USF Libraries
USF Digital Collections

Heat stress evaluation of protective clothing ensembles

MISSING IMAGE

Material Information

Title:
Heat stress evaluation of protective clothing ensembles
Physical Description:
Book
Language:
English
Creator:
Pease, Amanda
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla
Publication Date:

Subjects

Subjects / Keywords:
Heat stress
Acclimatization
Protective clothing
Un-acclimatized
Progressive heat stress protocol
Dissertations, Academic -- Environmental & Occupational Health -- Masters -- USF   ( lcsh )
Genre:
non-fiction   ( marcgt )

Notes

Abstract:
ABSTRACT: Clothing directly affects the level of heat stress exposure. Useful measures to express the thermal characteristics are WBGT (wet bulb globe temperature) clothing adjustment factor (CAF) or apparent total evaporative resistance (Re,T,a). The CAF is assigned through laboratory wear trials following a heat stress protocol in which the air temperature and humidity are progressively increased until the participant clearly loses the ability to maintain thermal equilibrium. The critical condition is the point of thermal transition and from these conditions both the CAF and Re,T,a are computed. The first objective of this study is to compare the thermal characteristics of a coverall made from a prototype fabric to work clothes and a commercial limited-use coverall using CAF and Re,T,a. A second objective is to demonstrate that the Re,T,a of work clothes is the same for progressive or steady-state heat stress protocols. Five participants (4 men and 1 woman) walked on a treadmill at 1.25 m/s at an average metabolic rate of 175 W/m2. Each participant completed at least one progressive heat stress protocols in work clothes, Tyvek® 1422A coveralls Tyvek® is a registered trademark of DuPont, and a developmental nonwoven polyolefin prototype ensemble provided by DuPont. In addition, four participants completed steady-state protocol in work clothes. Participants did not complete an acclimation period prior to the trials and each trail was separated by at least 40 hours. v There are no within participant differences in metabolic rate among ensembles and protocols. There are no differences between the critical WBGT in the current participants and previously acclimatized participants from other studies suggesting that the participants responded as if they were acclimatized. Based on a mixed effects model, there are significant differences between work clothes and Tyvek® 1422A for Re,T,a (0.0103 and 0.0141 m2/W kPa, respectively) and critical WBGT. The CAF for Tyvek is 2.3 °C-WBGT. For the DuPont prototype ensemble, the apparent total evaporative resistance is 0.013 m2kPa/W and the CAF is 0.5 °C. The prototype ensemble shows no difference from work clothes or Tyvek® 1422A in critical WBGT and no difference from work clothes in Re,T,a. Overall, the prototype coveralls exhibited thermal characteristics that would have a lower level of heat stress than the Tyvek 1422A and not significantly different from work clothes. The values for Re,T,a for work clothes were not different between the steady state and progressive protocols. The steady-state protocol near the critical condition can be used for determination of Re,T,a. This opens up the possibility of estimating Re,T,a from studies that do not use the progressive protocol.
Thesis:
Thesis (MSPH)--University of South Florida, 2010.
Bibliography:
Includes bibliographical references.
System Details:
Mode of access: World Wide Web.
System Details:
System requirements: World Wide Web browser and PDF reader.
Statement of Responsibility:
by Amanda Pease.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains X pages.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
usfldc doi - E14-SFE0004526
usfldc handle - e14.4526
System ID:
SFS0027841:00001


This item is only available as the following downloads:


Full Text

PAGE 1

Heat Stress Evaluation of Protective Clothing Ensembles by Amanda Lee Pease A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Public Health Department of Environmental Occupational Health C ollege of Public Health University of South Florida Major Professor: Thomas E. Bernard, Ph.D. Candi Ashley, Ph.D. Steven Mlynarek, Ph.D. Date of Approval June 30 2010 Keywords: heat stress, acclimatization, protective clothing, un acclimatized, pr ogressive heat stress protocol Copyright 2010, Amanda Lee Pease

PAGE 2

Dedication I would like to ded icate this thesis manuscript to my family and friends. Without their support, encouragement and countless hours of communication from a cross the country my education and accomplishments would not have been possible.

PAGE 3

Acknowledgements It is a pleasure to thank those who made this thesis possible. Specifically, Professor Bernard and Professor As hley were incredible teac hers In additional, I am grateful for the assistance from Profes sor Mlynarek, Patrick Rodriguez and Courtney Shaal Further acknowledgements go to the NIOSH ERC for their financial support

PAGE 4

i Table of Contents List of Tables ii i Abstract i v Chapter One 1 Introduction 1 Chapter Two 4 Literature Review 4 Clothing Heat Transfer Models 4 Evaporation 5 Ventilation 6 Progressive Heat Stress Protocol and Critical Conditions 6 Clothing Adjustment Factors 8 Summary of Previous Study Results 9 Acclimatization State 9 Hypothesis 10 Chapter Three 12 Methods 12 Participants 12 Clothing 12 Equipment 13 Progressive Protocol 14 Steady State Protocol 14 Inflection Point and Calculation of Apparent Total 15 Ev aporative Resistance Calculation of Clothing Parameter s 15 Chapter Four 18 Results 18 Metabolic Rate 19 Acclimatization State 19 Ensembles 20 Progres sive and Steady State Protocol 20 Chapter Five 21 Discussion 21 Metabolic Rate 21 Acclimatization State 21

PAGE 5

ii Comparison s among Ensembles 23 P rogressive and Steady State Protocol 24 Chapter Six 25 Conclusion 25 References 26

PAGE 6

iii List of Tables Table I Physical Characteristics (mean s tandard deviation) 12 Table I I Completed Trials by Participant 18 Table II I Metabolic R ate, Critical WBGT and Apparent Total Evaporative Resistance ( mean standard deviation) by Ensemble and P rotocol 18 Table IV WBGT c and R e,t,a for Work Clothes and Ty vek (mean standa rd dev iation) for Acclimatized and Una cclimatized Participants 20 Table V Summary of WBGT c for Un acclimatized Participants 22 Table V I WBGT c Values for Wo rk Clothing and Tyvek Ensemble 22 Table VI I CAF Values for Tyvek Ensemble 23 Tab le VII I R e,t,a Valu es for Work Clothing and Tyvek 24

PAGE 7

iv Heat Stress Evaluation of Protective Clothing Ensembles Amanda Lee Pease Abstract Clothing directly affects the level of heat stress exposure. Useful measures to express the thermal characteristics are WBGT (wet bulb globe temperature) clothing adjustment factor (CAF) or apparent total evaporative resistance (R e,T,a ). The CAF is assigned through laboratory wear trials following a heat stress protocol in which the air temp erature and humidity are progressively increased until the participant clearly loses the ability to maintain thermal equilibrium. The critical condition is the point of thermal transition and from these conditions both the CAF and R e,T,a are computed. Th e first objective of this study is to compare the thermal characteristics of a coverall made from a prototype fabric to work clothes and a commercial limited use coverall using CAF and R e,T,a A second objective is to demonstrate that the R e,T,a of work c lothes is the same for progressive or steady state heat stress protocols. Five participants (4 men and 1 woman) walked on a treadmill at 1.25 m/s at an average metabolic rate of 175 W/m 2 Each participant completed at least one progressive heat stress p rotocols in work clothes, Tyvek 1422A coveralls [Tyvek is a registered trademark of DuPont], and a developmental nonwoven polyolefin prototype ensemble provided by DuPont. In addition, four participants completed steady state protocol in work clothes. Participants did not complete an acclimation period prior to the trials and each trail was separated by at least 40 hours.

PAGE 8

v There are no within participant differences in metabolic rate among ensembles and protocols. There are no differences between the c ritical WBGT in the current participants and previously acclimatized participants from other studies suggesting that the participants responded as if they were acclimatized. Based on a mixed effects model, there are significant differences between work cl othes and Tyvek 1422A for R e,T,a (0.0103 and 0.0141 m 2 /W kPa, respectively) and critical WBGT. The CAF for Tyvek is 2.3 C WBGT. For the DuPont prototype ensemble, the apparent total evaporative resistance is 0.013 m 2 kPa/W and the CAF is 0.5 C. The pr ototype ensemble shows no difference from work clothes or Tyvek 1422A in critical WBGT and no difference from work clothes in R e,T,a Overall, the prototype coveralls exhibited thermal characteristics that would have a lower level of heat stress than the Tyvek 1422A and not significantly different from work clothes. The values for R e,T,a for work clothes were not different between the steady state and progressive protocols. The steady state protocol near the critical condition can be used for determinat ion of R e,T,a This opens up the possibility of estimating R e,T,a from studies that do not use the progressive protocol.

PAGE 9

1 Chapter One Introduction Heat stress is a major occupational hazard in many industrial settings that can affect health and performa nce. The main risk factors associated with heat stress are the environment, metabolic demands, and clothing. An understanding of these factors and the underlying principles behind them is necessary when evaluating heat stress. Of particular interest to this study are the effects of protective clothing ensembles on heat stress. The temperature of the human body is managed by thermal regulating mechanisms of heat exchange between the body and the surrounding environment. When an amount of heat gain occur s for which these mechanisms cannot compensate, core temperature can increase to dangerous levels. The thermal balance that occurs in the body can be described by the following equation 29 Equation 1 All variables in this equation are expressed as rat es (Watts) standardized over body surface area (m 2 ) i.e., W m 2 28 In this equation, S is the rate of heat storage. If S is positive, the body is gaining heat. If S is negative, the body is losing heat. When the heat storage rate is zero (S = 0), ther e is a no heat gain or loss and the body is at thermal equilibrium. M is the metabolic rate. W is the external work performed by the body, which reduces the total heat burden 28 C is the convective heat exchange rate between the

PAGE 10

2 body and the air. The r adiant heat exchange is represented by R. E is the rate of evaporative heat loss due to sweating, which depends on air speed and vapor pressure. Evaporation is the central route of heat loss in high temperature environments. Other routes of heat exchange are conduction and respiration (both convection and evaporative). Environmental factors can be described by basic climate parameters. One index metric commonly used to describe environmental factors in heat stress studies is the Wet Bulb Globe Temperat ure (WBGT). The WBGT can be calculated using the following equations. Equation 2 Equation 3 For these WBGT equations, t nwb is the natural wet bulb temperature, t a is the air temperature and t g is the globe temperature 28 Metabolic rate affects heat production. The rate depends on the biochemical processes of the body and the energy needed to achieve the physical work 9 External work (W) depends on the mechanical efficiency of the body. The total metabolic heat produced by the body (H) is Equati on 4

PAGE 11

3 Finally, clothing can act as a barrier to heat exchange, which can greatly affect thermal balancing mechanisms. The amount of heat stress caused by clothes is influenced by the level of insulation, permeability and ventilation inherent to the fabric and construction of an ensemble. Insulation influences heat flow resistance and the rates of heat exchange through radiation, convection and conduction. Permeability shapes the movement of water vapor and affects evaporative resistance, which is directl y connected to the rate of evaporative cooling. Ventilation influences the amount of air movement through and around clothing. This factor affects the rate of evaporation as well as the rate of convection. Overall, the apparent total evaporative resista nce characterizes the ability of the clothing to support evaporative cooling. For WBGT based evaluations, a Clothing Adjustment Factor (CAF) can be used to represent the effects of the clothing. This metric is a single number that is simply added to the environmental WBGT. The clothing adjustment factor is different for each type of ensemble. Because protective clothing affects heat stress, a control is to opt for ensembles with less evaporative resistance and lower CAF. Thus, comparative data are an im portant industrial hygiene tool in making decisions on protective clothing.

PAGE 12

4 Chapter Two Literature Review Clothing Heat Transfer Models The mechanisms of heat transfer through clothing can be conceptualized as two paths: dry heat transfer and moisture transfer. This two part model provides a conceptual and quantifiable method to assess the rates of heat transfer. Dry heat transfer depends on the exchange of heat by conductive, convective and radiant heat and is driven by the temperature gradient betw een the skin and the environment. Values for dry heat transfer quantification can be determined from measurements using a heated flat plate or heated manikin. The parameter used to quantify dry heat transfer is the intrinsic clothing insulation (I cl ) and has units of m 2 C / W. This value is theorized to be independent of external conditions and specific to each garment. The dry heat transfer model attempts to measure the heat transfer from the body through the clothing layer to the environment and the r esistance to that heat transfer. This value can be calculated from the thermal resistance of the air layer (I a ) and the total insulation (I t ). The total insulation is the additive insulation of the clothing and the boundary air layer 28 Moisture transfe r is comprised of evaporative heat transfer and is driven by the difference in vapor pressure between the skin and the environment. The parameters used to quantify vapor transfer are the intrinsic evaporative resistance (R ecl ), the resistance of the air l ayer to the transfer of water vapor (R ea ) 28 The intrinsic evaporative resistance quantifies the resistance of vapor transfer through the clothing to the environment. Both

PAGE 13

5 the intrinsic evaporative resistance and the air layer resistance to transfer of w ater vapor have units of m 2 kPa/W. The evaporative resistance of clothing has the ability to impede the process of thermal regulation and decrease the amount of cooling through evaporation. Clothing and other protective layers that come between the skin and the environment have the ability to create a barrier. Depending on the permeability of the barrier, the amount of air movement and water vapor transport can be lessened. This affects the cooling mechanisms and can significantly reduce evaporative cool ing. Evaporation Evaporation is a thermal regulatory mechanism used to cool the body. It is affected by air movement, humidity and clothing 29 This mechanism is supported by sweating and involves vaporization and mass transfer to the surrounding environ ment. Evaporation is the major method of dissipating heat from the body. In fact, as temperatures increase, evaporation becomes the only cooling mechanism 15 The evaporation rate required to keep the net heat storage at zero is the required evaporative c ooling rate (E req ). This value is limited by the maximum evaporative cooling rate (E max ), which is affected by the environment and clothing factors. More specifically, this rate is influenced by the total evaporative resistance of the clothing. When the required evaporative cooling rate is less than the maximum evaporative cooling rate, the body can maintain thermal equilibrium. Beyond this point, the body can no longer thermoregulate and the heat stress is uncompensable 3

PAGE 14

6 Ventilation Dry heat and evap orative heat transfer can be enhanced by air movement through holes and openings in the clothing. Ventilation can decrease effective insulation and increased evaporative heat loss 28 This rate of exchange was first measured by Crockford using tracer gas t echniques 11 The tracer gas technique was later expanded with the use of mass spectrometer detection, which simplified the procedure and decreased assessment time 24 air clothing, and activity performed. Parsons goes on to describe a scale that rates ventilation. This scale can be used to calculate the amount of energy leaving the body throug h ventilation, which can be added to the heat balance equation to determine required evaporation and more fully describe heat transfer 28 Additionally, ventilation can be determined experimentally using sealed clothing ensembles and trace gas technique or mass spectroscopy 28 Progressive Heat Stress Protocol and Critical Conditions One method used to determine the threshold of heat stress is the progressive protocol. In 1960, Lind outlined an experimental method that included a progressive increase from a cooler climate to a hotter climate, which would eventually result in heat stress 23 This method was later modified by Belding & Kamon in 1973 and Bernard & Kenney 4, 5, 19 Under this protocol, conditions that the body can thermally regulate are known as the prescriptive zone. As the environmental conditions progressively increase, the body is able to equilibrate at these increased levels until the upper limit of the

PAGE 15

7 prescriptive zone (ULPZ) is reached. At the ULPZ, the body can no longer thermally reg ulate and there is an increase in heat storage. In other words, this is the maximum level at which an individual can safely perform a given task 23 The point before the upper limit of the prescriptive zone is defined as the critical condition. The critic al condition is when maximum evaporative cooling is equally balanced by the net dry heat gain and internal sources 10 The location of the critical condition is affected by the environment, metabolic rate and clothing. There are variations of the progres sive protocol. The first determines critical water vapor pressure by holding the dry bulb temperate constant and incrementally increasing the partial pressure of water vapor in the air every five minutes. The second method determines the critical air tem perate by holding the partial pressure of water vapor in the air constant and increasing the dry bulb temperature every five minutes 28 The third is to hold relative humidity constant and increase temperature and vapor pressure every five minutes. The da ta collected from these methods can be used to determine critical conditions for clothing ensembles and the resistance to water vapor permeability 20 Two important relationships are used with the heat stress protocol to calculate total apparent evaporativ e resistance and total clothing insulation 2, 21 Kenney used data from two critical conditions (warm, humid and hot, dry) and the following equations to determine R e,T,a and I t,r 21 Equation 5

PAGE 16

8 Equation 6 In these equations, P sk is the saturated wat er vapor pressure at the skin. P a is the saturated water vapor pressure in the atmosphere. R e,T,a is the apparent total evaporative resistance. H net is the total metabolic heat produced by the body. T db is the dry bulb temperature. T sk is the temperatu re at the skin and I T,r is the resultant total insulation. Resultant total insulation can also be estimated by using a heated manikin and the Standard Test Method for Measuring the Thermal Insulation of Clothing 23 and adjusting for air speed and activity using ISO9920 18 In this case, only one condition is needed to solve for one unknown. Clothing Adjustment Factors The effect of clothing on individuals in the workplace can be assessed by the Clothing Adjustment Factor. The CAF was first introduced by Ramsey and further metrics when conditions necessitate work clothes that affect heat storage rates 6 Factors that influence the Clothing Adjustment Factors include the in sulation, ventilation and evaporative resistance of the ensemble. The units of the CAF are degrees WBGT and this value is simply added to the measured WBGT of the environment. The combined WBGT and CAF is the Effective Wet Bulb Globe Temperature 29 The Ef fective Wet Bulb Globe Temperature can be compared with recommended safe exposure levels from three sources; the National Institute of Occupational Safety and Health (NIOSH) Recommended Exposure Levels (REL), the American Conference of

PAGE 17

9 Governmental Industr ial Hygienist (ACGIH) Threshold Limit Values (TLV) and the United States Navy Physiological Heat Exposure Limit (PHEL) 3 Summary of Previous Study Results There have been numerous studies focusing on the effects of heat stress and personal protective ens embles. An ensemble is can be tested to determine safe exposure limits to hot environments. Of particular interest in this study are trials that test work clothes and Tyvek ensembles to determine critical WBGT and R e,T,a Work clothes, which consist of a long sleeve woven cotton shirt (135 g/m 2 ) and pants (270 g/m 2 ), are the control. This traditional cotton work garment is used by the ACGIH as a reference ensemble and has a CAF of 0 C 1 The R e,T,a for work clothes was found to be 0.013 0.003 by Cara vello et al 10 while the WBGT c for a moderate rate of work was 34.4 C WBGT by Bernard et al 6 Standard Tyvek ensemble (1422A 41 g/m 2 ) [Tyvek is a registered trademark of DuPont] is a useful comparison point for limited use particle and light liquid spl ash barrier clothing. These ensembles can have a zipper front entry with elastic closures at the wrist, ankles and hood. Tyvek ensembles are water and vapor permeable. Bernard et al found the CAF for Tyvek 1424 ensemble (a fabric style slightly differen t to 1422A) to be 1 C WBGT with a WBGT c of 33.2 C WBGT 6 The R e,T,a for Tyvek 1424 was 0.015 0.004 by Caravello et al 10 Acclimatization State Acclimatization occurs when the body becomes physiologically adapted to elevated levels of heat for prolonge d daily periods. This affects heat tolerance levels and the amount of time an individual can safely perform tasks without the risks of heat stress.

PAGE 18

10 Acclimatization can cause a decrease in initial rectal temperature and a decrease in the equilibrium level of both rectal temperature and heart rate 12 This process is due to increeased sweat production, increased plasma volume and a fall in sodium chloride concentration in the blood, sweat and urine 28 In 1993, Armstrong and Kenney examined the effects of acclimatization to passive heat exposure. Their protocol involved participants sitting in three thermal conditions before and after a nine day acclimatization period. Unlike other studies, the participants were matched for V O2 max and chronic activity. They found that acclimatization significantly lowered core temperature and the threshold for sweating onset 2 In 1999, Stephen, Chang and Gonzalez examined the effects of acclimatizion on chemical protective clothing. This group was interested in calcul ating the evaporative and can be used to compare the effects of acclimatization with difference ensembles. The results indicated that acclimatization can be beneficial against heat stress if the protective ensemble allows adequate evaporation. In addition, they developed an evaporative potential graph to predict the effects of acclimatization on heat stress reduction 13 Hypothesis The purpose of this study is to deter mine R e,T,a and CAF for work clothes, Tyvek 1422A coveralls and coveralls of a prototype fabric using a progressive heat stress protocol. In addition, the use of participants wearing work clothes in a steady state protocol is examined. The null hypothes is is that there are no differences among (1) standard cotton work clothes, (2) Tyvek 1422A coveralls (standard for particle and light

PAGE 19

11 liquid splash protection) and (3) a DuPont prototype barrier coveralls. A second hypothesis is that there is no differe nce in computed R e,T,a for work clothes between progressive and steady state protocols.

PAGE 20

12 Chapter Three Methods Participants Five adults (four men and one woman) participated in the experimental trials. The mean and standard deviation of their physic al characteristics by gender are provided in Table I. The study protocol was approved by the University of South Florida Institutional Review Board. A written consent was obtained prior to enrollment in the study. Each participant was examined by a phys ician and approved for participation. The participants were healthy, with no chronic disease requiring medication. Table I: Physical Characteristics (mean standard deviation) Number Age (yr) Height (cm) Weight (kg) Body Surface Area (m 2 ) Men 4 23 .5 1.73 178 9 76.8 24.7 1.94 0.30 Women 1 21.0 168 57.0 1.64 All 5 23.0 1.87 176 9 72.8 23.1 1.88 0.29 Participants were reminded of the need to maintain good hydration. On the day of the trial, they were asked not to drink caffeinated beverages 3 hours prior to the appointment and not to participate in vigorous exercise before the trial. There was no acclimatization period prior to beginning the experimental trials and there was at least a 40 hour break between trials. Clothing Three different clothing ensembles were evaluated. The ensembles included work clothes (136 g/m 2 cotton shirt and 271 g/m 2 cotton pants), standard Tyvek coveralls with

PAGE 21

13 hood (Tyvek 1422A 41 g/m 2 ) and a DuPont prototype coverall with hood (47 g/m 2 flashspun poly olefin with Frazier air permeability of 5 cfm/ft 2 (ASTM D737)). Both limited use coveralls had a zippered closure in the front, elastic cuffs at the arms, legs and attached hood. A cotton T shirt for men and sports bra with T shirt for women and athletic shorts were worn under all clothing ensembles. Participants also wore socks and athletic shoes. Equipment The trials were conducted in a controlled climate chamber. The chamber floor space was 6 meters by 6 meters, had a temperature range between 4 C and 60 C and a relative humidity range between 10% and 90%. Temperature and humidity were controlled according to protocol and air speed was 0.5 m/sec. Heart rate was monitored using a sports type heart rate monitor (Polar Electro Inc, Lake Success, N.Y .). Core temperature was measured with a flexible thermistor inserted 10 cm beyond the anal sphincter muscle. The thermistor was calibrated prior to each trial using a hot water bath. The work demand consisted of walking at a speed of 1.25 m/sec on a mo torized treadmill with no grade, which elicited a metabolic rate of about 175 W/m 2 to approximate moderate work. Assessment of oxygen consumption was used to determine metabolic rate. Participants breathed through a two way valve connected to flexible tu bing that was connected to a collection bag. Expired gas was collected for about 3 minutes. The volume of expired air was measured using a dry gas meter. A VacuMed Mini CPX oxygen analyzer was used to determine oxygen content of expired air. A metabolic rate was recorded for each trial and this value was the average of three samples of oxygen

PAGE 22

14 consumption taken at approximately 30, 60 and 90 minutes into a trial and expressed as the rate normalized to body surface area. Progressive Protocol The study de sign called for one environment, which consisted of 50% relative humidity. Each ensemble was worn in this environment with a repeat trial of work clothes and a final constant exposure work clothes trial for a total of 5 trials. Participants completed one trial per day and had at least two days between trials. The order of ensembles was partially balanced. If there was a need to repeat a trial, it was repeated when the sequence of progressive exposures was completed. Typically, the dry bulb temperature w as set at 34 C. Once the participant reached thermal equilibrium, the dry bulb temperature was increased 0.8 C every five minutes until the trial was completed. During trials, participants were allowed to drink water or a replacement fluid commercial be verage at will. Core temperature, heart rate and ambient conditions (dry bulb, psychrometric wet bulb and globe temperature) were monitored continually and recorded every five minutes. Trials were scheduled to last 120 minutes unless one of the following was met: (1) a clear rise in rectal temperature associated with a loss of thermal equilibration (typically 0.1 C increase every 5 minutes for 15 minutes); (2) rectal temperature reached 39 o C; (3) a sustained heart rate greater than 90% of the age predic ted maximum heart rate; or (4) participant wished to stop. Steady State Protocol The second protocol was performed last with work clothes and a steady state protocol. The study design called for one environment, which consisted of 50% relative

PAGE 23

15 humidity. The dry bulb temperature was determined as the inflection point from the progressive protocol trial in work clothes. The humidity and dry bulb temperature were steady throughout the final trial. The treadmill speed was the same as the progressive protoc ol. Inflection Point and Calculation of Apparent Total Evaporative Resistance The inflection point marks the transition from thermal balance to the loss of thermal balance, where core temperature continued to rise. The chamber conditions five minutes bef ore the noted increase in core temperature was taken as the critical conditions. Calculation of Clothing Parameters The apparent total evaporative resistance was computed as follows. In the current study, resultant total insulation was treated as a fixed value for all ensembles and was estimated according to ISO 9920 18 as Equation 7 where air speed (v) was taken as 0.5 m/sec and walking speed (w) was the treadmill speed (m/sec) for the specific trial. This adjustment for air and body movement was sim ilar to that proposed by Holmer et al 17 The value of resultant clothing insulation was further reduced by 10% (multiplied by 0.9) to account for the reduction in insulation due to wetting 8 Equation 8

PAGE 24

16 Equation 6 was used to calculate R e,T,a Referri ng to Kenney et al, the measurements in this equation were computed as follows 3 Metabolic rate (M) in W/m 2 was estimated from oxygen consumption in liters per minute as M = 350 V O2 /A D The Dubois surface area (A D ) was calculated as Equation 9 where m b was the mass of the body (kg) and H was the height (m). The external work (W ext ) was calculated (W/m 2 ) as Equation 10 where V w was walking velocity in m/mim and f g was the fractional grade of the treadmill. Respiratory exchange, latent respiratio n heat loss (E res ) and dry respiration heat loss (C res ), were calculated as Equation 11 Equation 12 To account for a gradual change in T re the rate of change in heat storage was determined from the specific heat of the body (0.97 W h/ o C kg), body w eight (m b ), and the rate of

PAGE 25

17 re 1 ) as an average of the 20 minutes preceding the inflection point. That is Equation 13 This approach was taken by Barker et al. (1999) with some changes in sign conventions employed 3 The a pparent total evaporative resistance was computed by arranging previous equations to the following equation where P sk was the saturated pressure of water vapor at T sk Equation 14

PAGE 26

18 Chapter Four Results Table II illustrates the protocols completed b y each participant. There were four progressive heat stress trials for which a critical condition was not found, but a value for R e,T,a was computed. Participant 2 did not attempt a second work clothes trial or the final steady state trial. Table II: Com pleted Trials by Participant Participant Work Clothes 1 Work Clothes 2 Tyvek 1422A Prototype Work Clothes Steady State 1 1 +1 1 1 1 2 1 -1+1 1+1 -3 1 1 1 1 1 4 1 1 1 1 1 5 1 1 1+1 1 1 +1: means that a critical condition was not found because the trial was stopped without an inflection point. R e,T,a was computed from the last recorded data point. The average metabolic rates by ensemble and protocol are summarized in Table III. Also included in Table III are the WBGT c for the progressive proto cols and R e,T,a for all protocols. Table III: Metabolic Rate, Critical WBGT and Apparent Total Evaporative Resistance (mean standard deviation) by Ensemble and Protocol Ensemble Protocol Metabolic Rate (W/m 2 ) WBGT c ( o C) R e,T,a (m 2 kPa /W) Work Clothes Progressive 175 27 35.5 1.4 0.0110 0.003 Work Clothes Steady State 176 27 0.0119 0.003 Tyvek 1422A Progressive 166 26 33.7 1.0 0.0151 0.004 Prototype Progressive 180 19 35.0 1.7 0.0113 0.002

PAGE 27

19 Metabolic Rate To assess potential differences in metabolic rate among the four combinations of ensembles and protocols, a mixed effects model was used. The fixed effect was the combination of ensemble and protocol and the random effect was participants. There was no significant differenc e in metabolic rate among the combinations of ensembles and protocols (p = 0.8). Acclimatization State Because the current participants were not acclimatized, a comparison to acclimatized participants was undertaken. A two sample t test with different sa mple sizes was performed to assess R e,T,a and WBGT c between acclimatized participants from previous studies (n=15) and the current participants (n=5) for work clothes and Tyvek 1424 and 1422A ensembles, respectively. The acclimatized WBGT values were fro m Bernard et al and were adjusted for metabolic rate using the slope of 0.039 C WBGT/W/m 2 found for combined ensembles 7 The acclimatized R e,T,a values were from Caravello 10 There was no significant difference between the acclimatized population and t he current population of participants in R e,T,a for either ensemble (WC: t = 1.44, Tyvek: t = 0.00) and no significant difference in WBGT c for Tyvek ensemble (t = 0.87). There was a significant difference in WBGT c for work clothes (p < 0.05), where the un acclimatized participants were unexpectedly higher. Table IV summarizes the results.

PAGE 28

20 Table IV: WBGT c and R e,T,a for Work Clothes and Tyvek (mean standard deviation) for Acclimatized and Unacclimatized Participants WBGT c R e,T,a Ensemble Unacclim atized Acclimatized Unacclimatized Acclimatized WC 36.0 0.58 34.2 1.2 0.011 0.001 0.013 0.003 Tyvek 33.7 0.53 33.2 1.2 0.015 0.002 0.015 0.004 Tyvek refers to 1424A for acclimatized and 1422A for unacclimatized. Ensembles A mixed e ffects model was used to assess WBGT c and R e,T,a among the three ensembles for the progressive protocols. Participants were treated as a random effect. There were significant differences among WBGT c (p < 0.05) and R e,T,a (p < 0.05) by ensemble. For WBGT c that work clothes and Tyvek 1422A were different from each other, but that there was no difference between the DuPont prototype and either work clothes or Tyvek 1422A. For R e,T,a a Tuk 1422A was significantly different from the DuPont prototype ensemble and the work clothes but that there was no significant difference between the work clothes and the prototype ensemb le. Progressive and Steady State Protocol A mixed effects model was performed to assess R e,T,a of work clothes between the progressive protocol and the steady state protocol. There was no significant difference between the two protocols (p = 0.6).

PAGE 29

21 Ch apter Five Discussion Metabolic Rate One experimental control was the metabolic rate normalized to body surface area. No significant differences were found for metabolic rate among the combinations of ensembles and protocols, which supports adequate contr ol of metabolic rate and thus no systematic effect on WBGT c or R e,T,a Acclimatization State The WBGT c for work clothes from the current study was 35.5 C WBGT. There are two previous studies that have examined unacclimatized participants. These studie s are summarized in Table V 23,22 Lind used semi nude participants and the ULPZ protocol at 350 W, which is comparable to the metabolic rate of the current protocol (329 W). The ULPZ was 28.2 C WBGT and can be adjusted for the semi nude state to clothe d by subtracting 2 C WBGT. This results in an adjusted ULPZ of 26.2 C WBGT, which is less (9.3 C WBGT) than the current WBGT c Kenney et al determined the WBGT c for unacclimatized participants with a metabolic rate of 190 W/m 2 This was adjusted for m etabolic rate using the slope of 0.039 C WBGT /W/m 2 found by Bernard et al for combined ensembles 7 and further adjusted for semi clothed state by subtracting 2 C WBGT. This final adjusted WBGT c of 30.0 C is also less (4.5 C WBGT) than the current WBG T c These lower WBGT c s suggest that the participants in the current study did not respond as other unacclimatized participants.

PAGE 30

22 Table V: Summary of WBGT c for Unacclimatized Participants WBGT c ( o C) Adjusted WBGT c ( o C) Lind (1963) 28.2 26.2 Kenney (20 02) 31.2 30.0 In this study, the WBGT c using unacclimatized participants was 35.5 C WBGT for work clothes and 33.7 C WBGT for the Tyvek 1422A ensemble. Table VI summarizes the WBGT c from previous studies using acclimatized participants. The differen ces in WBGT c for this study and the previous studies range from 0.7 C WBGT to 1.3 C WBGT for work clothes and 0.3 to 1.1 C WBGT for Tyvek. Some of the differences could be due to the differences in Tyvek fabrics tested. It is more likely that the diff erences are random. Bernard et al 7 reported a standard error of mean at 1.6 C WBGT, which is greater than the differences in WBGT c among the studies. This indicates that our participants responded as acclimatized participants. While there was no formal acclimatization period prior to the trials, the participants may have been acclimatized by virtue of their daily exercise activities in Central Florida, even in the cooler months in which these trials were run. Table VI: WBGT c Values for Work Clothes and Tyvek Ensemble WBGT c Ensemble Work Clothes ( o C) Tyvek ( o C) Current Study 35.5 33.7 Tyvek 1422A O'Conner 1999 34.2 32.6 Tyvek 1422A Bernard 2005 34.5 33.4 Tyvek 1424 Bernard 2008 34.8 34.1 Tyvek 1424/1427

PAGE 31

23 Comparisons among Ensembles The prog ressive protocol is well established as a method to determine CAF and R e,T,a Statistical analysis indicated that work clothes and Tyvek 1422A were statistically different. The baseline for comparison is the WBGT c for work clothes, which was 35.5 C WBG T. The WBGT c for Tyvek 1422A was 33.7 C WBGT, which corresponds to a clothing adjustment factor of 1.8 C WBGT. Table VII summarizes the CAF from previous studies, which range from 0.7 to 2 C WBGT. The lower values of CAF found by Bernard et al 6,7 we re expected due to the different fabric styles used in the (1422A). Table VI I : CAF Values for Tyvek Ensemble CAF ( o C) Ensemble Pease 1.8 Tyvek 1422A O'Conner 2.0 Tyve k 1422A Bernard 2005 0.8 Tyvek 1424 Bernard 2008 0.7 Tyvek 1424/1427 The WBGT c for the DuPont prototype ensemble was 35.0 C WBGT, which corresponds to a clothing adjustment factor of 0.5 C WBGT. This value puts the prototype ensemble in between the work clothes and the Tyvek 1422A ensemble (2.0 C WBGT). Statistical analysis indicated that the WBGT c for prototype ensemble was not different from either work clothes or Tyvek 1422A ensemble, which reinforces the inference that the CAF for the DuPont prototype is between the baseline work clothes and the Tyvek 1422A ensemble.

PAGE 32

24 The apparent total evaporative resistance was 0.011 m 2 kPa/W for work clothes and 0.015 m 2 kPa/W for the Tyvek 1422A ensemble. These values were statistically different. Table VIII provides the R e,T,a from previous studies. Caravello reported a standard error of mean at 0.004 kP m 2 /W, which is greater than the differences in R e,T,a value among the studies. Table VI I I: R e,T,a Values for Work Clothes and Tyvek Work Clothes Tyvek Ensemble (kPa m 2 /W) (kPa m 2 /W) Pease 0.011 0.015 Tyvek 1422A Barker 0.013 0.016 Tyvek 1422A Caravello 0.013 0.015 Tyvek 1424 The apparent total evaporative resistance for the DuPont prototype ensemble was 0.013 m 2 kPa/W. This value places the prototype ensemble in between the baseline work clothes (0.011 m 2 kPa/W) and the Tyvek ensembles (0.015 m 2 kPa/W). Statistical analysis indicated that the R e,T,a for prototype ensemble was not different from work clothes but was different from Tyvek. T his suggests that the DuPont prototype performs closely to work clothes with a slightly higher level of stress. Progressive and Steady State Protocol The apparent total evaporative resistance for work clothes using the progressive protocol was 0.011 m 2 kPa/ W. The apparent total evaporative resistance for work clothes using the steady state protocol was 0.012 m 2 kPa/W and there was no difference between protocols. The difference in R e,T,a between the progressive and steady state protocol was much less than C 2 /W).

PAGE 33

25 Chapter Six Conclusion The results indicate that the unacclimatized participants responded as if acclimatized, which is not easily explained but perhaps due to their daily exercise activities i n Central Florida. Using cotton work clothes as a baseline, the CAF was 1.8 C WBGT for the Tyvek 1422A ensemble, which was similar to previous found values. The CAF for the DuPont prototype ensemble was 0.5 C WBGT. The R e,T,a was 0.0110 m 2 kPa/W for w ork clothes, 0.0151 m 2 kPa/W for Tyvek 1422A and 0.0113 for the prototype ensemble. The prototype had an intermediate contribution to heat stress, which was closer to work clothes than Tyvek 1422A. There was no significant difference in apparent total ev aporative resistance between the progressive and steady state protocol. In the vicinity of the critical environment, the steady state protocol yielded results similar to the progressive protocol and could be an alternative means of assessing evaporative r esistance.

PAGE 34

26 References 1 American Conference of Governmental Industrial Hygienists. TLVs and BEIs 2009 Edition. American Conference of Governmental Industrial Hygienists, Cincinnati, OH. ACGIH, 2009. 2 and acclimatization on Journal of American Physiological Society. 75:5:2162 2167. 1993. 3 Ameri can Industrial Hygiene Association Journal 60:32 37. 1999. 4 Federation Proceedings 32: 1598 1601. 1973. 5 Bernard, T. E., Kenney W. L., and L. Balint. Heat stress management Program for Nuclear Power Plants EPRI NP4453, Palo Alto, California: Electric Power Research Institute. 1986. 6 Bernard, T. E., Leucke, C. L., Schwartz, S. W., Kirkland, K. S., and C. D. Ashley. Journal of Occupational and Environmental Hygiene. 2:251 256. 2005. 7 Clothing Adjustment F actors for four clothing ensembles and the effects of Journal of Occupational and Environmental Hygiene 5:1:1 5. 2008. 8 Brode, P., Havenith, G., Wang, W., Candas, V., den Hartog, E. A., Griefah, B., Holmer, I., Meinander, H., Nocker, evaporative effects European Journal of Applied Physiology 2008. 9 Health 008. Web. November 15 2009. http://www.ccohs.ca/oshanswers/phys_agents/heat_health.html 10 European Jou rnal of Applied Physiology 104: 361 367. 2008. 11 British Journal of Industrial Medicine 29: 378 386. 1972.

PAGE 35

27 12 Givoni, B., Journal of Applied Physiology 35: 875 879. 1973. 13 limited be the evapor Ergonomics. 42:8:1038 1050. 1999. 14 Annals of Occupational Hygiene 43. 5: 289 296. 1999 15 Havenith G., Holmer I., den Hartog E. A., Evaporative Heat Resistance Proposal for improved representation in standards and models 43:339 346. 1999. 16 Havenith, G., Richards, M. G., Wang, X., Brode, P., Candas, V., Hartog, E. D., Ho Journal of Applied Physiology. 104: 142 149. 2008. 17 thing convection heat exchange Annals of Occupational Hygiene. 43:329 337. 1999. 18 ISO 9920. Ergonomics of the thermal environment: estimation of the thermal insulation and evaporative resistance of a clothing ensemble. International Standard Organization, Geneva. 2007. 19 American Industrial Hygiene Association Journal. 48:576 577. 1987. 20 hysiological derived critical Journal of Applied Physiology 63: 1095 1099. 1988. 21 Kenney, W. L., Mitika, D. J., Haveith, G., Puhl, S. M., and P. Crosby. Medicine and Science in Sports and Exercise 25(2 283 289. 1993. 22 Kenny, W.L., and M. J. Zeimen. Psychometric limits and critical evaporative coefficients for unacclimated men and women. J Appl Phsiol, 2002. 92: 2256 2263 23 Journal of Applied Physiology. 18:51 56. 1963. 24 Environ mental Ergonomics. London; Taylor & Francis, pp 162 176. 1988.

PAGE 36

28 25 http://www.osha.gov/SLTC/heatstress/ 26 O'Conner, D. J., and T Applied Occupational Environmental Hygiene 14:119 125. 1999 27 009. Web. November 13, 2009. http://www.cdc.gov/niosh/topics/heatstress/ 2 8 Parsons, Ken. Human Thermal Environment 2 nd Edition. New York: Taylor and Francis, 2003. 29 Plog, Barbara A., and Patricia J. Quinlan. Fundamentals of Industrial Hygiene 5 th Edition. United States: NSC Press, 2002. 30 Journal of Applied Physiology. 79: 531 533. 1964.


xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam 22 Ka 4500
controlfield tag 007 cr-bnu---uuuuu
008 s2010 flu s 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0004526
035
(OCoLC)
040
FHM
c FHM
049
FHMM
090
XX9999 (Online)
1 100
Pease, Amanda.
0 245
Heat stress evaluation of protective clothing ensembles
h [electronic resource] /
by Amanda Pease.
260
[Tampa, Fla] :
b University of South Florida,
2010.
500
Title from PDF of title page.
Document formatted into pages; contains X pages.
502
Thesis (MSPH)--University of South Florida, 2010.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
538
Mode of access: World Wide Web.
System requirements: World Wide Web browser and PDF reader.
3 520
ABSTRACT: Clothing directly affects the level of heat stress exposure. Useful measures to express the thermal characteristics are WBGT (wet bulb globe temperature) clothing adjustment factor (CAF) or apparent total evaporative resistance (Re,T,a). The CAF is assigned through laboratory wear trials following a heat stress protocol in which the air temperature and humidity are progressively increased until the participant clearly loses the ability to maintain thermal equilibrium. The critical condition is the point of thermal transition and from these conditions both the CAF and Re,T,a are computed. The first objective of this study is to compare the thermal characteristics of a coverall made from a prototype fabric to work clothes and a commercial limited-use coverall using CAF and Re,T,a. A second objective is to demonstrate that the Re,T,a of work clothes is the same for progressive or steady-state heat stress protocols. Five participants (4 men and 1 woman) walked on a treadmill at 1.25 m/s at an average metabolic rate of 175 W/m2. Each participant completed at least one progressive heat stress protocols in work clothes, Tyvek 1422A coveralls [Tyvek is a registered trademark of DuPont], and a developmental nonwoven polyolefin prototype ensemble provided by DuPont. In addition, four participants completed steady-state protocol in work clothes. Participants did not complete an acclimation period prior to the trials and each trail was separated by at least 40 hours. v There are no within participant differences in metabolic rate among ensembles and protocols. There are no differences between the critical WBGT in the current participants and previously acclimatized participants from other studies suggesting that the participants responded as if they were acclimatized. Based on a mixed effects model, there are significant differences between work clothes and Tyvek 1422A for Re,T,a (0.0103 and 0.0141 m2/W kPa, respectively) and critical WBGT. The CAF for Tyvek is 2.3 C-WBGT. For the DuPont prototype ensemble, the apparent total evaporative resistance is 0.013 m2kPa/W and the CAF is 0.5 C. The prototype ensemble shows no difference from work clothes or Tyvek 1422A in critical WBGT and no difference from work clothes in Re,T,a. Overall, the prototype coveralls exhibited thermal characteristics that would have a lower level of heat stress than the Tyvek 1422A and not significantly different from work clothes. The values for Re,T,a for work clothes were not different between the steady state and progressive protocols. The steady-state protocol near the critical condition can be used for determination of Re,T,a. This opens up the possibility of estimating Re,T,a from studies that do not use the progressive protocol.
590
Advisor: Thomas Bernard, Ph.D.
653
Heat stress
Acclimatization
Protective clothing
Un-acclimatized
Progressive heat stress protocol
690
Dissertations, Academic
z USF
x Environmental & Occupational Health
Masters.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.4526