3528 Fe3(OH)4(5+) 1.362e-028 3.040e-023 0.0019 30.5918 S4-1.139e-029 1.384e-024 0.1482 29.7727 H2(O-phth) 9.380e-030 1.477e-024 1.0000 29.0278 FeHSO4++ 1.189e-030 1.723e-025 0.1883 30.6502 Mg4(OH)4++++ 1.146e-031 1.795e-026 0.0185 32.6725 S5-2.986e-035 4.536e-030 0.1482 35.3542 Fe(SO4)21.523e-040 3.578e-035 0.6595 39.9982

PAGE 235

Appendix F: (Continued) 220 S6-3.842e-041 7.004e-036 0.1482 41.2447 O2(aq) 5.149e-072 1.561e-067 1.2071 71.2065 ClO41.974e-158 1.861e-153 0.6358 157.9012 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Pyrite 0.0000 sat K2CO3^3/2H2O -14.4761 Graphite 0.0000 sat Greenalite -14.5531 Hematite 0.0000 sat Diopside -14.7216 Quartz -0.2786 NaFeO2(c) -14.9770 Tridymite -0.4296 Artinite -14.9910 Goethite -0.5122 MgCl2^2H2O -16.2679 Chalcedony -0.5357 Arcanite -16.5938 Cristobalite -0.7950 Thenardite -16.6243 Hydroxyapatite -0.9301 Mirabilite -16.7026 Whitlockite -0.9749 Na2SiO3 -17.5518 Calcite -1.3835 Epsomite -17.6792 Amrph^silica -1.4524 Na2Si2O5 -17.6974 Aragonite -1.5463 Hexahydrite -17.7342 Siderite -1.9706 Melanterite -17.8309 Pyrrhotite -2.1797 Leonhardtite -18.2893 Monohydrocalcite -2.4391 Kieserite -18.7103 Halite -2.5311 Monticellite -18.9515 Sylvite -2.6122 Forsterite -19.1127 Strengite -3.2257 KMgCl3^2H2O -19.1509 Dolomite-ord -3.6321 Mg2Cl(OH)3^4H2O -19.3444 Dolomite -3.6321 MgCl2^H2O -19.3564 Magnesite -3.7838 Talc -19.4283 Troilite -4.0899 Ca2Si3O8^5/2H2O -19.6685 Magnetite -4.6250 Ca2Cl2(OH)2^H2O -20.4866 Fe(OH)3(ppd) -4.7514 Mercallite -20.4919 Kalicinite -4.8173 Kainite -20.5769 Dolomite-dis -5.0645 Chrysotile -20.8438 FeO(c) -5.6707 Andradite -20.9350 Sulfur-Rhmb -5.6732 FeSO4(c) -21.9679 Ferrosilite -6.0341 MgSO4(c) -23.4531 Antarcticite -6.5776 Lime -23.4987 Nesquehonite -6.8533 Ca2SiO4^7/6H2O -24.1945 CaCl2^4H2O -7.1798 MHSH(Mg1.5) -24.5165 Fe(OH)2(ppd) -7.2129 Ca2SiO4(gamma) -24.6369 Wustite -7.4391 Chloromagnesite -24.7371 Vivianite -7.5976 KMgCl3 -25.9157 Bischofite -8.6548 Larnite -26.0021 Enstatite -9.1240 Molysite -27.2947 Cronstedt-7A -9.3790 Tachyhydrite -27.5362 Wollastonite -9.4866 O-phth acid(c) -27.8810 Pseudowollastoni -9.8422 Akermanite -30.1092 Brucite -9.8708 Hydromagnesite -30.4372 CaCl2^2H2O -10.0335 Sepiolite -31.2690

PAGE 236

Appendix F: (Continued) 221 CaCl2^H2O -10.0811 Rankinite -34.8819 Carnallite -10.2929 Jarosite-K -37.3722 CaSi2O5^2H2O -10.3697 Na3H(SO4)2 -37.6003 Pirssonite -11.2062 Ferrite-2-Ca -38.7382 MgCl2^4H2O -11.2965 Ca3Si2O7^3H2O -43.0547 Gaylussite -11.6799 Burkeite -43.6541 KNaCO3^6H2O -11.7216 Ca4Si3O10^3/2H2O -43.8781 Fayalite -11.9734 Merwinite -44.4602 Ferrite-Ca -12.8414 Tremolite -47.1318 Anhydrite -12.9687 K8H4(CO3)6^3H2O -48.0491 Gypsum -12.9726 Ca4Cl2(OH)6^13H2 -48.5167 Lawrencite -13.1904 Ca5Si6O17^21/2H2 -48.8573 Hydrophilite -13.4016 Ca5Si6O17^11/2H2 -50.1243 Bassanite -13.6029 Ca3SiO5 -51.7053 CaSO4^1/2H2O(bet -13.7520 Na4SiO4 -51.8481 Ca(OH)2(c) -13.9924 Ca5Si6O17^3H2O -53.3985 Portlandite -13.9924 Anthophyllite -56.2397 Hedenbergite -14.0090 Ca6Si6O18^H2O -67.3085 Ferrite-Mg -14.1291 Fe2(SO4)3(c) -74.1895 MgOHCl -14.2782 Na6Si2O7 -81.5297 Huntite -14.3503 Misenite -139.4322 Minnesotaite -14.3510 Antigorite -160.8822 Gases fugacity log fug. ----------------------------------------------CH4(g) 69.54 1.842 CO2(g) 3.944 0.596 Steam 0.07632 -1.117 H2S(g) 1.547e-005 -4.811 H2(g) 1.442e-005 -4.841 S2(g) 8.500e-025 -24.071 O2(g) 6.005e-069 -68.222 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CO2(aq) 0.0278629 0.0278629 Ca++ 0.129741 0.129741 Cl0.902603 0.902603 Fe++ 0.000393413 0.000393413 Graphite 0.155340 0.155340 H+ -0.00393069 -0.00393069 H2O 56.3064 56.3064 H2PO41.04189e-005 1.04189e-005 Hematite 5.83873e-011 5.83873e-011 K+ 0.102306 0.102306 Mg++ 0.00102859 0.00102859 Na+ 0.374079 0.374079 Pyrite 5.08626e-007 5.08626e-007 SiO2(aq) 7.88516e-005 7.88516e-005 In fluid Sorbed Kd

PAGE 237

Appendix F: (Continued) 222 Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.130 0.130 4.87e+003 Cl0.903 0.903 3.00e+004 Fe++ 0.000394 0.000394 20.6 Fe+++ 1.17e-010 1.17e-010 6.11e-006 H+ 0.179 0.179 169. H2O 56.1 56.1 9.47e+005 HCO30.183 0.183 1.05e+004 HPO4-1.04e-005 1.04e-005 0.937 K+ 0.102 0.102 3.75e+003 Mg++ 0.00103 0.00103 23.4 Na+ 0.374 0.374 8.06e+003 O2(aq) -0.155 -0.155-4.66e+003 SO4-1.02e-006 1.02e-006 0.0916 SiO2(aq) 7.89e-005 7.89e-005 4.44 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.1297 0.1297 4872. Carbon 0.1832 0.1832 2062. Chlorine 0.9026 0.9026 2.998e+004 Hydrogen 112.6 112.6 1.063e+005 Iron 0.0003939 0.0003939 20.61 Magnesium 0.001029 0.001029 23.42 Oxygen 56.36 56.36 8.449e+005 Phosphorus 1.042e-005 1.042e-005 0.3024 Potassium 0.1023 0.1023 3748. Silicon 7.885e-005 7.885e-005 2.075 Sodium 0.3741 0.3741 8058. Sulfur 1.017e-006 1.017e-006 0.03056

PAGE 238

Appendix F: (Continued) 223 Step # 857 Xi = 0.3111 Time = 2.69386e+007 secs (311.789 days) Temperature = 42.1 C Pressure = 1.013 bars pH = 4.733 log fO2 = -68.080 Eh = -0.1337 volts pe = -2.1378 Ionic strength = 0.831380 Activity of water = 0.972774 Solvent mass = 1.011948 kg Solution mass = 1.067853 kg Solution density = 1.025 g/cm3 Chlorinity = 0.891946 molal Dissolved solids = 52352 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 345.67 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.1337 2.1378 e+ Fe+++ = Fe++ 0.1493 2.3872 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.8847 0.3995 23.59 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.2035 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.5980 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 7.205e-101 2.280e-010 0.0000 microbe-2 6.000e-007 3.349e-023 -36.20 0.0000 Minerals isolated

PAGE 239

Appendix F: (Continued) 224 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Graphite 0.6414 -0.193 7.704 3.393 Hematite 0.0002059 -3.686 0.03288 0.006233 Hydroxyapatite 6.838e-008 -7.165 3.435e-005 1.091e005 Pyrite 1.328e-007 -6.877 1.593e-005 3.180e006 Quartz 0.0009031 -3.044 0.05426 0.02049 (total) 7.791 3.420 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8347 2.804e+004 0.6093 0.2936 Na+ 0.3647 7945. 0.6593 0.6190 CO2(aq) 0.1001 4175. 1.0000 0.9995 K+ 0.1001 3708. 0.6093 1.2148 CH4(aq) 0.07790 1184. 1.2066 1.0269 Ca++ 0.07571 2876. 0.2269 1.7650 CaCl+ 0.05139 3678. 0.6593 1.4701 NaCl 0.004396 243.5 1.0000 2.3569 HCO30.003606 208.5 0.6807 2.6101 CaHCO3+ 0.001112 106.6 0.7073 3.1041 KCl 0.001015 71.69 1.0000 2.9937 Mg++ 0.0007877 18.14 0.2992 3.6277 NaHCO3 0.0005896 46.93 1.0000 3.2295 MgCl+ 0.0002187 12.38 0.6593 3.8411 Fe++ 0.0001923 10.18 0.2269 4.3602 FeCl+ 0.0001664 14.40 0.6593 3.9598

PAGE 240

Appendix F: (Continued) 225 SiO2(aq) 7.792e-005 4.436 1.2066 4.0268 FeCl2 2.791e-005 3.352 1.0000 4.5543 H+ 2.290e-005 0.02187 0.8072 4.7332 MgHCO3+ 9.995e-006 0.8082 0.6593 5.1811 H2PO48.994e-006 0.8266 0.6593 5.2270 FeHCO3+ 2.286e-006 0.2531 0.6593 5.8219 H2S(aq) 7.558e-007 0.02441 1.0000 6.1216 CH3COO7.510e-007 0.04202 0.6807 6.2914 HCH3COO 5.997e-007 0.03413 1.0000 6.2221 FeH2PO4+ 2.761e-007 0.03998 0.6593 6.7399 CaHPO4 2.726e-007 0.03515 1.0000 6.5645 CaCO3 2.726e-007 0.02586 1.0000 6.5645 NaHPO42.507e-007 0.02827 0.6593 6.7817 HPO4-1.404e-007 0.01277 0.1479 7.6827 MgH2PO4+ 9.003e-008 0.01035 0.6593 7.2265 CO3-4.324e-008 0.002459 0.1680 8.1387 KHPO44.073e-008 0.005213 0.6593 7.5710 H3PO4 1.828e-008 0.001698 1.0000 7.7380 HS1.044e-008 0.0003273 0.6356 8.1779 H2(aq) 9.334e-009 1.783e-005 1.2066 7.9484 NaCO35.539e-009 0.0004356 0.6593 8.4375 MgHPO4 5.322e-009 0.0006067 1.0000 8.2739 FeHPO4 5.059e-009 0.0007279 1.0000 8.2959 NaH3SiO4 3.728e-009 0.0004172 1.0000 8.4285 OH2.769e-009 4.463e-005 0.6356 8.7544 MgCO3 1.827e-009 0.0001460 1.0000 8.7383

PAGE 241

Appendix F: (Continued) 226 H3SiO41.777e-009 0.0001602 0.6593 8.9312 CaCH3COO+ 1.381e-009 0.0001297 0.6593 9.0406 CaOH+ 1.140e-009 6.165e-005 0.6593 9.1242 FeCO3 6.198e-010 6.805e-005 1.0000 9.2077 FeOH+ 5.646e-010 3.898e-005 0.6593 9.4292 NaOH 2.647e-010 1.003e-005 1.0000 9.5772 MgOH+ 1.295e-010 5.072e-006 0.6593 10.0685 Fe(OH)2+ 7.123e-011 6.066e-006 0.6593 10.3282 CaPO46.941e-011 8.883e-006 0.6593 10.3395 HCl 4.276e-011 1.478e-006 1.0000 10.3689 FeOH++ 7.966e-012 5.500e-007 0.1880 11.8247 Fe(OH)3 2.880e-012 2.917e-007 1.0000 11.5406 H2P2O7-2.465e-012 4.110e-007 0.1479 12.4383 FePO41.612e-012 2.303e-007 0.6593 11.9736 MgPO49.147e-013 1.034e-007 0.6593 12.2196 HP2O7--3.104e-013 5.147e-008 0.0122 14.4201 FeCl++ 2.955e-013 2.557e-008 0.1880 13.2554 FeCl2+ 1.980e-013 2.378e-008 0.6593 12.8843 PO4--5.639e-014 5.075e-009 0.0122 15.1608 FeCO3+ 2.849e-014 3.128e-009 0.6593 13.7262 Fe+++ 2.287e-014 1.210e-009 0.0757 14.7620 FeH3SiO4++ 1.590e-014 2.274e-009 0.1880 14.5246 FeCl3 8.142e-015 1.252e-009 1.0000 14.0893 SO4-2.039e-015 1.856e-010 0.1479 15.5206 H3P2O71.770e-015 2.968e-010 0.6593 14.9329 CaSO4 1.319e-015 1.701e-010 1.0000 14.8799

PAGE 242

Appendix F: (Continued) 227 Fe(OH)2 6.522e-016 5.554e-011 1.0000 15.1856 NaSO45.996e-016 6.764e-011 0.6593 15.4031 KSO42.202e-016 2.820e-011 0.6593 15.8381 P2O7---2.051e-016 3.382e-011 0.0004 19.1147 FeCl41.045e-016 1.957e-011 0.6593 16.1618 H2SiO4-9.503e-017 8.474e-012 0.1479 16.8522 S-7.259e-017 2.205e-012 0.1880 16.8651 Fe(OH)46.674e-017 7.835e-012 0.6593 16.3565 MgSO4 1.413e-017 1.612e-012 1.0000 16.8498 FeSO4 2.263e-018 3.258e-013 1.0000 17.6453 HSO41.426e-018 1.311e-013 0.6593 18.0269 H4P2O7 1.415e-019 2.387e-014 1.0000 18.8492 Fe2(OH)2++++ 1.641e-021 2.266e-016 0.0185 22.5183 S2-1.405e-021 8.536e-017 0.1479 21.6824 Fe(OH)32.243e-023 2.272e-018 0.6593 22.8301 H2SO4 3.155e-026 2.932e-021 1.0000 25.5010 FeSO4+ 1.899e-026 2.733e-021 0.6593 25.9025 S3-5.004e-027 4.561e-022 0.1479 27.1307 H(O-phth)7.054e-028 1.104e-022 0.6593 27.3325 (O-phth)-5.793e-028 9.010e-023 0.1479 28.0672 Fe3(OH)4(5+) 2.641e-029 5.896e-024 0.0019 31.3067 H2(O-phth) 9.808e-030 1.544e-024 1.0000 29.0084 S4-6.941e-030 8.435e-025 0.1479 29.9887 Mg4(OH)4++++ 4.976e-031 7.792e-026 0.0185 32.0366 FeHSO4++ 4.782e-031 6.929e-026 0.1880 31.0464 S5-1.354e-035 2.056e-030 0.1479 35.6985

PAGE 243

Appendix F: (Continued) 228 Fe(SO4)21.170e-040 2.750e-035 0.6593 40.1126 S6-1.297e-041 2.364e-036 0.1479 41.7171 O2(aq) 7.083e-072 2.148e-067 1.2066 71.0682 ClO43.898e-158 3.673e-153 0.6356 157.6060 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Hydroxyapatite 0.0000 sat MgOHCl -14.1073 Pyrite 0.0000 sat Diopside -14.1450 Graphite 0.0000 sat K2CO3^3/2H2O -14.2254 Hematite 0.0000 sat Artinite -14.4188 Quartz -0.2879 NaFeO2(c) -14.8134 Tridymite -0.4384 MgCl2^2H2O -16.2384 Whitlockite -0.4471 Arcanite -16.4530 Goethite -0.5132 Thenardite -16.4756 Chalcedony -0.5445 Mirabilite -16.5848 Cristobalite -0.8031 Na2SiO3 -17.2589 Calcite -1.1088 Na2Si2O5 -17.4131 Aragonite -1.2716 Epsomite -17.5377 Amrph^silica -1.4578 Hexahydrite -17.5858 Siderite -1.7000 Melanterite -17.6933 Pyrrhotite -2.1360 Leonhardtite -18.1360 Monohydrocalcite -2.1666 Monticellite -18.3559 Halite -2.5324 Forsterite -18.5148 Sylvite -2.6174 Kieserite -18.5467 Dolomite-ord -3.0807 Talc -18.5799 Dolomite -3.0808 Mg2Cl(OH)3^4H2O -18.9279 Strengite -3.3883 Ca2Si3O8^5/2H2O -19.1051 Magnesite -3.5038 KMgCl3^2H2O -19.1260 Troilite -3.9392 MgCl2^H2O -19.3179 Magnetite -4.3375 Chrysotile -19.9759 Dolomite-dis -4.5092 Andradite -20.0784 Kalicinite -4.7031 Ca2Cl2(OH)2^H2O -20.1927 Fe(OH)3(ppd) -4.7468 Kainite -20.4250 FeO(c) -5.3808 Mercallite -20.4909 Ferrosilite -5.7546 FeSO4(c) -21.8018 Sulfur-Rhmb -5.8009 Lime -23.1701 Nesquehonite -6.5777 MgSO4(c) -23.2758 Antarcticite -6.5791 Ca2SiO4^7/6H2O -23.5957 Fe(OH)2(ppd) -6.9246 Ca2SiO4(gamma) -24.0327 Vivianite -7.0982 MHSH(Mg1.5) -24.1960 CaCl2^4H2O -7.1758 Chloromagnesite -24.6857 Wustite -7.1900 Larnite -25.3945 Bischofite -8.6504 KMgCl3 -25.8724 Cronstedt-7A -8.8217 Tachyhydrite -27.5091 Enstatite -8.8309 Molysite -27.6643 Wollastonite -9.1948 O-phth acid(c) -27.8728 Pseudowollastoni -9.5492 Hydromagnesite -29.0167

PAGE 244

Appendix F: (Continued) 229 Brucite -9.5699 Akermanite -29.2168 CaCl2^2H2O -10.0179 Sepiolite -30.1512 CaCl2^H2O -10.0628 Rankinite -33.9836 CaSi2O5^2H2O -10.0961 Na3H(SO4)2 -37.4603 Carnallite -10.2958 Jarosite-K -37.4764 Pirssonite -10.6932 Ferrite-2-Ca -38.0945 Gaylussite -11.1885 Ca3Si2O7^3H2O -42.1522 MgCl2^4H2O -11.2827 Ca4Si3O10^3/2H2O -42.6962 Fayalite -11.4040 Burkeite -43.1239 KNaCO3^6H2O -11.5050 Merwinite -43.2564 Ferrite-Ca -12.5315 Tremolite -45.1334 Anhydrite -12.8138 K8H4(CO3)6^3H2O -47.0913 Gypsum -12.8234 Ca5Si6O17^21/2H2 -47.4461 Lawrencite -13.1685 Ca4Cl2(OH)6^13H2 -47.7161 Huntite -13.2315 Ca5Si6O17^11/2H2 -48.6940 Hydrophilite -13.3742 Ca3SiO5 -50.7645 Hedenbergite -13.4409 Na4SiO4 -51.2189 Bassanite -13.4479 Ca5Si6O17^3H2O -51.9536 Minnesotaite -13.5332 Anthophyllite -54.2176 CaSO4^1/2H2O(bet -13.5963 Ca6Si6O18^H2O -65.5434 Ca(OH)2(c) -13.6849 Fe2(SO4)3(c) -74.5032 Portlandite -13.6849 Na6Si2O7 -80.5800 Greenalite -13.7188 Misenite -139.3037 Ferrite-Mg -13.8154 Antigorite -153.9578 Gases fugacity log fug. ----------------------------------------------CH4(g) 70.86 1.850 CO2(g) 3.980 0.600 Steam 0.07882 -1.103 H2(g) 1.515e-005 -4.820 H2S(g) 1.196e-005 -4.922 S2(g) 5.193e-025 -24.285 O2(g) 8.317e-069 -68.080 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CO2(aq) 0.0278629 0.0278629 Ca++ 0.129723 0.129723 Cl0.902603 0.902603 Fe++ 0.000393413 0.000393413 Graphite 0.157654 0.157654 H+ -0.00533784 -0.00533784 H2O 56.3350 56.3350 Hematite 4.18172e-011 4.18172e-011 Hydroxyapatite 3.40459e-006 3.40459e-006 K+ 0.102306 0.102306 Mg++ 0.00102859 0.00102859 Na+ 0.374079 0.374079 Pyrite 3.87694e-007 3.87694e-007 SiO2(aq) 7.88516e-005 7.88516e-005

PAGE 245

Appendix F: (Continued) 230 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.130 0.130 4.87e+003 Cl0.903 0.903 3.00e+004 Fe++ 0.000394 0.000394 20.6 Fe+++ 8.36e-011 8.36e-011 4.37e-006 H+ 0.180 0.180 170. H2O 56.1 56.1 9.47e+005 HCO30.186 0.186 1.06e+004 HPO4-1.02e-005 1.02e-005 0.918 K+ 0.102 0.102 3.75e+003 Mg++ 0.00103 0.00103 23.4 Na+ 0.374 0.374 8.05e+003 O2(aq) -0.158 -0.158-4.72e+003 SO4-7.75e-007 7.75e-007 0.0697 SiO2(aq) 7.89e-005 7.89e-005 4.44 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.1297 0.1297 4870. Carbon 0.1855 0.1855 2087. Chlorine 0.9026 0.9026 2.997e+004 Hydrogen 112.7 112.7 1.063e+005 Iron 0.0003938 0.0003938 20.60 Magnesium 0.001029 0.001029 23.41 Oxygen 56.39 56.39 8.449e+005 Phosphorus 1.021e-005 1.021e-005 0.2963 Potassium 0.1023 0.1023 3746. Silicon 7.885e-005 7.885e-005 2.074 Sodium 0.3741 0.3741 8054. Sulfur 7.754e-007 7.754e-007 0.02328

PAGE 246

Appendix F: (Continued) 231 Step # 905 Xi = 0.3619 Time = 3.13201e+007 secs (362.501 days) Temperature = 44.9 C Pressure = 1.013 bars pH = 5.342 log fO2 = -67.501 Eh = -0.1756 volts pe = -2.7819 Ionic strength = 0.809628 Activity of water = 0.972505 Solvent mass = 1.013073 kg Solution mass = 1.068532 kg Solution density = 1.023 g/cm3 Chlorinity = 0.890956 molal Dissolved solids = 51902 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 1377.26 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.1756 2.7819 e+ Fe+++ = Fe++ 0.0295 0.4679 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.8195 0.4647 27.44 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.1769 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.4523 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 1.015e-116 2.270e-010 0.0000 microbe-2 6.000e-007 2.224e-026 -26.00 0.0000 Minerals isolated

PAGE 247

Appendix F: (Continued) 232 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.02032 -1.692 2.034 0.7506 Graphite 0.7368 -0.133 8.849 3.898 Hematite 0.0002059 -3.686 0.03288 0.006233 Hydroxyapatite 3.293e-006 -5.482 0.001654 0.0005255 Pyrite 4.007e-007 -6.397 4.807e-005 9.593e006 Quartz 0.0009031 -3.044 0.05426 0.02049 (total) 10.97 4.675 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8431 2.834e+004 0.6095 0.2892 Na+ 0.3626 7904. 0.6592 0.6215 K+ 0.09992 3704. 0.6095 1.2154 CH4(aq) 0.09507 1446. 1.1981 0.9435 CO2(aq) 0.08469 3534. 1.0000 1.0722 Ca++ 0.06296 2393. 0.2267 1.8455 CaCl+ 0.04172 2987. 0.6592 1.5607 HCO30.01253 724.8 0.6804 2.0693 NaCl 0.004670 258.8 1.0000 2.3307 CaHCO3+ 0.003307 316.9 0.7068 2.6313 NaHCO3 0.001940 154.5 1.0000 2.7123 KCl 0.001062 75.05 1.0000 2.9739 Mg++ 0.0007691 17.72 0.2987 3.6388 MgCl+ 0.0002117 11.99 0.6592 3.8553 Fe++ 0.0001777 9.410 0.2267 4.3948

PAGE 248

Appendix F: (Continued) 233 FeCl+ 0.0001744 15.10 0.6592 3.9395 SiO2(aq) 7.781e-005 4.433 1.1981 4.0305 MgHCO3+ 3.451e-005 2.791 0.6592 4.6431 FeCl2 2.934e-005 3.526 1.0000 4.5326 FeHCO3+ 6.979e-006 0.7732 0.6592 5.3372 H+ 5.638e-006 0.005388 0.8063 5.3424 CaCO3 3.446e-006 0.3270 1.0000 5.4626 CH3COO3.135e-006 0.1755 0.6804 5.6711 CO3-6.260e-007 0.03561 0.1681 6.9779 HCH3COO 6.155e-007 0.03505 1.0000 6.2107 H2PO43.900e-007 0.03586 0.6592 6.5899 H2S(aq) 2.231e-007 0.007208 1.0000 6.6515 NaCO37.415e-008 0.005835 0.6592 7.3109 NaHPO45.079e-008 0.005729 0.6592 7.4752 CaHPO4 4.210e-008 0.005431 1.0000 7.3757 MgCO3 2.682e-008 0.002144 1.0000 7.5716 HPO4-2.467e-008 0.002245 0.1481 8.4372 NaH3SiO4 1.577e-008 0.001765 1.0000 7.8023 OH1.344e-008 0.0002167 0.6357 8.0683 HS1.343e-008 0.0004211 0.6357 8.0687 H2(aq) 1.253e-008 2.394e-005 1.1981 7.8236 FeH2PO4+ 1.162e-008 0.001684 0.6592 8.1158 KHPO48.062e-009 0.001033 0.6592 8.2745 H3SiO47.653e-009 0.0006901 0.6592 8.2971 FeCO3 7.166e-009 0.0007871 1.0000 8.1447 CaCH3COO+ 5.159e-009 0.0004848 0.6592 8.4685

PAGE 249

Appendix F: (Continued) 234 CaOH+ 4.776e-009 0.0002585 0.6592 8.5019 MgH2PO4+ 3.975e-009 0.0004572 0.6592 8.5816 FeOH+ 2.438e-009 0.0001684 0.6592 8.7940 NaOH 1.273e-009 4.828e-005 1.0000 8.8951 MgHPO4 9.593e-010 0.0001094 1.0000 9.0181 FeHPO4 8.709e-010 0.0001254 1.0000 9.0600 MgOH+ 6.422e-010 2.515e-005 0.6592 9.3733 H3PO4 2.006e-010 1.864e-005 1.0000 9.6976 CaPO44.423e-011 5.664e-006 0.6592 10.5353 Fe(OH)2+ 1.788e-011 1.524e-006 0.6592 10.9285 HCl 1.431e-011 4.945e-007 1.0000 10.8445 Fe(OH)3 3.421e-012 3.467e-007 1.0000 11.4658 FePO41.150e-012 1.644e-007 0.6592 12.1205 MgPO46.766e-013 7.652e-008 0.6592 12.3506 FeOH++ 4.490e-013 3.102e-008 0.1880 13.0737 PO4--4.149e-014 3.736e-009 0.0123 15.2923 Fe(OH)2 1.494e-014 1.273e-009 1.0000 13.8256 SO4-7.514e-015 6.843e-010 0.1481 14.9536 H2P2O7-5.263e-015 8.780e-010 0.1481 15.1082 CaSO4 4.176e-015 5.390e-010 1.0000 14.3793 FeCO3+ 4.159e-015 4.568e-010 0.6592 14.5620 FeCl++ 4.040e-015 3.497e-010 0.1880 15.1196 FeCl2+ 2.770e-015 3.328e-010 0.6592 14.7386 HP2O7--2.652e-015 4.399e-010 0.0123 16.4867 NaSO42.238e-015 2.526e-010 0.6592 14.8312 H2SiO4-1.939e-015 1.730e-010 0.1481 15.5418

PAGE 250

Appendix F: (Continued) 235 KSO48.287e-016 1.062e-010 0.6592 15.2626 FeH3SiO4++ 8.052e-016 1.152e-010 0.1880 15.8200 S-4.531e-016 1.377e-011 0.1880 16.0697 Fe(OH)43.268e-016 3.839e-011 0.6592 15.6667 Fe+++ 2.758e-016 1.460e-011 0.0754 16.6822 FeCl3 1.183e-016 1.819e-011 1.0000 15.9271 MgSO4 5.223e-017 5.961e-012 1.0000 16.2821 FeSO4 7.823e-018 1.127e-012 1.0000 17.1066 P2O7---6.966e-018 1.149e-012 0.0004 20.5804 FeCl41.628e-018 3.050e-013 0.6592 17.9694 HSO41.427e-018 1.313e-013 0.6592 18.0267 H3P2O79.431e-019 1.582e-013 0.6592 18.2065 Fe(OH)32.416e-021 2.448e-016 0.6592 20.7980 S2-2.214e-021 1.346e-016 0.1481 21.4842 H4P2O7 1.844e-023 3.112e-018 1.0000 22.7342 Fe2(OH)2++++ 4.699e-024 6.492e-019 0.0183 25.0645 (O-phth)-9.853e-027 1.533e-021 0.1481 26.8359 H2SO4 8.472e-027 7.878e-022 1.0000 26.0720 H(O-phth)3.067e-027 4.802e-022 0.6592 26.6943 S3-1.943e-027 1.772e-022 0.1481 27.5409 FeSO4+ 9.384e-028 1.351e-022 0.6592 27.2086 Mg4(OH)4++++ 3.796e-028 5.948e-023 0.0183 29.1571 H2(O-phth) 1.012e-029 1.593e-024 1.0000 28.9950 S4-6.737e-031 8.191e-026 0.1481 31.0010 Fe3(OH)4(5+) 1.441e-032 3.219e-027 0.0018 34.5743 FeHSO4++ 5.780e-033 8.379e-028 0.1880 32.9640

PAGE 251

Appendix F: (Continued) 236 S5-3.298e-037 5.012e-032 0.1481 37.3112 Fe(SO4)22.146e-041 5.046e-036 0.6592 40.8493 S6-7.955e-044 1.451e-038 0.1481 43.9288 O2(aq) 2.619e-071 7.944e-067 1.1981 70.5034 ClO46.442e-157 6.074e-152 0.6357 156.3878 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Calcite 0.0000 sat CaSO4^1/2H2O(bet -13.0710 Pyrite 0.0000 sat K2CO3^3/2H2O -13.1439 Hematite 0.0000 sat Hydrophilite -13.3186 Hydroxyapatite 0.0000 sat MgOHCl -13.3276 Graphite -0.0052 NaFeO2(c) -14.0676 Aragonite -0.1625 Talc -14.7259 Quartz -0.3316 Monticellite -15.7221 Tridymite -0.4798 Forsterite -15.7967 Goethite -0.5181 Thenardite -15.9027 Siderite -0.5344 Arcanite -15.9126 Chalcedony -0.5859 Na2SiO3 -15.9230 Dolomite-ord -0.7794 Chrysotile -16.0307 Dolomite -0.7794 MgCl2^2H2O -16.0993 Cristobalite -0.8412 Na2Si2O5 -16.1180 Whitlockite -0.8419 Mirabilite -16.1548 Monohydrocalcite -1.0681 Andradite -16.4082 Amrph^silica -1.4840 Ca2Si3O8^5/2H2O -16.6949 Pyrrhotite -1.9216 Epsomite -17.0047 Dolomite-dis -2.1899 Hexahydrite -17.0201 Magnesite -2.2963 Mg2Cl(OH)3^4H2O -17.0312 Halite -2.5329 Melanterite -17.1758 Sylvite -2.6345 Leonhardtite -17.5489 Magnetite -3.0280 Kieserite -17.9115 Troilite -3.2376 Ca2Cl2(OH)2^H2O -18.9992 FeO(c) -4.0611 KMgCl3^2H2O -19.0012 Kalicinite -4.2462 MgCl2^H2O -19.1381 Ferrosilite -4.4832 Kainite -19.8363 Fe(OH)3(ppd) -4.7262 Mercallite -20.5911 Nesquehonite -5.3930 Ca2SiO4^7/6H2O -21.0217 Strengite -5.4153 FeSO4(c) -21.1540 Fe(OH)2(ppd) -5.6120 Ca2SiO4(gamma) -21.4343 Wustite -6.0558 Lime -21.7500 Cronstedt-7A -6.2855 MgSO4(c) -22.5781 Sulfur-Rhmb -6.3982 Larnite -22.7807 Antarcticite -6.6558 Hydromagnesite -22.8213 CaCl2^4H2O -7.2272 MHSH(Mg1.5) -22.8466 Vivianite -7.3972 Chloromagnesite -24.4472 Enstatite -7.4989 Sepiolite -25.0751 Wollastonite -7.9431 Akermanite -25.3088

PAGE 252

Appendix F: (Continued) 237 Brucite -8.2016 KMgCl3 -25.6640 Pseudowollastoni -8.2918 Tachyhydrite -27.4458 Huntite -8.4814 O-phth acid(c) -27.9106 Pirssonite -8.5615 Molysite -29.3392 Bischofite -8.6261 Rankinite -30.1229 Fayalite -8.8124 Ferrite-2-Ca -35.3155 CaSi2O5^2H2O -8.9286 Tremolite -36.2014 Gaylussite -9.1556 Na3H(SO4)2 -37.0331 Minnesotaite -9.8147 Ca4Si3O10^3/2H2O -37.6209 Greenalite -9.9225 Merwinite -38.0063 CaCl2^2H2O -10.0162 Jarosite-K -38.1664 CaCl2^H2O -10.0485 Ca3Si2O7^3H2O -38.2729 Carnallite -10.2976 Burkeite -40.9803 KNaCO3^6H2O -10.5801 Ca5Si6O17^21/2H2 -41.4068 Hedenbergite -10.9323 Ca5Si6O17^11/2H2 -42.5674 Ferrite-Ca -11.1961 K8H4(CO3)6^3H2O -43.1022 MgCl2^4H2O -11.2153 Ca4Cl2(OH)6^13H2 -44.3681 Diopside -11.5988 Anthophyllite -45.0303 Artinite -11.8827 Ca5Si6O17^3H2O -45.7601 Anhydrite -12.2915 Ca3SiO5 -46.7098 Gypsum -12.3272 Na4SiO4 -48.3491 Ca(OH)2(c) -12.3609 Ca6Si6O18^H2O -57.9681 Portlandite -12.3609 Na6Si2O7 -76.2494 Ferrite-Mg -12.3888 Fe2(SO4)3(c) -76.2588 Bassanite -12.9258 Antigorite -122.4818 Lawrencite -13.0626 Misenite -139.4490 Gases fugacity log fug. ----------------------------------------------CH4(g) 87.80 1.943 CO2(g) 3.558 0.551 Steam 0.09116 -1.040 H2(g) 2.032e-005 -4.692 H2S(g) 3.826e-006 -5.417 S2(g) 5.106e-026 -25.292 O2(g) 3.152e-068 -67.501 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CH4(aq) 0.0963131 0.0963131 CO2(aq) -0.00554715 -0.00554715 Calcite 0.109400 0.109400 Cl0.902603 0.902603 Fe++ 0.000393413 0.000393413 H+ 0.200745 0.200745 H2O 56.1430 56.1430 Hematite 1.10257e-011 1.10257e-011 Hydroxyapatite 1.80097e-007 1.80097e-007 K+ 0.102306 0.102306 Mg++ 0.00102859 0.00102859 Na+ 0.374079 0.374079 Pyrite 1.19811e-007 1.19811e-007 SiO2(aq) 7.88516e-005 7.88516e-005

PAGE 253

Appendix F: (Continued) 238 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.109 0.109 4.10e+003 Cl0.903 0.903 2.99e+004 Fe++ 0.000394 0.000394 20.6 Fe+++ 2.21e-011 2.21e-011 1.15e-006 H+ 0.182 0.182 172. H2O 56.2 56.2 9.48e+005 HCO30.200 0.200 1.14e+004 HPO4-5.40e-007 5.40e-007 0.0485 K+ 0.102 0.102 3.74e+003 Mg++ 0.00103 0.00103 23.4 Na+ 0.374 0.374 8.05e+003 O2(aq) -0.193 -0.193-5.77e+003 SO4-2.40e-007 2.40e-007 0.0215 SiO2(aq) 7.89e-005 7.89e-005 4.43 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.1094 0.1094 4104. Carbon 0.2002 0.2002 2250. Chlorine 0.9026 0.9026 2.995e+004 Hydrogen 112.9 112.9 1.065e+005 Iron 0.0003935 0.0003935 20.57 Magnesium 0.001029 0.001029 23.40 Oxygen 56.46 56.46 8.454e+005 Phosphorus 5.403e-007 5.403e-007 0.01566 Potassium 0.1023 0.1023 3743. Silicon 7.885e-005 7.885e-005 2.073 Sodium 0.3741 0.3741 8048. Sulfur 2.396e-007 2.396e-007 0.007190

PAGE 254

Appendix F: (Continued) 239 Step # 907 Xi = 0.3819 Time = 3.30464e+007 secs (382.481 days) Temperature = 46.0 C Pressure = 1.013 bars pH = 5.582 log fO2 = -67.389 Eh = -0.1940 volts pe = -3.0635 Ionic strength = 0.745022 Activity of water = 0.971806 Solvent mass = 1.012065 kg Solution mass = 1.064401 kg Solution density = 1.022 g/cm3 Chlorinity = 0.891843 molal Dissolved solids = 49169 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 2134.60 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.1940 3.0635 e+ Fe+++ = Fe++ -0.0180 0.2850 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.7938 0.4904 28.95 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.1674 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.3960 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 5.775e-123 2.275e-010 0.0000 microbe-2 6.000e-007 1.245e-027 -22.23 0.0000 Minerals isolated

PAGE 255

Appendix F: (Continued) 240 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.07588 -1.120 7.595 2.803 Graphite 0.7368 -0.133 8.849 3.898 Hematite 0.0002059 -3.686 0.03288 0.006233 Hydroxyapatite 3.305e-006 -5.481 0.001660 0.0005275 Pyrite 4.379e-007 -6.359 5.253e-005 1.048e005 Quartz 0.0009031 -3.044 0.05426 0.02049 (total) 16.53 6.727 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8645 2.914e+004 0.6128 0.2759 Na+ 0.3625 7925. 0.6608 0.6206 CH4(aq) 0.1205 1839. 1.1806 0.8468 K+ 0.09997 3716. 0.6128 1.2128 CO2(aq) 0.05490 2297. 1.0000 1.2604 Ca++ 0.03051 1163. 0.2300 2.1538 CaCl+ 0.02083 1496. 0.6608 1.8612 HCO30.01413 819.9 0.6813 2.0164 NaCl 0.004933 274.1 1.0000 2.3069 NaHCO3 0.002154 172.1 1.0000 2.6667 CaHCO3+ 0.001857 178.5 0.7070 2.8817 KCl 0.001117 79.19 1.0000 2.9519 Mg++ 0.0007614 17.60 0.3009 3.6399 MgCl+ 0.0002158 12.26 0.6608 3.8458 FeCl+ 0.0001810 15.72 0.6608 3.9222

PAGE 256

Appendix F: (Continued) 241 Fe++ 0.0001689 8.970 0.2300 4.4106 SiO2(aq) 7.787e-005 4.449 1.1806 4.0365 MgHCO3+ 3.908e-005 3.171 0.6608 4.5879 FeCl2 3.139e-005 3.783 1.0000 4.5032 FeHCO3+ 7.440e-006 0.8267 0.6608 5.3084 CH3COO4.402e-006 0.2471 0.6813 5.5230 CaCO3 3.423e-006 0.3257 1.0000 5.4656 H+ 3.255e-006 0.003119 0.8037 5.5824 CO3-1.211e-006 0.06910 0.1721 6.6810 HCH3COO 4.982e-007 0.02845 1.0000 6.3026 H2PO43.251e-007 0.02998 0.6608 6.6678 H2S(aq) 1.475e-007 0.004779 1.0000 6.8312 NaCO31.426e-007 0.01126 0.6608 7.0257 NaHPO47.806e-008 0.008830 0.6608 7.2875 MgCO3 5.379e-008 0.004312 1.0000 7.2693 HPO4-3.480e-008 0.003176 0.1523 8.2757 CaHPO4 3.068e-008 0.003969 1.0000 7.5131 NaH3SiO4 2.760e-008 0.003099 1.0000 7.5591 OH2.490e-008 0.0004027 0.6381 7.7989 H2(aq) 1.617e-008 3.100e-005 1.1806 7.7191 HS1.577e-008 0.0004959 0.6381 7.9973 H3SiO41.340e-008 0.001212 0.6608 8.0528 FeCO3 1.293e-008 0.001424 1.0000 7.8884 KHPO41.231e-008 0.001581 0.6608 8.0898 FeH2PO4+ 9.526e-009 0.001384 0.6608 8.2010 CaOH+ 4.424e-009 0.0002401 0.6608 8.5342

PAGE 257

Appendix F: (Continued) 242 FeOH+ 4.300e-009 0.0002979 0.6608 8.5464 CaCH3COO+ 3.664e-009 0.0003454 0.6608 8.6159 MgH2PO4+ 3.363e-009 0.0003878 0.6608 8.6532 NaOH 2.369e-009 9.011e-005 1.0000 8.6254 MgHPO4 1.415e-009 0.0001619 1.0000 8.8491 FeHPO4 1.246e-009 0.0001799 1.0000 8.9043 MgOH+ 1.211e-009 4.756e-005 0.6608 9.0969 H3PO4 9.758e-011 9.092e-006 1.0000 10.0106 CaPO45.613e-011 7.208e-006 0.6608 10.4307 Fe(OH)2+ 1.034e-011 8.838e-007 0.6608 11.1653 HCl 9.537e-012 3.306e-007 1.0000 11.0206 Fe(OH)3 3.658e-012 3.717e-007 1.0000 11.4368 FePO42.869e-012 4.114e-007 0.6608 11.7222 MgPO41.734e-012 1.967e-007 0.6608 11.9408 FeOH++ 1.418e-013 9.825e-009 0.1917 13.5655 PO4--9.865e-014 8.908e-009 0.0132 14.8856 Fe(OH)2 5.090e-014 4.349e-009 1.0000 13.2933 SO4-7.785e-015 7.110e-010 0.1523 14.9261 H2SiO4-6.108e-015 5.465e-010 0.1523 15.0314 H2P2O7-3.766e-015 6.301e-010 0.1523 15.2414 HP2O7--3.142e-015 5.227e-010 0.0132 16.3824 NaSO42.399e-015 2.716e-010 0.6608 14.7998 CaSO4 2.216e-015 2.868e-010 1.0000 14.6545 FeCO3+ 1.349e-015 1.486e-010 0.6608 15.0500 S-9.751e-016 2.973e-011 0.1917 15.7282 KSO48.935e-016 1.148e-010 0.6608 15.2288

PAGE 258

Appendix F: (Continued) 243 FeCl++ 7.508e-016 6.518e-011 0.1917 15.8417 Fe(OH)46.072e-016 7.153e-011 0.6608 15.3966 FeCl2+ 5.430e-016 6.544e-011 0.6608 15.4451 FeH3SiO4++ 2.412e-016 3.462e-011 0.1917 16.3349 MgSO4 5.612e-017 6.423e-012 1.0000 16.2509 Fe+++ 4.748e-017 2.521e-012 0.0769 17.4378 FeCl3 2.422e-017 3.735e-012 1.0000 16.6158 P2O7---1.341e-017 2.217e-012 0.0004 20.2397 FeSO4 8.084e-018 1.168e-012 1.0000 17.0924 HSO49.072e-019 8.372e-014 0.6608 18.2222 H3P2O74.003e-019 6.736e-014 0.6608 18.5775 FeCl43.510e-019 6.596e-014 0.6608 18.6346 Fe(OH)31.506e-020 1.531e-015 0.6608 20.0020 S2-2.585e-021 1.576e-016 0.1523 21.4048 H4P2O7 4.503e-024 7.620e-019 1.0000 23.3465 Fe2(OH)2++++ 4.549e-025 6.303e-020 0.0188 26.0670 (O-phth)-1.066e-026 1.663e-021 0.1523 26.7897 Mg4(OH)4++++ 5.145e-027 8.084e-022 0.0188 28.0136 H2SO4 3.213e-027 2.997e-022 1.0000 26.4930 H(O-phth)1.989e-027 3.123e-022 0.6608 26.8813 S3-1.228e-027 1.123e-022 0.1523 27.7280 FeSO4+ 1.828e-028 2.640e-023 0.6608 27.9180 H2(O-phth) 3.726e-030 5.886e-025 1.0000 29.4287 S4-2.318e-031 2.827e-026 0.1523 31.4522 Fe3(OH)4(5+) 7.125e-034 1.596e-028 0.0019 35.8608 FeHSO4++ 6.350e-034 9.233e-029 0.1917 33.9145

PAGE 259

Appendix F: (Continued) 244 S5-6.188e-038 9.432e-033 0.1523 38.0258 Fe(SO4)24.461e-042 1.052e-036 0.6608 41.5305 S6-8.149e-045 1.490e-039 0.1523 44.9062 O2(aq) 3.405e-071 1.036e-066 1.1806 70.3958 ClO41.170e-156 1.107e-151 0.6381 156.1267 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Calcite 0.0000 sat MgOHCl -13.0065 Pyrite 0.0000 sat Bassanite -13.1925 Hematite 0.0000 sat Talc -13.2182 Hydroxyapatite -0.0073 CaSO4^1/2H2O(bet -13.3364 Graphite -0.0548 Hydrophilite -13.5506 Aragonite -0.1624 NaFeO2(c) -13.7727 Siderite -0.2376 Chrysotile -14.4787 Quartz -0.3531 Forsterite -14.7258 Dolomite-ord -0.4666 Monticellite -14.9643 Dolomite -0.4666 Na2SiO3 -15.3983 Tridymite -0.5005 Na2Si2O5 -15.6137 Goethite -0.5201 Andradite -15.8079 Chalcedony -0.6066 Thenardite -15.8686 Cristobalite -0.8607 Arcanite -15.8895 Whitlockite -0.9098 MgCl2^2H2O -16.0191 Monohydrocalcite -1.0726 Mirabilite -16.1801 Amrph^silica -1.4988 Mg2Cl(OH)3^4H2O -16.2686 Pyrrhotite -1.8097 Ca2Si3O8^5/2H2O -16.3144 Dolomite-dis -1.8702 Epsomite -16.9894 Magnesite -1.9777 Hexahydrite -16.9913 Magnetite -2.5151 Melanterite -17.1715 Halite -2.5195 Leonhardtite -17.5114 Sylvite -2.6267 Kieserite -17.8543 Troilite -2.9348 KMgCl3^2H2O -18.9121 FeO(c) -3.5443 MgCl2^H2O -19.0417 Ferrosilite -3.9898 Ca2Cl2(OH)2^H2O -19.0605 Kalicinite -4.2231 Kainite -19.7831 Fe(OH)3(ppd) -4.7187 Ca2SiO4^7/6H2O -20.5678 Nesquehonite -5.0851 Mercallite -20.8231 Fe(OH)2(ppd) -5.0982 Ca2SiO4(gamma) -20.9705 Cronstedt-7A -5.2972 Hydromagnesite -21.0080 Wustite -5.6116 FeSO4(c) -21.0969 Strengite -5.7547 Lime -21.4688 Vivianite -6.6059 Larnite -22.3110 Sulfur-Rhmb -6.6604 MgSO4(c) -22.4961 Antarcticite -6.9410 MHSH(Mg1.5) -22.5067 Enstatite -6.9764 Sepiolite -23.0940 CaCl2^4H2O -7.5020 Chloromagnesite -24.3276 Huntite -7.5182 Akermanite -24.3311

PAGE 260

Appendix F: (Continued) 245 Brucite -7.6606 KMgCl3 -25.5417 Wollastonite -7.7320 Tachyhydrite -27.6250 Fayalite -7.8019 O-phth acid(c) -28.3645 Pseudowollastoni -8.0785 Rankinite -29.4438 Pirssonite -8.3150 Molysite -29.9642 Minnesotaite -8.3763 Tremolite -33.2611 Greenalite -8.4451 Ferrite-2-Ca -34.7769 Bischofite -8.5917 Ca4Si3O10^3/2H2O -36.7458 CaSi2O5^2H2O -8.7555 Merwinite -36.7777 Gaylussite -8.9486 Na3H(SO4)2 -37.2499 Hedenbergite -10.2334 Ca3Si2O7^3H2O -37.5875 Carnallite -10.2589 Jarosite-K -38.8274 CaCl2^2H2O -10.2696 Ca5Si6O17^21/2H2 -40.4443 CaCl2^H2O -10.2968 Burkeite -40.6751 KNaCO3^6H2O -10.3722 Anthophyllite -41.4301 Diopside -10.8797 Ca5Si6O17^11/2H2 -41.5694 Ferrite-Ca -10.9478 K8H4(CO3)6^3H2O -42.4680 Artinite -11.0394 Ca4Cl2(OH)6^13H2 -44.1390 MgCl2^4H2O -11.1636 Ca5Si6O17^3H2O -44.7353 Ferrite-Mg -11.8247 Ca3SiO5 -45.9508 Ca(OH)2(c) -12.1174 Na4SiO4 -47.2181 Portlandite -12.1174 Ca6Si6O18^H2O -56.6764 Anhydrite -12.5580 Na6Si2O7 -74.5451 Gypsum -12.6044 Fe2(SO4)3(c) -77.5370 K2CO3^3/2H2O -12.8726 Antigorite -110.1034 Lawrencite -13.0003 Misenite -140.8510 Gases fugacity log fug. ----------------------------------------------CH4(g) 110.6 2.044 CO2(g) 2.356 0.372 Steam 0.09641 -1.016 H2(g) 2.591e-005 -4.587 H2S(g) 2.608e-006 -5.584 S2(g) 1.805e-026 -25.743 O2(g) 4.088e-068 -67.389 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CH4(aq) 0.121997 0.121997 CO2(aq) 0.0201360 0.0201360 Calcite 0.0538445 0.0538445 Cl0.902603 0.902603 Fe++ 0.000393413 0.000393413 H+ 0.0892686 0.0892686 H2O 56.1430 56.1430 H2PO45.02702e-007 5.02702e-007 Hematite 7.15869e-012 7.15869e-012 K+ 0.102306 0.102306 Mg++ 0.00102859 0.00102859 Na+ 0.374079 0.374079 Pyrite 8.26262e-008 8.26262e-008 SiO2(aq) 7.88516e-005 7.88516e-005

PAGE 261

Appendix F: (Continued) 246 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0538 0.0538 2.03e+003 Cl0.903 0.903 3.01e+004 Fe++ 0.000393 0.000393 20.6 Fe+++ 1.43e-011 1.43e-011 7.51e-007 H+ 0.178 0.178 168. H2O 56.2 56.2 9.52e+005 HCO30.196 0.196 1.12e+004 HPO4-5.03e-007 5.03e-007 0.0453 K+ 0.102 0.102 3.76e+003 Mg++ 0.00103 0.00103 23.5 Na+ 0.374 0.374 8.08e+003 O2(aq) -0.244 -0.244-7.34e+003 SO4-1.65e-007 1.65e-007 0.0149 SiO2(aq) 7.89e-005 7.89e-005 4.45 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.05384 0.05384 2028. Carbon 0.1960 0.1960 2211. Chlorine 0.9026 0.9026 3.006e+004 Hydrogen 112.9 112.9 1.069e+005 Iron 0.0003935 0.0003935 20.65 Magnesium 0.001029 0.001029 23.49 Oxygen 56.34 56.34 8.469e+005 Phosphorus 5.027e-007 5.027e-007 0.01463 Potassium 0.1023 0.1023 3758. Silicon 7.885e-005 7.885e-005 2.081 Sodium 0.3741 0.3741 8080. Sulfur 1.653e-007 1.653e-007 0.004977

PAGE 262

Appendix F: (Continued) 247 Step # 909 Xi = 0.4000 Time = 3.46118e+007 secs (400.6 days) Temperature = 47.0 C Pressure = 1.013 bars pH = 5.800 log fO2 = -67.243 Eh = -0.2101 volts pe = -3.3076 Ionic strength = 0.712526 Activity of water = 0.971417 Solvent mass = 1.011446 kg Solution mass = 1.062744 kg Solution density = 1.022 g/cm3 Chlorinity = 0.892389 molal Dissolved solids = 48270 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 3368.87 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.2101 3.3076 e+ Fe+++ = Fe++ -0.0548 0.8621 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.7705 0.5137 30.33 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.1592 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.3453 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 1.254e-128 2.270e-010 0.0000 microbe-2 6.000e-007 9.113e-029 -19.56 0.0000 Minerals isolated

PAGE 263

Appendix F: (Continued) 248 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.1057 -0.976 10.58 3.903 Graphite 0.7368 -0.133 8.849 3.898 Hematite 0.0002059 -3.686 0.03288 0.006233 Hydroxyapatite 3.305e-006 -5.481 0.001660 0.0005275 Pyrite 4.539e-007 -6.343 5.446e-005 1.087e005 Quartz 0.0009031 -3.044 0.05426 0.02049 Siderite 8.443e-005 -4.073 0.009782 0.002417 (total) 19.52 7.830 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8764 2.957e+004 0.6146 0.2687 Na+ 0.3619 7919. 0.6617 0.6207 CH4(aq) 0.1436 2193. 1.1715 0.7740 K+ 0.09999 3721. 0.6146 1.2114 CO2(aq) 0.04396 1841. 1.0000 1.3570 HCO30.01870 1086. 0.6819 1.8944 Ca++ 0.01342 511.8 0.2316 2.5076 CaCl+ 0.009264 665.9 0.6617 2.2126 NaCl 0.005113 284.4 1.0000 2.2913 NaHCO3 0.002804 224.2 1.0000 2.5522 KCl 0.001154 81.87 1.0000 2.9378 CaHCO3+ 0.001101 105.9 0.7071 3.1087 Mg++ 0.0007499 17.35 0.3020 3.6450 MgCl+ 0.0002155 12.25 0.6617 3.8460

PAGE 264

Appendix F: (Continued) 249 FeCl+ 0.0001453 12.63 0.6617 4.0170 Fe++ 0.0001273 6.764 0.2316 4.5305 SiO2(aq) 7.789e-005 4.454 1.1715 4.0398 MgHCO3+ 5.147e-005 4.180 0.6617 4.4678 FeCl2 2.559e-005 3.087 1.0000 4.5919 FeHCO3+ 7.342e-006 0.8165 0.6617 5.3136 CH3COO6.864e-006 0.3857 0.6819 5.3297 CaCO3 3.400e-006 0.3239 1.0000 5.4685 CO3-2.637e-006 0.1506 0.1741 6.3379 H+ 1.975e-006 0.001894 0.8025 5.8000 HCH3COO 4.712e-007 0.02693 1.0000 6.3268 NaCO33.057e-007 0.02415 0.6617 6.6941 H2PO42.804e-007 0.02588 0.6617 6.7316 MgCO3 1.188e-007 0.009530 1.0000 6.9253 NaHPO41.169e-007 0.01324 0.6617 7.1114 H2S(aq) 1.116e-007 0.003619 1.0000 6.9523 HPO4-4.885e-008 0.004462 0.1544 8.1225 NaH3SiO4 4.600e-008 0.005171 1.0000 7.3372 OH4.361e-008 0.0007059 0.6394 7.5546 H3SiO42.241e-008 0.002029 0.6617 7.8288 FeCO3 2.053e-008 0.002264 1.0000 7.6875 HS2.010e-008 0.0006326 0.6394 7.8910 CaHPO4 1.973e-008 0.002554 1.0000 7.7050 H2(aq) 1.926e-008 3.695e-005 1.1715 7.6467 KHPO41.833e-008 0.002356 0.6617 7.9163 FeH2PO4+ 6.344e-009 0.0009227 0.6617 8.3770

PAGE 265

Appendix F: (Continued) 250 FeOH+ 5.647e-009 0.0003916 0.6617 8.4275 NaOH 4.150e-009 0.0001580 1.0000 8.3819 CaOH+ 3.481e-009 0.0001892 0.6617 8.6376 MgH2PO4+ 2.912e-009 0.0003361 0.6617 8.7152 CaCH3COO+ 2.598e-009 0.0002451 0.6617 8.7647 MgOH+ 2.133e-009 8.388e-005 0.6617 8.8503 MgHPO4 2.027e-009 0.0002321 1.0000 8.6931 FeHPO4 1.374e-009 0.0001986 1.0000 8.8619 CaPO45.968e-011 7.671e-006 0.6617 10.4035 H3PO4 5.158e-011 4.810e-006 1.0000 10.2876 HCl 6.528e-012 2.265e-007 1.0000 11.1852 Fe(OH)2+ 6.302e-012 5.389e-007 0.6617 11.3799 FePO45.238e-012 7.519e-007 0.6617 11.4602 MgPO44.098e-012 4.652e-007 0.6617 11.5667 Fe(OH)3 3.887e-012 3.954e-007 1.0000 11.4103 PO4--2.261e-013 2.044e-008 0.0137 14.5101 Fe(OH)2 1.212e-013 1.037e-008 1.0000 12.9164 FeOH++ 5.029e-014 3.487e-009 0.1937 14.0115 H2SiO4-1.757e-014 1.574e-009 0.1544 14.5665 SO4-1.098e-014 1.004e-009 0.1544 14.7706 HP2O7--3.894e-015 6.484e-010 0.0137 16.2741 NaSO43.448e-015 3.907e-010 0.6617 14.6418 H2P2O7-2.904e-015 4.863e-010 0.1544 15.3483 S-2.167e-015 6.611e-011 0.1937 15.3771 CaSO4 1.421e-015 1.841e-010 1.0000 14.8475 KSO41.291e-015 1.660e-010 0.6617 15.0686

PAGE 266

Appendix F: (Continued) 251 Fe(OH)41.065e-015 1.256e-010 0.6617 15.1518 FeCO3+ 5.772e-016 6.364e-011 0.6617 15.4181 FeCl++ 1.628e-016 1.414e-011 0.1937 16.5014 FeCl2+ 1.213e-016 1.464e-011 0.6617 16.0954 FeH3SiO4++ 8.196e-017 1.177e-011 0.1937 16.7994 MgSO4 8.016e-017 9.183e-012 1.0000 16.0960 P2O7---2.642e-017 4.373e-012 0.0005 19.9172 Fe+++ 9.713e-018 5.163e-013 0.0776 18.1230 FeSO4 8.822e-018 1.275e-012 1.0000 17.0544 FeCl3 5.561e-018 8.584e-013 1.0000 17.2549 HSO48.137e-019 7.517e-014 0.6617 18.2689 H3P2O71.902e-019 3.204e-014 0.6617 18.9001 FeCl48.358e-020 1.572e-014 0.6617 19.2572 Fe(OH)36.209e-020 6.315e-015 0.6617 19.3863 S2-3.834e-021 2.340e-016 0.1544 21.2276 H4P2O7 1.294e-024 2.192e-019 1.0000 23.8881 Fe2(OH)2++++ 5.541e-026 7.684e-021 0.0191 26.9761 Mg4(OH)4++++ 5.322e-026 8.369e-021 0.0191 26.9937 (O-phth)-2.099e-026 3.279e-021 0.1544 26.4893 H(O-phth)2.439e-027 3.832e-022 0.6617 26.7922 H2SO4 1.802e-027 1.682e-022 1.0000 26.7444 S3-1.210e-027 1.107e-022 0.1544 27.7286 FeSO4+ 5.607e-029 8.106e-024 0.6617 28.4306 H2(O-phth) 2.732e-030 4.319e-025 1.0000 29.5636 S4-1.524e-031 1.860e-026 0.1544 31.6284 FeHSO4++ 1.168e-034 1.699e-029 0.1937 34.6457

PAGE 267

Appendix F: (Continued) 252 Fe3(OH)4(5+) 4.760e-035 1.067e-029 0.0020 37.0271 S5-2.719e-038 4.148e-033 0.1544 38.3769 Fe(SO4)21.960e-042 4.625e-037 0.6617 41.8871 S6-2.396e-045 4.386e-040 0.1544 45.4319 O2(aq) 4.745e-071 1.445e-066 1.1715 70.2550 ClO42.429e-156 2.299e-151 0.6394 155.8088 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Hematite 0.0000 sat Gypsum -12.7991 Pyrite 0.0000 sat Lawrencite -13.0592 Siderite 0.0000 sat Chrysotile -13.0790 Calcite 0.0000 sat Bassanite -13.3777 Graphite -0.0703 NaFeO2(c) -13.5068 Dolomite-ord -0.1129 CaSO4^1/2H2O(bet -13.5206 Dolomite -0.1129 Forsterite -13.7610 Aragonite -0.1623 Hydrophilite -13.8449 Hydroxyapatite -0.3641 Monticellite -14.3535 Quartz -0.3703 Na2SiO3 -14.9225 Tridymite -0.5169 Na2Si2O5 -15.1540 Goethite -0.5219 Andradite -15.4793 Chalcedony -0.6230 Mg2Cl(OH)3^4H2O -15.5896 Cristobalite -0.8759 Thenardite -15.7091 Monohydrocalcite -1.0766 Arcanite -15.7397 Whitlockite -1.1801 MgCl2^2H2O -15.9601 Amrph^silica -1.5099 Mirabilite -16.0734 Dolomite-dis -1.5102 Ca2Si3O8^5/2H2O -16.1104 Magnesite -1.6187 Hexahydrite -16.8379 Pyrrhotite -1.7326 Epsomite -16.8483 Magnetite -2.1558 Melanterite -17.1419 Halite -2.5131 Leonhardtite -17.3505 Sylvite -2.6253 Kieserite -17.6758 Troilite -2.7244 KMgCl3^2H2O -18.8506 FeO(c) -3.1814 MgCl2^H2O -18.9682 Ferrosilite -3.6457 Hydromagnesite -19.0874 Kalicinite -4.1289 Ca2Cl2(OH)2^H2O -19.2741 Cronstedt-7A -4.6097 Kainite -19.6138 Fe(OH)3(ppd) -4.7118 Ca2SiO4^7/6H2O -20.3025 Nesquehonite -4.7361 Ca2SiO4(gamma) -20.6964 Fe(OH)2(ppd) -4.7379 Mercallite -20.9037 Wustite -5.2979 FeSO4(c) -21.0203 Strengite -6.0552 Lime -21.2884 Vivianite -6.1906 Sepiolite -21.2992 Huntite -6.4348 Larnite -22.0315 Enstatite -6.5044 MHSH(Mg1.5) -22.0742 Sulfur-Rhmb -6.8343 MgSO4(c) -22.2953

PAGE 268

Appendix F: (Continued) 253 Fayalite -7.0948 Akermanite -23.5928 Brucite -7.1742 Chloromagnesite -24.2334 Antarcticite -7.2827 KMgCl3 -25.4506 Minnesotaite -7.3795 Tachyhydrite -27.8975 Greenalite -7.4176 O-phth acid(c) -28.5176 Wollastonite -7.6125 Rankinite -29.0465 CaCl2^4H2O -7.8345 Molysite -30.5458 Pseudowollastoni -7.9570 Tremolite -30.7453 Pirssonite -8.0191 Ferrite-2-Ca -34.4377 Bischofite -8.5737 Merwinite -35.8864 CaSi2O5^2H2O -8.6678 Ca4Si3O10^3/2H2O -36.2423 Gaylussite -8.6881 Ca3Si2O7^3H2O -37.1843 Hedenbergite -9.7749 Na3H(SO4)2 -37.1880 KNaCO3^6H2O -10.1106 Anthophyllite -38.1759 Artinite -10.2084 Jarosite-K -39.1665 Carnallite -10.2426 Ca5Si6O17^21/2H2 -39.9276 Diopside -10.3014 Burkeite -40.0688 CaCl2^2H2O -10.5831 Ca5Si6O17^11/2H2 -41.0211 CaCl2^H2O -10.6058 K8H4(CO3)6^3H2O -41.4546 Ferrite-Ca -10.7972 Ca5Si6O17^3H2O -44.1631 MgCl2^4H2O -11.1301 Ca4Cl2(OH)6^13H2 -44.2359 Ferrite-Mg -11.3177 Ca3SiO5 -45.4836 Talc -11.8539 Na4SiO4 -46.1951 Ca(OH)2(c) -11.9709 Ca6Si6O18^H2O -55.9369 Portlandite -11.9709 Na6Si2O7 -73.0024 K2CO3^3/2H2O -12.5541 Fe2(SO4)3(c) -78.3046 MgOHCl -12.7245 Antigorite -98.9377 Anhydrite -12.7431 Misenite -141.2145 Gases fugacity log fug. ----------------------------------------------CH4(g) 131.8 2.120 CO2(g) 1.923 0.284 Steam 0.1014 -0.994 H2(g) 3.068e-005 -4.513 H2S(g) 2.027e-006 -5.693 S2(g) 9.430e-027 -26.026 O2(g) 5.714e-068 -67.243 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CH4(aq) 0.145288 0.145288 CO2(aq) 0.0430339 0.0430339 Calcite 0.0240568 0.0240568 Cl0.902603 0.902603 H+ 0.0257863 0.0257863 H2O 56.1426 56.1426 H2PO45.02702e-007 5.02702e-007 Hematite 5.17930e-012 5.17930e-012 K+ 0.102306 0.102306 Mg++ 0.00102859 0.00102859 Na+ 0.374079 0.374079 Pyrite 6.66042e-008 6.66042e-008

PAGE 269

Appendix F: (Continued) 254 SiO2(aq) 7.88516e-005 7.88516e-005 Siderite 0.000308982 0.000308982 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0241 0.0241 907. Cl0.903 0.903 3.01e+004 Fe++ 0.000309 0.000309 16.2 Fe+++ 1.04e-011 1.04e-011 5.44e-007 H+ 0.190 0.190 180. H2O 56.2 56.2 9.53e+005 HCO30.213 0.213 1.22e+004 HPO4-5.03e-007 5.03e-007 0.0454 K+ 0.102 0.102 3.76e+003 Mg++ 0.00103 0.00103 23.5 Na+ 0.374 0.374 8.09e+003 O2(aq) -0.291 -0.291-8.75e+003 SO4-1.33e-007 1.33e-007 0.0120 SiO2(aq) 7.89e-005 7.89e-005 4.46 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.02406 0.02406 907.3 Carbon 0.2127 0.2127 2404. Chlorine 0.9026 0.9026 3.011e+004 Hydrogen 112.9 112.9 1.071e+005 Iron 0.0003090 0.0003090 16.24 Magnesium 0.001029 0.001029 23.52 Oxygen 56.30 56.30 8.476e+005 Phosphorus 5.027e-007 5.027e-007 0.01465 Potassium 0.1023 0.1023 3764. Silicon 7.885e-005 7.885e-005 2.084 Sodium 0.3741 0.3741 8092. Sulfur 1.332e-007 1.332e-007 0.004019

PAGE 270

Appendix F: (Continued) 255 Step # 910 Xi = 0.4100 Time = 3.5475e+007 secs (410.59 days) Temperature = 47.5 C Pressure = 1.013 bars pH = 5.920 log fO2 = -67.146 Eh = -0.2188 volts pe = -3.4379 Ionic strength = 0.703170 Activity of water = 0.971286 Solvent mass = 1.011173 kg Solution mass = 1.062496 kg Solution density = 1.021 g/cm3 Chlorinity = 0.892630 molal Dissolved solids = 48304 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 4353.05 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.2188 3.4379 e+ Fe+++ = Fe++ -0.0648 1.0186 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.7577 0.5265 31.09 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.1549 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.3176 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 9.456e-132 2.270e-010 0.0000 microbe-2 6.000e-007 2.156e-029 -19.35 0.0000 Minerals isolated

PAGE 271

Appendix F: (Continued) 256 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.1150 -0.939 11.51 4.249 Dolomite-ord 0.0002300 -3.638 0.04241 0.01480 Graphite 0.7368 -0.133 8.849 3.898 Hematite 0.0002059 -3.686 0.03288 0.006233 Hydroxyapatite 3.305e-006 -5.481 0.001660 0.0005275 Pyrite 4.539e-007 -6.343 5.446e-005 1.087e005 Quartz 0.0009031 -3.044 0.05426 0.02049 Siderite 0.0002067 -3.685 0.02394 0.005917 (total) 20.52 8.194 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8805 2.971e+004 0.6150 0.2664 Na+ 0.3613 7905. 0.6619 0.6214 CH4(aq) 0.1564 2387. 1.1687 0.7381 K+ 0.1000 3721. 0.6150 1.2111 CO2(aq) 0.04172 1747. 1.0000 1.3797 HCO30.02343 1360. 0.6820 1.7965 Ca++ 0.007969 304.0 0.2320 2.7331 CaCl+ 0.005505 395.8 0.6619 2.4384 NaCl 0.005188 288.6 1.0000 2.2850 NaHCO3 0.003474 277.8 1.0000 2.4591 KCl 0.001169 82.95 1.0000 2.9321 CaHCO3+ 0.0008255 79.42 0.7071 3.2338 Mg++ 0.0005745 13.29 0.3022 3.7604

PAGE 272

Appendix F: (Continued) 257 MgCl+ 0.0001655 9.415 0.6619 3.9603 FeCl+ 8.846e-005 7.686 0.6619 4.2325 SiO2(aq) 7.789e-005 4.454 1.1687 4.0408 Fe++ 7.522e-005 3.998 0.2320 4.7582 MgHCO3+ 4.961e-005 4.028 0.6619 4.4837 FeCl2 1.564e-005 1.887 1.0000 4.8057 CH3COO9.317e-006 0.5236 0.6820 5.1969 FeHCO3+ 5.393e-006 0.5998 0.6619 5.4474 CO3-4.362e-006 0.2491 0.1746 6.1182 CaCO3 3.388e-006 0.3227 1.0000 5.4701 H+ 1.499e-006 0.001438 0.8021 5.9200 NaCO34.987e-007 0.03939 0.6619 6.4814 HCH3COO 4.853e-007 0.02773 1.0000 6.3140 H2PO42.523e-007 0.02329 0.6619 6.7774 MgCO3 1.521e-007 0.01221 1.0000 6.8178 NaHPO41.425e-007 0.01613 0.6619 7.0255 H2S(aq) 1.062e-007 0.003445 1.0000 6.9738 NaH3SiO4 6.100e-008 0.006855 1.0000 7.2147 OH5.943e-008 0.0009619 0.6397 7.4201 HPO4-5.770e-008 0.005271 0.1549 8.0487 H3SiO42.983e-008 0.002700 0.6619 7.7046 HS2.552e-008 0.0008030 0.6397 7.7872 KHPO42.226e-008 0.002862 0.6619 7.8317 H2(aq) 2.074e-008 3.979e-005 1.1687 7.6155 FeCO3 1.960e-008 0.002161 1.0000 7.7078 CaHPO4 1.406e-008 0.001821 1.0000 7.8520

PAGE 273

Appendix F: (Continued) 258 NaOH 5.645e-009 0.0002149 1.0000 8.2483 FeOH+ 4.526e-009 0.0003138 0.6619 8.5235 FeH2PO4+ 3.412e-009 0.0004963 0.6619 8.6462 CaOH+ 2.845e-009 0.0001546 0.6619 8.7252 MgOH+ 2.250e-009 8.846e-005 0.6619 8.8270 CaCH3COO+ 2.129e-009 0.0002009 0.6619 8.8510 MgH2PO4+ 2.025e-009 0.0002338 0.6619 8.8727 MgHPO4 1.860e-009 0.0002129 1.0000 8.7304 FeHPO4 9.755e-010 0.0001410 1.0000 9.0108 CaPO45.616e-011 7.219e-006 0.6619 10.4298 H3PO4 3.541e-011 3.302e-006 1.0000 10.4509 HCl 5.275e-012 1.831e-007 1.0000 11.2777 MgPO44.958e-012 5.628e-007 0.6619 11.4840 FePO44.912e-012 7.050e-007 0.6619 11.4880 Fe(OH)2+ 4.797e-012 4.103e-007 0.6619 11.4982 Fe(OH)3 4.021e-012 4.089e-007 1.0000 11.3957 PO4--3.523e-013 3.185e-008 0.0138 14.3139 Fe(OH)2 1.348e-013 1.153e-008 1.0000 12.8702 H2SiO4-3.165e-014 2.834e-009 0.1549 14.3094 FeOH++ 2.849e-014 1.975e-009 0.1941 14.2574 SO4-1.603e-014 1.466e-009 0.1549 14.6048 NaSO45.059e-015 5.732e-010 0.6619 14.4752 HP2O7--4.218e-015 7.023e-010 0.0138 16.2357 S-3.746e-015 1.143e-010 0.1941 15.1384 H2P2O7-2.406e-015 4.029e-010 0.1549 15.4285 KSO41.900e-015 2.444e-010 0.6619 14.9005

PAGE 274

Appendix F: (Continued) 259 Fe(OH)41.453e-015 1.713e-010 0.6619 15.0170 CaSO4 1.246e-015 1.615e-010 1.0000 14.9044 FeCO3+ 3.881e-016 4.279e-011 0.6619 15.5903 MgSO4 9.053e-017 1.037e-011 1.0000 16.0432 FeCl++ 7.001e-017 6.083e-012 0.1941 16.8668 FeCl2+ 5.272e-017 6.360e-012 0.6619 16.4573 FeH3SiO4++ 4.543e-017 6.526e-012 0.1941 17.0547 P2O7---3.729e-017 6.173e-012 0.0005 19.7607 FeSO4 7.674e-018 1.109e-012 1.0000 17.1150 Fe+++ 4.064e-018 2.160e-013 0.0777 18.5007 FeCl3 2.442e-018 3.770e-013 1.0000 17.6122 HSO49.219e-019 8.516e-014 0.6619 18.2145 H3P2O71.202e-019 2.025e-014 0.6619 19.0992 Fe(OH)39.346e-020 9.505e-015 0.6619 19.2086 FeCl43.733e-020 7.022e-015 0.6619 19.6072 S2-6.013e-021 3.669e-016 0.1549 21.0308 H4P2O7 6.193e-025 1.049e-019 1.0000 24.2081 Mg4(OH)4++++ 6.862e-026 1.079e-020 0.0191 26.8824 (O-phth)-3.978e-026 6.214e-021 0.1549 26.2102 Fe2(OH)2++++ 1.744e-026 2.418e-021 0.0191 27.4773 H(O-phth)3.546e-027 5.572e-022 0.6619 26.6295 S3-1.714e-027 1.569e-022 0.1549 27.5757 H2SO4 1.574e-027 1.469e-022 1.0000 26.8029 FeSO4+ 3.517e-029 5.084e-024 0.6619 28.6331 H2(O-phth) 2.989e-030 4.726e-025 1.0000 29.5244 S4-1.957e-031 2.388e-026 0.1549 31.5184

PAGE 275

Appendix F: (Continued) 260 FeHSO4++ 5.537e-035 8.057e-030 0.1941 34.9687 Fe3(OH)4(5+) 1.079e-035 2.420e-030 0.0020 37.6700 S5-3.166e-038 4.830e-033 0.1549 38.3094 Fe(SO4)21.801e-042 4.251e-037 0.6619 41.9236 S6-2.531e-045 4.633e-040 0.1549 45.4065 O2(aq) 5.913e-071 1.801e-066 1.1687 70.1605 ClO43.913e-156 3.704e-151 0.6397 155.6015 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Dolomite-ord 0.0000 sat Anhydrite -12.7956 Calcite 0.0000 sat Gypsum -12.8567 Siderite 0.0000 sat Lawrencite -13.2566 Hematite 0.0000 sat NaFeO2(c) -13.3608 Dolomite -0.0000 Bassanite -13.4303 Pyrite -0.0622 Forsterite -13.4538 Graphite -0.0658 CaSO4^1/2H2O(bet -13.5725 Aragonite -0.1623 Hydrophilite -14.0410 Quartz -0.3789 Monticellite -14.1593 Goethite -0.5229 Na2SiO3 -14.6606 Tridymite -0.5251 Na2Si2O5 -14.9002 Chalcedony -0.6312 Andradite -15.3876 Hydroxyapatite -0.7456 Mg2Cl(OH)3^4H2O -15.4421 Cristobalite -0.8835 Thenardite -15.5422 Monohydrocalcite -1.0787 Arcanite -15.5777 Dolomite-dis -1.3938 Mirabilite -15.9353 Whitlockite -1.4421 MgCl2^2H2O -16.0436 Magnesite -1.5029 Ca2Si3O8^5/2H2O -16.0568 Amrph^silica -1.5152 Hexahydrite -16.7857 Pyrrhotite -1.7458 Epsomite -16.8028 Magnetite -2.1193 Melanterite -17.2067 Halite -2.5118 Leonhardtite -17.2943 Sylvite -2.6265 Kieserite -17.6100 Troilite -2.7247 Hydromagnesite -18.4698 FeO(c) -3.1430 KMgCl3^2H2O -18.9348 Ferrosilite -3.6168 MgCl2^H2O -19.0437 Kalicinite -4.0467 Ca2Cl2(OH)2^H2O -19.4562 Cronstedt-7A -4.5531 Kainite -19.5549 Nesquehonite -4.6259 Ca2SiO4^7/6H2O -20.2167 Fe(OH)2(ppd) -4.7009 Ca2SiO4(gamma) -20.6058 Fe(OH)3(ppd) -4.7080 Sepiolite -20.7556 Wustite -5.2609 Mercallite -20.8684 Huntite -6.0839 FeSO4(c) -21.0596 Strengite -6.2315 Lime -21.2197 Enstatite -6.3561 MHSH(Mg1.5) -21.9247

PAGE 276

Appendix F: (Continued) 261 Vivianite -6.4673 Larnite -21.9379 Sulfur-Rhmb -6.8762 MgSO4(c) -22.2173 Brucite -7.0187 Akermanite -23.3583 Fayalite -7.0274 Chloromagnesite -24.2976 Minnesotaite -7.3115 KMgCl3 -25.5185 Greenalite -7.3342 Tachyhydrite -28.3132 Antarcticite -7.5048 O-phth acid(c) -28.4886 Wollastonite -7.5765 Rankinite -28.9179 Pirssonite -7.8264 Tremolite -29.9768 Pseudowollastoni -7.9199 Molysite -30.8715 CaCl2^4H2O -8.0516 Ferrite-2-Ca -34.3121 Gaylussite -8.5148 Merwinite -35.5982 CaSi2O5^2H2O -8.6484 Ca4Si3O10^3/2H2O -36.0849 Bischofite -8.6795 Na3H(SO4)2 -36.9953 Hedenbergite -9.7128 Ca3Si2O7^3H2O -37.0523 KNaCO3^6H2O -9.9365 Anthophyllite -37.1648 Artinite -9.9451 Jarosite-K -39.1936 Diopside -10.1244 Burkeite -39.5470 Carnallite -10.3514 Ca5Si6O17^21/2H2 -39.7906 Ferrite-Ca -10.7448 K8H4(CO3)6^3H2O -40.7153 CaCl2^2H2O -10.7898 Ca5Si6O17^11/2H2 -40.8671 CaCl2^H2O -10.8100 Ca5Si6O17^3H2O -43.9959 Ferrite-Mg -11.1510 Ca4Cl2(OH)6^13H2 -44.4144 MgCl2^4H2O -11.2275 Ca3SiO5 -45.3174 Talc -11.4368 Na4SiO4 -45.6330 Ca(OH)2(c) -11.9208 Ca6Si6O18^H2O -55.7083 Portlandite -11.9208 Na6Si2O7 -72.1543 K2CO3^3/2H2O -12.3487 Fe2(SO4)3(c) -78.4876 Chrysotile -12.6439 Antigorite -95.4736 MgOHCl -12.6835 Misenite -140.8568 Gases fugacity log fug. ----------------------------------------------CH4(g) 143.7 2.157 CO2(g) 1.844 0.266 Steam 0.1043 -0.982 H2(g) 3.300e-005 -4.482 H2S(g) 1.958e-006 -5.708 S2(g) 8.449e-027 -26.073 O2(g) 7.145e-068 -67.146 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CH4(aq) 0.158130 0.158130 CO2(aq) 0.0548473 0.0548473 Calcite 0.0136645 0.0136645 Cl0.902603 0.902603 Dolomite-ord 0.000798634 0.000798634 H+ 0.00277993 0.00277993 H2O 56.1416 56.1416 H2PO45.02702e-007 5.02702e-007 H2S(aq) 1.33208e-007 1.33208e-007 Hematite 4.47360e-012 4.47360e-012

PAGE 277

Appendix F: (Continued) 262 K+ 0.102306 0.102306 Na+ 0.374079 0.374079 SiO2(aq) 7.88516e-005 7.88516e-005 Siderite 0.000186808 0.000186808 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0145 0.0145 546. Cl0.903 0.903 3.01e+004 Fe++ 0.000187 0.000187 9.82 Fe+++ 8.95e-012 8.95e-012 4.70e-007 H+ 0.200 0.200 190. H2O 56.2 56.2 9.54e+005 HCO30.228 0.228 1.31e+004 HPO4-5.03e-007 5.03e-007 0.0454 K+ 0.102 0.102 3.76e+003 Mg++ 0.000799 0.000799 18.3 Na+ 0.374 0.374 8.09e+003 O2(aq) -0.316 -0.316-9.52e+003 SO4-1.33e-007 1.33e-007 0.0120 SiO2(aq) 7.89e-005 7.89e-005 4.46 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.01446 0.01446 545.6 Carbon 0.2284 0.2284 2582. Chlorine 0.9026 0.9026 3.012e+004 Hydrogen 112.9 112.9 1.071e+005 Iron 0.0001868 0.0001868 9.819 Magnesium 0.0007986 0.0007986 18.27 Oxygen 56.30 56.30 8.477e+005 Phosphorus 5.027e-007 5.027e-007 0.01465 Potassium 0.1023 0.1023 3765. Silicon 7.885e-005 7.885e-005 2.084 Sodium 0.3741 0.3741 8094. Sulfur 1.332e-007 1.332e-007 0.004019

PAGE 278

Appendix F: (Continued) 263 Step # 918 Xi = 0.4900 Time = 4.23801e+007 secs (490.51 days) Temperature = 52.0 C Pressure = 1.013 bars pH = 6.880 log fO2 = -66.392 Eh = -0.2891 volts pe = -4.4814 Ionic strength = 0.728613 Activity of water = 0.971056 Solvent mass = 1.008978 kg Solution mass = 1.067027 kg Solution density = 1.018 g/cm3 Chlorinity = 0.894572 molal Dissolved solids = 54403 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 18534.93 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.2891 4.4814 e+ Fe+++ = Fe++ -0.1517 2.3521 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.6549 0.6293 37.15 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.1249 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.1007 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 9.894e-157 2.261e-010 0.0000 microbe-2 6.000e-007 2.116e-034 -17.03 0.0000 Minerals isolated

PAGE 279

Appendix F: (Continued) 264 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.1284 -0.892 12.85 4.741 Dolomite-ord 0.001010 -2.996 0.1863 0.06499 Graphite 0.7368 -0.133 8.849 3.898 Hematite 0.0002059 -3.686 0.03288 0.006233 Hydroxyapatite 3.305e-006 -5.481 0.001660 0.0005275 Pyrite 4.539e-007 -6.343 5.446e-005 1.087e005 Quartz 0.0009031 -3.044 0.05426 0.02049 Siderite 0.0003893 -3.410 0.04510 0.01114 (total) 22.02 8.742 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8878 2.976e+004 0.6113 0.2655 Na+ 0.3497 7602. 0.6592 0.6373 CH4(aq) 0.2585 3921. 1.1714 0.5189 HCO30.1178 6797. 0.6797 1.0965 K+ 0.1002 3703. 0.6113 1.2130 CO2(aq) 0.02277 947.5 1.0000 1.6427 NaHCO3 0.01558 1237. 1.0000 1.8076 NaCl 0.005463 301.9 1.0000 2.2626 KCl 0.001233 86.91 1.0000 2.9091 CO3-0.0002106 11.95 0.1703 4.4454 Ca++ 0.0001541 5.841 0.2277 4.4547 CaCl+ 0.0001006 7.184 0.6592 4.1785 CaHCO3+ 8.267e-005 7.903 0.7054 4.2342

PAGE 280

Appendix F: (Continued) 265 SiO2(aq) 7.728e-005 4.390 1.1714 4.0433 CH3COO7.603e-005 4.245 0.6797 4.2867 NaCO32.022e-005 1.587 0.6592 4.8752 Mg++ 1.051e-005 0.2416 0.2983 5.5036 MgHCO3+ 4.660e-006 0.3760 0.6592 5.5126 CaCO3 3.280e-006 0.3105 1.0000 5.4841 MgCl+ 2.953e-006 0.1668 0.6592 5.7108 FeCl+ 1.950e-006 0.1683 0.6592 5.8910 Fe++ 1.400e-006 0.07395 0.2277 6.4963 OH7.086e-007 0.01140 0.6365 6.3458 NaH3SiO4 5.753e-007 0.06424 1.0000 6.2401 FeHCO3+ 4.621e-007 0.05106 0.6592 6.5162 HCH3COO 4.337e-007 0.02463 1.0000 6.3628 FeCl2 3.404e-007 0.04080 1.0000 6.4680 NaHPO43.006e-007 0.03382 0.6592 6.7030 H3SiO42.989e-007 0.02689 0.6592 6.7054 H+ 1.643e-007 0.0001566 0.8024 6.8800 MgCO3 1.373e-007 0.01094 1.0000 6.8624 HPO4-1.021e-007 0.009266 0.1506 7.8131 HS9.326e-008 0.002916 0.6365 7.2265 NaOH 6.414e-008 0.002426 1.0000 7.1929 H2PO44.828e-008 0.004428 0.6592 7.4972 KHPO44.660e-008 0.005953 0.6592 7.5126 H2S(aq) 3.876e-008 0.001249 1.0000 7.4116 H2(aq) 3.693e-008 7.039e-005 1.1714 7.3639 FeCO3 1.348e-008 0.001477 1.0000 7.8702

PAGE 281

Appendix F: (Continued) 266 FeOH+ 9.372e-010 6.456e-005 0.6592 9.2091 CaOH+ 6.855e-010 3.700e-005 0.6592 9.3450 MgOH+ 5.228e-010 2.042e-005 0.6592 9.4626 CaHPO4 5.018e-010 6.456e-005 1.0000 9.2995 CaCH3COO+ 3.722e-010 3.489e-005 0.6592 9.6102 MgHPO4 6.262e-011 7.123e-006 1.0000 10.2033 FeHPO4 3.367e-011 4.835e-006 1.0000 10.4727 CaPO41.847e-011 2.359e-006 0.6592 10.9145 FeH2PO4+ 1.289e-011 1.863e-006 0.6592 11.0708 MgH2PO4+ 7.497e-012 8.599e-007 0.6592 11.3061 PO4--6.174e-012 5.545e-007 0.0129 13.1002 Fe(OH)3 5.261e-012 5.317e-007 1.0000 11.2789 H2SiO4-3.733e-012 3.321e-007 0.1506 12.2501 FePO41.570e-012 2.239e-007 0.6592 11.9852 MgPO41.519e-012 1.713e-007 0.6592 11.9994 HCl 9.194e-013 3.170e-008 1.0000 12.0365 H3PO4 7.746e-013 7.178e-008 1.0000 12.1109 Fe(OH)2+ 5.436e-013 4.619e-008 0.6592 12.4457 Fe(OH)2 3.792e-013 3.222e-008 1.0000 12.4211 SO4-1.817e-013 1.650e-008 0.1506 13.5629 S-1.670e-013 5.062e-009 0.1898 13.4992 NaSO45.543e-014 6.239e-009 0.6592 13.4373 KSO42.170e-014 2.773e-009 0.6592 13.8446 Fe(OH)41.731e-014 2.027e-009 0.6592 13.9428 HP2O7--1.800e-015 2.977e-010 0.0129 16.6356 FeOH++ 3.143e-016 2.165e-011 0.1898 16.2245

PAGE 282

Appendix F: (Continued) 267 CaSO4 2.751e-016 3.541e-011 1.0000 15.5606 P2O7---1.476e-016 2.428e-011 0.0004 19.2178 H2P2O7-1.112e-016 1.851e-011 0.1506 16.7759 MgSO4 1.885e-017 2.146e-012 1.0000 16.7246 FeCO3+ 1.364e-017 1.494e-012 0.6592 17.0462 Fe(OH)32.950e-018 2.981e-013 0.6592 17.7111 FeSO4 1.584e-018 2.276e-013 1.0000 17.8002 HSO41.313e-018 1.205e-013 0.6592 18.0628 FeH3SiO4++ 4.284e-019 6.115e-014 0.1898 19.0900 FeCl++ 8.228e-020 7.103e-015 0.1898 19.8065 S2-6.679e-020 4.050e-015 0.1506 19.9974 FeCl2+ 6.251e-020 7.492e-015 0.6592 19.3850 Fe+++ 3.994e-021 2.109e-016 0.0754 21.5212 FeCl3 3.007e-021 4.612e-016 1.0000 20.5219 H3P2O76.067e-022 1.015e-016 0.6592 21.3980 FeCl45.082e-023 9.499e-018 0.6592 22.4749 (O-phth)-1.733e-024 2.689e-019 0.1506 24.5834 H(O-phth)1.774e-026 2.770e-021 0.6592 25.9321 S3-4.538e-027 4.128e-022 0.1506 27.1652 H4P2O7 3.342e-028 5.625e-023 1.0000 27.4759 Mg4(OH)4++++ 2.844e-028 4.444e-023 0.0183 29.2844 H2SO4 2.777e-028 2.575e-023 1.0000 27.5564 Fe2(OH)2++++ 1.785e-030 2.459e-025 0.0183 31.4867 H2(O-phth) 1.523e-030 2.392e-025 1.0000 29.8174 FeSO4+ 4.424e-031 6.355e-026 0.6592 30.5351 S4-1.261e-031 1.529e-026 0.1506 31.7214

PAGE 283

Appendix F: (Continued) 268 FeHSO4++ 7.693e-038 1.112e-032 0.1898 37.8357 S5-5.000e-039 7.579e-034 0.1506 39.1232 Fe3(OH)4(5+) 8.383e-041 1.867e-035 0.0018 42.8111 Fe(SO4)22.497e-043 5.854e-038 0.6592 42.7836 S6-9.842e-047 1.790e-041 0.1506 46.8291 O2(aq) 3.206e-070 9.700e-066 1.1714 69.4254 ClO41.549e-154 1.457e-149 0.6365 154.0060 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Dolomite-ord 0.0000 sat Forsterite -12.6361 Calcite 0.0000 sat MgCl2^4H2O -12.8603 Siderite 0.0000 sat Na2Si2O5 -12.8805 Dolomite -0.0001 MgOHCl -13.1952 Hematite -0.0011 Monticellite -13.3427 Graphite -0.1040 Anhydrite -13.4160 Aragonite -0.1619 Gypsum -13.5173 Quartz -0.4408 Bassanite -14.0511 Goethite -0.5312 CaSO4^1/2H2O(bet -14.1884 Tridymite -0.5835 Andradite -14.3924 Chalcedony -0.6896 Thenardite -14.5112 Cristobalite -0.9370 Arcanite -14.5735 Pyrite -1.0142 Lawrencite -14.7888 Monohydrocalcite -1.0966 Mirabilite -15.1326 Dolomite-dis -1.3667 Ca2Si3O8^5/2H2O -15.4450 Magnesite -1.4802 Hydrophilite -15.5636 Amrph^silica -1.5513 Mg2Cl(OH)3^4H2O -15.9209 Magnetite -1.7481 Hexahydrite -17.4693 Pyrrhotite -2.0677 Epsomite -17.5419 Halite -2.5288 MgCl2^2H2O -17.5670 Sylvite -2.6572 Melanterite -17.9230 FeO(c) -2.7551 Leonhardtite -17.9483 Troilite -2.9126 Hydromagnesite -17.9640 Ferrosilite -3.2980 Kieserite -18.1884 Kalicinite -3.4745 Ca2SiO4^7/6H2O -19.3646 Cronstedt-7A -3.9312 Sepiolite -19.6517 Whitlockite -3.9996 Ca2SiO4(gamma) -19.7160 Fe(OH)2(ppd) -4.3241 Kainite -20.2075 Hydroxyapatite -4.4483 KMgCl3^2H2O -20.4846 Nesquehonite -4.6512 MgCl2^H2O -20.5050 Fe(OH)3(ppd) -4.6781 Lime -20.5937 Wustite -4.8979 Ca2Cl2(OH)2^H2O -20.7842 Enstatite -5.9863 Mercallite -20.8721 Huntite -5.9873 Larnite -21.0249 Fayalite -6.3202 FeSO4(c) -21.5757

PAGE 284

Appendix F: (Continued) 269 Pirssonite -6.3870 Akermanite -22.1324 Greenalite -6.4097 MHSH(Mg1.5) -22.2450 Minnesotaite -6.4956 MgSO4(c) -22.6985 Brucite -6.5984 Chloromagnesite -25.6694 Wollastonite -7.2014 KMgCl3 -26.9408 Gaylussite -7.2279 Rankinite -27.6370 Sulfur-Rhmb -7.4821 Tremolite -27.7240 Pseudowollastoni -7.5363 O-phth acid(c) -28.8627 Strengite -7.9937 Ferrite-2-Ca -33.1540 CaSi2O5^2H2O -8.3981 Tachyhydrite -33.2956 KNaCO3^6H2O -8.6368 Molysite -33.5314 Hedenbergite -9.0409 Merwinite -33.8645 Vivianite -9.1379 Ca4Si3O10^3/2H2O -34.4861 Antarcticite -9.2298 Anthophyllite -34.7783 Diopside -9.4363 K8H4(CO3)6^3H2O -35.3232 Artinite -9.5631 Ca3Si2O7^3H2O -35.7444 CaCl2^4H2O -9.7377 Na3H(SO4)2 -36.0502 Ferrite-Ca -10.2483 Burkeite -36.0843 Bischofite -10.3785 Ca5Si6O17^21/2H2 -38.2477 Talc -10.5381 Ca5Si6O17^11/2H2 -39.1897 Ferrite-Mg -10.6429 Jarosite-K -39.9847 K2CO3^3/2H2O -10.7959 Na4SiO4 -41.1829 Ca(OH)2(c) -11.4408 Ca5Si6O17^3H2O -42.2162 Portlandite -11.4408 Ca3SiO5 -43.7468 Chrysotile -11.6162 Ca4Cl2(OH)6^13H2 -45.5448 Carnallite -12.0948 Ca6Si6O18^H2O -53.3600 NaFeO2(c) -12.2086 Na6Si2O7 -65.4376 CaCl2^2H2O -12.3946 Fe2(SO4)3(c) -80.8060 CaCl2^H2O -12.3955 Antigorite -87.3772 Na2SiO3 -12.5835 Misenite -140.0043 Gases fugacity log fug. ----------------------------------------------CH4(g) 245.3 2.390 CO2(g) 1.091 0.038 Steam 0.1298 -0.887 H2(g) 5.933e-005 -4.227 H2S(g) 7.970e-007 -6.099 S2(g) 9.976e-028 -27.001 O2(g) 4.056e-067 -66.392 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CH4(aq) 0.260867 0.260867 CO2(aq) 0.157583 0.157583 Calcite 0.000325270 0.000325270 Cl0.902603 0.902603 Dolomite-ord 1.84265e-005 1.84265e-005 Fe(OH)3 5.87481e-012 5.87481e-012 H+ -0.134483 -0.134483 H2O 56.1416 56.1416 H2PO45.02702e-007 5.02702e-007 H2S(aq) 1.33208e-007 1.33208e-007

PAGE 285

Appendix F: (Continued) 270 K+ 0.102306 0.102306 Na+ 0.374079 0.374079 SiO2(aq) 7.88516e-005 7.88516e-005 Siderite 4.20430e-006 4.20430e-006 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.000344 0.000344 12.9 Cl0.903 0.903 3.00e+004 Fe++ 4.20e-006 4.20e-006 0.220 Fe+++ 5.87e-012 5.87e-012 3.07e-007 H+ 0.284 0.284 268. H2O 56.2 56.2 9.50e+005 HCO30.419 0.419 2.39e+004 HPO4-5.03e-007 5.03e-007 0.0452 K+ 0.102 0.102 3.75e+003 Mg++ 1.84e-005 1.84e-005 0.420 Na+ 0.374 0.374 8.06e+003 O2(aq) -0.522 -0.522-1.56e+004 SO4-1.33e-007 1.33e-007 0.0120 SiO2(aq) 7.89e-005 7.89e-005 4.44 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.0003437 0.0003437 12.91 Carbon 0.4188 0.4188 4714. Chlorine 0.9026 0.9026 2.999e+004 Hydrogen 113.2 113.2 1.069e+005 Iron 4.204e-006 4.204e-006 0.2200 Magnesium 1.843e-005 1.843e-005 0.4197 Oxygen 56.46 56.46 8.466e+005 Phosphorus 5.027e-007 5.027e-007 0.01459 Potassium 0.1023 0.1023 3749. Silicon 7.885e-005 7.885e-005 2.075 Sodium 0.3741 0.3741 8060. Sulfur 1.332e-007 1.332e-007 0.004002

PAGE 286

Appendix F: (Continued) 271 Step # 919 Xi = 0.5000 Time = 4.32432e+007 secs (500.5 days) Temperature = 52.5 C Pressure = 1.013 bars pH = 7.000 log fO2 = -66.315 Eh = -0.2982 volts pe = -4.6157 Ionic strength = 0.735224 Activity of water = 0.971049 Solvent mass = 1.008684 kg Solution mass = 1.067770 kg Solution density = 1.018 g/cm3 Chlorinity = 0.894832 molal Dissolved solids = 55336 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 20487.55 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.2982 4.6157 e+ Fe+++ = Fe++ -0.1654 2.5603 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.6421 0.6421 37.91 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.1217 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 90.0742 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 7.461e-160 2.259e-010 0.0000 microbe-2 6.000e-007 5.007e-035 -16.44 0.0000 Minerals isolated

PAGE 287

Appendix F: (Continued) 272 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.1285 -0.891 12.86 4.745 Dolomite-ord 0.001016 -2.993 0.1873 0.06537 Graphite 0.7368 -0.133 8.849 3.898 Hematite 0.0002059 -3.686 0.03288 0.006233 Hydroxyapatite 3.305e-006 -5.481 0.001660 0.0005275 Pyrite 4.539e-007 -6.343 5.446e-005 1.087e005 Quartz 0.0009031 -3.044 0.05426 0.02049 Siderite 0.0003906 -3.408 0.04526 0.01118 (total) 22.03 8.746 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8880 2.974e+004 0.6106 0.2658 Na+ 0.3481 7561. 0.6587 0.6395 CH4(aq) 0.2713 4111. 1.1725 0.4975 HCO30.1321 7617. 0.6794 1.0468 K+ 0.1002 3700. 0.6106 1.2134 CO2(aq) 0.01935 804.6 1.0000 1.7132 NaHCO3 0.01721 1366. 1.0000 1.7642 NaCl 0.005488 303.0 1.0000 2.2606 KCl 0.001239 87.27 1.0000 2.9069 CO3-0.0003137 17.78 0.1695 4.2744 Ca++ 0.0001028 3.892 0.2270 4.6320 CH3COO8.933e-005 4.983 0.6794 4.2169 SiO2(aq) 7.702e-005 4.371 1.1725 4.0443

PAGE 288

Appendix F: (Continued) 273 CaCl+ 6.651e-005 4.746 0.6587 4.3584 CaHCO3+ 6.202e-005 5.923 0.7051 4.3592 NaCO32.941e-005 2.306 0.6587 4.7128 Mg++ 6.961e-006 0.1598 0.2977 5.6836 MgHCO3+ 3.469e-006 0.2796 0.6587 5.6411 CaCO3 3.266e-006 0.3088 1.0000 5.4859 MgCl+ 1.947e-006 0.1099 0.6587 5.8920 FeCl+ 1.319e-006 0.1138 0.6587 6.0610 OH9.654e-007 0.01551 0.6359 6.2119 Fe++ 9.296e-007 0.04904 0.2270 6.6757 NaH3SiO4 7.595e-007 0.08474 1.0000 6.1195 H3SiO43.980e-007 0.03576 0.6587 6.5814 HCH3COO 3.865e-007 0.02193 1.0000 6.4129 FeHCO3+ 3.401e-007 0.03755 0.6587 6.6497 NaHPO43.099e-007 0.03482 0.6587 6.6901 FeCl2 2.297e-007 0.02750 1.0000 6.6389 MgCO3 1.355e-007 0.01079 1.0000 6.8681 H+ 1.246e-007 0.0001186 0.8025 7.0000 HPO4-1.032e-007 0.009353 0.1498 7.8110 HS1.007e-007 0.003145 0.6359 7.1937 NaOH 8.679e-008 0.003279 1.0000 7.0616 KHPO44.801e-008 0.006127 0.6587 7.4999 H2(aq) 4.037e-008 7.688e-005 1.1725 7.3248 H2PO43.690e-008 0.003381 0.6587 7.6143 H2S(aq) 3.139e-008 0.001010 1.0000 7.5032 FeCO3 1.287e-008 0.001408 1.0000 7.8906

PAGE 289

Appendix F: (Continued) 274 FeOH+ 8.398e-010 5.780e-005 0.6587 9.2571 CaOH+ 6.258e-010 3.375e-005 0.6587 9.3848 MgOH+ 4.752e-010 1.855e-005 0.6587 9.5044 CaHPO4 3.390e-010 4.358e-005 1.0000 9.4698 CaCH3COO+ 2.952e-010 2.765e-005 0.6587 9.7111 MgHPO4 4.200e-011 4.773e-006 1.0000 10.3767 FeHPO4 2.266e-011 3.250e-006 1.0000 10.6448 CaPO41.646e-011 2.100e-006 0.6587 10.9648 PO4--8.328e-012 7.471e-007 0.0127 12.9760 H2SiO4-6.771e-012 6.019e-007 0.1498 11.9939 FeH2PO4+ 6.579e-012 9.498e-007 0.6587 11.3631 Fe(OH)3 5.390e-012 5.442e-007 1.0000 11.2684 MgH2PO4+ 3.818e-012 4.374e-007 0.6587 11.5995 FePO41.394e-012 1.986e-007 0.6587 12.0370 MgPO41.342e-012 1.512e-007 0.6587 12.0536 HCl 7.379e-013 2.541e-008 1.0000 12.1320 Fe(OH)2 4.704e-013 3.993e-008 1.0000 12.3275 H3PO4 4.513e-013 4.178e-008 1.0000 12.3455 Fe(OH)2+ 4.103e-013 3.483e-008 0.6587 12.5682 S-2.466e-013 7.468e-009 0.1890 13.3317 SO4-2.102e-013 1.908e-008 0.1498 13.5018 NaSO46.373e-014 7.167e-009 0.6587 13.3769 KSO42.509e-014 3.203e-009 0.6587 13.7818 Fe(OH)42.334e-014 2.732e-009 0.6587 13.8131 HP2O7--1.434e-015 2.371e-010 0.0127 16.7398 CaSO4 2.119e-016 2.726e-011 1.0000 15.6738

PAGE 290

Appendix F: (Continued) 275 FeOH++ 1.775e-016 1.222e-011 0.1890 16.4744 P2O7---1.559e-016 2.562e-011 0.0004 19.2043 H2P2O7-6.701e-017 1.114e-011 0.1498 16.9984 MgSO4 1.442e-017 1.640e-012 1.0000 16.8410 FeCO3+ 8.163e-018 8.934e-013 0.6587 17.2694 Fe(OH)34.946e-018 4.993e-013 0.6587 17.4870 FeSO4 1.211e-018 1.737e-013 1.0000 17.9170 HSO41.171e-018 1.073e-013 0.6587 18.1129 FeH3SiO4++ 2.369e-019 3.379e-014 0.1890 19.3490 S2-7.479e-020 4.530e-015 0.1498 19.9506 FeCl++ 3.510e-020 3.027e-015 0.1890 20.1783 FeCl2+ 2.664e-020 3.190e-015 0.6587 19.7557 Fe+++ 1.668e-021 8.801e-017 0.0750 21.9026 FeCl3 1.286e-021 1.970e-016 1.0000 20.8909 H3P2O72.766e-022 4.624e-017 0.6587 21.7395 FeCl42.199e-023 4.105e-018 0.6587 22.8391 (O-phth)-1.825e-024 2.829e-019 0.1498 24.5633 H(O-phth)1.424e-026 2.221e-021 0.6587 26.0278 S3-3.831e-027 3.481e-022 0.1498 27.2412 Mg4(OH)4++++ 2.027e-028 3.164e-023 0.0181 29.4347 H2SO4 1.906e-028 1.766e-023 1.0000 27.7198 H4P2O7 1.151e-028 1.936e-023 1.0000 27.9388 H2(O-phth) 9.180e-031 1.441e-025 1.0000 30.0372 Fe2(OH)2++++ 5.570e-031 7.666e-026 0.0181 31.9958 FeSO4+ 2.166e-031 3.108e-026 0.6587 30.8457 S4-8.044e-032 9.745e-027 0.1498 31.9190

PAGE 291

Appendix F: (Continued) 276 FeHSO4++ 2.862e-038 4.134e-033 0.1890 38.2670 S5-2.413e-039 3.653e-034 0.1498 39.4420 Fe3(OH)4(5+) 1.881e-041 4.186e-036 0.0018 43.4655 Fe(SO4)21.406e-043 3.294e-038 0.6587 43.0332 S6-3.594e-047 6.530e-042 0.1498 47.2689 O2(aq) 3.800e-070 1.149e-065 1.1725 69.3511 ClO42.259e-154 2.122e-149 0.6359 153.8427 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Siderite 0.0000 sat CaCl2^2H2O -12.5584 Dolomite-ord 0.0000 sat Na2Si2O5 -12.6302 Calcite 0.0000 sat MgCl2^4H2O -13.0275 Dolomite -0.0001 Monticellite -13.1663 Hematite -0.0094 MgOHCl -13.2222 Graphite -0.1306 Anhydrite -13.5247 Aragonite -0.1619 Gypsum -13.6310 Quartz -0.4491 Bassanite -14.1598 Goethite -0.5363 Andradite -14.1653 Tridymite -0.5914 CaSO4^1/2H2O(bet -14.2966 Chalcedony -0.6975 Thenardite -14.4518 Cristobalite -0.9442 Arcanite -14.5171 Monohydrocalcite -1.0989 Lawrencite -14.9435 Pyrite -1.1772 Mirabilite -15.1019 Dolomite-dis -1.3634 Ca2Si3O8^5/2H2O -15.2952 Magnesite -1.4774 Hydrophilite -15.7171 Amrph^silica -1.5564 Mg2Cl(OH)3^4H2O -15.9058 Magnetite -1.6723 Hexahydrite -17.5858 Pyrrhotite -2.1224 Epsomite -17.6655 Halite -2.5316 MgCl2^2H2O -17.7207 Sylvite -2.6615 Hydromagnesite -17.8636 FeO(c) -2.6691 Melanterite -18.0436 Troilite -2.9354 Leonhardtite -18.0614 Ferrosilite -3.2211 Kieserite -18.2920 Kalicinite -3.4407 Ca2SiO4^7/6H2O -19.1839 Cronstedt-7A -3.7869 Sepiolite -19.3669 Fe(OH)2(ppd) -4.2395 Ca2SiO4(gamma) -19.5307 Whitlockite -4.2602 Kainite -20.3207 Nesquehonite -4.6549 Lime -20.4784 Fe(OH)3(ppd) -4.6786 KMgCl3^2H2O -20.6421 Hydroxyapatite -4.8038 MgCl2^H2O -20.6510 Wustite -4.8215 Larnite -20.8366 Enstatite -5.9032 Ca2Cl2(OH)2^H2O -20.8757 Huntite -5.9754 Mercallite -20.9415 Fayalite -6.1574 FeSO4(c) -21.6715

PAGE 292

Appendix F: (Continued) 277 Greenalite -6.1825 Akermanite -21.8681 Pirssonite -6.2452 MHSH(Mg1.5) -22.2977 Minnesotaite -6.2831 MgSO4(c) -22.7900 Brucite -6.5084 Chloromagnesite -25.8044 Gaylussite -7.1051 KMgCl3 -27.0826 Wollastonite -7.1176 Tremolite -27.1843 Pseudowollastoni -7.4515 Rankinite -27.3659 Sulfur-Rhmb -7.6027 O-phth acid(c) -29.0926 Strengite -8.2450 Ferrite-2-Ca -32.9431 CaSi2O5^2H2O -8.3304 Merwinite -33.4995 KNaCO3^6H2O -8.5122 Tachyhydrite -33.8074 Hedenbergite -8.8830 Molysite -33.8695 Diopside -9.2765 Ca4Si3O10^3/2H2O -34.1383 Antarcticite -9.4084 Anthophyllite -34.2222 Vivianite -9.4124 K8H4(CO3)6^3H2O -34.8762 Artinite -9.4779 Ca3Si2O7^3H2O -35.4701 CaCl2^4H2O -9.9115 Burkeite -35.8287 Ferrite-Ca -10.1571 Na3H(SO4)2 -36.0707 Talc -10.3154 Ca5Si6O17^21/2H2 -37.8707 Ferrite-Mg -10.5502 Ca5Si6O17^11/2H2 -38.7961 Bischofite -10.5538 Jarosite-K -40.2341 K2CO3^3/2H2O -10.6398 Na4SiO4 -40.6298 Ca(OH)2(c) -11.3434 Ca5Si6O17^3H2O -41.8099 Portlandite -11.3434 Ca3SiO5 -43.4393 Chrysotile -11.3763 Ca4Cl2(OH)6^13H2 -45.5362 NaFeO2(c) -12.0694 Ca6Si6O18^H2O -52.8455 Carnallite -12.2761 Na6Si2O7 -64.6031 Na2SiO3 -12.3255 Fe2(SO4)3(c) -81.3112 Forsterite -12.4596 Antigorite -85.4743 CaCl2^H2O -12.5568 Misenite -140.3806 Gases fugacity log fug. ----------------------------------------------CH4(g) 258.7 2.413 CO2(g) 0.9364 -0.029 Steam 0.1334 -0.875 H2(g) 6.498e-005 -4.187 H2S(g) 6.538e-007 -6.185 S2(g) 6.203e-028 -27.207 O2(g) 4.838e-067 -66.315 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CH4(aq) 0.273709 0.273709 CO2(aq) 0.170425 0.170425 Calcite 0.000224002 0.000224002 Cl0.902603 0.902603 Dolomite-ord 1.26215e-005 1.26215e-005 Fe(OH)3 5.87481e-012 5.87481e-012 H+ -0.151004 -0.151004 H2O 56.1416 56.1416 H2PO45.02702e-007 5.02702e-007 H2S(aq) 1.33208e-007 1.33208e-007

PAGE 293

Appendix F: (Continued) 278 K+ 0.102306 0.102306 Na+ 0.374079 0.374079 SiO2(aq) 7.88516e-005 7.88516e-005 Siderite 2.85701e-006 2.85701e-006 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.000237 0.000237 8.88 Cl0.903 0.903 3.00e+004 Fe++ 2.86e-006 2.86e-006 0.149 Fe+++ 5.87e-012 5.87e-012 3.07e-007 H+ 0.293 0.293 276. H2O 56.2 56.2 9.49e+005 HCO30.444 0.444 2.54e+004 HPO4-5.03e-007 5.03e-007 0.0452 K+ 0.102 0.102 3.75e+003 Mg++ 1.26e-005 1.26e-005 0.287 Na+ 0.374 0.374 8.05e+003 O2(aq) -0.547 -0.547-1.64e+004 SO4-1.33e-007 1.33e-007 0.0120 SiO2(aq) 7.89e-005 7.89e-005 4.44 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.0002366 0.0002366 8.882 Carbon 0.4444 0.4444 4999. Chlorine 0.9026 0.9026 2.997e+004 Hydrogen 113.2 113.2 1.069e+005 Iron 2.857e-006 2.857e-006 0.1494 Magnesium 1.262e-005 1.262e-005 0.2873 Oxygen 56.48 56.48 8.463e+005 Phosphorus 5.027e-007 5.027e-007 0.01458 Potassium 0.1023 0.1023 3746. Silicon 7.885e-005 7.885e-005 2.074 Sodium 0.3741 0.3741 8054. Sulfur 1.332e-007 1.332e-007 0.004000

PAGE 294

Appendix F: (Continued) 279 Step # 929 Xi = 0.6000 Time = 5.18746e+007 secs (600.4 days) Temperature = 58.0 C Pressure = 1.013 bars pH = 8.200 log fO2 = -65.658 Eh = -0.3929 volts pe = -5.9799 Ionic strength = 0.811828 Activity of water = 0.970995 Solvent mass = 1.006064 kg Solution mass = 1.075301 kg Solution density = 1.014 g/cm3 Chlorinity = 0.897163 molal Dissolved solids = 64389 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 38386.88 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O -0.3929 5.9799 e+ Fe+++ = Fe++ -0.3254 4.9529 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------CH3COO0.5137 0.7705 45.49 H+ -sliding pH buffer -microbe-1 -CH3COO+ SO4-+ H+ -> 2*HCO3+ H2S(aq) -log K = 15.0965 microbe-2 -CH3COO+ 8*Fe+++ + 2*H2O -> 2*CO2(aq) + 8*Fe++ + 7*H+ -log K = 89.8165 Microbial rate const. biomass affinity rxn rate reactions (mol/mg sec) (mg/kg) (log Q/K) (mol/kg sec) --------------------------------------------------------------------------microbe-1 2.000e-006 4.440e-191 2.249e-010 0.0000 microbe-2 6.000e-007 2.751e-041 -8.216 0.0000 Minerals isolated

PAGE 295

Appendix F: (Continued) 280 from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.1287 -0.890 12.88 4.753 Dolomite-ord 0.001028 -2.988 0.1896 0.06615 Graphite 0.7368 -0.133 8.849 3.898 Hematite 0.0002059 -3.686 0.03288 0.006233 Hydroxyapatite 3.305e-006 -5.481 0.001660 0.0005275 Pyrite 4.539e-007 -6.343 5.446e-005 1.087e005 Quartz 0.0009031 -3.044 0.05426 0.02049 Siderite 0.0003934 -3.405 0.04558 0.01126 (total) 22.05 8.755 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.8901 2.952e+004 0.6033 0.2700 CH4(aq) 0.3995 5996. 1.1865 0.3243 Na+ 0.3364 7236. 0.6540 0.6575 HCO30.2546 1.453e+004 0.6757 0.7644 K+ 0.1004 3672. 0.6033 1.2178 NaHCO3 0.02884 2267. 1.0000 1.5400 CO3-0.01029 577.5 0.1611 2.7806 NaCl 0.005792 316.7 1.0000 2.2372 CO2(aq) 0.002340 96.34 1.0000 2.6308 KCl 0.001299 90.64 1.0000 2.8862 NaCO30.0007640 59.33 0.6540 3.3013 CH3COO0.0002481 13.70 0.6757 3.7757 SiO2(aq) 6.227e-005 3.500 1.1865 4.1315

PAGE 296

Appendix F: (Continued) 281 OH2.110e-005 0.3358 0.6300 4.8764 NaH3SiO4 1.029e-005 1.138 1.0000 4.9874 H3SiO45.813e-006 0.5173 0.6540 5.4200 CaHCO3+ 3.509e-006 0.3319 0.7027 5.6080 CaCO3 3.116e-006 0.2918 1.0000 5.5064 Ca++ 2.941e-006 0.1103 0.2191 6.1908 NaOH 1.787e-006 0.06686 1.0000 5.7480 CaCl+ 1.748e-006 0.1236 0.6540 5.9418 NaHPO43.497e-007 0.03893 0.6540 6.6407 Mg++ 1.853e-007 0.004214 0.2909 7.2683 MgHCO3+ 1.819e-007 0.01452 0.6540 6.9245 HS1.301e-007 0.004025 0.6300 7.0864 MgCO3 1.183e-007 0.009332 1.0000 6.9270 H2(aq) 1.079e-007 0.0002035 1.1865 6.8927 HPO4-9.433e-008 0.008470 0.1414 7.8749 HCH3COO 6.775e-008 0.003807 1.0000 7.1691 KHPO45.340e-008 0.006749 0.6540 7.4568 MgCl+ 4.979e-008 0.002784 0.6540 7.4873 FeCl+ 4.344e-008 0.003711 0.6540 7.5465 Fe++ 2.540e-008 0.001327 0.2191 8.2545 FeHCO3+ 1.597e-008 0.001746 0.6540 7.9812 FeCO3 8.047e-009 0.0008722 1.0000 8.0944 H+ 7.843e-009 7.396e-006 0.8045 8.2000 FeCl2 7.341e-009 0.0008705 1.0000 8.1343 H2S(aq) 2.315e-009 7.380e-005 1.0000 8.6355 H2SiO4-2.168e-009 0.0001909 0.1414 9.5134

PAGE 297

Appendix F: (Continued) 282 H2PO42.069e-009 0.0001877 0.6540 8.8687 FeOH+ 4.582e-010 3.123e-005 0.6540 9.5234 CaOH+ 4.095e-010 2.187e-005 0.6540 9.5722 MgOH+ 2.980e-010 1.152e-005 0.6540 9.7103 PO4--1.371e-010 1.218e-005 0.0110 11.8211 CaCH3COO+ 2.644e-011 2.453e-006 0.6540 10.7621 CaHPO4 9.055e-012 1.153e-006 1.0000 11.0431 S-7.307e-012 2.192e-007 0.1807 11.8793 CaPO46.953e-012 8.786e-007 0.6540 11.3422 Fe(OH)2 6.557e-012 5.513e-007 1.0000 11.1833 Fe(OH)3 5.456e-012 5.456e-007 1.0000 11.2631 MgHPO4 1.045e-012 1.176e-007 1.0000 11.9808 FeHPO4 5.817e-013 8.264e-008 1.0000 12.2353 FePO45.680e-013 8.015e-008 0.6540 12.4301 MgPO45.176e-013 5.777e-008 0.6540 12.4704 SO4-3.668e-013 3.296e-008 0.1414 13.2851 Fe(OH)43.636e-013 4.215e-008 0.6540 12.6237 NaSO41.050e-013 1.169e-008 0.6540 13.1633 HCl 8.133e-014 2.775e-009 1.0000 13.0897 KSO44.329e-014 5.475e-009 0.6540 13.5480 Fe(OH)2+ 1.953e-014 1.642e-009 0.6540 13.8937 FeH2PO4+ 1.069e-014 1.528e-009 0.6540 14.1555 MgH2PO4+ 6.060e-015 6.877e-010 0.6540 14.4019 H3PO4 1.679e-015 1.539e-010 1.0000 14.7751 Fe(OH)31.383e-015 1.383e-010 0.6540 15.0436 P2O7---1.867e-016 3.039e-011 0.0003 19.2387

PAGE 298

Appendix F: (Continued) 283 HP2O7--1.023e-016 1.674e-011 0.0110 17.9482 CaSO4 1.034e-017 1.318e-012 1.0000 16.9853 MgSO4 6.559e-019 7.387e-014 1.0000 18.1831 FeOH++ 4.688e-019 3.195e-014 0.1807 19.0720 H2P2O7-2.896e-019 4.767e-014 0.1414 19.3878 HSO41.508e-019 1.369e-014 0.6540 19.0061 S2-7.657e-020 4.594e-015 0.1414 19.9655 FeSO4 5.442e-020 7.735e-015 1.0000 19.2642 FeCO3+ 2.381e-020 2.581e-015 0.6540 19.8076 FeH3SiO4++ 4.255e-022 6.010e-017 0.1807 22.1141 FeCl++ 5.614e-024 4.796e-019 0.1807 23.9937 FeCl2+ 4.220e-024 5.005e-019 0.6540 23.5591 (O-phth)-2.672e-025 4.103e-020 0.1414 25.4227 Fe+++ 2.170e-025 1.134e-020 0.0710 25.8121 FeCl3 2.096e-025 3.181e-020 1.0000 24.6787 H3P2O77.344e-026 1.216e-020 0.6540 25.3185 FeCl44.023e-027 7.440e-022 0.6540 26.5799 H(O-phth)1.384e-028 2.138e-023 0.6540 28.0433 S3-1.276e-028 1.148e-023 0.1414 28.7437 Mg4(OH)4++++ 4.753e-029 7.349e-024 0.0167 30.0994 H2SO4 1.782e-030 1.635e-025 1.0000 29.7492 H4P2O7 1.842e-033 3.068e-028 1.0000 32.7346 H2(O-phth) 5.074e-034 7.886e-029 1.0000 33.2947 S4-8.944e-035 1.073e-029 0.1414 34.8980 FeSO4+ 5.544e-035 7.880e-030 0.6540 34.4406 Fe2(OH)2++++ 3.110e-036 4.240e-031 0.0167 37.2836

PAGE 299

Appendix F: (Continued) 284 FeHSO4++ 4.717e-043 6.748e-038 0.1807 43.0693 S5-9.026e-044 1.354e-038 0.1414 43.8940 Fe(SO4)25.877e-047 1.363e-041 0.6540 46.4153 Fe3(OH)4(5+) 3.120e-048 6.878e-043 0.0016 50.3025 S6-4.550e-053 8.189e-048 0.1414 53.1915 O2(aq) 1.625e-069 4.865e-065 1.1865 68.7149 ClO45.923e-153 5.512e-148 0.6300 152.4281 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Calcite 0.0000 sat Bischofite -12.0936 Dolomite-ord 0.0000 sat MgOHCl -13.2823 Siderite 0.0000 sat Ca2Si3O8^5/2H2O -13.6038 Dolomite -0.0001 Carnallite -13.8745 Aragonite -0.1615 CaCl2^H2O -13.9574 Hematite -0.2916 CaCl2^2H2O -13.9827 Graphite -0.5229 Thenardite -14.2415 Quartz -0.6068 Arcanite -14.3447 Goethite -0.6872 MgCl2^4H2O -14.4864 Tridymite -0.7450 Anhydrite -14.7898 Chalcedony -0.8511 Gypsum -14.9453 Magnetite -0.9035 Mirabilite -15.1798 Cristobalite -1.0918 Mg2Cl(OH)3^4H2O -15.3319 Monohydrocalcite -1.1228 Bassanite -15.4256 Dolomite-dis -1.3305 CaSO4^1/2H2O(bet -15.5564 Magnesite -1.4499 Sepiolite -16.1287 FeO(c) -1.5993 Lawrencite -16.2793 Amrph^silica -1.6836 Hydromagnesite -16.6529 Cronstedt-7A -2.1972 Ca2SiO4^7/6H2O -17.0354 Ferrosilite -2.3176 Hydrophilite -17.0413 Halite -2.5545 Ca2SiO4(gamma) -17.3362 Sylvite -2.7037 Larnite -18.6139 Pyrrhotite -2.7781 Akermanite -18.7492 Pyrite -3.0686 Hexahydrite -18.9296 Troilite -3.1687 MgCl2^2H2O -19.0466 Fe(OH)2(ppd) -3.1832 Epsomite -19.0826 Kalicinite -3.3143 Lime -19.1208 Greenalite -3.4284 Leonhardtite -19.3726 Minnesotaite -3.8256 Melanterite -19.4273 Wustite -3.8921 Kieserite -19.5087 Fayalite -4.1836 Tremolite -20.9181 Nesquehonite -4.6990 Ca2Cl2(OH)2^H2O -21.3676 Fe(OH)3(ppd) -4.7837 Kainite -21.6311 Enstatite -4.9381 MgCl2^H2O -21.9014 Pirssonite -5.0312 KMgCl3^2H2O -22.0050

PAGE 300

Appendix F: (Continued) 285 Brucite -5.3997 Mercallite -22.0267 Huntite -5.8587 FeSO4(c) -22.8105 Gaylussite -6.0785 MHSH(Mg1.5) -22.8998 Wollastonite -6.1462 MgSO4(c) -23.8868 Whitlockite -6.3948 Rankinite -24.1805 Pseudowollastoni -6.4697 Chloromagnesite -26.9464 Hedenbergite -7.0348 Anthophyllite -27.7942 Diopside -7.4088 KMgCl3 -28.2907 KNaCO3^6H2O -7.4725 Merwinite -29.1659 Hydroxyapatite -7.5447 Ca4Si3O10^3/2H2O -30.0513 CaSi2O5^2H2O -7.5942 Ferrite-2-Ca -30.6223 Talc -7.7581 K8H4(CO3)6^3H2O -31.6787 Artinite -8.4164 Ca3Si2O7^3H2O -32.2534 Chrysotile -8.4976 O-phth acid(c) -32.4522 Sulfur-Rhmb -9.0695 Ca5Si6O17^21/2H2 -33.5026 Ferrite-Ca -9.2369 Burkeite -34.2416 K2CO3^3/2H2O -9.2925 Ca5Si6O17^11/2H2 -34.2635 Ferrite-Mg -9.6161 Na4SiO4 -35.1738 Na2SiO3 -9.8177 Na3H(SO4)2 -37.0443 Ca(OH)2(c) -10.1626 Ca5Si6O17^3H2O -37.1525 Portlandite -10.1626 Molysite -37.3530 Na2Si2O5 -10.2747 Tachyhydrite -38.2855 Forsterite -10.3522 Ca3SiO5 -39.8209 NaFeO2(c) -10.7789 Jarosite-K -43.8152 Strengite -10.9380 Ca4Cl2(OH)6^13H2 -44.6029 Antarcticite -10.9794 Ca6Si6O18^H2O -46.8992 Monticellite -11.0602 Na6Si2O7 -56.4100 CaCl2^4H2O -11.4349 Antigorite -62.6794 Vivianite -11.6832 Fe2(SO4)3(c) -87.7431 Andradite -11.6893 Misenite -146.8777 Gases fugacity log fug. ----------------------------------------------CH4(g) 398.3 2.600 Steam 0.1737 -0.760 CO2(g) 0.1244 -0.905 H2(g) 0.0001768 -3.752 H2S(g) 5.420e-008 -7.266 S2(g) 1.592e-030 -29.798 O2(g) 2.196e-066 -65.658 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CH4(aq) 0.402129 0.402129 Calcite 1.08445e-005 1.08445e-005 Cl0.902603 0.902603 Dolomite-ord 5.38896e-007 5.38896e-007 Fe(OH)3 5.87481e-012 5.87481e-012 H+ -0.00879382 -0.00879382 H2O 55.8427 55.8427 HCO30.298845 0.298845 HS1.33208e-007 1.33208e-007 K+ 0.102306 0.102306

PAGE 301

Appendix F: (Continued) 286 Na+ 0.374078 0.374078 NaHPO45.02702e-007 5.02702e-007 SiO2(aq) 7.88516e-005 7.88516e-005 Siderite 1.01270e-007 1.01270e-007 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 1.14e-005 1.14e-005 0.424 Cl0.903 0.903 2.98e+004 Fe++ 1.01e-007 1.01e-007 0.00526 Fe+++ 5.87e-012 5.87e-012 3.05e-007 H+ 0.393 0.393 369. H2O 56.2 56.2 9.42e+005 HCO30.701 0.701 3.98e+004 HPO4-5.03e-007 5.03e-007 0.0449 K+ 0.102 0.102 3.72e+003 Mg++ 5.39e-007 5.39e-007 0.0122 Na+ 0.374 0.374 8.00e+003 O2(aq) -0.804 -0.804-2.39e+004 SO4-1.33e-007 1.33e-007 0.0119 SiO2(aq) 7.89e-005 7.89e-005 4.41 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 1.138e-005 1.138e-005 0.4243 Carbon 0.7010 0.7010 7830. Chlorine 0.9026 0.9026 2.976e+004 Hydrogen 113.6 113.6 1.065e+005 Iron 1.013e-007 1.013e-007 0.005260 Magnesium 5.389e-007 5.389e-007 0.01218 Oxygen 56.74 56.74 8.442e+005 Phosphorus 5.027e-007 5.027e-007 0.01448 Potassium 0.1023 0.1023 3720. Silicon 7.885e-005 7.885e-005 2.059 Sodium 0.3741 0.3741 7998. Sulfur 1.332e-007 1.332e-007 0.003972

PAGE 302

Appendix F: (Continued) 287 Lysimeter R7 Input Files

PAGE 303

Appendix F: (Continued) 288 Lysimeter R7 Output Results Initial equilibrium constants: Aqueous species (O-phth)-+ 5*H2O + 7.5*O2(aq) = 8*HCO3+ 6*H+ log K = 548.7267 CH3COO+ 2*O2(aq) = 2*HCO3+ H+ log K = 148.3360 CH4(aq) + 2*O2(aq) = H2O + HCO3+ H+ log K = 145.6726 CO2(aq) + H2O = HCO3+ H+ log K = -6.3978 CO3-+ H+ = HCO3log K = 10.3821 Ca(H3SiO4)2 + 2*H+ = 4*H2O + Ca++ + 2*SiO2(aq) log K = 15.4652 Ca(O-phth) + 5*H2O + 7.5*O2(aq) = Ca++ + 8*HCO3+ 6*H+ log K = 546.5886 Ca++ = Ca++ log K = 0.0000 CaCH3COO+ + 2*O2(aq) = Ca++ + 2*HCO3+ H+ log K = 149.5386 CaCO3 + H+ = Ca++ + HCO3log K = 7.1866 CaCl+ = Cl+ Ca++ log K = -0.7294 CaH2SiO4 + 2*H+ = 2*H2O + Ca++ + SiO2(aq) log K = 18.0512 CaH3SiO4+ + H+ = 2*H2O + Ca++ + SiO2(aq) log K = 8.5371 CaHCO3+ = Ca++ + HCO3log K = -1.1999 CaHPO4 = PO4--+ Ca++ + H+ log K = -15.0548 CaOH+ + H+ = H2O + Ca++ log K = 12.8049

PAGE 304

Appendix F: (Continued) 289 CaPO4= PO4--+ Ca++ log K = -6.4511 CaSO4 = SO4-+ Ca++ log K = -2.3189 Cl= Cllog K = 0.0000 ClO4= Cl+ 2*O2(aq) log K = 15.8579 Fe(CH3COO)2+ + 4*O2(aq) = 4*HCO3+ 2*H+ + Fe+++ log K = 289.2274 Fe(CH3COO)3 + 6*O2(aq) = 6*HCO3+ 3*H+ + Fe+++ log K = 435.6411 Fe(OH)2 + 2*H+ = 2*H2O + Fe++ log K = 21.6378 Fe(OH)2+ + 2*H+ = 2*H2O + Fe+++ log K = 5.8066 Fe(OH)3 + 3*H+ = 3*H2O + Fe+++ log K = 12.2160 Fe(OH)3+ 3*H+ = 3*H2O + Fe++ log K = 34.5550 Fe(OH)4+ 4*H+ = 4*H2O + Fe+++ log K = 21.9037 Fe(SO4)2= 2*SO4-+ Fe+++ log K = -5.3245 Fe++ = Fe++ log K = 0.0000 Fe+++ = Fe+++ log K = 0.0000 Fe2(OH)2++++ + 2*H+ = 2*H2O + 2*Fe+++ log K = 3.0561 Fe3(OH)4(5+) + 4*H+ = 4*H2O + 3*Fe+++ log K = 6.3922 FeCH3COO+ + 2*O2(aq) = 2*HCO3+ H+ + Fe++ log K = 146.0545 FeCH3COO++ + 2*O2(aq) = 2*HCO3+ H+ + Fe+++

PAGE 305

Appendix F: (Continued) 290 log K = 144.6134 FeCO3 + H+ = HCO3+ Fe++ log K = 6.6066 FeCO3+ + H+ = HCO3+ Fe+++ log K = 0.5428 FeCl+ = Cl+ Fe++ log K = -0.3259 FeCl++ = Cl+ Fe+++ log K = -1.4190 FeCl2 = 2*Cl+ Fe++ log K = -0.0445 FeCl2+ = 2*Cl+ Fe+++ log K = -2.0664 FeCl3 = 3*Cl+ Fe+++ log K = -1.0482 FeCl4= 4*Cl+ Fe+++ log K = 0.9061 FeH2PO4+ = PO4--+ 2*H+ + Fe++ log K = -22.2486 FeH2PO4++ = PO4--+ 2*H+ + Fe+++ log K = -23.7173 FeH3SiO4++ + H+ = 2*H2O + SiO2(aq) + Fe+++ log K = 0.6092 FeHCO3+ = HCO3+ Fe++ log K = -1.3331 FeHPO4 = PO4--+ H+ + Fe++ log K = -15.9088 FeHPO4+ = PO4--+ H+ + Fe+++ log K = -22.2616 FeHSO4++ = SO4-+ H+ + Fe+++ log K = -3.6604 FeOH+ + H+ = H2O + Fe++ log K = 10.2549 FeOH++ + H+ = H2O + Fe+++ log K = 2.2726

PAGE 306

Appendix F: (Continued) 291 FePO4= PO4--+ Fe++ log K = -7.3836 FeSO4 = SO4-+ Fe++ log K = -2.2021 FeSO4+ = SO4-+ Fe+++ log K = -4.0649 H(O-phth)+ 5*H2O + 7.5*O2(aq) = 8*HCO3+ 7*H+ log K = 543.3247 H+ = H+ log K = 0.0000 H2(O-phth) + 5*H2O + 7.5*O2(aq) = 8*HCO3+ 8*H+ log K = 540.2418 H2(aq) + .5*O2(aq) = H2O log K = 46.6077 H2P2O7-+ H2O = 2*PO4--+ 4*H+ log K = -36.7643 H2PO4= PO4--+ 2*H+ log K = -19.5632 H2S(aq) + 2*O2(aq) = SO4-+ 2*H+ log K = 132.8283 H2SO4 = SO4-+ 2*H+ log K = 1.1160 H2SiO4-+ 2*H+ = 2*H2O + SiO2(aq) log K = 23.0424 H3P2O7+ H2O = 2*PO4--+ 5*H+ log K = -38.9611 H3PO4 = PO4--+ 3*H+ log K = -21.6776 H3SiO4+ H+ = 2*H2O + SiO2(aq) log K = 9.8513 H4(H2SiO4)4---+ 4*H+ = 8*H2O + 4*SiO2(aq) log K = 35.7315 H4P2O7 + H2O = 2*PO4--+ 6*H+ log K = -39.7062

PAGE 307

Appendix F: (Continued) 292 H6(H2SiO4)4-+ 2*H+ = 8*H2O + 4*SiO2(aq) log K = 13.4341 HCH3COO + 2*O2(aq) = 2*HCO3+ 2*H+ log K = 143.5381 HCO3= HCO3log K = 0.0000 HCl = Cl+ H+ log K = 6.2947 HP2O7--+ H2O = 2*PO4--+ 3*H+ log K = -30.0616 HPO4-= PO4--+ H+ log K = -12.3477 HS+ 2*O2(aq) = SO4-+ H+ log K = 139.9163 HSO4= SO4-+ H+ log K = -1.9499 K+ = K+ log K = 0.0000 KCl = Cl+ K+ log K = 1.6066 KHPO4= PO4--+ K+ + H+ log K = -13.3421 KOH + H+ = H2O + K+ log K = 14.5987 KSO4= SO4-+ K+ log K = -0.8480 Mg(H3SiO4)2 + 2*H+ = 4*H2O + Mg++ + 2*SiO2(aq) log K = 14.5380 Mg++ = Mg++ log K = 0.0000 Mg2CO3++ + H+ = 2*Mg++ + HCO3log K = 6.9170 Mg2OH+++ + H+ = H2O + 2*Mg++ log K = 13.4787 Mg4(OH)4++++ + 4*H+ = 4*H2O + 4*Mg++

PAGE 308

Appendix F: (Continued) 293 log K = 40.2621 MgCH3COO+ + 2*O2(aq) = Mg++ + 2*HCO3+ H+ log K = 147.1429 MgCO3 + H+ = Mg++ + HCO3log K = 7.4963 MgCl+ = Cl+ Mg++ log K = -0.1704 MgH2PO4+ = PO4--+ Mg++ + 2*H+ log K = -21.0529 MgH2SiO4 + 2*H+ = 2*H2O + Mg++ + SiO2(aq) log K = 16.9774 MgH3SiO4+ + H+ = 2*H2O + Mg++ + SiO2(aq) log K = 8.2915 MgHCO3+ = Mg++ + HCO3log K = -1.0069 MgHPO4 = PO4--+ Mg++ + H+ log K = -15.2194 MgOH+ + H+ = H2O + Mg++ log K = 11.9119 MgPO4= PO4--+ Mg++ log K = -6.4490 MgSO4 = SO4-+ Mg++ log K = -2.2232 Na(O-phth)+ 5*H2O + 7.5*O2(aq) = Na+ + 8*HCO3+ 6*H+ log K = 548.3082 Na+ = Na+ log K = 0.0000 NaCH3COO + 2*O2(aq) = Na+ + 2*HCO3+ H+ log K = 148.5957 NaCO3+ H+ = Na+ + HCO3log K = 9.8397 NaCl = Cl+ Na+ log K = 1.6291 NaH3SiO4 + H+ = 2*H2O + Na+ + SiO2(aq) log K = 8.6972

PAGE 309

Appendix F: (Continued) 294 NaHCO3 = Na+ + HCO3log K = -0.1577 NaHPO4= PO4--+ Na+ + H+ log K = -13.4344 NaOH + H+ = H2O + Na+ log K = 14.2965 NaSO4= SO4-+ Na+ log K = -0.6859 O2(aq) = O2(aq) log K = 0.0000 OH+ H+ = H2O log K = 14.0967 P2O7---+ H2O = 2*PO4--+ 2*H+ log K = -20.6525 PO4--= PO4--log K = 0.0000 S-+ 2*O2(aq) = SO4-log K = 153.9154 S2-+ H2O + 3.5*O2(aq) = 2*SO4-+ 2*H+ log K = 247.2617 S3-+ 2*H2O + 5*O2(aq) = 3*SO4-+ 4*H+ log K = 341.1514 S4-+ 3*H2O + 6.5*O2(aq) = 4*SO4-+ 6*H+ log K = 432.4999 S5-+ 4*H2O + 8*O2(aq) = 5*SO4-+ 8*H+ log K = 526.7136 S6-+ 5*H2O + 9.5*O2(aq) = 6*SO4-+ 10*H+ log K = 621.2462 SO4-= SO4-log K = 0.0000 SiO2(aq) = SiO2(aq) log K = 0.0000 Minerals Akermanite + 6*H+ = 3*H2O + 2*Ca++ + Mg++ + 2*SiO2(aq) log K = 45.7035

PAGE 310

Appendix F: (Continued) 295 Amrph^silica = SiO2(aq) log K = -2.7498 Andradite + 12*H+ = 6*H2O + 3*Ca++ + 3*SiO2(aq) + 2*Fe+++ log K = 33.4026 Anhydrite = SO4-+ Ca++ log K = -4.2435 Antarcticite = 6*H2O + 2*Cl+ Ca++ log K = 4.1004 Anthophyllite + 14*H+ = 8*H2O + 7*Mg++ + 8*SiO2(aq) log K = 68.6485 Antigorite + 48*H+ = 39.5*H2O + 24*Mg++ + 17*SiO2(aq) log K = 245.0100 Aragonite + H+ = Ca++ + HCO3log K = 1.9185 Arcanite = SO4-+ 2*K+ log K = -1.7417 Artinite + 3*H+ = 5*H2O + 2*Mg++ + HCO3log K = 20.1722 Bassanite = .5*H2O + SO4-+ Ca++ log K = -3.6136 Bischofite = 6*H2O + 2*Cl+ Mg++ log K = 4.5582 Bloedite = 4*H2O + 2*SO4-+ Mg++ + 2*Na+ log K = -2.2634 Brucite + 2*H+ = 2*H2O + Mg++ log K = 16.6427 Burkeite + H+ = 2*SO4-+ 6*Na+ + HCO3log K = 9.4810 Ca(OH)2(c) + 2*H+ = 2*H2O + Ca++ log K = 22.8126 Ca2Cl2(OH)2^H2O + 2*H+ = 3*H2O + 2*Cl+ 2*Ca++ log K = 26.4893 Ca2Si3O8^5/2H2O + 4*H+ = 4.5*H2O + 2*Ca++ + 3*SiO2(aq) log K = 23.4832

PAGE 311

Appendix F: (Continued) 296 Ca2SiO4(gamma) + 4*H+ = 2*H2O + 2*Ca++ + SiO2(aq) log K = 37.9067 Ca2SiO4^7/6H2O + 4*H+ = 3.167*H2O + 2*Ca++ + SiO2(aq) log K = 37.2733 Ca3Si2O7^3H2O + 6*H+ = 6*H2O + 3*Ca++ + 2*SiO2(aq) log K = 60.7952 Ca3SiO5 + 6*H+ = 3*H2O + 3*Ca++ + SiO2(aq) log K = 74.7963 Ca4Cl2(OH)6^13H2O + 6*H+ = 19*H2O + 2*Cl+ 4*Ca++ log K = 68.4529 Ca4Si3O10^3/2H2O + 8*H+ = 5.5*H2O + 4*Ca++ + 3*SiO2(aq) log K = 65.4810 Ca5Si6O17^11/2H2O + 10*H+ = 10.5*H2O + 5*Ca++ + 6*SiO2(aq) log K = 66.4402 Ca5Si6O17^21/2H2O + 10*H+ = 15.5*H2O + 5*Ca++ + 6*SiO2(aq) log K = 64.4835 Ca5Si6O17^3H2O + 10*H+ = 8*H2O + 5*Ca++ + 6*SiO2(aq) log K = 70.2343 Ca6Si6O18^H2O + 12*H+ = 7*H2O + 6*Ca++ + 6*SiO2(aq) log K = 93.4212 CaCl2^2H2O = 2*H2O + 2*Cl+ Ca++ log K = 8.1755 CaCl2^4H2O = 4*H2O + 2*Cl+ Ca++ log K = 4.9082 CaCl2^H2O = H2O + 2*Cl+ Ca++ log K = 8.3241 CaHPO4^2H2O = 2*H2O + PO4--+ Ca++ + H+ log K = -18.9001 CaSO4^1/2H2O(beta) = .5*H2O + SO4-+ Ca++ log K = -3.4412 CaSi2O5^2H2O + 2*H+ = 3*H2O + Ca++ + 2*SiO2(aq) log K = 9.9881 Calcite + H+ = Ca++ + HCO3log K = 1.7535 Carnallite = 6*H2O + 3*Cl+ Mg++ + K+

PAGE 312

Appendix F: (Continued) 297 log K = 4.4416 Chalcedony = SiO2(aq) log K = -3.7880 Chloromagnesite = 2*Cl+ Mg++ log K = 22.2918 Chrysotile + 6*H+ = 5*H2O + 3*Mg++ + 2*SiO2(aq) log K = 31.9416 Cristobalite = SiO2(aq) log K = -3.5043 Cronstedt-7A + 10*H+ = 7*H2O + SiO2(aq) + 2*Fe+++ + 2*Fe++ log K = 16.5849 Diopside + 4*H+ = 2*H2O + Ca++ + Mg++ + 2*SiO2(aq) log K = 21.2053 Dolomite + 2*H+ = Ca++ + Mg++ + 2*HCO3log K = 2.6200 Dolomite-dis + 2*H+ = Ca++ + Mg++ + 2*HCO3log K = 4.1871 Dolomite-ord + 2*H+ = Ca++ + Mg++ + 2*HCO3log K = 2.6201 Enstatite + 2*H+ = H2O + Mg++ + SiO2(aq) log K = 11.6172 Epsomite = 7*H2O + SO4-+ Mg++ log K = -1.8331 Fayalite + 4*H+ = 2*H2O + SiO2(aq) + 2*Fe++ log K = 19.3237 Fe(OH)2(ppd) + 2*H+ = 2*H2O + Fe++ log K = 13.0119 Fe(OH)3(ppd) + 3*H+ = 3*H2O + Fe+++ log K = 5.0426 Fe2(SO4)3(c) = 3*SO4-+ 2*Fe+++ log K = 1.2478 FeO(c) + 2*H+ = H2O + Fe++ log K = 11.5304 FeSO4(c) = SO4-+ Fe++ log K = 2.7659

PAGE 313

Appendix F: (Continued) 298 Ferrite-2-Ca + 10*H+ = 5*H2O + 2*Ca++ + 2*Fe+++ log K = 57.6684 Ferrite-Ca + 8*H+ = 4*H2O + Ca++ + 2*Fe+++ log K = 22.0446 Ferrite-Mg + 8*H+ = 4*H2O + Mg++ + 2*Fe+++ log K = 21.6378 Ferrosilite + 2*H+ = H2O + SiO2(aq) + Fe++ log K = 7.5184 Forsterite + 4*H+ = 2*H2O + 2*Mg++ + SiO2(aq) log K = 28.5192 Gaylussite + 2*H+ = 5*H2O + Ca++ + 2*Na+ + 2*HCO3log K = 11.0168 Goethite + 3*H+ = 2*H2O + Fe+++ log K = 0.6193 Graphite + H2O + O2(aq) = HCO3+ H+ log K = 68.5560 Greenalite + 6*H+ = 5*H2O + 2*SiO2(aq) + 3*Fe++ log K = 22.8708 Gypsum = 2*H2O + SO4-+ Ca++ log K = -4.4505 Halite = Cl+ Na+ log K = 1.5840 Hedenbergite + 4*H+ = 2*H2O + Ca++ + 2*SiO2(aq) + Fe++ log K = 19.6566 Hematite + 6*H+ = 3*H2O + 2*Fe+++ log K = 0.2910 Hexahydrite = 6*H2O + SO4-+ Mg++ log K = -1.5746 Huntite + 4*H+ = Ca++ + 3*Mg++ + 4*HCO3log K = 11.0529 Hydromagnesite + 6*H+ = 6*H2O + 5*Mg++ + 4*HCO3log K = 32.0795 Hydrophilite = 2*Cl+ Ca++ log K = 11.9622

PAGE 314

Appendix F: (Continued) 299 Hydroxyapatite + H+ = H2O + 3*PO4--+ 5*Ca++ log K = -48.2778 Jarosite-K + 6*H+ = 6*H2O + 2*SO4-+ K+ + 3*Fe+++ log K = -8.5480 Jarosite-Na + 6*H+ = 6*H2O + 2*SO4-+ Na+ + 3*Fe+++ log K = -4.8714 K2CO3^3/2H2O + H+ = 1.5*H2O + 2*K+ + HCO3log K = 13.3933 K8H4(CO3)6^3H2O + 2*H+ = 3*H2O + 8*K+ + 6*HCO3log K = 27.5133 KMgCl3 = 3*Cl+ Mg++ + K+ log K = 21.6863 KMgCl3^2H2O = 2*H2O + 3*Cl+ Mg++ + K+ log K = 14.2782 KNaCO3^6H2O + H+ = 6*H2O + K+ + Na+ + HCO3log K = 10.0676 Kainite = 3*H2O + Cl+ SO4-+ Mg++ + K+ log K = -0.0953 Kalicinite = K+ + HCO3log K = 0.2276 Kieserite = H2O + SO4-+ Mg++ log K = -0.0240 Larnite + 4*H+ = 2*H2O + 2*Ca++ + SiO2(aq) log K = 39.3870 Lawrencite = 2*Cl+ Fe++ log K = 9.1952 Leonhardtite = 4*H2O + SO4-+ Mg++ log K = -0.8106 Lime + 2*H+ = H2O + Ca++ log K = 33.0489 MHSH(Mg1.5) + H+ = H2O + SO4-+ 1.5*Mg++ log K = 9.3834 Magnesite + H+ = Mg++ + HCO3log K = 2.5144 Magnetite + 8*H+ = 4*H2O + 2*Fe+++ + Fe++

PAGE 315

Appendix F: (Continued) 300 log K = 10.6995 Melanterite = 7*H2O + SO4-+ Fe++ log K = -2.3997 Mercallite = SO4-+ K+ + H+ log K = -1.4580 Merwinite + 8*H+ = 4*H2O + 3*Ca++ + Mg++ + 2*SiO2(aq) log K = 69.0181 Mg2Cl(OH)3^4H2O + 3*H+ = 7*H2O + Cl+ 2*Mg++ log K = 26.2277 MgCl2^2H2O = 2*H2O + 2*Cl+ Mg++ log K = 13.0602 MgCl2^4H2O = 4*H2O + 2*Cl+ Mg++ log K = 7.5363 MgCl2^H2O = H2O + 2*Cl+ Mg++ log K = 16.4624 MgOHCl + H+ = H2O + Cl+ Mg++ log K = 16.2633 MgSO4(c) = SO4-+ Mg++ log K = 5.1782 Minnesotaite + 6*H+ = 4*H2O + 4*SiO2(aq) + 3*Fe++ log K = 14.0661 Mirabilite = 10*H2O + SO4-+ 2*Na+ log K = -1.2321 Misenite = 7*SO4-+ 8*K+ + 6*H+ log K = -11.2248 Molysite = 3*Cl+ Fe+++ log K = 13.7595 Monohydrocalcite + H+ = H2O + Ca++ + HCO3log K = 2.7412 Monticellite + 4*H+ = 2*H2O + Ca++ + Mg++ + SiO2(aq) log K = 30.1051 Na2Si2O5 + 2*H+ = H2O + 2*Na+ + 2*SiO2(aq) log K = 18.2545 Na2SiO3 + 2*H+ = H2O + 2*Na+ + SiO2(aq) log K = 22.4274

PAGE 316

Appendix F: (Continued) 301 Na3H(SO4)2 = 2*SO4-+ 3*Na+ + H+ log K = -0.9229 Na4SiO4 + 4*H+ = 2*H2O + 4*Na+ + SiO2(aq) log K = 67.1008 Na6Si2O7 + 6*H+ = 3*H2O + 6*Na+ + 2*SiO2(aq) log K = 102.5967 NaFeO2(c) + 4*H+ = 2*H2O + Na+ + Fe+++ log K = 20.1714 Nesquehonite + H+ = 3*H2O + Mg++ + HCO3log K = 5.5189 O-phth acid(c) + 5*H2O + 7.5*O2(aq) = 8*HCO3+ 8*H+ log K = 538.7376 Pentahydrite = 5*H2O + SO4-+ Mg++ log K = -1.2351 Pirssonite + 2*H+ = 2*H2O + Ca++ + 2*Na+ + 2*HCO3log K = 11.2918 Portlandite + 2*H+ = 2*H2O + Ca++ log K = 22.8126 Pseudowollastonite + 2*H+ = H2O + Ca++ + SiO2(aq) log K = 14.1562 Pyrite + H2O + 3.5*O2(aq) = 2*SO4-+ 2*H+ + Fe++ log K = 219.9429 Pyrrhotite + 2*O2(aq) = SO4-+ .25*Fe+++ + .625*Fe++ log K = 132.1500 Quartz = SiO2(aq) log K = -4.0621 Rankinite + 6*H+ = 3*H2O + 3*Ca++ + 2*SiO2(aq) log K = 52.5025 Sepiolite + 8*H+ = 11*H2O + 4*Mg++ + 6*SiO2(aq) log K = 31.2764 Siderite + H+ = HCO3+ Fe++ log K = -0.1662 Strengite = 2*H2O + PO4--+ Fe+++ log K = -26.4333

PAGE 317

Appendix F: (Continued) 302 Sulfur-Rhmb + H2O + 1.5*O2(aq) = SO4-+ 2*H+ log K = 94.3245 Sylvite = Cl+ K+ log K = 0.9256 Tachyhydrite = 12*H2O + 6*Cl+ Ca++ + 2*Mg++ log K = 17.5930 Talc + 6*H+ = 4*H2O + 3*Mg++ + 4*SiO2(aq) log K = 21.8222 Thenardite = SO4-+ 2*Na+ log K = -0.2373 Tremolite + 14*H+ = 8*H2O + 2*Ca++ + 5*Mg++ + 8*SiO2(aq) log K = 62.3842 Tridymite = SiO2(aq) log K = -3.8936 Troilite + 2*O2(aq) = SO4-+ Fe++ log K = 136.1637 Vivianite = 8*H2O + 2*PO4--+ 3*Fe++ log K = -35.9959 Whitlockite = 2*PO4--+ 3*Ca++ log K = -34.4240 Wollastonite + 2*H+ = H2O + Ca++ + SiO2(aq) log K = 13.7582 Wustite + 2*H+ = H2O + .106*Fe+++ + .841*Fe++ log K = 12.5654 Gases CH4(g) + 2*O2(aq) = H2O + HCO3+ H+ log K = 142.8822 CO2(g) + H2O = HCO3+ H+ log K = -7.8004 H2(g) + .5*O2(aq) = H2O log K = 43.5121 H2S(g) + 2*O2(aq) = SO4-+ 2*H+ log K = 131.9395 O2(g) = O2(aq) log K = -2.8626

PAGE 318

Appendix F: (Continued) 303 S2(g) + 2*H2O + 3*O2(aq) = 2*SO4-+ 4*H+ log K = 202.7840 Steam = H2O log K = 1.5865 Surface species Oxides CaO + 2*H+ = H2O + Ca++ Fe2O3 + 6*H+ = 3*H2O + 2*Fe+++ FeO + 2*H+ = H2O + Fe++ HCl = Cl+ H+ K2O + 2*H+ = H2O + 2*K+ MgO + 2*H+ = H2O + Mg++ Na2O + 2*H+ = H2O + 2*Na+ P2O5 + 3*H2O = 2*PO4--+ 6*H+ SO3 + H2O = SO4-+ 2*H+ SiO2 = SiO2(aq) Step # 30 Xi = 0.3000 Time = 2.59805e+007 secs (300.7 days) Temperature = 22.9 C Pressure = 1.013 bars pH = 4.600 log fO2 = -28.305 Eh = 0.5441 volts pe = 9.2624 Ionic strength = 0.095382 Activity of water = 0.998438 Solvent mass = 1.000251 kg Solution mass = 1.005189 kg Solution density = 1.016 g/cm3 Chlorinity = 0.047939 molal Dissolved solids = 4913 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 14.36 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O 0.5441 9.2624 e+ Fe+++ = Fe++ 0.3384 5.7619 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------H+ -sliding pH buffer -

PAGE 319

Appendix F: (Continued) 304 Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Hematite 1.701e-006 -5.769 0.0002716 5.149e005 Quartz 0.0004826 -3.316 0.02900 0.01095 (total) 0.02927 0.01100 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.04589 1619. 0.7648 1.4547 Na+ 0.02501 572.2 0.7801 1.7097 Ca++ 0.01943 774.8 0.4118 2.0969 CO2(aq) 0.01392 609.7 1.0000 1.8563 K+ 0.005309 206.6 0.7648 2.3914 Mg++ 0.004295 103.9 0.4551 2.7089 SO4-0.004255 406.8 0.3619 2.8125 CaSO4 0.002587 350.4 1.0000 2.5873 CaCl+ 0.001896 142.5 0.7801 2.8300 MgSO4 0.0005066 60.68 1.0000 3.2953 HCO30.0002842 17.25 0.7871 3.6504 NaSO40.0001878 22.25 0.7801 3.8342 MgCl+ 0.0001286 7.645 0.7801 3.9987 SiO2(aq) 8.325e-005 4.977 1.0246 4.0691 KSO45.668e-005 7.623 0.7801 4.3544 CaHCO3+ 3.579e-005 3.600 0.7962 4.5452 H+ 3.009e-005 0.03017 0.8349 4.6000 NaCl 1.641e-005 0.9545 1.0000 4.7848

PAGE 320

Appendix F: (Continued) 305 NaHCO3 6.170e-006 0.5158 1.0000 5.2097 MgHCO3+ 5.717e-006 0.4854 0.7801 5.3506 HSO44.533e-006 0.4379 0.7801 5.4514 KCl 3.573e-006 0.2651 1.0000 5.4470 H2PO42.241e-006 0.2162 0.7801 5.7575 Fe++ 9.376e-007 0.05211 0.4118 6.4133 MgH2PO4+ 1.372e-007 0.01656 0.7801 6.9704 FeSO4 9.491e-008 0.01435 1.0000 7.0227 FeCl+ 3.822e-008 0.003473 0.7801 7.5255 CaHPO4 1.762e-008 0.002385 1.0000 7.7540 HPO4-1.177e-008 0.001124 0.3619 8.3705 MgHPO4 6.286e-009 0.0007524 1.0000 8.2016 H3PO4 5.764e-009 0.0005620 1.0000 8.2393 CaCO3 4.777e-009 0.0004757 1.0000 8.3209 FeHCO3+ 2.332e-009 0.0002712 0.7801 8.7400 NaHPO41.358e-009 0.0001607 0.7801 8.9751 CO3-1.001e-009 5.978e-005 0.3750 9.4255 H3SiO46.279e-010 5.942e-005 0.7801 9.3100 MgCO3 5.741e-010 4.816e-005 1.0000 9.2410 FeCl2 5.466e-010 6.895e-005 1.0000 9.2623 OH4.416e-010 7.474e-006 0.7727 9.4669 FeH2PO4+ 4.265e-010 6.486e-005 0.7801 9.4779 KHPO42.257e-010 3.034e-005 0.7801 9.7542 NaH3SiO4 1.359e-010 1.597e-005 1.0000 9.8667 MgOH+ 1.324e-010 5.442e-006 0.7801 9.9860 CaH3SiO4+ 1.008e-010 1.356e-005 0.7801 10.1045

PAGE 321

Appendix F: (Continued) 306 Fe(OH)2+ 7.078e-011 6.329e-006 0.7801 10.2579 CaOH+ 6.913e-011 3.927e-006 0.7801 10.2681 MgH3SiO4+ 4.335e-011 5.151e-006 0.7801 10.4708 NaCO33.202e-011 2.644e-006 0.7801 10.6024 FeOH++ 1.184e-011 8.587e-007 0.3877 11.3380 Mg2CO3++ 1.087e-011 1.175e-006 0.3877 11.3753 FeHPO4 6.082e-012 9.188e-007 1.0000 11.2160 NaOH 4.205e-012 1.674e-007 1.0000 11.3763 CaPO42.281e-012 3.065e-007 0.7801 11.7498 FeOH+ 1.150e-012 8.338e-008 0.7801 12.0471 FeHPO4+ 9.130e-013 1.379e-007 0.7801 12.1474 Fe(OH)3 8.981e-013 9.551e-008 1.0000 12.0467 FeCO3 8.201e-013 9.455e-008 1.0000 12.0861 MgPO45.547e-013 6.583e-008 0.7801 12.3638 HCl 4.943e-013 1.793e-008 1.0000 12.3060 FeSO4+ 4.844e-013 7.322e-008 0.7801 12.4226 KOH 4.398e-013 2.456e-008 1.0000 12.3567 Fe+++ 1.107e-013 6.151e-009 0.1852 13.6882 H2SO4 7.934e-014 7.743e-009 1.0000 13.1005 FeCO3+ 6.297e-014 7.260e-009 0.7801 13.3087 FeCl++ 5.070e-014 4.606e-009 0.3877 13.7065 FeH3SiO4++ 4.487e-014 6.740e-009 0.3877 13.7596 H2P2O7-3.801e-014 6.656e-009 0.3619 13.8614 Mg2OH+++ 3.238e-014 2.114e-009 0.1685 14.2631 Fe(SO4)21.367e-014 3.373e-009 0.7801 13.9720 FeCl2+ 3.926e-015 4.952e-010 0.7801 14.5139

PAGE 322

Appendix F: (Continued) 307 MgH2SiO4 2.775e-015 3.269e-010 1.0000 14.5567 FeH2PO4++ 1.318e-015 2.004e-010 0.3877 15.2917 HP2O7--1.081e-015 1.882e-010 0.1006 15.9635 CaH2SiO4 9.581e-016 1.279e-010 1.0000 15.0186 FePO49.457e-016 1.419e-010 0.7801 15.1321 PO4--7.704e-016 7.281e-011 0.1006 16.1106 H3P2O77.000e-017 1.233e-011 0.7801 16.2627 Mg(H3SiO4)2 6.490e-017 1.385e-011 1.0000 16.1878 Ca(H3SiO4)2 3.140e-017 7.197e-012 1.0000 16.5030 FeCl3 1.045e-017 1.686e-012 1.0000 16.9810 FeHSO4++ 9.648e-018 1.468e-012 0.3877 17.4271 Fe(OH)49.633e-018 1.187e-012 0.7801 17.1241 H2SiO4-3.686e-018 3.451e-013 0.3619 17.8749 Fe(OH)2 1.632e-019 1.459e-014 1.0000 18.7873 P2O7---1.009e-019 1.747e-014 0.0168 20.7718 Fe2(OH)2++++ 9.457e-021 1.371e-015 0.0662 21.2034 H6(H2SiO4)4-8.424e-021 3.206e-015 0.3619 20.5159 H4P2O7 7.685e-021 1.361e-015 1.0000 20.1143 FeCl45.309e-021 1.044e-015 0.7801 20.3828 Fe(OH)31.075e-027 1.143e-022 0.7801 27.0766 Fe3(OH)4(5+) 6.450e-028 1.512e-022 0.0143 29.0347 H2(aq) 1.308e-031 2.623e-028 1.0246 30.8730 O2(aq) 6.538e-032 2.082e-027 1.0246 31.1740 Mg4(OH)4++++ 4.616e-032 7.590e-027 0.0662 32.5149 H4(H2SiO4)4---1.454e-032 5.503e-027 0.0168 33.6133 ClO43.054e-080 3.022e-075 0.7727 79.6271

PAGE 323

Appendix F: (Continued) 308 H2S(aq) 9.045e-083 3.067e-078 1.0000 82.0436 HS3.955e-085 1.301e-080 0.7727 84.5149 CH4(aq) 7.591e-092 1.212e-087 1.0246 91.1091 S-3.345e-094 1.067e-089 0.3877 93.8871 HCH3COO 5.986e-098 3.577e-093 1.0000 97.2228 CH3COO4.815e-098 2.829e-093 0.7871 97.4213 MgCH3COO+ 1.594e-099 1.322e-094 0.7801 98.9052 NaCH3COO 4.377e-100 3.573e-095 1.0000 99.3588 CaCH3COO+ 2.489e-101 2.456e-096 0.7801 100.7117 FeCH3COO+ 3.860e-102 4.413e-097 0.7801 101.5212 FeCH3COO++ 1.139e-107 1.302e-102 0.3877 107.3550 S2-1.916e-152 1.222e-147 0.3619 152.1591 Fe(CH3COO)2+ 1.217e-201 2.107e-196 0.7801 201.0225 S3-2.901e-211 2.777e-206 0.3619 210.9788 S4-1.536e-267 1.961e-262 0.3619 267.2549 Fe(CH3COO)3 3.239e-297 7.509e-292 1.0000 296.4896 S6-0.0000 0.0000 0.3619 300.0000 S5-0.0000 0.0000 0.3619 300.0000 H2(O-phth) 0.0000 0.0000 1.0000 300.0000 H(O-phth)0.0000 0.0000 0.7801 300.0000 Na(O-phth)0.0000 0.0000 0.7801 300.0000 Ca(O-phth) 0.0000 0.0000 1.0000 300.0000 (O-phth)-0.0000 0.0000 0.3619 300.0000 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Hematite 0.0000 sat Pirssonite -14.9392 Quartz -0.0228 Artinite -15.3735

PAGE 324

Appendix F: (Continued) 309 Tridymite -0.1905 Vivianite -15.4564 Chalcedony -0.2961 Ca(OH)2(c) -15.6417 Gypsum -0.4601 Portlandite -15.6417 Goethite -0.4756 Diopside -15.6755 Cristobalite -0.5786 MgOHCl -15.7638 Anhydrite -0.6569 Jarosite-Na -15.9319 Bassanite -1.2870 Hydrophilite -16.9255 Amrph^silica -1.3281 NaFeO2(c) -17.0825 CaSO4^1/2H2O(bet -1.4582 K2CO3^3/2H2O -17.2512 Calcite -2.8880 Huntite -17.3869 Aragonite -3.0528 Fayalite -17.7376 Strengite -3.3635 Hedenbergite -17.8367 Epsomite -3.6985 Lawrencite -18.4733 Monohydrocalcite -3.8783 Talc -18.5401 CaHPO4^2H2O -3.9190 MgCl2^2H2O -18.6308 Hexahydrite -3.9489 Mg2Cl(OH)3^4H2O -19.2682 Whitlockite -4.0603 Forsterite -19.4947 Magnesite -4.2499 Monticellite -20.4743 Pentahydrite -4.2897 Chrysotile -20.4883 Leonhardtite -4.7016 Na2Si2O5 -20.5810 Halite -4.7507 Na2SiO3 -20.6700 Sylvite -4.7812 Ca2Si3O8^5/2H2O -21.4355 Fe(OH)3(ppd) -4.8898 Minnesotaite -21.9218 Mirabilite -5.0484 MgCl2^H2O -22.0178 Siderite -5.2806 Greenalite -22.5603 Kieserite -5.4710 KMgCl3^2H2O -23.7033 Dolomite -5.4954 Andradite -23.9157 Dolomite-ord -5.4955 Ca2Cl2(OH)2^H2O -24.3481 Arcanite -5.8670 Burkeite -24.4642 Hydroxyapatite -5.8883 Lime -25.8424 Thenardite -5.9939 Ca2SiO4^7/6H2O -27.0274 Kalicinite -6.3005 Ca2SiO4(gamma) -27.6515 Melanterite -6.8378 Chloromagnesite -27.8252 Dolomite-dis -7.0560 Larnite -29.1262 Nesquehonite -7.2524 Sepiolite -29.6374 Magnetite -7.5760 KMgCl3 -31.0801 Mercallite -8.3701 Molysite -31.7315 FeO(c) -8.6942 Hydromagnesite -32.4740 Ferrosilite -8.7688 Akermanite -32.9888 Antarcticite -9.1142 Tachyhydrite -33.7992 Enstatite -9.1494 Fe2(SO4)3(c) -36.9326 Kainite -9.2682 Rankinite -39.1678 Bloedite -9.4925 Ferrite-2-Ca -42.9870 CaCl2^4H2O -9.9120 Graphite -45.4043 Brucite -10.0929 Ca3Si2O7^3H2O -47.4543 Wustite -10.1559 Tremolite -48.0479 Bischofite -10.1720 Ca4Si3O10^3/2H2O -49.0846 Fe(OH)2(ppd) -10.1786 Merwinite -49.1256 MgSO4(c) -10.6515 Ca4Cl2(OH)6^13H2 -52.1473 Wollastonite -10.6825 Ca5Si6O17^21/2H2 -53.2573 CaSi2O5^2H2O -11.0123 Ca5Si6O17^11/2H2 -55.1806 Pseudowollastoni -11.0784 Misenite -55.3824

PAGE 325

Appendix F: (Continued) 310 MHSH(Mg1.5) -11.5937 Anthophyllite -55.4930 FeSO4(c) -11.9535 Ca3SiO5 -57.3214 Jarosite-K -12.8330 Ca5Si6O17^3H2O -58.9495 MgCl2^4H2O -13.1338 Sulfur-Rhmb -59.2507 CaCl2^2H2O -13.1592 Na4SiO4 -59.4443 KNaCO3^6H2O -13.2996 K8H4(CO3)6^3H2O -59.5215 CaCl2^H2O -13.3030 Ca6Si6O18^H2O -74.9433 Carnallite -13.9144 Pyrrhotite -79.5818 Na3H(SO4)2 -14.4690 Troilite -82.5711 Ferrite-Ca -14.5784 Na6Si2O7 -93.1370 Gaylussite -14.7001 Pyrite -131.3147 Cronstedt-7A -14.7292 Antigorite -157.4847 Ferrite-Mg -14.7753 O-phth acid(c) -369.2029 Gases fugacity log fug. ----------------------------------------------CO2(g) 0.3599 -0.444 Steam 0.02732 -1.563 H2(g) 1.677e-028 -27.775 O2(g) 4.958e-029 -28.305 H2S(g) 7.263e-082 -81.139 CH4(g) 4.852e-089 -88.314 S2(g) 2.709e-133 -132.567 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CO2(aq) 0.0142583 0.0142583 Ca++ 0.0239521 0.0239521 Cl0.0479508 0.0479508 Fe++ 1.07436e-006 1.07436e-006 H+ -0.000297345 -0.000297345 H2O 55.5229 55.5229 H2PO42.42178e-006 2.42178e-006 Hematite 4.26154e-011 4.26154e-011 K+ 0.00537108 0.00537108 Mg++ 0.00493726 0.00493726 Na+ 0.0252286 0.0252286 O2(aq) 3.12512e-105 -1.23082e-044 SO4-0.00759961 0.00759961 SiO2(aq) 8.32671e-005 8.32671e-005 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0240 0.0240 955. Cl0.0480 0.0480 1.69e+003 Fe++ 1.07e-006 1.07e-006 0.0597 Fe+++ 8.52e-011 8.52e-011 4.74e-006 H+ 0.0140 0.0140 14.0

PAGE 326

Appendix F: (Continued) 311 H2O 55.5 55.5 9.95e+005 HCO30.0143 0.0143 866. HPO4-2.42e-006 2.42e-006 0.231 K+ 0.00537 0.00537 209. Mg++ 0.00494 0.00494 119. Na+ 0.0252 0.0252 577. O2(aq) 3.13e-105 -1.23e-044-3.92e-040 SO4-0.00760 0.00760 726. SiO2(aq) 8.33e-005 8.33e-005 4.98 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.02395 0.02395 955.0 Carbon 0.01426 0.01426 170.4 Chlorine 0.04795 0.04795 1691. Hydrogen 111.0 111.0 1.113e+005 Iron 1.074e-006 1.074e-006 0.05969 Magnesium 0.004937 0.004937 119.4 Oxygen 55.58 55.58 8.847e+005 Phosphorus 2.422e-006 2.422e-006 0.07462 Potassium 0.005371 0.005371 208.9 Silicon 8.327e-005 8.327e-005 2.326 Sodium 0.02523 0.02523 577.0 Sulfur 0.007600 0.007600 242.4 Step # 38 Xi = 0.3800 Time = 3.28856e+007 secs (380.62 days) Temperature = 23.1 C Pressure = 1.013 bars pH = 5.560 log fO2 = -28.277 Eh = 0.4874 volts pe = 8.2918 Ionic strength = 0.096037 Activity of water = 0.998437 Solvent mass = 1.000211 kg Solution mass = 1.005187 kg Solution density = 1.015 g/cm3 Chlorinity = 0.047941 molal Dissolved solids = 4950 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 112.97 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------

PAGE 327

Appendix F: (Continued) 312 e+ .25*O2(aq) + H+ = .5*H2O 0.4874 8.2918 e+ Fe+++ = Fe++ 0.1691 2.8767 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------H+ -sliding pH buffer -Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Hematite 1.701e-006 -5.769 0.0002716 5.149e005 Hydroxyapatite 3.269e-007 -6.486 0.0001642 5.218e005 Quartz 0.0004826 -3.316 0.02900 0.01095 (total) 0.02943 0.01105 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.04593 1620. 0.7642 1.4547 Na+ 0.02497 571.2 0.7797 1.7107 Ca++ 0.01924 767.3 0.4109 2.1021 CO2(aq) 0.01171 512.6 1.0000 1.9316 K+ 0.005309 206.6 0.7642 2.3917 SO4-0.004280 409.1 0.3609 2.8112 Mg++ 0.004261 103.1 0.4544 2.7131 CaSO4 0.002569 347.9 1.0000 2.5903 HCO30.002186 132.7 0.7867 2.7646 CaCl+ 0.001866 140.2 0.7797 2.8372 MgSO4 0.0005042 60.38 1.0000 3.2974

PAGE 328

Appendix F: (Continued) 313 CaHCO3+ 0.0002724 27.40 0.7958 3.6640 NaSO40.0001883 22.30 0.7797 3.8333 MgCl+ 0.0001270 7.552 0.7797 4.0043 SiO2(aq) 8.324e-005 4.977 1.0248 4.0690 KSO45.689e-005 7.651 0.7797 4.3530 NaHCO3 4.711e-005 3.938 1.0000 4.3269 MgHCO3+ 4.361e-005 3.703 0.7797 4.4685 NaCl 1.646e-005 0.9574 1.0000 4.7835 KCl 3.583e-006 0.2658 1.0000 5.4458 H+ 3.300e-006 0.003310 0.8346 5.5600 H2PO41.188e-006 0.1146 0.7797 6.0333 Fe++ 9.241e-007 0.05135 0.4109 6.4206 HSO45.023e-007 0.04851 0.7797 6.4071 CaCO3 3.336e-007 0.03322 1.0000 6.4768 FeSO4 9.367e-008 0.01416 1.0000 7.0284 CaHPO4 8.459e-008 0.01145 1.0000 7.0727 MgH2PO4+ 7.234e-008 0.008730 0.7797 7.2487 CO3-7.067e-008 0.004220 0.3741 7.5778 HPO4-5.713e-008 0.005457 0.3609 7.6857 MgCO3 4.022e-008 0.003374 1.0000 7.3956 FeCl+ 3.800e-008 0.003452 0.7797 7.5283 MgHPO4 3.024e-008 0.003620 1.0000 7.5194 FeHCO3+ 1.754e-008 0.002040 0.7797 7.8640 NaHPO46.634e-009 0.0007854 0.7797 8.2863 H3SiO45.772e-009 0.0005462 0.7797 8.3468 OH4.106e-009 6.949e-005 0.7722 8.4988

PAGE 329

Appendix F: (Continued) 314 NaCO32.238e-009 0.0001848 0.7797 8.7583 NaH3SiO4 1.245e-009 0.0001463 1.0000 8.9048 MgOH+ 1.223e-009 5.027e-005 0.7797 9.0207 KHPO41.101e-009 0.0001480 0.7797 9.0662 CaH3SiO4+ 9.088e-010 0.0001223 0.7797 9.1496 Mg2CO3++ 7.539e-010 8.149e-005 0.3868 9.5352 CaOH+ 6.367e-010 3.617e-005 0.7797 9.3042 FeCl2 5.428e-010 6.847e-005 1.0000 9.2653 MgH3SiO4+ 3.919e-010 4.656e-005 0.7797 9.5150 H3PO4 3.357e-010 3.273e-005 1.0000 9.4741 FeH2PO4+ 2.234e-010 3.397e-005 0.7797 9.7590 CaPO41.004e-010 1.349e-005 0.7797 10.1063 FeCO3 5.600e-011 6.456e-006 1.0000 10.2518 NaOH 3.898e-011 1.552e-006 1.0000 10.4091 FeHPO4 2.907e-011 4.392e-006 1.0000 10.5366 MgPO42.448e-011 2.905e-006 0.7797 10.7193 FeOH+ 1.046e-011 7.584e-007 0.7797 11.0885 Fe(OH)2+ 7.783e-012 6.959e-007 0.7797 11.2170 KOH 4.093e-012 2.285e-007 1.0000 11.3880 Fe(OH)3 9.120e-013 9.698e-008 1.0000 12.0400 Mg2OH+++ 2.970e-013 1.939e-008 0.1678 13.3024 MgH2SiO4 2.286e-013 2.694e-008 1.0000 12.6409 FeOH++ 1.418e-013 1.028e-008 0.3868 13.2610 CaH2SiO4 7.875e-014 1.051e-008 1.0000 13.1037 HCl 5.566e-014 2.019e-009 1.0000 13.2545 FePO44.148e-014 6.224e-009 0.7797 13.4903

PAGE 330

Appendix F: (Continued) 315 PO4--3.438e-014 3.249e-009 0.1000 14.4638 H2P2O7-1.080e-014 1.891e-009 0.3609 14.4091 FeHPO4+ 5.697e-015 8.606e-010 0.7797 14.3525 FeCO3+ 5.608e-015 6.465e-010 0.7797 14.3593 Mg(H3SiO4)2 5.347e-015 1.141e-009 1.0000 14.2719 HP2O7--2.813e-015 4.897e-010 0.1000 15.5509 Ca(H3SiO4)2 2.582e-015 5.916e-010 1.0000 14.5881 H2SO4 9.732e-016 9.498e-011 1.0000 15.0118 FeSO4+ 6.324e-016 9.559e-011 0.7797 15.3071 FeH3SiO4++ 5.321e-016 7.992e-011 0.3868 15.6866 H2SiO4-3.147e-016 2.946e-011 0.3609 15.9448 Fe+++ 1.433e-016 7.965e-012 0.1846 16.5774 Fe(OH)48.985e-017 1.107e-011 0.7797 16.1546 FeCl++ 6.630e-017 6.023e-012 0.3868 16.5911 Fe(SO4)21.794e-017 4.426e-012 0.7797 16.8543 Fe(OH)2 1.389e-017 1.242e-012 1.0000 16.8572 FeCl2+ 5.124e-018 6.463e-013 0.7797 17.3985 P2O7---2.407e-018 4.167e-013 0.0166 19.3991 H3P2O72.179e-018 3.837e-013 0.7797 17.7698 FeH2PO4++ 9.032e-019 1.374e-013 0.3868 18.4568 H6(H2SiO4)4-7.029e-019 2.675e-013 0.3609 18.5957 FeCl3 1.367e-020 2.207e-015 1.0000 19.8641 FeHSO4++ 1.384e-021 2.106e-016 0.3868 21.2715 H4P2O7 2.627e-023 4.652e-018 1.0000 22.5806 FeCl46.985e-024 1.374e-018 0.7797 23.2639 Fe2(OH)2++++ 1.342e-024 1.945e-019 0.0659 25.0537

PAGE 331

Appendix F: (Continued) 316 Fe(OH)38.494e-025 9.033e-020 0.7797 24.1790 Mg4(OH)4++++ 3.461e-028 5.691e-023 0.0659 28.6422 H4(H2SiO4)4---1.017e-028 3.852e-023 0.0166 29.7731 H2(aq) 1.389e-031 2.786e-028 1.0248 30.8467 O2(aq) 6.945e-032 2.211e-027 1.0248 31.1477 Fe3(OH)4(5+) 9.817e-033 2.301e-027 0.0142 33.8558 ClO43.521e-080 3.484e-075 0.7722 79.5656 H2S(aq) 1.272e-084 4.313e-080 1.0000 83.8955 HS5.128e-086 1.687e-081 0.7722 85.4024 CH4(aq) 7.541e-092 1.204e-087 1.0248 91.1119 S-4.028e-094 1.285e-089 0.3868 93.8075 CH3COO3.682e-097 2.163e-092 0.7867 96.5381 HCH3COO 5.018e-098 2.999e-093 1.0000 97.2995 MgCH3COO+ 1.233e-098 1.022e-093 0.7797 98.0172 NaCH3COO 3.407e-099 2.781e-094 1.0000 98.4676 CaCH3COO+ 1.892e-100 1.866e-095 0.7797 99.8312 FeCH3COO+ 2.963e-101 3.388e-096 0.7797 100.6363 FeCH3COO++ 1.149e-109 1.314e-104 0.3868 109.3521 S2-3.100e-154 1.978e-149 0.3609 153.9513 Fe(CH3COO)2+ 9.565e-203 1.656e-197 0.7797 202.1274 S3-6.291e-215 6.021e-210 0.3609 214.6439 S4-4.471e-273 5.705e-268 0.3609 272.7922 Fe(CH3COO)3 1.985e-297 4.601e-292 1.0000 296.7023 S6-0.0000 0.0000 0.3609 300.0000 S5-0.0000 0.0000 0.3609 300.0000 H2(O-phth) 0.0000 0.0000 1.0000 300.0000

PAGE 332

Appendix F: (Continued) 317 H(O-phth)0.0000 0.0000 0.7797 300.0000 Na(O-phth)0.0000 0.0000 0.7797 300.0000 Ca(O-phth) 0.0000 0.0000 1.0000 300.0000 (O-phth)-0.0000 0.0000 0.3609 300.0000 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Hydroxyapatite 0.0000 sat MgCl2^4H2O -13.1317 Hematite 0.0000 sat CaCl2^2H2O -13.1580 Quartz -0.0270 CaCl2^H2O -13.3006 Tridymite -0.1944 Ca(OH)2(c) -13.7085 Chalcedony -0.3000 Portlandite -13.7085 Gypsum -0.4640 Fayalite -13.8900 Goethite -0.4760 Carnallite -13.9200 Cristobalite -0.5822 Hedenbergite -13.9905 Anhydrite -0.6584 Chrysotile -14.7084 Whitlockite -0.7747 MgOHCl -14.7910 Calcite -1.0439 K2CO3^3/2H2O -15.4123 Aragonite -1.2088 Na3H(SO4)2 -15.4394 Bassanite -1.2885 Forsterite -15.6330 Amrph^silica -1.3304 Jarosite-K -15.7108 CaSO4^1/2H2O(bet -1.4594 NaFeO2(c) -16.1093 Dolomite -1.8049 Minnesotaite -16.1666 Dolomite-ord -1.8049 Mg2Cl(OH)3^4H2O -16.3868 Monohydrocalcite -2.0347 Monticellite -16.6152 Magnesite -2.4019 Greenalite -16.7976 CaHPO4^2H2O -3.2400 Hydrophilite -16.9193 Dolomite-dis -3.3636 Ca2Si3O8^5/2H2O -17.5919 Siderite -3.4375 Andradite -18.1456 Epsomite -3.7028 Lawrencite -18.4687 Hexahydrite -3.9512 MgCl2^2H2O -18.6219 Pentahydrite -4.2926 Na2Si2O5 -18.6544 Strengite -4.6050 Na2SiO3 -18.7396 Leonhardtite -4.7013 Jarosite-Na -18.8380 Halite -4.7523 Sepiolite -21.9481 Sylvite -4.7841 MgCl2^H2O -22.0050 Fe(OH)3(ppd) -4.8876 Ca2Cl2(OH)2^H2O -22.4261 Mirabilite -5.0603 Burkeite -22.6350 Nesquehonite -5.4034 Hydromagnesite -23.1502 Kalicinite -5.4233 Ca2SiO4^7/6H2O -23.1682 Kieserite -5.4668 KMgCl3^2H2O -23.6970 Magnetite -5.6509 Ca2SiO4(gamma) -23.7900 Arcanite -5.8699 Lime -23.8999 Thenardite -5.9944 Larnite -25.2633 FeO(c) -6.7681 Akermanite -27.2013 Melanterite -6.8456 Chloromagnesite -27.8068 Ferrosilite -6.8474 KMgCl3 -31.0658

PAGE 333

Appendix F: (Continued) 318 Enstatite -7.2211 Rankinite -33.3792 Brucite -8.1611 Tachyhydrite -33.8008 Fe(OH)2(ppd) -8.2532 Tremolite -34.5768 Wustite -8.5337 Molysite -34.5993 Wollastonite -8.7564 Ferrite-2-Ca -39.1080 CaSi2O5^2H2O -9.0940 Ca4Si3O10^3/2H2O -41.3734 Antarcticite -9.1203 Merwinite -41.4032 Pseudowollastoni -9.1518 Ca3Si2O7^3H2O -41.6636 Kainite -9.2697 Anthophyllite -42.0084 Mercallite -9.3356 Fe2(SO4)3(c) -42.6729 Bloedite -9.4961 Ca5Si6O17^21/2H2 -43.6469 CaCl2^4H2O -9.9158 Graphite -45.4444 Huntite -9.9970 Ca5Si6O17^11/2H2 -45.5622 Bischofite -10.1738 Ca4Cl2(OH)6^13H2 -46.4040 MHSH(Mg1.5) -10.6211 Ca5Si6O17^3H2O -49.3248 MgSO4(c) -10.6415 Ca3SiO5 -51.5140 Cronstedt-7A -10.8869 K8H4(CO3)6^3H2O -52.3351 Gaylussite -11.0323 Na4SiO4 -55.5642 Pirssonite -11.2624 Sulfur-Rhmb -61.1226 KNaCO3^6H2O -11.4755 Misenite -61.1861 Artinite -11.5973 Ca6Si6O18^H2O -63.3801 Diopside -11.8248 Pyrrhotite -80.2369 FeSO4(c) -11.9493 Troilite -82.5047 Vivianite -12.1807 Na6Si2O7 -87.3143 Ferrite-Ca -12.6442 Antigorite -111.2537 Talc -12.7690 Pyrite -133.1303 Ferrite-Mg -12.8379 O-phth acid(c) -369.5341 Gases fugacity log fug. ----------------------------------------------CO2(g) 0.3044 -0.517 Steam 0.02772 -1.557 H2(g) 1.784e-028 -27.749 O2(g) 5.288e-029 -28.277 H2S(g) 1.031e-083 -82.987 CH4(g) 4.834e-089 -88.316 S2(g) 5.097e-137 -136.293 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CO2(aq) 0.0142583 0.0142583 Ca++ 0.0239481 0.0239481 Cl0.0479508 0.0479508 Fe++ 1.07436e-006 1.07436e-006 H+ -0.00254351 -0.00254351 H2O 55.5229 55.5229 Hematite 4.42555e-012 4.42555e-012 Hydroxyapatite 4.80347e-007 4.80347e-007 K+ 0.00537108 0.00537108 Mg++ 0.00493726 0.00493726 Na+ 0.0252286 0.0252286 O2(aq) 3.12512e-105 -1.08076e-044

PAGE 334

Appendix F: (Continued) 319 SO4-0.00759961 0.00759961 SiO2(aq) 8.32671e-005 8.32671e-005 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0240 0.0240 955. Cl0.0480 0.0480 1.69e+003 Fe++ 1.07e-006 1.07e-006 0.0597 Fe+++ 8.85e-012 8.85e-012 4.92e-007 H+ 0.0117 0.0117 11.7 H2O 55.5 55.5 9.95e+005 HCO30.0143 0.0143 866. HPO4-1.44e-006 1.44e-006 0.138 K+ 0.00537 0.00537 209. Mg++ 0.00494 0.00494 119. Na+ 0.0252 0.0252 577. O2(aq) 3.13e-105 -1.08e-044-3.44e-040 SO4-0.00760 0.00760 726. SiO2(aq) 8.33e-005 8.33e-005 4.98 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.02395 0.02395 955.0 Carbon 0.01426 0.01426 170.4 Chlorine 0.04795 0.04795 1691. Hydrogen 111.0 111.0 1.113e+005 Iron 1.074e-006 1.074e-006 0.05969 Magnesium 0.004937 0.004937 119.4 Oxygen 55.58 55.58 8.847e+005 Phosphorus 1.441e-006 1.441e-006 0.04440 Potassium 0.005371 0.005371 208.9 Silicon 8.327e-005 8.327e-005 2.326 Sodium 0.02523 0.02523 577.0 Sulfur 0.007600 0.007600 242.4 Step # 40 Xi = 0.4000 Time = 3.46118e+007 secs (400.6 days) Temperature = 23.2 C Pressure = 1.013 bars pH = 5.800 log fO2 = -28.270 Eh = 0.4733 volts pe = 8.0491

PAGE 335

Appendix F: (Continued) 320 Ionic strength = 0.096449 Activity of water = 0.998436 Solvent mass = 1.000186 kg Solution mass = 1.005185 kg Solution density = 1.015 g/cm3 Chlorinity = 0.047942 molal Dissolved solids = 4973 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 176.02 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O 0.4733 8.0491 e+ Fe+++ = Fe++ 0.1269 2.1579 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------H+ -sliding pH buffer -Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Hematite 1.701e-006 -5.769 0.0002716 5.149e005 Hydroxyapatite 6.617e-007 -6.179 0.0003324 0.0001056 Quartz 0.0004826 -3.316 0.02900 0.01095 (total) 0.02960 0.01111 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.04595 1621. 0.7639 1.4547 Na+ 0.02495 570.7 0.7794 1.7112 Ca++ 0.01912 762.6 0.4104 2.1053 CO2(aq) 0.01034 452.8 1.0000 1.9854

PAGE 336

Appendix F: (Continued) 321 K+ 0.005309 206.6 0.7639 2.3919 SO4-0.004294 410.4 0.3603 2.8104 Mg++ 0.004241 102.6 0.4539 2.7156 HCO30.003359 203.9 0.7864 2.5781 CaSO4 0.002556 346.2 1.0000 2.5925 CaCl+ 0.001851 139.1 0.7794 2.8410 MgSO4 0.0005024 60.17 1.0000 3.2990 CaHCO3+ 0.0004157 41.82 0.7955 3.4806 NaSO40.0001885 22.33 0.7794 3.8330 MgCl+ 0.0001262 7.504 0.7794 4.0072 SiO2(aq) 8.324e-005 4.976 1.0249 4.0690 NaHCO3 7.219e-005 6.035 1.0000 4.1415 MgHCO3+ 6.665e-005 5.659 0.7794 4.2844 KSO45.701e-005 7.666 0.7794 4.3523 NaCl 1.646e-005 0.9573 1.0000 4.7835 KCl 3.584e-006 0.2659 1.0000 5.4456 H+ 1.899e-006 0.001905 0.8345 5.8000 Fe++ 9.161e-007 0.05091 0.4104 6.4249 CaCO3 8.858e-007 0.08822 1.0000 6.0527 H2PO43.300e-007 0.03184 0.7794 6.5898 HSO42.902e-007 0.02803 0.7794 6.6456 CO3-1.891e-007 0.01129 0.3735 7.1509 MgCO3 1.070e-007 0.008976 1.0000 6.9707 FeSO4 9.293e-008 0.01405 1.0000 7.0319 CaHPO4 4.057e-008 0.005492 1.0000 7.3918 FeCl+ 3.773e-008 0.003428 0.7794 7.5315

PAGE 337

Appendix F: (Continued) 322 HPO4-2.762e-008 0.002638 0.3603 8.0021 FeHCO3+ 2.665e-008 0.003099 0.7794 7.6825 MgH2PO4+ 2.000e-008 0.002413 0.7794 7.8073 MgHPO4 1.453e-008 0.001739 1.0000 7.8378 H3SiO41.005e-008 0.0009513 0.7794 8.1060 OH7.172e-009 0.0001214 0.7719 8.2568 NaCO35.965e-009 0.0004926 0.7794 8.3327 NaHPO43.208e-009 0.0003798 0.7794 8.6020 NaH3SiO4 2.164e-009 0.0002543 1.0000 8.6647 MgOH+ 2.125e-009 8.736e-005 0.7794 8.7809 Mg2CO3++ 1.995e-009 0.0002157 0.3862 9.1131 CaH3SiO4+ 1.568e-009 0.0002110 0.7794 8.9128 CaOH+ 1.105e-009 6.274e-005 0.7794 9.0651 MgH3SiO4+ 6.774e-010 8.048e-005 0.7794 9.2774 FeCl2 5.387e-010 6.795e-005 1.0000 9.2686 KHPO45.327e-010 7.159e-005 0.7794 9.3818 FeCO3 1.477e-010 1.702e-005 1.0000 9.8307 CaPO48.382e-011 1.126e-005 0.7794 10.1849 NaOH 6.797e-011 2.705e-006 1.0000 10.1677 FeH2PO4+ 6.151e-011 9.354e-006 0.7794 10.3193 H3PO4 5.366e-011 5.232e-006 1.0000 10.2703 MgPO42.047e-011 2.429e-006 0.7794 10.7972 FeOH+ 1.807e-011 1.310e-006 0.7794 10.8514 FeHPO4 1.391e-011 2.101e-006 1.0000 10.8568 KOH 7.147e-012 3.990e-007 1.0000 11.1459 Fe(OH)2+ 4.483e-012 4.008e-007 0.7794 11.4567

PAGE 338

Appendix F: (Continued) 323 Fe(OH)3 9.154e-013 9.735e-008 1.0000 12.0384 MgH2SiO4 6.865e-013 8.088e-008 1.0000 12.1633 Mg2OH+++ 5.140e-013 3.356e-008 0.1675 13.0651 CaH2SiO4 2.361e-013 3.152e-008 1.0000 12.6269 FeOH++ 4.693e-014 3.402e-009 0.3862 13.7417 FePO43.454e-014 5.184e-009 0.7794 13.5699 HCl 3.224e-014 1.170e-009 1.0000 13.4916 PO4--2.898e-014 2.738e-009 0.0996 14.5397 Mg(H3SiO4)2 1.606e-014 3.428e-009 1.0000 13.7943 Ca(H3SiO4)2 7.740e-015 1.774e-009 1.0000 14.1113 FeCO3+ 2.827e-015 3.259e-010 0.7794 14.6570 H2SiO4-9.574e-016 8.964e-011 0.3603 15.4622 H2P2O7-8.360e-016 1.464e-010 0.3603 15.5211 FeHPO4+ 5.212e-016 7.873e-011 0.7794 15.3913 HP2O7--3.791e-016 6.600e-011 0.0996 16.4229 H2SO4 3.242e-016 3.164e-011 1.0000 15.4891 FeH3SiO4++ 1.757e-016 2.640e-011 0.3862 16.1683 Fe(OH)41.570e-016 1.936e-011 0.7794 15.9122 FeSO4+ 1.204e-016 1.819e-011 0.7794 16.0277 Fe(OH)2 4.196e-017 3.751e-012 1.0000 16.3772 Fe+++ 2.722e-017 1.513e-012 0.1842 17.2997 FeCl++ 1.262e-017 1.146e-012 0.3862 17.3122 Fe(SO4)23.423e-018 8.445e-013 0.7794 17.5739 H6(H2SiO4)4-2.127e-018 8.092e-013 0.3603 18.1156 FeCl2+ 9.740e-019 1.228e-013 0.7794 18.1197 P2O7---5.656e-019 9.789e-014 0.0165 20.0310

PAGE 339

Appendix F: (Continued) 324 H3P2O79.696e-020 1.707e-014 0.7794 19.1217 FeH2PO4++ 4.760e-020 7.238e-015 0.3862 19.7356 FeCl3 2.600e-021 4.197e-016 1.0000 20.5850 FeHSO4++ 1.517e-022 2.309e-017 0.3862 22.2321 Fe(OH)34.479e-024 4.763e-019 0.7794 23.4571 FeCl41.330e-024 2.616e-019 0.7794 23.9843 H4P2O7 6.726e-025 1.191e-019 1.0000 24.1723 Fe2(OH)2++++ 1.467e-025 2.126e-020 0.0657 26.0163 Mg4(OH)4++++ 3.182e-027 5.233e-022 0.0657 27.6799 H4(H2SiO4)4---9.342e-028 3.536e-022 0.0165 28.8130 H2(aq) 1.410e-031 2.828e-028 1.0249 30.8401 O2(aq) 7.050e-032 2.245e-027 1.0249 31.1411 Fe3(OH)4(5+) 6.148e-034 1.441e-028 0.0141 35.0611 ClO43.649e-080 3.611e-075 0.7719 79.5503 H2S(aq) 4.385e-085 1.487e-080 1.0000 84.3580 HS3.081e-086 1.014e-081 0.7719 85.6238 CH4(aq) 6.945e-092 1.109e-087 1.0249 91.1477 S-4.227e-094 1.349e-089 0.3862 93.7871 CH3COO5.212e-097 3.062e-092 0.7864 96.3874 HCH3COO 4.086e-098 2.442e-093 1.0000 97.3887 MgCH3COO+ 1.744e-098 1.447e-093 0.7794 97.8667 NaCH3COO 4.840e-099 3.951e-094 1.0000 98.3152 CaCH3COO+ 2.662e-100 2.626e-095 0.7794 99.6830 FeCH3COO+ 4.175e-101 4.773e-096 0.7794 100.4876 FeCH3COO++ 3.103e-110 3.548e-105 0.3862 109.9213 S2-1.109e-154 7.075e-150 0.3603 154.3984

PAGE 340

Appendix F: (Continued) 325 Fe(CH3COO)2+ 3.670e-203 6.351e-198 0.7794 202.5437 S3-7.665e-216 7.336e-211 0.3603 215.5588 S4-1.856e-274 2.368e-269 0.3603 274.1747 Fe(CH3COO)3 1.083e-297 2.509e-292 1.0000 296.9656 S6-0.0000 0.0000 0.3603 300.0000 S5-0.0000 0.0000 0.3603 300.0000 H2(O-phth) 0.0000 0.0000 1.0000 300.0000 H(O-phth)0.0000 0.0000 0.7794 300.0000 Na(O-phth)0.0000 0.0000 0.7794 300.0000 Ca(O-phth) 0.0000 0.0000 1.0000 300.0000 (O-phth)-0.0000 0.0000 0.3603 300.0000 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Hydroxyapatite 0.0000 sat Fayalite -12.9330 Hematite 0.0000 sat Hedenbergite -13.0333 Quartz -0.0280 MgCl2^4H2O -13.1327 Tridymite -0.1954 CaCl2^2H2O -13.1597 Chalcedony -0.3010 Ca(OH)2(c) -13.2271 Gypsum -0.4664 Portlandite -13.2271 Goethite -0.4761 Chrysotile -13.2678 Cristobalite -0.5831 CaCl2^H2O -13.3020 Calcite -0.6198 Carnallite -13.9230 Anhydrite -0.6602 MgOHCl -14.5493 Aragonite -0.7846 Forsterite -14.6705 Whitlockite -0.9340 Minnesotaite -14.7352 Dolomite -0.9556 K2CO3^3/2H2O -14.9878 Dolomite-ord -0.9556 Greenalite -15.3644 Bassanite -1.2902 Monticellite -15.6537 Amrph^silica -1.3310 Mg2Cl(OH)3^4H2O -15.6694 CaSO4^1/2H2O(bet -1.4611 Na3H(SO4)2 -15.6821 Monohydrocalcite -1.6108 NaFeO2(c) -15.8663 Magnesite -1.9764 Jarosite-K -16.4294 Dolomite-dis -2.5139 Ca2Si3O8^5/2H2O -16.6348 Siderite -3.0143 Andradite -16.7087 CaHPO4^2H2O -3.5597 Hydrophilite -16.9197 Epsomite -3.7049 Na2Si2O5 -18.1734 Hexahydrite -3.9528 Na2SiO3 -18.2577 Pentahydrite -4.2943 Lawrencite -18.4701 Leonhardtite -4.7023 MgCl2^2H2O -18.6212

PAGE 341

Appendix F: (Continued) 326 Halite -4.7530 Jarosite-Na -19.5639 Sylvite -4.7849 Sepiolite -20.0315 Fe(OH)3(ppd) -4.8870 Hydromagnesite -20.9666 Nesquehonite -4.9777 Ca2Cl2(OH)2^H2O -21.9494 Mirabilite -5.0634 MgCl2^H2O -22.0033 Magnetite -5.1721 Ca2SiO4^7/6H2O -22.2071 Kalicinite -5.2391 Burkeite -22.2138 Strengite -5.4029 Ca2SiO4(gamma) -22.8284 Kieserite -5.4667 Lime -23.4162 Arcanite -5.8704 KMgCl3^2H2O -23.6971 Thenardite -5.9948 Larnite -24.3013 FeO(c) -6.2891 Akermanite -25.7596 Ferrosilite -6.3695 Chloromagnesite -27.8037 Enstatite -6.7405 KMgCl3 -31.0639 Melanterite -6.8496 Tremolite -31.2200 Brucite -7.6796 Rankinite -31.9377 Fe(OH)2(ppd) -7.7743 Tachyhydrite -33.8061 Wustite -8.1302 Molysite -35.3164 Wollastonite -8.2767 Ferrite-2-Ca -38.1421 Huntite -8.2959 Anthophyllite -38.6474 CaSi2O5^2H2O -8.6163 Ca4Si3O10^3/2H2O -39.4531 Pseudowollastoni -8.6720 Merwinite -39.4798 Antarcticite -9.1238 Ca3Si2O7^3H2O -40.2216 Kainite -9.2712 Ca5Si6O17^21/2H2 -41.2537 Bloedite -9.4982 Ca5Si6O17^11/2H2 -43.1670 Mercallite -9.5766 Fe2(SO4)3(c) -44.1065 CaCl2^4H2O -9.9186 Ca4Cl2(OH)6^13H2 -44.9758 Cronstedt-7A -9.9313 Graphite -45.4894 Bischofite -10.1758 Ca5Si6O17^3H2O -46.9280 Gaylussite -10.1880 Ca3SiO5 -50.0678 MHSH(Mg1.5) -10.3797 K8H4(CO3)6^3H2O -50.7494 Pirssonite -10.4158 Na4SiO4 -54.5955 MgSO4(c) -10.6401 Ca6Si6O18^H2O -60.5005 Artinite -10.6912 Sulfur-Rhmb -61.5901 Diopside -10.8654 Misenite -62.6346 KNaCO3^6H2O -11.0549 Pyrrhotite -80.4018 Talc -11.3306 Troilite -82.4901 FeSO4(c) -11.9502 Na6Si2O7 -85.8607 Ferrite-Ca -12.1625 Antigorite -99.7310 Vivianite -12.3443 Pyrite -133.5858 Ferrite-Mg -12.3550 O-phth acid(c) -369.8971 Gases fugacity log fug. ----------------------------------------------CO2(g) 0.2693 -0.570 Steam 0.02782 -1.556 H2(g) 1.812e-028 -27.742 O2(g) 5.374e-029 -28.270 H2S(g) 3.564e-084 -83.448 CH4(g) 4.455e-089 -88.351 S2(g) 5.983e-138 -137.223

PAGE 342

Appendix F: (Continued) 327 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------CO2(aq) 0.0142583 0.0142583 Ca++ 0.0239481 0.0239481 Cl0.0479508 0.0479508 Fe++ 1.07436e-006 1.07436e-006 H+ -0.00391363 -0.00391363 H2O 55.5229 55.5229 Hematite 2.72491e-012 2.72491e-012 Hydroxyapatite 1.45579e-007 1.45579e-007 K+ 0.00537108 0.00537108 Mg++ 0.00493726 0.00493726 Na+ 0.0252286 0.0252286 O2(aq) 3.12512e-105 8.63930e-045 SO4-0.00759961 0.00759961 SiO2(aq) 8.32671e-005 8.32671e-005 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0239 0.0239 955. Cl0.0480 0.0480 1.69e+003 Fe++ 1.07e-006 1.07e-006 0.0597 Fe+++ 5.45e-012 5.45e-012 3.03e-007 H+ 0.0103 0.0103 10.4 H2O 55.5 55.5 9.95e+005 HCO30.0143 0.0143 866. HPO4-4.37e-007 4.37e-007 0.0417 K+ 0.00537 0.00537 209. Mg++ 0.00494 0.00494 119. Na+ 0.0252 0.0252 577. O2(aq) 3.13e-105 8.64e-045 2.75e-040 SO4-0.00760 0.00760 726. SiO2(aq) 8.33e-005 8.33e-005 4.98 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.02395 0.02395 954.9 Carbon 0.01426 0.01426 170.4 Chlorine 0.04795 0.04795 1691. Hydrogen 111.0 111.0 1.113e+005 Iron 1.074e-006 1.074e-006 0.05969 Magnesium 0.004937 0.004937 119.4 Oxygen 55.58 55.58 8.847e+005

PAGE 343

Appendix F: (Continued) 328 Phosphorus 4.367e-007 4.367e-007 0.01346 Potassium 0.005371 0.005371 208.9 Silicon 8.327e-005 8.327e-005 2.326 Sodium 0.02523 0.02523 577.0 Sulfur 0.007600 0.007600 242.4 Step # 43 Xi = 0.4300 Time = 3.72012e+007 secs (430.57 days) Temperature = 23.3 C Pressure = 1.013 bars pH = 6.160 log fO2 = -28.259 Eh = 0.4520 volts pe = 7.6851 Ionic strength = 0.093965 Activity of water = 0.998433 Solvent mass = 1.000120 kg Solution mass = 1.005012 kg Solution density = 1.015 g/cm3 Chlorinity = 0.047945 molal Dissolved solids = 4868 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 267.11 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O 0.4520 7.6851 e+ Fe+++ = Fe++ 0.0634 1.0772 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------H+ -sliding pH buffer -Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Dolomite 0.0009071 -3.042 0.1673 0.05839 Hematite 1.701e-006 -5.769 0.0002716 5.149e005 Hydroxyapatite 7.797e-007 -6.108 0.0003917 0.0001244

PAGE 344

Appendix F: (Continued) 329 Quartz 0.0004826 -3.316 0.02900 0.01095 (total) 0.1969 0.06951 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.04605 1625. 0.7658 1.4526 Na+ 0.02491 569.8 0.7810 1.7110 Ca++ 0.01815 723.9 0.4132 2.1249 CO2(aq) 0.006690 293.0 1.0000 2.1746 K+ 0.005308 206.5 0.7658 2.3910 HCO30.004973 302.0 0.7880 2.4069 SO4-0.004397 420.3 0.3636 2.7962 Mg++ 0.003425 82.83 0.4564 2.8060 CaSO4 0.002526 342.2 1.0000 2.5975 CaCl+ 0.001771 133.1 0.7810 2.8592 CaHCO3+ 0.0005887 59.22 0.7970 3.3287 MgSO4 0.0004218 50.52 1.0000 3.3749 NaSO40.0001946 23.05 0.7810 3.8183 NaHCO3 0.0001070 8.943 1.0000 3.9707 MgCl+ 0.0001026 6.103 0.7810 4.0961 SiO2(aq) 8.322e-005 4.976 1.0242 4.0694 MgHCO3+ 8.014e-005 6.805 0.7810 4.2035 KSO45.893e-005 7.926 0.7810 4.3370 NaCl 1.658e-005 0.9645 1.0000 4.7803 KCl 3.614e-006 0.2681 1.0000 5.4420 CaCO3 2.886e-006 0.2874 1.0000 5.5397

PAGE 345

Appendix F: (Continued) 330 Fe++ 9.013e-007 0.05009 0.4132 6.4289 H+ 8.282e-007 0.0008307 0.8354 6.1600 CO3-6.383e-007 0.03812 0.3767 6.6190 MgCO3 2.962e-007 0.02485 1.0000 6.5284 HSO41.310e-007 0.01265 0.7810 6.9902 FeSO4 9.516e-008 0.01439 1.0000 7.0215 H2PO45.100e-008 0.004922 0.7810 7.3998 FeHCO3+ 3.901e-008 0.004536 0.7810 7.5162 FeCl+ 3.763e-008 0.003419 0.7810 7.5318 H3SiO42.302e-008 0.002179 0.7810 7.7452 NaCO32.023e-008 0.001670 0.7810 7.8014 OH1.651e-008 0.0002793 0.7737 7.8938 CaHPO4 1.379e-008 0.001867 1.0000 7.8606 HPO4-9.716e-009 0.0009280 0.3636 8.4518 NaH3SiO4 4.969e-009 0.0005840 1.0000 8.3037 Mg2CO3++ 4.445e-009 0.0004805 0.3893 8.7618 MgHPO4 4.193e-009 0.0005020 1.0000 8.3774 MgOH+ 3.977e-009 0.0001635 0.7810 8.5078 CaH3SiO4+ 3.424e-009 0.0004607 0.7810 8.5728 MgH2PO4+ 2.513e-009 0.0003033 0.7810 8.7072 CaOH+ 2.432e-009 0.0001382 0.7810 8.7213 MgH3SiO4+ 1.256e-009 0.0001493 0.7810 9.0083 NaHPO41.142e-009 0.0001352 0.7810 9.0497 FeCl2 5.410e-010 6.823e-005 1.0000 9.2668 FeCO3 4.954e-010 5.711e-005 1.0000 9.3051 KHPO41.897e-010 2.550e-005 0.7810 9.8293

PAGE 346

Appendix F: (Continued) 331 NaOH 1.569e-010 6.245e-006 1.0000 9.8044 CaPO46.523e-011 8.767e-006 0.7810 10.2929 FeOH+ 4.113e-011 2.982e-006 0.7810 10.4932 KOH 1.654e-011 9.234e-007 1.0000 10.7815 MgPO41.353e-011 1.606e-006 0.7810 10.9761 FeH2PO4+ 9.435e-012 1.435e-006 0.7810 11.1326 FeHPO4 4.899e-012 7.402e-007 1.0000 11.3099 H3PO4 3.631e-012 3.541e-007 1.0000 11.4400 MgH2SiO4 2.923e-012 3.444e-007 1.0000 11.5342 Fe(OH)2+ 1.954e-012 1.747e-007 0.7810 11.8164 CaH2SiO4 1.183e-012 1.580e-007 1.0000 11.9269 Fe(OH)3 9.207e-013 9.791e-008 1.0000 12.0359 Mg2OH+++ 7.727e-013 5.046e-008 0.1696 12.8826 Mg(H3SiO4)2 6.832e-014 1.458e-008 1.0000 13.1655 Ca(H3SiO4)2 3.876e-014 8.883e-009 1.0000 13.4116 FePO42.787e-014 4.183e-009 0.7810 13.6621 PO4--2.312e-014 2.185e-009 0.1017 14.6287 HCl 1.428e-014 5.182e-010 1.0000 13.8452 FeOH++ 8.848e-015 6.415e-010 0.3893 14.4628 H2SiO4-5.018e-015 4.699e-010 0.3636 14.7388 FeCO3+ 7.861e-016 9.063e-011 0.7810 15.2118 Fe(OH)43.619e-016 4.462e-011 0.7810 15.5487 Fe(OH)2 2.214e-016 1.980e-011 1.0000 15.6547 H2SO4 6.426e-017 6.271e-012 1.0000 16.1921 FeH3SiO4++ 3.299e-017 4.956e-012 0.3893 16.8913 HP2O7--2.048e-017 3.565e-012 0.1017 17.6814

PAGE 347

Appendix F: (Continued) 332 H2P2O7-1.994e-017 3.492e-012 0.3636 17.1396 FeHPO4+ 1.522e-017 2.300e-012 0.7810 16.9248 H6(H2SiO4)4-1.102e-017 4.195e-012 0.3636 17.3970 FeSO4+ 1.027e-017 1.553e-012 0.7810 17.0956 Fe+++ 2.221e-018 1.235e-013 0.1863 18.3832 FeCl++ 1.042e-018 9.467e-014 0.3893 18.3918 Fe(SO4)23.021e-019 7.454e-014 0.7810 18.6272 FeCl2+ 8.131e-020 1.026e-014 0.7810 19.1972 P2O7---6.885e-020 1.192e-014 0.0171 20.9294 H3P2O71.017e-021 1.791e-016 0.7810 21.1000 FeH2PO4++ 6.034e-022 9.178e-017 0.3893 21.6291 FeCl3 2.189e-022 3.533e-017 1.0000 21.6598 Fe(OH)35.439e-023 5.785e-018 0.7810 22.3718 FeHSO4++ 5.620e-024 8.552e-019 0.3893 23.6600 FeCl41.125e-025 2.212e-020 0.7810 25.0563 Mg4(OH)4++++ 3.911e-026 6.431e-021 0.0667 26.5833 H4(H2SiO4)4---2.471e-026 9.354e-021 0.0171 27.3744 Fe2(OH)2++++ 5.193e-027 7.529e-022 0.0667 27.4602 H4P2O7 3.089e-027 5.470e-022 1.0000 26.5102 H2(aq) 1.443e-031 2.895e-028 1.0242 30.8302 O2(aq) 7.217e-032 2.298e-027 1.0242 31.1313 Fe3(OH)4(5+) 9.326e-036 2.186e-030 0.0145 36.8690 ClO43.857e-080 3.817e-075 0.7737 79.5252 H2S(aq) 9.146e-086 3.102e-081 1.0000 85.0387 HS1.474e-086 4.851e-082 0.7737 85.9429 CH4(aq) 4.786e-092 7.640e-088 1.0242 91.3097

PAGE 348

Appendix F: (Continued) 333 S-4.637e-094 1.479e-089 0.3893 93.7435 CH3COO5.315e-097 3.123e-092 0.7880 96.3780 HCH3COO 1.823e-098 1.089e-093 1.0000 97.7392 MgCH3COO+ 1.455e-098 1.207e-093 0.7810 97.9444 NaCH3COO 4.987e-099 4.071e-094 1.0000 98.3021 CaCH3COO+ 2.600e-100 2.565e-095 0.7810 99.6924 FeCH3COO+ 4.251e-101 4.860e-096 0.7810 100.4788 FeCH3COO++ 2.616e-111 2.991e-106 0.3893 110.9920 S2-2.491e-155 1.589e-150 0.3636 155.0429 Fe(CH3COO)2+ 3.205e-204 5.547e-199 0.7810 203.6015 S3-3.527e-217 3.376e-212 0.3636 216.8919 S4-1.750e-276 2.234e-271 0.3636 276.1962 Fe(CH3COO)3 9.758e-299 2.262e-293 1.0000 298.0107 S6-0.0000 0.0000 0.3636 300.0000 S5-0.0000 0.0000 0.3636 300.0000 H2(O-phth) 0.0000 0.0000 1.0000 300.0000 H(O-phth)0.0000 0.0000 0.7810 300.0000 Na(O-phth)0.0000 0.0000 0.7810 300.0000 Ca(O-phth) 0.0000 0.0000 1.0000 300.0000 (O-phth)-0.0000 0.0000 0.3636 300.0000 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Dolomite 0.0000 sat Ferrite-Mg -11.7174 Hematite 0.0000 sat FeSO4(c) -11.9362 Hydroxyapatite 0.0000 sat Ca(OH)2(c) -12.5199 Dolomite-ord -0.0000 Portlandite -12.5199 Quartz -0.0299 Vivianite -12.5330 Calcite -0.1068 Minnesotaite -12.5824 Tridymite -0.1972 CaCl2^2H2O -13.1727 Aragonite -0.2717 Greenalite -13.2080

PAGE 349

Appendix F: (Continued) 334 Chalcedony -0.3029 MgCl2^4H2O -13.2166 Gypsum -0.4717 CaCl2^H2O -13.3146 Goethite -0.4763 Forsterite -13.4006 Cristobalite -0.5848 Carnallite -14.0066 Anhydrite -0.6647 MgOHCl -14.2713 Monohydrocalcite -1.0980 Monticellite -14.3135 Whitlockite -1.1681 K2CO3^3/2H2O -14.4570 Bassanite -1.2947 Andradite -14.5991 Amrph^silica -1.3322 Mg2Cl(OH)3^4H2O -14.7646 CaSO4^1/2H2O(bet -1.4654 Ca2Si3O8^5/2H2O -15.2299 Magnesite -1.5332 NaFeO2(c) -15.5007 Dolomite-dis -1.5577 Na3H(SO4)2 -16.0166 Siderite -2.4853 Hydrophilite -16.9308 Epsomite -3.7817 Na2Si2O5 -17.4505 Hexahydrite -4.0288 Jarosite-K -17.4800 CaHPO4^2H2O -4.0294 Sepiolite -17.5059 Pentahydrite -4.3705 Na2SiO3 -17.5329 Magnetite -4.4515 Lawrencite -18.4655 Nesquehonite -4.5341 Hydromagnesite -18.5583 Halite -4.7509 MgCl2^2H2O -18.7025 Leonhardtite -4.7773 Jarosite-Na -20.6255 Sylvite -4.7828 Ca2SiO4^7/6H2O -20.7957 Fe(OH)3(ppd) -4.8862 Ca2Cl2(OH)2^H2O -21.2598 Mirabilite -5.0529 Ca2SiO4(gamma) -21.4161 Kalicinite -5.0700 Burkeite -21.6575 Kieserite -5.5402 MgCl2^H2O -22.0832 FeO(c) -5.5681 Lime -22.7055 Ferrosilite -5.6506 Larnite -22.8885 Arcanite -5.8555 Akermanite -23.7143 Thenardite -5.9799 KMgCl3^2H2O -23.7762 Enstatite -6.1067 Tremolite -26.6511 Huntite -6.4527 Chloromagnesite -27.8815 Strengite -6.5750 Rankinite -29.8208 Melanterite -6.8400 KMgCl3 -31.1400 Brucite -7.0441 Tachyhydrite -33.9896 Fe(OH)2(ppd) -7.0536 Anthophyllite -34.2160 Wustite -7.5230 Molysite -36.3855 Wollastonite -7.5724 Ca4Si3O10^3/2H2O -36.6332 CaSi2O5^2H2O -7.9153 Ferrite-2-Ca -36.7228 Pseudowollastoni -7.9675 Merwinite -36.7266 Cronstedt-7A -8.4934 Ca5Si6O17^21/2H2 -37.7403 Antarcticite -9.1395 Ca3Si2O7^3H2O -38.1038 Gaylussite -9.1508 Ca5Si6O17^11/2H2 -39.6507 Kainite -9.3438 Ca4Cl2(OH)6^13H2 -42.8886 Pirssonite -9.3753 Ca5Si6O17^3H2O -43.4093 Talc -9.4346 Graphite -45.6654 Diopside -9.5287 Fe2(SO4)3(c) -46.2178 Bloedite -9.5597 Ca3SiO5 -47.9434 Artinite -9.6139 K8H4(CO3)6^3H2O -49.0112 Mercallite -9.9238 Na4SiO4 -53.1384 CaCl2^4H2O -9.9335 Ca6Si6O18^H2O -56.2726 MHSH(Mg1.5) -10.1345 Sulfur-Rhmb -62.2783

PAGE 350

Appendix F: (Continued) 335 Bischofite -10.2612 Misenite -64.7058 KNaCO3^6H2O -10.5300 Pyrrhotite -80.6345 MgSO4(c) -10.7115 Troilite -82.4528 Chrysotile -11.3678 Na6Si2O7 -83.6742 Ferrite-Ca -11.4549 Antigorite -84.5345 Fayalite -11.4931 Pyrite -134.2404 Hedenbergite -11.6107 O-phth acid(c) -371.3086 Gases fugacity log fug. ----------------------------------------------CO2(g) 0.1746 -0.758 Steam 0.02797 -1.553 H2(g) 1.854e-028 -27.732 O2(g) 5.506e-029 -28.259 H2S(g) 7.462e-085 -84.127 CH4(g) 3.071e-089 -88.513 S2(g) 2.555e-139 -138.593 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------Ca++ 0.0168189 0.0168189 Cl0.0479508 0.0479508 Dolomite 0.00622205 0.00622205 Fe++ 1.07436e-006 1.07436e-006 H+ 0.0191319 0.0191319 H2O 55.5087 55.5087 Hematite 1.44259e-012 1.44259e-012 Hydroxyapatite 2.75478e-008 2.75478e-008 K+ 0.00537108 0.00537108 Mg++ -0.00219189 -0.00219189 Na+ 0.0252286 0.0252286 O2(aq) 3.12512e-105 -1.00402e-044 SO4-0.00759961 0.00759961 SiO2(aq) 8.32671e-005 8.32671e-005 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0230 0.0230 919. Cl0.0480 0.0480 1.69e+003 Fe++ 1.07e-006 1.07e-006 0.0597 Fe+++ 2.89e-012 2.89e-012 1.60e-007 H+ 0.00669 0.00669 6.71 H2O 55.5 55.5 9.95e+005 HCO30.0124 0.0124 756. HPO4-8.26e-008 8.26e-008 0.00789 K+ 0.00537 0.00537 209. Mg++ 0.00403 0.00403 97.5 Na+ 0.0252 0.0252 577.

PAGE 351

Appendix F: (Continued) 336 O2(aq) 3.13e-105 -1.00e-044-3.20e-040 SO4-0.00760 0.00760 726. SiO2(aq) 8.33e-005 8.33e-005 4.98 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.02304 0.02304 918.9 Carbon 0.01244 0.01244 148.7 Chlorine 0.04795 0.04795 1692. Hydrogen 111.0 111.0 1.114e+005 Iron 1.074e-006 1.074e-006 0.05970 Magnesium 0.004030 0.004030 97.46 Oxygen 55.58 55.58 8.848e+005 Phosphorus 8.264e-008 8.264e-008 0.002547 Potassium 0.005371 0.005371 209.0 Silicon 8.327e-005 8.327e-005 2.327 Sodium 0.02523 0.02523 577.1 Sulfur 0.007600 0.007600 242.4 Step # 45 Xi = 0.4500 Time = 3.89275e+007 secs (450.55 days) Temperature = 23.4 C Pressure = 1.013 bars pH = 6.400 log fO2 = -28.252 Eh = 0.4378 volts pe = 7.4425 Ionic strength = 0.085980 Activity of water = 0.998425 Solvent mass = 1.000057 kg Solution mass = 1.004569 kg Solution density = 1.015 g/cm3 Chlorinity = 0.047948 molal Dissolved solids = 4491 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 220.70 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O 0.4378 7.4425 e+ Fe+++ = Fe++ 0.0204 0.3461 moles moles grams cm3

PAGE 352

Appendix F: (Continued) 337 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------H+ -sliding pH buffer -Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.0009242 -3.034 0.09250 0.03413 Dolomite 0.002766 -2.558 0.5100 0.1780 Hematite 1.701e-006 -5.769 0.0002716 5.149e005 Hydroxyapatite 7.966e-007 -6.099 0.0004001 0.0001271 Quartz 0.0004826 -3.316 0.02900 0.01095 (total) 0.6322 0.2233 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.04629 1634. 0.7724 1.4467 Na+ 0.02491 570.1 0.7868 1.7078 Ca++ 0.01579 630.1 0.4232 2.1750 K+ 0.005303 206.4 0.7724 2.3876 SO4-0.004628 442.6 0.3752 2.7603 HCO30.004072 247.3 0.7933 2.4908 CO2(aq) 0.003171 138.9 1.0000 2.4988 CaSO4 0.002446 331.5 1.0000 2.6116 Mg++ 0.001830 44.27 0.4650 3.0702 CaCl+ 0.001586 119.2 0.7868 2.9039 CaHCO3+ 0.0004299 43.27 0.8019 3.4625 MgSO4 0.0002495 29.89 1.0000 3.6030

PAGE 353

Appendix F: (Continued) 338 NaSO40.0002114 25.05 0.7868 3.7791 NaHCO3 8.874e-005 7.421 1.0000 4.0519 SiO2(aq) 8.321e-005 4.977 1.0221 4.0703 KSO46.404e-005 8.617 0.7868 4.2977 MgCl+ 5.617e-005 3.342 0.7868 4.3546 MgHCO3+ 3.571e-005 3.033 0.7868 4.5514 NaCl 1.696e-005 0.9867 1.0000 4.7706 KCl 3.695e-006 0.2743 1.0000 5.4323 CaCO3 3.691e-006 0.3677 1.0000 5.4329 Fe++ 8.965e-007 0.04984 0.4232 6.4209 CO3-8.890e-007 0.05311 0.3878 6.4624 H+ 4.748e-007 0.0004764 0.8385 6.4000 MgCO3 2.315e-007 0.01943 1.0000 6.6355 FeSO4 1.053e-007 0.01592 1.0000 6.9776 HSO48.138e-008 0.007864 0.7868 7.1936 H3SiO43.970e-008 0.003759 0.7868 7.5054 FeCl+ 3.867e-008 0.003515 0.7868 7.5167 FeHCO3+ 3.247e-008 0.003777 0.7868 7.5927 NaCO32.896e-008 0.002393 0.7868 7.6423 OH2.859e-008 0.0004840 0.7798 7.6518 H2PO41.683e-008 0.001625 0.7868 7.8781 NaH3SiO4 8.694e-009 0.001022 1.0000 8.0608 CaHPO4 7.106e-009 0.0009625 1.0000 8.1484 HPO4-5.442e-009 0.0005200 0.3752 8.6900 CaH3SiO4+ 5.252e-009 0.0007068 0.7868 8.3838 CaOH+ 3.759e-009 0.0002136 0.7868 8.5291

PAGE 354

Appendix F: (Continued) 339 MgOH+ 3.754e-009 0.0001544 0.7868 8.5296 Mg2CO3++ 1.839e-009 0.0001989 0.4000 9.1333 MgHPO4 1.320e-009 0.0001581 1.0000 8.8793 MgH3SiO4+ 1.177e-009 0.0001399 0.7868 9.0334 FeCO3 7.210e-010 8.316e-005 1.0000 9.1420 NaHPO46.619e-010 7.839e-005 0.7868 9.2834 FeCl2 5.677e-010 7.163e-005 1.0000 9.2459 MgH2PO4+ 4.518e-010 5.455e-005 0.7868 9.4492 NaOH 2.760e-010 1.099e-005 1.0000 9.5592 KHPO41.099e-010 1.478e-005 0.7868 10.0632 FeOH+ 7.251e-011 5.259e-006 0.7868 10.2437 CaPO45.807e-011 7.807e-006 0.7868 10.3402 KOH 2.911e-011 1.626e-006 1.0000 10.5359 MgPO47.358e-012 8.737e-007 0.7868 11.2374 MgH2SiO4 4.794e-012 5.651e-007 1.0000 11.3193 CaH2SiO4 3.177e-012 4.244e-007 1.0000 11.4979 FeH2PO4+ 3.175e-012 4.831e-007 0.7868 11.6024 FeHPO4 2.887e-012 4.364e-007 1.0000 11.5395 Fe(OH)2+ 1.117e-012 9.991e-008 0.7868 12.0561 Fe(OH)3 9.242e-013 9.832e-008 1.0000 12.0342 H3PO4 6.950e-013 6.780e-008 1.0000 12.1580 Mg2OH+++ 3.832e-013 2.503e-008 0.1770 13.1686 Mg(H3SiO4)2 1.118e-013 2.387e-008 1.0000 12.9516 Ca(H3SiO4)2 1.038e-013 2.381e-008 1.0000 12.9836 FePO42.837e-014 4.260e-009 0.7868 13.6512 PO4--2.165e-014 2.047e-009 0.1092 14.6263

PAGE 355

Appendix F: (Continued) 340 H2SiO4-1.474e-014 1.381e-009 0.3752 14.2573 HCl 8.388e-015 3.044e-010 1.0000 14.0764 FeOH++ 2.847e-015 2.065e-010 0.4000 14.9436 Fe(OH)2 6.880e-016 6.155e-011 1.0000 15.1624 Fe(OH)46.278e-016 7.742e-011 0.7868 15.3063 FeCO3+ 2.110e-016 2.434e-011 0.7868 15.7798 H6(H2SiO4)4-3.198e-017 1.217e-011 0.3752 16.9209 H2SO4 2.321e-017 2.266e-012 1.0000 16.6344 FeH3SiO4++ 1.057e-017 1.588e-012 0.4000 17.3740 HP2O7--3.671e-018 6.394e-013 0.1092 18.3969 H2P2O7-2.141e-018 3.750e-013 0.3752 18.0952 FeSO4+ 2.104e-018 3.181e-013 0.7868 17.7812 FeHPO4+ 1.655e-018 2.501e-013 0.7868 17.8854 Fe+++ 4.051e-019 2.252e-014 0.1936 19.1055 FeCl++ 1.954e-019 1.776e-014 0.4000 19.1070 Fe(SO4)26.721e-020 1.659e-014 0.7868 19.2767 P2O7---2.029e-020 3.513e-015 0.0194 21.4049 FeCl2+ 1.576e-020 1.989e-015 0.7868 19.9065 Fe(OH)32.928e-022 3.115e-017 0.7868 21.6376 H3P2O76.437e-023 1.134e-017 0.7868 22.2955 FeCl3 4.337e-023 7.003e-018 1.0000 22.3628 FeH2PO4++ 3.700e-023 5.629e-018 0.4000 22.8297 FeHSO4++ 6.492e-025 9.882e-020 0.4000 24.5855 H4(H2SiO4)4---1.967e-025 7.450e-020 0.0194 26.4183 Mg4(OH)4++++ 3.044e-026 5.008e-021 0.0706 26.6676 FeCl42.245e-026 4.418e-021 0.7868 25.7529

PAGE 356

Appendix F: (Continued) 341 Fe2(OH)2++++ 5.349e-028 7.759e-023 0.0706 28.4228 H4P2O7 1.134e-028 2.009e-023 1.0000 27.9455 H2(aq) 1.468e-031 2.947e-028 1.0221 30.8237 O2(aq) 7.342e-032 2.339e-027 1.0221 31.1247 Fe3(OH)4(5+) 5.321e-037 1.248e-031 0.0158 38.0743 ClO44.019e-080 3.979e-075 0.7798 79.5039 H2S(aq) 3.418e-086 1.159e-081 1.0000 85.4662 HS9.523e-087 3.135e-082 0.7798 86.1292 CH4(aq) 2.370e-092 3.785e-088 1.0221 91.6158 S-5.126e-094 1.636e-089 0.4000 93.6881 CH3COO2.151e-097 1.264e-092 0.7933 96.7680 HCH3COO 4.274e-099 2.555e-094 1.0000 98.3692 MgCH3COO+ 3.221e-099 2.673e-094 0.7868 98.5962 NaCH3COO 2.058e-099 1.681e-094 1.0000 98.6866 CaCH3COO+ 9.383e-101 9.259e-096 0.7868 100.1318 FeCH3COO+ 1.761e-101 2.014e-096 0.7868 100.8585 FeCH3COO++ 1.977e-112 2.261e-107 0.4000 112.1020 S2-1.013e-155 6.469e-151 0.3752 155.4200 Fe(CH3COO)2+ 1.011e-205 1.751e-200 0.7868 205.0992 S3-5.298e-218 5.073e-213 0.3752 217.7017 S4-9.711e-278 1.240e-272 0.3752 277.4385 Fe(CH3COO)3 1.271e-300 2.947e-295 1.0000 299.8960 S6-0.0000 0.0000 0.3752 300.0000 S5-0.0000 0.0000 0.3752 300.0000 H2(O-phth) 0.0000 0.0000 1.0000 300.0000 H(O-phth)0.0000 0.0000 0.7868 300.0000

PAGE 357

Appendix F: (Continued) 342 Na(O-phth)0.0000 0.0000 0.7868 300.0000 Ca(O-phth) 0.0000 0.0000 1.0000 300.0000 (O-phth)-0.0000 0.0000 0.3752 300.0000 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Calcite 0.0000 sat Minnesotaite -11.1180 Dolomite 0.0000 sat Ferrite-Mg -11.4961 Hematite 0.0000 sat Greenalite -11.7398 Hydroxyapatite 0.0000 sat FeSO4(c) -11.8898 Dolomite-ord -0.0000 Ca(OH)2(c) -12.0854 Quartz -0.0320 Portlandite -12.0854 Aragonite -0.1648 Vivianite -12.5033 Tridymite -0.1992 Forsterite -12.9623 Chalcedony -0.3048 CaCl2^2H2O -13.2093 Goethite -0.4764 Andradite -13.3059 Gypsum -0.4860 CaCl2^H2O -13.3509 Cristobalite -0.5867 MgCl2^4H2O -13.4673 Anhydrite -0.6783 Monticellite -13.6616 Monohydrocalcite -0.9913 Carnallite -14.2499 Bassanite -1.3083 MgOHCl -14.2853 Whitlockite -1.3118 K2CO3^3/2H2O -14.2958 Amrph^silica -1.3338 Ca2Si3O8^5/2H2O -14.3695 CaSO4^1/2H2O(bet -1.4790 Mg2Cl(OH)3^4H2O -14.5645 Dolomite-dis -1.5572 NaFeO2(c) -15.2540 Magnesite -1.6397 Na3H(SO4)2 -16.1778 Siderite -2.3201 Sepiolite -16.6418 Magnetite -3.9605 Na2Si2O5 -16.9639 Epsomite -4.0104 Hydrophilite -16.9661 Hexahydrite -4.2570 Na2SiO3 -17.0443 CaHPO4^2H2O -4.3178 Jarosite-K -18.1250 Pentahydrite -4.5988 Lawrencite -18.4426 Nesquehonite -4.6404 Hydromagnesite -18.7644 Halite -4.7419 MgCl2^2H2O -18.9516 Sylvite -4.7742 Ca2SiO4^7/6H2O -19.9295 Fe(OH)3(ppd) -4.8857 Ca2SiO4(gamma) -20.5494 Leonhardtite -5.0048 Ca2Cl2(OH)2^H2O -20.8651 Mirabilite -5.0134 Jarosite-Na -21.2775 FeO(c) -5.0768 Burkeite -21.4137 Kalicinite -5.1526 Larnite -22.0213 Ferrosilite -5.1614 Lime -22.2687 Kieserite -5.7667 MgCl2^H2O -22.3313 Arcanite -5.8139 Akermanite -22.6301 Enstatite -5.8887 KMgCl3^2H2O -24.0165 Thenardite -5.9376 Tremolite -24.7043 Fe(OH)2(ppd) -6.5624 Chloromagnesite -28.1282 Huntite -6.6648 Rankinite -28.5220 Melanterite -6.7967 KMgCl3 -31.3784

PAGE 358

Appendix F: (Continued) 343 Brucite -6.8243 Anthophyllite -32.6944 Wustite -7.1092 Tachyhydrite -34.5294 Wollastonite -7.1407 Ca4Si3O10^3/2H2O -34.9036 Strengite -7.2947 Merwinite -35.2075 CaSi2O5^2H2O -7.4865 Ca5Si6O17^21/2H2 -35.5877 Cronstedt-7A -7.5141 Ferrite-2-Ca -35.8507 Pseudowollastoni -7.5356 Ca3Si2O7^3H2O -36.8045 Talc -8.7851 Molysite -37.0846 Diopside -8.8799 Ca5Si6O17^11/2H2 -37.4960 Gaylussite -8.8865 Ca5Si6O17^3H2O -41.2531 Pirssonite -9.1087 Ca4Cl2(OH)6^13H2 -41.6362 Antarcticite -9.1780 Graphite -45.9807 Artinite -9.5014 Ca3SiO5 -46.6390 Kainite -9.5624 Fe2(SO4)3(c) -47.5463 Bloedite -9.7457 K8H4(CO3)6^3H2O -49.0195 CaCl2^4H2O -9.9714 Na4SiO4 -52.1555 Mercallite -10.1262 Ca6Si6O18^H2O -53.6805 MHSH(Mg1.5) -10.2505 Sulfur-Rhmb -62.7107 KNaCO3^6H2O -10.3725 Misenite -65.8807 Fayalite -10.5126 Antigorite -79.3079 Bischofite -10.5130 Pyrrhotite -80.7567 Hedenbergite -10.6901 Na6Si2O7 -82.1997 Chrysotile -10.7141 Troilite -82.3909 MgSO4(c) -10.9366 Pyrite -134.6135 Ferrite-Ca -11.0202 O-phth acid(c) -373.8345 Gases fugacity log fug. ----------------------------------------------CO2(g) 0.08289 -1.082 Steam 0.02808 -1.552 H2(g) 1.883e-028 -27.725 O2(g) 5.595e-029 -28.252 H2S(g) 2.795e-085 -84.554 CH4(g) 1.519e-089 -88.818 S2(g) 3.524e-140 -139.453 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------Ca++ 0.0146270 0.0146270 Calcite 0.00345961 0.00345961 Cl0.0479508 0.0479508 Dolomite 0.00217135 0.00217135 Fe++ 1.07436e-006 1.07436e-006 H+ 0.0109693 0.0109693 H2O 55.5087 55.5087 Hematite 1.02244e-012 1.02244e-012 Hydroxyapatite 1.06651e-008 1.06651e-008 K+ 0.00537108 0.00537108 Na+ 0.0252286 0.0252286 O2(aq) 3.12512e-105 -1.38386e-044 SO4-0.00759961 0.00759961 SiO2(aq) 8.32671e-005 8.32671e-005

PAGE 359

Appendix F: (Continued) 344 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0203 0.0203 808. Cl0.0480 0.0480 1.69e+003 Fe++ 1.07e-006 1.07e-006 0.0597 Fe+++ 2.04e-012 2.04e-012 1.14e-007 H+ 0.00317 0.00317 3.18 H2O 55.5 55.5 9.95e+005 HCO30.00780 0.00780 474. HPO4-3.20e-008 3.20e-008 0.00306 K+ 0.00537 0.00537 209. Mg++ 0.00217 0.00217 52.5 Na+ 0.0252 0.0252 577. O2(aq) 3.13e-105 -1.38e-044-4.41e-040 SO4-0.00760 0.00760 727. SiO2(aq) 8.33e-005 8.33e-005 4.98 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.02026 0.02026 808.2 Carbon 0.007802 0.007802 93.29 Chlorine 0.04795 0.04795 1692. Hydrogen 111.0 111.0 1.114e+005 Iron 1.074e-006 1.074e-006 0.05973 Magnesium 0.002171 0.002171 52.53 Oxygen 55.56 55.56 8.849e+005 Phosphorus 3.200e-008 3.200e-008 0.0009865 Potassium 0.005371 0.005371 209.0 Silicon 8.327e-005 8.327e-005 2.328 Sodium 0.02523 0.02523 577.4 Sulfur 0.007600 0.007600 242.5 Step # 50 Xi = 0.5000 Time = 4.32432e+007 secs (500.5 days) Temperature = 23.5 C Pressure = 1.013 bars pH = 7.000 log fO2 = -28.235 Eh = 0.4023 volts pe = 6.8358 Ionic strength = 0.075480 Activity of water = 0.998411

PAGE 360

Appendix F: (Continued) 345 Solvent mass = 1.000005 kg Solution mass = 1.003965 kg Solution density = 1.015 g/cm3 Chlorinity = 0.047951 molal Dissolved solids = 3944 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 74.05 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O 0.4023 6.8358 e+ Fe+++ = Fe++ -0.0869 1.4770 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------H+ -sliding pH buffer -Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.005805 -2.236 0.5811 0.2144 Dolomite 0.003345 -2.476 0.6169 0.2153 Hematite 1.701e-006 -5.769 0.0002716 5.149e005 Hydroxyapatite 8.058e-007 -6.094 0.0004048 0.0001286 Quartz 0.0004826 -3.316 0.02900 0.01095 (total) 1.228 0.4409 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.04669 1649. 0.7820 1.4376 Na+ 0.02494 571.1 0.7951 1.7026 Ca++ 0.01142 455.9 0.4380 2.3009

PAGE 361

Appendix F: (Continued) 346 K+ 0.005295 206.2 0.7820 2.3830 SO4-0.005004 478.8 0.3923 2.7070 CaSO4 0.002072 281.0 1.0000 2.6835 HCO30.001346 81.83 0.8011 2.9671 Mg++ 0.001330 32.19 0.4779 3.1969 CaCl+ 0.001196 89.97 0.7951 3.0219 CO2(aq) 0.0002656 11.64 1.0000 3.5758 NaSO40.0002395 28.40 0.7951 3.7203 MgSO4 0.0002109 25.29 1.0000 3.6759 CaHCO3+ 0.0001066 10.73 0.8090 4.0643 SiO2(aq) 8.306e-005 4.971 1.0194 4.0723 KSO47.246e-005 9.755 0.7951 4.2394 MgCl+ 4.231e-005 2.518 0.7951 4.4732 NaHCO3 2.990e-005 2.502 1.0000 4.5243 NaCl 1.758e-005 1.024 1.0000 4.7549 MgHCO3+ 8.819e-006 0.7495 0.7951 5.1541 KCl 3.823e-006 0.2839 1.0000 5.4176 CaCO3 3.691e-006 0.3679 1.0000 5.4329 CO3-1.137e-006 0.06794 0.4044 6.3376 Fe++ 8.973e-007 0.04991 0.4380 6.4056 MgCO3 2.311e-007 0.01941 1.0000 6.6362 H3SiO41.564e-007 0.01481 0.7951 6.9054 FeSO4 1.234e-007 0.01867 1.0000 6.9088 H+ 1.186e-007 0.0001191 0.8431 7.0000 OH1.138e-007 0.001928 0.7887 7.0468 FeCl+ 4.074e-008 0.003705 0.7951 7.4895

PAGE 362

Appendix F: (Continued) 347 NaCO33.851e-008 0.003184 0.7951 7.5140 NaH3SiO4 3.501e-008 0.004118 1.0000 7.4559 HSO42.297e-008 0.002221 0.7951 7.7384 CaH3SiO4+ 1.541e-008 0.002076 0.7951 7.9116 CaOH+ 1.123e-008 0.0006385 0.7951 8.0492 MgOH+ 1.120e-008 0.0004608 0.7951 8.0505 FeHCO3+ 1.107e-008 0.001289 0.7951 8.0553 MgH3SiO4+ 3.448e-009 0.0004100 0.7951 8.5621 CaHPO4 1.357e-009 0.0001839 1.0000 8.8675 HPO4-1.324e-009 0.0001266 0.3923 9.2843 Mg2CO3++ 1.317e-009 0.0001424 0.4160 9.2615 NaOH 1.125e-009 4.481e-005 1.0000 8.9490 H2PO41.063e-009 0.0001027 0.7951 9.0729 FeCO3 9.870e-010 0.0001139 1.0000 9.0057 FeCl2 6.170e-010 7.790e-005 1.0000 9.2097 FeOH+ 2.984e-010 2.165e-005 0.7951 9.6248 MgHPO4 2.515e-010 3.014e-005 1.0000 9.5994 NaHPO41.698e-010 2.013e-005 0.7951 9.8695 KOH 1.187e-010 6.633e-006 1.0000 9.9256 MgH2SiO4 5.650e-011 6.663e-006 1.0000 10.2480 CaPO44.380e-011 5.893e-006 0.7951 10.4580 CaH2SiO4 3.752e-011 5.015e-006 1.0000 10.4257 KHPO42.811e-011 3.782e-006 0.7951 10.6507 MgH2PO4+ 2.138e-011 2.582e-006 0.7951 10.7697 MgPO45.538e-012 6.580e-007 0.7951 11.3562 Mg(H3SiO4)2 1.312e-012 2.802e-007 1.0000 11.8822

PAGE 363

Appendix F: (Continued) 348 Ca(H3SiO4)2 1.221e-012 2.800e-007 1.0000 11.9134 Fe(OH)3 9.330e-013 9.932e-008 1.0000 12.0301 Mg2OH+++ 8.099e-013 5.293e-008 0.1884 12.8164 FeHPO4 7.631e-013 1.154e-007 1.0000 12.1174 Fe(OH)2+ 2.780e-013 2.488e-008 0.7951 12.6556 H2SiO4-2.256e-013 2.115e-008 0.3923 13.0530 FeH2PO4+ 2.084e-013 3.173e-008 0.7951 12.7806 FePO42.964e-014 4.453e-009 0.7951 13.6277 PO4--1.987e-014 1.879e-009 0.1209 14.6195 Fe(OH)2 1.158e-014 1.037e-009 1.0000 13.9363 H3PO4 1.117e-014 1.090e-009 1.0000 13.9521 Fe(OH)42.507e-015 3.093e-010 0.7951 14.7004 HCl 2.188e-015 7.945e-011 1.0000 14.6600 H6(H2SiO4)4-4.759e-016 1.813e-010 0.3923 15.7288 FeOH++ 1.720e-016 1.248e-011 0.4160 16.1454 FeCO3+ 4.297e-018 4.959e-013 0.7951 17.4664 H2SO4 1.673e-018 1.635e-013 1.0000 17.7764 FeH3SiO4++ 6.318e-019 9.500e-014 0.4160 18.5803 HP2O7--5.417e-020 9.440e-015 0.1209 20.1838 FeSO4+ 3.700e-020 5.598e-015 0.7951 19.5314 Fe(OH)31.962e-020 2.089e-015 0.7951 19.8068 H2P2O7-8.398e-021 1.472e-015 0.3923 20.4822 FeHPO4+ 6.510e-021 9.845e-016 0.7951 20.2860 Fe+++ 5.990e-021 3.332e-016 0.2048 20.9112 FeCl++ 3.021e-021 2.747e-016 0.4160 20.9008 Fe(SO4)21.338e-021 3.305e-016 0.7951 20.9730

PAGE 364

Appendix F: (Continued) 349 P2O7---1.101e-021 1.907e-016 0.0233 22.5917 FeCl2+ 2.561e-022 3.234e-017 0.7951 21.6911 H4(H2SiO4)4---4.048e-023 1.534e-017 0.0233 24.0262 Mg4(OH)4++++ 2.351e-024 3.870e-019 0.0767 24.7438 FeCl3 7.288e-025 1.178e-019 1.0000 24.1374 H3P2O76.568e-026 1.158e-020 0.7951 25.2821 FeH2PO4++ 3.554e-026 5.410e-021 0.4160 25.8303 FeHSO4++ 2.787e-027 4.245e-022 0.4160 26.9357 FeCl43.824e-028 7.528e-023 0.7951 27.5171 Fe2(OH)2++++ 1.931e-030 2.803e-025 0.0767 30.8292 H2(aq) 1.529e-031 3.070e-028 1.0194 30.8073 O2(aq) 7.644e-032 2.436e-027 1.0194 31.1083 H4P2O7 2.940e-032 5.212e-027 1.0000 31.5317 Fe3(OH)4(5+) 4.534e-040 1.064e-034 0.0180 41.0874 ClO44.432e-080 4.390e-075 0.7887 79.4565 HS2.962e-087 9.756e-083 0.7887 86.6315 H2S(aq) 2.684e-087 9.110e-083 1.0000 86.5712 CH4(aq) 2.208e-093 3.529e-089 1.0194 92.6476 S-6.238e-094 1.992e-089 0.4160 93.5859 CH3COO6.612e-099 3.889e-094 0.8011 98.2760 MgCH3COO+ 7.490e-101 6.218e-096 0.7951 100.2251 NaCH3COO 6.552e-101 5.353e-096 1.0000 100.1836 HCH3COO 3.334e-101 1.994e-096 1.0000 100.4771 CaCH3COO+ 2.165e-102 2.138e-097 0.7951 101.7641 FeCH3COO+ 5.678e-103 6.498e-098 0.7951 102.3454 FeCH3COO++ 9.355e-116 1.071e-110 0.4160 115.4099

PAGE 365

Appendix F: (Continued) 350 S2-9.358e-157 5.977e-152 0.3923 156.4351 Fe(CH3COO)2+ 1.550e-210 2.685e-205 0.7951 209.9093 S3-3.728e-220 3.571e-215 0.3923 219.8349 S4-5.211e-281 6.657e-276 0.3923 280.6894 Fe(CH3COO)3 6.190e-307 1.437e-301 1.0000 300.0000 S6-0.0000 0.0000 0.3923 300.0000 S5-0.0000 0.0000 0.3923 300.0000 H2(O-phth) 0.0000 0.0000 1.0000 300.0000 H(O-phth)0.0000 0.0000 0.7951 300.0000 Na(O-phth)0.0000 0.0000 0.7951 300.0000 Ca(O-phth) 0.0000 0.0000 1.0000 300.0000 (O-phth)-0.0000 0.0000 0.3923 300.0000 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Hydroxyapatite 0.0000 sat Ferrite-Mg -10.4094 Calcite 0.0000 sat Bischofite -10.6201 Dolomite 0.0000 sat Mercallite -10.6722 Hematite 0.0000 sat Forsterite -10.7991 Dolomite-ord -0.0000 Ca(OH)2(c) -10.9998 Quartz -0.0365 Portlandite -10.9998 Aragonite -0.1648 MgSO4(c) -11.0020 Tridymite -0.2036 Monticellite -11.4984 Chalcedony -0.3093 FeSO4(c) -11.8148 Goethite -0.4766 Ca2Si3O8^5/2H2O -12.2185 Gypsum -0.5585 Sepiolite -12.3445 Cristobalite -0.5910 Vivianite -12.4411 Anhydrite -0.7493 Mg2Cl(OH)3^4H2O -13.0028 Monohydrocalcite -0.9917 CaCl2^2H2O -13.3129 Amrph^silica -1.3372 CaCl2^H2O -13.4539 Bassanite -1.3793 MgCl2^4H2O -13.5720 CaSO4^1/2H2O(bet -1.5498 MgOHCl -13.7924 Dolomite-dis -1.5561 K2CO3^3/2H2O -14.1668 Magnesite -1.6387 Carnallite -14.3454 Whitlockite -1.6709 NaFeO2(c) -14.6400 Siderite -2.1783 Na2Si2O5 -15.7523 Magnetite -2.7374 Na2SiO3 -15.8283 FeO(c) -3.8531 Na3H(SO4)2 -16.6620 Ferrosilite -3.9426 Hydrophilite -17.0666

PAGE 366

Appendix F: (Continued) 351 Epsomite -4.0847 Tremolite -17.1667 Hexahydrite -4.3301 Hydromagnesite -17.6775 Nesquehonite -4.6389 Ca2SiO4^7/6H2O -17.7647 Pentahydrite -4.6722 Ca2SiO4(gamma) -18.3832 Halite -4.7280 Lawrencite -18.4017 Sylvite -4.7620 MgCl2^2H2O -19.0519 Enstatite -4.8097 Akermanite -19.3863 Fe(OH)3(ppd) -4.8843 Jarosite-K -19.8137 Mirabilite -4.9569 Larnite -19.8543 CaHPO4^2H2O -5.0385 Ca2Cl2(OH)2^H2O -19.8908 Cronstedt-7A -5.0750 Burkeite -21.1608 Leonhardtite -5.0763 Lime -21.1773 Fe(OH)2(ppd) -5.3391 MgCl2^H2O -22.4292 Talc -5.5585 Jarosite-Na -22.9830 Kalicinite -5.6295 KMgCl3^2H2O -24.1045 Brucite -5.7411 Anthophyllite -25.1514 Arcanite -5.7534 Rankinite -25.2760 Kieserite -5.8356 Chloromagnesite -28.2226 Thenardite -5.8739 Ca5Si6O17^21/2H2 -30.2062 Wollastonite -6.0615 Ca4Si3O10^3/2H2O -30.5805 Wustite -6.0786 Merwinite -30.8770 CaSi2O5^2H2O -6.4141 KMgCl3 -31.4614 Pseudowollastoni -6.4560 Ca5Si6O17^11/2H2 -32.1095 Huntite -6.6609 Ca3Si2O7^3H2O -33.5572 Diopside -6.7240 Ferrite-2-Ca -33.6717 Melanterite -6.7292 Tachyhydrite -34.8466 Minnesotaite -7.4693 Ca5Si6O17^3H2O -35.8626 Chrysotile -7.4781 Ca4Cl2(OH)6^13H2 -38.5189 Fayalite -8.0701 Molysite -38.8497 Greenalite -8.0825 Ca3SiO5 -43.3792 Hedenbergite -8.3929 Graphite -47.0358 Artinite -8.4196 Ca6Si6O18^H2O -47.2011 Gaylussite -8.7652 Na4SiO4 -49.7096 Pirssonite -8.9817 K8H4(CO3)6^3H2O -50.6688 Strengite -9.0930 Fe2(SO4)3(c) -50.9763 Antarcticite -9.2862 Antigorite -53.4272 Kainite -9.6210 Sulfur-Rhmb -63.8282 Bloedite -9.7555 Misenite -69.1013 MHSH(Mg1.5) -9.7763 Na6Si2O7 -78.5302 Ferrite-Ca -9.9339 Pyrrhotite -81.1012 Andradite -10.0734 Troilite -82.2770 CaCl2^4H2O -10.0782 Pyrite -135.6234 KNaCO3^6H2O -10.2518 O-phth acid(c) -382.2813 Gases fugacity log fug. ----------------------------------------------Steam 0.02833 -1.548 CO2(g) 0.006968 -2.157 H2(g) 1.957e-028 -27.708 O2(g) 5.825e-029 -28.235 H2S(g) 2.208e-086 -85.656 CH4(g) 1.414e-090 -89.850

PAGE 367

Appendix F: (Continued) 352 S2(g) 2.107e-142 -141.676 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------Ca++ 0.0146270 0.0146270 Calcite -0.00142161 -0.00142161 Cl0.0479508 0.0479508 Dolomite 0.00159204 0.00159204 Fe++ 1.07436e-006 1.07436e-006 H+ 0.00202277 0.00202277 H2O 55.5087 55.5087 Hematite 6.06853e-013 6.06853e-013 Hydroxyapatite 1.42191e-009 1.42191e-009 K+ 0.00537108 0.00537108 Na+ 0.0252286 0.0252286 O2(aq) 3.12512e-105 -9.38217e-045 SO4-0.00759961 0.00759961 SiO2(aq) 8.32671e-005 8.32671e-005 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0148 0.0148 591. Cl0.0480 0.0480 1.69e+003 Fe++ 1.07e-006 1.07e-006 0.0598 Fe+++ 1.21e-012 1.21e-012 6.75e-008 H+ 0.000260 0.000260 0.261 H2O 55.5 55.5 9.96e+005 HCO30.00176 0.00176 107. HPO4-4.27e-009 4.27e-009 0.000408 K+ 0.00537 0.00537 209. Mg++ 0.00159 0.00159 38.5 Na+ 0.0252 0.0252 578. O2(aq) 3.13e-105 -9.38e-045-2.99e-040 SO4-0.00760 0.00760 727. SiO2(aq) 8.33e-005 8.33e-005 4.98 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.01480 0.01480 590.7 Carbon 0.001762 0.001762 21.09 Chlorine 0.04795 0.04795 1693. Hydrogen 111.0 111.0 1.115e+005 Iron 1.074e-006 1.074e-006 0.05976

PAGE 368

Appendix F: (Continued) 353 Magnesium 0.001592 0.001592 38.54 Oxygen 55.54 55.54 8.852e+005 Phosphorus 4.266e-009 4.266e-009 0.0001316 Potassium 0.005371 0.005371 209.2 Silicon 8.327e-005 8.327e-005 2.329 Sodium 0.02523 0.02523 577.7 Sulfur 0.007600 0.007600 242.7 Step # 58 Xi = 0.5800 Time = 5.01483e+007 secs (580.42 days) Temperature = 23.7 C Pressure = 1.013 bars pH = 7.960 log fO2 = -28.207 Eh = 0.3455 volts pe = 5.8652 Ionic strength = 0.072589 Activity of water = 0.998408 Solvent mass = 1.000000 kg Solution mass = 1.003807 kg Solution density = 1.015 g/cm3 Chlorinity = 0.047951 molal Dissolved solids = 3793 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 9.17 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------e+ .25*O2(aq) + H+ = .5*H2O 0.3455 5.8652 e+ Fe+++ = Fe++ -0.2577 4.3740 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------H+ -sliding pH buffer -Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.007078 -2.150 0.7085 0.2614 Dolomite 0.003498 -2.456 0.6450 0.2251

PAGE 369

Appendix F: (Continued) 354 Hematite 1.701e-006 -5.769 0.0002716 5.149e005 Hydroxyapatite 8.072e-007 -6.093 0.0004055 0.0001288 Quartz 0.0004826 -3.316 0.02900 0.01095 Talc 7.483e-007 -6.126 0.0002838 0.0001020 (total) 1.383 0.4978 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.04680 1653. 0.7847 1.4350 Na+ 0.02496 571.6 0.7976 1.7010 Ca++ 0.01031 411.6 0.4424 2.3410 K+ 0.005292 206.1 0.7847 2.3817 SO4-0.005116 489.6 0.3974 2.6918 CaSO4 0.001961 265.9 1.0000 2.7076 Mg++ 0.001199 29.03 0.4817 3.2384 CaCl+ 0.001088 81.90 0.7976 3.0615 NaSO40.0002485 29.48 0.7976 3.7028 MgSO4 0.0001989 23.85 1.0000 3.7014 HCO30.0001602 9.737 0.8034 3.8904 SiO2(aq) 7.846e-005 4.697 1.0186 4.0973 KSO47.512e-005 10.11 0.7976 4.2225 MgCl+ 3.843e-005 2.288 0.7976 4.5135 NaCl 1.785e-005 1.039 1.0000 4.7484 CaHCO3+ 1.158e-005 1.167 0.8111 5.0271 KCl 3.871e-006 0.2875 1.0000 5.4122 CaCO3 3.691e-006 0.3680 1.0000 5.4329

PAGE 370

Appendix F: (Continued) 355 NaHCO3 3.565e-006 0.2983 1.0000 5.4480 CO2(aq) 3.466e-006 0.1519 1.0000 5.4602 H3SiO41.352e-006 0.1281 0.7976 5.9673 CO3-1.227e-006 0.07336 0.4093 6.2991 OH1.054e-006 0.01786 0.7913 6.0788 MgHCO3+ 9.544e-007 0.08112 0.7976 6.1185 Fe++ 8.976e-007 0.04994 0.4424 6.4010 NaH3SiO4 3.044e-007 0.03582 1.0000 6.5165 MgCO3 2.305e-007 0.01936 1.0000 6.6373 FeSO4 1.292e-007 0.01955 1.0000 6.8888 CaH3SiO4+ 1.206e-007 0.01625 0.7976 7.0168 CaOH+ 9.505e-008 0.005406 0.7976 7.1203 MgOH+ 9.454e-008 0.003891 0.7976 7.1226 NaCO34.186e-008 0.003461 0.7976 7.4765 FeCl+ 4.171e-008 0.003794 0.7976 7.4780 MgH3SiO4+ 2.689e-008 0.003199 0.7976 7.6686 H+ 1.298e-008 1.304e-005 0.8445 7.9600 NaOH 1.049e-008 0.0004179 1.0000 7.9793 MgH2SiO4 4.031e-009 0.0004755 1.0000 8.3945 FeOH+ 2.778e-009 0.0002016 0.7976 8.6545 CaH2SiO4 2.686e-009 0.0003590 1.0000 8.5709 HSO42.619e-009 0.0002532 0.7976 8.6802 FeHCO3+ 1.323e-009 0.0001541 0.7976 8.9765 Mg2CO3++ 1.177e-009 0.0001274 0.4207 9.3053 KOH 1.109e-009 6.197e-005 1.0000 8.9552 FeCO3 1.075e-009 0.0001240 1.0000 8.9687

PAGE 371

Appendix F: (Continued) 356 FeCl2 6.371e-010 8.045e-005 1.0000 9.1958 Mg(H3SiO4)2 8.834e-011 1.888e-005 1.0000 10.0539 Ca(H3SiO4)2 8.249e-011 1.892e-005 1.0000 10.0836 HPO4-7.883e-011 7.537e-006 0.3974 10.5041 CaHPO4 7.488e-011 1.015e-005 1.0000 10.1256 CaPO42.209e-011 2.971e-006 0.7976 10.7541 H2SiO4-1.789e-011 1.677e-006 0.3974 11.1480 MgHPO4 1.383e-011 1.658e-006 1.0000 10.8590 NaHPO41.036e-011 1.228e-006 0.7976 11.0827 H2PO46.999e-012 6.763e-007 0.7976 11.2532 Mg2OH+++ 6.117e-012 3.998e-007 0.1919 11.9304 MgPO42.783e-012 3.307e-007 0.7976 11.6537 KHPO41.709e-012 2.300e-007 0.7976 11.8655 Fe(OH)2 1.013e-012 9.066e-008 1.0000 11.9945 Fe(OH)3 9.474e-013 1.009e-007 1.0000 12.0235 MgH2PO4+ 1.283e-013 1.551e-008 0.7976 12.9899 FeHPO4 4.669e-014 7.062e-009 1.0000 13.3308 H6(H2SiO4)4-3.103e-014 1.182e-008 0.3974 13.9089 Fe(OH)2+ 3.045e-014 2.726e-009 0.7976 13.6146 Fe(OH)42.329e-014 2.874e-009 0.7976 13.7310 FePO41.658e-014 2.491e-009 0.7976 13.8787 PO4--1.066e-014 1.008e-009 0.1245 14.8772 FeH2PO4+ 1.393e-015 2.120e-010 0.7976 14.9544 HCl 2.478e-016 9.000e-012 1.0000 15.6059 Fe(OH)31.588e-017 1.690e-012 0.7976 16.8975 H3PO4 8.102e-018 7.909e-013 1.0000 17.0914

PAGE 372

Appendix F: (Continued) 357 FeOH++ 2.030e-018 1.474e-013 0.4207 18.0684 H4(H2SiO4)4---2.110e-019 7.998e-014 0.0245 20.2863 H2SO4 2.119e-020 2.071e-015 1.0000 19.6738 Mg4(OH)4++++ 1.212e-020 1.996e-015 0.0786 21.0210 FeH3SiO4++ 6.976e-021 1.049e-015 0.4207 20.5324 FeCO3+ 5.918e-021 6.831e-016 0.7976 20.3260 FeSO4+ 4.971e-023 7.522e-018 0.7976 22.4018 HP2O7--2.111e-023 3.680e-018 0.1245 23.5803 Fe+++ 7.606e-024 4.232e-019 0.2082 23.8004 FeCl++ 3.920e-024 3.565e-019 0.4207 23.7827 P2O7---3.825e-024 6.628e-019 0.0245 25.0281 Fe(SO4)21.866e-024 4.609e-019 0.7976 23.8273 FeHPO4+ 5.042e-025 7.627e-020 0.7976 24.3956 H2P2O7-3.647e-025 6.393e-020 0.3974 24.8388 FeCl2+ 3.371e-025 4.257e-020 0.7976 24.5705 FeCl3 9.712e-028 1.569e-022 1.0000 27.0127 FeCl45.133e-031 1.011e-025 0.7976 30.3879 FeHSO4++ 4.073e-031 6.204e-026 0.4207 30.7661 H3P2O73.162e-031 5.575e-026 0.7976 30.5983 FeH2PO4++ 2.993e-031 4.557e-026 0.4207 30.8999 H2(aq) 1.625e-031 3.264e-028 1.0186 30.7811 O2(aq) 8.126e-032 2.590e-027 1.0186 31.0821 Fe2(OH)2++++ 2.661e-034 3.863e-029 0.0786 34.6795 H4P2O7 1.560e-038 2.765e-033 1.0000 37.8070 Fe3(OH)4(5+) 6.591e-045 1.547e-039 0.0187 45.9085 ClO45.117e-080 5.069e-075 0.7913 79.3926

PAGE 373

Appendix F: (Continued) 358 HS3.948e-088 1.300e-083 0.7913 87.5053 H2S(aq) 3.896e-089 1.323e-084 1.0000 88.4093 S-7.646e-094 2.442e-089 0.4207 93.4926 CH4(aq) 3.406e-095 5.443e-091 1.0186 94.4597 CH3COO1.213e-101 7.134e-097 0.8034 101.0113 MgCH3COO+ 1.276e-103 1.059e-098 0.7976 102.9925 NaCH3COO 1.236e-103 1.010e-098 1.0000 102.9079 HCH3COO 6.726e-105 4.024e-100 1.0000 104.1722 CaCH3COO+ 3.641e-105 3.595e-100 0.7976 104.5370 FeCH3COO+ 1.075e-105 1.231e-100 0.7976 105.0667 FeCH3COO++ 2.244e-121 2.568e-116 0.4207 121.0250 S2-1.588e-158 1.015e-153 0.3974 158.1998 Fe(CH3COO)2+ 7.046e-219 1.221e-213 0.7976 218.2503 S3-8.753e-224 8.386e-219 0.3974 223.4586 S4-1.695e-286 2.166e-281 0.3974 286.1715 Fe(CH3COO)3 5.307e-318 1.232e-312 1.0000 300.0000 S6-0.0000 0.0000 0.3974 300.0000 S5-0.0000 0.0000 0.3974 300.0000 H2(O-phth) 0.0000 0.0000 1.0000 300.0000 H(O-phth)0.0000 0.0000 0.7976 300.0000 Na(O-phth)0.0000 0.0000 0.7976 300.0000 Ca(O-phth) 0.0000 0.0000 1.0000 300.0000 (O-phth)-0.0000 0.0000 0.3974 300.0000 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Calcite 0.0000 sat Pirssonite -8.9529 Dolomite 0.0000 sat Portlandite -9.1016

PAGE 374

Appendix F: (Continued) 359 Talc 0.0000 sat Ca(OH)2(c) -9.1016 Hematite 0.0000 sat Antarcticite -9.3220 Hydroxyapatite 0.0000 sat Kainite -9.6418 Dolomite-ord -0.0000 Bloedite -9.7634 Quartz -0.0657 CaCl2^4H2O -10.1117 Aragonite -0.1648 Mg2Cl(OH)3^4H2O -10.1937 Tridymite -0.2326 KNaCO3^6H2O -10.2325 Chalcedony -0.3383 Bischofite -10.6542 Goethite -0.4770 MgSO4(c) -11.0155 Gypsum -0.5833 Mercallite -11.6220 Cristobalite -0.6196 FeSO4(c) -11.7848 Anhydrite -0.7718 Anthophyllite -12.1294 Magnetite -0.8006 Strengite -12.2389 Monohydrocalcite -0.9922 MgOHCl -12.8545 Cronstedt-7A -1.2342 Vivianite -12.9391 Amrph^silica -1.3645 CaCl2^2H2O -13.3415 Bassanite -1.4017 CaCl2^H2O -13.4813 Dolomite-dis -1.5544 MgCl2^4H2O -13.6021 CaSO4^1/2H2O(bet -1.5719 NaFeO2(c) -13.6643 Magnesite -1.6373 Akermanite -13.7564 Minnesotaite -1.7791 Na2Si2O5 -13.8707 Chrysotile -1.8607 Na2SiO3 -13.9178 FeO(c) -1.9153 Ca2SiO4^7/6H2O -14.0006 Ferrosilite -2.0345 K2CO3^3/2H2O -14.1338 Siderite -2.1326 Carnallite -14.3790 Whitlockite -2.2992 Ca2SiO4(gamma) -14.6169 Greenalite -2.3346 Hydromagnesite -15.7773 Enstatite -2.9440 Larnite -16.0864 Diopside -2.9958 Hydrophilite -17.0901 Fe(OH)2(ppd) -3.4019 Na3H(SO4)2 -17.5967 Brucite -3.8468 Ca2Cl2(OH)2^H2O -18.0336 Epsomite -4.1126 Lawrencite -18.3801 Tremolite -4.1532 MgCl2^2H2O -19.0753 Wollastonite -4.1954 Lime -19.2698 Fayalite -4.2240 Rankinite -19.6425 Hexahydrite -4.3559 Ca5Si6O17^21/2H2 -20.9210 Wustite -4.4465 Burkeite -21.0970 Andradite -4.4834 MgCl2^H2O -22.4487 CaSi2O5^2H2O -4.5809 Jarosite-K -22.6620 Pseudowollastoni -4.5894 Ca5Si6O17^11/2H2 -22.8163 Hedenbergite -4.6201 Ca4Si3O10^3/2H2O -23.0844 Nesquehonite -4.6366 Merwinite -23.3473 Pentahydrite -4.6986 KMgCl3^2H2O -24.1262 Halite -4.7244 Jarosite-Na -25.8585 Sylvite -4.7605 Ca5Si6O17^3H2O -26.5632 Fe(OH)3(ppd) -4.8821 Ca3Si2O7^3H2O -27.9216 Mirabilite -4.9496 Chloromagnesite -28.2365 Sepiolite -4.9553 Ferrite-2-Ca -29.8628 Leonhardtite -5.0995 KMgCl3 -31.4751 Arcanite -5.7391 Ca4Cl2(OH)6^13H2 -32.9103 Kieserite -5.8548 Tachyhydrite -34.9424 Thenardite -5.8552 Ca6Si6O18^H2O -35.9982

PAGE 375

Appendix F: (Continued) 360 CaHPO4^2H2O -6.2991 Ca3SiO5 -37.7019 Artinite -6.5274 Molysite -41.7098 Kalicinite -6.5597 Na4SiO4 -45.8443 Huntite -6.6547 Graphite -48.8850 Melanterite -6.7112 K8H4(CO3)6^3H2O -54.3238 Forsterite -7.0374 Fe2(SO4)3(c) -56.6747 Monticellite -7.7368 Sulfur-Rhmb -65.6862 Ferrite-Ca -8.0348 Na6Si2O7 -72.7422 Ferrite-Mg -8.5095 Misenite -74.7939 Ca2Si3O8^5/2H2O -8.5201 Pyrrhotite -81.7352 Antigorite -8.5210 Troilite -82.1851 Gaylussite -8.7453 Pyrite -137.3996 MHSH(Mg1.5) -8.8458 O-phth acid(c) -397.0865 Gases fugacity log fug. ----------------------------------------------Steam 0.02874 -1.541 CO2(g) 9.146e-005 -4.039 H2(g) 2.081e-028 -27.682 O2(g) 6.212e-029 -28.207 H2S(g) 3.237e-088 -87.490 CH4(g) 2.185e-092 -91.661 S2(g) 4.224e-146 -145.374 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------Ca++ 0.0145646 0.0145646 Calcite -0.00256953 -0.00256953 Cl0.0479508 0.0479508 Dolomite 0.00137724 0.00137724 Fe++ 1.07436e-006 1.07436e-006 H+ 0.000300574 0.000300574 H2O 55.5086 55.5086 Hematite 5.00567e-013 5.00567e-013 Hydroxyapatite 7.05618e-011 7.05618e-011 K+ 0.00537108 0.00537108 Na+ 0.0252286 0.0252286 O2(aq) 3.12512e-105 3.30619e-045 SO4-0.00759961 0.00759961 Talc 2.00685e-005 2.00685e-005 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0134 0.0134 534. Cl0.0480 0.0480 1.69e+003 Fe++ 1.07e-006 1.07e-006 0.0598 Fe+++ 1.00e-012 1.00e-012 5.57e-008 H+ -4.79e-006 -4.79e-006 -0.00481

PAGE 376

Appendix F: (Continued) 361 H2O 55.5 55.5 9.96e+005 HCO30.000185 0.000185 11.2 HPO4-2.12e-010 2.12e-010 2.02e-005 K+ 0.00537 0.00537 209. Mg++ 0.00144 0.00144 34.8 Na+ 0.0252 0.0252 578. O2(aq) 3.13e-105 3.31e-045 1.05e-040 SO4-0.00760 0.00760 727. SiO2(aq) 8.03e-005 8.03e-005 4.80 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.01337 0.01337 533.9 Carbon 0.0001849 0.0001849 2.213 Chlorine 0.04795 0.04795 1694. Hydrogen 111.0 111.0 1.115e+005 Iron 1.074e-006 1.074e-006 0.05977 Magnesium 0.001437 0.001437 34.80 Oxygen 55.54 55.54 8.852e+005 Phosphorus 2.117e-010 2.117e-010 6.532e-006 Potassium 0.005371 0.005371 209.2 Silicon 8.027e-005 8.027e-005 2.246 Sodium 0.02523 0.02523 577.8 Sulfur 0.007600 0.007600 242.7 Step # 59 Xi = 0.5900 Time = 5.10114e+007 secs (590.41 days) Temperature = 23.8 C Pressure = 1.013 bars pH = 8.080 log fO2 = -28.203 Eh = 0.3384 volts pe = 5.7439 Ionic strength = 0.072475 Activity of water = 0.998408 Solvent mass = 0.999999 kg Solution mass = 1.003800 kg Solution density = 1.015 g/cm3 Chlorinity = 0.047951 molal Dissolved solids = 3786 mg/kg sol'n Rock mass = 0.000000 kg Carbonate alkalinity= 7.05 mg/kg as CaCO3 Nernst redox couples Eh (volts) pe --------------------------------------------------------------------------

PAGE 377

Appendix F: (Continued) 362 e+ .25*O2(aq) + H+ = .5*H2O 0.3384 5.7439 e+ Fe+++ = Fe++ -0.2790 4.7362 moles moles grams cm3 Reactants remaining reacted reacted reacted --------------------------------------------------------------------------H+ -sliding pH buffer -Minerals isolated from system moles log moles grams volume (cm3) --------------------------------------------------------------------------Calcite 0.007122 -2.147 0.7128 0.2630 Dolomite 0.003498 -2.456 0.6450 0.2251 Hematite 1.701e-006 -5.769 0.0002716 5.149e005 Hydroxyapatite 8.072e-007 -6.093 0.0004055 0.0001288 Quartz 0.0004826 -3.316 0.02900 0.01095 Talc 7.346e-006 -5.134 0.002786 0.001001 (total) 1.390 0.5003 Aqueous species molality mg/kg sol'n act. coef. log act. -------------------------------------------------------------------------Cl0.04681 1653. 0.7848 1.4349 Na+ 0.02496 571.6 0.7977 1.7010 Ca++ 0.01027 410.2 0.4426 2.3423 K+ 0.005292 206.1 0.7848 2.3816 SO4-0.005121 490.0 0.3976 2.6912 CaSO4 0.001958 265.6 1.0000 2.7082 Mg++ 0.001182 28.62 0.4819 3.2444 CaCl+ 0.001085 81.61 0.7977 3.0629

PAGE 378

Appendix F: (Continued) 363 NaSO40.0002489 29.52 0.7977 3.7021 MgSO4 0.0001965 23.56 1.0000 3.7067 HCO30.0001217 7.400 0.8035 4.0096 KSO47.523e-005 10.13 0.7977 4.2218 SiO2(aq) 5.229e-005 3.130 1.0186 4.2736 MgCl+ 3.790e-005 2.256 0.7977 4.5196 NaCl 1.787e-005 1.040 1.0000 4.7480 CaHCO3+ 8.778e-006 0.8841 0.8112 5.1475 KCl 3.874e-006 0.2877 1.0000 5.4119 CaCO3 3.691e-006 0.3680 1.0000 5.4329 NaHCO3 2.708e-006 0.2267 1.0000 5.5673 CO2(aq) 1.998e-006 0.08758 1.0000 5.6995 OH1.393e-006 0.02359 0.7914 5.9578 CO3-1.230e-006 0.07351 0.4095 6.2980 H3SiO41.189e-006 0.1126 0.7977 6.0232 Fe++ 8.969e-007 0.04990 0.4426 6.4012 MgHCO3+ 7.156e-007 0.06082 0.7977 6.2435 NaH3SiO4 2.677e-007 0.03149 1.0000 6.5724 MgCO3 2.281e-007 0.01916 1.0000 6.6419 FeSO4 1.293e-007 0.01957 1.0000 6.8883 CaOH+ 1.252e-007 0.007123 0.7977 7.0004 MgOH+ 1.233e-007 0.005073 0.7977 7.0074 CaH3SiO4+ 1.056e-007 0.01423 0.7977 7.0744 NaCO34.193e-008 0.003467 0.7977 7.4756 FeCl+ 4.175e-008 0.003797 0.7977 7.4775 MgH3SiO4+ 2.330e-008 0.002772 0.7977 7.7309

PAGE 379

Appendix F: (Continued) 364 NaOH 1.386e-008 0.0005523 1.0000 7.8582 H+ 9.849e-009 9.889e-006 0.8445 8.0800 MgH2SiO4 4.605e-009 0.0005432 1.0000 8.3368 FeOH+ 3.666e-009 0.0002661 0.7977 8.5339 CaH2SiO4 3.101e-009 0.0004146 1.0000 8.5085 HSO41.991e-009 0.0001925 0.7977 8.7992 KOH 1.465e-009 8.191e-005 1.0000 8.8340 Mg2CO3++ 1.148e-009 0.0001242 0.4209 9.3160 FeCO3 1.075e-009 0.0001241 1.0000 8.9685 FeHCO3+ 1.005e-009 0.0001170 0.7977 9.0962 FeCl2 6.379e-010 8.055e-005 1.0000 9.1952 Mg(H3SiO4)2 6.724e-011 1.437e-005 1.0000 10.1723 Ca(H3SiO4)2 6.347e-011 1.456e-005 1.0000 10.1974 HPO4-5.468e-011 5.228e-006 0.3976 10.6627 CaHPO4 5.183e-011 7.026e-006 1.0000 10.2854 H2SiO4-2.077e-011 1.947e-006 0.3976 11.0830 CaPO42.016e-011 2.713e-006 0.7977 10.7936 MgHPO4 9.475e-012 1.135e-006 1.0000 11.0234 Mg2OH+++ 7.861e-012 5.138e-007 0.1920 11.8212 NaHPO47.203e-012 8.537e-007 0.7977 11.2407 H2PO43.684e-012 3.559e-007 0.7977 11.5319 MgPO42.514e-012 2.987e-007 0.7977 11.6979 Fe(OH)2 1.768e-012 1.583e-007 1.0000 11.7525 KHPO41.187e-012 1.598e-007 0.7977 12.0236 Fe(OH)3 9.474e-013 1.009e-007 1.0000 12.0235 MgH2PO4+ 6.666e-014 8.054e-009 0.7977 13.2743

PAGE 380

Appendix F: (Continued) 365 FeHPO4 3.240e-014 4.901e-009 1.0000 13.4894 Fe(OH)43.072e-014 3.791e-009 0.7977 13.6107 Fe(OH)2+ 2.306e-014 2.064e-009 0.7977 13.7354 FePO41.518e-014 2.280e-009 0.7977 13.9170 H6(H2SiO4)4-1.063e-014 4.050e-009 0.3976 14.3740 PO4--9.744e-015 9.219e-010 0.1246 14.9156 FeH2PO4+ 7.330e-016 1.116e-010 0.7977 15.2331 HCl 1.886e-016 6.852e-012 1.0000 15.7244 Fe(OH)33.661e-017 3.897e-012 0.7977 16.5346 H3PO4 3.236e-018 3.159e-013 1.0000 17.4900 FeOH++ 1.165e-018 8.453e-014 0.4209 18.3096 H4(H2SiO4)4---1.254e-019 4.754e-014 0.0246 20.5114 Mg4(OH)4++++ 3.512e-020 5.782e-015 0.0787 20.5587 H2SO4 1.224e-020 1.196e-015 1.0000 19.9123 FeH3SiO4++ 2.663e-021 4.005e-016 0.4209 20.9504 FeCO3+ 2.571e-021 2.967e-016 0.7977 20.6881 FeSO4+ 2.165e-023 3.276e-018 0.7977 22.7628 HP2O7--7.711e-024 1.344e-018 0.1246 24.0173 Fe+++ 3.303e-024 1.838e-019 0.2083 24.1624 P2O7---1.840e-024 3.189e-019 0.0246 25.3450 FeCl++ 1.705e-024 1.551e-019 0.4209 24.1441 Fe(SO4)28.140e-025 2.011e-019 0.7977 24.1876 FeHPO4+ 1.520e-025 2.299e-020 0.7977 24.9163 FeCl2+ 1.467e-025 1.853e-020 0.7977 24.9317 H2P2O7-1.011e-025 1.772e-020 0.3976 25.3958 FeCl3 4.230e-028 6.836e-023 1.0000 27.3736

PAGE 381

Appendix F: (Continued) 366 FeCl42.237e-031 4.405e-026 0.7977 30.7485 H2(aq) 1.638e-031 3.289e-028 1.0186 30.7778 FeHSO4++ 1.345e-031 2.049e-026 0.4209 31.2471 O2(aq) 8.188e-032 2.610e-027 1.0186 31.0788 FeH2PO4++ 6.842e-032 1.042e-026 0.4209 31.5406 H3P2O76.653e-032 1.173e-026 0.7977 31.2752 Fe2(OH)2++++ 8.744e-035 1.269e-029 0.0787 35.1625 H4P2O7 2.490e-039 4.415e-034 1.0000 38.6038 Fe3(OH)4(5+) 1.634e-045 3.834e-040 0.0188 46.5136 ClO45.208e-080 5.160e-075 0.7914 79.3849 HS3.060e-088 1.008e-083 0.7914 87.6158 H2S(aq) 2.289e-089 7.769e-085 1.0000 88.6404 S-7.827e-094 2.500e-089 0.4209 93.4822 CH4(aq) 2.005e-095 3.204e-091 1.0186 94.6900 CH3COO5.425e-102 3.191e-097 0.8035 101.3606 MgCH3COO+ 5.643e-104 4.686e-099 0.7977 103.3467 NaCH3COO 5.546e-104 4.532e-099 1.0000 103.2560 HCH3COO 2.283e-105 1.366e-100 1.0000 104.6416 CaCH3COO+ 1.625e-105 1.604e-100 0.7977 104.8874 FeCH3COO+ 4.820e-106 5.517e-101 0.7977 105.4151 FeCH3COO++ 4.372e-122 5.004e-117 0.4209 121.7351 S2-9.496e-159 6.066e-154 0.3976 158.4230 Fe(CH3COO)2+ 6.160e-220 1.067e-214 0.7977 219.3086 S3-3.055e-224 2.927e-219 0.3976 223.9155 S4-3.455e-287 4.414e-282 0.3976 286.8620 Fe(CH3COO)3 2.081e-319 4.831e-314 1.0000 300.0000

PAGE 382

Appendix F: (Continued) 367 S6-0.0000 0.0000 0.3976 300.0000 S5-0.0000 0.0000 0.3976 300.0000 H2(O-phth) 0.0000 0.0000 1.0000 300.0000 H(O-phth)0.0000 0.0000 0.7977 300.0000 Na(O-phth)0.0000 0.0000 0.7977 300.0000 Ca(O-phth) 0.0000 0.0000 1.0000 300.0000 (O-phth)-0.0000 0.0000 0.3976 300.0000 Mineral saturation states log Q/K log Q/K ---------------------------------------------------------------Talc 0.0000 sat Ca(OH)2(c) -8.8607 Calcite 0.0000 sat Portlandite -8.8607 Hydroxyapatite 0.0000 sat Pirssonite -8.9533 Hematite -0.0017 Antarcticite -9.3232 Dolomite -0.0045 Kainite -9.6468 Dolomite-ord -0.0045 Bloedite -9.7681 Aragonite -0.1648 Mg2Cl(OH)3^4H2O -9.8443 Quartz -0.2425 CaCl2^4H2O -10.1126 Tridymite -0.4094 KNaCO3^6H2O -10.2340 Goethite -0.4779 Bischofite -10.6596 Chalcedony -0.5150 MgSO4(c) -11.0193 Magnetite -0.5610 Mercallite -11.7422 Gypsum -0.5840 FeSO4(c) -11.7832 Anhydrite -0.7722 Anthophyllite -11.8920 Cristobalite -0.7964 Strengite -12.6392 Cronstedt-7A -0.9305 MgOHCl -12.7382 Monohydrocalcite -0.9923 Vivianite -13.0160 Bassanite -1.4021 CaCl2^2H2O -13.3418 Chrysotile -1.5071 Akermanite -13.3923 Amrph^silica -1.5411 CaCl2^H2O -13.4815 Dolomite-dis -1.5587 NaFeO2(c) -13.5433 CaSO4^1/2H2O(bet -1.5723 MgCl2^4H2O -13.6071 Magnesite -1.6416 Ca2SiO4^7/6H2O -13.6958 FeO(c) -1.6739 Na2SiO3 -13.8524 Minnesotaite -1.7626 Na2Si2O5 -13.9820 Greenalite -1.9647 K2CO3^3/2H2O -14.1336 Ferrosilite -1.9698 Ca2SiO4(gamma) -14.3118 Siderite -2.1313 Carnallite -14.3847 Whitlockite -2.3789 Hydromagnesite -15.5584 Diopside -2.8731 Larnite -15.7811 Enstatite -2.8846 Hydrophilite -17.0898 Fe(OH)2(ppd) -3.1605 Na3H(SO4)2 -17.7165 Brucite -3.6107 Ca2Cl2(OH)2^H2O -17.7945 Tremolite -3.9080 Lawrencite -18.3786

PAGE 383

Appendix F: (Continued) 368 Fayalite -3.9179 Lime -19.0277 Epsomite -4.1181 MgCl2^2H2O -19.0794 Wollastonite -4.1316 Rankinite -19.2735 Wustite -4.2433 Ca5Si6O17^21/2H2 -20.7806 Andradite -4.2946 Burkeite -21.0963 Hexahydrite -4.3612 MgCl2^H2O -22.4523 Hedenbergite -4.4918 Ca4Si3O10^3/2H2O -22.6519 Pseudowollastoni -4.5255 Ca5Si6O17^11/2H2 -22.6749 Nesquehonite -4.6408 Merwinite -22.7420 CaSi2O5^2H2O -4.6943 Jarosite-K -23.0233 Pentahydrite -4.7039 KMgCl3^2H2O -24.1305 Halite -4.7244 Jarosite-Na -26.2232 Sylvite -4.7607 Ca5Si6O17^3H2O -26.4211 Fe(OH)3(ppd) -4.8827 Ca3Si2O7^3H2O -27.5523 Mirabilite -4.9503 Chloromagnesite -28.2394 Sepiolite -5.0735 Ferrite-2-Ca -29.3809 Leonhardtite -5.1044 KMgCl3 -31.4783 Arcanite -5.7388 Ca4Cl2(OH)6^13H2 -32.1948 Thenardite -5.8545 Tachyhydrite -34.9535 Kieserite -5.8592 Ca6Si6O18^H2O -35.6144 Antigorite -5.8691 Ca3SiO5 -37.1542 Artinite -6.2961 Molysite -42.0688 CaHPO4^2H2O -6.4591 Na4SiO4 -45.5348 Huntite -6.6674 Graphite -49.1199 Kalicinite -6.6798 K8H4(CO3)6^3H2O -54.8039 Melanterite -6.7111 Fe2(SO4)3(c) -57.3926 Forsterite -6.7418 Sulfur-Rhmb -65.9198 Monticellite -7.4367 Na6Si2O7 -72.3659 Ferrite-Ca -7.7953 Misenite -75.5155 Ferrite-Mg -8.2745 Pyrrhotite -81.8165 Ca2Si3O8^5/2H2O -8.5698 Troilite -82.1757 MHSH(Mg1.5) -8.7319 Pyrite -137.6250 Gaylussite -8.7469 O-phth acid(c) -398.9669 Gases fugacity log fug. ----------------------------------------------Steam 0.02879 -1.541 CO2(g) 5.276e-005 -4.278 H2(g) 2.097e-028 -27.678 O2(g) 6.263e-029 -28.203 H2S(g) 1.903e-088 -87.720 CH4(g) 1.286e-092 -91.891 S2(g) 1.448e-146 -145.839 Basis components total moles moles in fluid moles sorbed ---------------------------------------------------------------------Ca++ 0.0131873 0.0131873 Calcite 0.000141138 0.000141138 Cl0.0479508 0.0479508 Fe(OH)3 1.00113e-012 1.00113e-012 Fe++ 1.07436e-006 1.07436e-006 H+ 0.000215517 0.000215517

PAGE 384

Appendix F: (Continued) 369 H2O 55.5086 55.5086 Hydroxyapatite 5.02869e-011 5.02869e-011 K+ 0.00537108 0.00537108 Mg++ 0.00137724 0.00137724 Na+ 0.0252286 0.0252286 O2(aq) 3.12512e-105 -1.34656e-045 SO4-0.00759961 0.00759961 Talc 1.34705e-005 1.34705e-005 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg -----------------------------------------------------------------------------Ca++ 0.0133 0.0133 532. Cl0.0480 0.0480 1.69e+003 Fe++ 1.07e-006 1.07e-006 0.0598 Fe+++ 1.00e-012 1.00e-012 5.57e-008 H+ -6.44e-006 -6.44e-006 -0.00647 H2O 55.5 55.5 9.96e+005 HCO30.000141 0.000141 8.58 HPO4-1.51e-010 1.51e-010 1.44e-005 K+ 0.00537 0.00537 209. Mg++ 0.00142 0.00142 34.3 Na+ 0.0252 0.0252 578. O2(aq) 3.13e-105 -1.35e-045-4.29e-041 SO4-0.00760 0.00760 727. SiO2(aq) 5.39e-005 5.39e-005 3.23 (Calculation of Kd values assumes mineral content of system is fully defined.) Elemental composition In fluid Sorbed total moles moles mg/kg moles mg/kg -----------------------------------------------------------------------------Calcium 0.01333 0.01333 532.2 Carbon 0.0001411 0.0001411 1.689 Chlorine 0.04795 0.04795 1694. Hydrogen 111.0 111.0 1.115e+005 Iron 1.074e-006 1.074e-006 0.05977 Magnesium 0.001418 0.001418 34.33 Oxygen 55.54 55.54 8.852e+005 Phosphorus 1.509e-010 1.509e-010 4.655e-006 Potassium 0.005371 0.005371 209.2 Silicon 5.388e-005 5.388e-005 1.508 Sodium 0.02523 0.02523 577.8 Sulfur 0.007600 0.007600 242.7

PAGE 385

About the Author Abdul R. Mulla Saleh is a civil and environmental engineer and an Associate with the consulting firm, Camp Dresser and Mckee (CDM), with expertise in solid waste management systems including lined landfills, transfer stations, landfill closures, landfill gas management, and solid waste management master plans. As a member of the solid waste practice team, he provided engineering services and technical quality assurance on projects throughout the United States and abroa d. He holds a B.S. in civil engineering from the University of South Alabama and an M.S. in environmental engineering from the University of South Florida. He is a regi stered professional engineer in the States of Florida, Alabama, Georgia, and South Carolina. His interest in this research is to understand the mechanism by which precipitate forms in landfill leachate collection systems and provide short-term and long-term solutions.


xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam Ka
controlfield tag 001 001916022
003 fts
005 20071107152209.0
006 m||||e|||d||||||||
007 cr mnu|||uuuuu
008 071107s2006 flu sbm 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0001787
040
FHM
c FHM
035
(OCoLC)180875208
049
FHMM
090
TA145 (ONLINE)
1 100
Saleh, Abdul R. Mulla.
0 245
Assessment of biogeochemical deposits in landfill leachate drainage systems phase II
h [electronic resource] /
by Abdul R. Mulla Saleh.
260
[Tampa, Fla] :
b University of South Florida,
2006.
3 520
ABSTRACT: Land disposal of solid waste is a vital component of any solid waste management system. Design, operation and closure of municipal solid waste (MSW) landfills are required by regulations to control leachate and gases generated during the life, closure,and post-closure of the facility. Clogging of leachate drainage and removal systems in landfills is a common phenomenon and has been acknowledged in several landfills throughout the United States and abroad. This project was conducted in two phases. Phase I was completed in February of 2005 and Phase II was completed in August of 2006. Leachate characteristics data obtained in Phase I was processed and analyzed, along with supplementary data obtained in Phase II on liquid and solid phase testing. Leachate samples from the landfill and lysimeters indicated the presence of iron and sulfate-reducing bacteria. These bacteria are known to facilitate biologically induced precipitate formation.The mechanism by which biologically ind uced precipitate may form begins with oxidizing acetate by iron and sulfate-reducing bacteria, reducing sulfate to sulfide and ferric iron to ferrous, and then forming calcium carbonate, iron sulfate, and possibly dolomite and other minerals.The results show that the clogging mechanism is driven by two major processes: transformation of volatile acids to substrates by iron and sulfate-reducing bacteria causing local pH and total carbonate to increase, which accelerate calcium carbonate precipitation, and thermodynamically favored reactions in supersaturated conditions based on saturation indices of calcium, sulfide, iron, and other species with respect to minerals. For each 1 mg of consumed volatile acids there were 1.7 mg of calcium, 0.28 mg of sulfate, and 0.03 mg of iron removed. Field and lysimeter precipitate samples were analyzed (using X-Ray Diffraction, Scanning Electron microscopy, and Electron Dispersive Spectroscopy) and correlated with geochemical modeling of leachate const ituents. Precipitate analyses showed the presence of calcium carbonate, brushite (calcium phosphate),and dolomite, where as geochemical modeling showed that calcium carbonate, hydroxyapatite (complex of calcium phosphate), dolomite, pyrite, and siderite may be formed from field and lysimeter leachate constituents. The results also showed that submerged and stagnant conditions in the leachate collction systems accelerate the precipitation process.
502
Dissertation (Ph.D.)--University of South Florida, 2006.
504
Includes bibliographical references.
516
Text (Electronic dissertation) in PDF format.
538
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
500
Title from PDF of title page.
Document formatted into pages; contains 369 pages.
Includes vita.
590
Adviser: Robert Carnahan, Ph.D.
653
Lysimeters.
Sulfate-reducing bacteria.
Iron-reducing bacteria.
Leachate saturation zone.
Precipitate.
X-ray diffraction.
Scanning electron microscopy.
690
Dissertations, Academic
z USF
x Civil Engineering
Doctoral.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.1787