USF Libraries
USF Digital Collections

The use of mini-pile anchors to resist uplift forces in lightweight structures

MISSING IMAGE

Material Information

Title:
The use of mini-pile anchors to resist uplift forces in lightweight structures
Physical Description:
Book
Language:
English
Creator:
Aguilar, Julio
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla
Publication Date:

Subjects

Subjects / Keywords:
Hurricane
Wind
Tension
Soil strength
Foundation design
Dissertations, Academic -- Civil Engineering -- Masters -- USF
Genre:
bibliography   ( marcgt )
theses   ( marcgt )
non-fiction   ( marcgt )

Notes

Abstract:
ABSTRACT: In the state of Florida one of the primary factors which influences design of structures is the effect of hurricane force winds on structures. These forces can be greater than any other force encountered throughout the lifetime of said structure. For this reason, designing a structure to resist such forces can greatly increase the cost and time required for completing construction projects. Traditionally, large concrete footings have been utilized to resist wind-induced uplift forces. These footings do little more than act as large reaction masses to weigh down the building. An alternative and little-used method for resisting these large uplift forces is the use of mini-pile anchors. Mini-pile anchors generate side shear at the interface between the pile and the soil which resists the uplift forces.This thesis provides an overview of the design methods used to estimate wind-induced uplift forces and several foundation options used to withstand these forces. More traditional/less complicated foundations are compared to the more sophisticated mini-pile method which makes more efficient use of construction materials. The cost efficiency of each method is evaluated which provides a guideline for where and when a given foundation option is appropriate.Finally, a case study where the new method was used is presented which documents the design and construction procedures.
Thesis:
Thesis (M.S.C.E.)--University of South Florida, 2006.
Bibliography:
Includes bibliographical references.
System Details:
System requirements: World Wide Web browser and PDF reader.
System Details:
Mode of access: World Wide Web.
Statement of Responsibility:
by Julio Aguilar.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains 96 pages.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 001919937
oclc - 185056750
usfldc doi - E14-SFE0001828
usfldc handle - e14.1828
System ID:
SFS0026146:00001


This item is only available as the following downloads:


Full Text

PAGE 1

The Use of Mini-Pile Anchors to Resist Up lift Forces in Lightweight Structures by Julio Aguilar A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering Department of Civil and Environmental Engineering College of Engineering University of South Florida Major Professor: A. G. Mullins, Ph.D. Rajan Sen, Ph.D. Abla Zayed, Ph.D. Date of Approval: November 6, 2006 Keywords: hurricane, wind, tension, soil strength, foundation design Copyright 2006, Julio Aguilar

PAGE 2

Ac kn ow le dg me nts I wo uld lik e to t ha nk Str uc tur a l E ng ine e ri ng a nd I ns pe c tio ns I nc ( SEI ) f or the ir assistance in this project and Mr. Steve Cove y for pe rmitting the doc umentation which wa s c a rr ie d o ut. I wo uld a lso lik e to t ha nk Dr G ra y Mu lli ns fo r a llo wi ng me to j oin his rese arc h team, without which I would not have be en able to acc omplish all I have done I would like to thank all of my friends w ho have be en ther e whe n I neede d an extra hand, particula rly Mr. Danie l Wi nters, Mr. Micha el Stokes, Mr. New ton Casey Mr. Anthony Vi e ir a M r. Jose ph Ga da h, a nd Mr A nd re w Sc hr a de r. F ina lly I wo uld lik e to t ha nk my p a r e n t s D a v i d a n d C a r o l i c e A g u i l a r a n d m y b r o t h e r D a v i d A g u i l a r J r T h e y h a v e a l w a ys supported me a nd alway s encour ag ed me to pursue my educa tion as far as possible.

PAGE 3

i Tabl e of Contents L ist of Tables ................................................................................................................... iii L ist of Fig ures .................................................................................................................... v Abstrac t ........................................................................................................................... vii Chapter 1 I ntroduction ....................................................................................................... 1 1.1 Over view .......................................................................................................... 1 1.2 Scope of Projec t ............................................................................................... 3 1.3 Org anization of the Report ............................................................................... 3 Chapter 2 B ackg round ....................................................................................................... 5 2.1 Founda tion L oads in Structures ....................................................................... 5 2.2 Deter mination of Wi nd L oads .......................................................................... 7 2.3 Diffe rent Ty pes of Mini-Piles .......................................................................... 9 Chapter 3 Alter native F oundations .................................................................................. 17 3.1 Deter mination of Forc es on a 60x100x 22ft-7in B uilding .............................. 17 3.1.1 Analy sis Using the Simplified Procedur e ....................................... 17 3.1.2 Analy sis Using the A naly tical Method ........................................... 22 3.1.3 Deter mination of Dea d L oad ........................................................... 25 3.1.4 Deter mination of Uplift Forc e to be Resisted. ................................ 26 3 2 I n co rp o ra t i o n o f B o t h T en s i o n an d C o m p re s s i o n Fo rc es i n Fo o t i n g De s i gn 27 3.2.1 Desig n of B ulk Footing to Resist Upli ft For ces .............................. 27 3.2.2 Desig n of Mini-Piles ....................................................................... 28 3.2.2.1 CPT Method ..................................................................... 28 3.2.2.2 Titan Method ................................................................... 29 3.2.3 Compression in the Footing ............................................................ 30 3.3 How Te sting Can Aid in Safe ty and Ec onomy .............................................. 31 3.3.1 Safety .............................................................................................. 31 3.3.2 Economy ......................................................................................... 32 Chapter 4 Construction and Te sting ................................................................................ 35 4.1 Site I nvestig ation ............................................................................................ 35 4.2 Field Te st ....................................................................................................... 35 4.3 Site Survey ..................................................................................................... 36 4.4 Mini-Pil e I nstallation ..................................................................................... 37

PAGE 4

ii Chapter 5 Ec onomy of F oundations ................................................................................. 46 5.1 Mass Concre te Foote r .................................................................................... 46 5.2 Mini-Pil e Anc hor .......................................................................................... 47 5.3 Br eak E ven Ana ly sis ...................................................................................... 49 Chapter 6 Conclusion and Summary ............................................................................... 54 Refer ence s ........................................................................................................................ 56 Appendice s ....................................................................................................................... 57 Appendix A Mini -Pile L ocation and Struc tural Plans of Case Study .................. 58 Appendix B Results of CPT Testing .................................................................... 62 Appendix C Capac ity of Mini-Pile At Each L ocation Using CPT Method ......... 75 Appendix D Mix Proportions for Drilling and Casting ....................................... 85 Appendix E Bre ak Eve n Analy sis ........................................................................ 86 Appendix F Capac ity of a Mini-Pile Ba sed on Soil ............................................. 92 Appendix G Cost Per Kip Resisted B ased on Soil .............................................. 93

PAGE 5

iii List of Tabl es Table 2.1 Possible L oad Combinations ............................................................................. 6 Table 2.2 D esig n Pressures f or Diff ere nt Z ones and Spee ds ........................................... 13 Table 3.1 A djustment Fac tor for B uilding He ight a nd Ex posure, 8 ................................ 21 Table 3.2 Simplified Method ........................................................................................... 22 Table 3.3 A naly tical Method ........................................................................................... 24 Table 3.4 D ead L oad Calcula tion .................................................................................... 26 Table 3.5 Minimum Pil e L eng th Using The CPT Method .............................................. 29 Table 3.6 Minimum Pil e L eng th for NE Corne r Using The Titan Me thod ..................... 30 Table 5.1 Construction Cost by I tem ............................................................................... 46 Table 5.2 Cost for Ea ch 17kip Mass Concre te Foote r ..................................................... 47 Table 5.3 Tota l Cost Usi ng Mass Concre te Foote r .......................................................... 47 Table 5.4 Cost for Ea ch 17kip Mini-Pile ......................................................................... 48 Table 5.5 Tota l Cost Usi ng Mini-Pil es ............................................................................ 48 Table 5.6 Cost per K ip Resisted ...................................................................................... 49 Table B .1 CPT S ounding f or NE Corne r ......................................................................... 66 Table B .2 CPT S ounding f or NW Corner ........................................................................ 68 Table B .3 CPT S ounding f or SE Corner .......................................................................... 70 Table B .4 CPT S ounding f or SW C orner ........................................................................ 73 Table C.1 Capa city of a Mini-Pile in the NE Corner ....................................................... 75 Table C.2 Capa city of a Mini-Pile in the NW Corner ..................................................... 78

PAGE 6

iv Table C.3 Capa city of a Mini-Pile in the SE Corner ....................................................... 80 Table C.4 Capa city of a Mini-Pile in the SW Corner ...................................................... 83 Table D .1 Mix Desig n for Mini-Piles .............................................................................. 85 Table E.1 B rea k Even Ana ly sis of Project ....................................................................... 86 Table F .1 Capac ity of a Mini-Pile in Soft Sand ............................................................... 92 Table G .1 Cost P er K ip Resisted (Gene ral Soil Properties) ............................................ 93

PAGE 7

v List of F igures Fig ure 1.1 Chang e in Cement Prices .................................................................................. 1 Fig ure 1.2 F lorida Wind S peed Ma p .................................................................................. 2 Fig ure 2.1 MWFRS Wi nd I nfluenc e Z ones ..................................................................... 12 Fig ure 2.2 Classifica tion Base d on Method of Construction ........................................... 15 Fig ure 2.3 Classifica tion Base d on Method of Gr outing ................................................. 15 Fig ure 2.4 Rela tive Relationship Betwe en Mini-Pile Application, Desig n Concept and Construction Ty pe .......................................................................................... 16 Fig ure 3.1 U SF CPT Truck .............................................................................................. 33 Fig ure 3.2 Results from the N E CPT S ounding ............................................................... 33 Fig ure 3.3 Soil Classification Chart ................................................................................. 34 Fig ure 3.4 Soil Classification for NE Corne r ................................................................... 34 Fig ure 4.1 I nstalled Mini-Pil e .......................................................................................... 40 Fig ure 4.2 Williams Form Ba r ......................................................................................... 40 Fig ure 4.3 A nchor I nstallation ......................................................................................... 41 Fig ure 4.4 Static L oad Te st Setup .................................................................................... 42 Fig ure 4.5 L oad Te st Results ........................................................................................... 42 Fig ure 4.6 Site L ay out ...................................................................................................... 43 Fig ure 4.7 SPT Drill Rig .................................................................................................. 44 Fig ure 4.8 Centr alization Tabs ......................................................................................... 45 Fig ure 4.9 L oad Tra nsfer Connection................................................................................45

PAGE 8

vi Fig ure 5.1 Soil/Si te Specific Br eak E ven Ana ly sis .......................................................... 52 Fig ure 5.2 Mini-Pile Anchor Capac ity Ba sed on Soil Ty pe ............................................ 52 Fig ure 5.3 F oundation Cost P er F orce Resisted (Using Titan Method) ........................... 53 Fig ure A .1 Site L ay out ..................................................................................................... 58 Fig ure A .2 Roof Fr aming Plan ......................................................................................... 59 Fig ure A .3 Fr ont and Rear Elevations ............................................................................. 60 Fig ure A .4 Side Elevations .............................................................................................. 61 Fig ure B .1 CPT S ounding f or NE Corne r ........................................................................ 62 Fig ure B .2 CPT S ounding f or NW Corner ...................................................................... 62 Fig ure B .4 CPT S ounding f or SW C orner ....................................................................... 63 Fig ure B .3 CPT S ounding f or SE Corner ........................................................................ 63 Fig ure B .5 Soil C lassification for NE Corner .................................................................. 64 Fig ure B .6 Soil C lassification for NW Corner ................................................................. 64 Fig ure B .7 Soil C lassification for SE Corner ................................................................... 65 Fig ure B .8 Soil C lassification for SW Corner ................................................................. 65

PAGE 9

vii The Use of Mini -P ile Anchors to Re sist Uplif t F orce s in L ightw eight Structure s Julio Agu ilar ABSTRACT I n the state of F lorida one of the primary fac tors which influenc es desig n of structure s is the effe ct of hurr icane forc e winds on structure s. These f orce s can be g rea ter than a ny other for ce e ncounter ed throug hout the lifetime of said struc ture. F or this reason, de signing a structur e to re sist such force s can g rea tly incre ase the cost and t i m e r eq u i re d fo r c o m p l et i n g co n s t ru ct i o n p ro j ec t s T ra d i t i o n al l y l ar ge c o n cr et e f o o t i n gs have be en utiliz ed to re sist wind-induced uplift forc es. These footing s do litt le more tha n act a s larg e re action masses to we igh dow n the building. An a lternative a nd littl e-use d me tho d f or re sis tin g the se la rg e up lif t f or c e s is the us e of min ipil e a nc ho rs M ini -p ile anchor s g ener ate side she ar a t the interfa ce be tween the pile and the soil which re sists t he uplift force s. This thesis provides an over view of the desig n methods used to estimate windinduced uplift for ces a nd sever al founda tion options used to withstand these for ces. More tra ditional/less complicated founda tions are c ompare d to the more sophisticated min ipil e me tho d w hic h ma ke s mo re e ff ic ie nt u se of c on str uc tio n ma te ri a ls. Th e c os t eff iciency of ea ch method is eva luated which pr ovides a g uideline for w here and whe n a g iven founda tion option i s appropr iate. Finally a ca se study wher e the ne w method was use d is presente d which documents the de sign a nd construction proc edure s.

PAGE 10

1 Chapter 1 Introduction 1.1 Overview This thesis ex plores a mor e cost e ffe ctive founda tion design f or re sisting the uplift forc es g ener ated by hurrica ne for ce w inds. This as well as other a lternate methods are being considere d throug hout the state bec ause of the incre ase in the c ost of labor a nd construction mater ials in rece nt y ear s, Fig ure 1.1 is the c hang e in the cost of c ement fr om 1900 to 2002. Additionally in the wake of the re cent hur rica ne sea sons, there ha ve bee n incre ased/he ighte ned re strictions on the wind loads which ar e being used in the desig n of buildings in hurric ane pr one ar eas. The Americ an Society of Civil Enginee rs Code for Fig ure 1.1 Chang e in Cement Prices ( A d a p te d f r o m U SG S M in e r a l C o s t o f Ce me n t [ 4 ])

PAGE 11

2 Wind L oa ds (A SCE 20 02 ) [1 ] re qu ir e s th e sta te of F lor ida to d e sig n s tr uc tur e s to withstand winds of no less than 90 miles per hour along the norther n portion of the state, a nd the se va lue s in c re a se a s th e loc a tio n o f t he str uc tur e s n e a rs the c oa st. F or ins ta nc e in the southern tip of F lorida, the c ode spec ifies that buildings withstand minimum hurrica ne for ce w inds of no less than 150 miles per hour See F igur e 1.2 These c ontours show hig her de sign w ind speeds than pr evious code s; making ne w, mor e e ff ic ie nt c on str uc tio n me tho ds e sse nti a l. T his ph e no me no n is pa rt ic ula rl y pr ob le ma tic fo r l ig htwe ig ht s te e l st ru c tur e s w he re the se lf we ig ht i s n ot s uf fi c ie nt t o offe r consider able uplift re sistance. Fig ure 1.2 F lorida Wind S peed Ma p (Ada pted from ASCE 7-02)

PAGE 12

3 1.2 Scope of Proj ect T h e a i m o f t h i s t h es i s wa s t o co m p ar e t h e u s e o f m i n i -p i l es wi t h t h at o f l ar ge co n cr et e f o o t i n gs fo r t h ei r r es i s t an ce t o u p l i ft fo rc es Al s o co n s i d er ed wa s t h e d es i gn method which is used, along with the benef its of these methods. The “ CPT”[ 2] and “ Ti ta n” [3] me tho ds we re bo th c on sid e re d to de te rm ine if the re we re a ny sp e c if ic be ne fi ts which one me thod may g ener ate. A ca se study was pe rfor med in Br adenton, F lorida at a location wher e an e x isting str uc tur e wa s b e ing re loc a te d a nd re no va te d to me e t th e ne we r b uil din g c od e s. Th is structure was a 60ft x 100ft steel building w ith a peak r oof heig ht of 22ft-7 in consisting of a struc tural steel inter nal fra me. Soil chara cter istics were deter mined by perf orming CPT te sts in t he a pp ro xima te loc a tio ns of the 4 c or ne rs of the str uc tur e A te st m ini -p ile was c onstructed ba sed on the c alculate d values to conf irm if these va lues wer e in line with the field conditions. Finally production installation of all the mini-pile anchor s was perf ormed. 1.3 Organization of the Re port This report is org anized into five subsequent c hapter s. Chapter 2 g ives the backg round on applica tions where te nsion loads develop in structure s and founda tions a nd wh e n th e y do no t. A lso inc lud e d a re e xamp le s o f t he dif fe re nt t y pe s o f m ini -p ile s, and an e x planation of how w ind loads are deter mined. Chapter 3 discusse s the desig n of foundations for struc tures re sisting both uplift and compre ssive forc es for the diffe rent foundation methods as we ll as how testing c an incr ease the quality assura nce a nd economy of a struc ture. Chapter 4 g ives a g ener al over view of the structure for whic h the ca se study was done The c onstruction and testing of the mini piles is ex plained as

PAGE 13

4 well as the c hoice of anchor leng th and steel whic h was used. Cha pter 5 is an explanation of the ec onomy of the a lternative f oundations. Finally chapte r 6 g ives the conclusions which we re de termined a fter a ll of the testing w as done a nd afte r the structure was c ompletely installed.

PAGE 14

5 Cha pt e r 2 Ba c kgr ound 2.1 F ound ation Load s in S truct ures The loads a foundation is likely to experience stem from a numbe r of sourc es and manifest themselve s in ax ial compre ssion, ax ial tension, latera l/shear a nd/or bending moments. Further depending on the proba bility of one or more load ty pes being applied at one time, most contempora ry desig n codes g roup load ty pes in a va riety of occ urre nces called loa d case s. Sim ply stated, load c ases a ssemble all possible load combinations and discard improba ble conditions such as pe ople standing on a roof during a hurr icane Ty pic a l lo a d ty pe s f or F lor ida str uc tur e s in c lud e : pe rm a ne nt s tr uc tur e we ig ht, called de ad loads; movable loa ds like people, fur nishings, or e quipment, live loads; windind uc e d lo a ds b oth pr e ssu re a nd su c tio n; a nd wa te r o r r a in l oa ds B y c omb ini ng the se loads in common combinations a ra ng e of possible loading s are develope d for a g iven fo un da tio n b a se d o n th e ma g nit ud e of the loa d a nd g e ome tr y us e d to wi ths ta nd the se loa ds T a ble 2. 1 s ho ws loa d c omb ina tio ns /c a se s r e c omm e nd e d b y the Am e ri c a n I ns tit ute of Steel Construction (AI SC, 2002).

PAGE 15

6 Table 2.1 Possible L oad Combinations P OSS I B L E L OAD COM B I NA TI ONS C ase Load C om bi nat i on 1 1. 4* ( D ead Load) 2 1. 2* ( D ead Load) +1. 6* ( Li v e Lo ad) + 0.5*[ (R oo f Li ve L oa d) or (S no w Lo ad ) or R ai n L oa d)] 3 1.2*( D ea d L oa d)+ 1.6*[ (R oo f Li ve L oa d) or (S no w Lo ad ) or (R ai n L oa d)] + [ 0.5*( Li ve L oa d) or 0.8*( W i nd Lo ad )] 4 1. 2* ( D ead Load) +1. 6* ( W i nd L oad) +0. 5( Li v e Lo ad) + 0.5*[ (R oo f Li ve L oa d) or (S no w Lo ad ) or (R ai n L oa d)] 5 1.2*( D ea d L oa d)+ / -1. 0*(E art hq ua k e L oa d)+ 0.5*( Li ve L oa d)+ 0.2*( S no w Lo ad ) 6 0.9*( D ea d L oa d)+ / -[ 1.6*( W i nd Lo ad ) or 1.0(E art hq ua k e L oa d)] I n ta ble 2. 1 lo a d mu lti pli e rs (e g 1 .2 1 .6 0 .5 e tc .) ha ve be e n e sta bli sh e d s ta tis tic a lly based on the probably of more tha n one loading condition occur ring at the same instance in time. I t is conceiva ble, bec ause of its siz e and w eig ht, to overlook the fa ct that there may be instance s throug hout the service life whe re te nsile forc es may develop within the foundation. I n most structures, only wind loads ca use uplift loads in a founda tion by overturning pure suc tion uplift, or a combination of both. The F lorida building c odes all re quire that struc tures be a ble to withstand pressure s from winds for spe eds ra ng ing f rom 90mph to 150mph depending on the location. Fig ure 1.1 shows the Florida Wind S peed Ma p wher ein the southernmost tip of Florida is most l ikely to experience the hig hest wind speeds. The se spee ds g ener ate wind pressure s from 12.8psf to 49.4psf for 90 to 150mph, respec tively on the windwar d side. Al so th e ve loc ity of the wi nd a s it pa sse s a ro un d th e str uc tur e c a n c re a te a va c uu m on its leewa rd side, and the se for ces c an ra ng e fr om -16.9psf to -60.0psf a g ain re spectively as shown in Table 2.2.

PAGE 16

7 2. 2 D e te r m ina ti on o f Wind L oa ds L oads such a s live load, dea d load, and r ain loads ar e re latively straig htforwa rd computations and ar e either simple calcula tions of volume and density or pre scribed live load values ba sed on the a pplication. Wind l oad computations ar e more rig orous involving the wind spe ed, wind dire ction, surrounding structure s, topogr aphy and s t r u c t u r a l s h a p e / g e o m e t r y. The fir st factor is the wind velocity The dire ct velocity with which the wind impacts a struc ture will tend to g ener ate positive pre ssures on the windwa rd side and ne g a tiv e pr e ssu re s o n th e le e wa rd sid e of a str uc tur e T he re is a dir e c t r e la tio ns hip betwee n the wind velocity and the wind load, a s an incre ase in ve locity will ge nera te a corr esponding incre ase in pre ssure. T h e d i r e c t i o n f r o m w h i c h t h e w i n d i s i m p a c t i n g t h e s t r u c t u r e w i l l a l s o p l a y a signific ant fa ctor on the w ind loads being analy zed. I f the wind is blowing para llel to the sh or te r w a lls of a bu ild ing th e fo rc e s g e ne ra te d w ill be le ss t ha n th a t of the la rg e r w a lls as there is less surfac e ar ea. T his is not t o say that the pre ssure will be diff ere nt, as the pressure is a function of the velocity howeve r the total for ce w hich will need to be resisted will be smaller due to the smaller a rea being aff ecte d. The e x posure of the building to these forc es will also deter mine the pre ssures which will be exerted. I f the building is located in an a rea surrounde d by tree s, if the g round is uneven, or if the building is loca ted on the lee war d side of anothe r building being aff ecte d, then the wind pre ssures g ener ated will not be similar to those of a structure which wa s constructe d in a flat ope n field. This is beca use the turbulenc e

PAGE 17

8 g e ne ra te d b y the int e ra c tio n o f t he wi nd wi th t he se oth e r t e rr a in f e a tur e s ma y de c re a se the pre ssure whic h the wind will exert on the structure. The topog raphy of the ter rain is also ver y important when de termining the wind loa ds wh ic h w ill be g e ne ra te d. I f a str uc tur e is l oc a te d o n th e wi nd wa rd sid e of a hil l in a n o the rw ise fl a t a re a th e n th e ve loc ity of the wi nd a s it c ro sse s o ve r t he mou nta in w ill be g rea ter than tha t of wind which ha s been unimpede d simil ar to how the wind above the wing of an a irplane is tra veling at a f aster ve locity than that below it due to the sha pe. Alterna tely a structur e loca ted on the lee war d side of a hill may have a signific ant po rt ion of the wi nd be ing blo c ke d b y the hil l, a nd the re fo re the pr e ssu re e xer te d a c ro ss i ts surfa ce w ill be less than expected base d on the wind velocity The rig idity of a struc ture a lso play s a key role in the for ce w hich will be exerted during wind g usts. The dy namic impact of g usts on rigid struc tures is less signif icant tha n th a t of fl e xible str uc tur e s. Th is i s b e c a us e the g us tin g wi ll b e mor e lik e ly to g ener ate moveme nt in a flexibl e structur e than in a r igid one and this movement ca n lead to a fa ilure of the sy stem to resist the loads being exerted upon it. Whe n th e se fa c tor s a re ta ke n in to c on sid e ra tio n a lon g wi th o the rs a n a c c ur a te picture of the intera ction of the wind with a struc ture c an be de termined. The ASCE 07 standard f or ana ly sis of wind loads takes a ll of the above proper ties into consideration along with the “I mportance Fa ctor” “Exposure Categ ory ”, “I nterna l Pressure Coeffic ient”, and “ Ex terna l Pressure Coef ficient” The c ode utiliz es all these pr operties a nd inc or po ra te s th e m w ith the sh a pe of the bu ild ing to l oc a te the c ri tic a l a re a s th a t w ill be af fec ted by wind on a structur e, and c an be utilized to calculate the positive and neg ative pre ssures which w ill be experience d due to the wind. The structure is then

PAGE 18

9 desig ned to re sist these values which ha ve bee n calc ulated. F igur e 2.1 has the zones of influence 2.3 Diff ere nt Types of Mini-P iles The ty pes of mini-piles ty pically used in construc tion can be c lassified by three differ ent sy stems. The first sy stem of classific ation is by the method used for construction, and the second me thod is by the beha vior of the piles. The third sy stem of classifica tion is t he cla ssification of piles by method of g routing Classification by construction method g ives a c lear understanding of how e ach pile is made as we ll as the use of tha t specific de sign, F igur e 2.2 has the differ ent construction methods used. ‘ Pushed’ or ‘dr iven’ piles ar e construc ted by driving pr e fa br ic a te d p ile s in to t he g ro un d e ith e r b y ha mme ri ng or thr ou g h th e us e of hy dr a uli c rams. The se piles ar e ofte n used to transfe r lig ht loads to the soil in a rang e fr om 3 to 30 tons. ‘Compaction g routed’ piles a re ma de by forc ing the g rout into the hole and g ener ating a bulb on conc rete at the base of the pile. The se piles ar e excellent for the development of loads at shallow depths a s the compac tion increa ses the density of the s o i l wh i ch t h er ef o re i n cr ea s es i t s ca p ac i t y T h ey ar e t y p i ca l l y u s ed fo r l o ad s i n t h e r an ge of 15 to 75 tons. ‘J et gro u t ed ’ p i l es ar e c re at ed b y fi l l i n g t h e s h af t wi t h co n cr et e t ra v el i n g at a h i gh velocity This has the ef fec t of g rea tly incre asing the density of the soil far bey ond the a bil ity of oth e r m e tho ds uti lize d w hil e ins ta lli ng min ipil e s. On e be ne fi t of je t g ro uti ng is that the ca pacity of the piles af ter c onstruction can r ang e fr om 50 to 150 tons.

PAGE 19

10 ‘Post gr outed’ piles ar e piles which ha ve bee n modified afte r being cast in plac e. There is a void in the cente r of the sha ft which runs c onnects fr om the tip to the surfac e, a nd c on c re te is t he n p ump e d u nd e r h ig h p re ssu re thr ou g h th is h ole to i nc re a se the sk in friction and the end bea ring capa cities of the piles in the ra ng e of 40 to 100 tons. ‘Pressure g routed’ piles a re c onstructed using concr ete pumped into the sha ft un de r h ig h p re ssu re T his pr e ssu re ha s th e e ff e c t of inc re a sin g the de ns ity of the so il s o that the pile is capa ble of g ener ating larg er r esistive loads throug h skin friction from 25 to 75 tons. F ina lly ‘ Dr ill e d, En d B e a ri ng ’ p ile s a re pil e s c on str uc te d b y dr ill ing do wn to e ith e r b e dr oc k o r e xtre me ly de ns e so il, a nd the n c a sti ng the pil e in t he ho le wh ic h is g e ne ra te d. Th is t y pe of sh a ft wo rk s b y tr a ns fe rr ing loa ds dir e c tly to t he tip of the pil e and then into the soil, and does not re ly on skin friction to resist signific ant loads. The capa city of ‘Dr illed, End Be aring ’ piles ra ng es fr om 50 all the way to over 500 tons depending on the diameter of the pile a nd the mater ial below the pile tip. Classification by behavior is based on the c oncept that piles will fall into only two cate g ories, re fer red to a s ‘Cases’, F igur e 2.3 illustrates the va rious Cases. ‘Case 1’ re fer s to piles which direc tly resist loads which a re a pplied on them, which is done e ither by an individual pile, or by a pile g rouping The loads will be a pplied axially and then be transfe rre d to the soil. ‘Case 2’ by the classific ation based on be havior, is said to be of a “Reticulate d root pile structure ”. This form of pile behavior utiliz es piles installed in a spec ific patter n for the pur poses of c onfining the soil structure in the vicinity of the pile. The purposes of this can be f or under pinning, stabilization, or ear th retention.

PAGE 20

11 The fina l classifica tion sy stem is the classifica tion of soil bases on the method utiliz ed for the g routing proce ss. Fig ure 2.4 is the c lassification base d on the g routing proce ss. ‘Ty pe A’ piles are those installed using c oncre te which is g ravity fed into the hole. The pile is construc ted either using a neat c ement g rout or a sa nd ceme nt mortar. The piles ar e sometimes under -re amed a t the base to a id the tensile perf ormanc e. ‘Ty pe B ’ piles ar e cr eate d by injecting neat c ement g rout into a hole as tempor ary steel drill casing or the a ug er is re moved. The pr essure s used for injec tion rang e fr om 43.5psi (0.3 Mpa) to 145psi (1 Mpa) The pre ssures uses a re limited by the sea l of the g rout around the casing as it is being r emoved, a nd by the nee d to avoid hy drofr actur e pressure s and excessive g rout consumption. ‘Ty pe C’ piles ar e cr eate d by first installing a ‘ Ty pe A’ pile with a g rout pipe pr e vio us ly ins ta lle d in the c e nte r. I n th e ra ng e of 15 to 2 5 mi nu te s a ft e r t he ‘T y pe A’ pil e is installed, neat ce ment g rout of identica l properties is then injec ted into the pile befor e the ini tia l g ro ut u se d h a s th e a bil ity to h a rd e n. Th e pr e ssu re us e d f or thi s is g e ne ra lly about 145psi (1 Mpa). ‘T y pe D’ pil e s a re a g a in c on str uc te d in iti a lly a s ‘ Ty pe A’ pil e s, a nd sim ila rl y to ‘Ty pe C’, ther e is a g rout pipe installed in the ce nter. The differ ence betwee n these two ty pes, howe ver, is that the ‘ Ty pe D’ is pressurized sever al hours af ter the c oncre te has harde ned, and the pressure s utili zed rang e fr om 290psi (2 Mpa) to 1,160psi (8 Mpa). A packe r is also used in this method, and the re ason for this is t hat if a spe cific a rea needs to b e re -t re a te d, thi s c a n b e do ne se ve ra l ti me s w ith ou t a ff e c tin g the oth e r h or izon s w ith in the pile.

PAGE 21

12 F or thi s p ro je c t th e ‘T y pe A’ ‘ Ca se 1' a nc ho rs we re tho ug h to be the mos t economica l while also providing adequa te axial capac ity to withstand wind-induced uplift force s via side shea r re sistance. Fig ure 2.1 MWFRS Wi nd I nfluenc e Z ones (Ada pted from ASCE 7-02)

PAGE 22

13 Table 2.2 D esig n Pressures f or Diff ere nt Z ones and Spee ds M ai n W i nd R esi st i ng Sys t em Simp l i f i ed D esi gn D es i gn W i nd P r es s ur es E x p o su re B a t h = 3 0 ft w ith I = 1 .0 B a sic W i nd Speed (mp h) Roof A ng l es (d e g .) Loa d C ase Zones H o ri zo nt al P res sur es V ert i cal P res sur es O verhangs OH OH A B C D E F GH E G 85 0 5 1 1 1 .5 -5 .9 7 .6 -3 .5 -1 3 .8 -7 .8 -9 .6 -6 .1 -1 9 .3 -1 5 .1 o 1 0 1 1 2 .9 -5 .4 8 .6 -3 .1 -1 3 .8 -8 .4 -9 .6 -6 .5 -1 9 .3 -1 5 .1 o 1 5 1 1 4 .4 -4 .8 9 .6 -2 .7 -1 3 .8 -9 .0 -9 .6 -6 .9 -1 9 .3 -1 5 .1 o 2 0 1 1 5 .9 -4 .2 1 0 .6 -2 .3 -1 3 .8 -9 .6 -9 .6 -7 .3 -1 9 .3 -1 5 .1 o 2 5 1 1 4 .4 2 .3 1 0 .4 2 .4 -6 .4 -8 .7 -4 .6 -7 .0 -1 1 .9 -1 0 .1 o 2 ---------2 .4 -4 .7 -0 .7 -3 .0 ----3 0 4 5 1 1 2 .9 8 .8 1 0 .2 7 .0 1 .0 -7 .8 0 .3 -6 .7 -4 .5 -5 .2 o 2 1 2 .9 8 .8 1 0 .2 7 .0 5 .0 -3 .9 4 .3 -2 .8 -4 .5 -5 .2 90 0 5 1 1 2 .8 -6 .7 8 .5 -4 .0 -1 5 .4 -8 .8 -1 0 .7 -6 .8 -2 1 .6 -1 6 .9 o 1 0 1 1 4 .5 -6 .0 9 .6 -3 .5 -1 5 .4 -9 .4 -1 0 .7 -7 .2 -2 1 .6 -1 6 .9 o 1 5 1 1 6 .1 -5 .4 1 0 .7 -3 .0 -1 5 .4 -1 0 .1 -1 0 .7 -7 .7 -2 1 .6 -1 6 .9 o 2 0 1 1 7 .8 -4 .7 1 1 .9 -2 .6 -1 5 .4 -1 0 .7 -1 0 .7 -8 .1 -2 1 .6 -1 6 .9 o 2 5 1 1 6 .1 2 .6 1 1 .7 2 .7 -7 .2 -9 .8 -5 .2 -7 .8 -1 3 .3 -1 1 .4 o 2 ---------2 .7 -5 .3 -0 .7 -3 .4 ----3 0 4 5 1 1 4 .4 9 .9 1 1 .5 7 .9 1 .1 -8 .8 0 .4 -7 .5 -5 .1 -5 .8 o 2 1 4 .4 9 .9 1 1 .5 7 .9 5 .6 -4 .3 4 .8 -3 .1 -5 .1 -5 .8 100 0 5 1 1 5 .9 -8 .2 1 0 .5 -4 .9 -1 9 .1 -1 0 .8 -1 3 .3 -8 .4 -2 6 .7 -2 0 .9 o 1 0 1 1 7 .9 -7 .4 1 1 .9 -4 .3 -1 9 .1 -1 1 .6 -1 3 .3 -8 .9 -2 6 .7 -2 0 .9 o 1 5 1 1 9 .9 -6 .6 1 3 .3 -3 .8 -1 9 .1 -1 2 .4 -1 3 .3 -9 .5 -2 6 .7 -2 0 .9 o 2 0 1 2 2 .0 -5 .8 1 4 .6 -3 .2 -1 9 .1 -1 3 .3 -1 3 .3 -1 0 .1 -2 6 .7 -2 0 .9 o 2 5 1 1 9 .9 3 .2 1 4 .4 3 .3 -8 .8 -1 2 .0 -6 .4 -9 .7 -1 6 .5 -1 4 .0 o 2 ---------3 .4 -6 .6 -0 .9 -4 .2 ----3 0 4 5 1 1 7 .8 1 2 .2 1 4 .2 9 .8 1 .4 -1 0 .8 0 .5 -9 .3 -6 .3 -7 .2 o 2 1 7 .8 1 2 .2 1 4 .2 9 .8 6 .9 -5 .3 5 .9 -3 .8 -6 .3 -7 .2 110 0 5 1 1 9 .2 -1 0 .0 1 2 .7 -5 .9 -2 3 .1 -1 3 .1 -1 6 .0 -1 0 .1 -3 2 .3 -2 5 .3 o 1 0 1 2 1 .6 -9 .0 1 4 .4 -5 .2 -2 3 .1 -1 4 .1 -1 6 .0 -1 0 .8 -3 2 .3 -2 5 .3 o 1 5 1 2 4 .1 -8 .0 1 6 .0 -4 .6 -2 3 .1 -1 5 .1 -1 6 .0 -1 1 .5 -3 2 .3 -2 5 .3 o 2 0 1 2 6 .6 -7 .0 1 7 .7 -3 .9 -2 3 .1 -1 6 .0 -1 6 .0 -1 2 .2 -3 2 .3 -2 5 .3 o 2 5 1 2 4 .1 3 .9 1 7 .4 4 .0 -1 0 .7 -1 4 .6 -7 .7 -1 1 .7 -1 9 .9 -1 7 .0 o 2 ---------4 .1 -7 .9 -1 .1 -5 .1 ----3 0 4 5 1 2 1 .6 1 4 .8 1 7 .2 1 1 .8 1 .7 -1 3 .1 0 .6 -1 1 .3 -7 .6 -8 .7 o 2 2 1 .6 1 4 .8 1 7 .2 1 1 .8 8 .3 -6 .5 7 .2 -4 .6 -7 .6 -8 .7 120 0 5 1 2 2 .8 -1 1 .9 1 5 .1 -7 .0 -2 7 .4 -1 5 .6 -1 9 .1 -1 2 .1 -3 8 .4 3 0 .1 o 1 0 1 2 5 .8 -1 0 .7 1 7 .1 -6 .2 -2 7 .4 -1 6 .8 -1 9 .1 -1 2 .9 -3 8 .4 3 0 .1 o 1 5 1 2 8 .7 -9 .5 1 9 .1 -5 .4 -2 7 .4 -1 7 .9 -1 9 .1 -1 3 .7 -3 8 .4 3 0 .1 o 2 0 1 3 1 .6 -8 .3 2 1 .1 -4 .6 -2 7 .4 -1 9 .1 -1 9 .1 -1 4 .5 -3 8 .4 3 0 .1 o 2 5 1 2 8 .6 4 .6 2 0 .7 4 .7 -1 2 .7 -1 7 .3 -9 .2 -1 3 .9 -2 3 .7 -2 0 .2 o 2 ---------4 .8 -9 .4 -1 .3 -6 .0 ----3 0 4 5 1 2 5 .7 1 7 .6 2 0 .4 1 4 .0 2 .0 -1 5 .6 0 .7 -1 3 .4 -9 .0 -1 0 .3 o 2 2 5 .7 1 7 .6 2 0 .4 1 4 .0 9 .9 -7 .7 8 .6 -5 .5 -9 .0 -1 0 .3

PAGE 23

14 Table 2.2 ( Continued) 130 0 5 1 2 6 .8 -1 3 .9 1 7 .8 -8 .2 -3 2 .2 -1 8 .3 -2 2 .4 -1 4 .2 -4 5 .1 -3 5 .3 o 1 0 1 0 .2 -1 2 .5 2 0 .1 -7 .3 -3 2 .2 -1 9 .7 -2 2 .4 -1 5 .1 -4 5 .1 -3 5 .3 o 1 5 1 3 3 .7 -1 1 .2 2 2 .4 -6 .4 -3 2 .2 -2 1 .0 -2 2 .4 -1 6 .1 -4 5 .1 -3 5 .3 o 2 0 1 3 7 .1 -9 .8 2 4 .7 -5 .4 -3 2 .2 -2 2 .4 -2 2 .4 -1 7 .0 -4 5 .1 -3 5 .3 o 2 5 1 3 3 .6 5 .4 2 4 .3 5 .5 -1 4 .9 -2 0 .4 -1 0 .8 -1 6 .4 -2 7 .8 -2 3 .7 o 2 ---------5 .7 -1 1 .1 -1 .5 -7 .1 ----3 0 4 5 1 3 0 .1 2 0 .6 2 4 .0 1 6 .5 2 .3 -1 8 .3 0 .8 -1 5 .7 -1 0 .6 -1 2 .1 o 2 3 0 .1 2 0 .6 2 4 .0 1 6 .5 1 1 .6 -9 .0 1 0 .0 -6 .4 -1 0 .6 -1 2 .1 140 0 5 1 3 1 .1 -1 6 .1 2 0 .6 -9 .6 -3 7 .3 -2 1 .2 -2 6 .0 -1 6 .4 -5 2 .3 -4 0 .9 o 1 0 1 3 5 .1 -1 4 .5 2 3 .3 -8 .5 -3 7 .3 -2 2 .8 -2 6 .0 -1 7 .5 -5 2 .3 -4 0 .9 o 1 5 1 3 9 .0 -1 2 .9 2 6 .0 -7 .4 -3 7 .3 -2 4 .4 -2 6 .0 -1 8 .6 -5 2 .3 -4 0 .9 o 2 0 1 4 3 .0 1 1 .4 2 8 .7 -6 .3 -3 7 .3 -2 6 .0 -2 6 .0 -1 9 .7 -5 2 .3 -4 0 .9 o 2 5 1 3 9 .0 6 .3 2 8 .2 6 .4 -1 7 .3 -2 3 .6 -1 2 .5 -1 9 .0 -3 2 .3 -2 7 .5 o 2 ---------6 .6 -1 2 .8 -1 .8 -8 .2 ----3 0 4 5 1 3 5 .0 2 3 .9 2 7 .8 1 9 .1 2 .7 -2 1 .2 0 .9 1 8 .2 -1 2 .3 -1 4 .0 o 2 3 5 .0 2 3 .9 2 7 .8 1 9 .1 1 3 .4 -1 0 .5 1 1 .7 -7 .5 -1 2 .3 -1 4 .0 150 0 5 1 3 5 .7 -1 8 .5 2 3 .7 -1 1 .0 -4 2 .9 -2 4 .4 -2 9 .8 -1 8 .9 -6 0 .0 -4 7 .0 o 1 0 1 4 0 .2 -1 6 .7 2 6 .8 -9 .7 -4 2 .9 -2 6 .2 -2 9 .8 -2 0 .1 -6 0 .0 -4 7 .0 o 1 5 1 4 4 .8 -1 4 .9 2 9 .8 -8 .5 -4 2 .9 -2 8 .0 -2 9 .8 -2 1 .4 -6 0 .0 -4 7 .0 o 2 0 1 4 9 .4 -1 3 .0 3 2 .9 -7 .2 -4 2 .9 -2 9 .8 -2 9 .8 -2 2 .6 -6 0 .0 -4 7 .0 o 2 5 1 4 4 .8 7 .2 3 2 .4 7 .4 -1 9 .9 -2 7 .1 -1 4 .4 -2 1 .8 -3 7 .0 -3 1 .6 o 2 ---------7 .5 -1 4 .7 -2 .1 -9 .4 ----3 0 4 5 1 4 0 .1 2 7 .4 3 1 .9 2 2 .0 3 .1 -2 4 .4 1 .0 -2 0 .9 -1 4 .1 -1 6 .1 o 2 4 0 .1 2 7 .4 3 1 .9 2 2 .0 1 5 .4 -1 2 .0 1 3 .4 -8 .6 -1 4 .1 -1 6 .1 170 0 5 1 4 5 .8 -2 3 .8 3 0 .4 -1 4 .1 -5 5 .1 -3 1 .3 -3 8 .3 -2 4 .2 -7 7 .1 -6 0 .4 o 1 0 1 5 1 .7 -2 1 .4 3 4 .4 -1 2 .5 -5 5 .1 -3 3 .6 -3 8 .3 -2 5 .8 -7 7 .1 -6 0 .4 o 1 5 1 5 7 .6 -1 9 .1 3 8 .3 -1 0 .9 -5 5 .1 -3 6 .0 -3 8 .3 -2 7 .5 -7 7 .1 -6 0 .4 o 2 0 1 6 3 .4 -1 6 .7 4 2 .3 -9 .3 -5 5 .1 -3 8 .3 -3 8 .3 -2 9 .1 -7 7 .1 -6 0 .4 o 2 5 1 5 7 .5 9 .3 4 1 .6 9 .5 -2 5 .6 -3 4 .8 -1 8 .5 -2 8 .0 -4 7 .6 -4 0 .5 o 2 ---------9 .7 -1 8 .9 -2 .6 -1 2 .1 ----3 0 4 5 1 5 1 .5 3 5 .2 4 1 .0 2 8 .2 4 .0 -3 1 .3 1 .3 -2 6 .9 -1 8 .1 -2 0 .7 o 2 5 1 .5 3 5 .2 4 1 .0 2 8 .2 1 9 .8 -1 5 .4 1 7 .2 -1 1 .0 -1 8 .1 -2 0 .7

PAGE 24

15 Fig ure 2.2 Classifica tion Base d on Method of Construction ( A d a p te d f r o m H a y w a r d B a k e r I n c 2 0 0 3 PP 1 8 [6 ]) Fig ure 2.3 Classifica tion Base d on Method of Gr outing ( A d a p te d f r o m I SS M F E T C1 7 [7 ])

PAGE 25

16 Fig ure 2.4 Rela tive Relationship Betwe en Mini-Pile Application, Desig n Concept and Construction Ty pe (Ada pted from I SSM FE TC-17)

PAGE 26

17 Cha pt e r 3 A lt e r nat ive F ounda ti ons 3. 1 D e te r m ina ti on o f F or c e s o n a 6 0x 10 0x 22 ft7in Buil ding Th e str uc tur e us e d f or the c a se stu dy do ne in t his the sis wa s a 60 ft x 100 ft ste e lfr a me d b uil din g wi th a pe a k r oo f h e ig ht o f 2 2f t 7i n. Th e str uc tur e wa s b e ing re loc a te d to 6308 44 Avenue East, B rade nton, Florida, a nd it was also being upg rade d to the curr ent th building code which consisted of a hig her de sign w ind than when the building was orig inally constructe d. Whil e ther e we re modifica tions done to the fra me of the struc ture to resist these for ces, the scope of this thesis wil l only consider how these for ces w ill act on the founda tion, and there fore all calc ulations done will be based on de termining the wind load on the structur e solely for the f oundation desig n. The de termination of for ces w as done in a ccor dance with ASCE 7-02 (ASCE,2002) and the me thod used for c alculations wa s the Main Wind Force -Resistance Sy stem (MWFRS). The building c ould have be en desig ned using the ‘simplified’ me tho d a c c or din g to t he c od e h ow e ve r t he a c c ur a c y of the se re su lts wo uld ne e d s ome form of va riation, and ther efor e both the ‘simplified’ a nd the ‘Ana ly tical’ method we re used to obtain the for ces upon the structure 3.1.1 Analysis Usi ng the Simplif ied P roce dure To use the simplified method, there wer e ce rtain re quirements which ne eded to be me t by the str uc tur e T he fi rs t su c h r e qu ir e me nt i s th a t th e str uc tur e be a sim ple diaphra g m as deter mined in section 6.2 of the c ode. To be a simple diaphra g m the code require s that the building be enclose d or par tially enclose d with winds transmitted

PAGE 27

18 throug h floor and/or roof diaphr ag ms to the vertical MWFRS. Be cause this buil ding co n s i s t s o f a s t ee l fr am e, t h e f o rc es ac t i n g u p o n t h e r o o f w i l l t h en b e t ra n s fe rr ed t h ro u gh the bea ms to the columns and from ther e dire ctly into the foundation. For this reason, the structure can be classified a s a simple diaphra g m. The sec ond require ment is that the building mee ts the classifica tion in section 6.2 for a ‘low rise’ building. The code stipulates that a n enclose d or par tially enclose d building having a mea n roof he ight of less than 60ft, and tha t the mean r oof heig ht be less than the lea st horizont al dimension. This particular structure has a me an roof heig ht of 21ft 3.5in and the le ast horizontal dimension i s 60ft, there fore this requireme nt was also met. The third re quirement is that the building is e nclosed in ac corda nce w ith section 6.2 and conf orms to the wind-born de bris provisions of section 6.5.9.3. An e nclosed building, ac cording to the code, is one which does not c omply with the require ments for a n o pe n o r p a rt ia lly e nc los e d b uil din g A n o pe n b uil din g is o ne wh ic h h a s e a c h w a ll be ing a t le a st 8 0% op e n, a c on dit ion wh ic h th is s tr uc tur e do e s n ot m e e t. A pa rt ia lly enclose d structure is one which ha s the total are a of ope nings w hich re ceive positive external pressur es being g rea ter than the sum of the opening s in the remainde r of the structure by more than 10% and that the total ar ea of opening s in a wall which r ece ives po sit ive e xter na l pr e ssu re e xce e ds 4f t or 1% of the a re a of the wa ll, wh ic he ve r i s 2 smaller, and tha t the perc entag e of ope nings in the r emainder of the building is less than 20%. The struc ture be ing de signe d does not contain a ny windows, and a ll of the doors a re pu ll d ow n s hu tte rs th e re fo re the c on dit ion s f or a pa rt ia lly e nc los e s st ru c tur e a re a lso not met, and there fore the building is terme d as being ‘enc losed’.

PAGE 28

19 The c ode re quires that a building be a r eg ularly shaped building or structure which is define d in the code a s having no unusual g eometric al irre g ularity or spatial fo rm B e c a us e thi s b uil din g is a sim ple re c ta ng le it c a n b e c la ssi fi e d a s a re g ula rl y shaped struc ture. Th e sim pli fi e d me tho d a lso sta te s th a t a bu ild ing mus t no t be c la ssi fi e d a s f le xible in order f or it to be used. F lexi ble structure s are define s as slender structure s with a natura l freque ncy of less than 1Hz. Since this building is not slender, it ca n there fore not be cla ssified as fle x ible. The sixt h require ment for the simplified method is that “the building does not h av e r es p o n s e c h ar ac t er i s t i cs m ak i n g i t s u b j ec t t o ac ro s s -w i n d l o ad i n g, v o rt ex s h ed d i n g, instabilit y due to g alloping or flutter; and doe s not have a site location for w hich channe ling e ffe cts or buff eting in the wake of upwind obstructions war rant spec ial considera tion.” This building does not have any specific response char acte ristics which would g ener ate a cross-w ind loading or vortex shedding. The building does not ha ve any instabilit y due to g alloping or flutter, and is not loca ted in an ar ea w here channe ling e ff e c ts o r b uf fe t r e qu ir e s a ny sp e c ia l c on sid e ra tio n; t he re fo re it a lso me e ts t his require ment of the c ode. The seve nth require ment is that “the building struc ture ha s no expansion joi nts or separ ations”. This structure contains no expansion joints or sepa rations, there fore passes thi s r e qu ir e me nt. The e ighth r equire ment of the c ode is that the building is not subject to the topogr aphica l effe cts as desc ribed in sec tion 6.5.7 of the code This building is located

PAGE 29

20 on level ter rain with no nea rby signific ant cha ng es in eleva tion, and there fore is not subject to any topogr aphica l effe cts. The fina l require ment for utilization of the simpl ified method is that the building has a r elatively sy mmetrical c ross section in ea ch dire ction and that the r oof is flat or either hippe d or g abled in natur e with an a ng le of less than 45 This particular structure o has an a ng le of only 4.9 and ther efor e mee ts all of the qualifica tions for utiliz ation of o the simplified method. The fir st step in the simpl ified method is the deter mination of the basic wind speed in a ccor dance with section 6.5.4. Fr om this section the desig n wind speed f or Br adenton, F lorida wa s determined to be 130 mph. The importanc e fa ctor for the structure was then de termined fr om section 6.5.5 of the code Since the building f alls into Categor y I based on the classifica tions of table 1-1 of ASCE 7-02, and is in a hurr icane prone r eg ion with wind velocities over 100mph, the importance fac tor “I ” of the structure is 0.77. The e x posure c ateg ory for this structure is obtained from sec tion 6.5.6 of the code. B eca use the struc ture is in a suburba n are a with closely space d obstructions the size of sin g le -f a mil y dw e lli ng s, the e xpos ur e c a te g or y of thi s st ru c tur e wa s d e te rm ine d to be ca teg ory “B ”. The he ight a nd exposure adjustment coef ficient, “ 8 ” wa s then deter mined from Table 3.1. B eca use the mea n roof he ight of the structure was 22ft 7in, and of exposure c a te g or y “ B ” T a ble 3. 1 a ssi g ns a ll b uil din g s u nd e r t his c a te g or y be ing le ss t ha n 3 0f t in heig ht an adjustment fac tor of 1.0; there fore the heig ht and exposure adjustment fac tor fo r t h i s b u i l d i n g ( 8 ) is 1.0

PAGE 30

21 Table 3.1 A djustment Fac tor for B uilding He ight a nd Ex posure, 8 Mean r oof heig ht (ft) Ex posure BC D 15 1 1.21 1.47 20 1 1.29 1.55 25 1 1.35 1.61 30 1 1.4 1.66 35 1.05 1.45 1.7 40 1.09 1.49 1.74 45 1.12 1.53 1.78 50 1.16 1.56 1.81 55 1.19 1.59 1.84 60 1.22 1.62 1.87 Th e de te rm ina tio n o f t he wi nd pr e ssu re fo r M WF RS is the n d on e a c c or din g to se c tio n 6 .4 .2 .1 of the c od e th e fo rm ula is a s f oll ow s: s s30 p = 8 I p (Eq. 3.1) wher e in this case 8 = 1.0, and I = 0.77. s30 The va lue for p horizontally acr oss reg ion “A” of the structure is 26.8psf, and likewise, the va lue long itudinally acr oss reg ion “A” is a lso 26.8psf. I n the roof a rea s, the value f or zone “E” was -32.2psf and the va lue for zone “ B” was -13.9psf (see Table 2.1 & F igur e 2.1). s30 After multipl y ing the values for p by the exposure adjustment fac tor and the importance fac tor, it was deter mined that the walls of the struc ture would de velop horizontal and vertica l pressure s both of 20.6psf, and that the r oof would experienc e a pressure of -24.8psf in zone “A ”, and 10.7psf in zone “E”. Ta ble 3.2 shows the calc ulations for the simplified method.

PAGE 31

22 Table 3.2 Simplified Method SI MPL I FI ED METHOD Wall Areas Ho ri zon ta l A 26 .8 ps f L on g itu din a l A 26 .8 ps f Roof Are as Ho ri zon ta l A -3 2. 2 ps f Ho ri zon ta l B -1 3. 9 ps f Values Multiplied by importance Fa ctor I = 0.77 Ho ri zon ta l A 20 .6 36 ps f L on g itu din a l A 20 .6 36 ps f Roof Are as Ho ri zon ta l A -2 4. 79 4 ps f Ho ri zon ta l B -1 0. 70 3 ps f 3.1.2 Analysis Usi ng the Analytical Met hod The ne x t step in the proce ss was to compar e the simplified method to the An a ly tic a l Pr oc e du re a s d e sc ri be d in se c tio n A SCE 702 se c tio n 6 .5 T he fi rs t st e p in d this procedur e wa s to determine the ba sic wind speed “ V” a nd direc tionality fac tor “K ” in acc ordanc e with sec tion 6.5.4 of the code Fr om these sec tions, “V” wa s determined d to be 130mph, and “K ” wa s determined to be 0.85. Ste p tw o w a s to de te rm ine the imp or ta nc e fa c tor “ I ” of the str uc tur e in a c c or da nc e wi th s e c tio n 6 .5 .5 T he imp or ta nc e fa c tor fo r t his str uc tur e wa s a g a in deter mined to be 0.77. Ste p th re e wa s to de te rm ine the e xpos ur e c a te g or y or c a te g or ie s a nd the ve loc ity pressure exposure coef ficients in ac corda nce w ith section 6.5.6. The structur e wa s deter mined to have c ateg ory “B ” exposure, and a velocity pressure exposure coef ficient h “K ” of 0.7. zt The topog raphic al fa ctor “ K ” wa s then deter mined from sec tion 6.5.7 of the code. T his value wa s determined to be 1.

PAGE 32

23 Step five wa s to determine the g ust effe ct fa ctor in ac corda nce w ith section 6.5.8 of the c ode. The deter mination of this gave a re sult for “G” as 0.85. Ste p s ix wa s to de te rm ine the e nc los ur e c la ssi fi c a tio n o f t he str uc tur e in acc ordanc e with sec tion 6.5.9. The results of this, simil ar to those of the simplified method, are that the building is to be c lassified as a n “enc losed” struc ture. pi Step seven wa s to determine the inter nal pre ssure c oeff icient GC in acc ordanc e with section 6.5.11.1 of the c ode. The se we re de termined to be + 0.18 and -0.18. Th e e ig hth ste p in the a na ly sis wa s to ob ta in t he e xter na l pr e ssu re c oe ff ic ie nts pf GC in acc ordanc e with sec tion 6.5.11.2. These we re de termined to be 0.43 in section 4e and 0.61 in se ction 1e for the walls; with -1.07 in section 2e a nd -0.53 in section 3e of the roof. Th e nin th s te p w a s th e de te rm ina tio n o f t he ve loc ity pr e ssu re in a c c or da nc e wi th se c tio n 6 .5 .1 0 in the c od e T he fo rm ula fo r t his is a s f oll ow s: z zz td q = 0.00256 K K K V I (psf) (Eq. 3.2) 2 The wor st case pr essure s exerted on the wa ll based on the c alculations we re + 15.7psf and -12.1psf in the tra nsverse direc tion. L ong itudinally the worse case loads wer e deter mined to be +15.7psf a nd -12.1psf. The roof, howe ver e x perie nced ne g ative pressure s in all cases, a nd in both the transver se and long itudinal direction the value of the neg ative pre ssure wa s determined to be -24.8psf, whic h is the same value deter mine by utiliz ing the simpli fied method. Ta ble 3.3 shows the value s obtained using the analy tical method.

PAGE 33

24 Table 3.3 A naly tical Method DES I GN P ROCE DURE 1 ) F ro m S ec ti o n 6 .5 .4 D e t e r m i ne ba s i c wi nd Spe e d V 130 m ph D e t e r m i ne D i r e c t i o na l i t y Fa c t o r K d 0. 85 2 )F ro m S ec ti o n 6 .5 .5 D eterm in e th e B u il d in g C ateg o ry I D e t e r m i ne t he I m po r t a nc e Fa c t o r I 0. 77 3 )F ro m S ec ti o n 6 .5 .6 D eterm in e E x p o su re C ateg o ry B D eterm in e K z o r K h 0 .7 4 ) D et er m i n e t op ogr aph i c f act or K zt 1 5) D e t e r m i ne t he G us t Ef f e c t Fa c t o r G 0. 85 6 ) De t e r mi n e t h e e n c l o s u r e c l a s s i f i c a t i o n ENCLOSE D 7) D e t e r m i ne t he I nt e r na l Pr e s s ur e c o e f f i c i e nt G c pi 0. 18 0. 18 8) D e t e r m i ne t he Ext e r na l Pr e s s ur e C o e f f i c i e nt G pf 4e 0. 43 1e 0. 61 R o o f 2e 1. 07 3e 0. 53 de t e r m i ne qz qz = 0. 00256 K z K z t K d V ^2 I = 0. 00256 0. 7 1 0. 85 ( 130 130) 0. 77 19. 821402 qh = qz p = q h (G C p f) G c p i) T ra n sv e rs e W a ll wor s e c a s e p = qh ( 1e ( +/ ) 0. 18) p o sitiv e o n w a ll 1 5 .6 5 8 9 0 7 p sf fo r w a ll wor s t c a s e p = qh ( 4e ( +/ ) 0. 18) n e g a tiv e o n w a ll -1 2 .0 9 1 0 5 5 p sf fo r w a ll L o n g itu d in a l W a ll wor s e c a s e p = qh ( 1e ( +/ ) 0. 18) p o sitiv e o n w a ll 1 5 .6 5 8 9 0 7 p sf fo r w a ll wor s t c a s e p = qh ( 4e ( +/ ) 0. 18) n e g a tiv e o n w a ll -1 2 .0 9 1 0 5 5 p sf fo r w a ll T r ansver se R oof wor s t c a s e p = qh ( 2e ( +/ ) 0. 18) roof u p l i ft 1 2 4 .77 6 7 5 2 p sf wor s t c a s e P = qh( 3e ( +/ ) 0. 18) roof u p l i ft 2 1 4 .07 3 1 9 5 p sf US E W OR S T C AS E AS S UME 2 4 7 7 P S F ON R OO F Lon gi t u d i n al R oof wor s t c a s e p = qh ( 2e ( +/ ) 0. 18) roof u p l i ft 1 2 4 .77 6 7 5 2 p sf wor s t c a s e P = qh( 3e ( +/ ) 0. 18) roof u p l i ft 2 1 4 .07 3 1 9 5 p sf

PAGE 34

25 3.1.3 Det erm ination of Dead Load The de termination of the de ad loads of the structure beg an with the ca lculation of the roof loa d over the column with the larg est tributary are a. This ar ea w as rig ht above the interior c olumns of the structure The a rea of load whic h eac h roof c olumn would rece ive was de termined to be 25ft x 30 ft, or 750ft The we ight of the roof ove r this are a contr ibuted a load of 2 0.75kips to the foundation of the struc ture. The sec ond step in the ana ly sis was to determine the weig ht of the purlins which su pp or t th e ro of T he pu rl ins us e d w e re L 7. 5x3. 75 x0.1 25 wi th a we ig ht o f 4 .5 7p lf T he se pu rl ins we re a lso sp re a d o ve r t he tr ibu ta ry a re a a nd it w a s d e te rm ine d th a t th e re wo uld be 8 purlins ea ch 25ft long which would contr ibute to the load on the founda tion. The weig ht of these turne d out to be approximately 0.92kips. The g irders use d wer e W8x 10, and the tributar y leng th of ea ch g irder w as 30ft long. T hese g irders ha ve a w eig ht of 10plf, and ther efor e the we ight of the g irders w as 0. 3k ips The we ight of the columns was then de termined. The columns used wer e W8x 21, and we re 20f t in length. With a weig ht of 21plf, the we ight of the columns was deter mined to be 0.42 kips. This structure a lso contained side pur lins connecte d to the columns. These w ere 8x 2.5 Z with a weig ht of 4.95plf. These purlins had a tributar y width of 25ft, and e ach column had 4 purlins mounted on it. The we ight of these purlins wa s determined to be approximately 0.50kips. The total weig ht of the fr ame of the building be ing a naly zed

PAGE 35

26 was de termined to be 2.89 kips, base d on the ca lculations. Table 3.4 is the c alculation of the dea d load. Table 3.4 D ead L oad Calcula tion SEL F WEI GHT ROOF WEI GHT Tributary Widt h 25 ft Tributary L eng th Per Wall 30 ft Tr ibu ta ry Roo f A re a 75 0 ft ^2 Wei g ht o f 2 6 g a ug e ste e l si din g 1 ps f Roof Weight 0.75 kips FRAME WEI GHT Top Purlins (L 7.5 x 3.75 x 0.125) Number of Purlins 8 Tributary Widt h of Purlins 25 ft Wei g ht o f P ur lin 4. 57 plf Purlin W eig ht 0.914 kips Girder ( W8x 10) Tributary L eng th 30 ft Wei g ht 10 plf Girder Weight 0.3 kips Column (W 8x 21) L eng th 20 ft Wei g ht 21 plf Column W eig ht 0.42 kips Sid e Pur lin s Number of Purlins 4 Tributary Widt h of Purlin 25 ft Wei g ht 4. 95 plf Side Purlin W eig ht 0.495 kips TOTAL WEI GHT 2.879 kips 3.1.4 Det erm ination of Up lif t F orce to be Re sisted Fr om the calc ulations done in section 3.1.1 and 3.1.2, it was c oncluded that the uplift force acting on the building would be 24.8psf. When this load is mul tiplied over 750ft which is the tributary roof a rea over the interior columns, an uplift for ce of 2 18.6kips obtained. This 18.6kips is t he upwa rd for ce w hich will be exerted on the

PAGE 36

27 structure during a hurr icane with wind speeds of 130 miles per hour. At this point, the only resistanc e which e x ists to t his larg e uplift forc e is the self w eig ht of the structure This self weig ht was ca lculated a s 2.89kips. The net uplift forc e which ne eded to be restra ined was the ref ore the differ ence betwee n the total uplift force and the se lf weig ht of the building This net uplift force was ther efor e 15.71kips, howeve r, the de signe rs specifie d that the founda tion be require d to resist an uplift forc e of 17kips. 3.2 Incorporation of B oth Tension and Compre ssion Forc es in Foot ing Design The tensile f orce s in this s tructure are so larg e that they g overn tha t desig n. For this reason, the initial ana ly sis of mini-piles vs bulk footi ng s shall be foc used on de sig nin g the fo un da tio n to re sis t th e se fo rc e s. 3.2.1 Design of a Mass Concrete F ooting to Resist Uplift For ces The fir st step in designing the footing to resist the forc es is the deter mination of t h e f ac t o re d l o ad t o b e r es i s t ed T h e s af et y fa ct o r i n co rp o ra t ed i n t h e f o u n d at i o n d es i gn of this structure using a mass conc rete footing is 1.5, and the code allows only 80% of the de a d lo a d to be uti lize d to re sis t up lif t f or c e s, the re fo re the loa d to be re sis te d is 32 kip s, which is 32,000 pounds. The unit weig ht of conc rete is 150pcf, and the ref ore the total vo lum e of c on c re te ne e de d to re sis t th e up lif t f or c e s in thi s st ru c tur e wi ll b e 21 3. 4 c ub ic fee t per c olumn. The 213.4 c ubic fe et of c oncre te re quired to re sist the load can be constructe d using a bulk footing a t the base of eac h column. I f this is done, the footing require d would be six fee t deep, a nd have a cross sec tional are a of 36f t (6ft x 6ft x 6ft). 2 Con sid e ri ng tha t th is v olu me of c on c re te is r e qu ir e d f or jus t on e fo oti ng th e tot a l vo lum e

PAGE 37

28 of c on c re te ne e de d to re sis t th e 14 0 k ips of up lif t f or the e nti re str uc tur e wa s c a lc ula te d to be 1750 cubic fee t. 3.2.2 Design of Min i-P iles The fir st step in the desig n of the mini-piles was a site evalua tion. Cone Penetra tion Tests (CPT) were perf ormed a t eac h of the four corne rs of the pr oposed foundation in ac corda nce w ith ASTM D-3441 (ASTM, 1996) [8] see F igur e 3.1. F igur e 3 2 s h o ws t h e r es u l t s fr o m t h e N E s o u n d i n g. Us ing c or re la tio ns de ve lop e d b y Rob e rt so n a nd Ca mpa ne lla (1 98 3) [10], the tip str e ss a nd fr ic tio n r a tio we re us e d to ide nti fy the so il t y pe fr om 1 2 p re -d e fi ne d r e g ion s in Fig ure 3.3. The se cla ssifications also help to conve rt the CPT data to equivale nt Standard Pene tration Test re sistance va lues, (N) also shown in Fig ure 3.2. F igur e 3.4 shows the CPT data plotted on the Robertson & Campanella’ s classifica tion chart a nd shows mostly low friction ra tio (cohesion less) soils. Fig ure 3.4 shows the values conver ted to soil ty pe. Similar results for a ll four CPT soundings ca n be found in the Ap pe nd ix (F ig B -5 thr ou g h B -8 ) a lon g wi th i nte rp re te d r e su lts Wit h the soil stratification and stre ng th identified from the CPT data, a sp re a ds he e t w a s d e sig ne d to de te rm ine the c a pa c ity of the sh a ft a s a fu nc tio n o f i ts l e ng th using both the “ CPT” method and the “T itan”method. 3.2.2.1 CP T Method Desig n using the CPT method uti liz es the side she ar f orce s directly measure d from the CPT tests to determine the c apac ity of the min-pile. The diameter of the a nchor is determined pr ior to construction, and in this case was 6in. F rom this, the perimeter

PAGE 38

29 was c alculate d to be 1.57ft. The pe rimeter times the le ng th is the area in contact with the so il, a nd is t he re fo re re sp on sib le fo r t he sid e sh e a r w hic h d e ve lop s. Kn ow ing tha t th e sh a ft ha s a pe ri me te r o f 1 .5 7f t / li ne a r f t, w e c a n mu lti ply thi s 2 value by the side shea r dete rmined by the CPT test to develop the skin friction of the mini-pile at a g iven depth. B y adding up the ca pacity of the shaf t up to a g iven depth, the capa city of that depth c an be de termined. This wa s done to deve lop the capa city of the shaft up to the maximum depth of whic h the CPT machine wa s able to ac hieve ( betwee n 17ft and 19ft) The total ca pacity of the shaf t for a g iven depth wa s calc ulated on the same spre adshee t, and then a “ VL OOKUP” f unction was used to obtain the minimum de pth re qu ir e d to re sis t th e fa c tor e d u pli ft fo rc e T he CPT me tho d d e te rm ine d th is minimum depth to be 16.4ft. for the shaft with the we akest soil strata. Ta ble 3.5 is the minimum require d leng th for ea ch pile using the CPT method. Table 3.5 Minimum Pil e L eng th Using The CPT Method USI NG CPT DATA De sig n L e ng ths Up lif t Com pr e ssi on MI NI MU M D ESI GN L EN GT H ( ft ) NE Corner 16.47 9.43 16.47 NW Corner 10.86 6.03 10.86 SE Corner 15.78 8.76 15.78 SW Corner 12.48 6.57 12.48 3. 2. 2. 2 Ti ta n M e th od The Titan method f or the c alculation of minimum shaft leng th takes a diff ere nt a pp ro a c h to de te rm ini ng the de pth ne c e ssa ry to r e sis t th e up lif t f or c e s r e qu ir e d. Th e fi rs t step is to determine the nominal diame ter of the shaft being drilled. As bef ore, the dia me te r i s 6 in Next the ulti mate fa ctore d load was de termined whic h the sy stem must resist. us k This load (Q ) wa s 17kips. A value for the shea r re sistance of the soil (q ) wa s then

PAGE 39

30 deter mined based on its classific ation. This particular site had 15ft of sa nd to silt y sand, followed by at least 2ft of very stiff clay or cla y ey silts, wit h limestone being below that. Be cause of this, a value f or the de nsity was de termined to be 91.8lbs/ft 3 The soil ty pe is then also used to de termine the g rout body fac tor of the sha ft. The g rout body fac tor is said to be the true dia meter of the shaft ba sed on the e x pansion of the c oncre te into the surrounding soils, therefor e ther e is an a mplification in the diameter and surf ace are a of a mini-pile specific to e ach soil ty pe. F or this particular soil, the gr out body fac tor is 1.5, which produc ed a g rout body diameter (d) of 0.22m. The Titan method then utilizes a formula to c alculate the leng th of the s h af t T h e f o rm u l a w h i ch i s u s ed i s t h e f o l l o wi n g: us k L = Q / ( B x d x q ) (Eq. 3.3) The c alculations done ba sed on this formula g ener ated a minimum require d leng th of 9.2 ft. Table 3.6 is the minimum pile leng th using the Titan me thod. Table 3.6 Minimum Pil e L eng th for NE Corne r Using The Titan Me thod USI NG TI TAN METHO D d = 0.1524 m Qu 151.239534 KN qs k 15 0 KN /m^ 3 Grout B ody Fa ctor 1.5 Grout B ody Diameter 0.2286 m Required Pile L eng th 2.80675 m Required Pile L eng th 9.2 ft 3. 2. 3 C om pr e ssi on i n t he F oo ti ng The maximum compre ssive forc e which the foundation is expected to re sist was deter mined to be 10kips. When combined with the end be aring of the mini-pile, the c a pa c ity in c omp re ssi on is f a r g re a te r t ha n 1 7 k ips th e re fo re no sp e c ia l mo dif ic a tio n is neede d for the struc ture to re sist the 10kip compression load. As for the pressure place d

PAGE 40

31 on the conc rete the ar ea of the shaft is 0.78ft, and w hen the 10 kips is distributed over this area there is a compre ssive forc e of 12, 800psf which is only 88.4psi, which ca n easily be re sisted by the conc rete 3 3 H o w T es ti n g Ca n Ai d i n S a f et y a n d E co n o my 3.3.1 Saf ety Testing can pla y an important role in qua lity assura nce, e specia lly in the desig n of foundations. This is beca use unless ade quate testing is done, there is no way of knowing exactly what the pr operties of the soil are be neath the sur fac e. I f the de sign is done using strictly a bulk footing then there is no need for testing, a s the only forc e re sponsible for the re sis ta nc e of the fo rc e s is g ra vit y F or min ipil e s, ho we ve r t e sti ng sh ou ld b e us e d to c on fi rm so il s he a r s tr e ng th v a lue s. The Titan method r ecommende d a shaf t leng th of only 9.2ft to resist 17kips of uplift force This was base d on a lot of assumptions. One assumption is that the e ff e c tiv e dia me te r o f t he sh a ft wa s in fa c t 1. 5 ti me s th a t of the no min a l bo re ho le diameter Wit hout testing, a shaft could be constructe d based on the assumption that the so il i s r e la tiv e ly c on sis te nt i n n a tur e a nd thi s c ou ld l e a d to a str uc tur a l f a ilu re wh e n f ull desig n loads are rea liz ed.. The de sign using the CPT method beg ins with an evalua tion of the site using the CPT data. This give s y ou the exact profile of the soil benea th the surfa ce, a nd the exact tested value for the skin fr iction which the soil is capable of g ener ating By using the CPT me tho d, e a c h s ha ft is b uil t to me e t th e c ha ra c te ri sti c s o f a sp e c if ic loc a tio n. Th is leads to a muc h safe r desig n, and testing which is discussed in cha pter 4 c onfirms that the CPT method is conser vative in its values for ultimate c apac ity

PAGE 41

32 Both methods ar e empiric al and c annot be e x pecte d to fully predic t the exact side sh e a r d e ve lop me nt i n th e a nc ho rs /mi nipil e s. As a re su lt, te sti ng pr ov ide s a me a ns to confirm de sign a ssumptions prior to full construc tion. 3 3 2 E co n o my As sa fe ty e c on omy a nd un c e rt a int y a re a ll l ink e d in the de sig n o f f ou nd a tio ns te sti ng pr ov ide s a me a ns by wh ic h to e lim ina te un c e rt a int y a nd he lp a ssi g n r e a so na ble safe ty fac tors. Hig her sa fety fac tors cause highe r costs and vic e ver sa. Ther ein, a no testing a pproac h ty pically employ s safe ty fac tors no less than 3.0; wher eas te sting prog rams have associate d safe ty fac tors no g rea ter than 2.0. A s the fre quency of testing incre ases to 100% ve rifica tion, the safety fac tor ca n fall as low a s 1.0. Mini-piles are e a sil y te ste d a nd it i s n ot u nr e a so na ble to t e st e ve ry a nc ho r/ min ipil e A s th e sa fe ty fa c tor is d ir e c tly re la te d to a nc ho r l e ng ths a nd the a sso c ia te d c os t, t e sti ng min ipil e anchor s can le ad to cost saving s rang ing f rom 50% to 200% a nd above, w hile reduc ing uncer tainty to near zero. Serv ice L oad Ultima te A nchor P <= P / S. F. (Eq. 3.4) 1.0 < S. F. < 3.0 100% > f > 0% Where the Saf ety Fa ctor ra ng es fr om 1 to 3 for testing fre quency of 100 to 0% respe ctively

PAGE 42

33 Fig ure 3.1 U SF CPT Truck Fig ure 3.2 Results from the N E CPT S ounding

PAGE 43

34 Fig ure 3.3 Soil Classification Chart (Ada pted from Rober tson & Campane lla) Fig ure 3.4 Soil Classification for NE Corne r

PAGE 44

35 Cha pt e r 4 C ons tr uc ti on a nd Te st ing 4.1 Site Investigation Pr ior to t he de sig n a nd c on str uc tio n o f t he min ipil e s f or thi s p ro je c t, a sit e investiga tion was done to dete rmine the soil char acte ristics. On Octobe r 18 2004 Cone th Penetra tion Tests were perf ormed a t the locations of the 4 c orner s of the propose d fo un da tio n, in a c c or da nc e wi th A STM D34 41 T he re su lts of the te st w e re tha t th e so il below the f oundation consisted of 15ft of sand to silty sand with 2 to 5ft of ver y stiff clay to clay ey silts beneath that. B etwee n 17ft and 19ft pe netra tion refusa l was enc ountere d by the CPT machine, indicating that this was the top of the limestone. The data f rom the se te sts wa s th e n u se d to de te rm ine the wo rs t c a se min imu m sh a ft le ng th o f t he min ipiles. This concluded tha t the worst ca se minimum shaft leng th neede d was 17ft, a nd the desig ners r ecommende d that the shafts ther efor e be e x tended to a de pth of 20ft for a dded safe ty based on the fac t that the g rea test cost involved in the installation of the mini pil es is the mobili zation, and theref ore a dding thr ee f eet onto ea ch shaf t would ge nera te a signific antly strong er pile f or only a small incre ase in c ost. 4. 2 F ie ld Te st On Octobe r 28, 2005 an out of position test mini-pile was installed 10 ft. ea st of the proposed SE c orner This test pile was drilled using a 4in diameter bit, and had a nominal desig n diameter of six inches (w hen in sand). T he embe dment leng th was 22ft 3in a nd the ov e ra ll a nc ho r l e ng th w a s 2 6f t 3i n a s sh ow n in F ig ur e 4. 1. A s ing le Willi a ms F or m B a r w a s p la c e d in the c e nte r o f t he sh a ft w ith a te ns ile str e ng th o f 1 50 ks i, s ho wn in

PAGE 45

36 Fig ure 4.2. The borehole was made using a CME-45 drill rig ty pically used for perf orming SPT t ests. Whil e the hole w as being drilled, a we ak conc rete mix ture c on sis tin g of a 0. 88 wa te r t o c e me nt r a tio wa s u se d a s th e dr ill ing fl uid in o rd e r t o preve nt the sides from collapsing and to flush soil debris to the surfa ce. A t the desired drilling de pth, a strong er mixt ure c onsisting of a 0.45 water to cement r atio was pumped thr ou g h th e dr ill ste m in to t he ho le w hic h f or c e d th e we a ke r/ le ss d e ns e c on c re te to r ise to the surfa ce. F ollowing this, the drill stem was re moved, and the thr eade d anchor bar wa s p la c e d in to t he ho le A po rt ion of the ba r w a s le ft e xpos e d a t th e top f or the pu rp os e of testing Fig ure 4.3 shows the anchor installation process. On Novembe r 2, 2005 the c apac ity verific ation test was per formed in a ccor dance with ASTM D-1143 (ASTM 1996), F igur e 4.4 shows the test setup. The first of the two load cy cles whic h wer e per formed g ener ated a n uplift force of 43kips, while the sec ond one we nt up to 64kips, Figur e 4.5 shows the load te st results. These tests re sulted in no sig nif ic a nt p e rm a ne nt d e fo rm a tio n o f t he sh a ft a nd the re we re no ind ic a tio ns tha t th e pil e was c lose to failure even thoug h it was stressed to a lmost four times the desig n load. Th e te sti ng a lso c on c lud e d th a t a t 17 kip s, the up wa rd dis pla c e me nt o f t he pil e wa s o nly 1/8in, concluding that the mini-piles were more than a dequate to resist the desig n loads. 4.3 Site Survey Following the conf irmation that the mini-pile desig n was a dequate the site survey was done to mark off the footprint of the building The surve y started by marking off the 4 corne rs of the building and once this was established, the loca tions for all 16 mini-piles we re ma rk e d o ff F ig ur e 4. 6 s ho ws the sit e pla n a nd loc a tio n o f a ll c olu mns /a nc ho rs

PAGE 46

37 Th e ne xt ste p w a s to e ns ur e tha t a ll o f t he pil e s w ou ld e nd a t th e e xac t sa me eleva tion, to ensure that they would all have the same re lative heig ht to the top of the sla b, the re by e ns ur ing pr op e r l oa d d ist ri bu tio n. Th e fi rs t st e p in thi s p ro c e ss w a s to deter mine the hig hest point of the g round within the footprint of the a rea and have that be the be nchmar k for the site. F rom there the heig ht of the slab wa s determined r elative to t he g ro un d. Th e top s o f t he pil e s w e re re qu ir e d to be 20 in b e low the top of the sla b, so no te s w e re ma de fo r t he a dju stm e nt o f e a c h p ile so tha t th e y c ou ld a ll e nd a t th e sa me heig ht, relative to the f inished slab eleva tion. 4.4 Mini-P ile Installation After the survey was c ompleted, the next step was to install the piles. The ins ta lla tio n w a s d oin g us ing a wa te r t ru c k, to p ro vid e the ne c e ssa ry wa te r f or the g ro ut, a nd a SPT d ri ll r ig to dr ill the ho le s a nd pu mp t he c on c re te F ig ur e 4. 7 is the SPT d ri ll ri g. The installation beg an by first positioning the drill rig over the position of each hole (a ccur ate to within one inch) The sec ond step was to install the “mud pan” which is used to re-c irculate the g rout, around the hole to ensure there is a wate rtig ht seal betwee n the pan a nd the ea rth’s surfa ce. A fter the pan wa s secur e, an initial amount of c e me nt w ith a wa te r t o c e me nt r a tio of 0. 88 wa s p ou re d in to t he pa n a nd a llo we d to circ ulate throug h the pump mounted onto the SPT m achine After g rout circ ulation was established, the dr illing commenc ed. The drill rods used for c onstruction wer e ea ch 5ft long, a nd there fore 4 bars ha d to be used to drill down 20ft fr om the surfa ce of the ea rth. The leve l of g rout in the mud pan wa s monitored, as less g rout would retur n to the surfa ce be cause of the incr ease d volume of the hole, a nd when the volume of the pan wa s

PAGE 47

38 low, more c ement and w ater of the same consistency was a dded to compensa te for the chang e in volume. Once the drill bit reac hed the de sired depth of 20ft, a strong er concr ete g rout consisting of a 0.45 wa ter to ce ment ratio wa s pumped into the mud pan a nd the n c ir c ula te d in to t he ho le T he we a ke r c e me nt g ro ut w a s d isc a rd e d a s it ro se to the su rf a c e a nd pu mpi ng c on tin ue d u nti l th e str on g e r g ro ut h a d f ill e d th e e nti re vo lum e of the mini-pile as e vidence d by the cha ng e in slurry color (f rom g rey ish to gre enish). At this point the re moval of the drilling rods beg an. While the rods wer e being lifted out of the g ro un d, g ro ut w a s c on tin uo us ly pu mpe d in to t he ho le thr ou g h th e tip of the dr ill bit to ensure that there would be no voids left by the re moval proce ss. When the final rod, containing the drill head, w as re moved; the steel ba r wa s installed into the shaft. Th e ba r u se d f or the se min ipil e s w a s a #7 re inf or c e me nt b a r, wi th a y ie ld capa city of 60ksi. The a rea of a #7 ba r is 0.6in there fore the maxim um tensile forc e 2 will be only 28ksi for the de signe d uplift force making the bar acc eptable e ven with the specifie d safe ty fac tor of 2 for the substructure desig n. The ba r wa s picked up by the boom on the drill rig, a nd hoisted until i t was per fec tly vertica l. I t was then c enter ed over the hole, and slowly lowere d to ensure tha t it did not enter the shaft a t an ang le, and centr alizing tabs we re a ttached to the ba r at the top a nd bottom to assure ade quate c over, shown in Fig ure 4.8. O nce in, the hook on the top of the re inforcing bar w as set to the rig ht heig ht, as deter mined during the site survey and then the pile w as left to har den. After the re inforce ment was plac ed in the g round, the re maining g rout was discarde d, and the se al of the mud pa n with the g round wa s broken. The equipment was reloc ated to the site of the next m ini-pile, and the proc ess was r epea ted until all piles

PAGE 48

39 we re c omp le te d. On a ve ra g e it re qu ir e d a bo ut 1 ho ur to r e loc a te the e qu ipm e nt, dr ill a hole, and install the anc hor rod. Following the har dening of the c oncre te, the for mwork wa s then put in place f or the construc tion of the slab. The a rea around e ach mini-pile wa s dug out so that a specia l connec tion could be made to e nsure that ther e would be a proper transfe r of f orce from the c olu mns to t he pil e s, thi s c on ne c tio n is sh ow n in F ig ur e 4. 9. Af te r t his wa s d on e a ll of the re inf or c e me nt w a s p la c e d a nd tie d, a nd the n th e e nti re sla b w a s p ou re d in a sin g le monolithi c fa shion.

PAGE 49

40 F ig ur e 4. 1 I ns ta lle d M ini -P ile Fig ure 4.2 Williams Form Ba r

PAGE 50

41 Fig ure 4.3 A nchor I nstallation

PAGE 51

42 Fig ure 4.4 Static L oad Te st Setup F ig ur e 4. 5 L oa d T e st R e su lts

PAGE 52

43 Fig ure 4.6 Site L ay out (Courtesy of Structura l Eng ineer ing a nd I nspections, Tampa )

PAGE 53

44 F ig ur e 4. 7 SPT Dr ill Rig

PAGE 54

45 Fig ure 4.8 Centr alization Tabs Fig ure 4.9 L oad Tra nsfer Connection

PAGE 55

46 Cha pt e r 5 Ec ono m y o f F ounda ti ons 5.1 Mass Concre te F ooter Following the ca lculation of the uplift forc e which the footing must resist, a volume of conc rete require d for the ma ss concr ete f ooter wa s determined. T he cost of these foote rs is both a function of the volume of conc rete poured, a nd the dimensions of the footer I t was assumed tha t the footer r esisting the 17 kips of f orce would require a fo oti ng wi th a vo lum e of 21 6 c ub ic ft Th is g e ne ra te d v a lue s w hic h c ou ld b e us e d to e sti ma te the tot a l c os t of the pr oje c t. T a ble 5. 1 is the e sti ma te d c on str uc tio n c os t by ite m. Table 5.1 Construction Cost by I tem ESTI MATI ON OF FOO TER CONSTRUCTI ON COSTS Pou r C on c re te 17 4 $/C Y 6 CY /MH Rebar Wei g ht/ CY of Con c re te 17 2 L B /CY P u r c h a s e C o s t 0 8 $ / LB T i e In P l a c e 0 1 3 $ / LB L abor $15 $/HR The dimensions of the f ooter we re use d to also g ener ate e stimated values for the labor c osts required to pr oduce e ach f ooter. The se value s, combined with the cost of the raw materia ls were then used to produc e a c ost for ea ch foote r to be built. The estimated cost of ea ch foote r in the projec t was dete rmined to be $2,691.68. To r esist the entire 140 kips require d in this design would ther efor e cost $21, 807.59. Ta ble 5.2 is the cost per fo o t er an d T ab l e 5 3 i s t h e t o t al co s t o f t h e p ro j ec t u s i n g a m as s co n cr et e f o o t i n g.

PAGE 56

47 Table 5.2 Cost for Ea ch 17 Kip Mass Concr ete F ooter MASS C ONCRETE FO OTER F oo te r V olu me 21 6. 00 ft ^3 8. 00 y d^ 3 Footer L eng th 6.00 ft Footer Widt h 6.00 ft Footer Heig ht 6.00 ft SET REI NFO RCEMENT Reinforc ement we ight 1376.00 L bs Reinforc ement Cost 1100.80 $ L abor Cost 178.88 $ POUR CONCRETE Concrete Cost 1392.00 $ L a bo r 1. 33 MH L abor Cost 20.00 $ TOTAL COST $ 2,691.68 Table 5.3 Tota l Cost Usi ng Mass Concre te Foote r MASS C ONCRETE FO OTER F oo te r V olu me 17 50 .0 0 ft ^3 64 .8 1 y d^ 3 Footer L eng th 6.00 ft Footer Widt h 6.00 ft Footer Heig ht 48.61 ft SET REI NFO RCEMENT Reinforc ement we ight 11148.15 lbs Reinforc ement Cost 8918.52 $ L abor Cost 1449.26 $ POUR CONCRETE Concrete Cost 11277.78 $ L a bo r 10 .8 0 MH L abor Cost 162.04 $ TOTAL COST $ 21,807.59 5.2 Mini-P ile Anchor The de termination of the c ost of eac h footer using mini-piles differs f rom that of the mass conc rete footing This is because there is no formwork or excavation, and the volume of mater ial used is measure d in bag s of ce ment rathe r than c ubic y ards of concr ete. Also, ther e is no labor c ost per ac tivity and instead the re is an initial mobiliz ation cost and a n “oper ational” c ost per foot drilled. To de termine the c ost per

PAGE 57

48 min -p ile in t his pr oje c t, t he mob ili zat ion c os t w a s d ivi de d b y the nu mbe r o f p ile s to g ener ate the c ost per pile. B a se d o n th e sa me a ssu mpt ion s ma de fo r t he c a lc ula tio n o f t he ma ss c on c re te fo ote r, the ma te ri a l c os ts w e re c a lc ula te d to de te rm ine the c os t pe r p ile Wit h e a c h p ile re c e ivi ng a n e qu a l sh a re of the mob ili zat ion c os t, i t w a s d e te rm ine d th a t th e c os t pe r p ile resisting 17 kips was $1,723.50. This value is 64% of that for the ma ss concr ete f ooter. The proje ct cost af ter de signing eac h footing based on the NE (wor st case) sounding a nd drilling to the minimum required le ng th is therefor e $15,624.00, which is a saving s of 28 % o f t he or ig ina l f ou nd a tio n c os t. T a ble 5. 4 is the c os t pe r 1 7 k ip m ini -p ile a nd Ta ble 5. 5 is the tot a l c os t of the pr oje c t us ing min ipil e s. Ta ble 5. 4 Co st f or Ea c h 1 7k ip M ini -P ile MI NI -PI L E I NSTAL L ATI ON Mobiliz ation 5000 $/Project Oper ation 80 $/ft Concrete 0.5 Ba g s/ft 6 $/Ba g # Piles 16 Pile L eng th 17 ft Mo bil iza tio n c os t 31 2. 5 $/P ile L a bo r 13 60 $/P ile C o n cr et e U s ed 8 5 Ba gs Con c re te Cos t 51 $/P ile TO TA L CO ST $1 ,7 23 .5 0 $/P ile Table 5.5 Tota l Cost Usi ng Mini-Pil es Min iPile I ns ta lla tio n Co st Total Drill L eng th 128 ft Mobiliz ation 5,000.00 $ Oper ation 10,240.00 $ C o n cr et e 6 4 Ba gs 384 $ TOTAL COST $15,624.00

PAGE 58

49 5. 3 Br e ak Ev e n An aly sis Fr om the costs calc ulated for both ty pes of f ootings, it is obvious that it is more e c on omi c a l to us e min ipil e s f or la rg e pr oje c ts, ho we ve r t he mob ili zat ion c os ts associate d with constructing the mini-piles makes it possible that there will not alway s be ins ta nc e s w he re the min ipil e s a re a c he a pe r a lte rn a tiv e to m a ss c on c re te fo oti ng s. Th is is beca use the c ost of one 17 kip mass conc rete footing is $2,691.68, while the cost of mobiliz ation alone f or the e quipment to inst all the mini-piles is $5,000. A b re a k e ve n a na ly sis is t he re fo re ne c e ssa ry to d e te rm ine if the re is a sp e c if ic forc e which must be r esisted at which one option is m ore e conomical than the other. The fi rs t st e p to de te rm ine thi s w a s to de te rm ine the c os t pe r k ip r e sis te d b y the ma ss c on c re te fo ote r. Th is w a s d on e by div idi ng the tot a l c os t of the pr oje c t by the fo rc e re sis te d. Th is g ave the mass concr ete f ooter a value of $155.77 per kip re sisted. This value is linear from the or igin, a s a for ce of 0 kips will require $0. Ta ble 5.6 shows the foote r cost per kip resisted as we ll as that for the mini-piles. Table 5.6 Cost Per Kip Resisted COST PER KI P RES I STED MASS C ONCRETE Total L oad Resisted 140 kips Cost of Mass Concrete F ooting 21,807.59 $ Cos t Pe r K ip R e sis te d 15 5. 77 $/K ip M IN IP ILE Total L eng th of Mini-piles 128 ft Cost P er F t. Drilled 80.00 $ Total Drilling Cost 10,240.00 $ Total Concre te Cost 384 $ Cos t Pe r K ip R e sis te d ( W/O Mo b. ) 75 .8 9 $/K ip The de termination of the c ost per kip re sisted by the mini-piles differ s from that of the c on c re te fo oti ng du e to t he mob ili zat ion c os t. T o d o th e a na ly sis of c os t pe r k ip

PAGE 59

50 resisted, the mobilization cost was subtracte d from the total cost of the projec t. The rema ining va lue was the n divided by the total forc e re sisted, and this ge nera ted a va lue of $75.89 per kip re sisted. The re ason why the mobiliz ation cost was subtra cted be fore the deter mination was done wa s that this cost is constant and must be paid reg ardle ss of the fo rc e re sis te d ( or nu mbe r o f a nc ho rs ins ta lle d) T he c a lc ula tio n o f t he c os t pe r k ip resisted by the mini-pile sy stem is therefor e the a ddition of the mobili zation cost with t he pr od uc t of the c os t pe r k ip r e sis te d a nd the nu mbe r o f k ips re sis te d. Whe n p lot te d, thi s va lue is a lso lin e a r, ho we ve r d oe s n ot b e g in f ro m th e or ig in o f t he g ra ph b ut r a the r i s shifted up by $5000. Th e re su lts of the plo ts s ho w t ha t th e br e a k e ve n p oin t f or thi s sp e c if ic pr oje c t, ba se d o n th e so il c on dit ion s, the br e a k e ve n f or c e fo r t he de sig n is g oin g to b e 63 .5 9k ips a t a c os t of $9 ,7 49 .6 8. F ig ur e 5. 1 is the re su lts of the br e a k e ve n a na ly sis Af te r t he br e a k e ve n a na ly sis wa s d on e a n a tte mpt wa s ma de to d e te rm ine if there are any common soil ty pes for which the use d of mini-piles would not be e c on omi c a l. T his wa s d on e by de te rm ini ng the c a pa c ity of min ipil e s in so ils wi th ty pical prope rties. As no in-situ values ar e ava ilable for this, the CPT method could not be utiliz ed for this analy sis, and there fore the Titan method wa s used to g ener ate the g raph f or F igur e 5.2. The data g ener ated wa s then used to plot a g raph of the cost of a foundation as a function of the r equire d resistive load, shown in F igur e 5.3. This g raph has a diff ere nt brea k even point fr om the case study beca use the CPT Method is more conser vative than the T itan method, howeve r it can c lear ly be see n that a har der/de nser soils can re sist loads for a lowe r price than would be r equire d for the sa me ty pe of fo un da tio n c on str uc te d in a so ft e r s oil T his g ra ph is b a se d o n c e rt a in s oil a ssu mpt ion s,

PAGE 60

51 a nd c a n th e re fo re on ly be us e d a pr oo f t ha t th e re is a po int fo r a ll s oil s a t w hic h a ma ss concr ete f ooting would be a less ec onomical option to that of a mini-pile. One sig nificant c hara cter istic of the g raph is that re g ardle ss of the soil ty pe, the mass concr ete f ooter is the more economica l choice f or re sisting light loads, a nd the saving s in foundation desig n can only be re alized when desig ning f or the re sistance of larg e uplift forc es.

PAGE 61

52 F ig ur e 5. 1 So il/ Site Spe c if ic B re a k E ve n A na ly sis Fig ure 5.2 Mini-Pile Anchor Capac ity Ba sed on Soil Ty pe (Titan Me thod)

PAGE 62

53 Fig ure 5.3 F oundation Cost P er F orce Resisted (Using Titan Method)

PAGE 63

54 Chapter 6 Conclusion an d Su m m ary Th e Con c lus ion of thi s th e sis is t ha t th e us e of min ipil e s c a n b e e c on omi c a l in any soil ty pe provide d the forc e re quired to re sist is larg er tha n the bre ak eve n point specific to that soil. This brea k even point is site specific as it is will be determined solely by the soil in that specific loca tion. Bec ause of this, a mini-pile foundation might be more economica l for re sisting a g iven load in one spot, and not in anothe r bec ause of the diffe renc e in the soil at the diffe rent sites. Howe ver, it wa s also conclude d that there is a brea k even point assoc iated with ea ch soil ty pe, and the ref ore the re w ill be a point at which a f oundation will be more e conomical we re it construc ted using mini-piles vs using a mass concr ete f ooter. Not mentioned in this study wer e saving s associate d with the time require d for foundation construc tion. Had a mass c oncre te footer been utilized, there w ould have been a cer tain time require d to excavate the f oundation and fa brica te the re inforce ment c a g e ne e de d f or the fo ote rs M ini -p ile s, ho we ve r, do no t r e qu ir e a ny e xca va tio n p ri or to installation, and theref ore sa ves time in construction. F or the c ase study a cr ew of 4 men ins ta lle d a ll o f t he a nc ho rs in 2 da y s, wh ile c a sti ng of the ma ss c on c re te fo ote r w ou ld have ta ken 4. To summarize, mini-piles are ve ry economica l for re sisting uplift forc es, as onc e the mob ili zat ion c os t is re c ov e re d, the c os t pe r k ip r e sis te d is fa r l e ss t ha n th a t of a ma ss c on c re te fo ote r. Th e re a re a lso fo re se e a ble be ne fi ts t o in c re a se d u til iza tio n o f m ini -p ile anchor s. This is because the cost of a foundation construc ted using mini-piles is affec ted

PAGE 64

55 le ss b y the inc re a se in t he c os t of c e me nt, tha n th a t of a ma ss c on c re te fo ote r, wh ic h w ill make mini-pile anc hors a much mor e ec onomical option as the price of ce ment incre ases.

PAGE 65

56 Refere nces [1] ASCE 7-02 Minimum Desig n L oads for Building s and Other Structures, Reston, Virg inia, 2003. [2] Gunar atne, M. The Foundation Engineering Handbook CRC Press. 2006. [3] “Dr illed and pre ssure g routed TI TAN Micr o Piles”, The Con-Te ch Sy stems L td. Website. L ast Acc essed on 27 Oc tober 2006. [4] “ USG S Min e ra l Co st o f C e me nt” T he Un ite d St a te s G e olo g ic a l Su rv e y Min e ra ls I nformation Website. L ast Acc essed on 27 October 2006. [5] Manual of Stee l Construction L oad and Re sistance F actor Desig n. Prepar ed by the Amer ican I nstitut e of Stee l Construction I nc. 2003. [6] “MI CROPI L ES Project Support From the Gr ound Down”, T he Ha y war d Ba ker Geotec hnical Construction Website. L ast Acc essed on 27 October 2006. [7] “Micropiles” The I nterna tional Society for Soil Mecha nics and Ge otechnica l Eng ineer ing Website. < http:// tc17.poly .edu/mp.html> L ast Acc essed on 27 October 2006. [8] “Standar d Test Method for Dee p, Quasi-Static, Cone a nd Fr iction-Cone Penetra tion tests of Soi l”, D3441-94. Annual Book of ASTM Standards V olu me 04.08, Americ an Society for Te sting a nd Materia ls. 1996. [9] “Standar d Test Method for Piles Under Static Axial C ompressive L oad”, D1143-81. Annual Book of ASTM Standards V olu me 04 .0 8, Am e ri c a n So c ie ty for Te sting a nd materia ls. 1996. [10] Rob e rt so n, P.K a nd Ca mpa ne lla R. G. “ I nte rp re ta tio n o f C on e Pe ne tr a tio n T e sts Part I : Sand”, Canadia n Geotec hnical Journal, Vol. 20, No. 4, Nov. 1983, pp. 718 733.

PAGE 66

57 Append ices

PAGE 67

58 App e ndix A M iniP ile Loc at ion and St r uc tu r al P lan s o f Ca se St udy I n this appendix is the site lay out with the location of ea ch mini-pile which wa s constructe d. Also included ar e the struc tural plans for the building. Fig ure A .1 Site L ay out

PAGE 68

59 App e ndix A ( Co nt inue d) Fig ure A .2 Roof Fr aming Plan

PAGE 69

60 App e ndix A ( Co nt inue d) Fig ure A .3 Fr ont and Rear Elevations

PAGE 70

61 App e ndix A ( Co nt inue d) Fig ure A .4 Side Elevations

PAGE 71

62 App e ndix B R e sult s o f CP T Te st ing This appendix shows the gr aphica l and dig ital results for the CPT tests which wer e per formed f or this project. Fig ure B .1 CPT S ounding f or NE Corne r Fig ure B .2 CPT S ounding f or NW Corner

PAGE 72

63 App e ndix B ( Co nt inue d) Fig ure B .4 CPT S ounding f or SW C orner Fig ure B .3 CPT S ounding f or SE Corner

PAGE 73

64 App e ndix B ( Co nt inue d) Fig ure B .5 Soil C lassification for NE Corner Fig ure B .6 Soil C lassification for NW Corner

PAGE 74

65 App e ndix B ( Co nt inue d) Fig ure B .7 Soil C lassification for SE Corner Fig ure B .8 Soil C lassification for SW Corner

PAGE 75

66 App e ndix B ( Co nt inue d) Table B .1 CPT S ounding f or NE Corne r De pth ( f t) Soil T y pe N Value Tip Stress (bars) Sleeve Stress (bars) Fri ct ion R at io (%) 0 No Re adi ng n/a 8.94 0 -0.06 0.01 Sa ndy Sil t t o Cl ay ey Sil t 8 17.48 0.07 0.39 0.16 Sil ty Sa nd to Sa ndy Sil t 12 37.35 0.68 1.83 0.36 Sil ty Sa nd to Sa ndy Sil t 11 32.52 0.18 0.56 0.55 Sa nd to Sil ty Sa nd 10 41.57 0.14 0.35 0.75 Sa nd to Sil ty Sa nd 13 53.59 0.16 0.29 0.95 Sa nd to Sil ty Sa nd 19 77.4 0.21 0.28 1.13 Sa nd 19 96.32 0.31 0.32 1.3 Sa nd 21 104.98 0.35 0.34 1.49 Sa nd 22 114.14 0.48 0.42 1.67 Sa nd 23 115.53 0.59 0.51 1.84 Sa nd 24 120.94 0.53 0.44 2.02 Sa nd 23 119.08 0.6 0.5 2.21 Sa nd 19 95.38 0.56 0.59 2.39 Sa nd to Sil ty Sa nd 20 83.09 0.6 0.73 2.58 Sil ty Sa nd to Sa ndy Sil t 13 40.24 0.61 1.51 2.77 Sil ty Sa nd to Sa ndy Sil t 11 33.44 0.51 1.51 2.97 Sil ty Sa nd to Sa ndy Sil t 9 28.94 0.22 0.77 3.17 Sil ty Sa nd to Sa ndy Sil t 7 22.62 0.08 0.33 3.37 Sa ndy Sil t t o Cl ay ey Sil t 7 14.99 0.06 0.38 3.56 Se nsi tiv e Fine G ra ine d 10 10.43 0.05 0.5 3.77 Se nsi tiv e Fine G ra ine d 6 5.63 0.05 0.88 3.97 Se nsi tiv e Fine G ra ine d 4 4 0.04 0.92 4.17 Se nsi tiv e Fine G ra ine d 4 3.77 0.03 0.81 4.37 Se nsi tiv e Fine G ra ine d 4 3.94 0.03 0.72 4.57 Se nsi tiv e Fine G ra ine d 4 3.89 0.02 0.64 4.78 Se nsi tiv e Fine G ra ine d 5 4.52 0.04 0.78 4.98 Se nsi tiv e Fine G ra ine d 8 7.77 0.03 0.41 5.17 Sa ndy Sil t t o Cl ay ey Sil t 9 18.7 0.05 0.26 5.38 Sil ty Sa nd to Sa ndy Sil t 8 25.61 0.04 0.17 5.58 Sa ndy Sil t t o Cl ay ey Sil t 8 16.35 0.06 0.38 5.78 Se nsi tiv e Fine G ra ine d 9 8.52 0.01 0.08 5.98 Se nsi tiv e Fine G ra ine d 7 7.22 0.02 0.25 6.19 Se nsi tiv e Fine G ra ine d 10 10.07 0.01 0.13 6.39 Sa ndy Sil t t o Cl ay ey Sil t 6 12.57 0.03 0.22 6.59 Sil ty Sa nd to Sa ndy Sil t 8 25.7 0.07 0.26 6.78 Sa nd to Sil ty Sa nd 11 43.85 0.14 0.32 6.98 Sa nd to Sil ty Sa nd 13 52.84 0.18 0.35 7.18 Sa nd to Sil ty Sa nd 13 52.64 0.18 0.33 7.36 Sa nd to Sil ty Sa nd 15 61.19 0.24 0.39 7.55 Sa nd to Sil ty Sa nd 13 53.03 0.23 0.44 7.74 Sa nd to Sil ty Sa nd 11 45.51 0.17 0.37 7.93 Sa nd to Sil ty Sa nd 11 47.45 0.19 0.4 8.12 Sa nd to Sil ty Sa nd 13 52.12 0.16 0.3 8.3 Sa nd to Sil ty Sa nd 15 59.94 0.19 0.31 8.49 Sa nd to Sil ty Sa nd 13 54.59 0.2 0.36 8.68 Sa nd to Sil ty Sa nd 13 53.28 0.16 0.3 8.86 Sa nd to Sil ty Sa nd 11 47.4 0.21 0.45 9.05 Sa nd to Sil ty Sa nd 12 48.62 0.18 0.37 9.25 Sa nd to Sil ty Sa nd 12 47.73 0.22 0.46 9.43 Sa nd to Sil ty Sa nd 12 51.17 0.12 0.23 9.62 Sa nd to Sil ty Sa nd 13 52.09 0.16 0.31 9.8 Sa nd to Sil ty Sa nd 13 52.48 0.23 0.44 9.99 Sa nd to Sil ty Sa nd 13 55.17 0.23 0.42 10.19 Sa nd to Sil ty Sa nd 12 49.45 0.18 0.35 10.37 Sa nd to Sil ty Sa nd 14 59.3 0.2 0.34

PAGE 76

67 App e ndix B ( Co nt inue d) Table B .1 (Continued) 10. 54 Sa n d t o Si l t y Sa n d 17 68. 68 0. 97 1. 41 10. 73 Sa n d t o Si l t y Sa n d 16 64. 52 0. 59 0. 91 10. 92 Sa n d t o Si l t y Sa n d 12 49. 59 0. 29 0. 58 11. 1 Si l t y Sa n d t o Sa n dy Si l t 12 37. 46 0. 29 0. 77 11. 29 Si l t y Sa n d t o Sa n dy Si l t 12 36. 77 0. 33 0. 89 11. 48 Sa n d t o Si l t y Sa n d 9 39. 13 0. 17 0. 42 11. 67 Sa n d t o Si l t y Sa n d 10 41. 32 0. 22 0. 54 11. 85 Si l t y Sa n d t o Sa n dy Si l t 11 34. 72 0. 31 0. 88 12. 03 Sa n d t o Si l t y Sa n d 10 41. 32 0. 18 0. 43 12. 22 Sa n d t o Si l t y Sa n d 9 35. 55 0. 23 0. 64 12. 41 Sa n d t o Si l t y Sa n d 12 47. 76 0. 15 0. 31 1 2 .5 9 S a n d to S ilt y S a n d 1 0 4 2 .3 8 0 .1 3 0 .3 12. 77 Si l t y Sa n d t o Sa n dy Si l t 13 40. 93 0. 43 1. 04 1 2 .9 6 S a n d y S ilt to C la ye y S ilt 1 5 2 9 .9 2 0 .4 8 1 .6 13. 15 Sa n d t o Si l t y Sa n d 10 42. 07 0. 24 0. 56 13. 33 Si l t y Sa n d t o Sa n dy Si l t 14 41. 57 0. 39 0. 93 13. 51 Si l t y Sa n d t o Sa n dy Si l t 11 32. 94 0. 32 0. 98 13. 71 Sa n dy Si l t t o Cl ay ey Si l t 12 24. 59 0. 36 1. 45 13. 89 Si l t y Sa n d t o Sa n dy Si l t 13 40. 63 0. 52 1. 28 14. 07 Si l t y Sa n d t o Sa n dy Si l t 9 28. 97 0. 34 1. 17 14. 25 Sa n dy Si l t t o Cl ay ey Si l t 15 30. 28 0. 68 2. 24 14. 43 Sa n d t o Si l t y Sa n d 17 68. 02 0. 55 0. 81 14. 62 Si l t y Sa n d t o Sa n dy Si l t 13 38. 8 0. 55 1. 42 14. 8 Sa n d t o Si l t y Sa n d 14 59. 22 0. 51 0. 86 14. 97 Sa n d t o Si l t y Sa n d 12 47. 98 0. 42 0. 88 15. 16 Sa n d t o Si l t y Sa n d 15 60. 89 0. 48 0. 79 1 5 .3 5 S a n d y S ilt to C la ye y S ilt 8 1 5 .6 5 0 .2 5 1 .6 15. 53 Sa n dy Si l t t o Cl ay ey Si l t 6 12. 49 0. 22 1. 76 15. 72 Si l t y Cl ay t o Cl ay 3 7. 49 0. 17 2. 25 15. 91 Si l t y Cl ay t o Cl ay 3 6. 3 0. 14 2. 29 16. 11 Si l t y Cl ay t o Cl ay 3 6. 72 0. 17 2. 47 16. 29 Sa n dy Si l t t o Cl ay ey Si l t 7 14. 35 0. 21 1. 45 1 6 .4 7 S a n d y S ilt to C la ye y S ilt 2 0 4 0 .1 3 0 .9 6 2 .4 16. 66 Si l t y Cl ay t o Cl ay 26 53. 2 2. 32 4. 36 16. 84 Cl ay 26 26. 34 1. 46 5. 55 17. 01 Si l t y Sa n d t o Sa n dy Si l t 15 45. 07 1. 01 2. 23 17. 18 Si l t y Sa n d t o Sa n dy Si l t 21 65. 1 1. 38 2. 12 17. 34 Sa n d t o Si l t y Sa n d 41 164. 01 2. 23 1. 36 17. 48 Si l t y Sa n d t o Sa n dy Si l t 59 177. 16 4. 33 2. 44 17. 61 Sa n d t o Cl ay ey Sa n d 84 168. 34 6. 3 3. 74 17. 72 V er y St i f f Fi n e G r ai n ed 135 135. 09 7. 68 5. 68 17. 84 V er y St i f f Fi n e G r ai n ed 121 120. 74 5. 48 4. 54 17. 99 Sa n dy Si l t t o Cl ay ey Si l t 48 96. 46 3. 2 3. 31 18. 13 Si l t y Sa n d t o Sa n dy Si l t 40 119. 94 3. 62 3. 02 18. 28 Si l t y Sa n d t o Sa n dy Si l t 47 141. 53 4. 34 3. 06 18. 44 Sa n dy Si l t t o Cl ay ey Si l t 52 104. 59 3. 37 3. 22 1 8 .6 S ilt y S a n d to S a n d y S ilt 4 4 1 3 4 .4 8 3 .3 6 2 .5 18. 75 Si l t y Sa n d t o Sa n dy Si l t 43 128. 96 4. 17 3. 24 18. 89 V er y St i f f Fi n e G r ai n ed 121 120. 58 5. 85 4. 85 19. 01 Si l t y Sa n d t o Sa n dy Si l t 59 178. 44 5. 52 3. 09 19. 28 Se n s i t i v e Fi n e G r ai n ed 33 32. 8 1. 04 3. 16 31. 54 Se n s i t i v e Fi n e G r ai n ed 1 1. 03 0. 03 2. 72

PAGE 77

68 App e ndix B ( Co nt inue d) Table B .2 CPT S ounding f or NW Corner De pth ( f t) Soil T y pe N Value Tip Stress (bars) Sleeve Stress (bars) Fri ct ion R at io (%) 0 No Re adi ng n/a 20.2 0.04 0.2 0.09 Sa nd to Sil ty Sa nd 15 59.61 0.34 0.58 0.29 Sa nd to Sil ty Sa nd 19 77.42 0.29 0.38 0.49 Sa nd 21 108.45 0.24 0.23 0.66 Sa nd 26 131.43 0.31 0.23 0.83 Sa nd 29 148.8 0.36 0.24 1.01 Sa nd 32 159.68 0.44 0.28 1.18 Sa nd 31 154.82 0.48 0.31 1.35 Sa nd 23 118.69 0.56 0.47 1.53 Sa nd to Sil ty Sa nd 19 77.48 0.5 0.64 1.73 Sa nd 16 81.09 0.51 0.63 1.92 Sa nd 21 107.67 0.43 0.4 2.1 Sa nd 23 119.02 0.43 0.36 2.28 Sa nd 21 105.34 0.48 0.45 2.47 Sa nd to Sil ty Sa nd 20 83.14 0.57 0.68 2.67 Sa nd to Sil ty Sa nd 16 67.3 0.58 0.86 2.85 Sil ty Sa nd to Sa ndy Sil t 15 45.65 0.49 1.07 3.05 Sa ndy Sil t t o Cl ay ey Sil t 10 19.76 0.26 1.32 3.26 Cl ay ey Sil t t o Sil ty Cl ay 6 12.93 0.39 3.04 3.46 Cl ay ey Sil t t o Sil ty Cl ay 9 18.82 0.56 2.98 3.65 Sil ty Sa nd to Sa ndy Sil t 11 35.08 0.6 1.7 3.85 Sil ty Sa nd to Sa ndy Sil t 10 30.86 0.37 1.2 4.05 Sil ty Sa nd to Sa ndy Sil t 7 22.89 0.29 1.27 4.26 Sil ty Sa nd to Sa ndy Sil t 8 24.25 0.12 0.5 4.45 Sa nd to Sil ty Sa nd 11 43.76 0.15 0.34 4.65 Sa nd to Sil ty Sa nd 12 47.76 0.14 0.29 4.85 Sa nd to Sil ty Sa nd 12 49.09 0.13 0.27 5.05 Sa nd to Sil ty Sa nd 11 46.51 0.1 0.21 5.24 Sa nd to Sil ty Sa nd 11 45.1 0.1 0.22 5.43 Sa nd to Sil ty Sa nd 8 34.91 0.17 0.48 5.63 Sil ty Sa nd to Sa ndy Sil t 10 30.41 0.16 0.53 5.84 Sa nd to Sil ty Sa nd 9 37.02 0.19 0.5 6.03 Sa nd to Sil ty Sa nd 10 39.93 0.16 0.4 6.22 Sa nd to Sil ty Sa nd 12 48.12 0.09 0.19 6.43 Sa nd to Sil ty Sa nd 12 48.2 0.17 0.34 6.63 Sa nd to Sil ty Sa nd 11 44.43 0.13 0.29 6.83 Sa nd to Sil ty Sa nd 11 46.4 0.23 0.49 7.01 Sa nd to Sil ty Sa nd 14 58.36 0.23 0.4 7.21 Sa nd to Sil ty Sa nd 15 61.25 0.29 0.47 7.41 Sa nd to Sil ty Sa nd 13 55.45 0.27 0.49 7.6 Sa nd to Sil ty Sa nd 15 62.8 0.19 0.3 7.78 Sa nd to Sil ty Sa nd 17 68.82 0.28 0.41 7.98 Sa nd to Sil ty Sa nd 16 64.22 0.29 0.46 8.17 Sa nd to Sil ty Sa nd 17 71.4 0.36 0.5 8.36 Sa nd to Sil ty Sa nd 17 69.07 0.36 0.52 8.54 Sa nd to Sil ty Sa nd 17 69.32 0.37 0.53 8.93 Sa nd to Sil ty Sa nd 15 59.75 0.21 0.35

PAGE 78

69 App e ndix B ( Co nt inue d) Table B .2 (Continued) 9.12 Sa nd to Sil ty Sa nd 17 69.71 0.23 0.34 9.31 Sa nd to Sil ty Sa nd 14 59.44 0.34 0.58 9.5 Sa nd to Sil ty Sa nd 11 46.98 0.29 0.61 9.7 Sa nd to Sil ty Sa nd 10 41.79 0.26 0.62 9.89 Sa nd to Sil ty Sa nd 10 42.57 0.22 0.51 10.09 Sa nd to Sil ty Sa nd 14 55.56 0.12 0.21 10.28 Sa nd to Sil ty Sa nd 15 60.69 0.34 0.56 10.49 Sa nd to Sil ty Sa nd 14 58.55 0.2 0.34 10.67 Sa nd to Sil ty Sa nd 15 59.64 0.34 0.57 10.86 Sa nd to Sil ty Sa nd 15 60.3 0.27 0.45 11.05 Sa nd to Sil ty Sa nd 17 70.02 0.25 0.35 11.25 Sil ty Sa nd to Sa ndy Sil t 16 48.2 0.5 1.04 11.44 Sil ty Sa nd to Sa ndy Sil t 14 44.37 0.37 0.84 11.63 Sa nd to Sil ty Sa nd 10 42.85 0.24 0.55 11.82 Sa nd to Sil ty Sa nd 9 37.21 0.24 0.64 12.02 Sa ndy Sil t t o Cl ay ey Sil t 13 26.47 0.35 1.33 12.21 Sa ndy Sil t t o Cl ay ey Sil t 13 26.67 0.44 1.64 12.39 Sil ty Sa nd to Sa ndy Sil t 13 38.91 0.28 0.72 12.59 Sa nd to Sil ty Sa nd 9 39.38 0.15 0.37 12.78 Sa nd to Sil ty Sa nd 11 46.07 0.15 0.32 12.97 Sa nd to Sil ty Sa nd 13 53.48 0.16 0.29 13.16 Sil ty Sa nd to Sa ndy Sil t 10 30.94 0.33 1.07 13.36 Sil ty Sa nd to Sa ndy Sil t 9 28.22 0.25 0.88 13.56 Sil ty Sa nd to Sa ndy Sil t 10 31.55 0.16 0.51 13.74 Sil ty Sa nd to Sa ndy Sil t 11 34.52 0.5 1.45 13.92 Sil ty Sa nd to Sa ndy Sil t 11 34.99 0.56 1.6 14.11 Sa nd to Sil ty Sa nd 14 56.11 0.13 0.24 14.31 Sil ty Sa nd to Sa ndy Sil t 11 34.97 0.32 0.91 14.49 Sil ty Sa nd to Sa ndy Sil t 8 23.92 0.26 1.1 14.68 Cl ay ey Sil t t o Sil ty Cl ay 7 14.24 0.31 2.19 14.88 Cl ay 6 6.47 0.25 3.89 15.08 Cl ay 7 6.58 0.2 3.04 15.27 Cl ay 6 5.74 0.18 3.19 15.46 Cl ay 6 6.3 0.25 3.97 15.66 Cl ay ey Sil t t o Sil ty Cl ay 5 9.8 0.22 2.26 15.85 Sil ty Sa nd to Sa ndy Sil t 13 38.66 0.55 1.43 16.03 Sil ty Sa nd to Sa ndy Sil t 33 100.87 2.13 2.11 16.19 Ver y Sti f f Fine G ra ine d 69 69.43 3.47 4.99 16.37 Cl ay 51 50.9 2.73 5.36 16.55 Sa ndy Sil t t o Cl ay ey Sil t 47 94.1 3.32 3.52 16.7 Ver y Sti f f Fine G ra ine d 102 101.6 4.09 4.03 16.84 Sil ty Sa nd to Sa ndy Sil t 63 189.37 6.17 3.26 16.96 Sa nd to Cl ay ey Sa nd 93 185.82 7.5 4.04 17.08 Sil ty Sa nd to Sa ndy Sil t 66 199.5 5.58 2.79 17.19 Sa nd to Sil ty Sa nd 61 244.43 5.66 2.31 17.29 Sa ndy Sil t t o Cl ay ey Sil t 42 83.89 2.23 2.66 17.37 Se nsi tiv e Fine G ra ine d -74 -74.12 0.48 -0.65 29.27 Se nsi tiv e Fine G ra ine d -1 -0.94 0.14 -14.89 29.27 Se nsi tiv e Fine G ra ine d -1 -0.94 0.14 -14.52 29.27 Se nsi tiv e Fine G ra ine d -1 -1 0.14 -14.08 29.27 Se nsi tiv e Fine G ra ine d -1 -1 0.14 -14.08

PAGE 79

70 App e ndix B ( Co nt inue d) Table B .3 CPT S ounding f or SE Corner De pth ( f t) Soil T y pe N Value Tip Stress (bars) Sleeve Stress (bars) Fri ct ion Ratio (%) 0 No Re adi ng n/a 12.04 0 0.01 0.02 Sil ty Sa nd to Sa ndy Sil t 9 28.22 0.08 0.29 0.17 Sa nd to Sil ty Sa nd 8 35.1 0.21 0.59 0.35 Sa nd to Sil ty Sa nd 10 41.38 0.11 0.25 0.52 Sa nd to Sil ty Sa nd 13 54 0.08 0.14 0.7 Sa nd to Sil ty Sa nd 16 64.08 0.08 0.12 0.87 Sa nd to Sil ty Sa nd 17 71.32 0.13 0.18 1.05 Sa nd to Sil ty Sa nd 19 76.76 0.17 0.22 1.22 Sa nd 16 81.03 0.23 0.28 1.38 Sa nd 16 82.67 0.26 0.31 1.56 Sa nd 15 78.29 0.28 0.35 1.74 Sa nd to Sil ty Sa nd 19 75.62 0.28 0.37 1.91 Sa nd to Sil ty Sa nd 17 71.35 0.25 0.35 2.08 Sa nd to Sil ty Sa nd 17 70.43 0.24 0.34 2.25 Sa nd to Sil ty Sa nd 18 72.26 0.26 0.37 2.44 Sa nd to Sil ty Sa nd 17 71.07 0.32 0.46 2.61 Sa nd to Sil ty Sa nd 16 66.96 0.35 0.53 2.78 Sa nd to Sil ty Sa nd 16 65.83 0.37 0.57 2.97 Sa nd to Sil ty Sa nd 14 57.33 0.38 0.66 3.15 Sa nd to Sil ty Sa nd 12 50.28 0.24 0.48 3.33 Sa nd to Sil ty Sa nd 11 43.71 0.2 0.45 3.49 Sa nd to Sil ty Sa nd 9 37.1 0.24 0.64 3.68 Sil ty Sa nd to Sa ndy Sil t 10 31.64 0.27 0.85 3.87 Sil ty Sa nd to Sa ndy Sil t 11 33.02 0.37 1.12 4.04 Cl ay ey Sil t t o Sil ty Cl ay 10 19.93 0.57 2.85 4.22 Cl ay ey Sil t t o Sil ty Cl ay 6 12.88 0.37 2.88 4.41 Sa ndy Sil t t o Cl ay ey Sil t 7 13.88 0.09 0.62 4.6 Sa ndy Sil t t o Cl ay ey Sil t 7 14.68 0.06 0.42 4.78 Sa ndy Sil t t o Cl ay ey Sil t 7 14.68 0.06 0.4 4.97 Sa ndy Sil t t o Cl ay ey Sil t 11 21.78 0.12 0.54 5.15 Sil ty Sa nd to Sa ndy Sil t 8 25.61 0.11 0.41 5.35 Sil ty Sa nd to Sa ndy Sil t 9 26.86 0.04 0.13 5.53 Sil ty Sa nd to Sa ndy Sil t 11 32.61 0.03 0.1 5.72 Sil ty Sa nd to Sa ndy Sil t 8 25.2 0.03 0.14 5.91 Sa nd to Sil ty Sa nd 8 35.24 -0.01 -0.03 6.1 Sa nd to Sil ty Sa nd 11 44.65 0.08 0.19 6.29 Sil ty Sa nd to Sa ndy Sil t 8 25.78 0.07 0.29 6.48 Sa ndy Sil t t o Cl ay ey Sil t 8 16.07 0.09 0.55 6.87 Sa ndy Sil t t o Cl ay ey Sil t 8 16.37 0.04 0.22 7.06 Sa ndy Sil t t o Cl ay ey Sil t 7 14.35 0.04 0.28 7.25 Sa ndy Sil t t o Cl ay ey Sil t 10 21.09 0.06 0.28 7.45 Sa nd to Sil ty Sa nd 11 43.71 0.12 0.28 7.64 Sa nd to Sil ty Sa nd 13 54 0.14 0.26 7.82 Sa nd to Sil ty Sa nd 14 57.92 0.13 0.23 8.01 Sa nd to Sil ty Sa nd 17 68.1 0.17 0.25 8.2 Sa nd to Sil ty Sa nd 16 67.49 0.2 0.29

PAGE 80

71 App e ndix B ( Co nt inue d) Table B .3 (Continued) 8.39 Sa nd to Sil ty Sa nd 15 63.02 0.26 0.42 8.57 Sa nd to Sil ty Sa nd 16 64.27 0.22 0.35 8.76 Sa nd to Sil ty Sa nd 16 64.63 0.2 0.3 8.95 Sa nd to Sil ty Sa nd 16 66.63 0.18 0.27 9.14 Sa nd to Sil ty Sa nd 17 68.66 0.26 0.38 9.32 Sa nd to Sil ty Sa nd 15 61.5 0.25 0.4 9.5 Sa nd to Sil ty Sa nd 13 52.81 0.28 0.52 9.69 Sa nd to Sil ty Sa nd 11 46.34 0.14 0.3 9.89 Sa nd to Sil ty Sa nd 12 50.4 0.13 0.26 10.07 Sa nd to Sil ty Sa nd 14 56.06 0.12 0.22 10.24 Sa nd to Sil ty Sa nd 13 53.42 0.18 0.34 10.44 Sa nd to Sil ty Sa nd 16 64.38 0.14 0.21 10.63 Sil ty Sa nd to Sa ndy Sil t 18 55.03 0.61 1.11 10.81 Sa nd to Sil ty Sa nd 12 49.81 0.21 0.43 11 Sa nd to Sil ty Sa nd 12 49.59 0.21 0.43 11.19 Sa nd to Sil ty Sa nd 12 50.31 0.21 0.41 11.38 Sil ty Sa nd to Sa ndy Sil t 12 38.41 0.33 0.85 11.57 Sa ndy Sil t t o Cl ay ey Sil t 11 23.28 0.56 2.42 11.76 Sa nd to Sil ty Sa nd 13 54.14 0.4 0.73 11.95 Sa nd to Sil ty Sa nd 11 44.15 0.18 0.42 12.15 Sil ty Sa nd to Sa ndy Sil t 9 28.86 0.24 0.84 12.33 Sil ty Sa nd to Sa ndy Sil t 11 34.74 0.37 1.07 12.53 Sil ty Sa nd to Sa ndy Sil t 9 26.75 0.29 1.07 12.72 Sil ty Sa nd to Sa ndy Sil t 10 29.69 0.36 1.23 12.92 Sil ty Sa nd to Sa ndy Sil t 11 33.66 0.31 0.92 13.1 Sa nd to Sil ty Sa nd 8 33.75 0.2 0.6 13.29 Sa nd to Sil ty Sa nd 10 40.68 0.2 0.5 13.48 Sa nd to Sil ty Sa nd 12 48.01 0.21 0.43 13.68 Sa nd to Sil ty Sa nd 8 35.16 0.13 0.37 13.86 Sil ty Sa nd to Sa ndy Sil t 10 30.66 0.09 0.3 14.05 Sil ty Sa nd to Sa ndy Sil t 9 28.5 0.24 0.83 14.25 Sil ty Sa nd to Sa ndy Sil t 10 32.05 0.3 0.95 14.44 Sa ndy Sil t t o Cl ay ey Sil t 10 19.98 0.3 1.51 14.63 Sa nd to Sil ty Sa nd 10 42.99 0.19 0.44 14.81 Cl ay ey Sil t t o Sil ty Cl ay 4 9.13 0.13 1.46 15.02 Cl ay ey Sil t t o Sil ty Cl ay 4 8.94 0.21 2.33 15.21 Sa nd to Sil ty Sa nd 9 35.88 0.22 0.62 15.58 Sil ty Sa nd to Sa ndy Sil t 10 29.69 0.34 1.15 15.78 Sa ndy Sil t t o Cl ay ey Sil t 20 41.35 0.82 1.98 15.98 Sil ty Sa nd to Sa ndy Sil t 10 31.72 0.33 1.03 16.17 Cl ay ey Sil t t o Sil ty Cl ay 6 12.07 0.33 2.76 16.36 Cl ay 3 3.36 0.24 7.2 16.56 Cl ay 5 4.58 0.17 3.81 16.76 Cl ay ey Sil t t o Sil ty Cl ay 5 10.63 0.28 2.62 16.95 Sa ndy Sil t t o Cl ay ey Sil t 12 23.64 0.65 2.76 17.14 Sa ndy Sil t t o Cl ay ey Sil t 18 37.27 0.83 2.22 17.33 Sa ndy Sil t t o Cl ay ey Sil t 24 47.79 1.72 3.6 17.53 Sa ndy Sil t t o Cl ay ey Sil t 20 41.38 1.31 3.16 17.72 Cl ay ey Sil t t o Sil ty Cl ay 15 30.78 1.16 3.78 17.9 Sil ty Sa nd to Sa ndy Sil t 30 89.64 1.51 1.69 18.09 Sa ndy Sil t t o Cl ay ey Sil t 24 48.01 1.47 3.07 18.26 Sil ty Sa nd to Sa ndy Sil t 28 83.75 2.06 2.46 18.44 Sil ty Sa nd to Sa ndy Sil t 36 108.7 3.14 2.89 18.77 Sa nd to Cl ay ey Sa nd 73 145.72 5.04 3.46 18.94 Sa ndy Sil t t o Cl ay ey Sil t 47 94.55 3.25 3.43

PAGE 81

72 App e ndix B ( Co nt inue d) Table B .3 (Continued) 19.09 Sa nd 30 153.24 1.9 1.24 19.25 Sil ty Sa nd to Sa ndy Sil t 44 133.26 3.86 2.9 19.42 Sil ty Sa nd to Sa ndy Sil t 37 111.67 3.11 2.79 19.61 Sa ndy Sil t t o Cl ay ey Sil t 32 65.02 2.08 3.21 19.79 Sa ndy Sil t t o Cl ay ey Sil t 31 63.19 1.98 3.14 19.96 Sa nd to Sil ty Sa nd 33 131.71 2.42 1.84 20.14 Sa nd 39 196.59 2.14 1.09 20.29 Sa nd to Sil ty Sa nd 64 255.75 4.32 1.69 20.43 Sa nd to Sil ty Sa nd 67 267.82 6.28 2.34 20.55 Sa nd to Sil ty Sa nd 60 241.18 5.62 2.33 20.59 Sa nd 32 159.82 1.54 0.96 20.59 Sa nd 29 148.69 1.2 0.81 20.59 Sa nd 29 148.99 1.23 0.82 20.59 Sa nd 29 149.11 1.24 0.83 20.59 Sa nd 29 149.19 1.25 0.84 20.59 Sa nd 29 149.19 1.24 0.83 20.59 Sa nd 29 149.13 1.25 0.84 20.59 Sa nd 29 149.02 1.25 0.84 20.59 Sa nd 29 148.97 1.25 0.84 20.59 Sa nd 29 147.05 1.18 0.8 20.62 Sa ndy Sil t t o Cl ay ey Sil t 8 15.76 -0.09 -0.58 20.66 Se nsi tiv e Fine G ra ine d -66 -65.55 -0.07 0.11 20.67 Se nsi tiv e Fine G ra ine d -67 -66.66 -0.04 0.06 20.75 Se nsi tiv e Fine G ra ine d -50 -49.59 -0.12 0.24 20.78 Se nsi tiv e Fine G ra ine d -36 -36.49 -0.29 0.78 20.79 Se nsi tiv e Fine G ra ine d -27 -27.06 -0.23 0.84 20.79 Se nsi tiv e Fine G ra ine d -16 -15.54 -0.07 0.48 20.85 Se nsi tiv e Fine G ra ine d -7 -7.05 0.07 -0.96

PAGE 82

73 App e ndix B ( Co nt inue d) Table B .4 CPT S ounding f or SW C orner De pth ( f t) Soil T y pe N Value Tip Stress (bars) Sleeve Stress (bars) Fri ct ion R at io (%) 0 No Re adi ng n/a 0 0 0 0.02 Sil ty Sa nd to Sa ndy Sil t 8 26.25 0.21 0.78 0.2 Sil ty Sa nd to Sa ndy Sil t 9 29.3 0.33 1.13 0.4 Sil ty Sa nd to Sa ndy Sil t 9 28.69 0.2 0.69 0.59 Sil ty Sa nd to Sa ndy Sil t 9 28.36 0.14 0.49 0.78 Sa nd to Sil ty Sa nd 9 37.46 0.14 0.37 0.97 Sa nd to Sil ty Sa nd 15 61.66 0.15 0.24 1.16 Sa nd 15 78.81 0.19 0.24 1.34 Sa nd 19 95.6 0.23 0.24 1.51 Sa nd 22 113.25 0.22 0.2 1.87 Sa nd 25 127.46 0.37 0.29 2.05 Sa nd 25 128.24 0.42 0.33 2.22 Sa nd 24 119.8 0.48 0.4 2.4 Sa nd 21 109.17 0.51 0.46 2.59 Sa nd 20 100.71 0.46 0.45 2.76 Sa nd 20 100.93 0.38 0.38 2.93 Sa nd 20 102.21 0.48 0.47 3.12 Sa nd 20 102.18 0.41 0.4 3.3 Sa nd 18 94.05 0.52 0.55 3.48 Sa nd to Sil ty Sa nd 23 92.63 0.71 0.76 3.65 Sa nd to Sil ty Sa nd 21 83.67 0.64 0.76 3.84 Sa nd to Sil ty Sa nd 16 64.3 0.39 0.61 4.03 Sa nd to Sil ty Sa nd 11 46.65 0.33 0.71 4.22 Sil ty Sa nd to Sa ndy Sil t 8 25.09 0.27 1.06 4.41 Sil ty Sa nd to Sa ndy Sil t 12 38.16 0.3 0.78 4.61 Sa nd to Sil ty Sa nd 9 39.35 0.19 0.48 4.81 Sa ndy Sil t t o Cl ay ey Sil t 10 19.79 0.31 1.58 5 Cl ay ey Sil t t o Sil ty Cl ay 6 12.29 0.34 2.74 5.19 Sa ndy Sil t t o Cl ay ey Sil t 6 11.85 0.06 0.51 5.39 Sa ndy Sil t t o Cl ay ey Sil t 6 13.43 0.08 0.62 5.59 Sil ty Sa nd to Sa ndy Sil t 7 23.45 0.07 0.3 5.78 Sil ty Sa nd to Sa ndy Sil t 7 22.37 0.09 0.41 5.97 Sil ty Sa nd to Sa ndy Sil t 9 28.94 0.05 0.16 6.17 Sil ty Sa nd to Sa ndy Sil t 9 29.19 0.04 0.13 6.38 Sa nd to Sil ty Sa nd 8 33.86 0.16 0.46 6.57 Sa nd to Sil ty Sa nd 12 49.9 0.07 0.14 6.75 Sa nd to Sil ty Sa nd 14 59.36 0.1 0.17 6.95 Sa nd to Sil ty Sa nd 14 56.92 0.11 0.19 7.34 Sil ty Sa nd to Sa ndy Sil t 8 24.45 0.07 0.29 7.52 Sa ndy Sil t t o Cl ay ey Sil t 10 19.56 0.06 0.31 7.73 Sa ndy Sil t t o Cl ay ey Sil t 10 21.17 0.09 0.45 7.93 Sil ty Sa nd to Sa ndy Sil t 9 29.22 0.09 0.32 8.12 Sa nd to Sil ty Sa nd 11 46.73 0.17 0.37 8.3 Sa nd to Sil ty Sa nd 13 55.11 0.23 0.42 8.5 Sa nd to Sil ty Sa nd 13 53.56 0.18 0.34 8.69 Sa nd to Sil ty Sa nd 15 59.53 0.09 0.15 8.87 Sa nd to Sil ty Sa nd 15 59.86 0.16 0.27 9.05 Sa nd to Sil ty Sa nd 14 55.53 0.12 0.21 9.25 Sa nd to Sil ty Sa nd 13 52.37 0.19 0.36 9.44 Sa nd to Sil ty Sa nd 12 50.2 0.14 0.28 9.63 Sa nd to Sil ty Sa nd 11 46.76 0.13 0.28 9.82 Sa nd to Sil ty Sa nd 13 51.56 0.17 0.33 10.01 Sa nd to Sil ty Sa nd 15 60.08 0.14 0.23 10.21 Sa nd to Sil ty Sa nd 14 58.22 0.19 0.33

PAGE 83

74 App e ndix B ( Co nt inue d) Table B .4 (Continued) 10.4 Sa nd to Sil ty Sa nd 13 53.48 0.16 0.3 10.58 Sa nd to Sil ty Sa nd 13 51.7 0.19 0.37 10.78 Sa nd to Sil ty Sa nd 12 50.65 0.12 0.24 10.98 Sa nd to Sil ty Sa nd 12 47.95 0.18 0.37 11.16 Sa nd to Sil ty Sa nd 13 54.09 0.16 0.3 11.35 Sa nd to Sil ty Sa nd 14 57.39 0.3 0.53 11.54 Sa nd to Sil ty Sa nd 15 59.58 0.24 0.39 11.74 Sa nd to Sil ty Sa nd 13 53.48 0.19 0.35 11.92 Sa nd to Sil ty Sa nd 10 39.88 0.17 0.43 12.1 Sa ndy Sil t t o Cl ay ey Sil t 14 27.58 0.4 1.44 12.29 Sa nd to Sil ty Sa nd 12 49.37 0.25 0.5 12.48 Sa nd to Sil ty Sa nd 11 46.48 0.12 0.27 12.67 Sil ty Sa nd to Sa ndy Sil t 10 31.61 0.2 0.62 12.85 Sa ndy Sil t t o Cl ay ey Sil t 13 26.75 0.5 1.88 13.05 Sa nd to Sil ty Sa nd 10 40.79 0.15 0.36 13.24 Sa nd to Sil ty Sa nd 9 39.32 0.14 0.36 13.42 Sa nd to Sil ty Sa nd 9 38.38 0.17 0.45 13.6 Sil ty Sa nd to Sa ndy Sil t 11 33.25 0.22 0.65 13.79 Sil ty Sa nd to Sa ndy Sil t 10 29.97 0.21 0.71 13.98 Sil ty Sa nd to Sa ndy Sil t 10 32.36 0.32 0.99 14.15 Sa nd to Sil ty Sa nd 9 36.35 0.13 0.36 14.34 Sil ty Sa nd to Sa ndy Sil t 9 29.11 0.13 0.46 14.52 Sa ndy Sil t t o Cl ay ey Sil t 11 22.59 0.32 1.41 14.72 Sa nd to Sil ty Sa nd 10 42.76 0.2 0.48 14.9 Sa nd to Sil ty Sa nd 12 48.45 0.33 0.67 15.07 Sil ty Sa nd to Sa ndy Sil t 17 51.64 0.53 1.02 15.26 Sa nd to Sil ty Sa nd 14 59.11 0.49 0.82 15.43 Sa nd 25 125.49 0.79 0.63 15.61 Sa nd to Sil ty Sa nd 19 78.23 0.64 0.82 15.78 Sa nd to Sil ty Sa nd 17 70.24 0.32 0.45 15.96 Sa nd to Sil ty Sa nd 14 57.08 0.21 0.37 16.15 Sa nd to Sil ty Sa nd 11 44.07 0.24 0.55 16.33 Sa ndy Sil t t o Cl ay ey Sil t 9 18.62 0.24 1.27 16.51 Cl ay 6 5.91 0.19 3.3 16.7 Se nsi tiv e Fine G ra ine d 6 6.13 0.1 1.67 16.89 Sa ndy Sil t t o Cl ay ey Sil t 8 16.15 0.19 1.21 17.07 Sil ty Sa nd to Sa ndy Sil t 18 56.47 0.81 1.43 17.24 Sil ty Sa nd to Sa ndy Sil t 19 59.11 1.15 1.94 17.41 Sa nd to Sil ty Sa nd 36 144.83 3.08 2.13 17.58 Ver y Sti f f Fine G ra ine d 79 79.23 4.79 6.05 17.75 Cl ay 39 38.93 2.34 6.01 17.92 Sa ndy Sil t t o Cl ay ey Sil t 27 55.09 1.47 2.66 18.1 Sil ty Sa nd to Sa ndy Sil t 26 78.04 1.56 2 18.27 Sa nd 29 145.19 1.48 1.02 18.42 Sa nd to Sil ty Sa nd 51 203.61 2.83 1.39 18.52 Sa nd 34 174.28 1.27 0.73 18.55 Sa nd 34 174.47 1.37 0.79 18.63 Sa nd 48 241.04 2.87 1.19 18.7 Se nsi tiv e Fine G ra ine d -15 -14.54 -0.07 0.51 33.27 Se nsi tiv e Fine G ra ine d 0 -0.42 0.01 -2.85 33.27 Se nsi tiv e Fine G ra ine d 0 -0.28 0 -1.58

PAGE 84

75 Append ix C Capacity of Mini-Pile At Each Location Usin g CP T Method This appendix contains the tables which de termine the c apac ity of a mini-pile at eac h location as a function of its leng th using the CPT method. Table C.1 Capa city of a Mini-Pile in the NE Corner Depth (ft) Tip Stress (bars) Sleeve Stress (bars) Frictio n Ratio (%) f s (k sf ) Qs/L (kips) 0 0 0 0 0 0.000 0.01 17.48 0.07 0.39 0.547616 0.009 0.16 37.35 0.68 1.83 1.170106 0.284 0.36 32.52 0.18 0.56 1.018791 0.605 0.55 41.57 0.14 0.35 1.302311 0.993 0.75 53.59 0.16 0.29 1.678876 1.521 0.95 77.4 0.21 0.28 2.424799 2.283 1.13 96.32 0.31 0.32 3.017528 3.137 1.3 104.98 0.35 0.34 3.288829 4.015 1.49 114.14 0.48 0.42 3.575795 5.083 1.67 115.53 0.59 0.51 3.619341 6.107 1.84 120.94 0.53 0.44 3.788827 7.119 2.02 119.08 0.6 0.5 3.730556 8.174 2.21 95.38 0.56 0.59 2.988079 9.066 2.39 83.09 0.6 0.73 2.603056 9.802 2.58 40.24 0.61 1.51 1.260645 10.179 2.77 33.44 0.51 1.51 1.047613 10.492 2.97 28.94 0.22 0.77 0.906637 10.777 3.17 22.62 0.08 0.33 0.708643 10.999 3.37 14.99 0.06 0.38 0.469609 11.147 3.56 10.43 0.05 0.5 0.326753 11.244 3.77 5.63 0.05 0.88 0.176377 11.303 3.97 4 0.04 0.92 0.125313 11.342 4.17 3.77 0.03 0.81 0.118107 11.379 4.37 3.94 0.03 0.72 0.123433 11.418 4.57 3.89 0.02 0.64 0.121867 11.456 4.78 4.52 0.04 0.78 0.141603 11.503 4.98 7.77 0.03 0.41 0.24342 11.580 5.17 18.7 0.05 0.26 0.585836 11.754 5.38 25.61 0.04 0.17 0.802314 12.019 5.58 16.35 0.06 0.38 0.512215 12.180 5.78 8.52 0.01 0.08 0.266916 12.264 5.98 7.22 0.02 0.25 0.226189 12.335 6.19 10.07 0.01 0.13 0.315474 12.439 6.39 12.57 0.03 0.22 0.393795 12.563 6.59 25.7 0.07 0.26 0.805133 12.816 6.78 43.85 0.14 0.32 1.373739 13.226 6.98 52.84 0.18 0.35 1.655379 13.746 7.18 52.64 0.18 0.33 1.649114 14.265 7.36 61.19 0.24 0.39 1.91697 14.807 7.55 53.03 0.23 0.44 1.661332 15.303 7.74 45.51 0.17 0.37 1.425744 15.729

PAGE 85

76 App e ndix C ( Co nt inue d) Table C.1 (Continued) 7.93 47.45 0.19 0.4 1.486521 16.173 8.12 52.12 0.16 0.3 1.632823 16.660 8.3 59.94 0.19 0.31 1.877809 17.191 8.49 54.59 0.2 0.36 1.710204 17.702 8.68 53.28 0.16 0.3 1.669164 18.200 8.86 47.4 0.21 0.45 1.484954 18.620 9.05 48.62 0.18 0.37 1.523175 19.075 9.25 47.73 0.22 0.46 1.495293 19.545 9.43 51.17 0.12 0.23 1.603061 19.998 9.62 52.09 0.16 0.31 1.631883 20.486 9.8 52.48 0.23 0.44 1.644101 20.951 9.99 55.17 0.23 0.42 1.728374 21.467 10.19 49.45 0.18 0.35 1.549177 21.954 10.37 59.3 0.2 0.34 1.857759 22.479 10.54 68.68 0.97 1.41 2.151617 23.054 10.73 64.52 0.59 0.91 2.021292 23.657 10.92 49.59 0.29 0.58 1.553563 24.121 11.1 37.46 0.29 0.77 1.173553 24.453 11.29 36.77 0.33 0.89 1.151936 24.797 11.48 39.13 0.17 0.42 1.225871 25.163 11.67 41.32 0.22 0.54 1.294479 25.550 11.85 34.72 0.31 0.88 1.087713 25.857 12.03 41.32 0.18 0.43 1.294479 26.223 12.22 35.55 0.23 0.64 1.113716 26.556 12.41 47.76 0.15 0.31 1.496232 27.003 12.59 42.38 0.13 0.3 1.327687 27.378 12.77 40.93 0.43 1.04 1.282261 27.741 12.96 29.92 0.48 1.6 0.937338 28.021 13.15 42.07 0.24 0.56 1.317975 28.414 13.33 41.57 0.39 0.93 1.302311 28.783 13.51 32.94 0.32 0.98 1.031949 29.075 13.71 24.59 0.36 1.45 0.770359 29.317 13.89 40.63 0.52 1.28 1.272863 29.677 14.07 28.97 0.34 1.17 0.907577 29.933 14.25 30.28 0.68 2.24 0.948616 30.202 14.43 68.02 0.55 0.81 2.130941 30.805 14.62 38.8 0.55 1.42 1.215532 31.167 14.8 59.22 0.51 0.86 1.855253 31.692 14.97 47.98 0.42 0.88 1.503125 32.094 15.16 60.89 0.48 0.79 1.907571 32.663 15.35 15.65 0.25 1.6 0.490286 32.810 15.53 12.49 0.22 1.76 0.391289 32.920 15.72 7.49 0.17 2.25 0.234648 32.990 15.91 6.3 0.14 2.29 0.197367 33.049 16.11 6.72 0.17 2.47 0.210525 33.116 16.47 40.13 0.96 2.4 1.257199 33.598 16.66 53.2 2.32 4.36 1.666658 34.096 16.84 26.34 1.46 5.55 0.825183 34.329

PAGE 86

77 App e ndix C ( Co nt inue d) Table C.1 (Continued) 17.01 45.07 1.01 2.23 1.41196 34.706 17.18 65.1 1.38 2.12 2.039463 35.251 17.34 164.01 2.23 1.36 5.13813 36.543 17.48 177.16 4.33 2.44 5.550095 37.764 17.61 168.34 6.3 3.74 5.273781 38.842 17.72 135.09 7.68 5.68 4.23212 39.573 17.84 120.74 5.48 4.54 3.782561 40.286 17.99 96.46 3.2 3.31 3.021913 40.999 18.13 119.94 3.62 3.02 3.757498 41.825 18.28 141.53 4.34 3.06 4.433873 42.870 18.44 104.59 3.37 3.22 3.276611 43.694 18.6 134.48 3.36 2.5 4.21301 44.754 18.75 128.96 4.17 3.24 4.040078 45.706 18.89 120.58 5.85 4.85 3.777548 46.537 19.01 178.44 5.52 3.09 5.590195 47.591 19.28 -32.8 1.04 -3.16 -1.02756 47.155 31.54 -0.97 0.03 -2.67 -0.03039 46.570 31.54 -0.83 0.01 -1.37 -0.026 46.570 31.54 -1.17 0.04 -3.64 -0.03665 46.570 31.54 -1.03 0.03 -2.72 -0.03227 46.570

PAGE 87

78 App e ndix C ( Co nt inue d) Table C.2 Capa city of a Mini-Pile in the NW Corner Depth (ft) Tip Stress (bars) Sleeve Stress (bars) Frictio n Ratio (%) f s (k sf ) Qs/L (kips) 0 0 0 0 0 0.000 0.09 59.61 0.34 0.58 1.8674711 0.264 0.29 77.42 0.29 0.38 2.4254255 1.026 0.49 108.45 0.24 0.23 3.397538 2.094 0.66 131.43 0.31 0.23 4.1174589 3.194 0.83 148.8 0.36 0.24 4.6616289 4.439 1.01 159.68 0.44 0.28 5.0024792 5.854 1.18 154.82 0.48 0.31 4.8502243 7.150 1.35 118.69 0.56 0.47 3.7183382 8.143 1.53 77.48 0.5 0.64 2.4273051 8.830 1.73 81.09 0.51 0.63 2.5403998 9.628 1.92 107.67 0.43 0.4 3.373102 10.636 2.1 119.02 0.43 0.36 3.7286765 11.690 2.28 105.34 0.48 0.45 3.3001074 12.624 2.47 83.14 0.57 0.68 2.6046225 13.401 2.67 67.3 0.58 0.86 2.1083846 14.064 2.85 45.65 0.49 1.07 1.4301301 14.469 3.05 19.76 0.26 1.32 0.6190443 14.663 3.26 12.93 0.39 3.04 0.405073 14.797 3.46 18.82 0.56 2.98 0.5895958 14.982 3.65 35.08 0.6 1.7 1.0989915 15.310 3.85 30.86 0.37 1.2 0.9667867 15.614 4.05 22.89 0.29 1.27 0.7171014 15.839 4.26 24.25 0.12 0.5 0.7597077 16.090 4.45 43.76 0.15 0.34 1.3709199 16.499 4.65 47.76 0.14 0.29 1.4962325 16.970 4.85 49.09 0.13 0.27 1.5378989 17.453 5.05 46.51 0.1 0.21 1.4570723 17.911 5.24 45.1 0.1 0.22 1.4128996 18.333 5.43 34.91 0.17 0.48 1.0936658 18.659 5.63 30.41 0.16 0.53 0.9526891 18.959 5.84 37.02 0.19 0.5 1.1597682 19.341 6.03 39.93 0.16 0.4 1.2509331 19.715 6.22 48.12 0.09 0.19 1.5075106 20.165 6.43 48.2 0.17 0.34 1.5100169 20.663 6.63 44.43 0.13 0.29 1.3919097 21.101 6.83 46.4 0.23 0.49 1.4536262 21.558 7.01 58.36 0.23 0.4 1.8283109 22.075 7.21 61.25 0.29 0.47 1.9188492 22.678 7.41 55.45 0.27 0.49 1.737146 23.224 7.78 68.82 0.28 0.41 2.1560034 24.421 7.98 64.22 0.29 0.46 2.0118939 25.053 8.17 71.4 0.36 0.5 2.23683 25.721 8.36 69.07 0.36 0.52 2.1638354 26.367 8.54 69.32 0.37 0.53 2.1716674 26.982 8.74 59.83 0.27 0.46 1.8743633 27.571 8.93 59.75 0.21 0.35 1.871857 28.130 9.12 69.71 0.23 0.34 2.1838854 28.782 9.31 59.44 0.34 0.58 1.8621453 29.338 9.7 41.79 0.26 0.62 1.3092034 30.189 9.89 42.57 0.22 0.51 1.3336394 30.587 10.09 55.56 0.12 0.21 1.7405921 31.134 10.28 60.69 0.34 0.56 1.9013055 31.701 10.49 58.55 0.2 0.34 1.8342632 32.307 10.67 59.64 0.34 0.57 1.8684109 32.835

PAGE 88

79 App e ndix C ( Co nt inue d) Table C.2 (Continued) 10.86 60.3 0.27 0.45 1.8890875 33.399 11.05 70.02 0.25 0.35 2.1935971 34.054 11.25 48.2 0.5 1.04 1.5100169 34.529 11.44 44.37 0.37 0.84 1.3900301 34.944 11.63 42.85 0.24 0.55 1.3424113 35.345 11.82 37.21 0.24 0.64 1.1657205 35.693 12.02 26.47 0.35 1.33 0.8292562 35.953 12.21 26.67 0.44 1.64 0.8355218 36.203 12.39 38.91 0.28 0.72 1.2189784 36.548 12.59 39.38 0.15 0.37 1.2337026 36.935 12.78 46.07 0.15 0.32 1.4432879 37.366 12.97 53.48 0.16 0.29 1.6754295 37.866 13.16 30.94 0.33 1.07 0.969293 38.156 13.36 28.22 0.25 0.88 0.8840804 38.434 13.56 31.55 0.16 0.51 0.9884032 38.744 13.74 34.52 0.5 1.45 1.0814478 39.050 13.92 34.99 0.56 1.6 1.096172 39.360 14.11 56.11 0.13 0.24 1.7578226 39.885 14.31 34.97 0.32 0.91 1.0955454 40.229 14.49 23.92 0.26 1.1 0.7493694 40.441 14.68 14.24 0.31 2.19 0.4461129 40.575 14.88 6.47 0.25 3.89 0.2026931 40.638 15.08 6.58 0.2 3.04 0.2061392 40.703 15.27 5.74 0.18 3.19 0.1798236 40.757 15.46 6.3 0.25 3.97 0.1973674 40.816 15.66 9.8 0.22 2.26 0.3070159 40.912 15.85 38.66 0.55 1.43 1.2111463 41.274 16.03 100.87 2.13 2.11 3.1600706 42.168 16.19 69.43 3.47 4.99 2.1751135 42.715 16.37 50.9 2.73 5.36 1.5946029 43.166 16.55 94.1 3.32 3.52 2.947979 43.999 16.7 101.6 4.09 4.03 3.1829401 44.750 16.84 189.37 6.17 3.26 5.932612 46.055 16.96 185.82 7.5 4.04 5.821397 47.153 17.08 199.5 5.58 2.79 6.2499661 48.331 17.19 244.43 5.66 2.31 7.6575399 49.655 17.29 83.89 2.23 2.66 2.6281186 50.068 17.37 -74.12 0.48 -0.65 -2.3220426 49.776 29.27 -0.94 0.14 -14.89 -0.0294485 49.225 29.27 -0.94 0.14 -14.52 -0.0294485 49.225 29.27 -1 0.14 -14.08 -0.0313282 49.225 29.27 -1 0.14 -14.08 -0.0313282 49.225

PAGE 89

80 App e ndix C ( Co nt inue d) Table C.3 Capa city of a Mini-Pile in the SE Corner Depth (ft) Tip Stress (bars) Sleeve Stress (bars) Frictio n Ratio (%) f s (k sf ) Qs/L (kips) 0 0 0 0 0 0.000 0.02 28.22 0.08 0.29 0.8840804 0.028 0.17 35.1 0.21 0.59 1.0996181 0.287 0.35 41.38 0.11 0.25 1.2963589 0.654 0.52 54 0.08 0.14 1.6917202 1.106 0.7 64.08 0.08 0.12 2.0075079 1.673 0.87 71.32 0.13 0.18 2.2343237 2.270 1.05 76.76 0.17 0.22 2.4047489 2.951 1.22 81.03 0.23 0.28 2.5385201 3.629 1.38 82.67 0.26 0.31 2.5898982 4.280 1.56 78.29 0.28 0.35 2.4526809 4.974 1.74 75.62 0.28 0.37 2.3690348 5.644 1.91 71.35 0.25 0.35 2.2352636 6.241 2.08 70.43 0.24 0.34 2.2064417 6.830 2.25 72.26 0.26 0.37 2.2637722 7.435 2.44 71.07 0.32 0.46 2.2264917 8.100 2.61 66.96 0.35 0.53 2.097733 8.660 2.78 65.83 0.37 0.57 2.0623322 9.211 2.97 57.33 0.38 0.66 1.7960429 9.747 3.15 50.28 0.24 0.48 1.5751794 10.193 3.33 43.71 0.2 0.45 1.3693535 10.580 3.49 37.1 0.24 0.64 1.1622744 10.872 3.68 31.64 0.27 0.85 0.9912227 11.168 3.87 33.02 0.37 1.12 1.0344555 11.477 4.04 19.93 0.57 2.85 0.62437 11.644 4.22 12.88 0.37 2.88 0.4035066 11.758 4.41 13.88 0.09 0.62 0.4348347 11.888 4.6 14.68 0.06 0.42 0.4598973 12.025 4.78 14.68 0.06 0.4 0.4598973 12.155 4.97 21.78 0.12 0.54 0.6823271 12.359 5.15 25.61 0.11 0.41 0.8023139 12.586 5.35 26.86 0.04 0.13 0.8414741 12.851 5.53 32.61 0.03 0.1 1.021611 13.140 5.72 25.2 0.03 0.14 0.7894694 13.375 5.91 35.24 -0.01 -0.03 1.104004 13.705 6.1 44.65 0.08 0.19 1.3988019 14.123 6.29 25.78 0.07 0.29 0.8076397 14.364 6.48 16.07 0.09 0.55 0.5034434 14.514 6.68 14.46 0.02 0.14 0.4530051 14.656 6.87 16.37 0.04 0.22 0.5128418 14.809 7.06 14.35 0.04 0.28 0.449559 14.944 7.25 21.09 0.06 0.28 0.6607107 15.141 7.45 43.71 0.12 0.28 1.3693535 15.571 7.64 54 0.14 0.26 1.6917202 16.076 7.82 57.92 0.13 0.23 1.8145265 16.590 8.01 68.1 0.17 0.25 2.1334471 17.227 8.2 67.49 0.2 0.29 2.1143369 17.858 8.39 63.02 0.26 0.42 1.9743001 18.447 8.57 64.27 0.22 0.35 2.0134603 19.017 8.76 64.63 0.2 0.3 2.0247384 19.621 8.95 66.63 0.18 0.27 2.0873947 20.245 9.32 61.5 0.25 0.4 1.9266813 21.432 9.5 52.81 0.28 0.52 1.6544397 21.900 9.69 46.34 0.14 0.3 1.4517465 22.333 9.89 50.4 0.13 0.26 1.5789388 22.830 10.07 56.06 0.12 0.22 1.7562561 23.326 10.24 53.42 0.18 0.34 1.6735498 23.773

PAGE 90

81 App e ndix C ( Co nt inue d) Table C.3 (Continued) 10.44 64.38 0.14 0.21 2.0169064 24.407 10.63 55.03 0.61 1.11 1.7239881 24.922 10.81 49.81 0.21 0.43 1.5604552 25.363 11 49.59 0.21 0.43 1.553563 25.827 11.19 50.31 0.21 0.41 1.5761193 26.298 11.38 38.41 0.33 0.85 1.2033143 26.657 11.57 23.28 0.56 2.42 0.7293194 26.875 11.76 54.14 0.4 0.73 1.6961061 27.381 11.95 44.15 0.18 0.42 1.3831379 27.794 12.15 28.86 0.24 0.84 0.9041304 28.078 12.33 34.74 0.37 1.07 1.08834 28.386 12.53 26.75 0.29 1.07 0.838028 28.650 12.72 29.69 0.36 1.23 0.9301328 28.927 12.92 33.66 0.31 0.92 1.0545056 29.259 13.1 33.75 0.2 0.6 1.0573251 29.558 13.29 40.68 0.2 0.5 1.2744292 29.938 13.48 48.01 0.21 0.43 1.5040645 30.387 13.68 35.16 0.13 0.37 1.1014978 30.734 13.86 30.66 0.09 0.3 0.9605211 31.005 14.05 28.5 0.24 0.83 0.8928523 31.272 14.25 32.05 0.3 0.95 1.0040672 31.587 14.44 19.98 0.3 1.51 0.6259365 31.774 14.63 42.99 0.19 0.44 1.3467972 32.176 14.81 9.13 0.13 1.46 0.286026 32.257 15.02 8.94 0.21 2.33 0.2800737 32.350 15.21 35.88 0.22 0.62 1.1240541 32.685 15.4 43.74 0.24 0.54 1.3702933 33.094 15.58 29.69 0.34 1.15 0.9301328 33.358 15.78 41.35 0.82 1.98 1.295419 33.765 15.98 31.72 0.33 1.03 0.9937289 34.077 16.17 12.07 0.33 2.76 0.3781308 34.190 16.36 3.36 0.24 7.2 0.1052626 34.221 16.56 4.58 0.17 3.81 0.1434829 34.266 16.76 10.63 0.28 2.62 0.3330182 34.371 16.95 23.64 0.65 2.76 0.7405975 34.592 17.14 37.27 0.83 2.22 1.1676002 34.941 17.33 47.79 1.72 3.6 1.4971723 35.388 17.53 41.38 1.31 3.16 1.2963589 35.795 17.72 30.78 1.16 3.78 0.9642805 36.083 17.9 89.64 1.51 1.69 2.8082555 36.878 18.09 48.01 1.47 3.07 1.5040645 37.327 18.26 83.75 2.06 2.46 2.6237326 38.028 18.44 108.7 3.14 2.89 3.40537 38.991 18.6 168.14 2.92 1.73 5.2675153 40.315 18.77 145.72 5.04 3.46 4.5651382 41.535 18.94 94.55 3.25 3.43 2.9620767 42.326 19.09 153.24 1.9 1.24 4.8007259 43.458 19.25 133.26 3.86 2.9 4.1747894 44.507 19.42 111.67 3.11 2.79 3.4984146 45.442 19.61 65.02 2.08 3.21 2.0369564 46.050 19.79 63.19 1.98 3.14 1.9796259 46.610 19.96 131.71 2.42 1.84 4.1262308 47.712 20.14 196.59 2.14 1.09 6.1588012 49.454 20.29 255.75 4.32 1.69 8.0121746 51.343 20.43 267.82 6.28 2.34 8.3903054 53.189 20.55 241.18 5.62 2.33 7.5557235 54.614 20.59 148.99 1.23 0.82 4.6675812 54.928 20.59 149.11 1.24 0.83 4.6713406 54.928

PAGE 91

82 App e ndix C ( Co nt inue d) Table C.3 (Continued) 20.59 149.19 1.25 0.84 4.6738468 54.928 20.59 149.19 1.24 0.83 4.6738468 54.928 20.59 149.13 1.25 0.84 4.6719672 54.928 20.59 149.02 1.25 0.84 4.6685211 54.928 20.59 148.97 1.25 0.84 4.6669547 54.928 20.59 147.05 1.18 0.8 4.6068046 54.928 20.62 15.76 -0.09 -0.58 0.4937317 54.952 20.66 -65.55 -0.07 0.11 -2.0535603 54.822 20.67 -66.66 -0.04 0.06 -2.0883345 54.790 20.75 -49.59 -0.12 0.24 -1.553563 54.594 20.78 -36.49 -0.29 0.78 -1.1431642 54.540 20.79 -27.06 -0.23 0.84 -0.8477398 54.527 20.79 -15.54 -0.07 0.48 -0.4868395 54.527 20.85 -7.05 0.07 -0.96 -0.2208635 54.506

PAGE 92

83 App e ndix C ( Co nt inue d) Table C.4 Capa city of a Mini-Pile in the SW Corner Depth (ft) Tip Stress (bars) Sleeve Stress (bars) Frictio n Ratio (%) f s (k sf ) Qs/L (kips) 0 0 0 0 0 0.000 0.02 26.25 0.21 0.78 0.822364 0.026 0.2 29.3 0.33 1.13 0.9179148 0.285 0.4 28.69 0.2 0.69 0.8988047 0.568 0.59 28.36 0.14 0.49 0.8884664 0.833 0.78 37.46 0.14 0.37 1.1735525 1.184 0.97 61.66 0.15 0.24 1.9316938 1.760 1.16 78.81 0.19 0.24 2.4689716 2.498 1.34 95.6 0.23 0.24 2.9949712 3.345 1.51 113.25 0.22 0.2 3.5479131 4.292 1.7 122.16 0.41 0.34 3.8270469 5.435 1.87 127.46 0.37 0.29 3.9930861 6.502 2.05 128.24 0.42 0.33 4.0175221 7.638 2.22 119.8 0.48 0.4 3.7531125 8.641 2.59 100.71 0.46 0.45 3.1550581 10.550 2.76 100.93 0.38 0.38 3.1619503 11.395 2.93 102.21 0.48 0.47 3.2020503 12.250 3.12 102.18 0.41 0.4 3.2011105 13.206 3.3 94.05 0.52 0.55 2.9464126 14.040 3.48 92.63 0.71 0.76 2.9019266 14.860 3.65 83.67 0.64 0.76 2.6212264 15.561 3.84 64.3 0.39 0.61 2.0144001 16.162 4.03 46.65 0.33 0.71 1.4614582 16.598 4.22 25.09 0.27 1.06 0.7860233 16.833 4.41 38.16 0.3 0.78 1.1954822 17.190 4.61 39.35 0.19 0.48 1.2327627 17.577 4.81 19.79 0.31 1.58 0.6199841 17.772 5 12.29 0.34 2.74 0.385023 17.887 5.19 11.85 0.06 0.51 0.3712386 17.998 5.39 13.43 0.08 0.62 0.4207371 18.130 5.59 23.45 0.07 0.3 0.7346451 18.361 5.78 22.37 0.09 0.41 0.7008107 18.570 5.97 28.94 0.05 0.16 0.9066367 18.841 6.17 29.19 0.04 0.13 0.9144687 19.129 6.38 33.86 0.16 0.46 1.0607712 19.479 6.57 49.9 0.07 0.14 1.5632747 19.945 6.75 59.36 0.1 0.17 1.859639 20.471 6.95 56.92 0.11 0.19 1.7831984 21.032 7.15 45.62 0.07 0.15 1.4291902 21.481 7.34 24.45 0.07 0.29 0.7659733 21.710 7.52 19.56 0.06 0.31 0.6127786 21.883 7.73 21.17 0.09 0.45 0.663217 22.102 8.12 46.73 0.17 0.37 1.4639645 22.827 8.3 55.11 0.23 0.42 1.7264944 23.315 8.5 53.56 0.18 0.34 1.6779358 23.842 8.69 59.53 0.09 0.15 1.8649648 24.399 8.87 59.86 0.16 0.27 1.8753031 24.930 9.05 55.53 0.12 0.21 1.7396522 25.422 9.25 52.37 0.19 0.36 1.6406553 25.937 9.44 50.2 0.14 0.28 1.5726732 26.407 9.63 46.76 0.13 0.28 1.4649043 26.844 9.82 51.56 0.17 0.33 1.6152795 27.327 10.01 60.08 0.14 0.23 1.8821953 27.889 10.21 58.22 0.19 0.33 1.823925 28.462 10.4 53.48 0.16 0.3 1.6754295 28.962

PAGE 93

84 App e ndix C ( Co nt inue d) Table C.4 (Continued) 10.58 51.7 0.19 0.37 1.6196654 29.420 10.78 50.65 0.12 0.24 1.5867708 29.919 10.98 47.95 0.18 0.37 1.5021848 30.391 11.16 54.09 0.16 0.3 1.6945397 30.870 11.35 57.39 0.3 0.53 1.7979226 31.407 11.54 59.58 0.24 0.39 1.8665312 31.964 11.74 53.48 0.19 0.35 1.6754295 32.491 11.92 39.88 0.17 0.43 1.2493667 32.844 12.1 27.58 0.4 1.44 0.8640304 33.089 12.29 49.37 0.25 0.5 1.5466708 33.551 12.48 46.48 0.12 0.27 1.4561325 33.985 12.67 31.61 0.2 0.62 0.9902829 34.281 12.85 26.75 0.5 1.88 0.838028 34.518 13.05 40.79 0.15 0.36 1.2778753 34.920 13.24 39.32 0.14 0.36 1.2318229 35.287 13.42 38.38 0.17 0.45 1.2023744 35.627 13.6 33.25 0.22 0.65 1.041661 35.922 13.79 29.97 0.21 0.71 0.9389047 36.202 13.98 32.36 0.32 0.99 1.013779 36.505 14.15 36.35 0.13 0.36 1.1387783 36.809 14.34 29.11 0.13 0.46 0.9119625 37.082 14.52 22.59 0.32 1.41 0.7077029 37.282 14.72 42.76 0.2 0.48 1.3395917 37.703 14.9 48.45 0.33 0.67 1.5178489 38.132 15.07 51.64 0.53 1.02 1.6177857 38.564 15.26 59.11 0.49 0.82 1.851807 39.117 15.43 125.49 0.79 0.63 3.9313697 40.168 15.61 78.23 0.64 0.82 2.4508013 40.861 15.78 70.24 0.32 0.45 2.2004893 41.449 15.96 57.08 0.21 0.37 1.7882109 41.954 16.15 44.07 0.24 0.55 1.3806316 42.367 16.33 18.62 0.24 1.27 0.5833302 42.532 16.51 5.91 0.19 3.3 0.1851494 42.584 16.7 6.13 0.1 1.67 0.1920416 42.641 16.89 16.15 0.19 1.21 0.5059496 42.792 17.07 56.47 0.81 1.43 1.7691007 43.293 17.24 59.11 1.15 1.94 1.851807 43.787 17.41 144.83 3.08 2.13 4.5372561 45.000 17.58 79.23 4.79 6.05 2.4821294 45.663 17.75 38.93 2.34 6.01 1.2196049 45.988 17.92 55.09 1.47 2.66 1.7258678 46.450 18.1 78.04 1.56 2 2.4448489 47.141 18.27 145.19 1.48 1.02 4.5485342 48.356 18.42 203.61 2.83 1.39 6.3787248 49.860 18.52 174.28 1.27 0.73 5.4598702 50.718 18.55 174.47 1.37 0.79 5.4658225 50.975 18.63 241.04 2.87 1.19 7.5513375 51.925 18.7 -14.54 -0.07 0.51 -0.4555113 51.875 33.27 -0.42 0.01 -2.85 -0.0131578 51.573 33.27 -0.28 0 -1.58 -0.0087719 51.573

PAGE 94

85 App e ndix D M ix P r opo r ti ons for Dr ill ing and C as ti ng Th is a pp e nd ix co nta ins a ta ble wi th t he mixin g pr op or tio ns fo r t he c e me nt u se d in the drilling a nd casting of the mini piles. Table D .1 Mix Desig n for Mini-Piles 4 0 g a llo n s 6 2 .4 lb /ft f t 7. 48 gal / f t 3 8. 34 22 46 l bs/ gal 2 1 5 .3 4 7 5 9 4 ft3 V ol u me ( f t 3) D r i l l i n g B at ch 1 ba g 94 l bs of c eme n t 0. 478225 10 g al l on s 83. 4 l bs of w at er 1. 336538 w/ c 0. 887234 17 7. 4 l bs per bat ch 1. 81 47 64 f t 3 per bat ch R equi r ed V ol ume 8. 02 13 9 f t 3 per bat ch N o of B ags / A ncho r 4 4 b ags V ol u me ( f t 3) G r ou t i n g B at ch 2 ba g s 186 l bs of c eme n t 0. 946276 10 g al l on s 83. 4 l bs of w at er 1. 336538 w/ c 0. 448387 26 9. 4 l bs per bat ch 2. 28 28 14 f t 3 per bat ch R equi r ed V ol ume 5. 5 f t 3 per bat ch N o of B ags / A ncho r 4 8 b ags

PAGE 95

86 App e ndix E Br e ak Ev e n An aly sis I n this appendix is the table with the value s used for the brea k even a naly sis of the foundation used in the c ase study Table E.1 B rea k Even Ana ly sis of Project L O A D (kip s) CO ST M C. F. M I N I PIL E 0 $0. 00 $5, 000. 00 1 $155. 77 $5, 075. 89 2 $311. 54 $5, 151. 77 3 $467. 31 $5, 227. 66 4 $623. 07 $5, 303. 54 5 $778. 84 $5, 379. 43 6 $934. 61 $5, 455. 31 7 $1, 090. 38 $5, 531. 20 8 $1, 246. 15 $5, 607. 09 9 $1, 401. 92 $5, 682. 97 10 $1, 557. 69 $5, 758. 86 11 $1, 713. 45 $5, 834. 74 12 $1, 869. 22 $5, 910. 63 13 $2, 024. 99 $5, 986. 51 14 $2, 180. 76 $6, 062. 40 15 $2, 336. 53 $6, 138. 29 16 $2, 492. 30 $6, 214. 17 17 $2, 648. 06 $6, 290. 06 18 $2, 803. 83 $6, 365. 94 19 $2, 959. 60 $6, 441. 83 20 $3, 115. 37 $6, 517. 71 21 $3, 271. 14 $6, 593. 60 22 $3, 426. 91 $6, 669. 49 23 $3, 582. 68 $6, 745. 37 24 $3, 738. 44 $6, 821. 26 25 $3, 894. 21 $6, 897. 14 26 $4, 049. 98 $6, 973. 03 27 $4, 205. 75 $7, 048. 91 28 $4, 361. 52 $7, 124. 80 29 $4, 517. 29 $7, 200. 69 30 $4, 673. 06 $7, 276. 57 31 $4, 828. 82 $7, 352. 46 32 $4, 984. 59 $7, 428. 34 33 $5, 140. 36 $7, 504. 23 34 $5, 296. 13 $7, 580. 11 35 $5, 451. 90 $7, 656. 00 36 $5, 607. 67 $7, 731. 89 37 $5, 763. 43 $7, 807. 77 38 $5, 919. 20 $7, 883. 66 39 $6, 074. 97 $7, 959. 54 40 $6, 230. 74 $8, 035. 43 41 $6, 386. 51 $8, 111. 31 42 $6, 542. 28 $8, 187. 20 43 $6, 698. 05 $8, 263. 09 44 $6, 853. 81 $8, 338. 97

PAGE 96

87 App e ndix E ( Co nt inue d) Table E.1 ( Continued) 45 $7, 009. 58 $8, 414. 86 46 $7, 165. 35 $8, 490. 74 47 $7, 321. 12 $8, 566. 63 48 $7, 476. 89 $8, 642. 51 49 $7, 632. 66 $8, 718. 40 50 $7, 788. 43 $8, 794. 29 51 $7, 944. 19 $8, 870. 17 52 $8, 099. 96 $8, 946. 06 53 $8, 255. 73 $9, 021. 94 54 $8, 411. 50 $9, 097. 83 55 $8, 567. 27 $9, 173. 71 56 $8, 723. 04 $9, 249. 60 57 $8, 878. 80 $9, 325. 49 58 $9, 034. 57 $9, 401. 37 59 $9, 190. 34 $9, 477. 26 60 $9, 346. 11 $9, 553. 14 61 $9, 501. 88 $9, 629. 03 62 $9, 657. 65 $9, 704. 91 63 $9, 813. 42 $9, 780. 80 64 $9, 969. 18 $9, 856. 69 65 $10, 124. 95 $9, 932. 57 66 $10, 280. 72 $10, 008. 46 67 $10, 436. 49 $10, 084. 34 68 $10, 592. 26 $10, 160. 23 69 $10, 748. 03 $10, 236. 11 70 $10, 903. 80 $10, 312. 00 71 $11, 059. 56 $10, 387. 89 72 $11, 215. 33 $10, 463. 77 73 $11, 371. 10 $10, 539. 66 74 $11, 526. 87 $10, 615. 54 75 $11, 682. 64 $10, 691. 43 76 $11, 838. 41 $10, 767. 31 77 $11, 994. 17 $10, 843. 20 78 $12, 149. 94 $10, 919. 09 79 $12, 305. 71 $10, 994. 97 80 $12, 461. 48 $11, 070. 86 81 $12, 617. 25 $11, 146. 74 82 $12, 773. 02 $11, 222. 63 83 $12, 928. 79 $11, 298. 51 84 $13, 084. 55 $11, 374. 40 85 $13, 240. 32 $11, 450. 29 86 $13, 396. 09 $11, 526. 17 87 $13, 551. 86 $11, 602. 06 88 $13, 707. 63 $11, 677. 94 89 $13, 863. 40 $11, 753. 83 90 $14, 019. 17 $11, 829. 71 91 $14, 174. 93 $11, 905. 60 92 $14, 330. 70 $11, 981. 49 93 $14, 486. 47 $12, 057. 37 94 $14, 642. 24 $12, 133. 26 95 $14, 798. 01 $12, 209. 14 96 $14, 953. 78 $12, 285. 03

PAGE 97

88 App e ndix E ( Co nt inue d) Table E.1 ( Continued) 99 $15, 421. 08 $12, 512. 69 100 $15, 576. 85 $12, 588. 57 101 $15, 732. 62 $12, 664. 46 102 $15, 888. 39 $12, 740. 34 103 $16, 044. 16 $12, 816. 23 104 $16, 199. 92 $12, 892. 11 105 $16, 355. 69 $12, 968. 00 106 $16, 511. 46 $13, 043. 89 107 $16, 667. 23 $13, 119. 77 108 $16, 823. 00 $13, 195. 66 109 $16, 978. 77 $13, 271. 54 110 $17, 134. 54 $13, 347. 43 111 $17, 290. 30 $13, 423. 31 112 $17, 446. 07 $13, 499. 20 113 $17, 601. 84 $13, 575. 09 114 $17, 757. 61 $13, 650. 97 115 $17, 913. 38 $13, 726. 86 116 $18, 069. 15 $13, 802. 74 117 $18, 224. 91 $13, 878. 63 118 $18, 380. 68 $13, 954. 51 119 $18, 536. 45 $14, 030. 40 120 $18, 692. 22 $14, 106. 29 121 $18, 847. 99 $14, 182. 17 122 $19, 003. 76 $14, 258. 06 123 $19, 159. 53 $14, 333. 94 124 $19, 315. 29 $14, 409. 83 125 $19, 471. 06 $14, 485. 71 126 $19, 626. 83 $14, 561. 60 127 $19, 782. 60 $14, 637. 49 128 $19, 938. 37 $14, 713. 37 129 $20, 094. 14 $14, 789. 26 130 $20, 249. 91 $14, 865. 14 131 $20, 405. 67 $14, 941. 03 132 $20, 561. 44 $15, 016. 91 133 $20, 717. 21 $15, 092. 80 134 $20, 872. 98 $15, 168. 69 135 $21, 028. 75 $15, 244. 57 136 $21, 184. 52 $15, 320. 46 137 $21, 340. 28 $15, 396. 34 138 $21, 496. 05 $15, 472. 23 139 $21, 651. 82 $15, 548. 11 140 $21, 807. 59 $15, 624. 00 141 $21, 963. 36 $15, 699. 89 142 $22, 119. 13 $15, 775. 77 143 $22, 274. 90 $15, 851. 66 144 $22, 430. 66 $15, 927. 54 145 $22, 586. 43 $16, 003. 43 146 $22, 742. 20 $16, 079. 31 147 $22, 897. 97 $16, 155. 20 148 $23, 053. 74 $16, 231. 09 149 $23, 209. 51 $16, 306. 97 150 $23, 365. 28 $16, 382. 86

PAGE 98

89 App e ndix E ( Co nt inue d) Table E.1 ( Continued) 153 $23, 832. 58 $16, 610. 51 154 $23, 988. 35 $16, 686. 40 155 $24, 144. 12 $16, 762. 29 156 $24, 299. 89 $16, 838. 17 157 $24, 455. 65 $16, 914. 06 158 $24, 611. 42 $16, 989. 94 159 $24, 767. 19 $17, 065. 83 160 $24, 922. 96 $17, 141. 71 161 $25, 078. 73 $17, 217. 60 162 $25, 234. 50 $17, 293. 49 163 $25, 390. 27 $17, 369. 37 164 $25, 546. 03 $17, 445. 26 165 $25, 701. 80 $17, 521. 14 166 $25, 857. 57 $17, 597. 03 167 $26, 013. 34 $17, 672. 91 168 $26, 169. 11 $17, 748. 80 169 $26, 324. 88 $17, 824. 69 170 $26, 480. 65 $17, 900. 57 171 $26, 636. 41 $17, 976. 46 172 $26, 792. 18 $18, 052. 34 173 $26, 947. 95 $18, 128. 23 174 $27, 103. 72 $18, 204. 11 175 $27, 259. 49 $18, 280. 00 176 $27, 415. 26 $18, 355. 89 177 $27, 571. 02 $18, 431. 77 178 $27, 726. 79 $18, 507. 66 179 $27, 882. 56 $18, 583. 54 180 $28, 038. 33 $18, 659. 43 181 $28, 194. 10 $18, 735. 31 182 $28, 349. 87 $18, 811. 20 183 $28, 505. 64 $18, 887. 09 184 $28, 661. 40 $18, 962. 97 185 $28, 817. 17 $19, 038. 86 186 $28, 972. 94 $19, 114. 74 187 $29, 128. 71 $19, 190. 63 188 $29, 284. 48 $19, 266. 51 189 $29, 440. 25 $19, 342. 40 190 $29, 596. 02 $19, 418. 29 191 $29, 751. 78 $19, 494. 17 192 $29, 907. 55 $19, 570. 06 193 $30, 063. 32 $19, 645. 94 194 $30, 219. 09 $19, 721. 83 195 $30, 374. 86 $19, 797. 71 196 $30, 530. 63 $19, 873. 60 197 $30, 686. 39 $19, 949. 49 198 $30, 842. 16 $20, 025. 37 199 $30, 997. 93 $20, 101. 26 200 $31, 153. 70 $20, 177. 14 201 $31, 309. 47 $20, 253. 03 202 $31, 465. 24 $20, 328. 91 203 $31, 621. 01 $20, 404. 80 204 $31, 776. 77 $20, 480. 69

PAGE 99

90 App e ndix E ( Co nt inue d) Table E.1 ( Continued) 207 $32, 244. 08 $20, 708. 34 208 $32, 399. 85 $20, 784. 23 209 $32, 555. 62 $20, 860. 11 210 $32, 711. 39 $20, 936. 00 211 $32, 867. 15 $21, 011. 89 212 $33, 022. 92 $21, 087. 77 213 $33, 178. 69 $21, 163. 66 214 $33, 334. 46 $21, 239. 54 215 $33, 490. 23 $21, 315. 43 216 $33, 646. 00 $21, 391. 31 217 $33, 801. 76 $21, 467. 20 218 $33, 957. 53 $21, 543. 09 219 $34, 113. 30 $21, 618. 97 220 $34, 269. 07 $21, 694. 86 221 $34, 424. 84 $21, 770. 74 222 $34, 580. 61 $21, 846. 63 223 $34, 736. 38 $21, 922. 51 224 $34, 892. 14 $21, 998. 40 225 $35, 047. 91 $22, 074. 29 226 $35, 203. 68 $22, 150. 17 227 $35, 359. 45 $22, 226. 06 228 $35, 515. 22 $22, 301. 94 229 $35, 670. 99 $22, 377. 83 230 $35, 826. 76 $22, 453. 71 231 $35, 982. 52 $22, 529. 60 232 $36, 138. 29 $22, 605. 49 233 $36, 294. 06 $22, 681. 37 234 $36, 449. 83 $22, 757. 26 235 $36, 605. 60 $22, 833. 14 236 $36, 761. 37 $22, 909. 03 237 $36, 917. 13 $22, 984. 91 238 $37, 072. 90 $23, 060. 80 239 $37, 228. 67 $23, 136. 69 240 $37, 384. 44 $23, 212. 57 241 $37, 540. 21 $23, 288. 46 242 $37, 695. 98 $23, 364. 34 243 $37, 851. 75 $23, 440. 23 244 $38, 007. 51 $23, 516. 11 245 $38, 163. 28 $23, 592. 00 246 $38, 319. 05 $23, 667. 89 247 $38, 474. 82 $23, 743. 77 248 $38, 630. 59 $23, 819. 66 249 $38, 786. 36 $23, 895. 54 250 $38, 942. 13 $23, 971. 43 251 $39, 097. 89 $24, 047. 31 252 $39, 253. 66 $24, 123. 20 253 $39, 409. 43 $24, 199. 09 254 $39, 565. 20 $24, 274. 97 255 $39, 720. 97 $24, 350. 86 256 $39, 876. 74 $24, 426. 74 257 $40, 032. 50 $24, 502. 63 258 $40, 188. 27 $24, 578. 51

PAGE 100

91 App e ndix E ( Co nt inue d) Table E.1 ( Continued) 261 $40, 655. 58 $24, 806. 17 262 $40, 811. 35 $24, 882. 06 263 $40, 967. 12 $24, 957. 94 264 $41, 122. 88 $25, 033. 83 265 $41, 278. 65 $25, 109. 71 266 $41, 434. 42 $25, 185. 60 267 $41, 590. 19 $25, 261. 49 268 $41, 745. 96 $25, 337. 37 269 $41, 901. 73 $25, 413. 26 270 $42, 057. 50 $25, 489. 14 271 $42, 213. 26 $25, 565. 03 272 $42, 369. 03 $25, 640. 91 273 $42, 524. 80 $25, 716. 80 274 $42, 680. 57 $25, 792. 69 275 $42, 836. 34 $25, 868. 57 276 $42, 992. 11 $25, 944. 46 277 $43, 147. 87 $26, 020. 34 278 $43, 303. 64 $26, 096. 23 279 $43, 459. 41 $26, 172. 11 280 $43, 615. 18 $26, 248. 00 281 $43, 770. 95 $26, 323. 89 282 $43, 926. 72 $26, 399. 77 283 $44, 082. 49 $26, 475. 66 284 $44, 238. 25 $26, 551. 54 285 $44, 394. 02 $26, 627. 43 286 $44, 549. 79 $26, 703. 31 287 $44, 705. 56 $26, 779. 20 288 $44, 861. 33 $26, 855. 09 289 $45, 017. 10 $26, 930. 97 290 $45, 172. 87 $27, 006. 86 291 $45, 328. 63 $27, 082. 74 292 $45, 484. 40 $27, 158. 63 293 $45, 640. 17 $27, 234. 51 294 $45, 795. 94 $27, 310. 40 295 $45, 951. 71 $27, 386. 29 296 $46, 107. 48 $27, 462. 17 297 $46, 263. 24 $27, 538. 06 298 $46, 419. 01 $27, 613. 94 299 $46, 574. 78 $27, 689. 83 300 $46, 730. 55 $27, 765. 71

PAGE 101

92 App e ndix F Ca pac it y o f a M iniP ile Bas e d on So il This appendix contains the table with the value s used to deter mine the ca pacity of a mini-pile based on the ty pe of soil it is in. Ta ble F .1 Ca pa c ity of a Min iPile B a se d o n So il f t cl ay si l t sand m edi um and coar se cob bl es 1 4. 59920 5 4. 59920 5 7. 39157 9 13. 14058 6 27. 59523 27. 59523 44. 34947 78. 84351 11 50. 59125 50. 59125 81. 30737 144. 5464 16 73. 58728 73. 58728 118. 2653 210. 2494 21 96. 5833 96. 5833 155. 2232 275. 9523 26 119. 5793 119. 5793 192. 1811 341. 6552 31 142. 5753 142. 5753 229. 139 407. 3581 36 165. 5714 165. 5714 266. 0968 473. 0611 41 188. 5674 188. 5674 303. 0547 538. 764

PAGE 102

93 App e ndix G Co st P e r K ip R e sis te d Bas e d on So il This appendix contains the table used to ca lculate the c ost of a founda tion require d to resist a ce rtain uplift forc e as a function of the ty pe of soil used. Ta ble G. 1 Co st Pe r K ip R e sis te d ( Ge ne ra l So il Pr op e rt ie s) K ip s S o ft S a n d M e d ium S a n d H a rd S a n d S o ft C la y M e d ium C la y H a rd C la y C o n c re te Foo t er 0 5000 5000 5000 5000 5000 5000 0 1 5047 5043. 143 5039. 711 5026. 269 5018. 459 5014. 791 155. 77 2 5094 5086. 286 5079. 422 5052. 538 5036. 918 5029. 582 311. 54 3 5141 5129. 429 5119. 133 5078. 807 5055. 377 5044. 373 467. 31 4 5188 5172. 572 5158. 844 5105. 076 5073. 836 5059. 164 623. 08 5 5235 5215. 715 5198. 555 5131. 345 5092. 295 5073. 955 778. 85 6 5282 5258. 858 5238. 266 5157. 614 5110. 754 5088. 746 934. 62 7 5329 5302. 001 5277. 977 5183. 883 5129. 213 5103. 537 1090. 39 8 5376 5345. 144 5317. 688 5210. 152 5147. 672 5118. 328 1246. 16 9 5423 5388. 287 5357. 399 5236. 421 5166. 131 5133. 119 1401. 93 1 0 5 4 7 0 5 4 3 1 .4 3 5 3 9 7 .1 1 5 2 6 2 .6 9 5 1 8 4 .5 9 5 1 4 7 .9 1 1 5 5 7 .7 11 5517 5474. 573 5436. 821 5288. 959 5203. 049 5162. 701 1713. 47 12 5564 5517. 716 5476. 532 5315. 228 5221. 508 5177. 492 1869. 24 13 5611 5560. 859 5516. 243 5341. 497 5239. 967 5192. 283 2025. 01 14 5658 5604. 002 5555. 954 5367. 766 5258. 426 5207. 074 2180. 78 15 5705 5647. 145 5595. 665 5394. 035 5276. 885 5221. 865 2336. 55 16 5752 5690. 288 5635. 376 5420. 304 5295. 344 5236. 656 2492. 32 17 5799 5733. 431 5675. 087 5446. 573 5313. 803 5251. 447 2648. 09 18 5846 5776. 574 5714. 798 5472. 842 5332. 262 5266. 238 2803. 86 19 5893 5819. 717 5754. 509 5499. 111 5350. 721 5281. 029 2959. 63 2 0 5 9 4 0 5 8 6 2 .8 6 5 7 9 4 .2 2 5 5 2 5 .3 8 5 3 6 9 .1 8 5 2 9 5 .8 2 3 1 1 5 .4 21 5987 5906. 003 5833. 931 5551. 649 5387. 639 5310. 611 3271. 17 22 6034 5949. 146 5873. 642 5577. 918 5406. 098 5325. 402 3426. 94 23 6081 5992. 289 5913. 353 5604. 187 5424. 557 5340. 193 3582. 71 24 6128 6035. 432 5953. 064 5630. 456 5443. 016 5354. 984 3738. 48 25 6175 6078. 575 5992. 775 5656. 725 5461. 475 5369. 775 3894. 25 26 6222 6121. 718 6032. 486 5682. 994 5479. 934 5384. 566 4050. 02 27 6269 6164. 861 6072. 197 5709. 263 5498. 393 5399. 357 4205. 79 28 6316 6208. 004 6111. 908 5735. 532 5516. 852 5414. 148 4361. 56 29 6363 6251. 147 6151. 619 5761. 801 5535. 311 5428. 939 4517. 33 3 0 6 4 1 0 6 2 9 4 .2 9 6 1 9 1 .3 3 5 7 8 8 .0 7 5 5 5 3 .7 7 5 4 4 3 .7 3 4 6 7 3 .1 31 6457 6337. 433 6231. 041 5814. 339 5572. 229 5458. 521 4828. 87 32 6504 6380. 576 6270. 752 5840. 608 5590. 688 5473. 312 4984. 64 33 6551 6423. 719 6310. 463 5866. 877 5609. 147 5488. 103 5140. 41 34 6598 6466. 862 6350. 174 5893. 146 5627. 606 5502. 894 5296. 18 35 6645 6510. 005 6389. 885 5919. 415 5646. 065 5517. 685 5451. 95 36 6692 6553. 148 6429. 596 5945. 684 5664. 524 5532. 476 5607. 72 37 6739 6596. 291 6469. 307 5971. 953 5682. 983 5547. 267 5763. 49 38 6786 6639. 434 6509. 018 5998. 222 5701. 442 5562. 058 5919. 26 39 6833 6682. 577 6548. 729 6024. 491 5719. 901 5576. 849 6075. 03 4 0 6 8 8 0 6 7 2 5 .7 2 6 5 8 8 .4 4 6 0 5 0 .7 6 5 7 3 8 .3 6 5 5 9 1 .6 4 6 2 3 0 .8 41 6927 6768. 863 6628. 151 6077. 029 5756. 819 5606. 431 6386. 57

PAGE 103

94 App e ndix G (C ont inue d) Table G .1 (Continued) 42 6974 6812. 006 6667. 862 6103. 298 5775. 278 5621. 222 6542. 34 43 7021 6855. 149 6707. 573 6129. 567 5793. 737 5636. 013 6698. 11 44 7068 6898. 292 6747. 284 6155. 836 5812. 196 5650. 804 6853. 88 45 7115 6941. 435 6786. 995 6182. 105 5830. 655 5665. 595 7009. 65 46 7162 6984. 578 6826. 706 6208. 374 5849. 114 5680. 386 7165. 42 47 7209 7027. 721 6866. 417 6234. 643 5867. 573 5695. 177 7321. 19 48 7256 7070. 864 6906. 128 6260. 912 5886. 032 5709. 968 7476. 96 49 7303 7114. 007 6945. 839 6287. 181 5904. 491 5724. 759 7632. 73 5 0 7 3 5 0 7 1 5 7 .1 5 6 9 8 5 .5 5 6 3 1 3 .4 5 5 9 2 2 .9 5 5 7 3 9 .5 5 7 7 8 8 .5 51 7397 7200. 293 7025. 261 6339. 719 5941. 409 5754. 341 7944. 27 52 7444 7243. 436 7064. 972 6365. 988 5959. 868 5769. 132 8100. 04 53 7491 7286. 579 7104. 683 6392. 257 5978. 327 5783. 923 8255. 81 54 7538 7329. 722 7144. 394 6418. 526 5996. 786 5798. 714 8411. 58 55 7585 7372. 865 7184. 105 6444. 795 6015. 245 5813. 505 8567. 35 56 7632 7416. 008 7223. 816 6471. 064 6033. 704 5828. 296 8723. 12 57 7679 7459. 151 7263. 527 6497. 333 6052. 163 5843. 087 8878. 89 58 7726 7502. 294 7303. 238 6523. 602 6070. 622 5857. 878 9034. 66 59 7773 7545. 437 7342. 949 6549. 871 6089. 081 5872. 669 9190. 43 6 0 7 8 2 0 7 5 8 8 .5 8 7 3 8 2 .6 6 6 5 7 6 .1 4 6 1 0 7 .5 4 5 8 8 7 .4 6 9 3 4 6 .2 61 7867 7631. 723 7422. 371 6602. 409 6125. 999 5902. 251 9501. 97 62 7914 7674. 866 7462. 082 6628. 678 6144. 458 5917. 042 9657. 74 63 7961 7718. 009 7501. 793 6654. 947 6162. 917 5931. 833 9813. 51 64 8008 7761. 152 7541. 504 6681. 216 6181. 376 5946. 624 9969. 28 65 8055 7804. 295 7581. 215 6707. 485 6199. 835 5961. 415 10125. 05 66 8102 7847. 438 7620. 926 6733. 754 6218. 294 5976. 206 10280. 82 67 8149 7890. 581 7660. 637 6760. 023 6236. 753 5990. 997 10436. 59 68 8196 7933. 724 7700. 348 6786. 292 6255. 212 6005. 788 10592. 36 69 8243 7976. 867 7740. 059 6812. 561 6273. 671 6020. 579 10748. 13 7 0 8 2 9 0 8 0 2 0 .0 1 7 7 7 9 .7 7 6 8 3 8 .8 3 6 2 9 2 .1 3 6 0 3 5 .3 7 1 0 9 0 3 .9 71 8337 8063. 153 7819. 481 6865. 099 6310. 589 6050. 161 11059. 67 72 8384 8106. 296 7859. 192 6891. 368 6329. 048 6064. 952 11215. 44 73 8431 8149. 439 7898. 903 6917. 637 6347. 507 6079. 743 11371. 21 74 8478 8192. 582 7938. 614 6943. 906 6365. 966 6094. 534 11526. 98 75 8525 8235. 725 7978. 325 6970. 175 6384. 425 6109. 325 11682. 75 76 8572 8278. 868 8018. 036 6996. 444 6402. 884 6124. 116 11838. 52 77 8619 8322. 011 8057. 747 7022. 713 6421. 343 6138. 907 11994. 29 78 8666 8365. 154 8097. 458 7048. 982 6439. 802 6153. 698 12150. 06 79 8713 8408. 297 8137. 169 7075. 251 6458. 261 6168. 489 12305. 83 8 0 8 7 6 0 8 4 5 1 .4 4 8 1 7 6 .8 8 7 1 0 1 .5 2 6 4 7 6 .7 2 6 1 8 3 .2 8 1 2 4 6 1 .6 81 8807 8494. 583 8216. 591 7127. 789 6495. 179 6198. 071 12617. 37 82 8854 8537. 726 8256. 302 7154. 058 6513. 638 6212. 862 12773. 14 83 8901 8580. 869 8296. 013 7180. 327 6532. 097 6227. 653 12928. 91 84 8948 8624. 012 8335. 724 7206. 596 6550. 556 6242. 444 13084. 68 85 8995 8667. 155 8375. 435 7232. 865 6569. 015 6257. 235 13240. 45 86 9042 8710. 298 8415. 146 7259. 134 6587. 474 6272. 026 13396. 22 87 9089 8753. 441 8454. 857 7285. 403 6605. 933 6286. 817 13551. 99 88 9136 8796. 584 8494. 568 7311. 672 6624. 392 6301. 608 13707. 76 89 9183 8839. 727 8534. 279 7337. 941 6642. 851 6316. 399 13863. 53 9 0 9 2 3 0 8 8 8 2 .8 7 8 5 7 3 .9 9 7 3 6 4 .2 1 6 6 6 1 .3 1 6 3 3 1 .1 9 1 4 0 1 9 .3

PAGE 104

95 App e ndix G (C ont inue d) Table G .1 (Continued) 92 9324 8969. 156 8653. 412 7416. 748 6698. 228 6360. 772 14330. 84 93 9371 9012. 299 8693. 123 7443. 017 6716. 687 6375. 563 14486. 61 94 9418 9055. 442 8732. 834 7469. 286 6735. 146 6390. 354 14642. 38 95 9465 9098. 585 8772. 545 7495. 555 6753. 605 6405. 145 14798. 15 96 9512 9141. 728 8812. 256 7521. 824 6772. 064 6419. 936 14953. 92 97 9559 9184. 871 8851. 967 7548. 093 6790. 523 6434. 727 15109. 69 98 9606 9228. 014 8891. 678 7574. 362 6808. 982 6449. 518 15265. 46 99 9653 9271. 157 8931. 389 7600. 631 6827. 441 6464. 309 15421. 23 100 9700 9314. 3 8971. 1 7626. 9 6845. 9 6479. 1 15577 101 9747 9357. 443 9010. 811 7653. 169 6864. 359 6493. 891 15732. 77 102 9794 9400. 586 9050. 522 7679. 438 6882. 818 6508. 682 15888. 54 103 9841 9443. 729 9090. 233 7705. 707 6901. 277 6523. 473 16044. 31 104 9888 9486. 872 9129. 944 7731. 976 6919. 736 6538. 264 16200. 08 105 9935 9530. 015 9169. 655 7758. 245 6938. 195 6553. 055 16355. 85 106 9982 9573. 158 9209. 366 7784. 514 6956. 654 6567. 846 16511. 62 107 10029 9616. 301 9249. 077 7810. 783 6975. 113 6582. 637 16667. 39 108 10076 9659. 444 9288. 788 7837. 052 6993. 572 6597. 428 16823. 16 109 10123 9702. 587 9328. 499 7863. 321 7012. 031 6612. 219 16978. 93 1 1 0 1 0 1 7 0 9 7 4 5 .7 3 9 3 6 8 .2 1 7 8 8 9 .5 9 7 0 3 0 .4 9 6 6 2 7 .0 1 1 7 1 3 4 .7 111 10217 9788. 873 9407. 921 7915. 859 7048. 949 6641. 801 17290. 47 112 10264 9832. 016 9447. 632 7942. 128 7067. 408 6656. 592 17446. 24 113 10311 9875. 159 9487. 343 7968. 397 7085. 867 6671. 383 17602. 01 114 10358 9918. 302 9527. 054 7994. 666 7104. 326 6686. 174 17757. 78 115 10405 9961. 445 9566. 765 8020. 935 7122. 785 6700. 965 17913. 55 116 10452 10004. 588 9606. 476 8047. 204 7141. 244 6715. 756 18069. 32 117 10499 10047. 731 9646. 187 8073. 473 7159. 703 6730. 547 18225. 09 118 10546 10090. 874 9685. 898 8099. 742 7178. 162 6745. 338 18380. 86 119 10593 10134. 017 9725. 609 8126. 011 7196. 621 6760. 129 18536. 63 1 2 0 1 0 6 4 0 1 0 1 7 7 .1 6 9 7 6 5 .3 2 8 1 5 2 .2 8 7 2 1 5 .0 8 6 7 7 4 .9 2 1 8 6 9 2 .4 121 10687 10220. 303 9805. 031 8178. 549 7233. 539 6789. 711 18848. 17 122 10734 10263. 446 9844. 742 8204. 818 7251. 998 6804. 502 19003. 94 123 10781 10306. 589 9884. 453 8231. 087 7270. 457 6819. 293 19159. 71 124 10828 10349. 732 9924. 164 8257. 356 7288. 916 6834. 084 19315. 48 125 10875 10392. 875 9963. 875 8283. 625 7307. 375 6848. 875 19471. 25 126 10922 10436. 018 10003. 586 8309. 894 7325. 834 6863. 666 19627. 02 127 10969 10479. 161 10043. 297 8336. 163 7344. 293 6878. 457 19782. 79 128 11016 10522. 304 10083. 008 8362. 432 7362. 752 6893. 248 19938. 56 129 11063 10565. 447 10122. 719 8388. 701 7381. 211 6908. 039 20094. 33 1 3 0 1 1 1 1 0 1 0 6 0 8 .5 9 1 0 1 6 2 .4 3 8 4 1 4 .9 7 7 3 9 9 .6 7 6 9 2 2 .8 3 2 0 2 5 0 .1 131 11157 10651. 733 10202. 141 8441. 239 7418. 129 6937. 621 20405. 87 132 11204 10694. 876 10241. 852 8467. 508 7436. 588 6952. 412 20561. 64 133 11251 10738. 019 10281. 563 8493. 777 7455. 047 6967. 203 20717. 41 134 11298 10781. 162 10321. 274 8520. 046 7473. 506 6981. 994 20873. 18 135 11345 10824. 305 10360. 985 8546. 315 7491. 965 6996. 785 21028. 95 136 11392 10867. 448 10400. 696 8572. 584 7510. 424 7011. 576 21184. 72 137 11439 10910. 591 10440. 407 8598. 853 7528. 883 7026. 367 21340. 49 138 11486 10953. 734 10480. 118 8625. 122 7547. 342 7041. 158 21496. 26 139 11533 10996. 877 10519. 829 8651. 391 7565. 801 7055. 949 21652. 03 1 4 0 1 1 5 8 0 1 1 0 4 0 .0 2 1 0 5 5 9 .5 4 8 6 7 7 .6 6 7 5 8 4 .2 6 7 0 7 0 .7 4 2 1 8 0 7 .8

PAGE 105

96 App e ndix G (C ont inue d) Table G .1 (Continued) 142 11674 11126. 306 10638. 962 8730. 198 7621. 178 7100. 322 22119. 34 143 11721 11169. 449 10678. 673 8756. 467 7639. 637 7115. 113 22275. 11 144 11768 11212. 592 10718. 384 8782. 736 7658. 096 7129. 904 22430. 88 145 11815 11255. 735 10758. 095 8809. 005 7676. 555 7144. 695 22586. 65 146 11862 11298. 878 10797. 806 8835. 274 7695. 014 7159. 486 22742. 42 147 11909 11342. 021 10837. 517 8861. 543 7713. 473 7174. 277 22898. 19 148 11956 11385. 164 10877. 228 8887. 812 7731. 932 7189. 068 23053. 96 149 12003 11428. 307 10916. 939 8914. 081 7750. 391 7203. 859 23209. 73 1 5 0 1 2 0 5 0 1 1 4 7 1 .4 5 1 0 9 5 6 .6 5 8 9 4 0 .3 5 7 7 6 8 .8 5 7 2 1 8 .6 5 2 3 3 6 5 .5 151 12097 11514. 593 10996. 361 8966. 619 7787. 309 7233. 441 23521. 27 152 12144 11557. 736 11036. 072 8992. 888 7805. 768 7248. 232 23677. 04 153 12191 11600. 879 11075. 783 9019. 157 7824. 227 7263. 023 23832. 81 154 12238 11644. 022 11115. 494 9045. 426 7842. 686 7277. 814 23988. 58 155 12285 11687. 165 11155. 205 9071. 695 7861. 145 7292. 605 24144. 35 156 12332 11730. 308 11194. 916 9097. 964 7879. 604 7307. 396 24300. 12 157 12379 11773. 451 11234. 627 9124. 233 7898. 063 7322. 187 24455. 89 158 12426 11816. 594 11274. 338 9150. 502 7916. 522 7336. 978 24611. 66 159 12473 11859. 737 11314. 049 9176. 771 7934. 981 7351. 769 24767. 43 1 6 0 1 2 5 2 0 1 1 9 0 2 .8 8 1 1 3 5 3 .7 6 9 2 0 3 .0 4 7 9 5 3 .4 4 7 3 6 6 .5 6 2 4 9 2 3 .2


xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam Ka
controlfield tag 001 001919937
003 fts
005 20071228085954.0
006 m||||e|||d||||||||
007 cr mnu|||uuuuu
008 071228s2006 flu sbm 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0001828
040
FHM
c FHM
035
(OCoLC)185056750
049
FHMM
090
TA145 (ONLINE)
1 100
Aguilar, Julio.
4 245
The use of mini-pile anchors to resist uplift forces in lightweight structures
h [electronic resource] /
by Julio Aguilar.
260
[Tampa, Fla] :
b University of South Florida,
2006.
3 520
ABSTRACT: In the state of Florida one of the primary factors which influences design of structures is the effect of hurricane force winds on structures. These forces can be greater than any other force encountered throughout the lifetime of said structure. For this reason, designing a structure to resist such forces can greatly increase the cost and time required for completing construction projects. Traditionally, large concrete footings have been utilized to resist wind-induced uplift forces. These footings do little more than act as large reaction masses to weigh down the building. An alternative and little-used method for resisting these large uplift forces is the use of mini-pile anchors. Mini-pile anchors generate side shear at the interface between the pile and the soil which resists the uplift forces.This thesis provides an overview of the design methods used to estimate wind-induced uplift forces and several foundation options used to withstand these forces. More traditional/less complicated foundations are compared to the more sophisticated mini-pile method which makes more efficient use of construction materials. The cost efficiency of each method is evaluated which provides a guideline for where and when a given foundation option is appropriate.Finally, a case study where the new method was used is presented which documents the design and construction procedures.
502
Thesis (M.S.C.E.)--University of South Florida, 2006.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
538
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
500
Title from PDF of title page.
Document formatted into pages; contains 96 pages.
590
Adviser: A. G. Mullins, Ph.D.
653
Hurricane.
Wind.
Tension.
Soil strength.
Foundation design.
690
Dissertations, Academic
z USF
x Civil Engineering
Masters.
773
t USF Electronic Theses and Dissertations.
0 856
u http://digital.lib.usf.edu/?e14.1828