Citation

## Material Information

Title:
Certain diagonal equations over finite fields
Creator:
Sze, Christopher
Place of Publication:
[Tampa, Fla]
Publisher:
University of South Florida
Publication Date:
Language:
English

## Subjects

Subjects / Keywords:
Irreducible polynomial
Gaussian sum
Planar function
Hasse-Weil bound
Elliptic curve
Dissertations, Academic -- Mathematics and Statistics -- Masters -- USF ( lcsh )
Genre:
non-fiction ( marcgt )

## Notes

Abstract:
ABSTRACT: Let F q to the t be the finite field with q to the t elements and let F q to the t star be its multiplicative group. We study the diagonal equation a times x to the (q minus 1) plus b times y to the (q minus 1) equals c, where a,b and c are elements of F q to the t star. This equation can be written as x to the (q minus 1) plus alpha times y to the (q minus 1) equals beta, where alpha and beta are elements of F q to the t star. Let N sub t (alpha,beta) denote the number of solutions (x,y) in F q to the t star cross F q to the t star of the equation x to the (q minus 1) plus alpha times y to the (q minus 1) equals beta and I(r;a,b) be the number of monic irreducible polynomials f with coefficients in F q of degree r with f(0) equals a and f(1) equals b. We show that N sub t (alpha,beta) can be expressed in terms of I(r;a,b), where r divides t and a,b are elements of F q star are related to alpha and beta. A recursive formula for I(r;a,b) will be given and we illustrate this by computing I(r;a,b) for r greater than or equal to 2 but less than or equal to 4. We also show that N sub 3 (alpha,beta) can be expressed in terms of the number of monic irreducible cubic polynomials over F q with prescribed trace and norm. Connsequently, N sub 3 (alpha,beta) can be expressed in terms of the number of rational points on a certain elliptic curve. We give a proof that given any a,b elements of F q star and integer r greater than or equal to 3, there always exists a monic irreducible polynomial f with coefficients in F q of degree r such that f(0) equals a and f(1) equals b. We also use the result on N sub 2 (alpha,beta) to construct a new family of planar functions.
Thesis:
Thesis (M.A.)--University of South Florida, 2009.
Bibliography:
Includes bibliographical references.
System Details:
Mode of access: World Wide Web.
System Details:
System requirements: World Wide Web browser and PDF reader.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains 45 pages.
Statement of Responsibility:
by Christopher Sze.

## Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
002063929 ( ALEPH )
558652129 ( OCLC )
E14-SFE0003018 ( USFLDC DOI )
e14.3018 ( USFLDC Handle )

## USFLDC Membership

Aggregations:
Added automatically
USF Electronic Theses and Dissertations

Format:
Book

Downloads

## This item has the following downloads:

Full Text
xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam 2200385Ka 4500
controlfield tag 001 002063929
005 20100318111724.0
007 cr bnu|||uuuuu
008 100318s2009 flu s 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0003018
035
(OCoLC)558652129
040
FHM
c FHM
049
FHMM
090
QA36 (Online)
1 100
Sze, Christopher.
0 245
Certain diagonal equations over finite fields
h [electronic resource] /
by Christopher Sze.
260
[Tampa, Fla] :
b University of South Florida,
2009.
500
Title from PDF of title page.
Document formatted into pages; contains 45 pages.
502
Thesis (M.A.)--University of South Florida, 2009.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
3 520
ABSTRACT: Let F q to the t be the finite field with q to the t elements and let F q to the t star be its multiplicative group. We study the diagonal equation a times x to the (q minus 1) plus b times y to the (q minus 1) equals c, where a,b and c are elements of F q to the t star. This equation can be written as x to the (q minus 1) plus alpha times y to the (q minus 1) equals beta, where alpha and beta are elements of F q to the t star. Let N sub t (alpha,beta) denote the number of solutions (x,y) in F q to the t star cross F q to the t star of the equation x to the (q minus 1) plus alpha times y to the (q minus 1) equals beta and I(r;a,b) be the number of monic irreducible polynomials f with coefficients in F q of degree r with f(0) equals a and f(1) equals b. We show that N sub t (alpha,beta) can be expressed in terms of I(r;a,b), where r divides t and a,b are elements of F q star are related to alpha and beta. A recursive formula for I(r;a,b) will be given and we illustrate this by computing I(r;a,b) for r greater than or equal to 2 but less than or equal to 4. We also show that N sub 3 (alpha,beta) can be expressed in terms of the number of monic irreducible cubic polynomials over F q with prescribed trace and norm. Connsequently, N sub 3 (alpha,beta) can be expressed in terms of the number of rational points on a certain elliptic curve. We give a proof that given any a,b elements of F q star and integer r greater than or equal to 3, there always exists a monic irreducible polynomial f with coefficients in F q of degree r such that f(0) equals a and f(1) equals b. We also use the result on N sub 2 (alpha,beta) to construct a new family of planar functions.
538
Mode of access: World Wide Web.
System requirements: World Wide Web browser and PDF reader.
590
Advisor: Xiang-Dong Hou, Ph.D.
653
Irreducible polynomial
Gaussian sum
Planar function
Hasse-Weil bound
Elliptic curve
690
Dissertations, Academic
z USF
x Mathematics and Statistics
Masters.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.3018

PAGE 1

CertainDiagonalEquationsoverFiniteFields by ChristopherSze Athesissubmittedinpartialfulllment oftherequirementsforthedegreeof MasterofArts DepartmentofMathematicsandStatistics CollegeofArtsandSciences UniversityofSouthFlorida MajorProfessor:Xiang-DongHou,Ph.D. BrianCurtin,Ph.D. StephenSuen,Ph.D. DateofApproval: May29,2009 Keywords:irreduciblepolynomial,Gaussiansum,planarfunction,Hasse-Weil bound,ellipticcurve c Copyright2009,ChristopherSze

PAGE 2

Dedication Tothememoryofmymother VirginiaSze

PAGE 3

TableofContents Abstract.......................................ii 1Introduction...................................1 2PreliminaryResults...............................4 2.1Characters...............................4 2.2GaussianSums............................6 2.3MobiusInversion...........................8 3DiagonalEquations...............................10 4TheMainProblem...............................13 5NumberofIrreduciblePolynomialswithPrescribedValues.........17 5.1ARecursiveFormulafor I r ; a;b ..................17 5.2TheCase r =2............................21 5.3TheCase r =3............................23 5.4TheCase r =4............................26 6 N 3 ; andEllipticCurves..........................30 7Positivityof I t ; a;b ;t 3...........................36 8ApplicationstoPlanarFunctions.......................40 References......................................43 i

PAGE 4

CertainDiagonalEquationsoverFiniteFields ChristopherSze Abstract Let F q t betheniteeldwith q t elementsandlet F q t beitsmultiplicativegroup. Westudythediagonalequation ax q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + by q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = c where a;b;c 2 F q t .Thisequation canbewrittenas x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = ,where ; 2 F q t .Let N t ; denotethenumber ofsolutions x;y 2 F q t F q t of x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = and I r ; a;b bethenumberof monicirreduciblepolynomials f 2 F q [ x ]ofdegree r with f = a and f = b .We showthat N t ; canbeexpressedintermsof I r ; a;b ,where r j t and a;b 2 F q are relatedto and .Arecursiveformulafor I r ; a;b willbegivenandweillustratethis bycomputing I r ; a;b for2 r 4.Wealsoshowthat N 3 ; canbeexpressedin termsofthenumberofmonicirreduciblecubicpolynomialsover F q withprescribed traceandnorm.Consequently, N 3 ; canbeexpressedintermsofthenumberof rationalpointsonacertainellipticcurve.Wegiveaproofthatgivenany a;b 2 F q andinteger r 3,therealwaysexistsamonicirreduciblepolynomial f 2 F q [ x ]of degree r suchthat f = a and f = b .Wealsousetheresulton N 2 ; to constructanewfamilyofplanarfunctions. ii

PAGE 5

1Introduction Let F q betheniteeldwith q elementsandlet t beapositiveinteger.Themultiplicativegroupof F q t isdenotedby F q t .Thepurposeofthisthesisistostudythe numberofsolutions x;y 2 F q t F q t oftheequation ax q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + by q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = c; .1 where a;b;c 2 F q t .Equation.1isequivalentto x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = ; .2 where = b a = c a 2 F q t .Let N t ; denotethenumberofsolutions x;y 2 F q t F q t of.2.Thenumber N t ; isrelatedtothenumberofrationalpoints ontheprojectiveFermatcurve C : x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 )]TJ/F27 11.9552 Tf 11.955 0 Td [(z q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 =0.3 over F q t .Thenumberofrationalpointson C isgivenby jC F q t j = N t ; + k q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ; .4 where k isthenumberofelementsinthemultiset f)]TJ/F27 11.9552 Tf 15.276 0 Td [(;;= g whichare q )]TJ/F19 11.9552 Tf 12.171 0 Td [(1st powersin F q t .Equation.4wasstatedin[23]. Equation.2isaspecialdiagonalequation.Ingeneral,thenumberofsolutions ofadiagonalequationcanbeexpressedintermsofGaussiansumsandestimatesfor 1

PAGE 6

thenumberofsolutionscanbeobtainedthereafter.However,theexactnumberof solutionsofadiagonalequationisnotknownexceptinsomespecialcases.Wolfmann [29]determinedthenumberofsolutionsof a 1 x d 1 + + a s x d s = b over F p 2 m where d isaspecial"divisorof p 2 m )]TJ/F19 11.9552 Tf 12.017 0 Td [(1,meaningthat d j p r +1forsome r j m .Assume q t = p 2 m i.e., t j 2 m and q = p 2 m t .Then p r +1 ;q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1= 8 > > > > > > < > > > > > > : p r; 2 m t +1if 2 2 m t > 2 r ; 2if 2 2 m t 2 r and p> 2 ; 1if 2 2 m t 2 r and p =2 ; where 2 isthe2-adicorder;see[5,Lemma2.6]and[17,Lemma5.3].Thus, q )]TJ/F19 11.9552 Tf 12.377 0 Td [(1 isnotaspecialdivisorof p 2 m )]TJ/F19 11.9552 Tf 12.713 0 Td [(1exceptwhen q =2 ; 2 2 or3.Hence,ingeneral, equation.2isnotcoveredtheresultof[29]. Thefocusofthisthesisisthenumber N t ; .Let I r ; a;b denotethenumberof monicirreduciblepolynomials f 2 F q [ x ]ofdegree r suchthat f = a and f = b Weshallseethat N t ; canbeexpressedintermsof I r ; a;b where r j t and a;b 2 F q arerelatedto and .Thisreducesourproblemtonding I r ; a;b .The problemofcountingmonicirreduciblepolynomialswithprescribedvaluesresembles thatofcountingmonicirreduciblepolynomialswithprescribedcoecients;the latterisawellstudiedtopicinniteelds,seeforexample[4,12,13,25,28,30], buttheformer,toourknowledge,hasnotattractedmuchattention.Herearisesa naturalquestion:Is I r ; a;b alwayspositive?Namely,given r> 0and a;b 2 F q doestherealwaysexistamonicirreduciblepolynomial f 2 F q [ x ]suchthat f = a and f = b ?Theanswerisobviouslynegativefor r =1 ; 2,andisobviouslypositive for r =3.Weareabletoprovethat I r ; a;b > 0forall r 4and a;b 2 F q InChapter2wewillpresentpreliminaryresultsonGaussiansumsandMobius 2

PAGE 7

Inversion;thesearethebasictoolsofourinvestigation.InChapter3welookatthe diagonalequationsingeneralandgivethenumberofsolutionsintermsofGaussian sums.InChapter4,weconsiderourmainproblem,andweshallexpress N t ; in termsof I r ; a;b .Wewillgivearecursiveformulafor I r ; a;b andcomputations of I r ; a;b forsmallvaluesof r inChapter5.InChapter6,wewillderiveanother formulafor N 3 ; usingadierentperspective.Thisnewformulaallowsusto relate N 3 ; tothenumberofirreduciblecubicsover F q withprescribedtraceand normandfurtherallowsustorelate N 3 ; toacertainellipticcurve.InChapter 7,wegiveaproofthatassertsthepositivityof I r ; a;b ,for t 3.Inthelastchapter wewilldiscusssomeapplicationtoplanarfunctionswhicharealsoknownasperfect linearfunctions.Wewillusetheresulton N 2 ; toconstructanewfamilyof planarfunctions. 3

PAGE 8

2PreliminaryResults 2.1Characters Let G beaniteabeliangroupwrittenmultiplicatively.A character of G isamap from G intothemultiplicativegroupofcomplexnumbersofabsolutevalue1such that g 1 g 2 = g 1 g 2 forall g 1 ;g 2 2 G: Equivalently,acharacterofaniteabeliangroup G isahomomorphism : G C If1 G istheidentityelementin G ,then G =1.If g 2 G ,then g isa j G j throot ofunityand g )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = g )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = g ,wherethebardenotescomplexconjugation. Foranyniteabeliangroup G ,wehavethe trivial character 0 denedby 0 g = 1forall g 2 G: Foreachcharacter of G; thereisassociatedthe conjugatecharacter denedby g = g forall g 2 G .Giventhecharacters 1 ;:::; n ,wedene theproduct 1 n by 1 n g = 1 g n g : Theset G ^ ofcharactersof G formsanabeliangroupundermultiplicationofcharactersand j G j = j G ^ j .Infact, G = G ^ althoughtheisomoprhismisnotcanonical. Let F q betheniteeldwith q elements.Then F q and F q areniteabeliangroups underadditionandmultiplication,respectively.Considerrsttheadditivegroupof F q .Let q = p n ,where p isaprime.LetTr F q = F p : F q F p betheabsolutetrace functionfrom F q to F p .Thenthe canonicaladditivecharacter of F q ,denotedby 1 isgivenby 1 c = e 2 i Tr F q = F p c =p forall c 2 F q : .1 4

PAGE 9

Foreach b 2 F q ,thefunction b denedby b c = 1 bc forall c 2 F q isalsoanadditivecharacterof F q andalladditivecharactersof F q arefoundinthis manner.Now,letusconsiderthemultiplicativegroup F q of F q .Thecharactersof F q arecalledthe multiplicativecharacters of F q .Let g beaxedprimitiveelementof F q .Thenforeach j =0 ; 1 ;:::;q )]TJ/F19 11.9552 Tf 11.955 0 Td [(2,thefunction j denedby j g k = e 2 ijk= q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 for k =0 ; 1 ;:::;q )]TJ/F19 11.9552 Tf 11.955 0 Td [(2 isamultiplicativecharacterof F q andallmultiplicativecharactersof F q areobtained inthisway.Furthermore,thesetofallmultiplicativecharactersof F q formsacyclic groupoforder q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1. Let q beoddand bethefunctionon F q denedby c = 8 > < > : 1if c isasquarein F q ; )]TJ/F19 11.9552 Tf 9.298 0 Td [(1otherwise. Then isamultiplicativecharacterof F q calledthe quadraticcharacter of F q .For convenience,wedene =0 : Wehavethefollowingidentitiesinvolvingtheadditiveandmultiplicativecharactersof F q .If a and b areadditivecharactersof F q wehave X c 2 F q a c b c = 8 > < > : 0if a 6 = b; q if a = b: Inparticular, X c 2 F q a c =0for a 6 =0 : 5

PAGE 10

Moreover,if c;d 2 F q then X b 2 F q b c b d = 8 > < > : 0if c 6 = d; q if c = d: .2 Formultiplicativecharacters and of F q wehave X c 2 F q c c = 8 > < > : 0if 6 = ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1if = : Inparticular, X c 2 F q c =0for 6 = 0 : .3 Furthermore,if c;d 2 F q then X c d = 8 > < > : 0if c 6 = d; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1if c = d; .4 wherethesumisoverallmultiplicativecharacters of F q Charactersareusedtondexpressionsforthenumberofsolutionsofequations inaniteabeliangroup G .Let f x 1 ;:::;x n = b beanequationin n indeterminates over G .Let N b bethenumberof x 1 ;:::;x n 2 G n suchthat f x 1 ;:::;x n = b Then N b = 1 j G j X x 1 2 G ::: X x n 2 G X 2 G ^ f x 1 ;:::;x n b : .5 2.2GaussianSums Let beamultiplicativeand beanadditivecharacterof F q .The Gaussiansum G ; isdenedby G ; = X c 2 F q c c : 6

PAGE 11

Let 0 and 0 bethetrivialadditiveandmultiplicativecharactersof F q respectively. TheGaussiansum G ; satises G ; = 8 > > > > < > > > > : q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1if = 0 ; = 0 ; )]TJ/F19 11.9552 Tf 9.299 0 Td [(1if = 0 ; 6 = 0 ; 0if 6 = 0 ; = 0 ; .6 and j G ; j = q 1 = 2 if 6 = 0 ; 6 = 0 : .7 TheGaussiansumsfortheniteeld F q alsohavethefollowingproperties: i G ; ab = a G ; b for a 2 F q ;b 2 F q ; ii G ; = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 G ; ; iii G ; = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 G ; ; iv G ; G ; = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 q for 6 = 0 and 6 = 0 ; v G p ; b = G ; b for b 2 F q ,where p isthecharacteristicof F q and b = b p : Let beamultiplicativecharacterof F q .By.2wehave,forany c 2 F q c = 1 q X d 2 F q d X b 2 F q b c b d = 1 q X b 2 F q b c X d 2 F q d b d = 1 q X G ; c ; wherethelastsumisextendedoveralladditivecharacters of F q .Similarly,if is 7

PAGE 12

anadditivecharacterof F q ,thenby.4,weget,forany c 2 F q c = 1 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 X d 2 F q d X c d = 1 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 X c X d 2 F q d d = 1 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 X G ; c ; .8 wherethesumisextendedoverallmultiplicativecharacters of F q 2.3MobiusInversion A partiallyorderedset S; isanorderedpairconsistingofaset S andabinary relation on S thatisreexive,transitiveandanti-symmetric.An interval ofa partiallyorderedset S; isgivenby[ x;y ]= f z 2 S : x z y g : Wesaythata partiallyorderedsetis locallynite ifeveryintervalhasanitenumberofelements. Let S; bealocallynitepartiallyorderedset.The Mobiusfunction of S; isanintegervaluedfunctionoftwovariableson S denedby x;y =0if x y; andby X z 2 [ x;y ] x;z = x;y if x y; where istheKroneckerdeltafunction. Theorem2.1 MobiusInversionFormula[1] Let S; bealocallynitepartially orderedsetwithMobiusfunction .Let A beanabeliangroupand N = : S A bea function.Let l;m 2 S bexedandfor x 2 S dene N x = X y 2 [ x;m ] N = y 8

PAGE 13

and N x = X y 2 [ l;x ] N = y : Then N = x = X y 2 [ x;m ] x;y N y forall x 2 S with x m and N = x = X y 2 [ l;x ] y;x N y forall x 2 S with x l: Example2.2. [ ClassicalMobiusfunction ]Let Z + bethesetofallpositiveintegers. Then Z + ; j isalocallynitepartiallyorderedset,where x j y means x divides y TheMobiusfunctionisgivenby x;y = y x = 8 > > > > > < > > > > > : 1if y x =1 ; )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 k if y x isaproductof k distinctprimes ; 0if y x isdivisiblebyasquareofaprime. Example2.3. [ Partitionsofaset [1]]Let S n beanitesetconsistingof n elements. Let f 1 ; 2 ;::: g beapartitionof S n intosubsetsof S n .Thesets i arecalled blocks ofthepartition.Let P bethesetofallpartitionsof S n andlet ; 2P : Wewrite tomeanthat isarenementof .Then P ; isalocallynitepartially orderedset.ThentheMobiusfunctionisgivenby ; = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 r )]TJ/F28 7.9701 Tf 6.586 0 Td [(r r Y i =1 n i )]TJ/F19 11.9552 Tf 11.955 0 Td [(1!.9 where r denotesthenumberofblocksof andthe i thblockof forsomexed orderistheunionofexactly n i blocksof 9

PAGE 14

3DiagonalEquations A diagonalequation over F q isanequationoftheform a 1 x k 1 1 + ::: + a n x k n n = b; .1 where k 1 ;:::;k n arepositiveintegers, a 1 ;:::;a n 2 F q and b 2 F q .Inthischapter,we willuseGaussiansumstoexpressthenumberofsolutionsofdiagonalequations. Let N bethenumberofsolutionsof.1in F n q : By.5wehave N = 1 q X c 1 ;:::;c n 2 F q X a 1 c k 1 1 + + a n c k n n b ; where runsthroughalltheadditivecharacterof F q .Rearrangingandseparating thetrivialcharacter 0 ,weget N = 1 q X s 2 F q s b X c 1 ;:::;c n 2 F q s a 1 c k 1 1 s a n c k n n = 1 q q n + 1 q X s 2 F q s b X c 1 ;:::;c n 2 F q s a 1 c k 1 1 s a n c k n n = q n )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + 1 q X s 2 F q s b 0 @ X c 1 2 F q a 1 s c k 1 1 1 A 0 @ X c n 2 F q a n s c k n n 1 A : Welookatthesum X c i 2 F q a i s c k i i .By2.8, a i s c k i i = 1 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 X G ; a i s c k i i ; 10

PAGE 15

wherethesumisoverallmultiplicativecharacters of F q .Wehave X c i 2 F q a i s c k i i =1+ X c i 2 F q a i s c k i i =1+ 1 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 X c i 2 F q X G ; a i s c k i i =1+ 1 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 X G ; a i s X c i 2 F q k i c i : By.3, X c i 2 F q k i c i = 8 > < > : q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1if k i = 0 ; 0if k i 6 = 0 ; where 0 isthetrivialmultiplicativecharacterof F q .Nowlet d i =gcd k i ;q )]TJ/F19 11.9552 Tf 12.614 0 Td [(1 : Then k i istrivialifandonlyif o j d i ,where o istheorderof .Let i bea multiplicativecharacteroforder d i .Since i isoforder d i ,thenthecharacterswhose orderdivides d i areexactlygivenby i j i ,for j i =0 ; 1 ;:::;d i )]TJ/F19 11.9552 Tf 11.956 0 Td [(1.Hence, X c i 2 F q a i s c k i i =1+ 1 q )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 d i )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 X j i =0 G j i i ; a i s X c i 2 F q i j i c i =1+ d i )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 X j i =0 G j i i ; a i s Finally,by.6andpropertyiofGaussiansumsweget X c i 2 F q a i s c k i i = d i )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 X j i =1 G j i i ; a i s = d i )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 X j i =1 i j i a i G j i i ; s 11

PAGE 16

Therefore, N = q n )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + 1 q X s 2 F q s b d 1 )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 X j 1 =1 1 j 1 a 1 G j 1 1 ; s d n )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 X j n =1 n j n a n G j n n ; s = q n )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + 1 q d 1 )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 X j 1 =1 d n )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 X j n =1 1 j 1 a 1 ::: n j n a n X s 2 F q s b G j 1 1 ; s :::G j n n ; s : Fortheinnersum,wehave X s 2 F q s b G j 1 1 ; s :::G j n n ; s = G j 1 1 ; 1 G j n n ; 1 X s 2 F q b a 1 j 1 a n j n a = G j 1 1 ; 1 G j n n ; 1 G 1 j 1 n j n ; b : Thus, N = q n )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + 1 q d 1 )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 X j 1 =1 d n )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 X j n =1 1 j 1 a 1 G j 1 1 ; 1 n j n a n G j n n ; 1 G 1 j 1 n j n ; b = q n )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + 1 q d 1 )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 X j 1 =1 d n )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 X j n =1 G j 1 1 ; a 1 G j n n ; a n G 1 j 1 n j n ; b : .2 12

PAGE 17

4TheMainProblem Let F q betheniteeldwith q elementsandlet t beapositiveinteger.Considerthe equation x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = ; .1 where ; 2 F q t .Wewanttoknowthenumberofsolutions x;y 2 F q t F q t of .1.Let N t ; = f x;y 2 F q t F q t : x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = g andfor a;b 2 F q and r 1,let I r ; a;b = jf f 2 F q [ x ]: f monic,irr.deg f = r;f = a;f = b gj : Wegiveaformulafor N t ; intermsof I r ; a;b where r j t and a;b 2 F q are relatedto and .Foranyinteger s ,let F s q t bethegroupdenedby F s q t = f x s : x 2 F q t g : Wedenotethenormfunctionfrom F q t to F q byN F q t = F q Theorem4.1. For ; 2 F q t N t ; = q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 X r j t ; 2 F q )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 ;t=r q t r X a;b 2 F q a t=r =N F q t = F q b t=r =N F q t = F q I r ; a;b : 13

PAGE 18

Proof. Put X = f x;y 2 F q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 q t F q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 q t : x + y = g .Thenwehave N t ; = q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 jXj : .2 Let U = f u 2 F q t :N F q t = F q u =N F q t = F q ; N F q t = F q u +1=N F q t = F q g : Weclaimthatthemapping : X)167(!U x;y 7)167(! y x isabijection.Let x + y = : Then N F q t = F q y x = y x q t )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = q t )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 =N F q t = F q : Similarly, N F q t = F q y x +1 =N F q t = F q x =N F q t = F q : Thisshowsthat iswell-dened.Let x 1 + y 1 = = x 2 + y 2 and y 1 x 1 = y 2 x 2 ; then clearly x 1 ;y 1 = x 2 ;y 2 : Thus isone-to-one.Toshowthat isonto,let u 2U Then 1+ u ; u + u 2 F q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 q t since 1+ u q t )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = N F q t = F q N F q t = F q + u =1 and u + u q t )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = N F q t = F q N F q t = F q u N F q t = F q N F q t = F q + u =1 : Furthermore, 1+ u + u + u = : 14

PAGE 19

Thereforewehaveshownthat isabijectionwithinverse )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 : U)167(!X u 7)167(! 1+ u 1 ; u : Hence, jXj = jUj : .3 Let U r = f u 2U :[ F q u : F q ]= r g : Then jUj = P r j t jU r j .Let u 2 F q t suchthat [ F q u : F q ]= r andlet f 2 F q [ x ]betheminimalpolynomialof u over F q .Wehave N F q t = F q u =N F q r = F q N F q t = F q r u =N F q r = F q u t=r =[ )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 r f ] t=r : Similarly,since f x )]TJ/F19 11.9552 Tf 11.955 0 Td [(1istheminimalpolynomialof u +1over F q wehave N F q t = F q u =[ )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 r f )]TJ/F19 11.9552 Tf 9.299 0 Td [(1] t=r : Let I r = f f 2 F q [ x ]: f monic,irr.deg f = r;f t=r =N F q t = F q ;f t=r =N F q t = F q g : .4 Thenitisclearthatthemapping U r )167(!I r u 7)167(! )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 r f )]TJ/F27 11.9552 Tf 9.299 0 Td [(x ; where f istheminimalpolynomialof u over F q ,isontoand r -to-1.So jU r j = r jI r j From.4weseethat I r = ; unlessN F q t = F q ; N F q t = F q 2 F t=r q Werstclaimthat F t=r q = F q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 ;t=r q ,where q )]TJ/F19 11.9552 Tf 10.14 0 Td [(1 ;t=r =gcd q )]TJ/F19 11.9552 Tf 10.14 0 Td [(1 ;t=r .Clearly, F t=r q F q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 ;t=r q .If 2 F q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 ;t=r q ,then = x a q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1+ b t=r forsome x 2 F q and 15

PAGE 20

integers a;b .Andso = x b t=r 2 F t=r q .Next,weshowthatN F q t = F q 2 F t=r q if andonlyif 2 F q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 ;t=r q t : N F q t = F q 2 F t=r q q t )]TJ/F26 5.9776 Tf 5.757 0 Td [(1 q )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 2 F t=r q = F q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 ;t=r q q t )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 q )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 q )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 t=r;q )]TJ/F26 5.9776 Tf 5.757 0 Td [(1 =1 q t )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 t=r;q )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 =1 2 F q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 ;t=r q t : Therefore, I r = ; unless ; 2 F q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 ;t=r q t .Andsoweget jUj = X r j t jU r j = X r j t ; 2 F q )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 ;t=r q t r jI r j = X r j t ; 2 F q )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 ;t=r q t r X a;b 2 F q a t=r =N F q t = F q b t=r =N F q t = F q I r ; a;b : .5 Theconclusionfollowsfrom.2,.3,and.5. 16

PAGE 21

5NumberofIrreduciblePolynomialswithPrescribedValues Inthischapter,wegivearecursiveformulafor I r ; a;b .Wealsogiveexplicitformulas for I r ; a;b for r =2 ; 3 ; 4. 5.1ARecursiveFormulafor I r ; a;b Forinteger r> 0and a;b 2 F q ,let I r ; a;b = f f 2 F q [ x ]: f monic,irr.deg f = r;f = a;f = b g : So I r ; a;b = jI r ; a;b j : If f 2I ; a;b ; then f = b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a x + a .So I ; a;b = 8 > < > : 1if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a =1 ; 0otherwise. .1 Forinteger i> 0 ; 0and a = a;b 2 F q F q ,let I i ; a = f f 1 f : f 1 ;:::;f 2 F q [ x ]monic,irr.ofdeg i; f 1 f = a; f 1 f = b g 17

PAGE 22

andlet I i ; a = jI i ; a j : Wedene I 0 i ; a =1,andwrite I 1 i ; a = I i ; a .We have q r )]TJ/F25 7.9701 Tf 6.586 0 Td [(2 = f 2 F q [ x ]: f monicofdeg r f = a f = b = X 1 1 + + r r = r X a 1 ;:::; a r 2 F q F q a 1 a r = a;b r Y i =1 I i i ; a i : Andso I r ; a;b = q r )]TJ/F25 7.9701 Tf 6.587 0 Td [(2 )]TJ/F32 11.9552 Tf 45.405 11.357 Td [(X 1 1 + + r )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 r )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 = r X a 1 ;:::; a r )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 2 F q F q a 1 a r )]TJ/F26 5.9776 Tf 5.756 0 Td [(1 = a;b r )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 Y i =1 I i i ; a i : .2 InthefollowingLemma,wewillexpress I i ; a intermsof I i ; a 0 where a 0 2 F q F q A partitionofaninteger 0isasequenceofintegers = 1 ;:::; k suchthat 1 k 1and 1 + + k = .Wewrite ` tomeanthat isapartition of .For = 1 ;:::; k ` ,let n s = jf j : j = s gj ; 1 s : Lemma5.1. For i> 0 0 and a 2 F q F q ,wehave I i ; a = X = 1 ;:::; k ` 1 n 1 n X a 1 ;:::; a k 2 F q F q distinct a 1 1 a k k = a k Y j =1 I i ; a j + j )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 j : .3 Proof. Sincetheelementsof I i ; a areproductsof irreduciblepolynomials,we partition I i ; a bylookingattheimagesof0and1undereachirreduciblefactorand grouptheelementsof I i ; a havingthesamesetofimages,countingmultiplicities. 18

PAGE 23

Soforeach = 1 ;:::; k ` ,let I i ; a = f 1 f : 9 a 1 ;:::; a k 2 F q F q distinctsuchthat a 1 1 a k k = a and f s 2I i ; a j for 1 + + j )]TJ/F25 7.9701 Tf 6.587 0 Td [(1
PAGE 24

WiththisLemma,.2becomesarecursiveformulafor I r ; a;b .However,inthe innersumof.3,therequirementthat a 1 ;:::; a k bedistinctisdiculttoimplement inactualcomputation.WeshalluseaMobiusinversiontowaivethisrequirement. Fix = 1 ;:::; k ` andlet A = f a 1 ;:::; a k : a 1 ;:::; a k 2 F q F q ; a 1 1 a k k = a g : Foreach a 1 ;:::; a k 2A wedeneanequivalencerelationontheset f 1 ;:::;k g as follows: i j ifandonlyif a i = a j .Wedenotetheinducedpartitionon f 1 ;:::;k g by a 1 ;:::; a k .Let P k bethesetofallpartitionsof f 1 ;:::;k g .For ; 2P k ,we write tomeanthat isarenementof .Then P k ; isapartiallyordered setwhosesmallestelementis 0 = f 1 g ;:::; f k g .For 2P k ,put A = f a 1 ;:::; a k 2A : a 1 ;:::; a k = g : Let 1 ;:::; l betheblocksof 2P k .Wehave X X a 1 ;:::; a k 2A jJ a 1 ;:::; a k j = X a 1 ;:::; a k 2A a 1 ;:::; a k jJ a 1 ;:::; a k j = X a 1 ;:::; a l 2 F q F q a P j 1 2 1 j 1 1 a P j l 2 l j l l = a l Y s =1 Y j 2 s I i ; a s + j )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 j : BytheMobiusinversionformula, X a 1 ;:::; a k 2A 0 jJ a 1 ;:::; a k j = X = f 1 ;:::; l g2P k X a 1 ;:::; a l 2 F q F q a P j 1 2 1 j 1 1 a P j l 2 l j l l = a l Y s =1 Y j 2 s I i ; a s + j )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 j ; 20

PAGE 25

where = 0 ; and istheMobiusfunctionof P k ; : By.9, = 0 ; = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 k )]TJ/F28 7.9701 Tf 6.587 0 Td [(l l Y s =1 j s j)]TJ/F19 11.9552 Tf 17.933 0 Td [(1! : But A 0 = f a 1 ;:::; a k : a 1 ;:::; a k 2 F q F q distinct ; a 1 1 a k k = a g : Andsoby.5, X a 1 ;:::; a k 2A 0 jJ a 1 ;:::; a k j = X a 1 ;:::; a k 2 F q F q distinct a 1 1 a k k = a k Y j =1 I i ; a j + j )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 j : Hence,wecanwrite.3as I i ; a = X = 1 ;:::; k ` 1 n 1 n X = f 1 ;:::; l g2P k X a 1 ;:::; a l 2 F q F q a P j 1 2 1 j 1 1 a P j l 2 l j l l = a l Y s =1 Y j 2 s I i ; a s + j )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 j : .7 5.2TheCase r =2 Inthissectionwewillndanexpressionfor I ; a;b andconsequently,for N 2 ; Let f 2 F q [ x ]bemonicwithdeg f =2 ;f = a;f = b .Then f isoftheform f = x 2 + b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 x + a: Wendconditionssuchthat f isirreducible. Werstassumethat q isodd.Then f isirreducibleifandonlyif b )]TJ/F27 11.9552 Tf 11.058 0 Td [(a )]TJ/F19 11.9552 Tf 11.057 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.057 0 Td [(4 a isanonsquarein F q .Let bethequadraticcharacterof F q .Notethatwedene 21

PAGE 26

=0.Then b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a = 8 > < > : 1if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a isasquarein F q ; )]TJ/F19 11.9552 Tf 9.298 0 Td [(1if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a isanonsquarein F q : Thus, I ; a;b = 8 > > < > > : 1 2 1 )]TJ/F27 11.9552 Tf 11.955 0 Td [( )]TJ/F19 11.9552 Tf 5.48 -9.683 Td [( b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a if b )]TJ/F27 11.9552 Tf 11.956 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a 6 =0 ; 0if b )]TJ/F27 11.9552 Tf 11.956 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a =0 : .8 If q iseven,then f = x 2 + b )]TJ/F27 11.9552 Tf 12.621 0 Td [(a )]TJ/F19 11.9552 Tf 12.621 0 Td [(1 x + a 2 F q [ x ]isreducibleifandonlyif b )]TJ/F27 11.9552 Tf 12.582 0 Td [(a )]TJ/F19 11.9552 Tf 12.582 0 Td [(1=0orthereexists 2 F q suchthat 2 + b )]TJ/F27 11.9552 Tf 12.582 0 Td [(a )]TJ/F19 11.9552 Tf 12.582 0 Td [(1 + a =0.When b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 6 =0, 2 + b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 + a =0 )]TJ/F28 7.9701 Tf 17.023 -4.428 Td [( b )]TJ/F28 7.9701 Tf 6.587 0 Td [(a )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 2 + )]TJ/F28 7.9701 Tf 17.023 -4.428 Td [( b )]TJ/F28 7.9701 Tf 6.587 0 Td [(a )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = a b )]TJ/F28 7.9701 Tf 6.587 0 Td [(a )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 2 Tr F q = F 2 a b )]TJ/F28 7.9701 Tf 6.587 0 Td [(a )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 2 =0 ; by[22,Theorem2.25].Therefore f isirreducibleifandonlyif b )]TJ/F27 11.9552 Tf 12.517 0 Td [(a )]TJ/F19 11.9552 Tf 12.517 0 Td [(1 6 =0and Tr F q = F 2 a b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 =1.Nowlet 1 bethecanonicaladditivecharacterof F q Thenby.1, 1 a b )]TJ/F27 11.9552 Tf 11.956 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 Tr F q = F 2 )]TJ/F28 7.9701 Tf 22.559 -4.977 Td [(a b )]TJ/F28 7.9701 Tf 6.586 0 Td [(a )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 2 = 8 > < > : 1ifTr F q = F 2 a b )]TJ/F28 7.9701 Tf 6.586 0 Td [(a )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 2 =0 ; )]TJ/F19 11.9552 Tf 9.298 0 Td [(1ifTr F q = F 2 a b )]TJ/F28 7.9701 Tf 6.586 0 Td [(a )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 2 =1 : Hence, I ; a;b = 8 > > > < > > > : 1 2 1 )]TJ/F27 11.9552 Tf 11.955 0 Td [( 1 a b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 6 =0 ; 0if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1=0 : .9 WeshalluseTheorem4.1togetherwith.8and.9todetermine N 2 ; 22

PAGE 27

Let a =N F q 2 = F q and b =N F q 2 = F q .ByTheorem4.1, N 2 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 =2 I ; a;b + X a 1 ;b 1 2 F q a 2 1 = a;b 2 1 = b I ; a 1 ;b 1 : Using.1, X a 1 ;b 1 2 F q a 2 1 = a;b 2 1 = b I ; a 1 ;b 1 = a 1 2 F q : a 2 1 = a; a 1 +1 2 = b = 8 > < > : 1if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a =0 ; 0otherwise : .10 Combining.10with.8and.9,weget,if q isodd, N 2 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 =1 )]TJ/F27 11.9552 Tf 11.955 0 Td [( )]TJ/F19 11.9552 Tf 5.48 -9.683 Td [( b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a : .11 If q iseven, N 2 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = 8 > > > < > > > : 1 )]TJ/F27 11.9552 Tf 11.955 0 Td [( 1 a b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 6 =0 ; 1if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1=0 : 5.3TheCase r =3 Let f 2 F q [ x ]bemonicwithdeg f =3 ;f = a;f = b .Then f = x 3 + cx 2 + b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F27 11.9552 Tf 11.955 0 Td [(c )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 x + a; 23

PAGE 28

forsome c 2 F q .Now f isirreducibleifandonlyif f x 6 =0forall x 2 F q nf 0 ; 1 g Let V a;b = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 x 2 )]TJ/F27 11.9552 Tf 11.955 0 Td [(x )]TJ/F27 11.9552 Tf 5.48 -9.684 Td [(x 3 + b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 x + a : x 2 F q nf 0 ; 1 g = )]TJ/F27 11.9552 Tf 9.299 0 Td [(x + a x )]TJ/F27 11.9552 Tf 24.221 8.088 Td [(b x )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1: x 2 F q nf 0 ; 1 g : .12 Then f isirreducibleifandonlyif c= 2 V a;b .Therefore I ; a;b = q )-222(j V a;b j : .13 Todetermine N 3 ; ,let a =N F q 3 = F q and b =N F q 3 = F q .ByTheorem4.1 and.13, N 3 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 =3 I ; a;b + X a 1 ;b 1 2 F q a 3 1 = a;b 3 1 = b I ; a 1 ;b 1 =3 )]TJ/F27 11.9552 Tf 5.479 -9.684 Td [(q )-222(j V a;b j + a 1 2 F q : a 3 1 = a; a 1 +1 3 = b : .14 Wedetermine a 1 2 F q : a 3 1 = a; a 1 +1 3 = b in.14inthenextlemma. Lemma5.2. Let a;b 2 F q iWhen p 6 =3 a 1 2 F q : a 3 1 = a; a 1 +1 3 = b = 8 > > > > < > > > > : 2 if a =1 b = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 and 3 j q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ; 1 if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a +2 6 =0 and 3 a + b )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 a +2 b +1= b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a +2 2 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ; 0 otherwise : 24

PAGE 29

iiWhen p =3 a 1 2 F q : a 3 1 = a; a 1 +1 3 = b = 8 > < > : 1 if b = a +1 ; 0 if b 6 = a +1 : Proof. iLet a;b 2 F q and A = a 1 2 F q : a 3 1 = a; a 1 +1 3 = b .If a 1 2 A ,then 3 a 2 1 +3 a 1 +1= b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a .So a 2 1 + a 1 +1= 1 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a +2. If b )]TJ/F27 11.9552 Tf 10.675 0 Td [(a +2=0,then a 3 1 =1.So a =1and b = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1.Itfollowsthat a 1 isaprimitive cuberootofunity.But F q hasaprimitivecuberootofunityifandonlyif3 j q )]TJ/F19 11.9552 Tf 11.964 0 Td [(1. Andsoif a =1 ;b = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1and3 j q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1then j A j =2. If b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a +2 6 =0,wehave a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1= a 3 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 a 2 1 + a 1 +1 = 3 a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a +2 : So a 1 = 2 a + b )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a +2 : If a 1 = 2 a + b )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 b )]TJ/F28 7.9701 Tf 6.586 0 Td [(a +2 ,theequation a 2 1 + a 1 +1= 1 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a +2becomesequivalentto 3 a + b )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 a +2 b +1= b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a +2 2 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 : .15 Thus,if.15issatisedthen j A j =1. iiObvious. 25

PAGE 30

5.4TheCase r =4 Inthissectionwewillpresentanexplicitformulafor I ; a;b .Using.2wehave I ; a;b = q 2 )]TJ/F27 11.9552 Tf 11.955 0 Td [(I 4 ; a;b )]TJ/F32 11.9552 Tf 29.342 11.357 Td [(X a 1 ; a 2 2 F q F q a 1 a 2 = a;b I 2 ; a 1 I ; a 2 )]TJ/F27 11.9552 Tf 11.955 0 Td [(I 2 ; a;b )]TJ/F32 11.9552 Tf 29.342 11.358 Td [(X a 1 ; a 2 2 F q F q a 1 a 2 = a;b I ; a 1 I ; a 2 : .16 In.16,weshalluse.7tocompute I 2 ; a ;I 2 ; a;b and I 4 ; a;b .Note thatfor i =1 ; 2,then I i ; a =0or1andsothebinomialcoecientin.7is simpliedto I i ; a s + j )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 j = I i ; a s : Performingthecomputations,weget I 4 ; a;b = 1 24 X a 1 a 4 = a;b I ; a 1 I ; a 2 I ; a 3 I ; a 4 + 1 4 X a 2 1 a 2 a 3 = a;b I ; a 1 I ; a 2 I ; a 3 + 1 8 X a 2 1 a 2 2 = a;b I ; a 1 I ; a 2 + 1 3 X a 3 1 a 2 = a;b I ; a 1 I ; a 2 + 1 4 X a 4 1 = a;b I ; a 1 : .17 Eachsumin.17representsthenumberofsolutionsofarationalequationor somepolynomialequations.Andso.17canbewrittenas I 4 ; a;b = 1 24 n a 1 ;a 2 ;a 3 : a i 2 F q ; + a 1 + a 2 + a 3 1+ a a 1 a 2 a 3 = b o + 1 4 n a 1 ;a 2 2 F q F q :+ a 1 2 + a 2 1+ a a 2 1 a 2 = b o + 1 8 a 1 ;a 2 2 F q F q : a 2 1 a 2 2 = a; + a 1 2 + a 2 2 = b + 1 3 n a 1 2 F q :+ a 1 3 1+ a a 3 1 = b o + 1 4 a 1 2 F q : a 4 1 = a; + a 1 4 = b : .18 26

PAGE 31

Next,for i =1 ; 2 ; a 2 F q F q wehave I 2 i ; a = 1 2 X a 1 a 2 = a I i ; a 1 I i ; a 2 + 1 2 X a 2 1 = a I i ; a 1 : .19 Let i =1and a = a;b in.19.Thenby.10, X a 2 1 = a I ; a 1 = 8 > < > : 1if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a =0 ; 0otherwise. Now X a 1 a 2 = a I ; a 1 I ; a 2 = n a 1 2 F q :+ a 1 1+ a a 1 = b o = a 1 2 F q : a 2 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [( b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 a 1 + a =0 = 8 > > > > > < > > > > > : 1+ )]TJ/F19 11.9552 Tf 5.48 -9.684 Td [( b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a if q isodd ; 1+ 1 a b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 if q isevenand b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 6 =0 ; 1if q isevenand b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1=0 : Hence,if q isodd,then I 2 ; a = 8 > < > : 1if )]TJ/F19 11.9552 Tf 5.48 -9.684 Td [( b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a =0or1 ; 0if )]TJ/F19 11.9552 Tf 5.48 -9.684 Td [( b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; andso X a 1 ; a 2 2 F q F q a 1 a 2 = a;b I 2 ; a 1 I ; a 2 = a 1 ;b 1 2 F q F q : )]TJ/F19 11.9552 Tf 5.48 -9.684 Td [( b 1 )]TJ/F27 11.9552 Tf 11.955 0 Td [(a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a 1 =0or1; b b 1 )]TJ/F28 7.9701 Tf 15.226 4.707 Td [(a a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a a 1 = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 : .20 27

PAGE 32

Nowif q iseven,then I 2 ; a = 8 > > < > > : 0if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 6 =0and 1 a b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; 1otherwise : andsowehave X a 1 ; a 2 2 F q F q a 1 a 2 = a;b I 2 ; a 1 I ; a 2 = n a 1 ;b 1 2 F q F q : b 1 )]TJ/F27 11.9552 Tf 11.955 0 Td [(a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1=0or 1 a 1 b 1 )]TJ/F28 7.9701 Tf 6.586 0 Td [(a 1 )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 2 =1; 1 a a 1 b b 1 )]TJ/F28 7.9701 Tf 15.227 4.707 Td [(a a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 o : .21 Nowlet i =2and a = a;b in.19.Then I 2 ; a;b = 1 2 X a 1 a 2 = a;b I ; a 1 I ; a 2 + 1 2 X a 2 1 = a;b I ; a 1 : When q isodd,wehave I 2 ; a;b = 1 2 n a 1 ;b 1 2 F q F q : )]TJ/F19 11.9552 Tf 5.479 -9.684 Td [( b 1 )]TJ/F27 11.9552 Tf 9.963 0 Td [(a 1 )]TJ/F19 11.9552 Tf 9.963 0 Td [(1 2 )]TJ/F19 11.9552 Tf 9.962 0 Td [(4 a 1 = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; b b 1 )]TJ/F28 7.9701 Tf 13.233 4.707 Td [(a a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a a 1 = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 o + 1 2 a 1 ;b 1 2 F q F q : a 2 1 = a;b 2 1 = b; )]TJ/F19 11.9552 Tf 5.48 -9.684 Td [( b 1 )]TJ/F27 11.9552 Tf 11.955 0 Td [(a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 a 1 = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 : .22 28

PAGE 33

When q iseven,wehave I 2 ; a;b = 1 2 n a 1 ;b 1 2 F q F q : 1 a 1 b 1 )]TJ/F27 11.9552 Tf 11.955 0 Td [(a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 ; 1 a a 1 b b 1 )]TJ/F28 7.9701 Tf 15.227 4.707 Td [(a a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 o + 8 > > < > > : 1 2 if 1 a 1 b 1 )]TJ/F27 11.9552 Tf 11.955 0 Td [(a 1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; 0otherwise : .23 Thelastsumin.16isgivenby X a 1 ; a 2 2 F q F q a 1 a 2 = a;b I ; a 1 I ; a 2 = X a 1 2 F q ;a 1 6 = )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 q )]TJ/F32 11.9552 Tf 11.955 13.749 Td [( V a a 1 ; b a 1 +1 ; .24 where V a a 1 ; b a 1 +1 isdenedin.12. Now,Equation.16combinedwith.18and.20{.24,isthemostexplicit formulafor I ; a;b thatthismethodcanoer. 29

PAGE 34

6 N 3 ; andEllipticCurves Inarecentpaper[23],Moisiofoundaformulafor N 3 ; intermsofthenumberof rationalpointsonaprojectivecubiccurve.Let a =N F q 3 = F q and b =N F q 3 = F q Let A betheanecubiccurvedenedby A : ax 2 y + axy 2 + x 2 + ay 2 + a +1 )]TJ/F27 11.9552 Tf 11.956 0 Td [(b xy + x + y =0 andlet A betheprojectiveclosureof A .Moisio[23,Theorem2]provedthat N 3 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = j A F q j ; where A F q denotesthesetofrationalpointson A over F q .Inthischapter,wewill deriveanotherformulafor N 3 ; intermsofthenumberofrationalpointsona dierentandsimplerprojectivecubic. Werstdeneafewterms.For a;b 2 F q a 0 2 F q andinteger r 1,let S r a;b = f u 2 F q r :N F q r = F q u = a; N F q r = F q u +1= b g ; T r a 0 ;b = f u 2 F q r :Tr F q r = F q u = a 0 ; N F q r = F q u = b g ; J r ; a 0 ;b = f x r )]TJ/F27 11.9552 Tf 11.956 0 Td [(a 0 x r )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + + )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 r b 2 F q [ x ]isirreducible g : Remark. Let beaprimitiveelementof F q r andassumethat a =N F q r = F q i b =N F q r = F q j .Then j S r a;b j isthe cyclotomicnumber i;j q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 over F q r ;see[22, p.247].CyclotomicnumbersarecloselyrelatedtoJacobisums;see[2, x 11.6]. 30

PAGE 35

Throughoutthischapter,let a =N F q t = F q b =N F q t = F q .By.2and.3, N 3 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = j S 3 a;b j : .1 Ourmethodinthischapterconsistsoftwosteps:Firstweproveapeculiarconnection between S 3 a;b and T 3 b )]TJ/F27 11.9552 Tf 9.392 0 Td [(a )]TJ/F19 11.9552 Tf 9.392 0 Td [(1 ;ab Theorem6.1.ThenweusearesultofMoisio[24] toexpress T 3 b )]TJ/F27 11.9552 Tf 11.851 0 Td [(a )]TJ/F19 11.9552 Tf 11.851 0 Td [(1 ;ab intermsofthenumberofrationalpointsonaprojective cubic. Theorem6.1. Let a;b 2 F q .Themapping : S 3 a;b )167(! T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 ;ab u 7)167(! u + u 1+ q isonto.Moreprecisely,foreach v 2 T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 v j = 8 > < > : q +1 if a =1 and v = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; 1 otherwise : Proof. Firstweshowthatif u 2 S 3 a;b ,then u + u 1+ q indeedbelongsto T 3 b )]TJ/F27 11.9552 Tf 11.776 0 Td [(a )]TJ/F19 11.9552 Tf -422.702 -20.922 Td [(1 ;ab .Clearly, N F q 3 = F q u + u 1+ q =N F q 3 = F q )]TJ/F27 11.9552 Tf 5.479 -9.683 Td [(u + u q =N F q 3 = F q u N F q 3 = F q + u = ab: Wealsohave b =N F q 3 = F q u +1= u +1 1+ q + q 2 = u 1+ q + q 2 + u 1+ q + u q + q 2 + u q 2 +1 + u 1 + u q + u q 2 +1 =N F q 3 = F q u +1+Tr F q 3 = F q u + u 1+ q = a +1+Tr F q 3 = F q u + u 1+ q : SoTr F q 3 = F q u + u 1+ q = b )]TJ/F27 11.9552 Tf 11.956 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1. 31

PAGE 36

Nowlet 2 F q 3 suchthatN F q 3 = F q = a .Then u 2 F q 3 satisesN F q 3 = F q u = a ifandonlyif u = x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 forsome x 2 F q 3 For v 2 T 3 b )]TJ/F27 11.9552 Tf 12.047 0 Td [(a )]TJ/F19 11.9552 Tf 12.046 0 Td [(1 ;ab ,let u 2 )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 v suchthatN F q 3 = F q u = a .Hencewecan write u = x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 ,forsome x 2 F q 3 .Weclaimthat u = x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 2 )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 v ifandonlyif x 2 F q 3 isasolutionof 1+ q x q 2 + x q )]TJ/F27 11.9552 Tf 11.955 0 Td [(vx =0 : .2 Firstassume x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 2 )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 v .Then x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 1+ q = v andso x q + 1+ q x q 2 = vx: Next,weassume x 2 F q 3 isasolutionof.2.Thenwehave x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 1+ q = v: Itremainstoshowthat u 2 S 3 a;b .WeonlyneedtoshowthatN F q 3 = F q u +1= b Wehave N F q 3 = F q u +1=N F q 3 = F q u +Tr F q 3 = F q u + u 1+ q +1 = a + b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1+1 = b: Thisprovestheclaim. Thenumberofsolutions x 2 F q 3 of.2is q 3 )]TJ/F25 7.9701 Tf 6.587 0 Td [(rank A ,where A = 2 6 6 6 4 v )]TJ/F27 11.9552 Tf 9.298 0 Td [( )]TJ/F27 11.9552 Tf 9.298 0 Td [( 1+ q )]TJ/F27 11.9552 Tf 9.299 0 Td [( q + q 2 v q )]TJ/F27 11.9552 Tf 9.299 0 Td [( q )]TJ/F27 11.9552 Tf 9.298 0 Td [( q 2 )]TJ/F27 11.9552 Tf 9.299 0 Td [( q 2 +1 v q 2 3 7 7 7 5 ; 32

PAGE 37

see[16,Proposition2.1].Wehave det A = v 1+ q + q 2 )]TJ/F27 11.9552 Tf 11.955 0 Td [( 1+ q + q 2 )]TJ/F27 11.9552 Tf 11.955 0 Td [( 2+ q + q 2 )]TJ/F27 11.9552 Tf 11.955 0 Td [( 1+ q + q 2 v 1 + v q + v q 2 =N F q 3 = F q v )]TJ/F19 11.9552 Tf 11.956 0 Td [(N F q 3 = F q )]TJ/F19 11.9552 Tf 11.955 0 Td [(N F q 3 = F q 2 )]TJ/F19 11.9552 Tf 11.956 0 Td [(N F q 3 = F q Tr F q 3 = F q v = ab )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F27 11.9552 Tf 11.955 0 Td [(a 2 )]TJ/F27 11.9552 Tf 11.955 0 Td [(a b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 =0 : Sorank A =1or2.Itiseasytoseethat rank A = 8 > < > : 1if a =1and v = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 ; 2otherwise : Hencethenumberof x 2 F q 3 of.2is 8 > < > : q 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1if a =1and v = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1otherwise : .3 Nowsuppose x 2 F q 3 isasolutionof.2.Thenfor 2 F q x isalsoasolution since 1+ q x q 2 + x q )]TJ/F27 11.9552 Tf 11.955 0 Td [(v x = 1+ q x q 2 + x q )]TJ/F27 11.9552 Tf 11.955 0 Td [(vx : Therefore,for v 2 T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 ;ab ,thenumberof u = x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 2 )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 v is 8 > < > : q +1if a =1and v = )]TJ/F19 11.9552 Tf 9.298 0 Td [(1 ; 1otherwise : If a =1and v = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 2 T 3 b )]TJ/F27 11.9552 Tf 9.482 0 Td [(a )]TJ/F19 11.9552 Tf 9.482 0 Td [(1 ;ab ,thenTr F q 3 = F q )]TJ/F19 11.9552 Tf 9.299 0 Td [(1= b )]TJ/F19 11.9552 Tf 9.483 0 Td [(2andN F q 3 = F q )]TJ/F19 11.9552 Tf 9.298 0 Td [(1= b ,whichimply b = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1.Wehavethefollowingcorollary. 33

PAGE 38

Corollary6.2. Let a;b 2 F q .Then j S 3 a;b j = 8 > < > : j T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j + q if a =1 and b = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; j T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j otherwise : .4 Combining.4and.1,wearriveatanewformulafor N 3 ; : N 3 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = 8 > < > : j T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j + q if a =1and b = )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; j T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j otherwise ; .5 where a =N F q 3 = F q and b =N F q 3 = F q Moisio[24]studiedthenumberofirreduciblepolynomialsoverniteeldswith prescribedtraceandnorm.Thenumber j T 3 b )]TJ/F27 11.9552 Tf 10.302 0 Td [(a )]TJ/F19 11.9552 Tf 10.302 0 Td [(1 ;ab j in.5issubjecttofurther interpretationsbytheresultsof[24]. For c 2 F q ,let B c betheanecubiccurvedenedby B c : y 2 + cy + xy = x 3 andlet B c denotetheprojectiveclosureof B c .ByTheorems3.2and5.1of[24],we have j T 3 b )]TJ/F27 11.9552 Tf 11.956 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j = 8 > > > > < > > > > : B c F q ; where c = ab b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 3 ; if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 6 =0 ; q +1+ 1 q X x 2 F q 3 e x ;q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1=0 ; .6 where e isthecanonicaladditivecharacterof F q 3 34

PAGE 39

Wecanalsowrite j T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j = T 3 b )]TJ/F27 11.9552 Tf 11.956 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab F q 3 n F q + T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab F q =3 J ; b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab + f v 2 F q :3 v = b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;v 3 = ab g = 8 > < > : 3 J ; b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab +1if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 3 =27 ab; 3 J ; b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab otherwise : .7 If b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 3 =27 ab andchar F q 6 =3,byCorollary5.2of[24], J ; b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab = 1 3 q +1 ; so j T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j =3 1 3 q +1 +1 : Thisisalsotruewhenchar F q =3sincein.6,wehave P x 2 F q 3 e x =0and 3 1 3 q +1 +1= q +1.Thus.7canbemadealittlemoreexplicit: j T 3 b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab j = 8 > < > : 3 b 1 3 q +1 c +1if b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 3 =27 ab; 3 J ; b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ;ab otherwise : .8 By.5and.8weobtainthefollowingformulafor N 3 ; : N 3 ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 = 8 > > > > < > > > > : 3 b 1 3 q +1 c + q +1if a;b =1 ; )]TJ/F19 11.9552 Tf 9.299 0 Td [(1 ; 3 b 1 3 q +1 c +1if a;b 6 = ; )]TJ/F19 11.9552 Tf 9.299 0 Td [(1and b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 3 =27 ab; 3 J ; b )]TJ/F27 11.9552 Tf 11.955 0 Td [(a )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 ;ab otherwise, where a =N F q 3 = F q and b =N F q 3 = F q 35

PAGE 40

7Positivityof I t ; a;b ;t 3 Inthischapter,wewanttodetermineif I t ; a;b ispositivewith a;b 2 F q andinteger t> 0.Namely,given a b and t ,doesthereexistamonicirreduciblepolynomial f 2 F q [ x ]ofdegree t suchthat f = a and f = b ?By.1,.8and.9,we seethatfor t =1 ; 2,wehave I t ; a;b =0or1dependingoncertainconditionson a and b .When t =3,thenby.13, I ; a;b 2since j V a;b j q )]TJ/F19 11.9552 Tf 10.713 0 Td [(2 : Wewillprove that I t ; a;b > 0for t 4.Ourproofisbasedontherelationbetween I t ; a;b and anestimatefor N t ; Insomesense,thepositivityof I t ; a;b t 3iscomparablewiththeHansenMullenconjectureforirreduciblepolynomials[13]provedbyWan[28]andHamand Mullen[12]whichpostulatesthataprescribeddegreeandoneprescribedcoecient canalwaysbeachievedbyamonicirreduciblepolynomialin F q [ x ]excludingtwo obviousnonattainablecases. Werstlookat N t ; = n x;y 2 F q t F q t : x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 = o ,where ; 2 F q t .Thenumberofsolutionsofadiagonalequationcanbeexpressedintermsof Gaussiansumsandisgivenin.2.Butnotethaninthisexpression,weconsidered allsolutionsin F n q .Fornonzerosolutions,thecomputationissimilar. Wenowconsiderthesolutions x;y 2 F q t F q t ofthediagonalequation x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = .Let 1 bethecanonicaladditivecharacterof F q t andlet beamulti36

PAGE 41

plicativecharacteroforder q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1of F q t .Then N t ; = 1 q t X x;y 2 F q t X s 2 F q t s x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 s = q t )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 q t + 1 q t X s 2 F q t s X x;y 2 F q t s x q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 s y q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = q t )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 q t + 1 q t q )]TJ/F25 7.9701 Tf 6.587 0 Td [(2 X j =0 q )]TJ/F25 7.9701 Tf 6.587 0 Td [(2 X k =0 G j ; 1 G k ; G )]TJ/F28 7.9701 Tf 6.586 0 Td [(j )]TJ/F28 7.9701 Tf 6.587 0 Td [(k ; = q t )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 q t + 1 q t q )]TJ/F25 7.9701 Tf 6.587 0 Td [(2 X j =0 q )]TJ/F25 7.9701 Tf 6.587 0 Td [(2 X k =0 j )]TJ/F27 11.9552 Tf 9.299 0 Td [( k )]TJ/F27 11.9552 Tf 10.62 8.088 Td [( G j ; 1 G k ; 1 G )]TJ/F28 7.9701 Tf 6.587 0 Td [(j )]TJ/F28 7.9701 Tf 6.586 0 Td [(k ; 1 : .1 Observethatby.6and.7, j G j ; 1 G k ; 1 G )]TJ/F28 7.9701 Tf 6.586 0 Td [(j )]TJ/F28 7.9701 Tf 6.586 0 Td [(k ; 1 j = 8 > > > > < > > > > : 1if j;k; )]TJ/F27 11.9552 Tf 9.299 0 Td [(j )]TJ/F27 11.9552 Tf 11.955 0 Td [(k areall 0mod q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ; q t ifexactlyoneof j;k; )]TJ/F27 11.9552 Tf 9.298 0 Td [(j )]TJ/F27 11.9552 Tf 11.955 0 Td [(k is 0mod q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 ; q 3 2 t ifnoneof j;k; )]TJ/F27 11.9552 Tf 9.299 0 Td [(j )]TJ/F27 11.9552 Tf 11.955 0 Td [(k is 0mod q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 : Thus N t ; q t )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 2 q t )]TJ/F19 11.9552 Tf 14.812 8.087 Td [(1 q t 1+3 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(2 q t + q )]TJ/F19 11.9552 Tf 11.955 0 Td [(2 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(3 q 3 2 t = q t +4 )]TJ/F19 11.9552 Tf 11.955 0 Td [(3 q )]TJ/F19 11.9552 Tf 11.955 0 Td [( q 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(5 q +6 q t 2 : Andsowehavethefollowinglemma. Lemma7.1. Let ; 2 F q t .Thenwehave N t ; q t +4 )]TJ/F19 11.9552 Tf 11.955 0 Td [(3 q )]TJ/F19 11.9552 Tf 11.955 0 Td [( q 2 )]TJ/F19 11.9552 Tf 11.956 0 Td [(5 q +6 q t 2 : Remark. Lemma7.1alsofollowsfromtheHasse-Weilbound[27,TheoremV.2.3]. Sincethegenusof C in.3is 1 2 q )]TJ/F19 11.9552 Tf 12.358 0 Td [(2 q )]TJ/F19 11.9552 Tf 12.357 0 Td [(3[11,p.199],theHasse-Weilbound 37

PAGE 42

gives jC F q t j q t +1 )]TJ/F19 11.9552 Tf 11.955 0 Td [( q )]TJ/F19 11.9552 Tf 11.955 0 Td [(2 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(3 q t 2 .Thusby.4, N t ; jC F q t j)]TJ/F19 11.9552 Tf 17.933 0 Td [(3 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 q t +4 )]TJ/F19 11.9552 Tf 11.955 0 Td [(3 q )]TJ/F19 11.9552 Tf 11.955 0 Td [( q 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(5 q +6 q t 2 : Wenowprovethepositivityof I t ; a;b for t 4inthenexttheorem. Theorem7.2. For a;b 2 F q and t 4 wehave I t ; a;b > 0 Proof. If q =2,then a = b =1.Everyirreduciblepolynomial f 2 F 2 [ x ]with deg f> 1musthave f =1and f =1.Thus, I t ;1 ; 1 > 0for t 2. Henceforthweassume q 3. Let ; 2 F q t suchthat a =N F q t = F q and b =N F q t = F q .ByTheorem4.1, tI t ; a;b = N t ; q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 )]TJ/F32 11.9552 Tf 16.787 11.358 Td [(X r j t;r > < > > : @A @q = t 2 q t 2 )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 )]TJ/F19 11.9552 Tf 11.955 0 Td [(2 q +5 ; @A @t = 1 2 q t 2 ln q )]TJ/F19 11.9552 Tf 11.955 0 Td [(2 t: 38

PAGE 43

Wehave A ; 4=3, A ; 8=17and @A @q > 0 ; @A @t > 0for q 5, t 4or q 3, t 8 : Sowhen q 5, t 4or q 3, t 8,wehave A q;t 3andconsequently tI t ; a;b 1 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 q t 2 3+4 )]TJ/F19 11.9552 Tf 11.955 0 Td [(3 q > 0 : For3 q< 5and4 t< 8,thepositivityof I t ; a;b ischeckeddirectlyusinga computer. 39

PAGE 44

8ApplicationstoPlanarFunctions Afunction f : F q )167(! F q iscalled planar ifforevery u 2 F q x 7)167(! f x + u )]TJ/F27 11.9552 Tf 11.956 0 Td [(f x isapermutationof F q .PlanarfunctionswereintroducedbyDembowskiandOstrom [7]todescribecertainaneplanes.Forfurtherresultsonplanarfunctionsand relatedtopics,see[6],[14],[18],[21].Recently,planarfunctionshavefoundimportant applicationsincryptographywheretheyarecalled perfectnonlinearfunctions ;see [26].Constructionsofperfectnonlinearfunctionsandtheircloserelatives almost perfectnonlinearfunctions havebeenattractingmuchattentionforthepastdecade, see[3],[8],[9],[10],[15],[19]. Observethatplanarfunctionsexistonlywhen q isodd. Lemma8.1. Let p beanoddprimeand n beapositiveinteger.Let f x = x p m +1 + x 2 2 F p n [ x ] ; where m> 0 and 2 F p n : Let t = n m;n and q = p m;n = p n t so q t = p n .Then f isaplanarfunctionon F q t ifandonlyif N t ; )]TJ/F19 11.9552 Tf 9.298 0 Td [(2 =0 ,i.e.,ifandonlyif x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + y q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = )]TJ/F19 11.9552 Tf 9.299 0 Td [(2 hasnosolution x;y 2 F q t F q t Proof. Let u 2 F q t .Since f u isconstant,then f x + u )]TJ/F27 11.9552 Tf 11.973 0 Td [(f x isapermutationof 40

PAGE 45

F q t ifandonlyif f x + u )]TJ/F27 11.9552 Tf 11.955 0 Td [(f x )]TJ/F27 11.9552 Tf 11.955 0 Td [(f u isapermutationof F q t .Wehave f x + u )]TJ/F27 11.9552 Tf 11.955 0 Td [(f x )]TJ/F27 11.9552 Tf 11.955 0 Td [(f u = ux p m + u p m x +2 ux = ux x p m )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 + u p m )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 +2 : Now f x + u )]TJ/F27 11.9552 Tf 12.917 0 Td [(f x )]TJ/F27 11.9552 Tf 12.917 0 Td [(f u isa p -polynomial.By[22,Theorem7.9],itisa permutationof F q t ifandonlyif x =0isitsonlyroot,i.e.,ifandonlyif x p m )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + u p m )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 6 = )]TJ/F19 11.9552 Tf 9.298 0 Td [(2 forall x;u 2 F q t : But F p m )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 q t = F p m )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 ;q t )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 q t = F p m;n )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 q t .Andso f x + u )]TJ/F27 11.9552 Tf 12.536 0 Td [(f x )]TJ/F27 11.9552 Tf 12.535 0 Td [(f u isa permutationof F q t ifandonlyif x q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 + u q )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 6 = )]TJ/F19 11.9552 Tf 9.298 0 Td [(2 forall x;u 2 F q t : Therefore, f isaplanarfunctionon F q t ifandonlyif N t ; )]TJ/F19 11.9552 Tf 9.298 0 Td [(2 =0. InLemma8.1,if t =1,then f x = +1 x 2 on F q ,whichisnotinteresting;if t 3,weknowfromchapter7that N t ; )]TJ/F19 11.9552 Tf 9.299 0 Td [(2 > 0,soLemma8.1doesnotproduce anyplanarfunction.TheonlyinterestingcaseinthisLemmaiswhen t =2.Let t =2andlet b =N F q 2 = F q .ThenN F q 2 = F q )]TJ/F19 11.9552 Tf 9.299 0 Td [(2 =4 b .By.11wehave N 2 ; )]TJ/F19 11.9552 Tf 9.298 0 Td [(2 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 2 =1 )]TJ/F27 11.9552 Tf 11.955 0 Td [( )]TJ/F19 11.9552 Tf 5.479 -9.683 Td [( b )]TJ/F19 11.9552 Tf 11.956 0 Td [(2 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(4 =1 )]TJ/F27 11.9552 Tf 11.955 0 Td [( )]TJ/F27 11.9552 Tf 5.479 -9.684 Td [(b b )]TJ/F19 11.9552 Tf 11.956 0 Td [(1 : CombiningtheaboveequationandLemma8.1,wehavethefollowingproposition. Proposition8.2. Let p beanoddprimeandlet n;m bepositiveintegerssuchthat m;n = n 2 .Put q = p n 2 so p n = q 2 .Let f x = x p m +1 + x 2 2 F q 2 [ x ] ,where 2 F q 2 .Then f isaplanarfunctionon F q 2 ifandonlyif )]TJ/F27 11.9552 Tf 5.48 -9.684 Td [(b b )]TJ/F19 11.9552 Tf 12.409 0 Td [(1 =1 ,where b = N F q 2 = F q 41

PAGE 46

Suppose f satisfytheassumptionsinProposition8.2.Weknowthat f isaplanar functionon F q 2 ifandonlyif N 2 ; )]TJ/F19 11.9552 Tf 9.298 0 Td [(2 =0.Wecountthenumberof sothat f isplanar.Write H = F q )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 q 2 .Then f 0 2 F q 2 : N 2 ; 0 > 0 g = F q 2 H + H = H + H nf)]TJ/F19 11.9552 Tf 21.254 0 Td [(1 g : Let q beoddand x;y 2 H nf)]TJ/F19 11.9552 Tf 21.254 0 Td [(1 g .Wehave 1+ y 1+ x 2 H 1+ y 1+ x q +1 =1 + y q +1 =+ x q +1 + y + y q =1+ x + x q 2+ y + y q =2+ x + x q y + y )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 = x + x )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 y )]TJ/F27 11.9552 Tf 11.955 0 Td [(x xy )]TJ/F19 11.9552 Tf 11.955 0 Td [(1=0 y = x or y = x )]TJ/F25 7.9701 Tf 6.587 0 Td [(1 : Therefore,if x 6 =1,thentherearepreciselytwo y 2 H y = x or x )]TJ/F25 7.9701 Tf 6.586 0 Td [(1 suchthat H + x = H + y .If x =1,thenthereisexactlyone y 2 H y = x suchthat H + x = H + y .Thus, j H + H nf)]TJ/F19 11.9552 Tf 21.253 0 Td [(1 g j = j H j 1 2 j H j)]TJ/F19 11.9552 Tf 17.933 0 Td [(2+1 = 1 2 j H j 2 = 1 2 q +1 2 : Hencethenumberof inProposition8.2sothat f isaplanarfunctionis q 2 )]TJ/F19 11.9552 Tf 11.955 0 Td [(1 )]TJ/F19 11.9552 Tf 13.15 8.088 Td [(1 2 q +1 2 = 1 2 q +1 q )]TJ/F19 11.9552 Tf 11.955 0 Td [(3 : 42

PAGE 47

References [1]E.A.BenderandJ.R.Goldman, OntheapplicationsofMobiusinversionincombinatorial analysis ,Amer.Math.Monthly 82 ,789{803. [2]B.C.Berndt,R.J.Evans,K.S.Williams, GaussandJacobiSums ,JohnWiley,NewYork, 1998. [3]L.Budaghyan,C.Carlet,G.Leander, TwoclassesofquadraticAPNbinomialsinequivalentto powerfunctions ,IEEETrans.Inform.Theory 54 ,4218{4229. [4]S.D.Cohen, Primitivepolynomialswithaprescribedcoecient ,FiniteFieldsAppl. 12 425{491. [5]R.S.Coulter, ExplicitevaluationsofsomeWeilsums ,ActaArith. 83 ,241{251. [6]R.S.Coulter,R.W.Matthews, PlanarfunctionsandplanesofLenz-BarlotticlassII ,Des. CodesCryptogr. 10 ,167{184. [7]P.DembowskiandT.G.Ostrom, Planesoforder n withcollineationgroupsoforder n 2 ,Math. Z. 103 ,239{258. [8]H.Dobbertin, Almostperfectnonlinearpowerfunctionson GF n :theWelshcase ,IEEE Trans.Infor.Theory 45 ,1271-1275. [9]H.Dobbertin, Almostperfectnonlinearpowerfunctionson GF n :anewcasefor n divisible by5 ,FiniteFieldsandApplications,Springer,Berlin,2001,113-121. [10]T.Helleseth,C.Rong,D.Sandberg, Newfamiliesofalmostperfectnonlinearpowermappings IEEETrans.Inform.Theory 45 ,474-485. [11]W.Fulton, AlgebraicCurves ,Addison-Wesley,ReadingMA,1989. [12]K.H.HamandG.L.Mullen, Distributionofirreduciblepolynomialsofsmalldegreesover niteelds ,Math.Comp. 67 ,337{341. 43

PAGE 48

[13]T.HansenandG.L.Mullen, Primitivepolynomialsoverniteelds ,Math.Comp. 59 639{643,S47{S50. [14]T.Helleseth,H.D.L.Hollmann,A.Kholosha,Z.Wang,Q.Xiang, Proofsoftwoconjectures onternaryweaklyregularbentfunctions ,IEEETrans.Inform.Theory,toappear. [15]H.D.L.HollmannandQ.Xiang, AproofoftheWelchandNihoconjecturesoncrosscorrelationsofbinary m -sequences ,FiniteFieldsAppl. 7 ,253{286. [16]X.Hou, SolutiontoaproblemofS.Payne ,Proc.Amer.Math.Soc. 132 ,1{6. [17]X.Hou, Explicitevaluationofcertainexponentialsumsofbinaryquadraticfunctions ,Finite FieldsAppl. 13 ,843{868. [18]X.Hou, OnthedualofaCoulter-Matthewsbentfunction ,FiniteFieldsAppl. 14 ,505 {514. [19]X.Hou,G.L.Mullen,J.A.Sellers,J.L.Yucas, ReversedDicksonpolynomialsovernite elds ,preprint. [20]X.HouandC.Sze Oncertaindiagonalequationsoverniteelds ,FiniteFieldsAppl.,to appear. [21]W.M.Kantor, Commutativesemieldsandsymplecticspreads ,J.Algebra 270 ,96114. [22]R.LidlandH.Neiderreiter, FiniteFields ,CambridgeUniv.Press,Cambridge,UK,1997. [23]M.Moisio, OnthenumberofrationalpointsonsomefamiliesofFermatcurvesovernite elds ,FiniteFieldsAppl. 13 ,546{562. [24]M.Moisio, Kloostermansums,ellipticcurves,andirreduciblepolynomialswithprescribedtrace andnorm ,ActaArith. 132 ,329{350. [25]H.Niederreiter, Anenumerationformulaforcertainirreduciblepolynomialswithanapplication totheconstructionofirreduciblepolynomialsoverthebinaryeld ,Appl.AlgebraEngrg.Comm. Comput. 1 ,119{124. [26]K.Nyberg, PerfectnonlinearS-boxes ,Advancesincryptology{EUROCRYPT'91Brighton, 1991,378{386,LectureNotesinComput.Sci.,547,Springer,Berlin,1991. [27]H.Stichtenoth, AlgebraicFunctionFieldsandCodes ,Springer-Verlag,Berlin,Heidelberg,1993. 44

PAGE 49

[28]D.Wan, Generatorsandirreduciblepolynomialsoverniteelds ,Math.Comp. 66 1195{1212. [29]J.Wolfmann, Thenumberofsolutionsofcertaindiagonalequationsoverniteelds ,J.Number Theory 42 ,247{257. [30]J.L.Yucas, Irreduciblepolynomialsoverniteeldswithprescribedtrace/prescribedconstant term ,FiniteFieldsAppl. 12 ,211{221. 45

printinsert_linkshareget_appmore_horiz

## Download Options

close
Choose Size
Choose file type
Cite this item close

## APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

## MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

## CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

## WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.