On a conjecture involving Fermat's Little Theorem

Citation
On a conjecture involving Fermat's Little Theorem

Material Information

Title:
On a conjecture involving Fermat's Little Theorem
Creator:
Clark, John
Place of Publication:
[Tampa, Fla]
Publisher:
University of South Florida
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Number Theory
Prime Numbers
Divisibility
Congruences
Sums of powers of consecutive integers
Dissertations, Academic -- Mathematics -- Masters -- USF ( lcsh )
Genre:
non-fiction ( marcgt )

Notes

Thesis:
Thesis (M.A.)--University of South Florida, 2008.
Bibliography:
Includes bibliographical references.
System Details:
Mode of access: World Wide Web.
System Details:
System requirements: World Wide Web browser and PDF reader.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains 48 pages.
Statement of Responsibility:
by John Clark.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
002000383 ( ALEPH )
318898057 ( OCLC )
E14-SFE0002485 ( USFLDC DOI )
e14.2485 ( USFLDC Handle )

Postcard Information

Format:
Book

Downloads

This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam Ka
controlfield tag 001 002000383
003 fts
005 20090421094310.0
006 m||||e|||d||||||||
007 cr mnu|||uuuuu
008 090421s2008 flu s 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0002485
035
(OCoLC)318898057
040
FHM
c FHM
049
FHMM
090
QA36 (Online)
1 100
Clark, John.
0 245
On a conjecture involving Fermat's Little Theorem
h [electronic resource] /
by John Clark.
260
[Tampa, Fla] :
b University of South Florida,
2008.
500
Title from PDF of title page.
Document formatted into pages; contains 48 pages.
502
Thesis (M.A.)--University of South Florida, 2008.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
538
Mode of access: World Wide Web.
System requirements: World Wide Web browser and PDF reader.
590
Advisor: Stephen Suen, Ph.D.
653
Number Theory
Prime Numbers
Divisibility
Congruences
Sums of powers of consecutive integers
690
Dissertations, Academic
z USF
x Mathematics
Masters.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.2485



PAGE 1

OnaConjectureInvolvingFermat'sLittleTheorembyJohnClarkAthesissubmittedinpartialfulllmentoftherequirementsforthedegreeofMasterofArtsDepartmentofMathematicsandStatisticsCollegeofArtsandSciencesUniversityofSouthFloridaMajorProfessor:StephenSuen,Ph.D.MohamedElhamdadi,Ph.D.ArthurDanielyan,Ph.D.DateofApproval:May13,2008Keywords:NumberTheory,PrimeNumbers,Divisibility,Congruences,SumsofPowersofConsecutiveIntegerscCopyright2008,JohnClark

PAGE 2

TomywonderfulanceeMarcia,yourloveandsupportkeptmegoing.

PAGE 3

ACKNOWLEDGEMENTSIwouldliketoextendaspecialthankyoutoDr.StephenSuen.Iamtrulygratefulforyourencouragement,guidance,andhardwork.

PAGE 4

TABLEOFCONTENTSLISTOFFIGURESiiABSTRACTiii1.INTRODUCTION12.BACKGROUND93.RESULTS193.1Overview193.2ProofofTheorem3.1203.3ProofofTheorem3.2253.4ProofofTheorem3.3273.5ProofofTheorem3.4313.6ProofofTheorem1.2333.7ProofofTheorem1.3343.8ProofofTheorem1.4354.COMPUTATIONS36BIBLIOGRAPHY48i

PAGE 5

LISTOFFIGURESFig.4.1:MapleCodePart142Fig.4.2:MapleCodePart243Fig.4.3:MapleCodePart344Fig.4.4:OverviewFlowchart45Fig.4.5:Top-DownFlowchart46Fig.4.6:Bottom-UpFlowchart47ii

PAGE 6

ONACONJECTUREINVOLVINGFERMAT'SLITTLETHEOREMJOHNCLARKABSTRACTUsingFermat'sLittleTheorem,itcanbeshownthatPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 23.359 0 Td[(1modmifmisprime.Ithasbeenconjecturedthattheconverseistrueaswell.Namely,thatPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 22.54 0 Td[(1modmonlyifmisprime.Weshallpresentsomenecessaryandsucientconditionsfortheconjecturetohold,andwewilldemonstratethatnocoun-terexampleexistsform1012.iii

PAGE 7

1.INTRODUCTIONMathematicsisthequeenofthesciencesandnumbertheoryisthequeenofmathe-matics."SosaysCarlFriedrichGauss,anineteenthcenturynumbertheorist.Numbertheory,thesubjectofmuchofhisstudy,isthebranchofpuremathematicsconcernedwiththepropertiesandrelationshipsofnumbers,specicallyintegers.Wewishtoconsideraproblemdealingwithtwoconceptsfromelementarynum-bertheory:primalityandcongruence.Fermat'sLittleTheoremstatesthatifpisaprimeintegerandaisapositiveintegerwithp-a,thenap)]TJ/F17 7.97 Tf 6.586 0 Td[(11modp.AknownconsequenceofFermat'sLittleTheoremisthatifpisprime,thenPpi=1ip)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 23.094 0 Td[(1modp.InKennethH.Rosen'sbookElementaryNumberTheoryandItsApplica-tionsthEdition[8],readersaretaskedtoprovethisasanexerciseonpage221.There,itisconjecturedthattheconverseoftheproblemistrueaswell.Namely,thatPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modmonlyifmisprime.Conjectureslikethesearecommoninmathematics.Forinstance,Wilson'sTheo-remstatesthatifpisaprimeinteger,thenp)]TJ/F15 11.955 Tf 12.427 0 Td[(1!)]TJ/F15 11.955 Tf 23.096 0 Td[(1modp.Itturnedoutthattheconversewastrueaswell.Namely,thatifn>1isapositiveinteger,thenn)]TJ/F15 11.955 Tf 11.968 0 Td[(1!)]TJ/F15 11.955 Tf 21.95 0 Td[(1modnonlyifnisprime.Ourgoalisverysimilar.Weknowthatifpisprime,thenPpi=1ip)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 22.342 0 Td[(1modp,andwewouldliketoprovethatifmisapositiveinteger,thenPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.917 0 Td[(1modmonlyifmisprime.Whileunabletoprovetheconjecture,wecanprovethatmmustsatisfysomestrongconditionsinorderforthecongruencetohold.Westatethesenecessaryandsucientconditionsasatheorem.Theorem1.1.Letm3beaninteger.Then,Pmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 23.458 0 Td[(1modmifandonlyifmisaproductofdistinctoddprimessuchthatmpmodp2p)]TJ/F15 11.955 Tf 12.487 0 Td[(1foreachprimedivisorpofm.ThenextthreethoeremsareconsequencesofTheorem1.1.Theorem1.2.Letm3beanintegerandletp1,p2beanytwoprimedivisorsofm.IfPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modm,thenp261modp1.Theorem1.3.Letm3beaninteger.IfPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 24.586 0 Td[(1modm,thenmcannotbeaproductoftwoprimes.Theorem1.4.Letm3beaninteger.IfPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 24.586 0 Td[(1modm,thenmcannotbeaproductofthreeprimes.1

PAGE 8

Wedelaytheseproofssothatwemaypresentsomebackgrounddenitionsandtheo-remsinChapter2.InChapter3wewillproveTheorem1.1usingaseriesofsmallertheorems,andthenwewillproveTheorems1.2,1.3,and1.4.Letusnowconsidersomeapplicationsofthesetheorems.Considerapositiveintegerm3satisfyingPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 23.607 0 Td[(1modm.If3jm,thenbyTheorem1.2nootherprimedivisorpofmmaybecongruentto1modulo3.SincemmustbeaproductofdistinctoddprimesbyTheorem1.1,p60mod3,meaningp2)]TJ/F15 11.955 Tf 22.609 0 Td[(1mod3.Thismeansthatallotherprimedivisorsofmmustbeoftheform3k)]TJ/F15 11.955 Tf 11.431 0 Td[(1,wherekissomepositiveinteger.Sincemmustbeodd,weseethatallprimedivisorsofmotherthan3mustactuallybeoftheform6k)]TJ/F15 11.955 Tf 11.257 0 Td[(1.Hence,if3jm,then7-m,13-m,19-m,31-m,etc.Similarly,if5jm,thenbyTheorem1.2nootherprimedivisorofmmaybeoftheform5k+1,wherekissomepositiveinteger.Sincemmustbeodd,weseethatnoprimedivisorofmmayactuallybeoftheform10k+1.Thus,if5jm,then11-m,31-m,41-m,etc.NotethatTheorems1.3and1.4implythatanycompositemwouldhavetobetheproductofatleastfourdistinctoddprimes,sothesmallestpossiblequadrupleofprimedivisorsofmis3;5;17;23.Infact,morecanbesaid.Considerthefollowingexample.Example1.1.Ifm3isanintegersatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 24.024 0 Td[(1modm,thenm6=3517p,foranyprimep.Proof.Assumeforthepurposeofcontradictionthatsuchanmexists.Fromabove,m=3517pimpliesp23.ByTheorem1.1,mpmodp2p)]TJ/F15 11.955 Tf 12.515 0 Td[(1,sowemaywritem=p2p)]TJ/F15 11.955 Tf 12.226 0 Td[(1X+pforsomepositiveintegerX.Thatis,3517p=p2p)]TJ/F15 11.955 Tf 11.654 0 Td[(1X+p.Dividingthroughbypleaves3517=pp)]TJ/F15 11.955 Tf 11.655 0 Td[(1X+1.Thisimpliesthatpp)]TJ/F15 11.955 Tf 12.292 0 Td[(1X=3517)]TJ/F15 11.955 Tf 12.292 0 Td[(1=254.Butsincep23andX1,wemusthavepp)]TJ/F15 11.955 Tf 11.985 0 Td[(1X233)]TJ/F15 11.955 Tf 11.985 0 Td[(11=506.Thisisacontradiction,since2546506.Hence,nosuchmcanexist. Beforeconsideringmoreexamples,wewishtogeneralizethetechniqueweusedintheprecedingproof.Lemma1.5.Letm3andQ7beintegers,andletp1
PAGE 9

ItfollowsthatQp1=p2p2)]TJ/F15 11.955 Tf 11.955 0 Td[(1X+1Qp1p2p2)]TJ/F15 11.955 Tf 11.956 0 Td[(1+1sinceX1Qp1p1+2p1+2)]TJ/F15 11.955 Tf 11.955 0 Td[(1+1sincep2p1+2Qp1p1+2p1+1+1Qp1p12+3p1+3p12+3p1)]TJ/F19 11.955 Tf 11.955 0 Td[(Qp1+30p12)]TJ/F15 11.955 Tf 11.955 0 Td[(Q)]TJ/F15 11.955 Tf 11.955 0 Td[(3p1+30:Nowbythequadraticformula,thisgivesQ)]TJ/F15 11.955 Tf 11.955 0 Td[(3)]TJ/F24 11.955 Tf 11.955 10.222 Td[(p Q)]TJ/F15 11.955 Tf 11.955 0 Td[(32)]TJ/F15 11.955 Tf 11.955 0 Td[(12 2p1Q)]TJ/F15 11.955 Tf 11.955 0 Td[(3+p Q)]TJ/F15 11.955 Tf 11.955 0 Td[(32)]TJ/F15 11.955 Tf 11.956 0 Td[(12 2:Hence,p1Q)]TJ/F15 11.955 Tf 11.955 0 Td[(3+p Q)]TJ/F15 11.955 Tf 11.956 0 Td[(32)]TJ/F15 11.955 Tf 11.955 0 Td[(12 2p1
PAGE 10

WewilluseLemma1.5inthenexttwoexamples.Example1.2.Ifm3isanintegersatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 24.024 0 Td[(1modm,thenm6=35p1p2,foranytwoprimesp1andp2.Proof.Assumeforthepurposeofcontradictionthatsuchanmexists.ByTheorem1.1,mmustbeaproductofdistinctoddprimes,sowemayassumewithoutlossofgeneralitythat511.Thiscontradictionshowsthatnosuchmcanexist. Example1.3.Ifm3isanintegersatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 24.024 0 Td[(1modm,thenm6=57p1p2,foranytwoprimesp1andp2.Proof.Assumeforthepurposeofcontradictionthatsuchanmexists.ByTheorem1.1,mmustbeaproductofdistinctoddprimes,andbyTheorem1.2,p1;p26=3since71mod3,sowemayassumewithoutlossofgeneralitythat731ifp16=13;17;19;23.Letusconsiderthesefoursituations.Ifp1=13,then5713=p2p2)]TJ/F15 11.955 Tf 11 0 Td[(1X+1forsomepositiveintegerX.Ifp2=17;19;or23,weseethattheequalityfailstohold,sop237,contradictingthefactthatp233.Hence,p16=13.Similarly,ifp1=17,then5717=p2p2)]TJ/F15 11.955 Tf 12.94 0 Td[(1X+1forsomepositiveintegerX.Ifp2=19or23,weseethattheequalityfailstohold,sop237,contradictingthefactthatp233.Hence,p16=17.Ifp1=19,then5719=p2p2)]TJ/F15 11.955 Tf 11.007 0 Td[(1X+1forsomepositiveintegerX.Ifp2=23,weagainseethattheequalityfailstohold,meaningp237.Thiscontradictionshowsthatp16=19.Finally,ifp1=23,thenp237,contradictingthefactthatp233.Hence,p16=23.Sincep16=13;17;19;23,weseethatp1>31,contradictingthefactthatp131.Thiscontradictionshowsthatnosuchmcanexist. Usingthissametechnique,withonlytwocasestocheck,wecanshowthatm6=311p1p2.Withsignicantlymorecasestocheck,wecanshowthatm6=711p1p2.Usingaslightlydierentstrategy,wecanshowthatm6=3517p1p2.Thisisournextexample.4

PAGE 11

Example1.4.Ifm3isanintegersatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 24.024 0 Td[(1modm,thenm6=3517p1p2,foranytwoprimesp1andp2.Proof.Assumeforthepurposeofcontradictionthatsuchanmexists.ByTheo-rem1.1,mmustbeaproductofdistinctoddprimes,andbyTheorem1.2,p1;p26=7;11;13,sowemayassumewithoutlossofgeneralitythat17<>:m3mod32)]TJ/F15 11.955 Tf 11.955 0 Td[(1m5mod52)]TJ/F15 11.955 Tf 11.955 0 Td[(1m17mod1727)]TJ/F15 11.955 Tf 11.955 0 Td[(1:Thatis,8><>:m3mod18m5mod100m17mod4624:Wewishtosolvethissystemofcongruences.Thethirdlinetellsusthatm=4624q+17forsomepositiveintegerq.Substitutingthisintothesecondlinegives4624q+175mod100,whichreducesto24q+175mod100since462424mod100.Now,24q+175mod10024q)]TJ/F15 11.955 Tf 21.918 0 Td[(12mod100122q12)]TJ/F15 11.955 Tf 9.299 0 Td[(1mod1002q)]TJ/F15 11.955 Tf 21.918 0 Td[(1mod25byTheorem2.212q24mod25since)]TJ/F15 11.955 Tf 9.299 0 Td[(124mod25q12mod25byCorollary2.22q=25`+12;forsomenonnegativeinteger`.Sincem=4624q+17,weseem=4624`+12+17=115600`+55505.Substi-tutingthisintotherstlineofoursystemofcongruencesgives115600`+555053mod18,whichreducesto4`+113mod18.Now,5

PAGE 12

4`+113mod184`)]TJ/F15 11.955 Tf 21.917 0 Td[(8mod18`)]TJ/F15 11.955 Tf 21.917 0 Td[(2mod9byTheorem2.21`7mod9`=9k+7;forsomenonnegativeintegerk.Sincem=115600`+55505,weseem=115600k+7+55505=1040400k+864705=3517391+4080k.Moreover,m=3517p1p2,sothisimpliesthatp1p2=3391+4080k,forsomenonnegativeintegerk.ByLemma1.5,p1251andp2253,sop1p263503.Thismeansthatk14.Thus,inordertoderiveacontradiction,weneedonlycheckthefteencases,k=0;1;2;:::;14.First,ifk=0,wewouldhavep1p2=3391,aprimenumber.Thiscontradictionshowsthatk6=0.Ifk=1,wewouldhavep1p2=3391+4080=7471=31241.But311mod5,contradictingTheorem1.2.Hence,k6=1.Ifk=2,wewouldhavep1p2=3391+24080=11551,aprimenumber.Thiscontradictionshowsthatk6=2.Ifk=3,wewouldhavep1p2=3391+34080=15631=721129,aprod-uctoffourprimes.Thiscontradictionshowsthatk6=3.Ifk=4,wewouldhavep1p2=3391+44080=19711=23857,contradict-ingthefactthatp2253.Hence,k6=4.Ifk=5,wewouldhavep1p2=3391+54080=23791=37643,contradict-ingthefactthatp2253.Hence,k6=5.Ifk=6,wewouldhavep1p2=3391+64080=27871=47593,contradict-ingthefactthatp2253.Hence,k6=6.Ifk=7,wewouldhavep1p2=3391+74080=31951=89359,contradict-ingthefactthatp2253.Hence,k6=7.Ifk=8,wewouldhavep1p2=3391+84080=36031=137264,contradict-ingthefactthatp2253.Hence,k6=8.6

PAGE 13

Ifk=9,wewouldhavep1p2=3391+94080=40111,aprimenumber.Thiscontradictionshowsthatk6=9.Ifk=10,wewouldhavep1p2=3391+104080=44191=759107,aproductofthreeprimes.Thiscontradictionshowsthatk6=10.Ifk=11,wewouldhavep1p2=3391+114080=48271,aprimenumber.Thiscontradictionshowsthatk6=11.Ifk=12,wewouldhavep1p2=3391+124080=52351=134027,contra-dictingthefactthatp2253.Hence,k6=12.Ifk=13,wewouldhavep1p2=3391+134080=56431,aprimenumber.Thiscontradictionshowsthatk6=13.Finally,ifk=14,wewouldhavep1p2=3391+144080=60511=115501,contradictingthefactthatp2253.Hence,k6=14.Thus,nopositiveintegerkexistssothatm=3517391+4080k,meaningm6=3517p1p2. Ingeneral,ifmisapositiveintegersatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 26.011 0 Td[(1modm,andp1p2pk)]TJ/F17 7.97 Tf 6.586 0 Td[(2aredistinctoddprimes,thenbycheckingnitelymanycaseswecanshowthatm6=p1p2pk)]TJ/F17 7.97 Tf 6.586 0 Td[(2pk)]TJ/F17 7.97 Tf 6.587 0 Td[(1pkforanytwoprimespk)]TJ/F17 7.97 Tf 6.586 0 Td[(1;pk.ThisfollowsdirectlyfromLemma1.5,whichplacesupperboundsonpk)]TJ/F17 7.97 Tf 6.586 0 Td[(1;pk.Wementionthatthedicultyinproducingmoreexampleslikethelastthreeisthatastheknownprimedivisorsofmincreaseinmagnitude,Theorem1.2becomeslessusefulatrulingoutotherpotentialprimedivisors,leavingmorecasesforustocheck.Sowhileweneedonlychecknitelymanycases,thismaystilltakequitesometime.Notethatifweallowmtohavemorethantwounknownprimedivisors,thedicultyincreasessignicantly.Luckily,computerscandothesetypesofcalculationsquitequickly,soinChapter4wewillcombineourresultswithsomecomputerprogrammingtodemonstratethatnocounterexampletotheconjectureexistsformlessthanorequaltoonetrillion.Inournalexample,wewishtoexploitthefactweusedearlierthatanyintegermustbecongruenttoeither)]TJ/F15 11.955 Tf 9.298 0 Td[(1;0;or1;modulo3.Thespecialness"ofthesmallmagnitudeof3willallowustopartiallyovercomethedicultyofconsideringcaseswhenmhasmorethantwounknownprimedivisors.Example1.5.Ifm3isanintegersatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 24.024 0 Td[(1modm,thenm6=3p1p2p3pr,foranyoddnumberofprimesp1;p2;p3;:::pr.7

PAGE 14

Proof.Letm=3p1p2p3prbeanintegersatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modm.Wewillshowthatrmustbeeven.ByTheorem1.1,misaproductofdistinctoddprimesandm3mod32)]TJ/F15 11.955 Tf 11.955 0 Td[(1.Thus,m3mod18im 31mod6;byTheorem2.21,since3jm.Nowletp>3beaprimedivisorofm.Recall,byTheorem1.2,p=6k)]TJ/F15 11.955 Tf 11.955 0 Td[(1forsomepositiveintegerk.So,m 3=k1)]TJ/F15 11.955 Tf 11.955 0 Td[(1k2)]TJ/F15 11.955 Tf 11.955 0 Td[(1kr)]TJ/F15 11.955 Tf 11.955 0 Td[(1;forsomepositiveintegersk1;k2;:::;kr.Nowobservethatk1)]TJ/F15 11.955 Tf 11.955 0 Td[(1k2)]TJ/F15 11.955 Tf 11.955 0 Td[(1kr)]TJ/F15 11.955 Tf 11.955 0 Td[(1)]TJ/F15 11.955 Tf 9.299 0 Td[(1rmod6:Thus,m 31mod6k1)]TJ/F15 11.955 Tf 11.955 0 Td[(1k2)]TJ/F15 11.955 Tf 11.955 0 Td[(1kr)]TJ/F15 11.955 Tf 11.955 0 Td[(11mod6)]TJ/F15 11.955 Tf 9.298 0 Td[(1r1mod6;whichimpliesthatrmustbeeven. Specically,thisshowsthatifmisanintegersatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 22.665 0 Td[(1modm,thenm6=3p1p2p3,foranythreeprimesp1p2p3.WeconcludethischapterbymentioningthattheconjecturethatPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 23.446 0 Td[(1modmonlyifmisprimeissimilarinasensetotheconjecturethatapositiveintegerisperfectonlyifitisevenanintegerisperfectifitisequaltothesumofitsproperpositivedivisors.Whilemathematicianshavebeenunabletoprovethatnooddperfectnumbersexist,theyhaveprovenmanyconditionsthatwouldhavetobemetinorderforanoddintegertobeperfect,andtheyhaveshownthatnooddperfectnumberlessthan10300existsformoreinformationonthesearchforanoddperfectnumber,see[7].Inourcase,whilewecannotprovetheconjecturethatPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 23.142 0 Td[(1modmonlyifmisprime,wecanprovesomestrongconditionsonmthatmustbesatisedformtobecomposite,andwewillshowthatnocounterexampleexistsform1012.8

PAGE 15

2.BACKGROUNDInthischapter,wepresentthedenitionsandtheoremsthatserveasthefoundationforourwork.Restatedhereinourownwords,theseknownresultscanbefoundinsuchnumbertheorytextsasElementaryNumberTheorybyGarethJones[4],ElementaryNumberTheorywithApplicationsbyThomasKoshy[5],ElementaryIn-troductiontoNumberTheorybyCalvinLong[6],andElementaryNumberTheoryandItsApplicationsbyKennethRosen[8].Forbrevity,weshallonlyincludesomeofthemoreinterestingproofs.Webeginwiththeconceptofdivisibility.Denition.Ifaandbareintegers,thenwesaythatadividesbifthereisanintegercsuchthatb=ac.Ifadividesb,wealsosaythataisadivisororfactorofbandthatbisamultipleofa.Ifadividesbwewriteajb,andifadoesnotdividebwewritea-b.Thefollowingarethreewell-knownpropertiesofdivisibility.Theorem2.1.Ifa;b;andcareintegerswithajbandbjc,thenajc.Theorem2.2.Ifa;b;m;andnareintegers,andifcjaandcjb,thencjma+nb.Theorem2.3.TheDivisionAlgorithm.Ifaandbareintegerssuchthatb>0,thenthereareuniqueintergersqandrsuchthata=bq+rwith0r
PAGE 16

Theorem2.4.Everypositiveintegergreaterthan1hasaprimedivisor.Theorem2.5.Thereareinnitelymanyprimes.Theorem2.6.Ifnisacompositeinteger,thennhasaprimefactornotexceedingp n.Denition.Ifxisarealnumber,thentheprimecountingfunctionxdenotesthenumberofprimesnotexceedingx.Theorem2.7.ThePrimeNumberTheorem.Ifxisarealnumber,thenxisasymptotictox=lnx.ThePrimeNumberTheoremhasaninterestingcorollary.Considerthesetofallpositiveintegerslessthanorequaltosomelargepositiveintegerx.Bythetheorem,wewouldexpectaboutx=lnxprimestobeinthiscollectionofxintegers.So,ifwerandomlyselectanintegerfromthisset,theprobabilitythatwewillselectaprimenumberisapproximatelyx=lnx x=1=lnx:Wenowconsidergreatestcommondivisors.Denition.Thegreatestcommondivisoroftwointegersaandb,whicharenotboth0,isthelargestintegerthatdividesbothaandb.Thegreatestcommondivisorofaandbisdenotedgcda;b.Wedenegcd;0=0.Theorem2.8.Letaandpbeintegerswithpprime.Ifp-a,thengcda;p=1.Proof.Sincepisprime,theonlypositivedivisorsofpare1andp.Soeithergcda;p=1,orgcda;p=p.Ifgcda;p=p,thenpja,contrarytoouras-sumption.Hence,wemusthavegcda;p=1. Denition.Twointegersaandbarerelativelyprimeifgcda;b=1.Theorem2.9.Ifaandbareintegerswithgcda;b=dandd1,thengcda=d;b=d=1.Theorem2.10.Ifa;b;andcareintegers,thengcda+cb;b=gcda;b.Denition.Ifaandbareintegers,thenalinearcombinationofaandbisasumoftheformma+nb,wherebothmandnareintegers.Theorem2.11.Thegreatestcommondivisoroftheintegersaandb,notboth0,istheleastpositiveintegerthatisalinearcombinationofaandb.Theorem2.12.Ifaandbareintegers,notboth0,thenapositiveintegerdisthegreatestcommondivisorofaandbifandonlyif:idjaanddjb.10

PAGE 17

iiifcisanintegerwithcjaandcjb,thencjd.Theorem2.13.Ifa,b,andcareintegerswithgcda;c=1,thengcda;b=gcda;bc.Proof.Letd=gcda;b.Clearlydgcda;bc.Wewanttoshowthatdgcda;bc.ByTheorem2.11,sincegcda;b=dandgcda;c=1,wemaywrited=as+btand1=au+cv,forsomeintegerss;t;u;v.Now,d=as+bt=as+bt1=as+btau+cv=aQ1+bcQ2forsomeintegersQ1;Q2.Thisisalinearcombinationofaandbc,andweknowfromTheorem2.11thatgcda;bcisthesmallestlinearcombinationofaandbc,sodgcda;bc.Sincedgcda;bcanddgcda;bc,weconcludethatd=gcda;bc. Thenexttwodenitionsallowustoconsiderthegreatestcommondivisorofmorethantwointegers.Denition.Leta1;a2;:::;anbeintegers,notallzero.Thegreatestcommondivisoroftheseintegersisthelargestintegerthatisadivisorofalloftheintegersintheset.Thegreatestcommondivisorofa1;a2;:::;anisdenotedgcda1;a2;:::;an.Wedenegcd;0;:::;0=0.Denition.Wesaythattheintegersa1;a2;:::;anaremutuallyrelativelyprimeifgcda1;a2;:::;an=1.Theseintegersarecalledpairwiserelativelyprimeifforeachpairofintegersaiandajfromthesetwithi6=j,wehavegcdai;aj=1.ThefollowingtheoremmakesuseofthegreatestcommondivisorandwillbeusefultousinChapter3.Theorem2.14.Letaandbbeintegerswithgcda;b=d.Then,theequationax+by=chasnointegersolutionsforxandyifd-c.Ifdjc,thenthereareinnitelymanyintegersolutions.Thenextthreetheoremsconcernthefunadmentaltheoremofarithmetic.Theorem2.15.Ifa;b;andcarepositiveintegerssuchthatgcda;b=1andajbc,thenajc.Theorem2.16.Ifpdividesa1a2anwherepisaprimeanda1;a2;:::;anarepositiveintegers,thenthereisanintegeriwith1insuchthatpdividesai.Theorem2.17.TheFundamentalTheoremofArithmetic.Everypositiveintegergreaterthan1canbewrittenuniquelyasaproductofprimes,withtheprimefactorsintheproductwritteninnondecreasingorder.11

PAGE 18

Proof.Ourproofisintwoparts.First,weshallproveexistence.Assumeforthepurposeofcontradictionthatthereisatleastonepositiveintegergreaterthan1thatcannotbewrittenastheproductofprimes.Letnbethesmallestsuchcounterex-amplethepositiveintegersarewell-ordered,sotheleastelementofanonemptysetofpositiveintegersexists.Ifnisprime,thenwearedone,soassumethatniscomposite.Writen=ab,with10.Ifmja)]TJ/F19 11.955 Tf 12.18 0 Td[(bwesaythataiscongruenttobmodulom,denotedabmodm.Ifm-a)]TJ/F19 11.955 Tf 11.98 0 Td[(b,wesaythataandbareincongruentmodulom,denoteda6bmodm.12

PAGE 19

Thenexttwotheoremscoversomebasicpropertiesofcongruence.Theorem2.19.Ifaandbareintegers,thenabmodmifandonlyifthereisanintegerksuchthata=b+km.Theorem2.20.Letmbeapositiveinteger.Congruencesmodulomsatisfythefollowingproperties:iReexiveproperty.Ifaisaninteger,thenaamodm.iiSymmetricproperty.Ifaandbareintegerssuchthatabmodm,thenbamodm.iiiTransitiveproperty.Ifa;bandcareintegerswithabmodmandbcmodm,thenacmodm.Thenextthreeitemsconcernmodulararithmetic.Theorem2.21.Leta;b;c;andmbeintegerswithm>0;andletd=gcdc;m.Then,acbcmodmiabmodm=d:Corollary2.22.Leta;b;c;andmbeintegerswithm>0;andletgcdc;m=1.Then,acbcmodmiabmodm:Theorem2.23.Ifa;b;c;d;andmareintegerssuchthatm>0;abmodm,andcdmodm,thenia+cb+dmodm,iia)]TJ/F19 11.955 Tf 11.956 0 Td[(cb)]TJ/F19 11.955 Tf 11.956 0 Td[(dmodm,iiiacbdmodm.Wenowconsidersystemsofresidues.Denition.Acompletesystemofresiduesmodulomisasetofintegerssuchthatforeachx2Z,xiscongruentmodulomtoexactlyoneintegeroftheset.Lemma2.24.Asetofmincongruentintegersmodulomformsacompletesetofresiduesmodulom.Theorem2.25.Ifr1;r2;:::;rmisacompletesetofresiduesmodulom,andifaisapositiveintegerwithgcda;m=1,thenar1+b;ar2+b;:::;arm+bisacompletesystemofresiduesmodulomforanyintegerb.Thenextthreeitemsconcernadditionalwaystomanipulatecongruences.13

PAGE 20

Theorem2.26.Ifa;b;kandmareintegerssuchthatk>0;m>0;andabmodm,thenakbkmodm.Theorem2.27.Leta;b;m1;m2;:::;mkbeintegerswithm1;m2;:::;mkpositive.Then,abmodm1;abmodm2;:::;abmodmkifandonlyifabmodlcmm1;m2;:::;mk.Corollary2.28.Leta;b;m1;m2;:::;mkbeintegerswithm1;m2;:::;mkpositiveandpairwiserelativelyprime.Then,abmodm1;abmodm2;:::;abmodmkifandonlyifabmodm1m2mk.Wenowmoveontotheconceptoflinearcongruences.Denition.Acongruenceoftheformaxbmodm,wherexisanunknowninteger,iscalledalinearcongruenceinonevariable.Thefollowingtheoremstateshowmanysolutionsagivenlinearcongruencehas,ifany.Theorem2.29.Leta;b;x;andmbeintegerssuchthatm>0,andletgcda;m=d.Ifd-b,thenaxbmodmhasnosolutions.Ifdjb,thenaxbmodmhasexactlydincongruentsolutionsmodulom.Thistheoremcanbegeneralizedtoapplytoasystemoflinearcongruences.Theorem2.30.Letx;a1;a2;:::;arbeintegersandm1;m2;:::;mrbepositiveinte-gers.Then,thesystemofcongruencesxa1modm1xa2modm2...xarmodmrhasasolutionifandonlyifgcdmi;mjjai)]TJ/F19 11.955 Tf 13.094 0 Td[(ajforallpairsofintegersi;j,where1i
PAGE 21

Proof.Considerthep)]TJ/F15 11.955 Tf 11.847 0 Td[(1integersa;2a;:::;p)]TJ/F15 11.955 Tf 11.846 0 Td[(1a.Sincep-a,noneoftheseinte-gersisdivisiblebyp,andnotwooftheseintegersarecongruentmodulop.Becausetheintegersa;2a;:::;p)]TJ/F15 11.955 Tf 12.464 0 Td[(1aareasetofp)]TJ/F15 11.955 Tf 12.463 0 Td[(1-manyintegersallincon-gruentto0,andnotwoarecongruentmodulop,byLemma2.24weknowthattheleastpositiveresiduesofa;2a;:::;p)]TJ/F15 11.955 Tf 10.926 0 Td[(1a,takeninsomeorder,mustbetheintegers1;2;:::;p)]TJ/F15 11.955 Tf 12.584 0 Td[(1.Asaconsequence,theproductoftheintegersa;2a;:::;p)]TJ/F15 11.955 Tf 12.584 0 Td[(1aiscongruentmoduloptotheproductoftherstp)]TJ/F15 11.955 Tf 11.955 0 Td[(1positiveintegers.Hence,a2ap)]TJ/F15 11.955 Tf 11.956 0 Td[(1a12p)]TJ/F15 11.955 Tf 11.955 0 Td[(1modp:Thatis,ap)]TJ/F17 7.97 Tf 6.587 0 Td[(1p)]TJ/F15 11.955 Tf 11.955 0 Td[(1!p)]TJ/F15 11.955 Tf 11.956 0 Td[(1!modp:NowusingCorollary2.22,wemaycancelthep)]TJ/F15 11.955 Tf 11.955 0 Td[(1!frombothsidesleavingap)]TJ/F17 7.97 Tf 6.586 0 Td[(11modp: WenowintroduceEuler'sphi-functionandthreerelatedtheorems.Denition.Letnbeapositiveinteger.TheEulerphi-functionnisdenedtobethenumberofpositiveintegersnotexceedingnthatarerelativelyprimeton.Theorem2.34.Ifpisprime,thenp=p)]TJ/F15 11.955 Tf 11.956 0 Td[(1.Theorem2.35.Ifpisprimeandnisapositiveinteger,thenpn=pn)]TJ/F19 11.955 Tf 11.955 0 Td[(pn)]TJ/F17 7.97 Tf 6.587 0 Td[(1.Theorem2.36.Euler'sTheorem.Ifmisapositiveintegerandaisanintegerwithgcda;m=1,thenam1modm.UsingEuler'sphi-function,wecandeneareducedresiduesystem.Denition.Areducedresiduesystemmodulonisasetofnintegerssuchthateachelementofthesetisrelativelyprimeton,andnotwodierentelementsofthesetarecongruentmodulon.Letusnowconsiderordersofintegers.Denition.Letaandnberelativelyprimepositiveintegers.Then,theleastpositiveintegerxsuchthatax1modniscalledtheorderofamodulon.Theorem2.37.Leta;n;i;andjbeintegerssuchthataandnarerelativelyprimeandn;i;andjarenonnegative.Ifxistheorderofamodulon,thenaiajmodnifandonlyifijmodx.Wenowintroduceprimitiveroots.Denition.Letrandnberelativelyprimeintegerswithn>0.Iftheorderofrmodulonisequalton,thenriscalledaprimitiverootmodulon.15

PAGE 22

Theorem2.38.Letrandnberelativelyprimepositiveintegerswithn>0.Ifrisaprimitiverootmodulon,thentheintegersr1;r2;:::;rnformareducedresiduesetmodulon.Now,letusconsidertherootsofpolynomialcongruences.Denition.Letfxbeapolynomialwithintegercoecients.Anintegercisarootoffxmodulomiffc0modm.Theorem2.39.Lagrange'sTheorem.Letpbeprimeandletfx=anxn+an)]TJ/F17 7.97 Tf 6.587 0 Td[(1xn)]TJ/F17 7.97 Tf 6.587 0 Td[(1++a1x1+a0beapolynomialofdegreen1withintegercoecients.Ifp-an,thenfxhasatmostnincongruentrootsmodulop.Proof.Weuseproofbyinduction.Whenn=1,wehavefx=a1x+a0withp-a1.Arootoffxmodulopisasolutionofthelinearcongruencea1x)]TJ/F19 11.955 Tf 22.603 0 Td[(a0modp.ByTheorem2.29,sincegcda1;p=1,weknowthislinearcongruencehasexactlyonesolution.Thisimpliesthatthereisexactlyonerootmodulopoffx.Hence,Lagrange'sTheoremistruewhenn=1.Now,supposethatthetheoremistrueforpolynomialsofdegreen)]TJ/F15 11.955 Tf 13.211 0 Td[(1,andletfxbeapolynomialofdegreenwithleadingcoecientnotdivisiblebyp.Assumeforthepurposeofcontradictionthatfxhasn+1-manyincongruentrootsmodulop,sayc0;c1;:::;cn,sothatfck0modpfork=0;1;:::;n.Wehavefx)]TJ/F19 11.955 Tf 11.955 0 Td[(fc0=anxn)]TJ/F19 11.955 Tf 11.955 0 Td[(cn0+an)]TJ/F17 7.97 Tf 6.586 0 Td[(1xn)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F19 11.955 Tf 11.955 0 Td[(cn)]TJ/F17 7.97 Tf 6.587 0 Td[(10++a1x)]TJ/F19 11.955 Tf 11.955 0 Td[(c0=anx)]TJ/F19 11.955 Tf 11.955 0 Td[(c0xn)]TJ/F17 7.97 Tf 6.587 0 Td[(1+xn)]TJ/F15 11.955 Tf 11.955 0 Td[(2c0++xcn)]TJ/F17 7.97 Tf 6.586 0 Td[(20+cn)]TJ/F17 7.97 Tf 6.586 0 Td[(10+an)]TJ/F17 7.97 Tf 6.587 0 Td[(1x)]TJ/F19 11.955 Tf 11.955 0 Td[(c0xn)]TJ/F17 7.97 Tf 6.587 0 Td[(2+xn)]TJ/F15 11.955 Tf 11.955 0 Td[(3c0++xcn)]TJ/F17 7.97 Tf 6.586 0 Td[(30+cn)]TJ/F17 7.97 Tf 6.586 0 Td[(20++a1x)]TJ/F19 11.955 Tf 11.955 0 Td[(c0=x)]TJ/F19 11.955 Tf 11.956 0 Td[(c0gx;wheregxisapolynomialofdegreen)]TJ/F15 11.955 Tf 11.707 0 Td[(1withleadingcoecientan.Wenowshowthatc1;c2;:::;cnareallrootsofgxmodulop.Letkbeanintegerwith1kn.Becausefckfc00modp,wehavefck)]TJ/F19 11.955 Tf 11.955 0 Td[(fc0=ck)]TJ/F19 11.955 Tf 11.955 0 Td[(c0gck0modp:Itfollowsthatgck0modp,becauseck)]TJ/F19 11.955 Tf 10.74 0 Td[(c060modp.Hence,ckisarootofgxmodulop.Thisshowsthatthepolynomialgx,whichisofdegreen)]TJ/F15 11.955 Tf 10.68 0 Td[(1andhasleadingcoecientnotdivisiblebyp,hasn-manyincongruentrootsmodulop.Thiscontradictsourinductionhypothesis.Hence,fxmusthavenomorethann-manyincongruentrootsmodulop.Thus,Lagrange'sTheoremistrueforalln1. TheremainingitemsareallconsequencesofLagrange'sTheorem.NotethatTheorem2.40isourownworkbecausewedonotnditinstandardtexts.16

PAGE 23

Theorem2.40.Letpbeprimeandletfxbeapolynomialofdegreen1withintegercoecients.Letan60modpbetheleadingcoecientoffxandassumethatx1;x2;:::;xnarenincongruentrootsoffxmodulop.Now,letRx=fx)]TJ/F19 11.955 Tf -422.701 -13.948 Td[(anx)]TJ/F19 11.955 Tf 11.994 0 Td[(x1x)]TJ/F19 11.955 Tf 11.994 0 Td[(x2x)]TJ/F19 11.955 Tf 11.994 0 Td[(xn.Then,thecoecientsofRxareallcongruentto0modulop.Proof.LetmbethedegreeofRx,andwriteRx=amxm+am)]TJ/F17 7.97 Tf 6.586 0 Td[(1xm)]TJ/F17 7.97 Tf 6.587 0 Td[(1++a1x+a0,wheremm,soitcannotbethecasethatp-am.Thismeansthatwemusthaveam0modp.ThisimpliesthatRxam)]TJ/F17 7.97 Tf 6.587 0 Td[(1xm)]TJ/F17 7.97 Tf 6.586 0 Td[(1+am)]TJ/F17 7.97 Tf 6.586 0 Td[(2xm)]TJ/F17 7.97 Tf 6.587 0 Td[(2++a1x+a0modp.Butx1;x2;:::;xnarestillnincongruentrootsofam)]TJ/F17 7.97 Tf 6.587 0 Td[(1xm)]TJ/F17 7.97 Tf 6.586 0 Td[(1+am)]TJ/F17 7.97 Tf 6.587 0 Td[(2xm)]TJ/F17 7.97 Tf 6.586 0 Td[(2++a1x+a0modulop,soagainbyLagrangewemusthaveam)]TJ/F17 7.97 Tf 6.587 0 Td[(10modp.Continuinginthismanner,wehaveai0modpfori=1;2;:::;m.Thatis,Rxa0modp.ButaswedemonstratedinthecasewhenthedegreeofRxwasassumedtobe0,thismustmeanthata00modp.Thus,allthecoecientsofRxmustbecongruentto0modulop. Theorem2.41.Letpbeprimeandletdbeadivisorofp)]TJ/F15 11.955 Tf 11.34 0 Td[(1.Then,thepolynomialfx=xp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d)]TJ/F15 11.955 Tf 11.955 0 Td[(1hasexactlyp)]TJ/F17 7.97 Tf 6.587 0 Td[(1 dincongruentrootsmodulop.Proof.Sinceddividesp)]TJ/F15 11.955 Tf 12.333 0 Td[(1,wemaywritep)]TJ/F15 11.955 Tf 12.333 0 Td[(1=dq,forsomepositiveintegerq.Then,xp)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 11.956 0 Td[(1=xq)]TJ/F15 11.955 Tf 11.955 0 Td[(1xqd)]TJ/F17 7.97 Tf 6.587 0 Td[(1+xqd)]TJ/F17 7.97 Tf 6.587 0 Td[(2++xq+1=xq)]TJ/F15 11.955 Tf 11.955 0 Td[(1gx:ByFermat'slittletheorem,xp)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 9.584 0 Td[(1hasp)]TJ/F15 11.955 Tf 9.584 0 Td[(1incongruentrootsmodulop.Fromabove,anyrootofxp)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 9.848 0 Td[(1modulopmusteitherbearootofxq)]TJ/F15 11.955 Tf 9.848 0 Td[(1modulop,orarootofgxmodulop.NowbyLagrange'stheorem,gxhasatmostqd)]TJ/F15 11.955 Tf 10.708 0 Td[(1=dq)]TJ/F19 11.955 Tf 10.708 0 Td[(q=p)]TJ/F15 11.955 Tf 10.708 0 Td[(1)]TJ/F19 11.955 Tf 10.709 0 Td[(qincongruentrootsmodulop.Sincexp)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 11.685 0 Td[(1hasp)]TJ/F15 11.955 Tf 11.685 0 Td[(1incongruentrootsmodulop,andgxhasatmostp)]TJ/F15 11.955 Tf 11.685 0 Td[(1)]TJ/F19 11.955 Tf 11.685 0 Td[(qrootsmodulop,thismeansthatxq)]TJ/F15 11.955 Tf 10.853 0 Td[(1hasatleastp)]TJ/F15 11.955 Tf 10.853 0 Td[(1)]TJ/F15 11.955 Tf 10.853 0 Td[(p)]TJ/F15 11.955 Tf 10.853 0 Td[(1)]TJ/F19 11.955 Tf 10.853 0 Td[(q=qincongruentrootsmodulop.ButbyLagrange'stheorem,xq)]TJ/F15 11.955 Tf 11.965 0 Td[(1hasatmostqincongruentrootsmodulop.Hence,xq)]TJ/F15 11.955 Tf 11.955 0 Td[(1hasexactlyqincongruentrootsmodulop.17

PAGE 24

Nowp)]TJ/F15 11.955 Tf 12.919 0 Td[(1=dqimpliesq=p)]TJ/F17 7.97 Tf 6.586 0 Td[(1 d,soxp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d)]TJ/F15 11.955 Tf 12.919 0 Td[(1hasexactlyp)]TJ/F17 7.97 Tf 6.587 0 Td[(1 dincongruentrootsmodulop,asdesired. Lemma2.42.Letpbeprimeandletdbeapositivedivisorofp)]TJ/F15 11.955 Tf 12.738 0 Td[(1.Then,thenumberofpositiveintegerslessthanpoforderdmodulopdoesnotexceedd.Theorem2.43.Letpbeprimeandletdbeadivisorofp)]TJ/F15 11.955 Tf 11.74 0 Td[(1.Then,thenumberofincongruentintegersoforderdmodulopisequaltod.Corollary2.44.Everyprimehasaprimitiveroot.18

PAGE 25

3.RESULTS3.1OverviewThetoolswehavepresentedinthepreviouschapterwillallowustoproveTheorems1.1,1.2,1.3,and1.4.Recall,Theorem1.1states:Letm3beaninteger.Then,Pmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 23.96 0 Td[(1modmifandonlyifmisaproductofdistinctoddprimessuchthatmpmodp2p)]TJ/F15 11.955 Tf 11.477 0 Td[(1foreachprimedivi-sorpofm.Ourproofofthistheoremreliesonfoursmallerresults.Welistthemhere,andprovetheminthesubsequentsectionsofthischapter.Theorem3.1.Letm3beaninteger.IfPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modm,thenmmustbeaproductofdistinctprimes.Theorem3.2.Letm3beaninteger.IfPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modm,thenmmustbeodd.Theorem3.3.Letm3beaninteger.IfPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 22.416 0 Td[(1modm,thenmpmodp2p)]TJ/F15 11.955 Tf 11.956 0 Td[(1foreachprimedivisorpofm.Theorem3.4.Letm3beaninteger.Ifmisaproductofdistinctoddprimessuchthatmpmodp2p)]TJ/F15 11.955 Tf 10.616 0 Td[(1foreachprimedivisorpofm,thenPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modm.ClearlythesefourtheoremsimplyTheorem1.1.Succeedingtheproofsofthesefourtheorems,wewillprovethethreeconsequencesofTheorem1.1:Theorem1.2.Letm3beanintegerandletp1,p2beanytwoprimedivi-sorsofm.IfPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 21.917 0 Td[(1modm,thenp261modp1.Theorem1.3.Letm3beaninteger.IfPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 24.083 0 Td[(1modm,thenmcannotbeaproductoftwoprimes.Theorem1.4.Letm3beaninteger.IfPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 24.083 0 Td[(1modm,thenmcannotbeaproductofthreeprimes.19

PAGE 26

3.2ProofofTheorem3.1Inthissection,wewishtoprovethatifm3isanintegerwithPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 23.072 0 Td[(1modm,thenmmustbeaproductofdistinctprimes.Tothisend,wewillusethefollowinglemmawhichwillprovehelpfulthroughouttherestofthischapter.Lemma3.5.Ifmanddarepositiveintegerssuchthatdjm,thenPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m dPdi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1modd:Proof.Becausedjm,wemaywritemXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1=m d)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0dXi=1jd+im)]TJ/F17 7.97 Tf 6.586 0 Td[(1m d)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=0dXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1modd;sincejd+iimodd.And,sincejassumesm=ddierentvalues,wehavem d)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=0dXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1=m ddXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1: WearenowreadytoproveTheorem3.1,whichisstatedabove.Proof.Withmasinthetheorem,writem=pe11pe22pekkitsprime-powerfactoriza-tionandletpe2fpe11;pe22;:::;pekkg.Assumeforthepurposeofcontradictionthate2.SincePmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modmandpjm,byLemma3.5wehavem pPpi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modp.Recall,pejm,sowemaywritem=peqforsomeq2Z.Nowbecausee2itfollowsthatm ppXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1=peq ppXi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1=pe)]TJ/F17 7.97 Tf 6.586 0 Td[(1qpXi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(10modp:Sincepjm,wehavemXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.917 0 Td[(1modmmXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modp;20

PAGE 27

andsince06)]TJ/F15 11.955 Tf 22.318 0 Td[(1modp,wehaveacontradiction.Hencee62,meaningmmustbeaproductofdistinctprimes. Intheprecedingproof,weshowedthatPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(10modp.Infact,whenm=pn,wherepisanoddprimeandn2isaninteger,wecanactuallyprovesomethingstronger.Theorem3.6.Ifpisanoddprimeandn2isaninteger,thenPpni=1ipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F19 11.955 Tf 21.918 0 Td[(pn)]TJ/F17 7.97 Tf 6.587 0 Td[(1modpn.Proof.First,note:pnXi=1ipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1=pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0pXi=1jp+ipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1=pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1jp+ipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1+pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=0jp+ppn)]TJ/F17 7.97 Tf 6.586 0 Td[(1pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1jp+ipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1+0modpn:Thiscongruenceholdsbecausepn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0jp+ppn)]TJ/F17 7.97 Tf 6.587 0 Td[(1=pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0j+1ppn)]TJ/F17 7.97 Tf 6.587 0 Td[(1=pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1Xj=1jppn)]TJ/F17 7.97 Tf 6.587 0 Td[(1=ppn)]TJ/F17 7.97 Tf 6.587 0 Td[(1pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1Xj=1jpn)]TJ/F17 7.97 Tf 6.586 0 Td[(1;whichiscongruentto0modulopnsinceitcanbeshownbyinductionthatpn)]TJ/F15 11.955 Tf 10.469 0 Td[(1>n.Thus,pnXi=1ipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1jp+ipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1modpn:Nowusingbinomialexpansion,wegetpnXi=1ipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1jp+ipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1modpn=pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1pn)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=0pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kjpkipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(k=pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1pn)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=0pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kpkjkipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(k:21

PAGE 28

Notethatwhenkn,thissumiscongruentto0modulopnbecauseofthepkterm.Hence,pnXi=1ipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=0p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1n)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xk=0pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kpkjkipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F20 7.97 Tf 6.586 0 Td[(kmodpn:Wewillnowshowthatwhenk>0,thissumiscongruentto0modulopn.Consider,pn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=0p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1n)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=1pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kpkjkipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(k=p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1n)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=1pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(kpkpn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=0jk;andsincePt)]TJ/F17 7.97 Tf 6.586 0 Td[(1j=0jk=1 k+1Pkj=0)]TJ/F20 7.97 Tf 5.48 -4.379 Td[(k+1jBjtk)]TJ/F20 7.97 Tf 6.586 0 Td[(j+1,whereBjisthejthBernoullinumberseeforinstancepage283ofGraham,Knuth,andPatashnik'sConcreteMathematics[3],or[9],wehavep)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1n)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=1pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(kpkpn)]TJ/F18 5.978 Tf 5.756 0 Td[(1)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=0jk=p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1n)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=1pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(kpk k+1kXj=0k+1jBjpn)]TJ/F17 7.97 Tf 6.586 0 Td[(1k)]TJ/F20 7.97 Tf 6.586 0 Td[(j+1=p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1n)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=1pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(k1 k+1kXj=0k+1jBjpn)]TJ/F17 7.97 Tf 6.586 0 Td[(1k)]TJ/F20 7.97 Tf 6.586 0 Td[(j+1pk=p)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1n)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=1pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(k1 k+1kXj=0k+1jBjpn)]TJ/F17 7.97 Tf 6.586 0 Td[(1k)]TJ/F20 7.97 Tf 6.586 0 Td[(j+1+k=p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1n)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xk=1pn)]TJ/F15 11.955 Tf 11.955 0 Td[(1kipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F20 7.97 Tf 6.587 0 Td[(k1 k+1kXj=0k+1jBjpn)]TJ/F17 7.97 Tf 6.586 0 Td[(1k)]TJ/F20 7.97 Tf 6.586 0 Td[(j+n)]TJ/F17 7.97 Tf 6.587 0 Td[(1+k:Nowinordertoseethatthissumiscongruentto0modulopn,considerthelargestintegerrsuchthatprdividesk+1,thedenominatorofthefraction.Wewanttoshowpn)]TJ/F17 7.97 Tf 6.586 0 Td[(1k)]TJ/F20 7.97 Tf 6.586 0 Td[(j+n)]TJ/F17 7.97 Tf 6.587 0 Td[(1+k)]TJ/F20 7.97 Tf 6.586 0 Td[(r0modpnfork=1;2;:::;n)]TJ/F15 11.955 Tf 11.426 0 Td[(1andj=0;1;:::;k.So,weneedtoshown)]TJ/F15 11.955 Tf 11.956 0 Td[(1k)]TJ/F19 11.955 Tf 11.956 0 Td[(j+n)]TJ/F15 11.955 Tf 11.955 0 Td[(1+k)]TJ/F19 11.955 Tf 11.955 0 Td[(rn.22

PAGE 29

Aftersubtractingnfrombothsidesofthisinequality,weseethatweonlyneedtoshown)]TJ/F15 11.955 Tf 11.955 0 Td[(1k)]TJ/F19 11.955 Tf 11.955 0 Td[(j+k)]TJ/F15 11.955 Tf 11.955 0 Td[(1)]TJ/F19 11.955 Tf 11.955 0 Td[(r0.Recall,itcanbeshownbyinductionthatforanyoddprimepandanypositiveintegerk,pk>k+1.Nowsinceprjk+1impliesprk+1,wemusthaver
PAGE 30

soPp)]TJ/F17 7.97 Tf 6.587 0 Td[(1i=1ipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1=Qp)]TJ/F15 11.955 Tf 11.955 0 Td[(1,forsomepositiveintegerQ.Thus,pnXi=1ipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1pn)]TJ/F17 7.97 Tf 6.586 0 Td[(1p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1ipn)]TJ/F17 7.97 Tf 6.587 0 Td[(1modpn=pn)]TJ/F17 7.97 Tf 6.586 0 Td[(1Qp)]TJ/F15 11.955 Tf 11.955 0 Td[(1=Qpn)]TJ/F19 11.955 Tf 11.955 0 Td[(pn)]TJ/F17 7.97 Tf 6.587 0 Td[(10)]TJ/F19 11.955 Tf 11.955 0 Td[(pn)]TJ/F17 7.97 Tf 6.587 0 Td[(1modpn=)]TJ/F19 11.955 Tf 9.299 0 Td[(pn)]TJ/F17 7.97 Tf 6.587 0 Td[(1:Ourproofiscomplete. WementionthatTheorem3.6canalternativelybeprovedusingStirlingnumbersofthesecondkind,insteadofBernoullinumbersformoreinformationonStirlingnumbers,seepage50ofAignerandMartin'sDiscreteMathematics[1].NotethatTheorem3.6canbeviewedasageneralizationofanearlierresult.Recall,foranyprimepitfollowsthatPpi=1ip)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 23.441 0 Td[(1modp.Sincep=p)]TJ/F15 11.955 Tf 12.564 0 Td[(1,thisimpliesthatPpi=1ip)]TJ/F17 7.97 Tf 6.587 0 Td[(1pmodp.Moregenerally,sincepn=pn)]TJ/F19 11.955 Tf 12.766 0 Td[(pn)]TJ/F17 7.97 Tf 6.587 0 Td[(1,Theorem3.6impliesthatforanypositiveintegern,wehavePpni=1ipn)]TJ/F17 7.97 Tf 6.586 0 Td[(1pnmodpn.24

PAGE 31

3.3ProofofTheorem3.2Nowwewillshowthatifm3isanintegerwithPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 22.621 0 Td[(1modm,thenmmustbeodd.Proof.First,mmustbeaproductofdistinctprimesbyTheorem3.1.Nowassumeforthepurposeofcontradictionthatmiseven.Writem=2k,wherek3isanoddpositiveinteger.Then,m)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1=m 2)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1+m 2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1+m)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=m 2+1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1=m 2)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1+m 2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1+m 2)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1m)]TJ/F19 11.955 Tf 11.955 0 Td[(im)]TJ/F17 7.97 Tf 6.586 0 Td[(1m 2)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1+m 2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1+m 2)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1)]TJ/F19 11.955 Tf 9.299 0 Td[(im)]TJ/F17 7.97 Tf 6.587 0 Td[(1modm=m 2)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1+m 2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F21 5.978 Tf 13.151 20.266 Td[(m 2)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1=m 2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1:Recall,m=2k,som 2m)]TJ/F17 7.97 Tf 6.587 0 Td[(1=2k 2m)]TJ/F17 7.97 Tf 6.587 0 Td[(1=km)]TJ/F17 7.97 Tf 6.587 0 Td[(1:Nowontheonehand,km)]TJ/F17 7.97 Tf 6.586 0 Td[(1kmodkbecausekjkm)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F19 11.955 Tf 11.955 0 Td[(k.Ontheotherhand,km)]TJ/F17 7.97 Tf 6.586 0 Td[(1kmod2because2jkm)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F19 11.955 Tf 12.021 0 Td[(ksincethedierenceoftwooddintegersiseven.Hence,km)]TJ/F17 7.97 Tf 6.587 0 Td[(1kmod2kbyCorollary2.28.Since2k=m,wehavemXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1km)]TJ/F17 7.97 Tf 6.586 0 Td[(1kmodm:25

PAGE 32

ButthisisacontradictionsincewesaidPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 24.1 0 Td[(1modm,andk6)]TJ/F15 11.955 Tf 24.1 0 Td[(1modmform3.Hence,mmustbeodd. 26

PAGE 33

3.4ProofofTheorem3.3Inthissection,wewanttoproveTheorem3.3,thatifm3isanintegerwithPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 22.627 0 Td[(1modm,thenmpmodp2p)]TJ/F15 11.955 Tf 12.239 0 Td[(1foreachprimedivisorpofm.Wepresenttheproofastwolemmas.Lemma3.7.Letm3beaninteger.IfPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 23.165 0 Td[(1modm,thenm1modp)]TJ/F15 11.955 Tf 11.955 0 Td[(1foreachprimedivisorpofm.Proof.ByTheorems3.1and3.2,weknowthatmmustbeaproductofdistinctoddprimes.ByLemma3.5,Pmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m pPpi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1modp,andsincep0modp,wemaywritem ppXi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m pp)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1modp:Thus,mXi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1m pp)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modp:NowbyCorollary2.44,thereexistsaprimitiverootmodulop.Letrbesuchaprimitiveroot.Recall,byTheorem2.34p=p)]TJ/F15 11.955 Tf 13.119 0 Td[(1,sobyTheorem2.38theintegersr1;r2;:::;rp)]TJ/F17 7.97 Tf 6.586 0 Td[(1formareducedresiduesetmodulop.Thus,wemaywritem pp)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m pp)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=1rjm)]TJ/F17 7.97 Tf 6.587 0 Td[(1=m pp)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=1rjm)]TJ/F17 7.97 Tf 6.586 0 Td[(1modp:Sincerisaprimitiveroot,theorderofrmodulopisp)]TJ/F15 11.955 Tf 11.512 0 Td[(1.Hence,byTheorem2.37wehaverj1m)]TJ/F17 7.97 Tf 6.587 0 Td[(1rj2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1modpij1m)]TJ/F15 11.955 Tf 11.956 0 Td[(1j2m)]TJ/F15 11.955 Tf 11.955 0 Td[(1modp)]TJ/F15 11.955 Tf 11.955 0 Td[(1:Weshallshowm1modp)]TJ/F15 11.955 Tf 11.813 0 Td[(1byshowingthatgcdp)]TJ/F15 11.955 Tf 11.814 0 Td[(1;m)]TJ/F15 11.955 Tf 11.814 0 Td[(1=p)]TJ/F15 11.955 Tf 11.814 0 Td[(1,whichimpliesp)]TJ/F15 11.955 Tf 12.134 0 Td[(1jm)]TJ/F15 11.955 Tf 12.134 0 Td[(1.So,letd=gcdp)]TJ/F15 11.955 Tf 12.134 0 Td[(1;m)]TJ/F15 11.955 Tf 12.134 0 Td[(1andassumeforthepurposeofcontradictionthatd
PAGE 34

soitfollowsthatrj1m)]TJ/F17 7.97 Tf 6.586 0 Td[(1rj2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1modpij1j2modp)]TJ/F15 11.955 Tf 11.955 0 Td[(1 d:Now,recall:mXi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m pp)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m pp)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xj=1rjm)]TJ/F17 7.97 Tf 6.587 0 Td[(1=m pp)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=1rjm)]TJ/F17 7.97 Tf 6.586 0 Td[(1modp:Sincedjp)]TJ/F15 11.955 Tf 11.955 0 Td[(1,wemaywritem pp)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xj=1rjm)]TJ/F17 7.97 Tf 6.586 0 Td[(1=m pd)]TJ/F17 7.97 Tf 6.586 0 Td[(1X`=0p)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dXj=1r`p)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d+jm)]TJ/F17 7.97 Tf 6.587 0 Td[(1:Notethatfor`=0;1;2;:::;d)]TJ/F15 11.955 Tf 12.132 0 Td[(1,wehave`p)]TJ/F17 7.97 Tf 6.587 0 Td[(1 d+jjmodp)]TJ/F17 7.97 Tf 6.587 0 Td[(1 d.So,referringtotheistatementabove,andlettingj1=`p)]TJ/F17 7.97 Tf 6.586 0 Td[(1 d+jandj2=j,weseethatr`p)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d+jm)]TJ/F17 7.97 Tf 6.587 0 Td[(1rjm)]TJ/F17 7.97 Tf 6.586 0 Td[(1modp:Thus,mXi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m pd)]TJ/F17 7.97 Tf 6.587 0 Td[(1X`=0p)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dXj=1r`p)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d+jm)]TJ/F17 7.97 Tf 6.586 0 Td[(1modpm pd)]TJ/F17 7.97 Tf 6.587 0 Td[(1X`=0p)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dXj=1rjm)]TJ/F17 7.97 Tf 6.586 0 Td[(1modp=dm pp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dXj=1rjm)]TJ/F17 7.97 Tf 6.587 0 Td[(1:Inordertoderiveacontradiction,wewillshowthatPp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dj=1rjm)]TJ/F17 7.97 Tf 6.586 0 Td[(10modp:Toseethis,rstconsiderthepolynomialcongruencefx=xp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d)]TJ/F15 11.955 Tf 12.177 0 Td[(10modp.Sincedjm)]TJ/F15 11.955 Tf 11.955 0 Td[(1andj=1;2;:::;p)]TJ/F17 7.97 Tf 6.587 0 Td[(1 d,itfollowsthatrjm)]TJ/F17 7.97 Tf 6.586 0 Td[(1p)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d=rp)]TJ/F17 7.97 Tf 6.586 0 Td[(1jm)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d1jm)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dmodp;byFermat'sLittleTheorem.28

PAGE 35

So,wemaythinkofx=rm)]TJ/F17 7.97 Tf 6.587 0 Td[(1;r2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1;:::;rp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dm)]TJ/F17 7.97 Tf 6.586 0 Td[(1asp)]TJ/F17 7.97 Tf 6.586 0 Td[(1 dsolutionstothepolyno-mialcongruencefx=xp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d)]TJ/F15 11.955 Tf 11.955 0 Td[(10modp.Nowsinceanypairofdistinctelementsfromthesetf1;2;:::;p)]TJ/F17 7.97 Tf 6.587 0 Td[(1 dgareincongruenttoeachothermodulop)]TJ/F17 7.97 Tf 6.587 0 Td[(1 d,itfollowsfromtheistatementabovethatrj1m)]TJ/F17 7.97 Tf 6.586 0 Td[(16rj2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1modpforj=1;2;:::;p)]TJ/F17 7.97 Tf 6.587 0 Td[(1 d.Hence,x=rm)]TJ/F17 7.97 Tf 6.587 0 Td[(1;r2m)]TJ/F17 7.97 Tf 6.586 0 Td[(1;:::;rp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dm)]TJ/F17 7.97 Tf 6.586 0 Td[(1arep)]TJ/F17 7.97 Tf 6.586 0 Td[(1 dincongruentsolutionstothepoly-nomialcongruencefx=xp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d)]TJ/F15 11.955 Tf 12.152 0 Td[(10modp.Sincethispolynomialhasexactlyp)]TJ/F17 7.97 Tf 6.587 0 Td[(1 dincongruentsolutionsbyCorollary2.41,weknowwehavethemall.NowwemayuseTheorem2.40,whichstatesthatthecoecientsofRx=fx)]TJ/F15 11.955 Tf 11.955 0 Td[(x)]TJ/F19 11.955 Tf 11.955 0 Td[(rm)]TJ/F17 7.97 Tf 6.587 0 Td[(1x)]TJ/F19 11.955 Tf 11.955 0 Td[(r2m)]TJ/F17 7.97 Tf 6.587 0 Td[(1x)]TJ/F19 11.955 Tf 11.956 0 Td[(rp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dm)]TJ/F17 7.97 Tf 6.586 0 Td[(1areallcongruentto0modulop.SincePp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dj=1rjm)]TJ/F17 7.97 Tf 6.586 0 Td[(1isthecoecientofthexp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 d)]TJ/F17 7.97 Tf 6.587 0 Td[(1terminRx,itfollowsfromThe-orem2.40thatp)]TJ/F18 5.978 Tf 5.756 0 Td[(1 dXj=1rjm)]TJ/F17 7.97 Tf 6.587 0 Td[(10modp:Thus,wehavemXi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1dm pp)]TJ/F18 5.978 Tf 5.757 0 Td[(1 dXj=1rjm)]TJ/F17 7.97 Tf 6.586 0 Td[(10modp:Thisisacontradictionsince06)]TJ/F15 11.955 Tf 21.917 0 Td[(1modp,andwesaidPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modp.Thusd6
PAGE 36

Thatis,Pmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F19 11.955 Tf 21.918 0 Td[(m=pmodp.Now,Pmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 22.44 0 Td[(1modmimpliesPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 22.44 0 Td[(1modp,sowemusthavem=p1modp.Thisimpliesm=p=pk+1,forsomek2Z+.Multiplyingthroughbypgivesm=p2k+p,whichmeansmpmodp2. ByLemma3.7m1modp)]TJ/F15 11.955 Tf 12.468 0 Td[(1,andsince1pmodp)]TJ/F15 11.955 Tf 12.469 0 Td[(1,wehavempmodp)]TJ/F15 11.955 Tf 11.666 0 Td[(1.ByLemma3.8mpmodp2,sobyCorollary2.28weconcludethatmpmodp2p)]TJ/F15 11.955 Tf 11.955 0 Td[(1,andourproofofTheorem3.3iscomplete.30

PAGE 37

3.5ProofofTheorem3.4OurproofofTheorem3.4willcompletetheremainingdirectionofTheorem1.1.Weneedtoprovethatifm3isanintegersuchthatmisaproductofdistinctoddprimeswithmpmodp2p)]TJ/F15 11.955 Tf 11.653 0 Td[(1foreachprimedivisorpofm,thenPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 9.298 0 Td[(1modm.Proof.Recall,Pmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m pPpi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1m pPp)]TJ/F17 7.97 Tf 6.586 0 Td[(1i=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1modp.Nowsincempmodp2p)]TJ/F15 11.955 Tf 11.709 0 Td[(1byhypothesis,m=p2p)]TJ/F15 11.955 Tf 11.71 0 Td[(1X+pforsomenonnegativeintegerX.Thus,m pp)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1=p2p)]TJ/F15 11.955 Tf 11.955 0 Td[(1X+p pp)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1ip2p)]TJ/F17 7.97 Tf 6.587 0 Td[(1X+p)]TJ/F17 7.97 Tf 6.587 0 Td[(1=pp)]TJ/F15 11.955 Tf 11.956 0 Td[(1X+1p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1ip)]TJ/F17 7.97 Tf 6.587 0 Td[(1p2X+p)]TJ/F17 7.97 Tf 6.586 0 Td[(1p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1ip)]TJ/F17 7.97 Tf 6.587 0 Td[(1p2X+p)]TJ/F17 7.97 Tf 6.586 0 Td[(1modp=p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1ip)]TJ/F17 7.97 Tf 6.587 0 Td[(1p2X+1=p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=1ip)]TJ/F17 7.97 Tf 6.586 0 Td[(1p2X+1:NowbyFermat'sLittleTheorem,wehavep)]TJ/F17 7.97 Tf 6.586 0 Td[(1Xi=1ip)]TJ/F17 7.97 Tf 6.587 0 Td[(1p2X+1p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=11p2X+1modp=p)]TJ/F17 7.97 Tf 6.587 0 Td[(1Xi=11=p)]TJ/F15 11.955 Tf 11.955 0 Td[(1)]TJ/F15 11.955 Tf 28.559 0 Td[(1modp:31

PAGE 38

Sincethisholdsforallprimedivisorspofm,andmisaproductofdistinctprimesbyhypothesis,Corollary2.28impliesthatmXi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modm: OurproofofTheorem1.1isnowcomplete.32

PAGE 39

3.6ProofofTheorem1.2WearenowreadytoprovesomeconsequencesofTheorem1.1.WebeginwithTheorem1.2.Wewanttoshowthatthatifm3isanintegersuchthatPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 9.298 0 Td[(1modm,thenanytwoprimedivisorsofm,sayp1andp2,mustsatisfyp261modp1.Proof.Thisistrivialwhenp1=p2,soassumethatmiscompositeandp16=p2.Clearlyp261modp1ifp2
PAGE 40

3.7ProofofTheorem1.3WewillnowproveTheorem1.3,thatifm3isanintegerwithPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 23.118 0 Td[(1modm,thenmcannotbeaproductoftwoprimes.Proof.FromTheorem1.1,weknowthatmmustbeaproductofdistinctoddprimes.Assumeforthepurposeofcontradictionthatmisaproductoftwosuchprimes,sayp1andp2withp1p2,whichistosayp1>p2.Thisisacontradictionbecauseweassumedp1
PAGE 41

3.8ProofofTheorem1.4Wecanalsoshowthatifm3isanintegerwithPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 22.702 0 Td[(1modm,thenmcannotbeaproductofthreeprimes.HereisourproofofTheorem1.4.Proof.FromTheorem1.1,weknowthatmmustbeaproductofdistinctoddprimes.Assumeforthepurposeofcontradictionthatmisaproductofthreesuchprimes,sayp1,p2,andp3withp1
PAGE 42

4.COMPUTATIONSWhilewehaveprovensomestrongconditionsonmforPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modm,wehavenotbeenabletoverifytheconjecturethatmmustbeprimeifPmi=1im)]TJ/F17 7.97 Tf 6.586 0 Td[(1)]TJ/F15 11.955 Tf 21.918 0 Td[(1modm.Nevertheless,usingMapleandthetheoremsweprovedinChapter3,wecandemon-stratethatthereisnocounterexampletotheconjecturelessthanorequaltoonetrillion.Figures4.1,4.2,and4.3onpages42,43,and44containtheactualMaplecodefortheprogramwedevelopedtoshowthis.Weprovideasummaryofhowtheprogramworks.TheuserinputsthelargestintegertobeveriedcalledN,andtheprogramoutputsanycounterexamplestotheconjecturelessthanorequaltoNifany,aswellasthenumberoffactoriza-tionsperformed.Wecountthenumberoffactorizationsbecausefactorizationisatime-consumingstep.Theprogramissplitintoatop-downportionandabottom-upportionseeFigure4.4onpage45inordertominimizethetotalruntimeoftheprogram.Theowchartdetailingthetop-downpartislistedasFigure4.5onpage46.WearesearchingforahypotheticalcompositeintegermNthatsatisesPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 21.953 0 Td[(1modm.Sincemiscomposite,Theorem1.1impliesthatm=p2p)]TJ/F15 11.955 Tf 12.139 0 Td[(1Xp+pforallprimedivisorspofm,whereXpissomepositiveinteger.Letpmaxbethelargestprimedivisorofm.IntheowchartsandtheMaplecode,wearecallingpmaxBP;"whichstandsforbiggestprime,"becausethisnotationiseasiertoenterintoMaple.Weclaimthatpmaxcannotexceedb3p Nc+1.Toseethis,wewillshowthatpmax<3p N+1,whichgivespmaxb3p Nc+1.Assumeforthepurposeofcontradictionthatmhasalargestprimedivisorpmax3p N+1.Then,36

PAGE 43

m=pmax2pmax)]TJ/F15 11.955 Tf 11.956 0 Td[(1Xpmax+pmaxbyTheorem1.1mpmax2pmax)]TJ/F15 11.955 Tf 11.955 0 Td[(1+pmaxsinceXpmax1m3p N+123p N+1)]TJ/F15 11.955 Tf 11.955 0 Td[(1+3p N+1byassumptionm[3p N2+23p N+1]3p N+3p N+1m3p N3+23p N2+3p N+3p N+1m3p N3+23p N2+23p N+1mN+23p N2+23p N+1m>N:ThisisacontradictionbecausewechosemsuchthatmwaslessthanorequaltoN.Thus,pmax63p N+1pmax<3p N+1pmaxb3p N+1cpmaxb3p Nc+1:Withourclaimproved,wecontinuetodiscussthetop-downportionoftheprogram.Theorem1.1anditsconsequencestellusthatsincemiscomposite,mmustbeaproductoffourormoredistinctoddprimes.So,ourrstgoalistosetpmaxtobeaslargeaspossiblegivenN,andthenshowthatnomcanexistwhoselargestprimedivisorispmax.Then,wewillsetpmaxtobethelargestprimelessthanpmax'scurrentvalue,andrepeattheprocess.Wewillcontinueaslongaspmax>75.Oncepmax<75,wewillexitthetop-downportionandbeginthebottom-upportionoftheprogram.Aftermuchexperimentation,wechose75asthecut-ointegerinordertominimizethetotalruntimeoftheprogram.Ifthecut-onumberistoolargeortoosmall,eithertherstpartorthesecondpartoftheprogramwilltakemuchlongertorun.Onalate-2006notebookcomputer2.16GHzIntelCore2Duoprocessorwith2.00GBofRAMrunningWindowsXP,theprogramtakes43minutestorunwhenN=10122minutesforthetop-downportionand11minutesforthebottom-upportion.Inthetop-downportion,foreachmN,wehavem=pmax2pmax)]TJ/F15 11.955 Tf 9.811 0 Td[(1Xpmax+pmax.IntheowchartsandMaplecode,wesimplywriteXpmaxasX".NowletmaxXpmaxrepresentthelargestpossiblevaluethatanyXpmaxcanassumeforagivenm.IntheowchartsandMaplecode,wecallmaxXpmaxmaxX:"ItfollowsthatmaxXpmax=N)]TJ/F19 11.955 Tf 11.956 0 Td[(pmax pmax2pmax)]TJ/F15 11.955 Tf 11.955 0 Td[(1:37

PAGE 44

Now,foreachXpmaxfrom1tomaxXpmaxweletm=pmax2pmax)]TJ/F15 11.955 Tf 11.453 0 Td[(1Xpmax+pmax,andthenwefactorm=pmaxtocheckthatmisaproductofdistinctoddprimesthisisfasterthanjustfactoringm.Ifmisaproductofdistinctoddprimes,thenforeachprimedivisorpofmwecheckthatm=p2p)]TJ/F15 11.955 Tf 11.152 0 Td[(1Xp+pforsomepositiveintegerXp.IntheMaplecode,wesimplycallXpx".IfXpisapositiveinteger,weaddmtoourlistofcounterexamples.OncewehaverunthroughallXpmaxforeachpmax>75,weexitthetop-downportionoftheprogram.Thepurposeofthebottom-upportionoftheprogramistoshowthatmcannotbeaproductofdistinctoddprimeslessthan75.ItsowchartislistedasFigure4.6onpage47.Forthispart,weletSP1standforthesmallestprimedivisorofm.WestartwithSP1=3sincemmustbeodd.LetSP2representthesecondsmallestprimedivisorofm.ByTheorem1.2,SP261modSP1.NowletLISTbethesetofallprimespwithSP267westopherebecauseifSP2>67,thenmwouldhavetohaveaprimedivisorlargerthan75.Oncethisoccurs,weadvanceSP1tothenextprimelargerthanSP1'scurrentvalue,resetSP2,andrepeatthesteps.Then,weadvanceSP1again,andagain,untilSP1>61ifSP1>61,thenmwouldhavetohaveaprimedivisorlargerthan75.Oncethishappens,wehavenishedthebottom-upportionoftheprogram,andtogetherwiththetop-downportion,wehaveexhaustedoursearchforacom-positeintegermNsatisfyingPmi=1im)]TJ/F17 7.97 Tf 6.587 0 Td[(1)]TJ/F15 11.955 Tf 22.377 0 Td[(1modm.Theprogramconcludesbyprintingthenumberoffactorizationsperformedandlistinganycounterexamplesdiscovered.Wecanshowheuristicallythatthenumberoffactorizationsperformedisapproxi-matelyequaltoNR1a1=x3lnxdx,wherearepresentsthecut-ointegerseparatingthetop-downandbottom-uppartsoftheprograme.g.a=75above.ThisshowsthatthenumberoffactorizationsperformedincreaseslinearlyasNincreaseswhenaisindependentofN.NotethattherearemaxXpmaxfactorizationsforeachvalueofpmax,andthatpmaxassumesavalueforeachprimebetweenaandb3p Nc+1.Furthermore,maxXpmax=N)]TJ/F19 11.955 Tf 11.955 0 Td[(pmax pmax2pmax)]TJ/F15 11.955 Tf 11.955 0 Td[(1N pmax3N pmax3:38

PAGE 45

So,ifweletM=b3p Nc+1andletFNequalthetotalnumberoffactorizationsperformedforagivenN,thenFNMXx=a[xN=x3]=NMXx=ax x3;wherex=1;ifxisprime0;otherwise.Atthispoint,weturntoacommonheuristicargumentinordertocontinueapproxi-matingthissum.Recall,forarealnumbern,thefunctionndenotesthenumberofprimesnotexceedingn,andbytheprimenumbertheorem,nisasymptoticallyequalton=lnn.Nowconsideralargepositiveintegerxandasmallrealnumber.Bytheprimenumbertheorem,wehavethefollowingthreefacts,x=x lnx+o;)]TJ/F19 11.955 Tf 11.955 0 Td[(x=)]TJ/F19 11.955 Tf 11.955 0 Td[(x ln)]TJ/F19 11.955 Tf 11.955 0 Td[(x+o=)]TJ/F19 11.955 Tf 11.956 0 Td[(x lnx+ln)]TJ/F19 11.955 Tf 11.955 0 Td[(+o;+x=+x ln+x+o=+x lnx+ln++o;whereogxmeansogx gx!0asx!1.Inparticular,odenotesafunctionofxthatgoesto0asx!1.Eachappearanceofocanrepresentadierentfunction.Nowconsidertheinterval[)]TJ/F19 11.955 Tf 12.076 0 Td[(x;+x].Thenumberofprimesinthisintervalisgivenbyx+)]TJ/F19 11.955 Tf 11.955 0 Td[(x)]TJ/F19 11.955 Tf 11.955 0 Td[(.Fromabove,thisisequalto+x lnx+ln++o)]TJ/F15 11.955 Tf 31.111 8.088 Td[()]TJ/F19 11.955 Tf 11.955 0 Td[(x lnx+ln)]TJ/F19 11.955 Tf 11.955 0 Td[(+o;whichisequalto2x lnx+o:Sincethereare2xintegersintheinterval[)]TJ/F19 11.955 Tf 12.229 0 Td[(x;+x],wemaysaythattheprobabilitythatarandomlyselectedintegerfromthisintervalisprimeisabout2x lnx+o 2x=1 lnx+o:39

PAGE 46

Inotherwords,givenalargeenoughxandarelativelysmallenoughintervalaroundx,theprobabilitythatarandomlyselectedintegerfromthatintervalisprimeisaymptoticto1=lnx.Usingthisheuristic,wehaveFNNMXx=ax x3NMXx=a1=lnx x3=NMXx=a1 x3lnx:Wewishtoapproximatethissumbyanintegralsothatwemaystudyitmore.ConsidereachterminthesumasanN=x3lnxby1rectangle.Ifweorienttheserectanglesverticallyandcenterthemontheintegersonthex-axisofacoordinateplane,thenNPMx=a1=x3lnxisequaltotheareaoccupiedbyalloftheserectangles.NowforaxM,thefunctionfx=N=x3lnxpassesthroughthemidpointofthetopofeachrectangle,sotheareaunderthiscurveisaboutequaltotheareatherectanglesoccupy.Hence,FNNMXx=a1 x3lnxFNNZMa1 x3lnxdxFN NZMa1 x3lnxdxFN NZ1a1 x3lnxdx)]TJ/F24 11.955 Tf 11.955 16.273 Td[(Z1M1 x3lnxdx:However,0Z1M1 x3lnxdxZ1M1 x3dx=1 2M2;and1=M2!0asM!1.NowsinceM=b3p Nc+13p N,wemaysaythat1=M2!0asN!1.Thus,asN!1,FN NZ1a1 x3lnxdx:40

PAGE 47

NowletusevaluateR1a1=x3lnxdxusingsubstituationofvariables.Lett=2lnx.Then,lnx=t=2andx2=et.Also,dx=xdt=2.Thus,Z1a1 x3lnxdx=Z1a1 xx2lnxdx=Z12lna1 xett=2xdt 2=Z12lna1 ettdt=Z12lnae)]TJ/F20 7.97 Tf 6.586 0 Td[(t tdt=E1lna;whereE1lnaistheexponentialintegralE1xevaluatedat2lnaformorein-formationonthisfunction,see[10],[11],and/orpage2ofBleisteinandHandlesman'sAsymptoticExpansionsofIntegrals[2].Thus,FN NZ1a1 x3lnxdx=E1lna;whichimpliesFNNE1lna:WithN=1012anda=75,Maplegives1012E1ln518;621;914.NotethattheactualnumberoffactorizationsperformedwithN=1012anda=75was16;580;031.41

PAGE 48

Fig.4.1:MapleCodePart142

PAGE 49

Fig.4.2:MapleCodePart243

PAGE 50

Fig.4.3:MapleCodePart344

PAGE 51

Fig.4.4:OverviewFlowchart45

PAGE 52

Fig.4.5:Top-DownFlowchart46

PAGE 53

Fig.4.6:Bottom-UpFlowchart47

PAGE 54

BIBLIOGRAPHY[1]Aigner,Martin.07.DiscreteMathematics.AmericanMathematicalSociety.[2]Bleistein,N.andHandlesman,R.75.AsymptoticExpansionsofIntegrals.Dover.[3]Graham,Knuth,andPatashnik.994.ConcreteMathematics:AFoundationforComputerSciencendEdition.AddisonWesley.[4]Jones,GarethA.998.ElementaryNumberTheory.Springer.[5]Koshy,Thomas.2007.ElementaryNumberTheorywithApplications,SecondEdition.AcademicPress.[6]Long,CalvinT.1995.ElementaryIntroductiontoNumberTheory.WavelandPress.[7]OddPerfectNumberSearch.008.:[8]Rosen,KennethH.2005.ElementaryNumberTheoryandItsApplicationsthEdition.AddisonWesley.[9]Weisstein,EricW.008.BernoulliNumber."MathWorld{AWolframWebResource..[10]Weisstein,EricW.008.En-Function."MathWorld{AWolframWebResource..[11]Weisstein,EricW.08.ExponentialIntegral."MathWorld{AWolframWebResource..48


printinsert_linkshareget_appmore_horiz

Download Options

close
Choose Size
Choose file type
Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.