Optimization of a ball-milled photocatalyst for wastewater treatment through use of an orthogonal-array experimental design

Citation
Optimization of a ball-milled photocatalyst for wastewater treatment through use of an orthogonal-array experimental design

Material Information

Title:
Optimization of a ball-milled photocatalyst for wastewater treatment through use of an orthogonal-array experimental design
Creator:
Ridder, Bradley
Place of Publication:
[Tampa, Fla]
Publisher:
University of South Florida
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Indium vanadate
InVO4
Titania
TiO2
Amorphous precursor
Methyl orange
Taguchi methods
Dissertations, Academic -- Chemical Engineering -- Masters -- USF ( lcsh )
Genre:
non-fiction ( marcgt )

Notes

Abstract:
ABSTRACT: The effects of various catalyst synthesis parameters on the photocatalytic degradation kinetics of aqueous methyl orange dye are presented. The four factors investigated were: i) InVO4 concentration, ii) nickel concentration, iii) InVO4 calcination temperature, and iv) ballmilling time. Three levels were used for each factor. Due to the large number of possible experiments in a full factorial experiment, an orthogonal-array experimental design was used. UV-vis spectrophotometry was used to measure the dye concentration. The results show that nickel concentration was a significant parameter, with 90% confidence. The relative ranking of importance of the parameters was nickel concentration > InVO4 concentration > InVO4 calcination temperature > milling time. The results of the orthogonal array testing were used to make samples of theoretically slowest and fastest catalysts. Curiously, the predicted-slowest catalyst was the fastest overall, though both samples were faster than the previous set. The only difference between the slowest and fastest catalysts was the milling time, with the longer-milled catalyst being more reactive. From this result, we hypothesize that there is an interaction effect between nickel concentration and milling time. The slowest and fastest catalysts were characterized using energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), x-ray powder diffractometry (XRD), BET surface area analysis, and diffuse-reflectance spectroscopy (DRS). The characterization results show that the fastest catalyst had a lower band gap than the slowest one, as well as a slightly greater pore volume and average pore diameter. The results indicate that fast kinetics are achieved with low amounts of nickel and a long ball milling time. Under the levels tested, InVO4 concentration and the calcination temperature of the InVO4 precursor were not significant.
Thesis:
Thesis (M.S.Ch.)--University of South Florida, 2010.
Bibliography:
Includes bibliographical references.
System Details:
Mode of access: World Wide Web.
System Details:
System requirements: World Wide Web browser and PDF reader.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains X pages.
Statement of Responsibility:
by Bradley Ridder.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
E14-SFE0003463 ( USFLDC DOI )
e14.3463 ( USFLDC Handle )

Postcard Information

Format:
Book

Downloads

This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam 22 Ka 4500
controlfield tag 007 cr-bnu---uuuuu
008 s2010 flu s 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0003463
035
(OCoLC)
040
FHM
c FHM
049
FHMM
090
XX9999 (Online)
1 100
Ridder, Bradley.
0 245
Optimization of a ball-milled photocatalyst for wastewater treatment through use of an orthogonal-array experimental design
h [electronic resource] /
by Bradley Ridder.
260
[Tampa, Fla] :
b University of South Florida,
2010.
500
Title from PDF of title page.
Document formatted into pages; contains X pages.
502
Thesis (M.S.Ch.)--University of South Florida, 2010.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
538
Mode of access: World Wide Web.
System requirements: World Wide Web browser and PDF reader.
3 520
ABSTRACT: The effects of various catalyst synthesis parameters on the photocatalytic degradation kinetics of aqueous methyl orange dye are presented. The four factors investigated were: i) InVO4 concentration, ii) nickel concentration, iii) InVO4 calcination temperature, and iv) ballmilling time. Three levels were used for each factor. Due to the large number of possible experiments in a full factorial experiment, an orthogonal-array experimental design was used. UV-vis spectrophotometry was used to measure the dye concentration. The results show that nickel concentration was a significant parameter, with 90% confidence. The relative ranking of importance of the parameters was nickel concentration > InVO4 concentration > InVO4 calcination temperature > milling time. The results of the orthogonal array testing were used to make samples of theoretically slowest and fastest catalysts. Curiously, the predicted-slowest catalyst was the fastest overall, though both samples were faster than the previous set. The only difference between the slowest and fastest catalysts was the milling time, with the longer-milled catalyst being more reactive. From this result, we hypothesize that there is an interaction effect between nickel concentration and milling time. The slowest and fastest catalysts were characterized using energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), x-ray powder diffractometry (XRD), BET surface area analysis, and diffuse-reflectance spectroscopy (DRS). The characterization results show that the fastest catalyst had a lower band gap than the slowest one, as well as a slightly greater pore volume and average pore diameter. The results indicate that fast kinetics are achieved with low amounts of nickel and a long ball milling time. Under the levels tested, InVO4 concentration and the calcination temperature of the InVO4 precursor were not significant.
590
Advisor: John T. Wolan, Ph.D.
653
Indium vanadate
InVO4
Titania
TiO2
Amorphous precursor
Methyl orange
Taguchi methods
690
Dissertations, Academic
z USF
x Chemical Engineering
Masters.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.3463




printinsert_linkshareget_appmore_horiz

Download Options

close
Choose Size
Choose file type
Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.