USF Libraries
USF Digital Collections

Detailed stratigraphy and geochemistry of lower mount rogers formation metavolcanic units exposed on elk garden ridge, va

MISSING IMAGE

Material Information

Title:
Detailed stratigraphy and geochemistry of lower mount rogers formation metavolcanic units exposed on elk garden ridge, va
Physical Description:
Book
Language:
English
Creator:
Lindsey, Meghan
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla
Publication Date:

Subjects

Subjects / Keywords:
Failed continental rift
Bimodal volcanic suite
Rare earth elements
Neoproterozoic
Iapetus ocean
Dissertations, Academic -- Geology -- Masters -- USF   ( lcsh )
Genre:
non-fiction   ( marcgt )

Notes

Abstract:
ABSTRACT: The lower Mount Rogers Formation (LMRF) is described by Rankin (1993) as a sequence of intercalated metabasalts and volcanogenic sediments with minor metarhyolite.  We have chosen to examine the sequence of the LMRF units exposed along Elk Garden Ridge, a high shoulder between the summits of Whitetop Mountain and Mount Rogers in the Mount Rogers National Recreation Area in SW Virginia.  This sequence represents an uplifted block of LMRF units enclosed by exposures of Whitetop and Wilburn metarhyolites. In the field, progressive lithologic changes can be observed walking up-section along Elk Garden ridge that are indicative of changes in lava compositions and eruptive environments. From the bottom of the section, massive basalts with distinctive 1-2 cm long swallowtail plagioclase phenocrysts grade into vesicular basalts, then into sheet flow basalts, followed by a thick sequence of aphyric and amygdaloidal pillow basalts. Further up section, eruptive products transition into rhyolitic ignimbrites and ash and lapilli tuffs. Boulders of cobble conglomerates near the middle of the sequence and sedimentary layers in between individual sheet flows suggest short periods of relative eruptive quiescence. The only unit broken out in the LMRF by Rankin (1993), Fees Rhyolite, is not observed in the field area, suggesting local differences in topography, eruptive products and eruptive styles across the outcrop area during the deposition of these eruptive products. Petrographically, the rocks reflect the regional greenschist facies metamorphic conditions with chlorite and epidote as primary metamorphic minerals, and unakite-like zones of mineralization. Relict plagioclase and pyroxene phenocrysts persist, as do primary igneous textures and structures. Compositionally, all of the rocks in the Elk Garden Ridge sequence are strongly enriched in alkali metals, with elevated Na2O and K2O contents, and high TiO2 in the basalts. Major and trace element systematics suggest that the chemical signatures of the metabasalts are primary controlled by shallow-level crystallization processes. The LMRF metabasalts share many compositional affinities with later (~570 Ma) rift-related basalts preserved in the Appalachians, suggesting that all of these lavas were formed by melting of a compositionally uniform mantle source, followed by shallow crystallization, despite being separated from one another by large stretches of time and space.
Thesis:
Thesis (M.S.)--University of South Florida, 2010.
Bibliography:
Includes bibliographical references.
System Details:
Mode of access: World Wide Web.
System Details:
System requirements: World Wide Web browser and PDF reader.
Statement of Responsibility:
by Meghan Lindsey.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains X pages.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
usfldc doi - E14-SFE0003325
usfldc handle - e14.3325
System ID:
SFS0027641:00001


This item is only available as the following downloads:


Full Text


xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam 22 Ka 4500
controlfield tag 007 cr-bnu---uuuuu
008 s2010 flu s 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0003325
035
(OCoLC)
040
FHM
c FHM
049
FHMM
090
XX9999 (Online)
1 100
Lindsey, Meghan.
0 245
Detailed stratigraphy and geochemistry of lower mount rogers formation metavolcanic units exposed on elk garden ridge, va
h [electronic resource] /
by Meghan Lindsey.
260
[Tampa, Fla] :
b University of South Florida,
2010.
500
Title from PDF of title page.
Document formatted into pages; contains X pages.
502
Thesis (M.S.)--University of South Florida, 2010.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
538
Mode of access: World Wide Web.
System requirements: World Wide Web browser and PDF reader.
3 520
ABSTRACT: The lower Mount Rogers Formation (LMRF) is described by Rankin (1993) as a sequence of intercalated metabasalts and volcanogenic sediments with minor metarhyolite.  We have chosen to examine the sequence of the LMRF units exposed along Elk Garden Ridge, a high shoulder between the summits of Whitetop Mountain and Mount Rogers in the Mount Rogers National Recreation Area in SW Virginia.  This sequence represents an uplifted block of LMRF units enclosed by exposures of Whitetop and Wilburn metarhyolites. In the field, progressive lithologic changes can be observed walking up-section along Elk Garden ridge that are indicative of changes in lava compositions and eruptive environments. From the bottom of the section, massive basalts with distinctive 1-2 cm long swallowtail plagioclase phenocrysts grade into vesicular basalts, then into sheet flow basalts, followed by a thick sequence of aphyric and amygdaloidal pillow basalts. Further up section, eruptive products transition into rhyolitic ignimbrites and ash and lapilli tuffs. Boulders of cobble conglomerates near the middle of the sequence and sedimentary layers in between individual sheet flows suggest short periods of relative eruptive quiescence. The only unit broken out in the LMRF by Rankin (1993), Fees Rhyolite, is not observed in the field area, suggesting local differences in topography, eruptive products and eruptive styles across the outcrop area during the deposition of these eruptive products. Petrographically, the rocks reflect the regional greenschist facies metamorphic conditions with chlorite and epidote as primary metamorphic minerals, and unakite-like zones of mineralization. Relict plagioclase and pyroxene phenocrysts persist, as do primary igneous textures and structures. Compositionally, all of the rocks in the Elk Garden Ridge sequence are strongly enriched in alkali metals, with elevated Na2O and K2O contents, and high TiO2 in the basalts. Major and trace element systematics suggest that the chemical signatures of the metabasalts are primary controlled by shallow-level crystallization processes. The LMRF metabasalts share many compositional affinities with later (~570 Ma) rift-related basalts preserved in the Appalachians, suggesting that all of these lavas were formed by melting of a compositionally uniform mantle source, followed by shallow crystallization, despite being separated from one another by large stretches of time and space.
590
Advisor: Jeffrey Ryan, Ph.D.
653
Failed continental rift
Bimodal volcanic suite
Rare earth elements
Neoproterozoic
Iapetus ocean
690
Dissertations, Academic
z USF
x Geology
Masters.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.3325