USF Libraries
USF Digital Collections

Evaluation of deep geologic units in florida for potential use in carbon dioxide sequestration

MISSING IMAGE

Material Information

Title:
Evaluation of deep geologic units in florida for potential use in carbon dioxide sequestration
Physical Description:
Book
Language:
English
Creator:
Roberts-Ashby, Tina
Publisher:
University of South Florida
Place of Publication:
Tampa, Fla
Publication Date:

Subjects

Subjects / Keywords:
Enhanced oil recovery
Geologic storage
Saline aquifers
Oil reservoirs
Storage capacity
Dissertations, Academic -- Geology -- Masters -- USF   ( lcsh )
Genre:
non-fiction   ( marcgt )

Notes

Abstract:
ABSTRACT: Concerns about elevated atmospheric carbon dioxide (CO2) and the effect on global climate have created proposals for the reduction of carbon emissions from large stationary sources, such as power plants. Carbon dioxide capture and sequestration (CCS) in deep geologic units is being considered by Florida electric-utilities. Carbon dioxide-enhanced oil recovery (CO2-EOR) is a form of CCS that could offset some of the costs associated with geologic sequestration. Two potential reservoirs for geologic sequestration were evaluated in south-central and southern Florida: the Paleocene Cedar Keys Formation/Upper Cretaceous Lawson Formation (CKLIZ) and the Lower Cretaceous Sunniland Formation along the Sunniland Trend (Trend). The Trend is a slightly arcuate band in southwest Florida that is about 233 kilometers long and 32 kilometers wide, and contains oil plays within the Sunniland Formation at depths starting around 3,414 meters below land surface, which are confined to mound-like structures made of coarse fossil fragments, mostly rudistids. The Trend commercial oil fields of the South Florida Basin have an average porosity of 16% within the oil-producing Sunniland Formation, and collectively have an estimated storage capacity of around 26 million tons of CO2. The Sunniland Formation throughout the entire Trend has an average porosity of 14% and an estimated storage capacity of about 1.2 billion tons of CO2 (BtCO2). The CKLIZ has an average porosity of 23% and an estimated storage capacity of approximately 79 BtCO2. Porous intervals within the CKLIZ and Sunniland Formation are laterally homogeneous, and low-permeability layers throughout the units provide significant vertical heterogeneity. The CKLIZ and Sunniland Formation are considered potentially suitable for CCS operations because of their geographic locations, appropriate depths, high porosities, estimated storage capacities, and potentially-effective seals. The Trend oil fields are suitable for CO2-EOR in the Sunniland Formation due to appropriate injected-CO2 density, uniform intergranular porosity, suitable API density of formation-oil, sufficient production zones, and adequate remaining oil-in-place following secondary recovery. In addition to these in-depth investigations of the CKLIZ and Sunniland Formation, a more-cursory assessment of deep geologic units throughout the state of Florida, which includes rocks of Paleocene and Upper Cretaceous age through to rocks of Ordovician age, shows additional units in Florida that may be suitable for CO2-EOR and CCS operations. Furthermore, this study shows that deep geologic units throughout Florida potentially have the capacity to sequester billions of tons of CO2 for hundreds of fossil-fuel-fired power plants. Geologic sequestration has not yet been conducted in Florida, and its implementation could prove useful to Florida utility companies, as well as to other energy-utilities in the southeastern United States.
Thesis:
Dissertation (PHD)--University of South Florida, 2010.
Bibliography:
Includes bibliographical references.
System Details:
Mode of access: World Wide Web.
System Details:
System requirements: World Wide Web browser and PDF reader.
Statement of Responsibility:
by Tina Roberts-Ashby.
General Note:
Title from PDF of title page.
General Note:
Document formatted into pages; contains X pages.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
usfldc doi - E14-SFE0004695
usfldc handle - e14.4695
System ID:
SFS0028004:00001


This item is only available as the following downloads:


Full Text
xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim
leader nam 22 Ka 4500
controlfield tag 007 cr-bnu---uuuuu
008 s2010 flu s 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0004695
035
(OCoLC)
040
FHM
c FHM
049
FHMM
090
XX9999 (Online)
1 100
Roberts-Ashby, Tina.
0 245
Evaluation of deep geologic units in florida for potential use in carbon dioxide sequestration
h [electronic resource] /
by Tina Roberts-Ashby.
260
[Tampa, Fla] :
b University of South Florida,
2010.
500
Title from PDF of title page.
Document formatted into pages; contains X pages.
502
Dissertation (PHD)--University of South Florida, 2010.
504
Includes bibliographical references.
516
Text (Electronic thesis) in PDF format.
538
Mode of access: World Wide Web.
System requirements: World Wide Web browser and PDF reader.
3 520
ABSTRACT: Concerns about elevated atmospheric carbon dioxide (CO2) and the effect on global climate have created proposals for the reduction of carbon emissions from large stationary sources, such as power plants. Carbon dioxide capture and sequestration (CCS) in deep geologic units is being considered by Florida electric-utilities. Carbon dioxide-enhanced oil recovery (CO2-EOR) is a form of CCS that could offset some of the costs associated with geologic sequestration. Two potential reservoirs for geologic sequestration were evaluated in south-central and southern Florida: the Paleocene Cedar Keys Formation/Upper Cretaceous Lawson Formation (CKLIZ) and the Lower Cretaceous Sunniland Formation along the Sunniland Trend (Trend). The Trend is a slightly arcuate band in southwest Florida that is about 233 kilometers long and 32 kilometers wide, and contains oil plays within the Sunniland Formation at depths starting around 3,414 meters below land surface, which are confined to mound-like structures made of coarse fossil fragments, mostly rudistids. The Trend commercial oil fields of the South Florida Basin have an average porosity of 16% within the oil-producing Sunniland Formation, and collectively have an estimated storage capacity of around 26 million tons of CO2. The Sunniland Formation throughout the entire Trend has an average porosity of 14% and an estimated storage capacity of about 1.2 billion tons of CO2 (BtCO2). The CKLIZ has an average porosity of 23% and an estimated storage capacity of approximately 79 BtCO2. Porous intervals within the CKLIZ and Sunniland Formation are laterally homogeneous, and low-permeability layers throughout the units provide significant vertical heterogeneity. The CKLIZ and Sunniland Formation are considered potentially suitable for CCS operations because of their geographic locations, appropriate depths, high porosities, estimated storage capacities, and potentially-effective seals. The Trend oil fields are suitable for CO2-EOR in the Sunniland Formation due to appropriate injected-CO2 density, uniform intergranular porosity, suitable API density of formation-oil, sufficient production zones, and adequate remaining oil-in-place following secondary recovery. In addition to these in-depth investigations of the CKLIZ and Sunniland Formation, a more-cursory assessment of deep geologic units throughout the state of Florida, which includes rocks of Paleocene and Upper Cretaceous age through to rocks of Ordovician age, shows additional units in Florida that may be suitable for CO2-EOR and CCS operations. Furthermore, this study shows that deep geologic units throughout Florida potentially have the capacity to sequester billions of tons of CO2 for hundreds of fossil-fuel-fired power plants. Geologic sequestration has not yet been conducted in Florida, and its implementation could prove useful to Florida utility companies, as well as to other energy-utilities in the southeastern United States.
590
Advisor: Mark Stewart, Ph.D.
653
Enhanced oil recovery
Geologic storage
Saline aquifers
Oil reservoirs
Storage capacity
690
Dissertations, Academic
z USF
x Geology
Masters.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.4695



PAGE 1

Evaluation of Deep Geologic Units in Florida for Potential Use in Carbon Dioxide Sequestration by Tina Roberts-Ashby A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Geology College of Arts and Sciences University of South Florida Major Professor: Mark Stewart, Ph.D. Peter Harries, Ph.D. Mark Rains, Ph.D. Jeff Cunningham, Ph.D. Thomas Scott, Ph.D. Date of Approval: November 10, 2010 Keywords: enhanced oil recovery, geologic storage, saline aquifers, oil reservoirs, storage capacity Copyright 2010, Tina Roberts-Ashby

PAGE 2

Dedication I dedicate this dissertation to my husband, Brandon, and to my two beautiful daughters, Adalaide and Abelina. Brandon, you have always been my Number One Fan, and have never ceased to believe in me and my capabilities. You always see things in me that I just never see. When I was exhausted and lacking motivation, you were always there to encourage me and remind me why I was taking this journey. You are my rock, and I love you “for always.” Adalaide and Abelina, I did this dissertation especially for you, because I wanted to show you that there is nothing that you cannot do in this world, as long as you love and believe in yourselves and are not afraid to challenge yourselves. Do not let anyone tell you that you cannot be a successful perso n in your career and have a family and children at the same time. I did this to show you that you indeed can have both a successful career and a family; you can do whatever you set your mind to do. I love you, and I will always believe in you and sup port whatever you choose to do in your lives. You are my greatest adventures, and having you was the best decision I ever made. I will cherish you and be devoted to you always.

PAGE 3

Acknowledgments Firstly and most importantly, I would like to acknowledge and thank Mark Stewart for taking me on as his graduate student and giving me the chance to work on this exciting research project, even though initially he did not know a whole lot about me or my capabilities. I am grateful not only that he presented me with this opportunity, but also that he gave me the space and time to go about it in my own way, and never failed to be a strong mentor and educator at all times. And I am most especially grateful that he trusted me and supported me when I decided to have another child while working on this dissertation. I absolutely could not have done this without his appreciation for family, and his support of me wanting to be a full-time student and mother. I’d like to thank my entire committee for their support and guidance throughout this whole process. Tom Scott (a.k.a. “Papa T”), thank you for always believing in me and encouraging me – you and Nada are the best surrogate parents anyone could ever ask for. Peter Harries and Mark Rains, thank you for always being my friends and mentors over the years – you both have always listened to me when I needed it, and have given me great advice and support. Jeff Cunningham, thanks for joining the team and helping me to understand a completely different aspect of this research. Many thanks to my friends and former co-workers at the Florida Geological Survey. Harley Means and Jon Arthur always made it possible for me to visit the Survey and conduct my work, and always made sure I had everything I needed, no matter how long my stay was or how inconvenient it may have been to their schedules. They were also great sources of encouragement and support along the way. Also, huge thanks to

PAGE 4

Dave Taylor at the Florida Department of Environmental Protection’s Bureau of Mining and Minerals Regulation Oil and Gas Section for scanning and sending me endless geophysical logs. I know he spent many hours buried in the well records office for me, and I am truly grateful for his time, assistance, and sense of humor. Thanks to the Florida Energy Systems C onsortium for funding my research every year and allowing me to devote my time and energy to this study. And lastly, a big thanks to my M.S. degree advisor and eternal mentor, Bill Harris (a.k.a. “Papa Bill”), for always lending an ear and giving me great advice on many education, career, and life choices – I hope I never have to settle that tab, Bill.

PAGE 5

i Table of Contents List of Tables ...................................................................................................... v List of Fi gures .................................................................................................... vi Abstract ............................................................................................................ xiii Chapter 1: Carbon Dioxide Capture and Sequestration in Deep Geologic Un its ............................................................................................... 1 1.1 Introduction ................................................................................................... 1 1.1.1 On-Going Carbon Dioxide Sequestration Research ................... 4 1.1.1.1 Global Research ............................................................... 4 1.1.1.2 Local Research ................................................................ 9 1.2 Background ................................................................................................. 10 1.3 Processes in Geologic Sequestration ....................................................... 12 1.4 Storage Reservoir Selection....................................................................... 20 1.4.1 Storage Capacity .......................................................................... 21 1.4.1.1 Existing and Depleted Oil Fields .................................. 21 1.4.1.2 Deep Saline Aquifers ..................................................... 23 1.4.2 Seal Characterization ................................................................... 24 1.4.3 Structural Properties .................................................................... 24 1.4.4 Depth of Storage Reservoir ......................................................... 24 1.4.5 Trapping Mechanisms .................................................................. 26 1.4.5.1 Structural and Stratigraphic Trapping ......................... 26 1.4.5.2 Solubility Trapping ........................................................ 29 1.4.5.3 Hydrodynamic Trapping ................................................ 30 1.4.5.4 Residual Trapping .......................................................... 30 1.4.5.5 Ionic Trapping ................................................................ 31 1.4.5.6 Mineral Trapping ............................................................ 32 1.4.6 Lithology of Storage Reservoir ................................................... 32 1.4.7 Pressure and Flow Regimes ........................................................ 33 1.4.8 Stable Geologic Environment ...................................................... 33 1.5 Carbon Dioxide Sequestration in Existing and Depleted Oil Reservoirs .................................................................................................... 34 1.5.1 Carbon Dioxide-Enhanced Oil Recovery .................................... 34 1.5.2 Geologic Sequestration in Depleted Oil and Gas Fields ........... 38 1.6 Carbon Dioxide Sequestration in Deep Saline Aquifers .......................... 38 1.7 Current and Planned Geologic Sequestration Projects ........................... 39 1.7.1 Sleipner Project ............................................................................ 39 1.7.2 Sn hvit Project ............................................................................. 40 1.7.3 In Salah Project ............................................................................. 42

PAGE 6

ii 1.7.4 Weyburn Project ........................................................................... 44 1.7.5 Salt Creek Project ......................................................................... 46 1.8 Challenges for Carbon Dioxide Capture and Geologic Sequestration Technologies ...................................................................... 46 1.8.1 Costs of Operation ....................................................................... 47 1.8.2 Environmental Concerns ............................................................. 49 1.8.3 Community Opposition and Public Concerns ........................... 49 1.9 Potential for Carbon Capture and Geologic Sequestration in Florida ........................................................................................................... 50 Chapter 2: Evaluation of the Lower Cretaceous Sunniland Formation within the Sunniland Trend of the South Florida Basin for Carbon Dioxide Sequestration and En hanced Oil R ecovery ................................ 52 2.1 Introduction ................................................................................................. 52 2.2 Study Area ................................................................................................... 53 2.3 Geologic Setting .......................................................................................... 53 2.3.1 Florida Platform ............................................................................ 53 2.3.1.1 Major Features of the Florida Platform ........................ 62 2.3.1.2 Sunniland Trend ............................................................. 64 2.3.2 Stratigraphic Units ........................................................................ 64 2.3.2.1 Punta Gorda Anhydrite .................................................. 65 2.3.2.2 Sunniland Formation ..................................................... 65 2.3.2.3 Lake Trafford Formation ............................................... 81 2.4 Sunniland Trend Oil Fields ......................................................................... 82 2.5 Methods and Procedures ............................................................................ 87 2.5.1 Well Selection ............................................................................... 87 2.5.2 Porosity Determination ................................................................ 89 2.5.3 Storage Capacity Calculation ...................................................... 93 2.5.4 Data Modeling, Interpolation, and Presentation ........................ 98 2.6 Results ....................................................................................................... 102 2.6.1 Porosity ....................................................................................... 102 2.6.2 Storage Capacity ........................................................................ 102 2.6.3 Potential Leakage Points ........................................................... 129 2.7 Discussion ................................................................................................. 129 2.7.1 Study Limitations ........................................................................ 129 2.7.2 Porosity and Permeability of the Sunniland Formation .......... 137 2.7.3 Storage Capacity of the Sunniland Formation within the Trend ............................................................................................... 138 2.7.3.1 Effects of Study Limitations and Uncertainties on Estimated Storage Capacity ........................................ 140 2.7.4 Sunniland Formation Seals ....................................................... 143 2.7.5 Carbon Sequestration in the Sunniland Formation within the Trend ........................................................................................ 144 2.7.6 Enhanced Oil Recovery in the Sunniland Formation of the Trend ........................................................................................ 146 2.7.7 Potential Leakage Points for the Sunniland Formation .......... 149 2.8 Conclusion ................................................................................................. 151

PAGE 7

iii Chapter 3: Evaluation of the Paleocene Cedar Keys Formation and Upper Cretaceous Lawson Forma tion of South-Central and Southern Florida for Carbon Dioxide Sequest ration ............................. 154 3.1 Introduction ............................................................................................... 154 3.2 Study Area ................................................................................................. 154 3.3 Geologic Setting ........................................................................................ 155 3.3.1 Stratigraphic Units ...................................................................... 155 3.3.1.1 Taylor-Age Rocks ........................................................ 172 3.3.1.2 Lawson Formation ....................................................... 177 3.3.1.3 Cedar Keys Formation ................................................. 190 3.4 Methods and Procedures .......................................................................... 194 3.4.1 Well Selection ............................................................................. 194 3.4.2 Porosity Determination .............................................................. 195 3.4.3 Storage Capacity Calculation .................................................... 196 3.4.4 Data Modeling, Interpolation, and Presentation ...................... 198 3.5 Results ....................................................................................................... 201 3.5.1 Porosity ....................................................................................... 201 3.5.2 Storage Capacity ........................................................................ 215 3.5.3 Temperature Gradient ................................................................ 215 3.5.4 Potential Leakage Points ........................................................... 215 3.6 Discussion ................................................................................................. 221 3.6.1 Study Limitations ........................................................................ 221 3.6.2 Porosity and Permeability of the Cedar Keys/Lawson Injection Zone ................................................................................ 222 3.6.3 Storage Capacity of the Cedar Keys/Lawson Injection Zone ................................................................................................ 223 3.6.3.1 Effects of Study Limitations and Uncertainties on Estimated Storage Capacity ........................................ 224 3.6.4 Cedar Keys/Lawson Injection Zone Seals ................................ 227 3.6.5 Carbon Sequestration in the Cedar Keys/Lawson Injection Zone ................................................................................ 229 3.6.6 Temperature Gradient for the Cedar Keys/Lawson Injection Zone ................................................................................ 231 3.6.7 Potential Leakage Points for the Cedar Keys/Lawson Injection Zone ................................................................................ 231 3.7 Conclusion ................................................................................................. 232 Chapter 4: Statewide Assessment of Other Deep Geologic Units of Florida Considered for Car bon Dioxide Sequ estration.......................... 235 4.1 Introduction ............................................................................................... 235 4.2 Potential Areas for Additional Geologic Sequestration in Florida ....... 235 4.2.1 Rebecca Shoal Dolomite ............................................................ 235 4.2.2 Potential, Existing, and Depleted Oil and Gas Reservoirs ..... 240 4.2.2.1 South Florida Basin ..................................................... 241 4.2.2.2 Western Florida Panhandle ....................................... 249 4.2.2.3 Apalachicola Embayment ........................................... 252 4.2.3 Deep Saline Aquifers in the Southern Florida Peninsula ....... 252 4.3 Geologic Units Considered Unsuitable for Carbon Dioxide Sequestration ............................................................................................. 255 4.4 Conclusion ................................................................................................. 256

PAGE 8

iv Chapter 5: Re ferences .................................................................................. 259 Appendix I: Acronyms and Abbreviat ions .................................................. 269 Appendix II: Porosity Derivat ion Figures for Geophysical Log Interpreta tion ............................................................................................. 275 Appendix III: Study Area Well Location Maps ............................................. 285 Appendix IV: Porosi ty Datasets ................................................................... 288 Appendix V: Striplog s Displaying Porosity for Sunniland Formation Study Wells ................................................................................................ 374 Appendix VI: Striplogs Displaying Po rosity for CKLIZ Study Wells ......... 412

PAGE 9

v List of Tables Table 2-1: List of exploratory/discovery oil wells evaluated within Trend study area ................................................................................................... 55 Table 2-2: Formation picks for exploratory/discovery oil wells evaluated in this study .................................................................................................... 68 Table 2-3: Definition of parameters for storage equation (adapted from: NETL, 2007) ................................................................................................. 94 Table 2-4: Estimated CO2 storage capacities for the Trend oil fields during CO2-EOR ................................................................................................... 128 Table 2-5: Data used to calculate estimated storage capacity for the Sunniland Formation throughout the Trend .......................................... 130 Table 2-6: Unplugged oil/gas and waste disposal wells in south Florida ............. 135 Table 3-1: List of exploratory/discovery and waste-disposal wells evaluated in the study ............................................................................. 157 Table 3-2: Geologic unit picks for exploratory/discovery and wastedisposal wells evaluated in this study ................................................... 173 Table 3-3: Data used to calculate estimated storage capacity for the CKLIZ ....... 216 Table 3-4: Unplugged oil/gas and waste disposal wells in south Florida ............. 220 Table AIV-1: Porosity data for the Sunniland Formation ........................................ 289 Table AIV-2: Porosity data for the CKLIZ ................................................................. 318

PAGE 10

vi List of Figures Figure 1-1: Estimated storage capacities and storage times for different CO2 sequestration methods (from: Lackner, 2003) ................................. 8 Figure 1-2: Examples of simulated distribution of a CO2 plume in a heterogeneous geologic unit, with low-permeability layers throughout that inhibit the upward migration of injected-CO2 and cause the plume to spread laterally, as well................................... 14 Figure 1-3: CO2 solubility in water as a function of temperature and pressure (from: Bachu, 2008) .................................................................. 16 Figure 1-4: Simulation of CO2 migration in a saline aquifer showing the effects of capillary forces: a) 50 years after injection, when most CO2 is still mobile and driven upwards by buoyancy forces; and b) 1,000 years after injection, when buoyancydriven flow has expanded the CO2 plume and a significant amount of the injected CO2 is trapped via residual trapping or dissolution in brine (not shown) (from Metz et al., 2005) ...................... 18 Figure 1-5: Geologic formations considered for CCS (from: Metz et al., 2005) .......................................................................................................... 22 Figure 1-6: Pressure-temperature phase diagram for CO2 (from: Garcia, 2003) .......................................................................................................... 25 Figure 1-7: Calculated CO2 density as a function of pressure and temperature (from: Garcia, 2003) ............................................................ 27 Figure 1-8: Storage security over time due to physical and geochemical processes (from Benson, 2005a) ............................................................ 28 Figure 1-9: General diagram of Sleipner Project (from: Metz, et al., 2005) ............. 41 Figure 1-10: Schematic of In Salah Gas Project in Algeria (from: Metz et al., 2005) ......................................................................................................... 43 Figure 1-11: Schematic of Weyburn Project CO2 injection zone and seals (from Petroleum Technology Research Centre, 2005) ........................ 45 Figure 2-1: Map of study area depicting the Trend and the evaluated exploratory/discovery oil wells ............................................................... 54

PAGE 11

vii Figure 2-2: The Florida Platform and some of the major features of the region (adapted from: Ferber, 1985; Grinnell, 1976; Scott, 1997; Winston, 1971) .......................................................................................... 61 Figure 2-3: Stratigraphic cross-section along the length of the Trend, as denoted in Figure 2-1 ............................................................................... 66 Figure 2-4: Stratigraphic column of the SFB along the Trend (from: Pollastro et al., 2001) ................................................................................ 67 Figure 2-5: Contour map displaying the thickness of dolomite within the Sunniland Formation (from: Applegate & Pontigo, 1984) ..................... 76 Figure 2-6: Isopach contour of the Sunniland Formation along the Trend ............ 77 Figure 2-7: Isolith contour of the Sunniland Formation along the Trend ............... 78 Figure 2-8: Map displaying the active and inactive oil fields of the Trend, as well as the South Florida Shelf (revised from: Applegate & Pontigo, 1984; Ferber, 1985) .................................................................... 80 Figure 2-9: Equivalent porosity of Sunniland Formation (from: Applegate & Pontigo, 1984) ........................................................................................... 84 Figure 2-10: Bouguer anomaly map of south Florida, depicting minimum gravity anomalies (from: Applegate & Pontigo, 1984) ......................... 86 Figure 2-11: Determination of porosity from true bulk density (from: Schlumberger, 1989) ............................................................................... 90 Figure 2-12: Location map displaying cross-section transects for Trend oil fields ....................................................................................................... 103 Figure 2-13: Cross-section displaying interpolated porosity for Lehigh Park Field (Transect A-A’) ............................................................................. 104 Figure 2-14: Cross-section displaying interpolated porosity for WestSunoco Felda Field (Transect B-B’) .................................................... 105 Figure 2-15: Cross-section displaying interpolated porosity for Townsend Canal Field (Transect C-C’) .................................................................. 106 Figure 2-16: Cross-section displaying interpolated porosity for Mid-Sunoco Felda Field (Transect D-D’) ................................................................... 107 Figure 2-17: Cross-section displaying interpolated porosity for Sunoco Felda Field (Transect E-E’) ................................................................... 108 Figure 2-18: Cross-section displaying interpolated porosity for Corkscrew Field (Transect F-F’) .............................................................................. 109

PAGE 12

viii Figure 2-19: Cross-section displaying interpolated porosity for Lake Trafford Field (Transect G-G’) .............................................................. 110 Figure 2-20: Cross-section displaying interpolated porosity for Sunniland Field (Transect H-H’) ............................................................................. 111 Figure 2-21: Cross-section displaying interpolated porosity for Seminole Field (Transect I-I’) ................................................................................ 112 Figure 2-22: Cross-section displaying interpolated porosity for Bear Island Field (Transect J-J’) .............................................................................. 113 Figure 2-23: Cross-section displaying interpolated porosity for Pepper Hammock Field (Transect K-K’) ........................................................... 114 Figure 2-24: Cross-section displaying interpolated porosity for Baxter Island Field (Transect L-L’) .................................................................. 115 Figure 2-25: Cross-section displaying interpolated porosity for Raccoon Point Field (Transect M-M’) .................................................................. 116 Figure 2-26: Cross-section displaying interpolated porosity for Forty-Mile Bend Field (Transect N-N’) ................................................................... 117 Figure 2-27: Location map displaying Trend porosity cross-section transects ................................................................................................ 118 Figure 2-28: Cross-section displaying interpolated porosity for Transect OO’ ............................................................................................................ 119 Figure 2-29: Cross-section displaying interpolated porosity for Transect PP’ ............................................................................................................. 120 Figure 2-30: Cross-section displaying interpolated porosity for Transect QQ’ ............................................................................................................ 121 Figure 2-31: Cross-section displaying interpolated porosity for Transect RR’ ............................................................................................................. 122 Figure 2-32: Cross-section displaying interpolated porosity for Transect SS’ ............................................................................................................. 123 Figure 2-33: Cross-section displaying interpolated porosity for Transect TT’ ............................................................................................................. 124 Figure 2-34: Cross-section displaying interpolated porosity for Transect UU’ ............................................................................................................. 125 Figure 2-35: Cross-section displaying interpolated porosity for Transect VV’ ............................................................................................................. 126

PAGE 13

ix Figure 2-36: Average-porosity contours for the Sunniland Formation throughout the Trend ............................................................................ 127 Figure 2-37: Storage-capacity-contour map of the Trend ...................................... 134 Figure 2-38: Locations of electricity-generating power plants in relation to the Trend and the Trend oil fields ....................................................... 145 Figure 3-1: Map of the CKLIZ study area and evaluated wells ............................... 156 Figure 3-2: Isolith map of the top of the CKLIZ ....................................................... 160 Figure 3-3: Isopach map of the CKLIZ...................................................................... 161 Figure 3-4: Map displaying the location of transects A-A’ through I-I’ ................. 162 Figure 3-5: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect A-A’ ............................................. 163 Figure 3-6: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect B-B’ ............................................. 164 Figure 3-7: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect C-C’ ............................................. 165 Figure 3-8: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect D-D’ ............................................. 166 Figure 3-9: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect E-E’ ............................................. 167 Figure 3-10: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect F-F’ ............................................ 168 Figure 3-11: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect G-G’ ........................................... 169 Figure 3-12: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect H-H’ ........................................... 170 Figure 3-13: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect I-I’ .............................................. 171 Figure 3-14: Stratigraphic cross-section displaying the Lawson Formation for Transect A-A’ ................................................................................... 178 Figure 3-15: Stratigraphic cross-section displaying the Lawson Formation for Transect B-B’ ................................................................................... 179 Figure 3-16: Stratigraphic cross-section displaying the Lawson Formation for Transect C-C’ ................................................................................... 180

PAGE 14

x Figure 3-17: Stratigraphic cross-section displaying the Lawson Formation for Transect D-D’ ................................................................................... 181 Figure 3-18: Stratigraphic cross-section displaying the Lawson Formation for Transect E-E’ ................................................................................... 182 Figure 3-19: Stratigraphic cross-section displaying the Lawson Formation for Transect F-F’ .................................................................................... 183 Figure 3-20: Stratigraphic cross-section displaying the Lawson Formation for Transect G-G’ ................................................................................... 184 Figure 3-21: Stratigraphic cross-section displaying the Lawson Formation for Transect H-H’ ................................................................................... 185 Figure 3-22: Stratigraphic cross-section displaying the Lawson Formation for Transect I-I’ ...................................................................................... 186 Figure 3-23: Isolith map of the top of the lower member of the Lawson Formation ............................................................................................... 187 Figure 3-24: Isolith map of the top of the upper member of the Lawson Formation ............................................................................................... 189 Figure 3-25: Geothermal gradient used to extrapolate temperature values for given depths within the CKLIZ ....................................................... 199 Figure 3-26: Cross-section displaying interpolated porosity for Transect AA1 ............................................................................................................ 202 Figure 3-27: Cross-section displaying interpolated porosity for Transect A1-A’ ....................................................................................................... 203 Figure 3-28: Cross-section displaying interpolated porosity for Transect BB1 ............................................................................................................ 204 Figure 3-29: Cross-section displaying interpolated porosity for Transect B1-B’ ....................................................................................................... 205 Figure 3-30: Cross-section displaying interpolated porosity for Transect CC1 ............................................................................................................ 206 Figure 3-31: Cross-section displaying interpolated porosity for Transect C1-C’ ....................................................................................................... 207 Figure 3-32: Cross-section displaying interpolated porosity for Transect DD’ ............................................................................................................. 208 Figure 3-33: Cross-section displaying interpolated porosity for Transect EE’ ............................................................................................................. 209

PAGE 15

xi Figure 3-34: Cross-section displaying interpolated porosity for Transect FF’ ............................................................................................................. 210 Figure 3-35: Cross-section displaying interpolated porosity for Transect GG’ ............................................................................................................ 211 Figure 3-36: Cross-section displaying interpolated porosity for Transect HH’ ............................................................................................................. 212 Figure 3-37: Cross-section displaying interpolated porosity for Transect I-I’ ..... 213 Figure 3-38: Average interpolated-porosity contours for the CKLIZ throughout the study area .................................................................... 214 Figure 3-39: Storage-capacity contour map for the CKLIZ throughout the study area .............................................................................................. 218 Figure 3-40: Average interpolated-temperature contours for CKLIZ within the study area ........................................................................................ 219 Figure 3-41: Major electricity-generating power plants within and in close proximity to the CKLIZ study area ....................................................... 230 Figure 4-1: Regional structure of Rebecca Shoal reef (adapted from: Winston, 1994) ........................................................................................ 236 Figure 4-2: Generalized stratigraphic column for the Rebecca Shoal Dolomite (adapted from: Winston, 1994; Winston, 1995) .................. 238 Figure 4-3: Extent of Sunniland-Dollar Bay TPS (adapted from: Pollastro et al., 2001) .................................................................................................. 243 Figure 4-4: Extent of Pre-Punta Gorda TPS (adapted from: Pollastro et al., 2001) ........................................................................................................ 246 Figure 4-5: Generalized stratigraphic column displaying oil-producing units of western panhandle Florida (from: Lloyd, 1991) ..................... 250 Figure AII-1: Corrections to obtain true bulk density from log density (from: Schlumberger, 2009) ................................................................ 276 Figure AII-2: Determination of porosity from true bulk density (from: Schlumberger, 2009) ........................................................................... 277 Figure AII-3: Determination of porosity using interval transit time (from: Schlumberger, 2009) ........................................................................... 278 Figure AII-4: Sonic-density cross-plot used to determine lithology and porosity (from: Schlumberger, 2009) ................................................. 279

PAGE 16

xii Figure AII-5: Sonic-neutron cross-plot for lithology and porosity determination (from: Schlumberger, 2009) ....................................... 280 Figure AII-6: Sonic-neutron cross-plot for lithology and porosity determination (from: Halliburton, 2008) ............................................ 281 Figure AII-7: True porosity deter mination from apparent porosity for limestone matrix (from: Schlumberger, 2009) .................................. 282 Figure AII-8: CNL-FDC cross-plot for lithology and porosity determination (from: Schlumberger, 2009) ................................................................ 283 Figure AII-9: CNL-FDC cross-plot for lithology and porosity determination (from: Halliburton, 2008) ..................................................................... 284 Figure AIII-1: Location map for Sunniland Formation study wells ........................ 286 Figure AIII-2: Location map for CKLIZ study wells ................................................. 287

PAGE 17

xiii Abstract Concerns about elevated atmospheric carbon dioxide (CO2) and the effect on global climate have created proposals for the reduction of carbon emissions from large stationary sources, such as power plants. Carbon dioxide capture and sequestration (CCS) in deep geologic units is being considered by Florida electric-utilities. Carbon dioxide-enhanced oil recovery (CO2-EOR) is a form of CCS that could offset some of the costs associated with geologic sequestration. Two potential reservoirs for geologic sequestration were evaluated in south-central and southern Florida: the Paleocene Cedar Keys Formation/Upper Cretaceous Lawson Formation (CKLIZ) and the Lower Cretaceous Sunniland Formation along the Sunniland Trend (Trend). The Trend is a slightly arcuate band in southwest Florida that is about 233 kilometers long and 32 kilometers wide, and contains oil plays within the Sunniland Formation at depths starting around 3,414 meters below land surface, which are confined to mound-like structures made of coarse fossil fragments, mostly rudistids. The Trend commercial oil fields of the South Florida Basin have an average porosity of 16% within the oil-producing Sunniland Formation, and collectively have an estimated storage capacity of around 26 million tons of CO2. The Sunniland Formation throughout the entire Trend has an average porosity of 14% and an estimated storage capacity of about 1.2 billion tons of CO2 (BtCO2). The CKLIZ has an average porosity of 23% and an estimated storage capacity of approximately 79 BtCO2. Porous intervals within the CKLIZ and Sunniland Formation are laterally homogeneous, and low-permeability layers throughout the units provide

PAGE 18

xiv significant vertical heterogeneity. The CKLIZ and Sunniland Formation are considered potentially suitable for CCS operations because of their geographic locations, appropriate depths, high porosities, estimated storage capacities, and potentiallyeffective seals. The Trend oil fields are suitable for CO2-EOR in the Sunniland Formation due to appropriate injected-CO2 density, uniform intergranular porosity, suitable API density of formation-oil, sufficient production zones, and adequate remaining oil-in-place following secondary recovery. In addition to these in-depth investigations of the CKLIZ and Sunniland Formation, a more-cursory assessment of deep geologic units throughout the state of Florida, which includes rocks of Paleocene and Upper Cretaceous age through to rocks of Ordovician age, shows additional units in Florida that may be suitable for CO2-EOR and CCS operations. Furthermore, this study shows that deep geologic units throughout Florida potentially have the capacity to sequester billions of tons of CO2 for hundreds of fossil-fuel-fired power plants. Geologic sequestration has not yet been conducted in Florida, and its implementation could prove useful to Florida utility companies, as well as to other energy-utilities in the southeastern United States.

PAGE 19

1 Chapter 1: Carbon Dioxide Capture and Sequestration in Deep Geologic Units 1.1 Introduction Carbon dioxide (CO2) is the second biggest contributor to greenhouse gases (GHGs), with an average contribution of 9-26 percent (%) of the total amount of GHGs in the atmosphere (Kiehl & Trenberth, 1997). The atmospheric concentration of CO2 has risen from the pre-industrial level of 280 parts per million (ppm), mostly attributed to weathering of continental rocks and to photosynthesis, to the current, post-industrial level of over 370 ppm, with the increase mostly attributed to the combustion of fossil fuels for energy and heat production, as well as to deforestation (Lawrence Berkeley National Laboratory, 2007). Fossil fuels provide ~85% of the energy used worldwide, and the combustion of this resource for energy production is responsible for ~75% of anthropogenic CO2 emissions (Haszeldine, 2009; Metz et al., 2005). The International Energy Agency (IEA) projects that CO2 emissions resulting from energy production will increase by 130% by 2050 in the absence of new policies and constraints regarding fossil fuel usage and associated CO2 emissions in the energy sector (IEA, 2009). In May of 2009, H.R. 2454, also known as the American Clean Energy and Security Act (ACESA) of 2009, was introduced, and subsequently passed the House of Representatives in June of 2009. The ACESA includes, among other things, a cap-andtrade global warming reduction plan designed to reduce GHG emissions annually, so that GHG emissions from capped sources are reduced to 97% of 2005 levels by 2012,

PAGE 20

2 83% by 2020, 58% by 2030, and 17% by 2050. Under Subtitle B – Carbon Capture and Sequestration of the ACESA of 2009, the Clean Air Act (CAA) and Safe Drinking Water Act (SDWA) are amended to create a role for GS and establish a permitting and regulatory system for its implementation on a large, commercial scale. In addition to providing funding for the research and development of CCS in the US, the ACESA also provides incentives to support the deployment of CCS in the electric-power and industrial industries. The ACESA also amends the CAA to include that any new coalfired power plants permitted in 2020 or thereafter be required to adhere to specific performance standards, and plants permitted from 2009-2020 be required to meet the initial standards after certain technology criteria were met, but no later than 2025. The latest action on the ACESA occurred in July 2009, when the bill was passed to the Senate, and the act continues to await approval/disapproval. Nevertheless, although the ACESA of 2009 is stagnant and remains to be enacted, the Federal government’s interest in CO2 emissions persists and is evident through actions by the United States (US) Environmental Protection Agency (EPA), which continues to pursue new, and enforce current, limitations and restrictions to GHG emissions through the CAA (Broder, 2010). The CAA was first introduced in 1970, and has been designed and amended to define the EPA’s responsibilities in protecting and improving air quality, as well as the stratospheric ozone layer, for the US. Through the CAA, the EPA has been able to implement programs to reduce GHG and toxic, industrial emissions, such as certain energy-saving vehicle and alternativefuel programs, and monitoring networks for industrial toxic-air-pollution, and has recently fined entities that have not followed established GHG-emission restrictions, such as BP (EPA, 2010a; The SpokesmanReview, 2010).

PAGE 21

3 Locally, in July of 2007, Florida’s Gove rnor, Charlie Crist, issued Executive Order (EO) 07-127, which requires the reduction of CO2 emissions in Florida as early as 2017. Under this EO, by 2017, CO2 emissions must be reduced to 2000 CO2 levels, to 1990 CO2-emission levels by 2025, and be no more than 80% of 1990 CO2-emission levels by 2050. As the bulk of Florida’s electric-power generation comes from the combustion of fossil fuels, Florida’s electric-power utilities will bear the largest burden in meeting the reductions required by EO 07-127 and any Federal cap-and-trade or carbon-tax program. In order to reduce the dependence on fossil fuels and the associated CO2 emissions, a number of alternative energy sources are being considered for use in Florida, and some are slowly being im plemented; however, the ability of these alternative energy sources to fully replac e fossil-fuel-fired power plants cannot be achieved for several more decades. Specifically, due to factors such as time involved in nuclear-power plant design and construction, strict regulatory requirements, community opposition, and associated costs, lead times for incorporating nuclear power on-line can be quite lengthy. Solar-power generation is becoming increasingly popular in Florida, and electric-power utility companies are either purchasing energy from large-scale solarenergy facilities, or are building solar-energy facilities of their own. For instance, Tampa Electric Company (TECO) recently signed a 25-year contract to purchase energy from one of the largest solar-energy facilities in the country, located in Polk County, to be completed in 2011, which will generat e approximately 50,000 megawatt hours of electricity per year and provide service to more than 3,400 homes, thereby preventing the release of 1.45 million tons of CO2 (MtCO2) during a 25-year period (Ray, 2009). However, due to issues involving solar-energy storability, grid incorporation, and associated costs, solar-energy technology is not yet sufficiently developed to operate on

PAGE 22

4 a large scale and be effectively incorporated into a ‘smart’ grid system; it could take a number of decades before such a goal is achi eved. Similarly, Florida electric-power utility companies are implementing the use of wind-energy; however, due to issues such as low wind-energy density, offline storage, grid incorporation, and associated costs, the technology cannot be economically implemented on a large scale and be incorporated into a ‘smart’ grid system. There are various options for mitigati ng climate change resulting from GHG contributions, including improving energy efficiency, switching to less carbon-emitting fossil fuels, and increasing the use of lowand near-zero-carbon energy sources; however, until alternative energy sources are improved and able to sustain current energy demands and the use of fossil fuels for energy supply is diminished, CO2 capture and sequestration (CCS) has been proposed as a feasible technique to capture CO2 emissions from fossil-fuel fired power plants on a massive scale and subsequently reduce anthropogenic GHG contributions. The use of CCS technologies has the potential of lowering future world CO2 emissions from energy use by 20%, and is considered an interim option for the reduction of CO2 emissions to provide for a 50-year transition away from fossil fuels (Haszeldine, 2009). 1.1.1 On-Going Carbon Dioxide Sequestration Research 1.1.1.1 Global Research Numerous methods for sequestering CO2 have been proposed and are currently being investigated around the world. These methods include terrestrial sequestration (TS), oceanic sequestration (OS), mineral sequestration (MS), industrial utilization (IU), and geologic sequestration (GS).

PAGE 23

5 Terrestrial Sequestration Terrestrial sequestration involves the sequestering of CO2 via photosynthetic fixation in plants and soils. Storage capacities for TS are small, and are particularly limited by population growth and agricultura l land use, which prevents the optimum implementation of this sequestration technique by reforestation and changes to land and soil management practices (Bachu, 2008). Oceanic Sequestration Oceanic sequestration involves deep oceanic-injection of CO2 that will either dissolve, form hydrates, or form plumes heav ier than ocean water, thereby sinking to the ocean bottom (Bachu, 2008). This process has always occurred naturally, and the idea behind OS is to increase its rate of occurrenc e. Oceanic sequestration has the ability to store enormous amounts of CO2 (i.e., several MtCO2 per year); however, this sequestration technology has numerous issues that prevent its implementation at this time, including poorly understood physical and chemical processes, storage efficiency, transportation and cost, technical feasibility, and environmental impacts (Bachu, 2008). Several bench-scale studies involving OS have been conducted in the laboratory; however, no scientific studies have been conducted in the field (Lackner, 2003). Laboratory studies have shown that marine organisms that live near the surface of ocean waters would be adversely impacted by OS within several months of its commencement, due to a decrease in ocean-water pH and to conditions such as hypercapnia, a form of metabolic suppression from too much CO2 in the bloodstream, and that the OS process could greatly affect the productivity of marine ecosystems (Bachu, 2008; Barry et al., 2003; Lackner, 2003, Metz, et al., 2005). Therefore, further studies must be conducted before such a CCS technique could ever be implemented with little to no adverse impacts. In addition, legal, political, and international limitations

PAGE 24

6 would almost certainly arise due to ocean circulation and currents. Mineral Sequestration Mineral sequestration involves storing CO2 in solid, inorganic carbonate minerals, much like the natural carbonate-mineralization process. The MS technique is not widely accepted due to factors such as: its dependence upon specific minerals, such as olivine and serpentine (which will subsequently form magnesium-carbonates upon sequestration); its requirement for large-scale mining and subsequent adverse environmental effects; energy requirements fo r heating, and processes such as mineral crushing and milling; and its need for transportation and storage of the newly created inorganic carbonate minerals (Bachu, 2008; Gerdemann et al., 2003). Industrial Utilization Industrial utilization of CO2 involves its storage in the “carbon chemical pool” and its use in biological and chemical processes as a reactant, or feedstock for carboncontaining chemicals. The IU of CO2 ‘stores’ approximately 120 MtCO2 per year, and examples include its use in urea, which is subsequently used in the manufacturing of fertilizer, and menthanol production, or in more direct applications such as refrigeration (via dry ice), food-packaging, welding, ca rbonated-beverages, fire extinguishers, and in the horticulture industry (Metz et al., 2005). The IU of CO2 cannot have a significant impact on CO2 emissions and consequent climate change mitigation unless the quantity and storage time of CO2 are significant; however, long-term storage of CO2 is about 1 MtCO2 per year at this time for industrial processes before it is re-emitted into the atmosphere. The short storage-time-duration of the IU of CO2 in conjunction with the fact that only 120 MtCO2 are stored per year indicate that this means of CO2 sequestration has a minimal effect on net CO2 emissions. In addition, some types of

PAGE 25

7 industrial uses of CO2 can result in an increase, rather than a decrease, in net CO2 emissions (Metz et al., 2005). Geologic Sequestration Geologic sequestration involves the injection of CO2 deep into the subsurface, typically into sedimentary basins, and into geologic media that have suitable characteristics required for storing CO2 for millennia. Geologic sequestration has already been shown to be a successful option for CCS, and has been shown to have enough storage capacity worldwide to have a significant impact on GHG emissions; therefore, it is currently the most widely accepted CCS technique. Each of these approaches offers unique advantages to identifying reservoirs for sequestered carbon, which is important in offsetting the transition to more carbon-neutral power and transportation; however, of these approaches, only OS and GS have the ability to store large amounts of CO2 (i.e. MtCO2 per year) for millennia, generated annually by fossil-fuel-fired power plants, and thus have a significant effect on GHG emissions and associated climate change, as shown in Figure 1-1. Considering the many issues still associated with OS and the inability to implement such a technique at this time, GS is currently the most prominent sequestration technique for large-scale storage of CO2. With the continued use of fossil fuels fo r electric-power generation over the next several decades and the obligation to meet the mandates of EO 07-127, as well as any federal cap-and-trade, carbon-tax, or newly proposed CO2-emission regulations that may be enacted, CCS in deep geologic units will almost certainly be required for Florida electric-power utility companies.

PAGE 26

8 Figure 1-1: Estimated storage capacities and storage times for different CO2 sequestration methods (from: Lackner, 2003).

PAGE 27

9 1.1.1.2 Local Research Currently, there are four major types of CCS being investigated by a multiFlorida-university team known as the Flori da Energy Systems Cons ortium. These types of CCS include GS, biomass-based sequestration, biochemical sequestration, and chemical sequestration. Geological sequestration by CO2 injection into saline carbonate aquifers is being developed and tested by the University of South Florida in collaboration with other schools and the Los Alamos National Laboratory. Biomass-based, or biochemical, sequestration is a type of TS that is being explored at the University of Florida (UF) using trees and other Florida crops, selected for high-lignin content in their root systems, to increase the levels of CO2 sequestered above and beneath the soil surface. Exploring the use of Florida land as a carbon sink has widespread support of the Florida agricultural industry, and research in this area is currently being funded by Arbogen (Summerville, South Carolina), a world leader in the development of highly productive varieties of trees for paper, construction, fuel, and other commercial uses. Biochemical sequestration is a novel approach built upon the known stability of lignin as a form of carbon storage. Innovative new research at UF focuses on purified lignin, a by-product of renewable fuel production, as a carbon sink. Purified lignin is further modified and polymerized with carbohydrate-based fermentation products to produce even more inert forms of carbon. Chemical sequestration by the reduction of humanrelated and natural methane sources and CO2 to elemental carbon has been achieved by the Florida Solar Energy Center using a novel catalytic process that includes small amounts of solar-derived hydrogen. This research is being done in collaboration with Environmental Energy Systems, Inc. of Hial eah, Florida. Both the resulting elemental carbon and lignin-based polymers can be stored and transported at ambient

PAGE 28

10 temperatures and pressures, and stored in geologic units or used as possible commercial products. 1.2 Background The subsurface has been storing CO2 naturally for millions of years in the earth’s upper crust, in solid form as a component of carbonate minerals, as a liquid dissolved in formation fluid, or in a gaseous, fluid-like supercritical form. The anthropogenic injection of CO2 originated in a Texas, US oil field in the 1970s during a tertiary oil recovery process called carbon dioxi de-enhanced oil recovery (CO2-EOR) (Metz et al., 2005), and has been implemented successfully worldwide ever since. The storage of anthropogenic CO2 in geologic units was considered during this time, but was never extensively studied and accepted as a possible solution to GHG emissions until the 1990s, when the concept was strengthened by the release of several credible studies (Metz, et al., 2005). The Norway-company, Statoil, began the Sleipner Project in the North Sea in 1996, which was the first large-scale CCS project in the world. Several large-scale CCS operations have commenced since the Sleipner Project began, and intensive monitoring has shown that all have been operating without any significant signs of leakage (Metz et al., 2005). Leaders at the 2009 G-8 Summit called for at least 20 CCS projects in geologic units worldwide by 2010, and in July of 2009, the US Secretary of Energy announced a new US-China Clean Energy Research Center that will house joint research in numerous ‘clean energy’ ventures, including CCS (G8 Factsheet, 2009; Chu, 2009). The US Department of Energy (DOE) is curre ntly supporting preliminary research and development (R&D) projects, as well as sma lland large-scale pilot projects, with the aspiration of establishing widespread commercial deployment of CCS throughout the country by 2017 to 2020.

PAGE 29

11 The US EPA controls and regulates the construction, operation, permitting, and closure of wells that inject any fluid underground for storage or waste disposal via the Underground Injection Control (UIC) Program and the SDWA. Ultimately, the UIC Program and SDWA are meant to protect the current and future conditions of underground sources of drinking water (USDWs). Currently, there are five different types of UIC wells: Class I wells are used for industrial and municipal waste disposal hundreds to thousands of meters below the lowermost USDW; Class II wells are used by the oil and gas industries for enhanced oil and gas production via the injection of fluids, namely brine, into reservoirs; Class III wells are used by the mining industry to inject fluids meant to dissolve and extract certain minerals from geologic units; Class IV wells, which were banned from waste-disposal operation in 1984 by the EPA, are shallow wells that once injected radioactive or hazardous waste into or above a geologic unit that contains a USDW, but are currently only used as part of groundwater-cleanup actions; and Class V wells are shallow wells used to inject non-hazardous fluids into or above geologic units containing USDWs (EPA, 2010b). Currently, CO2-EOR projects in the US are regulated by the EPA under the SDWA as Class II UIC wells. All on-going GS experimental pilot projects are regulated under the SDWA as Class V UIC wells, and must adhere to the provisions outlined in the EPA’s Class V Experimental Technology Well Guidance for Pilot Geologic Sequestration Projects, released in March of 2007; howev er, the EPA is in the process of enacting a new set of more-stringent regulations specifically for GS wells, which will soon be classified as Class VI UIC wells. Once the new Class VI UIC well regulations are released, CO2-EOR wells will retain the Class II UIC well classification; however, if they are converted to strictly GS wells, they will be re-classified as Class VI UIC wells.

PAGE 30

12 1.3 Processes in Geologic Sequestration The use of CCS in deep geologic units by Florida electric-power utility companies would involve several steps: 1) capturing pure or nearly pure CO2 from the flue gas or pre-combustion syngas at fossil-fuel-fired power plants, 2) compressing the CO2 to ~100 atmospheres, or 74 bar, to form a supercrit ical (or dense, fluid-like) phase, 3) transporting the liquid CO2 to an identified injection site, and 4) injecting the liquid CO2 into the appropriate geologic unit via a vertical or horizontal injection well. When CO2 is injected into the storage reservoir, it forms a plume around the injection well that displaces the formation fluid (both water and oil) vertically and horizontally within the injection sphere, and triggers the onset of various geochemical and physical processes that determine the trapping or mobility of CO2. During CO2 injection, the pressure near the well increases, which displaces formation fluid and allows for CO2 to occupy the pore spaces within the rock material. Injection rates will vary with each storage reservoir, and will directly affect the amount and spatial distribution of pressure buildup during injection, which is further dependent upon the permeability and thickness of the storage reservoir, the presence or absence of permeability barriers within the storage reservoir, and the geometry of the regional groundwater flow system (Metz et al., 2005). Once CO2 is injected, the primary flow and transport mechanisms that determine the migration and expansion of the CO2 plume are: fluid flow promoted by pressure differences created by the injection of CO2; fluid flow created by natural hydraulic gradients; buoyancy effects as a result of differences in density between the CO2 and the formation fluid; diffusion;

PAGE 31

13 dispersion and fingering due to heterogeneity within the storage reservoir and differences in mobility between the CO2 and formation fluid; dissolution of CO2 into formation fluid; mineralization; pore space trapping; and adsorption of CO2 onto organic material (Metz et al., 2005). Mobility Contrast Because the viscosity of CO2 in its supercritical phase is significantly less than water and oil, migration of the CO2 plume is predominantly controlled by the mobility contrast between CO2 and the formation fluid. The mobility of CO2 is comparatively high; therefore, only a portion of the formation water and/or oil will be displaced following injection, resulting in an average saturation of CO2 ranging from 30% to 60% (Metz et al., 2005). In addition, viscous fingering can occur due to heterogeneity and anisotropy, which may cause the CO2 to bypass much of the pore space within the storage reservoir and subsequently migrate elsewhere, probably into the overlying strata. Buoyancy The vertical migration of the CO2 plume due to the effects of buoyancy is dependent upon the difference in density between the CO2 and formation fluids. In saline aquifers, a large density contrast exists between the saline formation water and CO2; therefore, a strong buoyancy force drives the plume upward. In oil reservoirs, the density differences are not as large; therefore, the buoyancy effect is not as significant, especially where CO2 is miscible with oil (Metz et al., 2005). Heterogeneity, specifically low-permeability layers, within the storage reservoir affects the shape and vertical migration of the buoyant CO2 plume (Figure 1-2), and can significantly decrease the rate at which the plume migrates upward by forci ng the plume to expand laterally, as well.

PAGE 32

14 Figure 1-2: Examples of si mulated distribution of a CO2 plume in a heterogeneous geologic unit, with lowpermeability layers throughout that inhibi t the upward migration of injected-CO2 and cause the plume to spread laterally, as well. (a) Facies grid-model for a he terogeneous unit. The location of the injection well is indicated by the thick, vertical line in the grid. (b) The CO2-plume distribution after two years of injection, showing the influence (i.e., lateral expansion of the CO2 plume) of the low-permeability layers (from: Metz et al., 2005).

PAGE 33

15 Dissolution For storage reservoirs containing flow systems, dissolution of CO2 into the formation fluid (i.e., ‘solubility trapping’) begins to occur as the plume migrates following its injection. Reservoir-scale models have shown that in slowly flowing systems, CO2 dissolution is significant (up to 30%) in relatively short periods of time (i.e., tens of years), whereas basin-scale models have shown complete dissolution of the CO2 plume within centuries (Metz et al., 2005). For storage reservoirs with no flow systems, reduced contact with formation water causes much slower dissolution of CO2. The solubility of CO2 in water increases with increasing pressure, decreasing temperature, and decreasing salinity (Figure 1-3; Bachu, 2000; Chang et al., 1998). In deep sedimentary basins with low-permeability and high-salinity geologic units, flow velocities for regional groundwater flow are comparatively low (i.e., millimeters to centimeters per year) (Bachu, 2000); therefore, the migration of CO2 in dissolution is a much slower process than the migration of separate-phase CO2. Formation waters saturated with CO2 are slightly denser than unsaturated waters (by about 1-2%); therefore, if certain conditions allowing for the onset of free convection exist, the negative buoyancy of the CO2-saturated water will drive the water to the bottom of the storage reservoir aquifer and eventually it will migrate down-dip in the aquifer (Bachu and Adams, 2003; Bachu, 2008; Metz et al., 2005). Furthermore, in storage reservoirs where free convection exists due to high vertical permeability, the replacement of the heavier, CO2-saturated water with lighter unsaturated water produces faster rates of CO2 dissolution (Metz et al., 2005). Capillary Forces Capillary forces can immobilize CO2 as the plume migrates through the storage reservoir, storing the CO2 in pore spaces within the geologic media in a process known

PAGE 34

16 Figure 1-3: CO2 solubility in water as a function of temperature and pressure (from: Bachu, 2008).

PAGE 35

17 as ‘residual trapping’. Residual trapping can play a significant role in the sequestering of CO2, and studies have shown that this trapping mechanism can store nearly all of the injected CO2 when the extent of trapping is high, which is unitand lithologic-specific, and the injection occurs at the bottom of a thick storage reservoir (Metz et al., 2005). As shown in Figure 1-4, simulations for saline aquifers show that 50 years after CO2 injection, a majority of the CO2 plume is still mobile and driven upward by buoyancy forces; however, after 1,000 years, the flow driven by buoyancy has expanded the volume affected by CO2, and a majority of the CO2 is stored via residual CO2 saturation or by dissolution into the formation water (Metz et al., 2005). Although these conditions are storage-reservoir-specific, studies have shown that for most geologic storage zones, residual trapping can account for 15-25% of the injected CO2 (Doughty and Pruess, 2004). Each of the processes involved with CCS have been operating successfully globally and within the US for many years. The capture of CO2 has been an on-going commercial process for high concentration, high-pressure CO2 sources, and the transfer of CO2 has been successfully conducted for appr oximately 30 years, as the US has several thousand miles of pipeline that transport CO2 from industrial sites to injection sites nationwide (IEA, 2009). Globally, GS has been safely conducted on a large scale for over a decade. The success of CCS in geologic units is governed by: geographical relationship – The distance between the emission source (i.e., Florida power plant) and the subsurface storage reservoir and injection site is important because it influences the method by which CO2 will be transferred to the injection well, as well as the cost of transportation. In some scenarios, an injection well can be installed at an emission-source site; thereby only requiring on-site storage and injection equipment and alleviating the need for transportation of CO2 and associated costs. However, more commonly the

PAGE 36

18 Figure 1-4: Simulation of CO2 migration in a saline aquifer showing the effe cts of capillary forces: a) 50 years after injection, when most CO2 is still mobile and driven upwards by buoyancy forces; and b) 1,000 years after injection, when buoyancy-driven flow has expanded the CO2 plume and a significant amount of the injected CO2 is trapped via residual trapping or dissolution in brine (not shown) (from Metz et al., 2005).

PAGE 37

19emission source is not on site, and CO2 must be transported to the injection well. Means of transportation and distance between the injection site and emission source greatly affect the economic feasibility of a CCS project, as greater distances and more complex means of transportation can result in increased costs. infrastructure and transportation – Emission sources must have the infrastructure (i.e., retrofitted power plant or Integrated Gasification Combined Cycle [IGCC] plant) to properly capture and compress CO2 prior to transport. The means of transportation of CO2 to the injection site(s) (i.e., via road tanker, ship, or pipeline) must be suitable both topographically and economically. cost – The cost effectiveness and technical feasibility must be more competitive and suitable for a given emission source compared to other options for CO2emission reductions. In addition, adequate funding must be made available, typically through governmental, industria l, and/or institutional entities. geology – An ample assessment must be made of the geologic unit designated as the CO2 storage reservoir, including porosity and permeability of the unit, effective seal(s), storage capacity, and geologic stability of the environment. Environmental concerns, such as leakage, must also be addressed appropriately. storage capacity and time – The volume of CO2 that may be stored (i.e., on the order of several MtCO2 per year) should be such that a relatively significant impact will be made on CO2 emissions for a given source. In suitable storage reservoirs, storage time for geological units increases as post-injection time increases due to physical and geochemical process that create CO2 trapping, such as structural and stratigraphic trapping, mineral trapping, residual-phase

PAGE 38

20 trapping, and solubility trapping (Metz et al., 2005). These trapping mechanisms can store CO2 for millennia, provided that stabili ty of the geologic environment is not disrupted. injection-well operation – It is imperative that proper design, installation, operation, and maintenance of an injection well be practiced in order to ensure that the correct injection rate is used to avoid overpressurization, and to avoid potential CO2 leakage during injection-well operation. monitoring – Intensive monitoring during injection-well operation is crucial to the success and safety of a CCS project. As CO2 needs to be sequestered for millennia, leakage rates of less than 0.1% per year are necessary (Metz et al., 2005). Monitoring should be conducted to ensure safety to the public, environment, and to on-site workers; to identify and observe the injected-CO2plume in order to modify its migration and potential impacts to the local ecology and groundwater; and to estimate the impact and effectiveness of the CCS project on GHG emissions (Benson, 2005a). Properties observed during the monitoring process should include wellhead formation pressures; CO2-injection rates; leakage from the injection well or nearby wells; leakage from the storage reservoir; and surface seepage from the ground and/or from nearby abandoned wells (Benson, 2005a). Different methods of geophysical monitoring can be conducted, including seismic, electrical, and electromagnetic geophysics; gravity monitoring; tilt measurements; airborneor satellite-based land surface deformation; and micro-seismicity. 1.4 Storage Reservoir Selection Site characterization involves geological, geophysical, and geomechanical assessments to determine the suitability and safety of a potential GS site. Choosing the

PAGE 39

21 appropriate geologic unit, using the criteria discussed in Section 1.4.1 through Section 1.4.8 that follow, is probably the most critical component to a successful CCS project. Typically, sedimentary basins are considered the most suitable setting for CCS storage, and include existing and depleted oil fields, depleted gas fields, deep unmineable coal seams, and deep saline aquifers; however, caverns/cavities, basalts, and organic-rich shales are also potential options for storage (Figure 1-5; Metz et al., 2005). Existing and depleted oil fields, as well as saline carbonate aquifers, are the sequestration reservoirs being considered for CCS operations in Florida. 1.4.1 Storage Capacity The geologic unit chosen for CO2 storage must have sufficient porosity, permeability, and continuity, and be of significant thickness and extent to provide the appropriate storage capacity for CCS. The storage capacity must be large enough to have a significant effect on CO2 emissions and be a cost-effective solution and technology. As mentioned earlier, existing/depleted oil fields and saline aquifers have been identified as potential storage reservoirs in Florida. 1.4.1.1 Existing and Depleted Oil Fields The sequestration of CO2 in existing and depleted oil reservoirs can be conducted via CO2-EOR operations or, once the oil reservoir is depleted, strictly CCS operations. Global CO2 storage capacities for oil reservoirs are estimated to be 126 to 400 gigatons of CO2 (GtCO2), including the potential in undiscovered oil reserves, while CO2 storage capacities via CO2-EOR operations alone are estimated to be approximately 61 to 123 GtCO2, although modern CO2-EOR technologies are unable to store CO2 at the full capacity of a given field (Metz et al., 2005). The storage of CO2 is assumed to occur in the pore spaces that previously contained oil.

PAGE 40

22 Figure 1-5: Geologic formations consid ered for CCS (from: Metz et al., 2005).

PAGE 41

231.4.1.2 Deep Saline Aquifers A deep saline aquifer is, “a deep underground rock formation composed of permeable materials and containing highly saline fluids” (Metz et al., 2005). These rock units are abundant worldwide, and can occur in relatively massive thicknesses and lateral extents. Nonetheless, estimating storage capacities for deep saline aquifers can be challenging for the following reasons: there are various ways in which CO2 can be stored (i.e., various trapping mechanisms); each trapping mechanism functions on a unique time-scale and can occur simultaneously with another, so the estimation of storage capacity is affected by the time-frame of each trapping mechanism; the interactions between trapping mechanisms are complex, evolve over time, and are highly dependent upon local conditions; various methods for calculating storage capacity exist, and each method uses different variables which do not allow for comparison; and in many cases, there is limited geologic and geophysical data available, unlike that available for oil and gas reservoirs (Hassanzadeh et al., 2009; Metz et al., 2005). According to the Intergovernmental P anel on Climate Change (IPCC) (2005), the global estimate of CO2 storage capacity in deep saline aquifers is at least 1,000 GtCO2; however, in many cases, limited data are available to accurately calculate storage capacity (e.g., unit-specific porosity values and total thickness and lateral extent of each deep saline aquifer) on a large scale, and so this estimate is considered to be conservative.

PAGE 42

24 Unlike CO2 sequestration in oil or gas reservoirs during CO2-EOR operations, where CO2 storage is essentially limited to the pore spaces within the producing-horizon of a petroleum reservoir, CO2 storage in deep saline aquifers can be open to the pore spaces throughout an entire geologic unit. 1.4.2 Seal Characterization The density of supercritical CO2 is less than the density of saline fluids that occur in sedimentary basins identified as potential sites for GS; therefore, following injection into a geologic unit, due to the effects of buoyancy, CO2 will be driven vertically. An extensive cover of low-permeability rock must overlie the CO2 storage reservoir and provide an effective ‘seal’ to the vertical migration of injected-CO2. Additionally, an effective seal should also slow the vertical migration of formation brines as a result of the increase in fluid-pressure created by CO2 injection, which will propagate fairly rapidly throughout the formation fluid. The migration of increased pressure into units that overlie the CO2-injection reservoir could cause the migration of saline waters into potable aquifers, or USDWs. 1.4.3 Structural Properties Another important feature of a sequestration reservoir is the structural setting and associated features of the rock units that surround the reservoir geologic unit. Specifically, no faults or fractures should exist in the CO2-storage-reservoir seals, unless such faults and fractures are adequately sealed. 1.4.4 Depth of Storage Reservoir A CO2 sequestration reservoir should be located at a depth which has hydrostatic pressures and temperatures exceeding the critical point for CO2, as defined in Figure 16. Specifically, storage-reservoir pressure should be greater than approximately 74 bar

PAGE 43

25 Figure 1-6: Pressure-temperature phase diagram for CO2 (from: Garcia, 2003).

PAGE 44

26and temperatures should be greater than about 31 degrees ( ) Celsius (C) in order for CO2 to remain in supercritical phase (Garcia, 2003; Metz et al., 2005). For relatively cold sedimentary basins su ch as Florida, storage reservoirs should be at least 914 meters (m) (3,000 feet [ft]) below land surface (bls) in order to meet the pressure and temperature requirements for supercritical CO2. Furthermore, pressures that exist below 914 m (3,000 ft) bls in Florida also affect the density of CO2. As displayed in Figure 1-7, increased pressures increase the density of CO2, which consequently affects the degree of buoyancy between water and the injected-CO2. 1.4.5 Trapping Mechanisms Once CO2 is injected into the pore space and fractures of a permeable geologic unit, several chemical and physical processes can occur, including: CO2 can displace, dissolve in, or mix with the formation fluid; CO2 can react with the minerals of the rock unit; or a combination of these processes can occur (Metz et al., 2005). The most effective storage sites have strong trapping mechanisms that immobilize injected CO2 and aid in the sequestering process. Types of trapping mechanisms include structural and stratigraphic trapping, solubility trapping, hydrodynamic trapping, residual trapping, ionic trapping, and mineral trapping. Over time, many of these processes increase and further promote the storage capabilities of the sequestration reservoir, likewise further securing CO2 storage (Figure 1-8; Benson, 2005b; Metz et al., 2005). 1.4.5.1 Structural and Stratigraphic Trapping Structural and stratigraphic trapping include buoyancy trapping within anticlines, folds, fault blocks, and pinch-outs, as well as trapping by layers of low permeability (or caprock), all of which act as barriers to CO2 migration. As depicted in Figure 1-8, structural and stratigraphic trapping is responsible for most of the trapping immediately following the injection of CO2. Not only does the major caprock or seal to the storage

PAGE 45

27 Figure 1-7: Calculated CO2 density as a function of pressure and temperature (from: Garcia, 2003).

PAGE 46

28 Figure 1-8: Storage security over time due to physical and geochemical processes (from Benson, 2005a).

PAGE 47

29reservoir serve as a stratigraphic trap, but low-permeability layers within the storage reservoir provide stratigraphic trapping as well, and force the lateral movement of the CO2 plume, where it would otherwise move vertically due to its buoyancy, causing the CO2 to fill any structural trap that it may encounter (Metz et al., 2005). The occurrence of structural or stratigraphic trapping is dependent upon the tectonic and depositional history and evolution of the storage basin, and can vary from hundreds of small traps to single, capacious traps (Bradshaw et al., 2007). 1.4.5.2 Solubility Trapping As the CO2 plume migrates throughout the storage reservoir beneath any lowpermeability seals, CO2 dissolution into formation fluid will eventually occur, producing carbonic acid. CO2 (aq) + H20 (aq) H2CO3 (aq) (carbonic acid) Dissolution of CO2 can begin immediately after its injection; however, complete dissolution typically takes hundreds to thousands of years, and the rate depends upon the thickness, extent, and permeability of the storage reservoir, as well as the existence of a storage reservoir flow system. Solubility trapping is also dependent upon the CO2 plume’s contact with under-saturated formation water, the rate at which the CO2 plume migrates (i.e., the faster the plume migrates, the more dissolution that occurs because the area of the plume subsequently increases with increasing migration, thereby increasing the area of the CO2 plume that is in contact with under-saturated formation water), and the salinity of the formation water (i.e., the less saline, the more dissolution) (Bradshaw et al., 2007; Metz et al., 2005). Once CO2 dissolves into formation fluid within the storage reservoir, it no longer exists as a separate phase, and it will migrate with the regional groundwater flow system and be driven only by density flow and the

PAGE 48

30 aquifer hydrodynamics, without the impacts of its buoyancy (Bachu & Adams, 2003; Metz et al., 2005). 1.4.5.3 Hydrodynamic Trapping Hydrodynamic trapping involves the storage of CO2 in its plume prior to its reaction and storage in geochemical trapping mechanisms. A plume of free-phase CO2, notwithstanding the fact that it is flowing and dispersing in the storage reservoir aquifer that has its own buoyancy and aquifer hydrody namics as driving forces, can have an extremely long residence time and be effectively trapped within the formation flow system via hydrodynamic trapping if the flow of formation water and CO2 plume is very slow (i.e. 10-3 to 10-2 m/year [yr]), as is the case for deep saline aquifers in Florida, as well as most sedimentary basins (Bachu & Adams, 2003). This type of trapping mechanism is based upon the timescale of the process and the slow migration of the post-injection CO2 plume, rather than the permanency of sequestration (Bachu & Adams, 2003; Bradshaw et al., 2007). 1.4.5.4 Residual Trapping In residual trapping, CO2 fills the pore spaces of the storage reservoir along the migration path of the CO2 plume and is held in place by capillary forces. In this process, CO2 is immobile due to the interfacial tension between CO2 and the formation water, resulting in the complete inability of flow, regardless of whether a flow pathway exists (Bachu, 2008). Essentially, CO2 is left in the wake of a migrating CO2 plume when formation water moves back into pore spaces following its displacement caused by the injection of CO2 and/or the migration of the CO2 plume; thus, residual trapping occurs largely, if not entirely, once CO2 injection has ceased (Bachu, 2008).

PAGE 49

31 1.4.5.5 Ionic Trapping Ionic trapping is a geochemical process where ionic species are formed as the minerals of the geologic media into which CO2 is injected are dissolved by the H2CO3 created during solubility trapping, which is accompanied by a decrease in pH, or as silicate minerals (i.e., clays, micas, fluorites and feldspars) are altered directly by the aqueous CO2. In this process, H2CO3 or CO2 reacts with sodium and/or potassium silicates, or calcium (Ca2+), magnesium (Mg2+), and iron (Fe2+) carbonates and/or silicates, of the storage reservoir rock to form carbon-bearing ionic species such as bicarbonate (HCO3 -) and carbonate (CO3 2-) ions, or carbonate species such as magnesium carbonate (MgCO3), as shown in the following examples (Bachu, 2008; Caldeira & Rau, 2000; Metz et al., 2005; National Energy Technology Laboratory [NETL], 2003; Raistrick et al, 2009): CO2 (aq) + H20 (aq) H2CO3 (aq) H2CO3 (aq) + CaCO3 (s) (calcium carbonate) 2HCO3 (aq) + Ca2+ (aq) HCO3 (aq) + OH(aq) CO3 2(aq) + H2O (aq) OR 2CO2 (aq) + Mg2SiO4 (s) (magnesium silicate) 2MgCO3 + SiO2 Certain carbon-bearing ionic species created during the reactions above (e.g., CO3 2and HCO3 -) could react with the dissolved Ca2+, Mg2+, K+, and/or Fe2+ of the storage reservoir, created during mineral dissolution or alteration, to form new carbonate minerals (mineral trapping) if the minerals of the rock unit continue to be dissolved or altered (Bachu, 2008; Metz et al., 2005; Raistrick et al., 2009). An example of such a carbonation reaction is shown below: CO3 2(aq) + Ca2+ (aq) CaCO3 (s)

PAGE 50

32 1.4.5.6 Mineral Trapping The extent of mineral trapping is dependent upon the mineralogy of the aquifer into which CO2 is injected. For carbonate aquifers, like those considered for CCS in peninsular Florida, limited amounts of CO2 can be trapped via mineral immobilization (Gunter et al., 1996). The injected CO2 is neutralized as it is dissolved and bicarbonate ions are formed from the dissolution of the carbonate unit, whereas the effect of ion exchange is to minimize the amount of dissolved calcium from the dissolution of calcite; however, in both cases only a limited geochemical reaction takes place, and mineral trapping alone does not serve as a strong storage mechanism in carbonate aquifers (Gunter et al., 1996). Conversely, Gunter et al. (1996) demonstrated that siliciclastic aquifers had the potential to store significant amounts of CO2 via mineral trapping and replace the need for stratigraphic trapping. Mineral-trapping carbonation reactions in siliciclastic aquifers are slow (i.e., tens to hundreds of years); however, given the long residence times of certain deep siliciclastic formation waters, ample time for CO2trapping via mineral immobilization is provided. Dissolution of storage reservoir minerals can be rapid (i.e., days), such as the case for carbonate minerals, or comparatively slow (i.e., hundreds to thousands of years), such as the case for silicate minerals (Metz et al., 2005). Solubility trapping, ionic trapping, and mineral trapping are all dependent upon the amount of formation water or rock available for reactions, as well as the contact area between free-phase CO2 and the water or mineral, and the extent of CO2 saturation at the interface (Bachu, 2008). 1.4.6 Lithology of Storage Reservoir The basic lithology of the CO2 storage reservoir (e.g., organic-rich shale, sandstone, or carbonate) should be determined and evaluated in order to assess the

PAGE 51

33 homogeneity of the unit, the porosity and permeability of the unit, and to identify the occurrence of any layers of low permeability by analyzing geophysical data. To ensure sufficient size of a sequestration reservoir that has the capacity to store significant amounts of CO2, horizontal homogeneity is required in the geologic storage reservoir; however, some vertical heterogeneity could be useful within the storage unit, as it could provide relatively thin permeability barriers within the unit that can hinder the vertical migration of CO2 and prolong its storage (refer to Figure 1-2). 1.4.7 Pressure and Flow Regimes The approximate pressure of the storage reservoir under injection should be estimated prior to the injection of CO2, so that the rate of CO2 injection can be adjusted and monitored to avoid overpressuring the st orage reservoir, which could potentially lead to fracturing of the caprock and seal(s) and the consequent leakage of CO2. The flow regime in a storage unit is also important to estimating the migration and potential leakage of CO2. Flow velocities and flow paths of CO2-laden waters are affected by the presence of low-permeability layers within the storage reservoir. In an open-flow system, CO2 can migrate laterally for some distance and be made available to numerous types of trapping mechanisms; however, in rest ricted-flow regimes, like those typical of existing and depleted oil and gas reservoirs, CO2 is not subjected to the various types of trapping mechanisms, and is typically stored in the sequestration reservoir via solubility trapping and stratigraphic and structural trapping (Metz et al., 2005). 1.4.8 Stable Geologic Environment The CO2-injection site must be located in a relatively stable geologic environment, in order to avoid compromising the site’s integrity as a storage reservoir. Stable sites are typically found mid-continent or on passive margins, where there is little

PAGE 52

34 tectonic activity that could potentially create faults or fractures in storage reservoir caprock and seals (Metz et al., 2005). 1.5 Carbon Dioxide Sequestration in Existing and Depleted Oil Reservoirs Existing and depleted oil reservoirs are considered primary targets for GS because substantial subsurface investigations have been conducted and the oil reservoir’s lithological and hydrogeological ch aracteristics are known; the reservoirs have demonstrated their ability to store oil fo r millions of years and are known to contain natural underground fluid ‘traps’; the reservoirs have known sufficient porosity, permeability, and flow characteristics; and the reservoirs already have a field, sequestration, and transportation infrastructure in place (EPA, 2008; IEA GHG R&D Programme, 2000; Mackintosh, 2006). 1.5.1 Carbon Dioxide-Enhanced Oil Recovery The technology of CO2-EOR involves the injection of CO2 for the purpose of increased oil recovery from existing oil fi elds, which in turn also involves the sequestering of a portion of the injected CO2. Up to half of the injected CO2 is stored in the petroleum reservoir during CO2-EOR, while the remaining CO2 is collected with the oil produced at the production well and re-injected for continued use with EOR (IEA GHG R&D Programme, 2000). Commercial-scale CO2-EOR projects are mostly conducted in the US and have already shown success. Approximately 74 CO2-EOR projects are being conducted in the US, injecting some 33 MtCO2 annually (IEA GHG R&D Programme, 2000). Of the original oil in place (OOIP) within an oil reservoir, 5-40% is recovered using conventional primary recovery methods, which involves using the natural, existing pressures in the oil reservoir to move oil toward production wells (Metz et al., 2005). An additional 10-20% of the OOIP is recovered via a secondary recovery method known as

PAGE 53

35 ‘water flooding’, where water is injected into the geologic unit to repressure the reservoir and drive residual oil toward the production wells (Metz et al., 2005). Following water flooding, oil-saturation of the portion of the source rock ‘swept’ during the secondary recovery process is approximately 20-35%, in the form of isolated droplets trapped in the pore spaces of source rock or as film surrounding rock grains; however, saturation is typically significantly higher in the ‘unswept ’ volume of the petroleum reservoir (Tzimas et al., 2005). An effective tertiary recovery method, such as CO2-EOR, must be able to mobilize the remaining oil droplets and film in the petroleum reservoir to form an oil bank that can be moved toward production wells. Experience in the US suggests an additional range of recovery of 9-18% of the OOIP using CO2-EOR methods in the nation’s oil fields (Tzimas et al., 2005). During CO2-EOR, CO2 that is injected into the oil reservoir interacts both chemically and physically with the source rock and the formation’s oil, which creates favorable conditions for oil recovery by: reducing the capillary forces that inhibit oil flow within the source rock; expanding the volume of the reservoir oil (known as ‘oil swelling’), which in turn reduces its subsequent viscosity; developing favorable, complex phase changes in the formation oil that increase its fluidity; increasing the pressure in the oil reservoir via the insoluble portion of the injected CO2, which creates a ‘sweep’ of the oil towards the production well; and allowing for the maintenance and adjustment of favorable mobility characteristics for the formation-oil and CO2, in order to improve the volumetric sweep efficiency (generally, the volumetric sweep efficiency decreases as the mobility ratio

PAGE 54

36 between CO2 and oil increases) (IEA GHG R&D Programme, 2000; Tzimas et al., 2005). In order for CO2-storage in EOR operations to be successful, several criteria may need to be met in addition to the basic criteria outlined previously for successful CCS operations. These additional criteria can include: uniform intergranular porosity within the oil/storage reservoir; remaining oil-in-place greater than 50-60% of the estimated OOIP, following primary and secondary recovery in a given oil field; density of CO2 ranging between 400 and 750 kilograms (kg) per cubic meter (m3) for an effective CO2-sweep during EOR; appropriate miscibility of injection fluid (specifically, immiscible fluids are often used for heavyto medium-gravity oils [12-25 API] while the preferred miscible fluids are used for low-gravity, low-viscosity oils [25-48 API]); relatively thin storage reservoirs (i.e., less than 21 m [70 ft]); high reservoir angle; and for miscible flooding operations, the oil-/storage-reservoir pressure must be greater than the minimum miscibility pressure (100-150 bar) that is required in order for miscibility to exist between the reservoir oil and the injected CO2 (Metz et al., 2005; Tzimas et al., 2005). There are two methods for CO2-EOR: the water alternating gas (WAG) method and the gravity stable gas injection (GSGI) method. The type of method chosen for CO2EOR projects is important, as it has an impact on the amount of CO2 captured from fossil-fuel-fired power plants that can be subsequently sequestered. In the WAG method, CO2 injection is alternated with an injected “water flood”. The injected CO2 improves the mobility of the oil via oil swe lling (i.e., the volume of the oil is expanded and

PAGE 55

37 the subsequent viscosity is reduced) and the water flood forms an oil bank that is swept toward adjacent production wells. The use of WAG means that CO2 injection may be intermittent, requiring offline storage of CO2 if the CO2-EOR project is using a captured CO2 stream from a fossil-fuel-fired power plant. In addition, a significant amount of the injected-CO2 is recovered at the oil-production wells, where it is subsequently separated from the oil and then is recycled back into the WAG process. In the GSGI method, CO2 is injected at the top of the oil trap in the reservoir, resulting in an increase in gas pressure, which enhances the natural gravity drive, increases oil mobility, and sweeps the oil bank that is created to adjacent oil-production wells at the bottom and edges of the trap (Tzimas et al., 2005). The GSGI method can utilize a continuous flow of CO2, and therefore would not require offline storage of CO2; however, GSGI is typically used in shallow reservoirs where pressures are below the critical point for CO2, and CO2 is hence injected as a gas (Tzimas et al., 2005). The injection of CO2 as a gas greatly reduces the mass to volume ratio of the sequestered CO2. More than 50% and up to 67% of injected-CO2 is recovered with oil production during CO2-EOR operations (Tzimas et al., 2005). This CO2 is then separated and reinjected into the oil reservoir for continued use in EOR. Without consideration for CCS, most oil companies prefer the WAG method over the GSGI method because less CO2 needs to be purchased and reused, making it a more cost-efficient EOR method. In addition, water is used in the WAG method, which sweeps through the oil reservoir more uniformly than CO2 and therefore can be more efficient at recovering oil than using CO2 alone.

PAGE 56

38 1.5.2 Geologic Sequestration in Depleted Oil and Gas Fields Depleted oil and gas fields are exhausted of substantial oil/gas supply and are no longer operated and used for commercial oil/gas production. They include fields that have undergone CO2-EOR and those that have not; notwithstanding, a large portion of the pore space that once contained oil or natural gas is subsequently available for the sequestering of CO2 following the extraction of the reservoir oil or gas. Significant benefits exist in using depleted oil and gas reservoirs for GS versus saline aquifers that have never been explored as hydrocarbon reservoi rs, such as: 1) known structural and stratigraphic traps that held reservoir hydrocar bons in place for millions of years, thus displaying the effectiveness of the reservoir seal(s); 2) known geologic structure and physical properties of the reservoir; 3) known movement and displacement behavior of reservoir hydrocarbons; and 4) the existence of a transportation and injection infrastructure previously used for commercial oil production. 1.6 Carbon Dioxide Sequestration in Deep Saline Aquifers Deep saline aquifers are located in sedimentary basins throughout the world, both onshore and offshore, and contain formation fluid with high concentrations of dissolved salt. Deep saline aquifers are widespread, and are expected to be the most popular storage reservoirs for GS due to their location and depth, accessibility, availability, and injectability (NETL, 2007). Expansive areas of the US are underlain by saline aquifers at depths as great as 3,048-6,096 (10,000-20,000 ft) bls, with total dissolved solid concentrations exceeding those suitable for drinking water supply and agricultural use (EPA, 2008). These types of saline reservoirs typically have few penetrating wells; therefore, the danger of CO2 leakage via nearby wells following the injection of CO2 is greatly reduced or potentially alleviated.

PAGE 57

39 1.7 Current and Planned Geologic Sequestration Projects There are numerous planned or existing commercial or pilot CCS projects underway around the world that have been operating since the 1990s. Existing projects are operating successfully due to appropriate designs and operational standards, as well as sufficient monitoring, measurement, and verification requirements. Large-scale CCS projects can be costly (up to one billion US dollars in some cases); however, governments and industries around the world are beginning to address the economic issues by participating in proposed and on-going large-scale and smallscale CCS R&D operations. Specifically, in May 2009, the US federal government announced $3.4 billion in new funding from t he American Recovery and Reinvestment Act to be invested by the US DOE for CCS R&D projects (Chu, 2009). Additionally, the DOE is supporting seven other CCS pilot projects occurring in geologic units of the US. Currently, there are five fully integrated, large-scale and commercial CCS projects that are operating successfully around the world. Sleipner, Snhvit, In Salah, and Salt Creek are all CCS projects in which CO2 is captured from a natural gas production facility and transferred to the injection sites, while the Weyburn Project receives CO2 from a synfuel plant. All five CCS projects securely store CO2 underground in deep geologic units. Collectively, these CCS demonstrations store more than seven MtCO2 per year (IEA, 2009; Metz, et al., 2005). 1.7.1 Sleipner Project The Sleipner Project was the world’s first commercial GS project in a saline aquifer, and has been successfully operating in the North Sea since 1996. The Norwegian oil company, Statoil, injects CO2, captured from a nearby natural gas plant, ~240 kilometers (km) (149 miles [mi]) off the coast of Norway into the Tertiary Utsira

PAGE 58

40 Formation, a saline aquifer composed of an unconsolidated sandstone located 8001,000 m (2,624-3,280 ft) bls (Figure 1-9). Approximately 2,700 tons of CO2 (tCO2) are sequestered daily at this site, and total anticipated CO2 storage by project-end is 20 MtCO2, although total estimated storage capacity for the reservoir is about 600 billion tCO2, meaning its role in CCS will likely continue beyond the life of the Sleipner Project (IEA, 2009; Metz, et al., 2005). Secondary thin shale layers throughout the formation influence the slow migration of injected-CO2, while the primary seal to CO2 leakage is an overlying extensive and massive shale layer. The CO2 plume in the Utsira Formation has been monitored effectively by seismic time-lapse surveys, which have demonstrated that the shale caprock is an effective seal that prevents CO2 leakage (Metz, et al., 2005). As of 2005, the CO2 plume at the Sleipner injection site extended over an area of ~5.2 square kilometers (km2) (~2 square miles [mi2]). According to the IPCC (2005), studies and simulations covering hundreds to thousands of years indicate total dissolution of CO2 into pore water, which will consequently become heavier and sink, thus minimizing the potential for long-term leakage of CO2. The CO2 treatment module for the Sleipner Project cost more than $526 million (M) US dollars (USD), and was funded by Statoil and other project partners (IEA GHG R&D Programme, 2000). 1.7.2 Sn hvit Project Statoil also injects CO2 beneath the Barents Sea, 2,600 m (8,530 ft) bls into the saline aquifer of a Lower Jurassic sandstone formation that is 45-75 m (147-246 ft) thick, called the Tubsen Formation. A pipeline ~160 km (~100 mi) in length transports CO2 from a liquid natural gas facility in Norway to the injection site in the Barents Sea. Approximately 0.7 MtCO2 are sequestered in the Tubsen Formation per year, which is approximately half of what the natural gas facility produces (Heiskanen, 2006). The

PAGE 59

41 Figure 1-9: General diagram of Slei pner Project (from: Metz, et al., 2005).

PAGE 60

42Sn hvit Project has been conducting CO2 injection since 2008, and CO2-plume monitoring is still underway. The Tubsen Formation is sealed by a thick shale layer, and although CO2 leakage has not been reported to date, a complete monitoring report is not due to the Norwegian government until sometime in 2010. About 30% of the project, including the costs for the natural gas facility, was funded by the Norwegian government, while the remaining costs were funded by Statoil and other industrial project partners. The total cost for the CO2 pipeline and injection well was around $110M USD (IEA GHG R&D Programme, 2009). 1.7.3 In Salah Project The In Salah Gas Project, a large-scale, commercial joint venture between Sonatrach, Statoil, and BP, has been operational since 2004 in the central Saharan region of Algeria. Approximately 3,000-4,000 tCO2 are sequestered daily, with 17 MtCO2 anticipated by project-end (IEA, 2009; Metz, et al., 2005). The storage reservoir is a depleted hydrocarbon reservoir of Carboniferous age, known as the Krechba Formation. The Krechba Formation is a 20-m (66-ft) thick sandstone unit located ~1,800 m (5,904 ft) bls, which is overlain and sealed by a massive succession of mudstones 950 m (3,116 ft) thick (Figure 1-10). The Krechba Project has four natural-gas-production wells and three long-reach, horizontal, CO2-injection wells. The CO2 is injected down-dip from the gas/water interface within the natural-gas-bearing reservoir, and is expected to eventually migrate into the area of the Krechba gas field upon depletion of the gas zone (Metz, et al., 2005). Deep faults have been mapped with three-dimensional seismic surveys and with well data, but no shallow faults have been identified; therefore, the storage zone within the reservoir poses minimal structural uncertainty or risk (Metz, et al., 2005). Any processes that could result in CO2 migration from the injection zone have been identified and a

PAGE 61

43 Figure 1-10: Schematic of In Salah Gas Pr oject in Algeria (from: Metz et al., 2005).

PAGE 62

44monitoring program exists that includes noble gas tracers, pressure surveys, tomography, gravity baseline studies, microbiol ogical studies, four-dimensional seismic, and geomechanical monitoring. The entire project, including the natural gas wells and facilities and CO2-injection wells, costs $30M USD and is funded by Statoil, BP, and Sonatrach, as well as other industrial, governmental, and institutional project partners. 1.7.4 Weyburn Project The Weyburn Project, a commercial large-scale CO2-EOR project, is currently operating within the Midale Formation of Mississippian age in Saskatchewan, Canada. The Midale Formation is a fractured-carbonate with anhydrite seals both above and below (Figure 1-11). The captured CO2 is originally generated at a natural gas plant in North Dakota, US and transported 200 mi to Canada via pipeline, where it is injected into depleting oil fields for enhanced oil recovery and sequestration. Approximately 3,0005,000 tCO2 are sequestered per day and 23 MtCO2 are expected to be stored by projectend that would normally be released during the end of the field life (Metz et al., 2005). The IEA GHG R&D Programme Weyburn-Midale CO2 Monitoring and Storage Project was the first scientific study to monitor and observe the CO2 plume in the reservoir and assess the nature of its migration and the effectiveness of the caprock and seals; however, researchers from around the world have had great interest in the Weyburn CO2-EOR project and have been actively monitoring the CO2 plume, as well. To date, the project has been operating successfully and intensive monitoring has shown no leakage. The monitoring effort, managed by Canada’s Petroleum Technologies Research Centre, is currently in its second and final phase (due to end in 2011), and results will be used to build a framew ork and best practices manual for global implementation of GS of CO2 (IEA, 2009). The Weyburn Project costs $1.4 billion USD, and is funded by numerous government al and industrial project partners.

PAGE 63

45 Figure 1-11: Schematic of Weyburn Project CO2 injection zone and seals (from Petroleum Technology Research Centre, 2005). The red line represents the well path.

PAGE 64

461.7.5 Salt Creek Project In 2004, Anadarko Petroleum’s Salt Creek CO2-EOR Project began CO2 injection for enhanced oil recovery into the Salt Creek Field. Salt Creek Field, located 45 mi north of Casper, Wyoming, is one of the largest oil fields in the Rocky Mountains and encompasses approximately 45 mi2 (Wyland, 2009). The oil and sequestration reservoir is an Upper Cretaceous sandstone unit about 183 m (600 ft) thick, known as the Frontier Formation, which is overlain and sealed by a massive shale unit. A 200-km (125-mi) pipeline transports CO2 from the Exxon-Mobile LaBarge natural gas processing facility in Wyoming to Salt Creek Field, where 5,000-6,000 tCO2 is sequestered per day (Metz, et al., 2005; Wyland, 2009). Total anticipated CO2 sequestration is 27 MtCO2 by projectend. To date, no CO2 leakage has been reported. The Salt Creek Project costs >$750 M USD, and funding was provided by the Rocky Mountain Oil Testing Center of the DOE, National Lab consortium, and other industrial and institutional project partners. 1.8 Challenges for Carbon Dioxide Capture and Geologic Sequestration Technologies The implementation of CCS in geologic media on a large, commercial scale as a widely accepted and utilized means of industrial GHG emission reductions faces numerous challenges in Florida and throughout the country. These challenges include establishing funding sources for the implementation of CCS, including feasibility studies, development of capture and transportation infrastructure, injection operation, and monitoring of CCS operations, and integrating the technology into GHG policies; compensating for the higher cost and lower e fficiency penalty of CCS; the development of stringent and practical regulatory guidelines to ensure safe sequestration of CO2 for millennia; sufficient public notice and education to address community concerns; and establishing CCS on a large-enough scale that ensures the technology truly has a

PAGE 65

47 significant effect on anthropogenic GHG emissions (Bachu, 2008; Sneider & Young, 2009). 1.8.1 Costs of Operation The cost of materials, supplies, equipment, and labor fluctuate annually; therefore, cost estimation will inevitably have a level of uncertainty. In addition, costs for individual CCS projects will vary due to differences in storage reservoir hydrogeological and lithological characteristics, capture and transportation infrastructures, injection and sequestration methods, rates and amounts of CO2 injected, and monitoring techniques. The IEA GHG R&D Programme (2000) estimated that the cost involved with capturing CO2 from a source (i.e., power plant), transporting the CO2 ~300 km (~186 mi) (as an example), and sequestering the CO2 in geologic media of the subsurface to be between $30 and $50 USD per tCO2, which is approximately equivalent to $13 USD per barrel of oil or $0.25 USD per gallon of gas (Lackner, 2003). As of 2005, the IPCC estimated CCS costs to be between $40 USD and $70 USD per tCO2, which means, for example, that the annual cost to sequester 1 GtCO2 at $50 USD per tCO2 is $50 billion USD per year (Metz et al., 2005; Sneider and Young, 2009). A preliminary study conducted in 2008 to examine the feasibility of GS of CO2 in Ireland estimated CCS costs to be between €28 and €56 per tCO2, or $38-$76 USD per tCO2, with cost variance mostly dependent upon the type and size of a given power plant, as well as the CO2 transport distance (CSA Group, 2008). During the initial phases of CCS operations, however, these costs can be offset by the use of CO2-EOR, where applicable. Electric-power utility companies can sell CO2 produced at their facility to oil-production companies for use in EOR, thereby requiring less, if any, CO2 sequestration by the utility company during this process, and thus saving them significant costs. In this scenario, the electric-power utility companies are

PAGE 66

48 only responsible for capturing and compressing CO2 to supercritical form for its transportation to an oil field for injection. The construction and operation of the CO2injection wells are the responsibility of the oil-field operator, and as far as costs for oilfield operation, any existing water-flood wells used in secondary recovery can also be used for the injection of CO2 during CO2-EOR, with minor modifications. However, the lifespan of an individual oil field during CO2-EOR operations is typically less than 20 years, which is considerably less than the 40-year lifespan of one power plant. Unless captured-CO2 can be used in multiple oil fields in sequence, the EOR portion of a power plant’s CCS project may end well before the end of the operating-life of that power plant. This would result in the remaining portion of the CCS project being principally a sequestration project, with significantly less recovery of oil and increased costs to the electric-power utility company. The major cost in CCS is the capturing of CO2 from an emission source, specifically from power plants. For IGCC pl ants, retrofitting will not be necessary, as the power plants already have the necessary infrastructure to separate and capture CO2; however, many power plants do not have this technology and will have to be retrofitted to capture and separate CO2 produced at their facility. Retrofitting a power plant for CO2 capture accounts for the greatest cost in CCS (Lackner, 2003). In the near future, new power plants will be built with the technology to capture CO2 before it is emitted into the atmosphere, such as is mandated by the proposed ACESA of 2009. This will mean that capture costs for CCS could potentially decrease, along with the further establishment of capture and transportation infrastructures; however, disposal and storing costs will most likely increase as inexpensive sequestration sites (i.e., existing and depleted oil and gas fields) meet their capacities, and demands on permanence and safety increase (Lackner, 2003).

PAGE 67

49 1.8.2 Environmental Concerns Environmental concerns predominantly in volve leakage issues, which can occur due to instances such as: the use of old and/or poor-quality injection wells; nearby unplugged or poorly plugged abandoned wells; inadequate caprock and seal characterization; or overpressuring the storage reservoir due to improper injection rates. In order to avoid leakage issues during operation of CO2 injection, extensive monitoring and mitigation of both the injection well and any identified potential leakage points should be performed at all times. In addition, observation wells can be used to monitor any potential leakage in the shallower strata. In order for CCS to be an effective CO2 emissions-reduction strategy, leakage rates must be less than 0.1% per year. 1.8.3 Community Opposition and Public Concerns The costs for CCS operations can be astounding to many, and concerns about the health of the environment for all inhabitants, both plant and animal, are justifiable. For example, the 2007 McKinsey report states that the US has the potential of reducing CO2 emissions by approximately 40% just by reducing energy consumption, such as driving more fuel-efficient or alternativ e energy vehicles and implementing combined heat and power generation, which appeals to many individuals in opposition to CCS based upon the reduced costs and reduced environmental impact (Bressand et al, 2007; Sneider and Young, 2009). These options, along with others outlined in the 2007 McKinsey report, are plausible solutions to the reduction of anthropogenic CO2 emissions; however, problems still remain in implementing such measures on a nationwide-scale due to associated economical, technological, and social barriers. In order to address the issues associated with CCS, large-scale commercial and pilot projects should continue to operate in various geologic settings around the world, with varying sources of CO2, capture and transportation infrastructure, sequestration

PAGE 68

50 techniques, and monitoring, in order to gain a more complete and diverse understanding of the capabilities and available storage capacities of GS, and thus a better understanding of how the technology may impact anthropogenic CO2 emissions and our environment. As mentioned earlier, until alte rnative energy technologies and capacities have been improved and are able to meet t he current demands for energy consumption in the US, thereby alleviating the ardent dependency on fossil-fuel-fired power plants, CCS in geologic units is a proposed solution to anthropogenic CO2-emission reductions that is worth pursuing as long as fossil-fuel-fired power plants remain in operation. As stated by the US Secretary of Energy, “There are many hurdles to making CCS a reality, but none appear insurmountable” (Chu, 2009). 1.9 Potential for Carbon Capture and Geologic Sequestration in Florida In order to meet current and potential future CO2-emission requirements enforced on both a regional and national level, Florida electric-power utility companies must rely on newly developed technologies to assist in their CO2-emission reductions. Currently, Florida electric-power utility companies are either buying renewable or alternative energy, or building their own facilities which supply these energy resources (i.e., solarenergy, wind-energy, or nuclear-energy); how ever, use of these alternative energy resources cannot fully assist the electric-power utility companies in meeting their respective CO2 emission-reduction requirements. Therefore, CCS in deep geologic units of Florida, including CO2-EOR, has been proposed as the next significant step for CO2emission reductions; however, the use of these technologies has never been fully investigated or implemented in the state of Florida, nor has CCS without CO2-EOR ever been applied to carbonate units internationally. In addition, some southeastern states within the US do not have significant potential CO2 sequestration reservoirs (NETL,

PAGE 69

51 2007); therefore, Florida may serve as a sequestration site for other states, which could be a potential economic benefit for Florida. Before CCS in geologic units and CO2-EOR can be implemented in Florida, an assessment must be made of the state’s deep geologic units that appear suitable for such technologies, and benefits and risks must be identified and evaluated. Factors that must be further investigated and assessed involve the identification of: appropriate geologic storage units, to include an assessment of associated porosity, permeability, and continuity, as well as the extent and thickness of the units; effective caprocks or seals for geologic storage units, including the identification of any structural inadequacies; and any potential CO2 leakage points, including, but not limited to, abandoned wells. An understanding of what may potentially occur once CO2 is injected into these stratigraphic units is also an important process that must be evaluated. The Lower Cretaceous Sunniland Formation and Paleocene Cedar Keys Formation/Upper Cretaceous Lawson Formation have been identified as two major carbonate injection zones in Florida that may potentially serve as reservoirs for CO2 storage, and are further discussed in chapters 2 and 3, respectively.

PAGE 70

52 Chapter 2: Evaluation of the Low er Cretaceous Sunniland Formation within the Sunniland Trend of the S outh Florida Basin for Carbon Dioxide Sequestration and Enhanced Oil Recovery 2.1 Introduction The Florida Platform has been a highly cyclic, shallow-marine environment intermittently throughout geologic history, result ing in relatively thick, porous carbonate units (i.e., dolostone and limestone) associated with various shallow-water marine depositional environments. These carbonate units are separated in many instances by evaporite units of low permeability that were originally deposited in environments such as sabkhas, mud flats, or restricted lagoons. These highly cyclic stratigraphic units of the Florida Platform, specifically those located beneath the emergent portion of the Florida Platform known as the state of Florida, are believed to be suitable storage zones with adequate seals for successful CCS and CO2-EOR operations. The Sunniland Formation of southwest Florida could be a viable zone for CO2EOR and CCS activities due to its geographic location, lithology, porosity, potential CO2 storage capacity, estimated amount of recoverable oil via tertiary methods, and because the formation appears to be adequately sealed. Not only could the commercial oil fields along the Sunniland Trend (Trend) in the South Florida Basin (SFB) potentially benefit from EOR via CO2 injection, but Florida electric-power utility companies could as well, by offsetting a portion of the costs of CCS through sales of CO2 for EOR. This chapter

PAGE 71

53 evaluates the Sunniland Formation within the Trend of the SFB, for its potential use in CO2-EOR and CCS operations. 2.2 Study Area As depicted in Figure 2-1, the study area lies throughout the entire extent of the Trend of southern Florida. Eighty-five exploratory/discovery oil wells were utilized to evaluate the Sunniland Formation within the Trend. Beginning in 1947, all oil and gas wells drilled in Florida required a permit and were subsequently issued a permit number (P#). All wells drilled between 1943 and 1946 were retroactively assigned a P#, as well. For the purpose of this investigation and for simplified identification, all evaluated wells are referenced by their P#. Table 2-1 provides a list of exploratory/discovery wells evaluated in this study, along with well details and locations. Each study well is either an oil-production well (P) in a given Trend oil field, a non-producing/dry-hole well near that production well (NP), or an isolated, dry-hole well (I) located within the outer extent of the given oil field, or outside the oil fields and within the boundaries of the Trend. 2.3 Geologic Setting 2.3.1 Florida Platform The Florida Platform is an ancient carbonate platform with an east-west dimension of 500 km (310 mi), extending from the shelf-break off the east coast of Florida west to the Florida Escarpment, which plunges 1,800 m (5,900 ft) into the Gulf of Mexico and marks the western boundary of the SFB (Hine et al., 2001). Relatively high sea levels and environmental stresses, consi dered by many to be the result of worldwide oceanic anoxic events, affected sedimentation rates within the Florida Platform (Hine et al., 2001). Ultimately, sediment production and accumulation could not keep pace with tectonic subsidence associated with a relatively young passive margin, and by the mid-Cretaceous the western portion of the Florida Platform was submerged (Hine et al., 2001). Figure 2-2 displays the Florida Platform and some of the major features of

PAGE 72

54 Figure 2-1: Map of study area depicting the Trend and the evaluated exploratory/discovery oil wells.

PAGE 73

55 Table 2-1: List of exploratory/discovery oil wells evaluated within Trend study area. Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Oilfield Well Type 92 7 48 South 29 East-81. 4605 26.31918 7 3,625 Collier N/A Dry Hole I 103 19 47 South 28 East81.5553 26.36939 6 3,722 Collier N/A Dry Hole I 115 25 55 South 37 East-80.5836 25.61477 3 3,511 MiamiDade N/A Dry Hole I 129 31 35 South 53 East-80.8726 25.80759 3 3,623 MiamiDade N/A Dry Hole I 130 27 50 South 26 East81.6985 26.09176 3 3,815 Collier N/A Dry Hole I 167 16 54 South 35 East-80.8305 25.76439 3 3,523 MiamiDade Forty Mile Bend Producer 205 19 54 South 36 East-80.7729 25.75773 2 3,535 MiamiDade Forty Mile Bend Dry Hole I 214 19 54 South 36 East-80.7769 25.75896 2 3,540 MiamiDade Forty Mile Bend Dry Hole I 278 11 54 South 35 East-80.809 25.78057 3 3,559 MiamiDade Forty Mile Bend Dry Hole I 279 23 45 South 28 East-81.4846 26.55531 12 3,550 Hendry Mid-Felda Dry Hole I 300 20 48 South 30 East-81.3397 26.28616 6 3,603 Collier Sunniland Producer 311 28 48 South 30 East-81.3317 26.26861 5 3,565 Collier Sunniland Dry Hole I 326 28 45 South 29 East-81.4308 26.53225 11 3,539 Hendry Sunoco-Felda Producer

PAGE 74

56 Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Oilfield Well Type 331 15 54 South 35 East-80.8245 25.76728 3 3,540 MiamiDade Forty Mile Bend Dry Hole NP 360 34 45 South 29 East-81.4168 26.52562 10 3,548 Hendry Sunoco-Felda Dry Hole NP 376 18 54 South 36 East-80.7659 25.77651 3 3,517 MiamiDade Forty Mile Bend Dry Hole NP 384 19 48 South 30 East-81.3536 26.29275 5 3,568 Collier Sunniland Producer 386 17 54 South 35 East-80.8577 25.76533 3 3,537 MiamiDade Forty Mile Bend Dry Hole I 401 9 47 South 28 East-81.52 08 26.40116 7 3, 654 Collier Lake Tr afford Producer 425 8 45 South 27 East-81.6418 26.58187 9 3,579 Lee West-Felda Dry Hole I 437 35 45 South 28 East-81.4849 26.5167 10 3,563 Hendry Sunoco-Felda Dry Hole I 472 22 45 South 26 East-81.6973 26.55211 9 3,962 Charlotte N/A Dry Hole I 475 9 41 South 25 East-81.8133 26.92706 12 4,034 Charlotte N/A Dry Hole I 477 16 47 South 28 East81.5188 26.39204 6 3,673 Collier Lake Trafford Dry Hole NP 486 20 45 South 28 East-81.5431 26.54446 10 3,574 Hendry West-Felda Producer 488 12 45 South 28 East-81.4718 26.58037 10 3,510 Hendry Sunoco-Felda Dry Hole I 527 2 45 South 26 East-81.681 26.59635 9 3,570 Lee N/A Dry Hole I

PAGE 75

57 Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Oilfield Well Type 561 6 48 South 32 East-81.1693 26.33145 6 3,532 Hendry N/A Dry Hole I 564 14 54 South 33 East-80.9922 25.7623 3 3,859 Monroe N/A Dry Hole I 565A 28 48 South 33 East-81.0395 26.28328 6 5,189 Hendry Seminole Dry Hole I 596 14 53 South 33 East80.9897 25.85882 3 5,016 Collier N/A Dry Hole I 662 12 48 South 32 East-81.0782 26.31699 6 3,551 Hendry Seminole Producer 683 20 41 South 24 East-81.9368 26.89104 8 3,505 Charlotte N/A Dry Hole I 684 14 45 South 26 East-81.6812 26.56629 9 3,578 Lee N/A Dry Hole I 697 23 46 South 30 East81.2998 26.46772 9 3,962 Collier N/A Dry Hole I 700 7 48 South 31 East-81.2658 26.32234 7 3,631 Hendry N/A Dry Hole I 702 7 48 South 33 East-81.0714 26.31897 6 3,548 Hendry Seminole Dry Hole NP 735 13 45 South 27 East-81.5678 26.56058 9 3,658 Lee West-Felda Producer 736 17 49 South 30 East-81.3 33 26.21036 5 3,634 Collier B ear Island Dry Hole I 754 11 54 South 34 East-80.8907 25.79069 2 3,921 Monroe Forty Mile Bend Dry Hole I 758 16 44 South 26 East-81.7256 26.65206 6 3,841 Lee Lehigh Park Dry Hole I 760 30 46 South 30 East81.3567 26.45256 9 3,591 Collier N/A Dry Hole I 803 5 52 South 31 East-81.2 43 25.97692 6 4,040 Collier B ear Island Dry Hole I

PAGE 76

58 Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Oilfield Well Type 821 1 49 South 30 East-81.271 26.233 23 5 3,554 Collie r Bear Island Dry Hole NP 829 33 51 South 34 East-80.9253 25.98274 3 3,553 Collier Raccoon PointProducer 831 31 49 South 31 East81.2576 26.16844 3 3,640 Collier N/A Dry Hole I 838 1 49 South 30 East-81.281 26.23113 5 3,540 Collier Bear Island Producer 853 28 46 South 28 East-81. 5166 26.44338 7 3, 601 Collier Corkscrew Dry Hole I 858 23 44 South 26 East-81.6831 26.6321 6 3,607 Lee Lehigh Park Producer 859 26 44 South 26 East-81.6834 26.62793 6 3,592 Lee Lehigh Park Dry Hole NP 864 19 47 South 31 East-81.2658 26.37209 8 3,616 Hendry N/A Dry Hole I 865 31 49 South 32 East-81. 168 26.17112 5 3,604 Collier Baxter Island Producer 871 4 50 South 31 East-81.22 18 26.14556 4 3,633 Collier Pepper Hammock Dry Hole I 897 23 49 South 30 East-81.28 63 26.19512 5 3,626 Collier Pepper Hammock Producer 904 27 45 South 28 East-81.5029 26.53181 10 3,562 Hendry Mid-Felda Producer 926 34 45 South 28 East-81.5021 26.5246 10 3,568 Hendry Mid-Felda Dry Hole NP 928 35 51 South 34 East-80.9007 25.9832 4 3,960 Collier Raccoon PointProducer

PAGE 77

59 Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Oilfield Well Type 947 33 47 South 29 East81.4199 26.35023 8 3,647 Collier N/A Dry Hole I 951 29 44 South 28 East-81.5454 26.62583 9 3,841 Hendry N/A Dry Hole I 982 14 49 South 30 East-81.29 41 26.20284 5 3,637 Collier Pepper Hammock Dry Hole NP 983 27 45 South 28 East-81.5013 26.5404 11 3,503 Hendry Mid-Felda Producer 990 26 45 South 28 East-81.4881 26.53767 11 3,512 Hendry N/A Dry Hole I 1014 29 44 South 27 East-81.6427 26.62512 7 3,565 Lee N/A Dry Hole I 1016 32 46 South 29 East-81.4458 26.43568 11 3,609 Collier N/A Dry Hole I 1026 30 45 South 30 East-81.368 26.53217 9 3,565 Hendry N/A Dry Hole I 1057 18 46 South 30 East-81.3662 26.47506 9 3,527 Collier N/A Dry Hole I 1059 3 50 South 32 East-81.1071 26.14512 5 3,606 Collier Baxter Island Dry Hole I 1063 20 50 South 33 East-81.0469 26.10114 4 3,584 Collier N/A Dry Hole I 1065 6 50 South 32 East-81.1673 26.16305 5 3,597 Collier Baxter Island Dry Hole NP 1070 2 45 South 28 East-81.4964 26.58967 9 3,494 Hendry Townsend Canal Producer 1086 10 53 South 34 East-80.9166 25.87392 3 3,560 Collier N/A Dry Hole I 1118 1 49 South 30 East-81.2821 26.23247 5 3,655 Collier Bear Island Producer

PAGE 78

60 Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Oilfield Well Type 1119 2 49 South 30 East-81.3 26.24408 6 3,688 Collier Bear Island Producer 1127 28 47 South 29 East-81.4183 26.35895 7 3,656 Collier N/A Dry Hole I 1131 13 45 South 27 East-81.5691 26.56667 9 3,581 Lee West-Felda Dry Hole NP 1134 20 47 South 29 East-81.445 26.3806 7 3,667 Collier N/A Dry Hole I 1142 19 48 South 30 East-81.3618 26.29494 6 3,584 Collier Sunniland Producer 1147 20 45 South 28 East-81.5365 26.54412 9 3,508 Hendry West-Felda Dry Hole NP 1151 3 45 South 28 East-81.5123 26.59638 9 3,503 Hendry Townsend Canal Producer 1201 28 46 South 28 East-81.5277 26.44145 7 3,612 Collier Corkscrew Dry Hole NP 1202 7 46 South 30 East-81.3572 26.49726 10 3,540 Collier N/A Dry Hole I 1208 4 47 South 28 East-81.5256 26.41997 7 3,612 Collier Lake Trafford Dry Hole I 1216 18 50 South 33 East-81.0667 26.12249 4 3,583 Collier N/A Dry Hole I 1240 5 49 South 30 East-81.3334 26.23072 5 3,621 Collier Bear Island Dry Hole I 1292 26 44 South 28 East-81.4864 26.61627 9 3,542 Hendry N/A Dry Hole I

PAGE 79

61 Figure 2-2: The Florida Platform and some of the major features of the region (adapted from: Ferber, 1985; Grinnell, 1976; Scott, 1997; Wi nston, 1971).

PAGE 80

62 the region that are important to this study, including the SFB, Middle Ground Arch, Pine Key Arch, the Peninsular Arch, the South Florida Shelf, the Florida Escarpment, and the Lower Cretaceous Reef Trend. 2.3.1.1 Major Features of the Florida Platform South Florida Basin Throughout Florida, Mesozoic and Cenozoic rocks overlie an eroded Precambrian to Jurassic basement-rock complex (Duncan et al., 1994). The SFB is a differentially subsiding area centered in Florida Bay that has a maximum sediment thickness of 4,572 m (15,000 ft) to 5,182 m (17,000 ft), and is part of the larger, regionally subsiding South Florida Embayment that includes the southeastern Gulf of Mexico, south Florida, and the Bahamas (Grinnell, 1976). The SFB comprises approximately 199,429 km2 (77,000 mi2), with the onshore portion representing about half of the basin (Applegate & Pontigo, 1984). During the Late Jurassic and Early Cretaceous, shallow-water carbonates and gypsiferous rocks were deposited in the SFB in water no more than a hundred meters deep (Halley, 1985). Throughout deposition in the basin during this time, carbonate mud rich in organic matter accumulated during the intermittent occurrence of salinity-strati fied interior lagoons; however, sedimentation typically kept pace with subsidence of the basin and shallow-water marine deposition was dominant (Halley, 1985). Lower Cretaceous Reef Trend The Lower Cretaceous Reef Trend, a long arcuate reef system that built up or accentuated the Florida Escarpment, also bounds the SFB to the west, and extendsfrom Mexico both eastward and southward, with the southerly extension of the ancient reef trending around the Gulf of Mexico to Cuba (Ferber, 1985; Grinnell, 1976; Halley,1985). The extensive reef growth associated with the ancient reef system is thought to be the result of factors such as geologic continuity, uniform geologic history, and uniform

PAGE 81

63 subsidence, especially for the foundation on wh ich the reef system prospered (Grinnell, 1976). The Lower Cretaceous Reef Trend probably acted as a sediment trap that consequently created a shallow, back-reef environment and enhanced back-reef fill between the ancient reef trend and the peninsular-Florida land area (Grinnell, 1976; Klopp, 1975). Peninsular Arch The Peninsular Arch is a major north-northwest to south-southeast trending anticlinal fold, or topographic high, about 443 km (275 mi) long that is the dominant structural feature of Florida, especially in the northern two-thirds of the Florida peninsula (Applin & Applin, 1965; Duncan, et al., 1994; Klopp, 1975; Puri & Banks, 1959). According to Duncan et al (1994), the Peninsular Arch is a positive basement element cored by a large block of Precambrian rock that is overlain by Paleozoic stratigraphic units. The Peninsular Arch consists of igneous and metamorphic, pre-Mesozoic rocks (Klopp, 1975) that affected the deposition of sediments from the Jurassic into the Early Cenozoic, with sediments being deposited around but not completely covering the Arch (Ferber, 1985; Miller, 1986). Pine Key Arch The Pine Key Arch forms the southern flank of the SFB, and parallels the Florida Keys. The structural feature is thought to have affected deposition of sediments in the Early Cretaceous (Klopp, 1975). South Florida Shelf The South Florida Shelf is a broad and relatively flat, carbonate and evaporite platform that expanded outward into the SFB along its northern and eastern margins, becoming well-developed in the Early Cretaceous, but probably best-developed in the Trinity age of the Early Cretaceous (Ferber, 1985; Grinnell, 1976). The shelf is ~322 km (200 mi) long, extending from Charlotte County south to the Florida Keys, and is more or

PAGE 82

64 less coincident with the oil-producing Trend (Applin & Applin, 1965). During the Cretaceous and through much of the Tertiary, sedimentation on the South Florida Shelf was dominated by shallow-water carbonates that were deposited on a slowly subsiding platform (Ferber, 1985). The highly cyclic nature of these deposits, controlled by local sea level changes, is indicated by sequences of marine limestones with thin, alternating deposits of evaporite-dolomite facies (Ferber, 1985). 2.3.1.2 Sunniland Trend Onshore, the more porous units of the SFB are within the Sunniland Trend, a slightly arcuate band about 233 km (145 mi) long and 32 km (20 mi) wide (Figure 2-1; Applegate & Pontigo, 1984). Numerous oil plays are located along the Trend and are confined to mound-like structures thought to be Cretaceous shallow-water bioherms, banks, bars, and barrier beaches made of coarse fossil fragments, mostly rudistids. Wave action in these shallow-water envir onments probably winnowed the source rock carbonates, thereby creating the existing porosity and permeability, while in some areas porosity within the Trend has been enhanced by dolomitization (Applegate & Pontigo, 1984; Lane, 1994). Commercial oil production in the Trend is restricted to the locations of these ancient coastal mounds within the South Florida Shelf, which are surrounded laterally by finer-grained and less permeable limest ones, and are overlain and underlain by evaporite deposits (Mitchell-Tapping, 1986). 2.3.2 Stratigraphic Units An oil-producing and porous geologic unit considered for CO2-EOR and CCS operations in southern Florida is the Sunniland Formation, which is the major focus of this chapter. The stratigraphic traps and lateral decrease in permeability beyond the region of the Trend form the seals that hold the oil of the Sunniland Formation in place. These seals, together with the overlying Lake Trafford Formation and the underlying

PAGE 83

65 Punta Gorda Anhydrite, would serve as the seals for the Sunniland Formation during potential CO2-injection operations. The stratigraphic layout of these geologic units is displayed in the cross-section of Figure 2-3 and the stratigraphic column of Figure 2-4. For Figure 2-3, the cross-section shows stratigraphic variation with decreasing elevation, using sea level as the datum, and the location of the cross-section transect is located in Figure 2-1. Table 2-2 provides information on the depths of occurrence and thicknesses of these formations based upon the wells evaluated in this study. The following provides a detailed description of the Sunniland Formation, with a brief discussion of the underlying Punta Gorda Anhydrite and the overlying Lake Trafford Formation. 2.3.2.1 Punta Gorda Anhydrite The basal Sunniland Formation was deposited upon the low-relief, upper surface of the Lower Cretaceous Punta Gorda Anhydrite. This underlying unit is a massive anhydrite (on average, about 83% anhydrite) t hat forms the Sunniland Formation’s lower seal. It also contains irregularly interbedded layers of micritic limestone, gray and nonporous dolomite, and minor amounts of calcareous shale (Applegate & Pontigo, 1984; Applin & Applin, 1965; Oglesby, 1965). Salt beds were also observed within the lower portion of the unit in the Florida Keys, and are not known to exceed 9 m (30 ft) in thickness (Applin & Applin, 1965; Applegate & Pontigo, 1984). The Punta Gorda Anhydrite is a wedge-like unit that is approx imately 183 m (600 ft) thick along the Trend; however, thicknesses of up to 250 m (820 ft) have been observed in Collier County (Applegate & Pontigo, 1984). 2.3.2.2 Sunniland Formation The Lower Cretaceous Sunniland Formation was deposited on a very-slowly subsiding platform in a shallow-water marine environment, and sedimentation was greatly affected by sea level transgressions and regressions, which resulted in several sequences of carbonates and evaporites within the formation (Lane, 1994). The contact

PAGE 84

66 Figure 2-3: Stratigraphic cross-section along the length of the Trend, as denoted in Figure 2-1.

PAGE 85

67 Figure 2-4: Stratigraphic column of the SFB alon g the Trend (from: Pollastro et al., 2001).

PAGE 86

68 Table 2-2: Formation picks for exploratory/discovery oil wells evaluated in this study. Well P# County Ground Elevation (m) Top of Lake Trafford Formation (m bls) Total Thickness (m) Top of Sunniland Formation (m bls) Total Thickness (m) Top of Punta Gorda Anhydrite (m bls) 92 Collier 7 3,468 55 3,523 73 3,597 103 Collier 6 3,551 44 3,595 62 3,656 115 Miami-Dade 3 3,222 52 3,274 79 3,353 129 Miami-Dade 3 3,441 45 3,487 64 3,551 130 Collier 3 3,441 67 3,508 99 3,607 167 Miami-Dade 3 3,378 68 3,446 66 3,512 205 Miami-Dade 2 3,392 55 3,447 78 3,525 214 Miami-Dade 2 3,395 50 3,446 79 3,524 278 Miami-Dade 3 3,419 52 3,471 79 3,550 279 Hendry 12 3,436 45 3,481 --300 Collier 6 3,475 40 3,515 80 3,596 311 Collier 5 3,487 45 3,532 --326 Hendry 11 3,439 51 3,490 --331 Miami-Dade 3 3,392 62 3,453 70 3,523 360 Hendry 10 3,444 38 3,482 64 3,546 376 Miami-Dade 3 3,400 53 3,453 85 3,539

PAGE 87

69 Well P# County Ground Elevation (m) Top of Lake Trafford Formation (m bls) Total Thickness (m) Top of Sunniland Formation (m bls) Total Thickness (m) Top of Punta Gorda Anhydrite (m bls) 384 Collier 5 3,483 43 3,525 --386 Miami-Dade 3 3,381 72 3,454 62 3,516 401 Collier 7 3,501 60 3,561 73 3,634 425 Lee 9 3,449 47 3,496 77 3,573 437 Hendry 10 3,442 48 3,490 67 3,557 472 Charlotte 9 3,332 48 3,380 76 3,456 475 Charlotte 12 3,284 42 3,326 80 3,406 477 Collier 6 --3,549 79 3,628 486 Hendry 10 3,439 41 3,480 75 3,555 488 Hendry 10 3,433 32 3,465 45 3,510 527 Lee 9 3,428 51 3,479 72 3,551 561 Hendry 6 3,443 43 3,485 --564 Monroe 3 3,507 54 3,560 45 3,605 565A Hendry 6 3,418 52 3,470 69 3,539 596 Collier 3 3,509 63 3,573 90 3,663 662 Hendry 6 3,427 43 3,470 73 3,543

PAGE 88

70 Well P# County Ground Elevation (m) Top of Lake Trafford Formation (m bls) Total Thickness (m) Top of Sunniland Formation (m bls) Total Thickness (m) Top of Punta Gorda Anhydrite (m bls) 683 Charlotte 8 3,365 46 3,412 84 3,495 684 Lee 9 3,445 52 3,497 73 3,570 697 Collier 9 3,450 52 3,502 67 3,569 700 Hendry 7 3,493 48 3,541 75 3,616 702 Hendry 6 3,427 43 3,470 73 3,542 735 Lee 9 3,516 51 3,567 72 3,639 736 Collier 5 3,500 50 3,550 77 3,628 754 Monroe 2 3,413 86 3,499 53 3,552 758 Lee 6 3,415 45 3,460 70 3,530 760 Collier 9 3,464 49 3,513 70 3,584 803 Collier 11 3,467 56 3,523 87 3,610 821 Collier 5 3,490 46 3,535 --829 Collier 3 3,415 53 3,467 81 3,548 831 Collier 3 3,470 50 3,520 90 3,610 838 Collier 5 3,482 42 3,524 --853 Collier 7 3,479 45 3,524 78 3,602

PAGE 89

71 Well P# County Ground Elevation (m) Top of Lake Trafford Formation (m bls) Total Thickness (m) Top of Sunniland Formation (m bls) Total Thickness (m) Top of Punta Gorda Anhydrite (m bls) 858 Lee 6 3,520 44 3,564 --859 Lee 6 3,513 42 3,555 --864 Hendry 8 3,483 43 3,525 84 3,609 865 Collier 5 3,452 47 3,500 83 3,582 871 Collier 4 3,488 55 3,543 76 3,619 897 Collier 5 3,490 45 3,535 90 3,625 904 Hendry 10 3,439 50 3,489 64 3,554 926 Hendry 10 3,445 47 3,492 68 3,560 928 Collier 4 3,416 51 3,467 87 3,555 947 Collier 8 3,514 49 3,563 83 3,646 951 Hendry 9 3,418 43 3,461 68 3,529 982 Collier 5 3,505 45 3,550 84 3,634 983 Hendry 11 3,442 48 3,490 --990 Hendry 11 3,399 43 3,442 67 3,509 1014 Lee 7 3,439 43 3,482 76 3,558 1016 Collier 11 3,482 55 3,537 69 3,606

PAGE 90

72 Well P# County Ground Elevation (m) Top of Lake Trafford Formation (m bls) Total Thickness (m) Top of Sunniland Formation (m bls) Total Thickness (m) Top of Punta Gorda Anhydrite (m bls) 1026 Hendry 9 3,443 47 3,490 62 3,552 1057 Collier 9 3,453 37 3,489 --1059 Collier 5 3,456 54 3,509 79 3,588 1063 Collier 4 3,450 40 3,490 83 3,573 1065 Collier 5 3,459 48 3,506 74 3,581 1070 Hendry 9 3,420 40 3,460 --1086 Collier 3 3,455 37 3,492 59 3,551 1118 Collier 5 3,570 43 3,612 --1119 Collier 6 3,598 55 3,652 --1127 Collier 7 3,509 43 3,552 91 3,643 1131 Lee 9 3,527 39 3,566 --1134 Collier 7 3,519 43 3,562 92 3,654 1142 Collier 6 3,477 46 3,523 --1147 Hendry 9 3,443 52 3,495 --1151 Hendry 9 3,421 40 3,461 --1201 Collier 7 3,476 42 3,518 82 3,600

PAGE 91

73 Well P# County Ground Elevation (m) Top of Lake Trafford Formation (m bls) Total Thickness (m) Top of Sunniland Formation (m bls) Total Thickness (m) Top of Punta Gorda Anhydrite (m bls) 1202 Collier 10 3,451 38 3,489 --1208 Collier 7 3,484 43 3,527 82 3,609 1216 Collier 4 3,442 50 3,492 80 3,571 1240 Collier 5 3,499 46 3,545 --1292 Hendry 9 3,419 48 3,467 60 3,528

PAGE 92

74 between the Sunniland Formation and the underlying Punta Gorda Anhydrite is generally sharp; however, in some instances the contact is gradational and thin beds of anhydrite interfinger with limestone and dolomite lenses of the Sunniland Formation. The Sunniland Formation is a saline formation that was initially referred to as the “Sunniland Limestone;” however, because the unit also contains various amounts of dolomite and anhydrite, as opposed to solely being a limest one, the unit was also referred to as the “Sunniland Formation.” The name was officially changed to the “Sunniland Formation” by Applegate and Pontigo (1984) around the mid-1980s. The “reefs” which make up the Sunniland Formation are not considered true patch reefs, but are instead referred to as “localized mounds” which were originally composed of marine animals, primarily rudistids, as well as pellets and other organic, sea-floor debris (Lane, 1994). These mounds were also created by calcareous algae, seaweed, and various types of foraminifera and gastropods (Lane, 1994). Several different lithologic units can be characteristic of the Sunniland Formation, each of which was either deposited during a sea level regression or transgression, although not all units are found locally. The lowermost unit of the formation (Unit 5), sometimes called the “Rubble Zone” due to its tendency to fracture during drilling operations, consists of a dark-gray or dark-brown, organic-rich, indurat ed, conchoidally fracturing, occasionally argillaceous, micritic limestone that often contains stylolites infilled with bitumous or argillaceous residue indicative of post-depositional alteration (Applegate & Pontigo, 1984; Pontigo, 1980). The overlying black shal e unit (Unit 4) is a dense, organic-rich, argillaceous limestone that, together with the underlying “Rubble Zone” is known as the Cape Sable Member of the formation, and is considered a potential petroleum source rock in certain areas of the SFB (Applegate & Pontigo, 1984; Ferber, 1985). A confining unit consisting of a light-brown to cream-colored, miliolid-rich, occasionally dolomitic limestone overlies the Black Shale unit, and forms a local seal for the formation’s oil

PAGE 93

75 plays. The remaining 30.5 m (100 ft) of the Sunniland Formation (Units 1, 2, and 3) consists of the most oil-productive units of the formation, and is generally bioclastic limestone composed mainly of rudistids, algal plates, foraminifera, and pelletal debris that grades laterally into miliolid-rich, nonporous limestone (Applegate & Pontigo, 1984). Thin layers and nodules of anhydrite are located throughout the Sunniland Formation in varying abundance and thickness, and were predominantly deposited as gypsum that were later altered to anhydrite, although some may have primarily been deposited as anhydrite (Klopp, 1975). Dolomite beds within the Sunniland Formation reach a maximum thickness of 18 m (60 ft) along the Trend, which is approximately 20% or more of the total thickness of the formation. Up-dip and to the northeast of the Trend, dolomite thickness decreases to 6 m (20 ft) and then gradually increases to 30.5 m (100 ft) in Palm Beach County, while down-dip and to the southwest of the Trend, in the deeper part of the SFB, dolomite abruptly pinches out (Figure 2-5; Applegate & Pontigo, 1984; Pollastro et al., 2001). The Sunniland Formation has been penetrated by oil exploratory/discovery wells in central and southern Florida. The up-dip limit of the Sunniland Formation extends across the Florida peninsula from just south of St. Petersburg east to the vicinity around Stuart. The thickness and depth of occurrence for the formation generally increase toward the southwest within the SFB (Klopp, 1975). Figure 2-6 and Figure 2-7 were created based upon data from wells evaluated in this study, and display the thickness of the Sunniland Formation and the top of the Sunniland Formation, respectively, along the Trend. According to Applin & Applin (1967), all wells that have penetrated the entire Sunniland Formation indicate that the unit is continuously underlain by the Punta Gorda Anhydrite, with the exception of two wells in Palm Beach County, where the Punta Gorda Anhydrite is missing and the Sunniland Formation is underlain by lower Trinity

PAGE 94

76 Figure 2-5: Contour map displaying the thickness of dolomite within the Sunniland Formation (from: Applegate & Pontigo, 1984).

PAGE 95

77 Figure 2-6: Isopach contour of the Sunniland Formation along the Trend.

PAGE 96

78 Figure 2-7: Isolith contour of the Sunniland Formation along the Trend.

PAGE 97

79 age rocks of the Lower Cretaceous. The thickness of the Sunniland Formation varies throughout its extent, and ranges from 21-91 m (69-300 ft) thick (Applin & Applin, 1967); however, in the study area along the Trend, t he formation generally ranges from 61-99 m (200-325 ft) thick, with two, spatially limited locations having thicknesses less than 61 m (200 ft), as seen in Figure 2-8. The variation in thickness for the formation is thought to be due to the sedimentation impacts of the Peninsular Arch, as well as to the effects of a small anticline flexure that formed contemporaneously with the deposition of the Sunniland Formation (Klopp, 1975). Oil in the Sunniland Formation originated from algal source beds present in the formation, and subsequently migrated via stylolites and filled reservoirs in porous skeletal and pelletal, as well as micritic, limestone (Klopp, 1975). Dolomicrites or anhydrites of low permeability form the stratigraphic traps that restrict further oil migration. Because oil migration and restriction occurs in this manner, source rocks are consequently located within several carbonate-evaporite sequences of the Sunniland Formation (Klopp, 1975). The majority of the oil production in the Trend comes from dark, organic-rich limestone, which can be found in the individual bioclastic mounds that are typically located in the upper Sunniland Formation (Lane, 1994; Pollastro et al., 2001). Southwest of the Trend, the upper Sunniland Formation is replaced by anhydrites and the dark, organic-rich carbonates are instead found in the micrites of the lower Sunniland Formation (Applegate & Pontigo, 1984). Applegate (1983) points out that productive segments within the top 30.5 m (100 ft) of the Sunniland Formation along the Trend have a miliolid content of around 5%, whereas the non-productive segments of the formation have a miliolid content of around 20%. Wave-action probably winnowed away the chalky, calcareous ooze deposited where miliolids once flourished in calm waters, therefore contributing to the highly porous nature of the bioclastic, productive mounds. In other areas, the productive mounds were replaced by chalky, non

PAGE 98

80 Figure 2-8: Map displaying the active and inactive oil fields of the Trend, as well as the South Florida Shelf (revised from: Applegate & Pontigo, 1984; Ferber, 1985 ).

PAGE 99

81 porous/non-permeable, miliolid-rich beds that formed stratigraphic traps, such as those seen in Sunoco Felda and West-Sunoco Felda fields (Applegate, 1983). Specifically, up-dip and to the northeast of the Trend, the Sunniland Formation thins and the dark, organic-rich micrites are partially replaced by dolomite, while the porous bioclastic mounds grade laterally into miliolid-rich limestone of low porosity and permeability (Applegate, 1983; Applegate & Pontogo, 1984; Grinnell, 1976; Lane, 1994). The general producing zone in the Sunniland Formation is within the upper portion, from about 3,451 m (11,322 ft) bls to 3,625 m (11,892 ft) bls, although in some areas it can be as deep as 3,810 m (12,500 ft) bls, with each productive zone averaging approximately 6-15 m (20 to 50 ft) in thickness (Applegate & Pontigo, 1984). Lake Trafford Field has the only commercial oil well producing from the lower Sunniland Formation. Production in this area is believed to be due to fracture porosity, as oil in this portion of the formation is typically trapped in the micritic limestone and is not easily recovered (Applegate & Pontigo, 1984). 2.3.2.3 Lake Trafford Formation Once Sunniland Formation deposition ceased, the SFB anhydrites spread laterally out of the lower basin and across the South Florida Shelf, forming a broad, flat evaporite surface known as the top of the Lake Trafford Formation (Grinnell, 1976). The contact between the Lake Trafford Formation and the Sunniland Formation is typically gradational, with lenses of limestone containing nodular anhydrite interfingering with limestone and dolomite. The Lower Cretaceous Lake Trafford Formation, also known as the “Upper Massive Anhydrite,” would provide the upper seal and caprock for the Sunniland Formation during CCS operations, as displayed in Figure 2-4. The Lake Trafford Formation was deposited in a tidal flat/sabkha depositional environment that created a sequence of anhydrite, fine dolomite, and gray, micritic, skeletal limestone (Ferber, 1985; Halley, 1985). In the SFB, thickness for the unit ranges from

PAGE 100

82 approximately 61 m (200 ft) to ~107 m (350 ft) (Applegate & Pontigo, 1984; Halley, 1985); however, within the study area along the Trend, thicknesses range from 32-86 m (105-281 ft), and average 40-49 m (130-160 ft) thick. 2.4 Sunniland Trend Oil Fields There are two oiland gas-producing regions in Florida: Santa Rosa County in northwest Florida, or the Panhandle, and the Trend of the SFB in Charlotte, Lee, Collier, Hendry, Monroe, and Miami-Dade counties. In 2007, the Trend oil fields came under the control of a single operator, BreitBurn Energy Partners L.P. (BreitBurn), a company that specializes in extracting the final recoverable oil volume from post-mature oil fields, although several individual oil-production wells are currently run by other operators. The Trend was discovered in 1940 at Sunniland Siding in Collier County, via a discovery well drilled by Humble Oil Company known as Humble Oil Company Gulf Coast Realties Well No. 1. This discovery well consequently led to the exploration of the Trend and to the development of its first commercial oil field, Sunniland Field. Sunniland Field comprises 2,080 acres and had an estimated 38 million barrels of OOIP upon discovery, of which 19 million barrels were recovered during primary and secondary recovery (Applegate & Pontigo, 1984; Pontigo, 1980), for a recovery efficiency of ~50%. As shown in Figure 2-8, 13 additional commercial oil fields were later established within the Trend; however, six are currently inactive due to low productivity, according to the 2008 Florida Geological Survey (FGS) Annual Production Report (FGS, 2008). For all 14 Trend oil fields, there were an estimated 261 million barrels of OOIP and 106 million barrels of estimated recoverable oil, giving a recovery rate of ~41%. For comparison, the three oil fields in the Florida Panhandle (Jay Field, Blackjack Creek Field, and McClellan Field) have collectively produced about 480 million barrels of oil since their establishment. The largest and most productive Trend oil field is West-Sunoco Felda (approximately 7,660 acres), which has yielded ~47 million barrels of oil since 1966 out

PAGE 101

83 of an estimated 143 million barrels of OOIP (FGS, 2008; Pollastro et al., 2001). Next in size are the two most recently discovered co mmercial oil fields within the Trend, Bear Island and Raccoon Point fields. Bear Island Field has produced nearly 13 million barrels of oil since 1972, and Raccoon Point Field has produced 18 million barrels of oil since 1978 (FGS, 2008). Of the remaining Trend commercial oil fields, Sunoco-Felda, Mid-Sunoco Felda, Lehigh Park, and Corkscrew fields produced no more than ~10 million barrels of oil, while Lake Trafford, Baxter Island, Seminole, Pepper Hammock, Townsend Canal, and Forty Mile Bend produced no more than a few hundred thousand barrels of oil. As shown in Figure 2-9, and later discussed in sections 2.6 and 2.7 of this chapter, the porosity of the source rocks in the isolated mounds of the Trend is quite high, averaging 15% and reaching 45% in some sections; however, not all of the higher porosity sections support oil production, and the area underlain by porous units within the upper Sunniland Formation is much larger than the area of the producing oil fields (Applegate & Pontigo, 1984; Lloyd, 1996). In addition, Beinert (1976) reports that an area more than 50 mi2 within the Trend may be underlain by geologic units, at least 8 m (25 ft) thick, that contain porosity values of 15% or greater. Griffin et al. (1969) reported a geothermal gradient in the Trend of 0.98oF/30.5 m (100 ft) to 1.08oF/30.5 m (100 ft). Bottom-hole temperatures (BHTs) for the Sunniland Formation within the study area and along the Trend range from 36-128 degrees ( ) Celsius (C), with an average temperature of 84 C. The BHTs for the production/dry-hole wells completed in the Sunniland Formation are comparatively low, and low BHTs typically represent conditions that are inadequate for the generation of light, mature oils. The thermal maturity of the Sunniland Formation is moderately immature in up-dip wells and grades to moderately mature in down-dip wells, with a gradual increase in thermal

PAGE 102

84 Figure 2-9: Equivalent porosity of Sunn iland Formation (from: Applegate & Pontigo, 1984 ) .

PAGE 103

85 maturity with depth; therefore, the hydrocarbon-generating potential of the formation is poor up-dip, but is excellent down-dip in t he fore-reef environment (Applegate & Pontigo, 1984). Oil produced from the upper Sunniland Formation shell mounds has an American Petroleum Institute (API) gravity that ranges from 24 -28 (Lloyd, 1996). For comparison, light, Texas crude-oil typi cally has an API gravity of about 40 (U.S. Energy Information Administration, 2009). An API gravity value is an indication of how heavy or light liquid-petroleum is when compared to water. If liquid-petroleum has an API gravity value greater than 10 it is lighter than water; conversely, if the API gravity value is less than 10 it is heavier than water and therefore sinks. All API gravities are viewed in terms of relative density when comparing reservoirs of oil. Specifically, the higher the API gravity, the less dense and lighter the oil. Oils with API gravities of 40 -45 are the most ideal and sought-after types of oil, as they have shorter hydrocarbon chains, are less viscous, are more mature, and require less refining (French, 1989). Crude oil with API gravities less than 10 is called bitumen, which is a sticky, tarry form of petroleum that must be heated or diluted before it will flow. Bituminous residue generally fills styolitic traceries that are common in the Sunniland Formation. In addition, bituminous material fills small fractures and coats the walls of small pores and microfossils within the formation (Applin & Applin, 1967). The gas to oil ratio for the Sunniland Formation within the Trend is 100:1, and this fact coupled with the low API gravities of the formation’s oil are thought to be due to the oil’s generation near the low-temperature limits for oil formation (Applegate & Ponitgo, 1984). According to Oglesby (1966) and Applegate & Pontigo (1984), there are several pronounced minimum gravity anomalies that are aligned in a northwest-southeast trending direction, from Lee County to Miami-Dade County (Figure 2-10). The Trend oil

PAGE 104

86 Figure 2-10: Bouguer anomaly map of south Florida, depicting minimum gravity anomalies (from: Applegate & Pontigo, 1984). The two northernmost anomalies are outlined in red.

PAGE 105

87 fields that have been established to date are located on or near the two northernmost anomalies. Oglesby (1966) believed that during the Early Cretaceous, subtle topographic highs were probably created due to rhyolite of the Late Triassic and Early Jurassic ages, which subsequently provided a suitable environment for the development of porous zones within the Sunniland Formation, and ultimately led to the creation of the gravity anomalies. The high density areas of southern Florida are thought to be due to the presence of anhydrite units. 2.5 Methods and Procedures 2.5.1 Well Selection Collectively, 85 exploratory/discovery oil wells were studied throughout the Trend, for evaluation of the Sunniland Formation in both the Trend and the Trend oil fields. The location of each of these wells is depicted in Figure AIII-1 of Appendix III. All evaluated wells provided information for Lake Trafford Formation, Sunniland Formation, or Punta Gorda Anhydrite picks; however, only 69 of these wells were used to derive porosity values for the Sunniland Formation. For those wells used for porosity derivation, there were three major criteria for the well-selection process: 1) the well had to penetrate the entire Sunniland Formation, 2) the well had to have at least one geophysical log available that covered the entire Sunniland Formation, from which porosity could be derived, and 3) for wells that had intentional or unintentional curves in the wellbore, the porosity log had to be reported in true vertical depth (TVD). In rare cases where no porosity logs could be identified that covered the entire formation for a specific area, wells with porosity logs that covered most of the Sunniland Formation, minus about +/-15 m (50 ft) in the lower portion of the unit, were selected for evaluation, as typically the major porous and potential injection zones were located within the upper 30.5-46 m (100-150 ft) of the formation; however, there could only be one of these types of wells located in a specific area of interest (e.g., an oil field).

PAGE 106

88 For each of the Trend oil fields, at least three wells were chosen for a field-wide evaluation of the Sunniland Formation and its porosity, as well an evaluation of the nature of the seals or caprock for the formation for use in CCS operations. Typically, these three wells consisted of an oil-production well, a non-producing/dry-hole well near the production well, and an isolated, dry-hole well located within the outer extent of the oil field, herein denoted as P, NP, and I, respectively; however, limitations existed for this type of well-selection in certain fields, specifically the smaller and less-explored or developed fields, due to the challenges of identifying wells that both penetrated the entire extent of the Sunniland Formation, as well as providing at least one porosity log. Where such limitations existed, every effort was made to identify three wells that met the two major well-selection criteria, regardless of production or non-production/dry-hole status. Additionally, there were three Trend oil fields (Corkscrew Field, Raccoon Point Field, and Townsend Canal Field) where only two exploratory/discovery wells could be identified that met the three major well-selection criteria. All 85 discovery/exploratory wells located throughout the extent of the Trend, including the 41 wells that were used to evaluate the Trend oil fields, were used to evaluate and interpolate the porosity of the Sunniland Formation throughout the extent of the Trend, as well as to examine the potential se als or caprock for the formation. Similar limitations existed in the well-selection process for the full extent of the Trend. Evaluation of the Trend was limited to the existing well-coverage, which in some regions was dense due to the presence of past or current oil production or exploration, while in some regions well-coverage was sparse, such as the eastern boundary of the Trend and the northern and southern extent of the Trend in Charlotte and Miami-Dade counties, respectively. In addition to well-coverage limitations throughout the extent of the Trend, challenges existed in meeting the three major well-selection criteria; therefore, efforts were made to select wells that provided the best possible coverage of the north

PAGE 107

89 northwestern, western, eastern, and south southeastern extents of the Trend which also met the three major well-selection criteria. 2.5.2 Porosity Determination Geophysical logs for exploratory/discover y wells within the Trend were examined in order to obtain data for the estimation of porosity for the Sunniland Formation, and to identify the upper and lower boundaries of the Lake Trafford Formation and Sunniland Formation, as well as the top of the Punta Gorda Anhydrite. All geophysical porosity logs were provided by the Florida Department of Environmental Protection (FDEP) Bureau of Mining and Minerals Regulation Oil and Gas Section. With the exception of P# 1292, all geophysical logs reviewed in this study were created by Schlumberger and were interpolated using figures created by the company specifically for Schlumberger geophysical-log interpretation. Geophysical logs created for P# 1292 were created by Halliburton; therefore, figures designed for Halliburton geophysical-log interpretation were used for porosity derivation. Schlumberger (1989) provided all Schlumberger porosity-log interpretation figures for porosity determination, an example of which is provided in Figure 2-11, and Halliburton (2008) provided all Halliburton porosity-log interpretation figures for porosity determination, all of which are located in Appendix II. The types of geophysical porosity logs used in this study for the purpose of deriving porosity values included bulk density logs, borehole-compensated sonic (BCS) logs (i.e., acoustic logs), compensated neutron logs (CNL), and dual-porosity, compensated neutron-compensated formation density (CNL-FDC) logs. The measurements made during the generation of sonic, neutron, and density logs depend upon the porosity ( ) of the penetrated formation, the lithology of the formation, the type of formation fluid, and, in some instances, the geometry of the pore structure (Schlumberger, 1989). When the lithology of the formation is known, correct porosity values can be obtained using a single porosity log; however, when the lithology

PAGE 108

90 Figure 2-11: Determination of porosity from true bulk density (from: Schlumberger, 1989).

PAGE 109

91 is not known, more than one geophysical log has to be used or the lithology has to be confirmed using cores or well cuttings for the corresponding well, or by using mud logs and core descriptions or analyses which describe the lithology of the formation at various intervals. Rock cores and well cuttings were provided by the FGS, when necessary. For this study, every effort was made to use wells that had more than one porosity log available, so that more than one method of porosity determination could be used to ultimately derive the most accurate value of porosity for the Sunniland Formation. In addition, cross-plots were used when multiple porosity logs were available, which were effective tools for critiquing porosity and lithology determinations. Porosity for bulk density logs was derived by applying the corrected bulk density ( b) value determined from Figure AII-1 to Figure AII-2. Figure AII-2 uses log-derived bulk density ( log) corrected for borehole size, matrix density ( ma) of the formation (i.e., dolomite, calcite [limestone], or quartz sandstone), and fluid density ( f), which is the density of the fluid saturating the rock immediately surrounding the borehole (i.e., mudfiltrate), to determine the density-porosity of the formation (Schlumberger, 1989). Lithology has to be known in order to use bulk density logs and Figure AII-2 for porosity derivation. For BCS logs, interval transit times (in microseconds per ft [ sec/ft]) were used to derive porosity values using Figure AII-3. There are two sets of curves for matrix velocity (vma) in this figure: a blue set that employs a weighted average transform, and a red set that is based upon the empirical observation of the lithology (Schlumberger, 1989). For both sets of curves, the fluid velocity (vf) of the formation is assumed to be 5,300 ft/s. The red set is recommended for porosity derivation, as it does not require the selection of different matrix times for a given lithology and it gives adequate porosity values for unconsolidated formations (Dewan, 1983). For this method of porosity derivation, lithology for the examined interval has to be known, or the BCS log has to be

PAGE 110

92 used in conjunction with a bulk density, CNL, or CNL-FDC porosity log for accurate porosity and lithology determination. When bulk density or CNL logs were used for porosity derivation in addition to the BCS log for a given well, a cross-plot, provided in figures AII-4 and AII-5, was used to cross check the porosity and lithology determination that was made using the porosity logs. Figure AII-4 is a cross-plot of BCS interval transit time versus b from a bulk density log and figures AII-5 and AII-6 are cross-plots of BCS interval transit time versus porosity derived from a CNL. All cross-plots are for freshwater drilling-fluid and contain two sets of curves: 1) porosity values for each matrix using the sonic time-average algorithm, and 2) the field-observation algorithm. For this study, porosity values were determined using the sonic time-average algorithm, as recommended by Schlumberger for use with carbonate units (Schlumberger, 1989). Figure AII-7 was used to convert CNL poros ity values from limestone to dolomite, when necessary. Lithology has to be known in order to use a CNL for porosity derivation; therefore, additional porosity logs, mud logs, core descriptions, or rock cores were used to determine lithology and thus aid in determining the correct porosity values. The figure can be used with environmentally corrected thermal neutron porosities (TNPH) or with ratio-method thermal neutron porosities (NPHI), both of which can be reported in CNLs. Porosity was determined from the CNL-FDC porosity log by using figures AII-8 and AII-9, which plot the density response against neutron porosity for the formation using freshwater drilling-fluid. Because the equiporosity lines for these cross-plots are virtually straight, porosities can be determined without the knowledge of lithology type (Dewan, 1983); however, in order to use the cross-plots, the limestone matrix noted on the geophysical log must be ‘limestone’ (Dewan, 1983).

PAGE 111

93 2.5.3 Storage Capacity Calculation Storage capacities for the Sunniland Formation were calculated using the volumetric equation for capacity calculation in saline formations provided by the NETL in the Carbon Sequestration Atlas for the United States and Canada (2007). A saline formation evaluated for storage is defined as a porous and permeable body of rock containing water with total dissolved solids exceeding 10,000 milligrams per liter, and therefore deemed unsuitable for drinking, that has the capacity to store large volumes of CO2 (NETL, 2007). The storage capacity calcul ation for saline formations was used to assess and evaluate storage capacities for the Sunniland Formation within the entire Trend, including each Trend oil field. A separate volumetric equation for capacity calculation in oil and gas reservoirs is provided in NETL (2007); however, the equation can only be applied to production wells, as it requires the height of the hydrocarbon column in the reservoir, and many of the Trend oil field wells used in this study were non-productive (i.e., dry holes). In addition, pertinent data for use of the oil and gas reservoir storage capacity calculation was not available, such as percent oil saturation and amount of OOIP for each well field; therefore, since the Sunniland Formation is a saline formation throughout its extent, including its occurrence in the Trend oil fields, the saline formation equation was deemed more applicable for storage capacity evaluation in each Trend oil field. The volumetric equation for capacity calculation in saline formations uses consistent units and is as follows, with each parameter defined in Table 2-3: GCO2 = A hg tot E This equation estimates the storage capacity of a given formation within a given area, and does not specify the various CO2 storage mechanisms that may be used in the process (i.e., structural and stratigraphic trapping, solubility trapping, hydrodynamic trapping, residual trapping, ionic trapping, and mineral trapping); however, displacement

PAGE 112

94 Table 2-3: Definition of parameters for storage equation (adapted from: NETL, 2007). Parameter Units* Description GCO2 M Mass estimate of Sunniland Formation CO2 storage capacity A L2 Geographical area that defines the region assessed for CO2 storage capacity calculation hg L Gross thickness of the portion of the Sunniland Formation for which storage capacity is assessed within the region defined by A tot L3/L3 Average porosity of entire Sunniland Formation over thickness hg M/L3 Density of CO2 evaluated at pressure and temperature that represents the storage conditions anticipated for Sunniland Formation averaged over thickness hg E L3/L3 CO2 Storage Efficiency Factor that represents a fraction of the total pore volume that is filled by CO2 *L is length; M is mass

PAGE 113

95 of saline waters in the pore spaces of the formation by immiscible CO2 is the fundamental trapping mechanism implicit in the calculation. If the CO2-injection wells are located regularly throughout the region of interest (i.e., an oil field) to maximize storage in the injection zone, the storage capacity estimate is the maximum amount available within the region because there is no restriction on the number of wells that could be used for injection (NETL, 2007). In addition, since formation heterogeneity is accounted for in the volumetric equation for storage capacity calculation, this estimate can be considered a fair approximation of the maximum storage capacity. Polygons were created in ArcGIS™ Suite that encompassed a given region of interest (i.e., a Trend oil field or the entire Trend), such as those depicted in Figure 2-8. These polygons were used with ArcGIS™ Suite to calculate the area (A) of each region in order to estimate its storage capacity. Brennan et al. (2010) presents methodology recently developed by the US Geological Survey (USGS) for evaluating geologic CO2 storage units, and identifies porous units with porosity values of at least 8% as suitable for CO2 sequestration. This investigation had an even more conservative approach, and identified porous zones within the Sunniland Formation with porosity values greater than or equal to 10% as appropriate for injection and storage of CO2. Each exploratory/discovery oil well that was evaluated for porosity in this study has multiple porous zones within the Sunniland Formation that are at least 3 m (10 ft) thick and have porosities greater than 10%, which are separated by layers of dolomite or anhydrite of low porosity (<10%) and permeability and varying thickness. This vertical heteroge neity is displayed in the striplogs created for each well, located in Appendix V. For each well evaluated for porosity in the study area, if a low-permeability layer occurred within the Sunniland Formation that exceeded 10% of the total thickness of the

PAGE 114

96 unit for that well, then multiple, separate storage sub-zones were assigned to that well as part of the Sunniland Formation “storage zone,” which were separated by the lowpermeability layer(s). Specifically, if there were two separate storage sub-zones in each well, they were termed the “upper” and “lower” storage zones, and if there were three separate storage sub-zones in each well, they were termed the “upper,” “middle,” and “lower” storage zones. The value of hg for each well was calculated in two different ways depending upon the use of the Sunniland Formation for either CO2-EOR or CCS alone. During CO2-EOR operations, CO2 would only be injected and subsequently stored in the depth interval where residual oil content is highest in a given oil field. The injected-CO2 would not be exposed to the entire Sunniland Formation for potential trapping and storage; therefore, for calculating the CO2 storage capacity for the Sunniland Formation in each Trend oil field for use in CO2-EOR operations, only the top major porous zone or oilproduction zone within the formation was used for hg determination in each well. This hg interval may have also included thin lenses of low permeability units no more than 0.6 m (2 ft) thick. Conversely, for CCS operations all major porous zones within the Sunniland Formation of the Trend could potentially be used for CO2 storage, and therefore hg needed to account for all storage sub-zones. For calculating the CO2 storage capacity for the Sunniland Formation for the entire extent of the Trend for use in CCS operations, the value of hg for each evaluated well was the total thickness of all the storage subzones in that well, or the sum of all of the thicknesses estimated for each sub-zone within that well. The final value of hg that was actually used in the storage capacity calculation for either a given oil field or for the entire extent of the Trend was the average of each hg value calculated for each well located in the region of interest. In order to calculate the value of tot for the Sunniland Formation used in the storage capacity estimation for either a given oil field or for the entire extent of the Trend,

PAGE 115

97 a tot value was first determined for each well. Each well’s tot value was based upon an average of all the porosity values that were derived from the well’s geophysical logs throughout the vertical extent of the Sunniland Formation within that well. If there were multiple storage sub-zones assigned to a given well, then an average porosity ( avg) value was first estimated for each sub-zone, and then tot for that well was the average of each sub-zone’s estimated avg value. The final value of tot that was used in the storage capacity calculation for either a given oil field or for the entire extent of the Trend was an average of the tot values that were estimated for each well. The density of CO2 and the value used in the storage capacity estimation was 642.57 kg/m3, which was calculated using the hydrostatic pressure of the Sunniland Formation (~120 bar) and the average temperature for every hg assigned to each evaluated well (84 C). The CO2 Storage Efficiency Factor (E) in the volumetric equation for storage capacity calculation is the “…multiplicative combination of volumetric parameters that reflect the portion of a basin’s or region’s total pore volume that CO2 is expected to actually contact,” and accounts for netto effective-porosity, areal displacement efficiency, vertical displacement efficiency, gravity effects, and microscopic displacement efficiency (NETL, 2007). For saline formations, E accounts for the variables that act as physical barriers in a system that prevent CO2 from contacting the entire available pore volume in the storage reservoir, and can also account for the volumetric difference between bulk, total-pore, and effective-pore volumes (NETL, 2007). Additionally, because the thickness of the geologic unit (hg) and its total porosity ( tot) are included in the storage capacity equation, E must account for adjusting gross thickness to net thickness, and total porosity to effective porosity (or interconnected porosity). Because E represents a number of variables, mechanisms, and processes that are typically unknown or may not be well-understood initially, specifically during preliminary basin-

PAGE 116

98 scale storage capacity assessments, and because the subsurface can be highly diverse, determining an accurate and representative value of E can be challenging. According to NETL (2007), the value of E generally ranges from 0.01 to 0.04 with a confidence range of 15 to 85%, as concluded from numerous Monte Carlo simulations conducted by NETL, while others report an E value range of 0.01 to 0.06 (Brennan et al., 2010; van deer Meer, 1995). An E value of 0.03 was chosen to represent the storage efficiency of the Sunniland Formation in this study, which is in agreement with the results of the Monte Carlo simulations found in the NETL Atlas (2007); with simulations that have been conducted to date by individuals at the University of South Florida (USF), which demonstrate a significant increase in post-CO2-injection reservoir pressure that results in large brine displacement and consequent increased storage capacity (Okwen, 2009); and because of the vertical heterogeneity within the geologic unit. 2.5.4 Data Modeling, Interpolation, and Presentation Porosity values derived from geophysical logs for each well evaluated were recorded in 5% range-increments. This dataset is located in Table IV-1 of Appendix IV. For porosity interpolations and cross-sections in this study, porosity values in 10% range-increments were used for graphical clarity. The RockWare program RockWorks™ Version 14, as well as ArcGIS™ Suite Version 9.3, were used to graphically represent geometries and lithologies in the Sunniland Formation, the overlying Lake Trafford Formation, and the underlying Punta Gorda Anhydrite, using strip logs, cross-sections, solid models, and isolithand isopachcontour maps. RockWorks™ and ArcGIS™ Suite were also used to interpolate, model, and visualize the porosity data for the Sunniland Formation within the study area. ArcGIS™ Suite was used to interpolate and model the estimated CO2 storage capacity throughout the Trend. In addition to the borehole-specific data, cross-sectional interpolations, and tabular storage capacity calculations created during the course of this

PAGE 117

99 study, a series of planar interpolations were developed in order to examine the distribution of the variables in the storage capacity equation across the study area. Furthermore, a geospatially-derived storage capacity interpolation was developed using the Spatial Analyst toolbox in ArcGISTM. The purpose of developing the interpolations was twofold: 1) to establish and better understand the distribution of CO2 storage capacity in the Sunniland Formation throughout the study area, as well as the distribution of each of its variables; and 2) to verify and cross-check the CO2 storage capacity that was calculated manually for the Sunniland Formation. Algorithms, specific methods and functions, and procedures that were utilized with these programs are discussed below. RockWorksTM Because data ranges cannot be entered into RockWorks™, porosity data had to be entered into the program as a “Lithology Type”, or lithology value (i.e., “Porosity 1020%”) for its use in modeling and interpolation. For the porosity interpolations conducted between wells throughout a given region of interest, RockWorks™ used the “Horizontal Lithoblending” solid-modeling method, which assigns solid-model voxel nodes by looking outward horizontally from each well in the model in “search circles” of ever-increasing diameter (RockWare, 2008). First, the model assigns the voxels immediately surrounding each well the closest lithology value, which in this study, were actually porosity ranges, such as “Porosity 10-20%”, “Porosity 20-30%”, and so on. Then, the model moves out by a voxel and assigns the next “circle” of voxels the closest lithology value. The model continues in this manner until the program encounters a voxel that has already been assigned a lithology value (presumably from another well in the model). When this occurs, the model skips the node-assignment step for that voxel and continues its progression. Once all nodes have been assigned a lithology value, the model terminates the searching and assign ing process. Solid-model nodes above the

PAGE 118

100 highest well lithology entry and those below the lowest well lithology entry are not assigned a lithology value, or in other words, the model does not extrapolate below the lowest or above the highest control point in the project (RockWare, 2008). This particular solid-modeling method results in “lithozones” around each well, which can end abruptly when the zone from a neighboring well is encountered. This abrupt ending of lithozones is evident in the porosity interpolations of Section 2.6.1. ArcGISTM Suite “Inverse Distance Weighted” (IDW) methods were used for the Sunniland Formation isopachand isolith-contour interpolations, which are interpolation methods that are part of the Geostatistical Analyst graphical user interface of the ArcGISTM Suite. Geostatistical Analyst allows for the user to test multiple interpolation functions based upon data quality, extent, and purpose. The software also allows for the calculation of uncertainty and data variance. The IDW interpolations assume that data points that are relatively close together within a given r egion have similar parameter values compared to those data points that are farther apart. When predicting parameter values within a region that lacks measured-parameter values (or imported, known parameter values), the IDW method will use the measured-parameter values that immediately surround that region to conduct its predicted-interpolation; therefore, the measured-parameter values of data points that are closest to the region being predicted will a have greater influence on the predicted values than those data points that are farther away, and thus, the “local influence” will diminish with distance (ESRI, 2007). “Radial Basis Function” (RBF) spline methods were used for the storage capacity interpolations conducted in this study using ArcGISTM, and are also part of Geostatistical Analyst. The RBF methods are generally c onsidered to be the least-predictive modeling method available in Geostatistical Analyst, and are instead considered a more exactinterpolation technique (i.e., the interpolated surface must go through each data point

PAGE 119

101 that is entered) (ESRI, 2007). Furthermore, the RBF spline method is more of a triangulation between the hard data as opposed to a best-fit approach, such as kriging methods. The RBF spline methods were chosen for this study due to the sparse and widespread distribution of the study wells which provided porosity data within the Trend, and were considered to be the most appropriate methods for modeling storage capacity because they have the least inherent-error of all the interpolation methods available in Geostatistical Analyst. However, because interpolated surfaces only go through actual data points when using the RBF methods, simulations created interpolated contoursurfaces that were bound by the outermost data points in the study area. This resulted in small regions within the Trend that contained no predicted raster surface, and were subsequently identified in each figure as having “I nsufficient Porosity Data.” Specifically, data-availability constraints resulted in the interpolation of 70% of the total study area for the Sunniland Formation. The Map Algebra and Raster Math tools in the ArcGISTM Spatial Analyst toolbox were used to perform the CO2 storage capacity calculation for the Sunniland Formation. The interpolated sequestration reservoir thickness (hg) and average porosity ( tot) variable rasters were multiplied by the storage efficiency factor (E) and the CO2 density ( ) constants to derive a single raster output. The interpolated area (70% of the Trend) was also factored into the storage capacity equation using the Raster Math tool. The output raster layer, which contained the results of the storage capacity calculation, was reclassified into 15,340 1-km2 cells in order to determine the amount of CO2 that could potentially be sequestered in each square kilometer of the interpolated-area. The final raster was a functional display of CO2 storage capacity in 1,000 tCO2 per 1-km2 model cell.

PAGE 120

102 2.6 Results 2.6.1 Porosity Table AIV-1 of Appendix IV provides the Sunniland Formation porosity values derived for each exploratory/discovery oil well evaluated throughout the extent of the Trend, including those wells in the Trend oil fields. Appendix V provides striplogs for each of these wells, which display porosity and lithology variation with depth for the Sunniland Formation. Interpolated-porosity cross-sections of the Sunniland Formation were created for each Trend oil field, with locations displayed in Figure 2-12. Figures 2-13 through 2-26 are the cross-sections created for each Trend oil field, which show interpolated-porosity variation with decreasing elevation within a given field, using sea level as the datum. Additionally, data used in calculating stor age capacities for each oil field (i.e., hg, and BHT) are displayed in each of these figures. Figure 2-27 shows transect locations for interpolated-porosity cross-sections that were created for the Sunniland Formation throughout the entire extent of the Trend, which are displayed in Figure 2-28 through Figure 2-35. Like the porosity cross-sections created for the oil fields, the Trend porosity cross-sections show interpolated-porosity variation with decreasing elevation, using sea level as the datum. Figure 2-36 is a porosity-contour map that displays average-porosity variation for the Sunniland Formation throughout the Trend. 2.6.2 Storage Capacity A summary of the estimated CO2 storage capacities calculated for the Sunniland Formation within each of the Trend oil fields during CO2-EOR is provided in Table 2-4. Collectively, the Trend oil fields have a conservative, total estimated CO2 storage capacity of just over 26 MtCO2. The values of GCO2 in each field were averaged with the geometric-mean, as the geometric-mean is the most-appropriate measure of central tendency when variables are multiplied.

PAGE 121

103 Figure 2-12: Location map displaying cros s-section transects for Trend oil fields.

PAGE 122

104 Well Information P# hg (m) BHT (C) 758140.1291.11 858200.1779.44 85940.1140.56 Figure 2-13: Cross-section displaying interpolated porosity fo r Lehigh Park Field (Transect A-A’). Transect location is depicted in Figure 2-12.

PAGE 123

105 Well Information P# hg (m) BHT (C) 425150.1488.89 1131150.1285.00 486580.1487.78 Figure 2-14: Cross-section displaying interpolated porosity fo r West-Sunoco Felda Field (Transect B-B’). Transect location is depicted in Figure 2-12.

PAGE 124

106 Well Information P# hg (m) BHT (C) 1151190.14128.89 107090.1368.89 Figure 2-15: Cross-section displaying interpolated porosity for Townsend Canal Field (Transect C-C’). Transect location is depicted in Figure 2-12.

PAGE 125

107 Well Information P# hg (m) BHT (C) 279 29 0.2341.11 904 15 0.1573.89 926 21 0.1578.33 Figure 2-16: Cross-section displaying interpolated porosity for Mid-Sunoco Felda Field (Transect D-D’). Transect location is depicted in Figure 2-12.

PAGE 126

108 Well Information P# hg (m) BHT (C) 488 30 0.1485.56 326 19 0.1684.44 360 6 0.1986.11 Figure 2-17: Cross-section displaying interpolated porosity fo r Sunoco Felda Field (Transect E-E’). Transect location is depicted in Figure 2-12.

PAGE 127

109 Well Information P# hg (m) BHT (C) 1201430.1781.1 853210.1687.7 Figure 2-18: Cross-section displaying interpolated porosity for Corkscrew Field (Transect F-F’). Transect location is depicte d in Figure 2-12.

PAGE 128

110 Well Information P# hg (m) BHT (C) 1208 210.1881.11 401 60.1394.44 477 100.1693.33 Figure 2-19: Cross-section displaying interpolated porosity fo r Lake Trafford Field (Transect G-G’). Transect location is depicted in Figure 2-12.

PAGE 129

111 Well Information P# hg (m) BHT (C) 1142 39 0.1772.22 384 36 0.1681.11 300 32 0.1996.11 311 27 0.1936.67 Figure 2-20: Cross-section displaying interpolated porosit y for Sunniland Field (Transect H-H’). Transect location is depicted in Figure 2-12.

PAGE 130

112 Well Information P# hg (m) BHT (C) 702210.1488.89 662210.1388.89 565A360.1389.44 Figure 2-21: Cross-section displaying interpolated porosity fo r Seminole Field (Transect I-I’). Transect location is depicted in Fi g ure 2-12.

PAGE 131

113 Well Information P# hg (m) BHT (C) 736 90.1890.56 1240 40.1281.11 1119 90.1577.78 Figure 2-22: Cross-section displaying interpolated porosity fo r Bear Island Field (Transect J-J’). Transect location is depicted in Figure 2-13.

PAGE 132

114 Well Information P# hg (m) BHT (C) 982 180.2183.89 897 200.1578.89 871 280.1374.44 Figure 2-23: Cross-section displaying interpolated porosity fo r Pepper Hammock Field (Transect K-K’). Transect location is depicted in Figure 2-12.

PAGE 133

115 Well Information P# hg (m) BHT (C) 1065430.1493.33 865290.2292.22 105940.1783.89 Figure 2-24: Cross-section displaying interpolated porosity fo r Baxter Island Field (Transect L-L’). Transect location is depicted in Figure 2-12.

PAGE 134

116 Well Information P# hg (m) BHT (C) 928 350.2280.00 829 130.2278.89 Figure 2-25: Cross-section displaying interpolated porosity for Raccoon Point Field (Transect M-M’). Transect location is depicted in Figure 2-12.

PAGE 135

117 Well Information P# hg (m) BHT (C) 75490.1397.78 331150.1477.78 278620.1465.56 376130.1775.56 Figure 2-26: Cross-section displaying interpolated poros ity for Forty-Mile Bend Field (Transect N-N’). Transect location is depicted in Figure 2-12.

PAGE 136

118 Figure 2-27: Location map displaying Trend porosity cross-section transects.

PAGE 137

119 Figure 2-28: Cross-section displaying interpolated porosity for Transect O-O’. Transect location is depicted in Figure 2-27.

PAGE 138

120 Figure 2-29: Cross-section displaying interpolated porosity for Transect P-P’. Transect location is depicted in Figure 2-27.

PAGE 139

121 Figure 2-30: Cross-section displaying interpolated porosity for Transect Q-Q’. Transect location is depicted in Figure 2-27.

PAGE 140

122 Figure 2-31: Cross-section displaying interpolated porosity for Transect R-R’. Transect location is depicted in Figure 2-27.

PAGE 141

123 Figure 2-32: Cross-section displaying interpolated porosity for Transect S-S’. Transect location is depicted in Figure 2-27.

PAGE 142

124 Figure 2-33: Cross-section displaying interpolated porosity for Transect T-T’. Transect location is depicted in Figure 2-27.

PAGE 143

125 Figure 2-34: Cross-section displaying interpolated porosity for Transect U-U’. Transect location is depicted in Figure 2-27.

PAGE 144

126 Figure 2-35: Cross-section displaying interpolated porosity for Transect V-V’. Transect location is depicted in Figure 2-27.

PAGE 145

127 Figure 2-36: Average-porosity contours for the Sunniland Formation throughout the Trend.

PAGE 146

128 Table 2-4: Estimated CO2 storage capacities for the Trend oil fields during CO2-EOR. Oil Field Area (m2) hg (m) tot (kg/m3) E GCO2(kg) GCO2(tons) Baxter Island 31,551,00017.02 0.17642.570.03 1,791,863,209.98 1,975,191 Bear Island 51,120,7006.590.15642.570.03 962,622,706.63 1,061,110 Corkscrew 7,587,57029.950. 16642.570.03 720,619,231.97 794,347 Forty Mile Bend 53,598,50017.97 0.14642.570.03 2,679,082,885.59 2,953,183 Lake Trafford 8,904,06010.81 0.15642.570.03 286,617,787.35 315,942 Lehigh Park 22,757,7009.980.13642.570.03 568,368,358.77 626,519 Mid-Sunoco Felda 11,601,80020.900.17642.570.03 791,562,364.04 872,548 Pepper Hammock 44,452,10021.650. 16642.570.03 2,967,755,868.83 3,271,391 Raccoon Point 20,383,40021.340. 22642.570.03 1,844,771,685.80 2,033,513 Seminole 28,930,10025.390.13 642.570.03 1,887,969,107.85 2,081,130 Sunniland 24,842,80033.170.18 642.570.03 2,830,747,420.05 3,120,365 Sunoco Felda 41,830,80015.340. 16642.570.03 1,963,325,716.99 2,164,196 Townsend Canal 12,525,90012.80 0.13642.570.03 412,521,751.74 454,727 West-Sunoco Felda 66,669,20023.42 0.13642.570.03 4,010,026,804.59 4,420,298 TOTAL 26,144,460

PAGE 147

129 The total estimated CO2 storage capacity of the Sunniland Formation throughout the entire extent of the Trend is 1,194,794,068 tCO2 (~1.2 billion tons of CO2 [BtCO2]). This value was estimated using the following variables: A = 7,344,000,000 m2; hg = 52.74 m; tot = 0.15; = 642.57 kg/m3; and E = 0.03. Table 2-5 is a summary of data that was extrapolated from the 69 wells used for porosity-derivation, which was ultimately used in the estimated storage capacity calculation. Figure 2-37, which shows variation in estimated CO2 storage capacity by 1,000 tCO2 per km2, displays how storage capacity varies throughout the Trend. 2.6.3 Potential Leakage Points Table 2-6 lists all of the unplugged wells in south Florida that are currently either producing oil, are used for waste disposal, or are “shut in.” Since these wells provide a conduit to the surface, they therefore serve as potential leakage points for CO2 following CO2 injection into the Sunniland Formation. No additional leakage points, including faults or fractures in the caprock, were apparent in the geophysical logs or core/well cutting samples evaluated for the Sunniland Formation within the study area. 2.7 Discussion 2.7.1 Study Limitations Identifying exploratory/discovery wells that penetrated the entire Sunniland Formation within the Trend was challenging. In many cases, wells drilled in the Trend terminated near the top of the Sunniland Formation within the upper producing zone. Exploratory/discovery drilling in the Sunniland Formation typically ceased following the testing of the production zone, a common technique in oil exploratory drilling that is implemented to avoid penetrating the saline waters below the oil-rich zone, which would otherwise mix with the produced oil and would require more costly oil-water separation procedures (Applin & Applin, 1965; W.B. Harris, personal communication, August 18, 2009). Therefore, exploratory/discovery wells used for obtaining porosity data for this

PAGE 148

130 Table 2-5: Data used to calculate estimated storage capacity for the Sunniland Formation throughout the Trend. P# hg (m) Total hg (m) Avg BHT (C) 278 79 79 0.160.16 65.56 279 58 58 0.140.14 41.11 300 80 80 0.190.19 96.11 311 33 33 0.190.19 36.67 326 48 48 0.150.15 84.44 331 64 64 0.110.11 77.78 360 63 63 0.140.14 86.11 376 53 53 0.140.14 75.56 384 36 36 0.160.16 81.11 401 (Upper) 55 66 0.12 0.16 94.44 401 (Lower) 10 0.1994.44 425 63 63 0.130.13 88.89 437 61 61 0.170.17 86.67 472 76 76 0.140.14 97.22 475 (Upper) 11 43 0.16 0.17 96.11 475 (Lower) 32 0.1796.11 477 (Upper) 52 57 0.12 0.12 93.33 477 (Lower) 5 0.1293.33 486 66 66 0.140.14 87.78 488 43 43 0.170.17 85.56 527 (Upper) 37 46 0.14 0.13 92.22 527 (Lower) 9 0.1192.22 561 20 20 0.170.17 87.78

PAGE 149

131 P# hg (m) Total hg (m) Avg BHT (C) 564 34 34 0.120.12 86.11 565A 52 52 0.130.13 89.44 596 (Upper) 45 72 0.14 0.22 108.33 596 (Lower) 27 0.29108.33 662 61 61 0.130.13 88.89 683 (Upper) 15 76 0.16 0.15 85.00 683 (Lower) 61 0.1485.00 684 (Upper) 34 56 0.14 0.14 94.44 684 (Lower) 22 0.1494.44 697 51 51 0.160.16 95.00 700 47 47 0.150.15 90.56 702 73 73 0.130.13 88.89 735 63 63 0.130.13 92.22 736 (Upper) 3 30 0.18 0.15 90.56 736 (Lower) 27 0.1190.56 754 48 48 0.120.12 97.78 758 33 33 0.130.13 91.11 760 59 59 0.150.15 87.78 829 64 64 0.220.22 78.89 853 (Upper) 7 59 0.14 0.15 87.70 853 (Lower) 52 0.1587.70 858 39 39 0.140.14 79.44 859 (Upper) 4 29 0.11 0.13 40.56 859 (Lower) 25 0.1540.56 864 62 62 0.130.13 79.44

PAGE 150

132 P# hg (m) Total hg (m) Avg BHT (C) 865 (Upper) 59 64 0.17 0.16 92.22 865 (Lower) 5 0.1492.22 871 (Upper) 32 48 0.13 0.12 74.44 871 (Lower) 16 0.1074.44 897 (Upper) 26 51 0.15 0.14 78.89 897 (Middle) 17 0.1278.89 897 (Lower) 8 0.1678.89 904 36 36 0.130.13 73.89 926 21 21 0.140.14 78.33 928 81 81 0.180.18 80.00 947 (Upper) 44 65 0.13 0.12 75.56 947 (Lower) 21 0.1075.56 951 (Upper) 3 30 0.13 0.14 99.44 951 (Lower) 27 0.1499.44 982 66 66 0.140.14 83.89 1014 63 63 0.140.14 75.00 1016 62 62 0.130.13 91.67 1026 60 60 0.120.12 72.22 1057 20 20 0.170.17 72.78 1059 64 64 0.140.14 83.89 1063 77 77 0.160.16 88.89 1065 (Upper) 57 62 0.14 0.14 93.33 1065 (Lower) 5 0.1493.33 1070 30 30 0.130.13 68.89 1086 (Upper) 41 47 0.120.12 70.56

PAGE 151

133 P# hg (m) Total hg (m) Avg BHT (C) 1086 (Lower) 6 0.11 70.56 1118 (Upper) 23 32 0.15 0.17 70.56 1118 (Lower) 9 0.1870.56 1119 (Upper) 12 25 0.13 0.16 77.78 1119 (Lower) 13 0.1877.78 1127 68 68 0.140.14 76.11 1131 15 15 0.120.12 85.00 1134 89 89 0.140.14 80.00 1142 56 56 0.160.16 72.22 1151 30 30 0.150.15 128.89 1201 71 71 0.160.16 81.10 1202 28 28 0.150.15 110.56 1208 (Upper) 24 65 0.17 0.15 81.11 1208 (Lower) 41 0.1381.11 1216 75 75 0.150.15 90.56 1240 31 31 0.120.12 81.11 1292 44 44 0.120.12 82.22

PAGE 152

134 Figure 2-37: Storage-capacity-contour map of the Trend.

PAGE 153

135 Table 2-6: Unplugged oil/gas and waste disposal wells in south Florida. Well P# Oil Field Operator Location Well Type Permit Status 563 BreitBurn Bear Island Field Oil/Gas Expired 640 BreitBurn Bear Island Field Oil/Gas Expired 733 BreitBurn Bear Island Field Oil/Gas Expired 761 BreitBurn Bear Island Field Disposal Operating 800 BreitBurn Bear Island Field Oil/Gas Operating 856 BreitBurn Bear Island Field Disposal Operating 962AH BreitBurn Bear Island Field Oil/Gas Operating 981BH BreitBurn Bear Island Field Oil/Gas Operating 1060 BreitBurn Bear Island Field Oil/Gas Expired 1064 BreitBurn Bear Island Field Oil/Gas Operating 1118A BreitBurn Bear Island Field Oil/Gas Expired 1119 BreitBurn Bear Island Field Oil/Gas Operating 1170 Peninsular Oil Company Corkscrew Field Oil/Gas Operating 1199A Newport Oil Corporation Corkscrew Field Oil/Gas Operating 1201A BreitBurn Corkscrew Field Oil/Gas Operating 1224BH BreitBurn Corkscrew Field Oil/Gas Operating 401AH US Capital Energy, Inc Lake Trafford Field Oil/Gas Operating 841 BreitBurn Lehigh Park Field Oil/Gas Operating 1019 BreitBurn Lehigh Park Field Oil/Gas Operating 904 BreitBurn Mid-Sunoco Felda Field Oil/Gas Operating 925 Peninsular Oil Company Mid-Sunoco Felda Field Oil/Gas Operating 915 BreitBurn Raccoon Point Field Oil/Gas Expired 998 BreitBurn Raccoon Point Field Oil/Gas Operating 1031 BreitBurn Raccoon Point Field Oil/Gas Operating 1061 BreitBurn Raccoon Point Field Oil/Gas Expired 1082AH BreitBurn Raccoon Point Field Oil/Gas Operating 1121 BreitBurn Raccoon Point Field Disposal Operating 1130 BreitBurn Raccoon Point Field Oil/Gas Operating 1141AH BreitBurn Raccoon Point Field Oil/Gas Operating 1149 BreitBurn Raccoon Point Field Oil/Gas Operating 1167 BreitBurn Raccoon Point Field Oil/Gas Expired 1190AH BreitBurn Raccoon Point Field Oil/Gas Operating 1215 BreitBurn Raccoon Point Field Oil/Gas Operating 1289CH BreitBurn Raccoon Point Field Oil/Gas Operating 1331AH BreitBurn Raccoon Point Field Oil/Gas Drilling 1332 BreitBurn Raccoon Point Field Oil/Gas Drilling 1333 BreitBurn Raccoon Point Field Oil/Gas Drilling 102 BreitBurn Sunniland Field Disposal Operating 312AH BreitBurn Sunniland Field Oil/Gas Operating 323A Oryx Energy Company Sunoco Felda Field Oil/Gas Operating 416 BreitBurn West-Sunoco Felda Field Oil/Gas Operating 442W BreitBurn West-Sunoco Felda Field Disposal Operating 645DH BreitBurn West-Sunoco Fe lda Field Oil/Gas Operating 748 BreitBurn West-Sunoco Fel da Field Disposal Operating 1294DH BreitBurn West-Sunoco Felda Field Oil/Gas Operating 1295H BreitBurn West-Sunoco Felda Field Oil/Gas Operating

PAGE 154

136 study were limited to those wells which penetrated the entire Sunniland Formation, although in some cases wells which penetrated most, but not all, of the Sunniland Formation were used in areas where there were little to no full-penetration wells for the formation. In addition, some wells had curved wellbores that had geophysical logs only reported in measured depth, and the associated well record lacked the information needed to convert the depths to TVD for accurate representation of the depth and extent of the Sunniland Formation and its caprock; as such, these wells could not be included in the study. Evaluation of the Trend was also limited to the existing well-coverage, which was dense due to the presence of past or current oil production or exploration in some regions, while in other regions well-coverage was sparse and widespread, such as the eastern boundary of the Trend and the northern and southernmost extents of the Trend. Well-coverage limitations affected the ability to interpolate porosity and estimated CO2 storage capacity on a relatively small scale throughout the entire extent of the Trend, using the RBF methods in ArcGISTM. As discussed earlier in Section 2.5.4, because interpolated surfaces only go through actual data points when using the RBF methods, interpolated contour-surfaces were bound by the outermost data points in the study area. Therefore, the interpolated-surfaces for the porosity and CO2 storage capacity contour interpolations could only be developed for approximately 70% of the Trend. As mentioned earlier, the volumetric equation for capacity calculation in saline formations was used to calculate storage within the Trend oil fields, as opposed to using the oil and gas reservoir storage capacity calculation equation provided by NETL (2007). The purpose of using the oil and gas reservoir equation is to account for the increased storage space created when oil or gas is remov ed from the reservoir, typically resulting in an increased CO2 storage efficiency factor from 0.03 to 0.2, which significantly increases the overall estimated storage capa city for a given oil field (G. Bromhal,

PAGE 155

137 personal communication, October 19, 2009); however, because the oil and gas reservoir storage equation requires the sole use of production wells, it could not be applied to the Trend oil field storage capacity calculations, as this study used both production wells and dry holes, and could not be limited to production wells alone due to constraints in data availability. Therefore, the resulting storage capacity estimations for the Trend oil fields are conservative. 2.7.2 Porosity and Permeability of the Sunniland Formation Most of the observed porosity in the CO2 storage reservoir is intergranular, or interparticle. Porosity within the Sunniland Formation along the Trend is not confined to porous limestone, but also includes dolostone within the formation that contains relatively high porosities. For the most part, however, high-porosity zones within the Sunniland Formation are located in porous limestone, as seen in Table AIV-1 and the striplogs of Appendix V, which occur throughout the formation within the study area. For the Sunniland Formation, few fractures were observed in the geophysical logs used for this study; however, additional geophysical logs, such as seismic logs, would need to be evaluated in order to better-identify the occurrence of fractures within the storage zone. Average porosity for the Sunniland Formation within the Trend oil fields is 16%, and ranges from 13% in Lehigh Park, Seminole, Townsend Canal, and West-Sunoco Felda fields to 22% in Raccoon Point Field, as shown in Table 2-4. The oil fields with the highest average-porosity in the Sunniland Formation are located along the western rim of the Trend, as well as in the central portion of the Trend. Average porosity for the Sunniland Formation throughout the extent of the Trend is 15%, and ranges from 10% to greater than 40% in the porous zones of the formation. Figure 2-36 shows that porosities within the Sunniland Formation are generally greater in the central and south-central portion of the Trend, as suggested by Applegate and Pontigo (Figure 2-12; 1984).

PAGE 156

138 Laterally, porosity within the Sunniland Formation is relatively homogeneous throughout the Trend, as depicted in figures 2-13 through 2-35. Vertically, however, some heterogeneity exists within the formation in the form of semi-confining anhydrite or low-permeability dolomite that range in thicknesses from 0.3-38 m (1-123 ft), as seen in Table AIV-I of Appendix IV and in the striplog created for each evaluated well (Appendix V). In many instances, the relatively thick, low-permeability layers create one or more potential storage sub-zones within the vertical extent of the sequestration reservoir that are laterally continuous. Both of these conditions are preferable for a potential CO2 storage zone, as the lateral homogeneity increases the storage capacity of the formation, while the vertical heterogeneity slows the vertical migration of injected-CO2 and increases the CO2 storage efficiency of the formation. 2.7.3 Storage Capacity of the Sunniland Formation within the Trend The average estimated CO2 storage capacity for each Trend oil field during CO2EOR operations was approximately 2 MtCO2. The oil field with the greatest estimated CO2 storage capacity (over 5.5 MtCO2) was West-Sunoco Felda Field, which is also the largest and most-productive oil field within the Trend. The oil field with the lowest estimated CO2 storage capacity (nearly 371,000 tCO2) was Lake Trafford Field. The estimated total CO2 storage capacity for the Trend oil fields that is available during CO2-EOR is 26 MtCO2, while the estimated CO2 storage capacity for the Trend in its entirety that is available during CCS is approximately 1.2 BtCO2. As depicted in Figure 2-37, the areas of the Trend with comparatively higher storage capacities are generally located in the same areas of the Trend that have the higher porosity values. Only 70% of the study area could be interpolated in this figure due to in. Not only is the estimated CO2 storage capacity calculations for the Trend oil fields conservative because the saline reservoir calculation was used as opposed to the oil and gas reservoir calculation, but the overall estimated CO2 storage capacity

PAGE 157

139 calculation for the entire Trend was relatively conservative, as well. This is because, for this study, porous intervals that had porosities > 10% were deemed suitable for CO2 storage, which is a somewhat-conservative porosity delineation compared to other CCS studies that have been conducted, which use lower porosity values for storage-zone delineation (i.e., 8%) (Brennan et al., 2010). The conservative porosity delineation used in this study results in a more-conservative storage capacity estimate for the Sunniland Formation because it affects the overall thicknes s, or what portions of the formation are included in, the potential storage zone(s), and thus affects the estimated value of hg used in the storage capacity calculation. Electricity-generating power plants in Florida collectively produce approximately 151 MtCO2/yr (Southeast Regional Carbon Sequestration Partnership, 2008). According to data provided by Carbon Monitoring for Action at carma.org, most major, large-scale power plants in south Florida produce 4-10 MtCO2/yr. Progress Energy’s Crystal River power plant in Citrus County and TECO’s Big Bend power plant in Hillsborough County emit more CO2 to the atmosphere than any other power plant in the state of Florida, at 16 and 10.5 MtCO2/yr, respectively. Both power plants are located in south-central Florida, relatively close to the northernmost extent of the Trend. Depending upon the size of the power plant and the respective annual CO2 emission, the Trend oil fields collectively have the ability to potentially support CO2 storage for a large, coal-fired power plant for 3-7 years via CO2-EOR operations, which is comparatively low considering the 40-year lifespan of a power plant. However, the entire Trend, including the full storage capacity for each oil field, has the ability to potentially support CO2 storage for about six large-scale, coal-fired power plants for the entire lifespan of each power plant, or 12 coal-fired power plants for half the lifespan of each plant, during CCS operations. Storage capacity availability in the Trend oil fields can be maximized during CCS operations versus CO2-EOR operations because the available storage zone(s)

PAGE 158

140 within each oil field are not confined to the upper oil-producing zone of the Sunniland Formation, but rather include all portions of the formation that have porosity values > 10%. 2.7.3.1 Effects of Study Limitations and Uncertainties on Estimated Storage Capacity The CO2 storage capacities calculated for the Sunniland Formation throughout the Trend and its oil fields are not definitive calculations, but rather are estimations based upon the available data, which have limiting factors such as availability of wells for spatial-coverage, as well as the availability of lithologic and geophysical data at each well. Errors may exist in the storage capacity estimations as a result of uncertainties in the study area and available data, as well as uncertainties that exist in the physical and geochemical processes that occur in the system following CO2 injection, such as factors affecting plume migration, brine displacement, and trapping mechanisms. These errors and uncertainties may increase or decrease the estimated CO2 storage capacity calculated for the Sunniland Formation in this study. Given the available data, it is difficult to estimate these uncertainties. The area (~7.3 x 109 m2) used in the estimated CO2 storage capacity for the Sunniland Formation is limited to the area of the Trend, or study area. The Trend was chosen as the study area for the Sunniland Formation in this investigation because the majority of the porosity and oil production in the formation occurs within this area; however, the porous intervals of the S unniland Formation could extend beyond the Trend boundary to some extent, which could slightly increase the study area and resultant storage capacity. The porosity of the Sunniland Formation was derived from geophysical logs for wells within the study area, and tot used in the storage capacity calculation represents the average of these derived-porosity values. When more than one geophysical log was

PAGE 159

141 available, cross-plots were used to best-determine porosity values within the formation; however, in many instances only one geophy sical log was available for porosity derivation, which often required that the lithology be determined in order to obtain the correct porosity value. Depending upon the type of geophysical log used, differences in lithology could result in a difference in porosity of 5-10% for a given porous interval of varying thickness (i.e., 0.5 or more meters). If the designated lithology chosen in this study does not match the true lithology within the formation for a given porous interval, the average porosity determination and tot value could be slightly less or slightly more, but probably not more or less than 0.5-1%, which could result in a difference of ~5-10% of the estimated storage capacity. The designated, or derived, porosity throughout the Sunniland Formation also affects the thickness of the porous intervals and ultimately the value of hg, as designated porous intervals in this study had to have a porosity of at least 10% to be included in the storage capacity calculations. The amount of formation-water that is displaced as a result of CO2 injection determines the storage efficiency of a given aquifer. Including the effects of gravity, CO2 and formation-water displacement are dependent upon the lateral homogeneity of the storage reservoir (van der Meer, 1995). Porosity interpolations presented in this study show lateral continuity with the porous intervals of the Sunniland Formation, and as discussed in Section 2.5.3, simulations conducted to date at USF show significant lateral displacement of formation-brines following CO2 injection, both of which increase storage efficiency. Additionally, the vertical heterogeneity of the Sunniland Formation, as presented in this study, also increases the storage efficiency in the reservoir, as it slows the vertical migration of CO2. For these reasons, an E value of 0.03 was selected to represent the storage efficiency of the Sunniland Formation; however, without knowing the residual brine saturation, which is the amount of brine remaining in the pore spaces of the unit after the CO2 front has passed through, it is extremely difficult to determine

PAGE 160

142 the value of E at such a small scale. Because the value of E typically ranges from 0.010.04 (NETL, 2007), the estimated storage capacity for the Sunniland Formation within the Trend potentially ranges from ~411 MtCO2 to ~1.6 BtCO2, depending upon which value of E is used in the storage capacity calculation, which is a difference of 31-66% of the estimated storage capacity. This study provides numerous cross-secti ons and interpolations that display the vertical heterogeneity and lateral continuity of porous intervals and layers of low permeability within the Sunniland Formation; however, these interpolations are on a regional-scale and distances between each well vary throughout the study area. The wells used in this study are spatially dependent, as some wells occur in “clusters” in areas with extensive oil exploration, and other wells are separated by greater distances where no potential source rocks exist and li ttle oil exploration has been conducted; therefore, a more-detailed, small-scale ex amination of the lithology in the Sunniland Formation is unavailable. As such, for this study, it is assumed that all well data are equally valid and that there is no objective basis for differentially weighting the data from individual wells. Figure 2-37 is an interpolation of the CO2 storage capacity within the Sunniland Formation throughout 70% of the Trend, which was created using ArcGISTM. Essentially, ArcGISTM was used to integrate each variable in the storage capacity equation on a cellby-cell basis (using 15,340 cells), th ereby resulting in a calculated CO2 storage capacity for the Sunniland Formation. ArcGISTM also allows for the calculation of spatial-statistics associated with a raster layer. The spatial-statistics for the storage-capacity raster layer indicate that the sum of the cells in the model equate to approximately 880 MtCO2, which is ~73% of the manually-derived CO2 storage capacity for the Sunniland Formation (~1.2 BtCO2). The manually-derived CO2 storage capacity represents an extrapolated storage capacity for the entire study area (Trend), which is approximately 30% larger than the

PAGE 161

143 area for which the geospatially-derived CO2 storage capacity was calculated. Because the geospatially-derived CO2 storage capacity was calculated for 70% of the total study area, the fact that the total storage capacity calculated using this method for the reduced study area was 73% of the manually-deriv ed storage capacity corroborates the general accuracy of the manually-derived CO2 storage capacity, with a 3% difference between the two storage capacity calculation methods. 2.7.4 Sunniland Formation Seals The stratigraphic traps and lateral decrease in permeability beyond the region of the Trend form the seals that hold the oil of the Sunniland Formation in place. These seals, together with the overlying Lake Trafford Formation and the underlying Punta Gorda Anhydrite, would serve as the seals for the Sunniland Formation during potential CO2-injection operations. Pollastro et al. (2001) states that any seals that overly or occur within petroleum-producing geologic units of the South Florida Basin are highly effective at oil-trapping and containment, and states that this is evidenced by, “the criteria for subdivision of oil sub-types among producing units and the remarkable wellto-well correlation of these oils, often where reservoirs are stratigraphically juxtaposed to one another but separated by a seal.” Within the study area of the Trend, the average thickness for the Lake Trafford Formation was 48 m (156 ft), and ranged from 32 m (105 ft) to 86 m (281 ft), as denoted in Table 2-2. No faults or fractures were apparent in the Lake Trafford Formation, either in the background literature or within this study. If post-depositional faults and fractures ever existed within the Lake Trafford Forma tion, formation-anhydrites would likely have filled these features and reinforced the semi-confining nature of the unit. Based upon the core samples and geophysical logs that were evaluated in this study, and on the fact that the Sunniland Formation seals have exemplified oil-trapping and containment capabilities for millennia, the formation-seals are also believed to be potentially effective

PAGE 162

144 seals for CO2 sequestration; however, no seismic data were available for review during this study, which would likely provide a better determination of the effectiveness and suitability of the Sunniland Formation seals for such operations. 2.7.5 Carbon Sequestration in the Sunniland Formation within the Trend Based upon the criteria outlined in Chapter 1 for successful CCS operations in geologic formations, the Sunniland Formation within the Trend of the SFB could potentially be used as a CO2 storage zone for the following reasons: Geographic Location Unlike many oil fields throughout the US, the Trend oil fields, as well as the full extent of the Trend itself, are relatively close to major population centers and electricitygenerating power plants. Figure 2-38 shows the proximities of the Trend and the Trend oil fields in relation to electricity-generating power plants in the SFB. The close proximity between the Trend, the Trend oil fields, and electricity-generating power plants means that not only will the supercritical CO2 have to travel relatively short distances, but also less complex means of CO2 transportation will be required in the SFB, both of which result in a decrease in overall costs for CCS projects. Infrastructure and Geologic Knowledge Because the Trend has hundreds of oil exploratory/discovery oil wells that penetrate the Sunniland Formation, an infrastructure is already in place throughout the region that can be used for CCS operations, as many existing wells, such as waterflooding wells, can be converted to CO2-injection wells. In addition, because a significant amount of lithological and geophysical data have been collected for the Sunniland Formation within the Trend via these oil-exploration/discovery wells, a substantial amount of information is available to effectively assess the feasibility of the formation as a potential GS unit, as demonstrated in this study.

PAGE 163

145 Figure 2-38: Locations of electricity-generating power plants in relation to the Trend and the Trend oil fields.

PAGE 164

146 Porosity and Storage Capacity Average porosity in the Sunniland Formation within the region of the Trend is 15%, which suggests that the formation is potentially suitable for use as a geologic storage unit for CCS. Additionally, the estimated CO2 storage capacity of the Sunniland Formation within the Trend is 1.2 BtCO2, which means the Trend potentially has the ability to support CCS for one or more large-scale power plants for their entire lifespan. Seals The Lake Trafford Formation and the Punta Gorda Anhydrite, together with the lateral decrease in permeability beyond the region of the Trend, are potentially sufficient seals for the Sunniland Formation for its use in CCS operations. 2.7.6 Enhanced Oil Recovery in the Sunniland Formation of the Trend While the Trend oil fields are small by oil-industry standards, they do offer the possibility of using CO2-EOR to offset CCS costs to Florida electric-power utility companies that are required to reduce annual CO2 emissions. Furthermore, the Trend oil fields have the potential to produce additional oil worth $1-3 billion USD (at $100/barrel of oil) if another 10-15% of the OOIP is recovered from the Sunniland Formation during CO2-EOR operations. In addition to the reasons provided in Section 2.7.5, the Sunniland Formation of the Trend would potentially be suitable for CO2-EOR operations in the Trend oil fields due to the following reasons: Density of CO 2 The effectiveness of the CO2-sweep, or the ability of the injected-CO2 to strip residual-oil from a source rock, during EOR in a geologic unit increases as the density of the supercritical CO2 that is injected increases (Tzimas et al., 2005). The CO2 density is a function of injection pressure and BHT. The higher the injection pressure and BHT, the greater the density of CO2 will be. The recommended density range for CO2-EOR operations is 400-750 kg/m3 (Metz et al., 2005; Tzimas et al., 2005). The average

PAGE 165

147 estimated CO2-density that was calculated for the Sunniland Formation was 642.57 kg/m3, which falls within the recommended CO2-density range for CO2-EOR operations. Uniform Intergranular Porosity If the porosity and permeability of a producing zone is not uniform, or if significant fracture porosity is present, the plume of injected-CO2 created during CO2-EOR will form fingers instead of a more uniform front (Tzimas et al., 2005). The fingering will bypass much of the residual oil in the reservoir, thereby reducing the effectiveness of the CO2 injection for EOR. The producing zones in the Trend oil fields have relatively simple intergranular porosity created by the original shell hash, subsequent weathering, and some dolomitization. With the exception of production from the Lower Sunniland Limestone at Lake Trafford Field, the producing-zones do not appear to have significant fracture porosity. API Density of Formation Oil If the oil in a given formation is too heavy, the CO2-flood (or CO2-sweep) will not recover enough residual oil to make the CO2-EOR project economic; however, the ability of CO2 to reduce the viscosity of oil partially offsets the limitations of heavier oils for CO2EOR. However, low-API oils typically sell for less than light crude oil. The lower acceptable API limit for successful CO2-EOR operations for heavy oils is 24 ; therefore, because the API for oil from the Sunniland Formation ranges from 24 -28 the Trend oil fields are considered potentially suitable for CO2-EOR operations. Production Zone Thickness During CO2-EOR, the injected CO2 is only about 80% as dense as the formation waters, resulting in a buoyancy effect, which is further discussed in Chapter 1. This buoyancy effect can lead to the CO2 front overriding the formation waters, thereby leaving residual oil in the reservoir behind, and creating early breakthrough of CO2 at the

PAGE 166

148 production well. This effect increases with increasing thicknesses of the producing or ‘pay’ zones. According to the well records for the production wells evaluated in this study, the pay zones of the Sunniland Formation within the Trend oil fields are relatively thin (6-15 m [20-50 ft] thick), which encourages an efficient CO2-sweep during EOR. Remaining Oil-in-Place In order for a CO2-EOR project to be economically sustainable, the remaining oilin-place following primary and secondary recovery in a given oil field should exceed 5060% of the OOIP. Following water flooding, recovery ratios of produced oil to OOIP in Trend oil fields ranged from about 0.3 to 0.5, which implies that 50-70% of the OOIP is still present in the oil fields (Lloyd, 1996), of which 30-50% is estimated to be recoverable during tertiary recovery (Applegate & Pontigo, 1984). Storage Capacity Collectively, the estimated CO2 storage capacity for the Trend oil fields during CO2-EOR is 26 MtCO2, which is more than the estimated CO2 storage capacity for the Weyburn Project oil fields (23 MtCO2) and the Salt Creek Project oil field (27 MtCO2) that are discussed in Chapter 1. Seals Existing and depleted oil reservoirs have a very low risk of leaking CO2, as the available data show that stratigraphic traps and structural barriers are effective at retaining the oil within the reservoir for very long periods of time before its extraction. For the SFB, oil has been contained in the source rocks for at least 20-30 million years (Pollastro et al., 2001). Additional concerns involved with CO2-EOR in the Trend oil fields are the costs involved with the delivery of CO2; the costs involved with the design, implementation, and monitoring of a CO2-EOR project; and the potential volumes of CO2 which can effectively be used for EOR and subsequent storage. As more CCS projects are

PAGE 167

149 conducted worldwide, the range of costs for each method of CO2 transport, as well as costs associated with the operation and monitoring of a CO2-EOR project, will become better constrained. For the estimation of potential volumes of CO2 needed for EOR in the Trend oil fields, oil-field operators, specifically Breitburn, can estimate the recoverable volumes of oil based upon experience in other oil fields in conjunction with operating histories and the known geology of the Trend oil fields. From the estimated recoverable oil volumes, an estimate of the CO2 volumes needed for EOR and ultimately sequestered, as well as the overall economics of CO2-EOR in the Trend oil fields, could then be calculated. With the combined goal of CCS and CO2-EOR, GSGI is the better method for CO2-EOR operations in the Trend oil fields due to the fact that: 1) more CO2 is used in GSGI than in WAG because there can be a continuous flow of CO2 to the injection site as opposed to the intermittent flow involved with WAG, 2) less CO2 is recycled and reinjected for EOR, and 3) more CO2 is ultimately sequestered. However, the preferred method of CO2-EOR for oil field operators is typically WAG because, as described in Chapter 1, a large portion of the injected-CO2 is captured at the production well during oil recovery, which is subsequently re-injected for continued use in the EOR process. This method of CO2-EOR reduces both the amount of CO2 that would be purchased by the oil field lease-holder(s) and the amount of CO2 left behind in the Sunniland Formation as sequestered-CO2. 2.7.7 Potential Leakage Points for the Sunniland Formation Wells currently or formerly used for water-flooding in the Trend oil fields could be converted to CO2-injection wells for use in CO2-EOR and CCS operations. According to the FDEP Bureau of Mining and Minerals Regulation Oil and Gas Section, if an exploratory well has no show of oil, it is plugged and abandoned in accordance with the rules and procedures outlined in Florida Administrative Code (FAC) 62C-29.009 (D.

PAGE 168

150 Taylor, personal communication, January 21, 2010). In summation, FAC 62C-29.009 requires that for dry wells, several cement plugs must be installed throughout the vertical extent of the borehole: one cement plug must be emplaced 30.5 m (100 ft) above the perforation within the borehole and another must be emplaced 30.5 m (100 ft) below the perforation; a cement plug must be emplaced 61 m (200 ft) above and 61 m (200 ft) below any penetrated aquifers used for drinking water supply; and a cement plug must be installed from the ground surface to 30.5 m (100 ft) bls. If a producing-well ceases oil production, operators either plug and abandon the well immediately in accordance with FAC 62C-29.009, or the well is “shut in” until a decision is made by the operator to either plug and abandon the well, deepen the well for further oil exploration, or convert the well to an injection/disposal well. Because Chapter 377 of the Florida Statutes and Rules 62C-25 through 62C-30 of the FAC do not require oil field operators to make a prompt decision regarding the handling of a previously producing oil well, many wells in Flor ida oil fields are typically left shut in for months, sometimes years (D. Taylor, personal communication, January 21, 2010). Any unplugged wells in southern Florida that penetrate the seals of the Sunniland Formation, which are identified in Table 2-6, are potential leakage points for CO2 following CO2-injection operations. Prior to the enactment of FAC 16C-29.09 in 1981 (which, after several modifications, is now known as FAC 62C-29.009), wells, for many decades, were not always plugged, and were instead simply filled with mud-laden fluid (Metz et al., 2005); therefore, improperly plugged and abandoned wells could potentially serve as leakage points for CO2. In addition, the condition of many plugged and abandoned wells may have deteriorated significantly over time, thereby making them a conduit for CO2 leakage into the overlying strata. Prior to the implementation of any type of CO2-EOR or CCS operation in the Sunniland Formation, any unplugged wells in the vicinity of the proposed injection site should be identified and plugged in accordance with

PAGE 169

151 FAC 62C-29.009, and any plugged and abandoned wells in the vicinity should be identified and examined for proper and secure plugging practices. It is also imperative that the location, depth, and well-characteristics of boreholes that have penetrated the Sunniland Formation within the area of review for a proposed injection-site, but that reached total depth before penetrating the formation, be evaluated, as these wells could also represent potential leakage pathways. As discussed earlier, no faults or fractures were apparent in the Lake Trafford Formation, based upon a background-literature review and an evaluation of core samples and geophysical logs conducted during this study; however, additional geophysical logs, such as seismic logs, would need to be evaluated in order to rule out the occurrence of these leakage-features within the upper seal. 2.8 Conclusion The sequestering of CO2 in deep geologic units is a technology that is quickly gaining interest nationwide as a means of reducing anthropogenic CO2 emissions. Within the southeast, Florida has been recognized as having numerous potentially promising CO2 storage reservoirs, in the form of deep saline aquifers and existing/depleted oil reservoirs. Specifica lly, the Sunniland Formation of the SFB has been identified as a potential CO2 sequestration reservoir that would be suitable for CO2EOR within the oil fields of the petroleum-producing Trend, as well as for CCS throughout the entire extent of the Trend. The Sunniland Formation within the Trend of the SFB would potentially be suitable for CCS operations due to its geographic location; its high porosity and storage capacity; its effecient caprock and seal; and its existing well-infrastructure and extensively known lithological and geophysical properties, which would be a large component of the costs for a CCS operation. For the same reasons, the Sunniland Formation within the Trend oil fields would potentially be suitable for CO2EOR operations, in addition to the fact that the estimated density of injected-CO2 would

PAGE 170

152 be within the appropriate range, the formation has uniform intergranular porosity, the API density of the formation-oil is within the acceptable limits, the production zones within the formation are relatively thin, and the remaining oil-in-place following secondary recovery is sufficient. The Lake Trafford Formation and the Punta Gorda Anhydrite, together with the lateral decrease in permeability beyond the region of the Trend, are potentially sufficient seals for the Sunniland Formation for its use as a CO2 storage reservoir. From rock samples and data evaluated in this study, the Lake Trafford Formation appears to be a suitable upper seal; however, further geophysical evaluation, such as the examination of seismic logs, could provide a better determination of its suitability, and is recommended prior to the implementation of any CO2 injections into the Sunniland Formation. The total estimated CO2 storage capacity of the Sunniland Formation within all of the Trend oil fields is 26 MtCO2. The estimated CO2 storage capacity of the Sunniland Formation throughout the entire extent of the Trend is 1.2 BtCO2. The region of the Trend that appears to have the highest storage capacity per km2 is also the region which has the highest porosity values. Given these estimated storage capacities, and depending upon the size of the power plant and the respective annual CO2 emission, the Trend oil fields collectively have the ability to potentially support CO2 storage for a given power plant for 3-7 years via CO2-EOR operations, and the entire Trend, including the full storage capacity for each oil field, has the ability to potentially support CO2 storage for about six coal-fired power plants for the entire 40-year lifespan of each power plant, or approximately 12 coal-fired power plants for half the lifespan of each plant, during CCS operations. Average porosity for the Sunniland Formation within the oil fields of the Trend is 16%, while the average porosity of the Sunniland Formation throughout the entire extent of the Trend is 15%. Higher-porosity zones appear to be located in the central and

PAGE 171

153 south central portion of the Trend. Laterally, porosity in the Sunniland Formation is relatively homogeneous, which provides for increased storage capacity; however, vertically, some heterogeneity exists in the porosity of the Sunniland Formation, which could potentially slow the vertical migration of injected-CO2 and increase the efficiency of the formation as a CO2 storage reservoir. Unplugged and plugged and abandoned wells have been identified as potential CO2-leakage points for CO2 injection in the Sunniland Formation. Prior to the commencement of any CCS operations, such wells should be identified and either plugged in accordance with FAC 62C-29.009, or inspected for proper and secure plugging and abandonment, in order to close and alleviate CO2-leakage conduits. Additionally and as suggested above, further examination of the Lake Trafford Formation via geophysical data, such as seismic logs, should be conducted prior to CCS operations in order to rule out the occurrence of faults or fractures. For the next step in evaluating the Sunniland Formation of the SFB for CCS operations, the data provided in this study could be incorporated into preliminary mathematical models of injection, using a numerical code such as TOUGH2/ECO2N that can simulate the injection of supercritical CO2 into brine-filled geologic units, that analyze the effects of CO2 injection into the Trend. This type of modeling would give an estimate of the volume of CO2 that could be injected, examine the physical effects of CO2 injection, such as changes in fluid pressures and brine displacement, and monitor the potential for migration of the CO2 plume after injection had ceased.

PAGE 172

154 Chapter 3: Evaluation of the Paleo cene Cedar Keys Formation and Upper Cretaceous Lawson Formation of SouthCentral and Southern Florida for Carbon Dioxide Sequestration 3.1 Introduction The Florida Platform contains numerous porous carbonate units, separated by evaporite units of low permeability, which are believed to be suitable storage zones for successful carbon sequestration. This chapter evaluates the lower portion of the Cedar Keys Formation together with the upper member of the Lawson Formation as a potential injection zone for CCS operations, and is herein identified as the Cedar Keys/Lawson Injection Zone (CKLIZ). Like the Sunniland Formation of southwest Florida, the CKLIZ could be a viable zone for CCS activities because of its geographic location, lithology, porosity, potential CO2 storage capacity, and seals. Historically, little information has been available for the southern, eastern, and western extents of the Cedar Keys Formation and the Lawson Formation; therefore, in addition to the evaluation of the CKLIZ, an objective for this study was to provide further stratigraphical and hydrogeological characterizations for the Cedar Keys and Lawson formations. 3.2 Study Area As discussed in Chapter 1, geologic units or formations in Florida that are being considered for use as potential sequestration reservoirs must be about 914 m (3,000 ft) or more bls, in order to keep the injected-CO2 in a supercritical state and avoid

PAGE 173

155 transformation into a gas phase that could travel to the surface, and to attain a sufficient CO2 density for energy-efficient sequestration. Because the Cedar Keys and Lawson formations occur above 914 m (3,000 ft) bls in central, northern, and the Panhandle regions of Florida, the study area includes only the south-central and southern Florida regions, where the CKLIZ is deeper (Figure 3-1). One-hundred and three exploratory/discovery oil wells and one waste-disposal well were utilized to evaluate the CKLIZ, and, like the Sunniland Formation described in Chapter 2, the wells are referenced by their P# for simplified and consistent identification. Table 3-1 provides a list of all wells evaluated in this study, along with well details and locations. 3.3 Geologic Setting The Cedar Keys Formation and Lawson Formation study area is located within the Florida Platform. A description of the Florida Platform and its major features are provided in Section 2.3.1 of Chapter 2. 3.3.1 Stratigraphic Units Due to the high porosities of the lower Cedar Keys Formation and the upper member of the Lawson Formation, and due to the lack of significant confinement between the two units that would require their separation, the two geologic units were grouped into one primary injection zone, herein identified as the CKLIZ. The top of the CKLIZ throughout the study area is depicted in Figure 3-2, and the thickness of the injection zone throughout the study area is depicted in Figure 3-3. During potential CO2injection operations, the middle Cedar Keys Formation would serve as the upper seal or caprock for the CKLIZ, and the lower member of the Lawson Formation together with Taylor-age rocks would serve as the lower seal. Nine transects were selected that best use the available spatial coverage of wells evaluated in this investigation (Figure 3-4). These transects display the stratigraphy of the principal geologic units within the region (figures 3-5 through 3-13). The cross-

PAGE 174

156 Figure 3-1: Map of the CKLIZ study area and evaluated wells.

PAGE 175

157 Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Well Type 8 10 27 South 34 East -80.897241 28.14686 15 2,452 Osceola Dry Hole 12 6 60 South 35 East -80.682025 25.2264 0 1,838 Miami-Dade Dry Hole 16 15 67 South 27 East -81.565297 24.6075 0 1,859 Monroe Dry Hole 22 2 67 South 29 East -81.354931 24.63665 0 4,711 Monroe Dry Hole 29 7 31 South 22 East -82.139014 27.805 14 30 3,087 Hillsborough Dry Hole 62 23 35 South 23 East -81.983211 27.41297 34 3,637 Hardee Dry Hole 75 7 30 South 17 East -82.641417 27.88162 1 3,507 Pinellas Dry Hole 81 27 25 South 34 East -80.91189 28.27497 13 1,785 Osceola Dry Hole 91 4 27 South 32 East -81.109892 28.15991 17 1,984 Osceola Dry Hole 108 32 62 South 38 East -80.53691 25.00129 1 2,304 Monroe Dry Hole 115 25 55 South 37 East -80.58355 25.61477 3 3,511 Miami-Dade Dry Hole 129 31 35 South 53 East -80.872602 25.80759 3 3,623 Miami-Dade Dry Hole 130 27 50 South 26 East -81.698494 26.09176 3 3,815 Collier Dry Hole 148 24 59 South 40 East -80.28791 25.28515 2 3,648 Monroe Dry Hole 152 25 42 South 33 East -80.99351 26.78314 10 4,092 Glades Dry Hole 161 21 45 South 24 East -81.903787 26.54554 2 3,925 Lee Dry Hole 167 16 54 South 35 East -80.830464 25.76439 4 3,523 Miami-Dade Dry Hole 178 35 42 South 21 East -82.176651 26.87063 2 3,878 Charlotte Dry Hole 182 19 54 South 36 East -80.776336 25.75021 2 3,460 Miami-Dade Oil Producer 205 19 54 South 36 East -80.772873 25.75773 2 3,535 Miami-Dade Dry Hole 214 19 54 South 36 East -80.776912 25.75896 2 3,540 Miami-Dade Dry Hole 232 N/A N/A N/A -81.098331 25.01473 0 3,850 Monroe Dry Hole 235 34 41 South 39 East -80.419816 26.86105 8 3,362 Palm Beach Dry Hole 236 11 35 South 19 East -82.377846 27.45183 17 3,422 Manatee Dry Hole 243 28 31 South 35 East -80.842781 27.75878 15 2,892 Indian River Dry Hole 250 22 45 South 26 East -81.709097 26.55439 9 3,597 Lee Dry Hole 259 19 36 South 40 East -80.368258 27.33251 5 3,886 St Lucie Dry Hole 265 2 48 South 35 East -80.811058 26.33739 5 3,901 Palm Beach Dry Hole 269 1 41 South 30 East -81.272325 26.94169 12 3,351 Glades Dry Hole 271 16 46 South 27 East -81.620833 26.46667 7 3,627 Lee Dry Hole 278 11 54 South 35 East -80.808979 25.78057 3 3,559 Miami-Dade Dry Hole 279 23 45 South 28 East -81.484601 26.55531 12 3,550 Hendry Dry Hole 280 1 67 South 29 East -81.335637 24.64358 0 1,838 Monroe Dry Hole 284 N/A N/A N/A -82.362499 24.45001 0 4,662 Monroe Dry Hole Table 3-1: List of exploratory/discovery and waste-disposal wells evaluated in the study.

PAGE 176

158 Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Well Type 289 N/A N/A N/A -82.317444 26.68531 -5 4,267 Lee Dry Hole 296 N/A N/A N/A -82.491833 24.43396 0 2,399 Monroe Dry Hole 304 N/A N/A N/A -82.880556 28.09223 0 3,231 Pinellas Dry Hole 310 24 42 South 24 East -81.86312 26.80466 8 3,798 Charlotte Dry Hole 311 28 48 South 30 East -81.331709 26.26861 5 3,565 Collier Dry Hole 319A 4 46 South 29 East -81.422711 26.51126 12 3,504 Collier Oil Producer 331 15 54 South 35 East -80.824526 25.76728 3 3,540 Miami-Dade Dry Hole 376 18 54 South 36 East -80.765949 25.77651 2 3,508 Miami-Dade Dry Hole 385 21 43 South 39 East -80.446945 26.72295 4 3,324 Palm Beach Dry Hole 386 17 54 South 35 East -80.85766 25.76533 3 3,537 Miami-Dade Dry Hole 401 9 47 South 28 East -81.520774 26. 40116 7 3,654 Co llier Oil Producer 403 19 32 South 27 East -81.651368 27.68833 46 2,947 Polk Dry Hole 407 14 45 South 27 East -81.58472 26.56056 9 4,788 Lee Oil Producer 408 35 46 South 27 East -81.591569 26.43299 8 3,645 Lee Dry Hole 437 35 45 South 28 East -81.484937 26.5167 10 3,563 Hendry Dry Hole 472 22 45 South 26 East -81.697269 26.55211 9 3,962 Charlotte Dry Hole 475 9 41 South 25 East -81.813299 26.92706 12 4,034 Charlotte Dry Hole 539 3 29 South 31 East -81.202461 27.98615 20 2,419 Osceola Dry Hole 543 24 27 South 29 East -81.370355 28.1189 18 2,103 Osceola Dry Hole 564 14 54 South 33 East -80.992241 25.7623 3 3,859 Monroe Dry Hole 565A 28 48 South 33 East -81.039482 26.28328 6 5,189 Hendry Dry Hole 596 14 53 South 33 East -80.989682 25.85882 3 5,016 Collier Dry Hole 597 3 30 South 23 East -82.005204 27.90272 37 1,524 Polk Waste Disposal 606 16 43 South 30 East -81.329481 26.73922 7 3,478 Hendry Dry Hole 609 22 39 South 27 East -81.599143 27.07486 18 3,962 Desoto Dry Hole 620 31 46 South 32 East -81.172407 26.43967 8 3,563 Hendry Dry Hole 662 12 48 South 32 East -81.07817 26.31699 6 3,551 Hendry Dry Hole 679A 19 36 South 27 East -81.658429 27.33689 29 3,554 Desoto Dry Hole 683 20 41 South 24 East -81.936797 26.89104 8 3,505 Charlotte Dry Hole 697 23 46 South 30 East -81.299818 26.46772 9 3,962 Collier Dry Hole 710 34 35 South 36 East -80.714736 27.3884 13 3,444 Okeechobee Dry Hole 732 9 35 South 35 East -80.838375 27.43833 21 3,284 Okeechobee Dry Hole 740 7 46 South 35 East -80.870807 26.49695 4 2,985 Palm Beach Dry Hole 758 16 44 South 26 East -81.725574 26.65206 6 3,841 Lee Dry Hole 759 35 33 South 20 East -82.272231 27.55968 8 3,353 Manatee Dry Hole 760 30 46 South 30 East -81.356722 26.45256 9 3,591 Collier Dry Hole

PAGE 177

159 Well P# Section Township Range Longitude Latitude Elevation (m) Total Depth (m) County Well Type 768 19 45 South 31 East -81.256613 26.55392 9 4,877 Hendry Dry Hole 772 26 36 South 39 East -80.403071 27.31924 29 3,856 St Lucie Dry Hole 804 27 44 South 26 East -81.699618 26.61641 7 3,722 Lee Oil Producer 813 27 44 South 26 East -81.6984 26.61717 8 3,708 Lee Dry Hole 821 1 49 South 30 East -81.27102 26.23323 5 3,554 Collier Dry Hole 838 1 49 South 30 East -81.280972 26. 23113 5 3,540 Co llier Oil Producer 853 28 46 South 28 East -81.516649 26.44338 7 3,601 Collier Dry Hole 864 19 47 South 31 East -81.265841 26.37209 8 3,616 Hendry Dry Hole 865 31 49 South 32 East -81.167956 26.17112 5 3,604 Co llier Oil Producer 871 4 50 South 31 East -81.22176 26.14556 4 3,633 Collier Dry Hole 926 34 45 South 28 East -81.502066 26.5246 10 3,568 Hendry Dry Hole 947 33 47 South 29 East -81.419879 26.35023 8 3,647 Collier Dry Hole 972 8 43 South 39 East -80.470002 26.74389 4 3,353 Palm Beach Dry Hole 979 34 45 South 26 East -81.695949 26.52246 9 3,599 Lee Dry Hole 982 14 49 South 30 East -81.294068 26.20284 5 3,637 Collier Dry Hole 983 27 45 South 28 East -81.501326 26.5404 11 3,503 Hendry Dry Hole 990 26 45 South 28 East -81.488067 26.53767 11 3,512 Hendry Dry Hole 1014 29 44 South 27 East -81.642737 26.62512 7 3,565 Lee Dry Hole 1032 21 38 South 39 East -80.436322 27.15888 9 4,023 Martin Dry Hole 1050 35 45 South 31 East -81.195907 26.52109 9 3,754 Hendry Dry Hole 1059 3 50 South 32 East -81.107102 26.14512 5 3,606 Collier Dry Hole 1063 20 50 South 33 East -81.046892 26.10114 4 3,584 Collier Dry Hole 1065 6 50 South 32 East -81.167314 26.16305 5 3,597 Collier Dry Hole 1085 27 46 South 31 East -81.211712 26.45274 9 3,559 Hendry Dry Hole 1147 20 45 South 28 East -81.536457 26.54412 9 3,508 Hendry Dry Hole 1151 3 45 South 28 East -81.512333 26.59638 9 3,503 Hendry Dry Hole 1169 32 49 South 35 East -80.851365 26.18556 4 3,537 Broward Dry Hole 1193 26 39 South 31 East -81.196711 27.05695 10 2,816 Glades Dry Hole 1199 32 46 South 28 East -81.529249 26.43484 8 3,573 Collier Oil Producer 1201 28 46 South 28 East -81.527657 26.44145 7 3,612 Collier Dry Hole 1208 4 47 South 28 East -81.525551 26.41997 7 3,612 Collier Dry Hole 1240 5 49 South 30 East -81.333435 26.23072 5 3,621 Collier Dry Hole 1264 13 35 South 32 East -81.087868 27.43274 16 2,495 Okeechobee Dry Hole 1323A 20 38 South 30 East -81.335244 27.15456 53 3,812 Highlands Dry Hole N/A = Not Applicable (offshore well)

PAGE 178

160 Figure 3-2: Isolith map of the top of the CKLIZ.

PAGE 179

161 Figure 3-3: Isopach map of the CKLIZ.

PAGE 180

162 Figure 3-4: Map displaying the loca tion of transects A-A’ through I-I’.

PAGE 181

163 Figure 3-5: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect A-A’. Transect location is depicted in Figure 3-4.

PAGE 182

164 Figure 3-6: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect B-B’. Transect location is depicted in Figure 3-4.

PAGE 183

165 Figure 3-7: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect C-C’. Transect location is depicted in Figure 3-4.

PAGE 184

166 Figure 3-8: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect D-D’. Transect location is depicted in Figure 3-4.

PAGE 185

167 Figure 3-9: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect E-E’. Transect location is depicted in Figure 3-4.

PAGE 186

168 Figure 3-10: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect F-F’. Transect location is depicted in Figure 3-4.

PAGE 187

169 Figure 3-11: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect G-G’. Transect location is depicted in Figure 3-4.

PAGE 188

170 Figure 3-12: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect H-H’. Transect location is depicted in Figure 3-4.

PAGE 189

171 Figure 3-13: Stratigraphic cross-section displaying the CKLIZ, as well as upper and lower seals, for Transect I-I’. Transect location is depicted in Figure 3-4.

PAGE 190

172 sections show stratigraphic variation with decreasing elevation, using sea level as the datum. Table 3-2 summarizes the depths of occurrence and thicknesses of these geologic units based upon the wells evaluated in this study. 3.3.1.1 Taylor-Age Rocks Upper Cretaceous units of Taylor age underlie the lower member of the Lawson Formation, and exist throughout most of Florida. Taylor-age rocks are composed of carbonate facies, such as chalk or argillaceous-chalk, in most of peninsular Florida, clastic facies, such as marl or marly shale, in north-central Florida, and calcareous-clay in the Panhandle (Applin & Applin, 1967; Miller, 1986). The carbonate facies in the northern region of peninsular Florida are mostly chalky dolomite and dolomitic chalk with gypsum and anhydrite inclusions, while southwest of the Peninsular Arch the unit is mostly chalk containing random, intermittent lenses of low-porosity dolomite and anhydrite (Applin and AppIin, 1967). Specifically, in south-central and southern Florida the carbonate facies are mainly composed of hard, white or cream-colored, chalky limestone of low porosity and permeability that is irregularly interbedded with thin lenses of dolomite, dolomitic chalk, and anhydrite (Applin & Applin, 1944; Applin & Applin, 1967; Kaiser, 1971). Rocks of Taylor age deepen southward in the study area, but generally they are first encountered at approximately 1,700 m (5,577 ft) to 1,800 m (5,906 ft) bls. Thickness of these rocks varies throughout Florida; however, essentially in central peninsular Florida the unit is ~122 m (400 ft) thick and thickens considerably toward the south to 396 m (1,299 ft) or more. Inoceramus fragments, as well as several distinct foraminifera, are indicative of Taylor-age rocks and aid in the distinction between the chalks of Taylor age and those of the lower member of the Lawson Formation (Applin & Applin, 1967).

PAGE 191

173 Well P# County Elev (m) Top of Middle Cedar Keys Formation (m bls) Total Thick. (m) Top of Lower Cedar Keys Formation (m bls) Total Thick. (m) Top of Lawson Formation Upper Member (m bls) Total Thick. (m) Top of Lawson Formation Lower Member (m bls) Total Thick. (m) Top of Taylor Age Rocks (m bls) 8 Osceola 15 938 22 960 26 985 44 1,029 130 1,159 12 Miami-Dade 0 1,131 184 1,315 126 1,442 77 1,519 117 1,635 16 Monroe 0 1,037 446 1,483 92 1,575 37 1,612 134 1,746 22 Monroe 0 1,023 424 1,447 43 1,490 86 1,576 107 1,684 29 Hillsborough 30 1,055 205 1,260 168 1,427 62 1,489 125 1,615 62 Hardee 34 1,153 212 1,366 166 1,531 65 1,597 115 1,711 75 Pinellas 1 --1,154 126 1,280 47 1,327 144 1,471 81 Osceola 13 888 66 954 40 994 44 1,038 122 1,160 91 Osceola 17 926 49 975 41 1,017 42 1,059 96 1,155 108 Monroe 1 1,183 231 1,414 59 1,473 58 1,530 169 1,699 115 Miami-Dade 3 1,079 299 1,378 72 1,450 46 1,496 97 1,593 129 Miami-Dade 3 1,202 307 1,508 118 1,626 68 1,694 132 1,826 130 Collier 3 1,262 306 1,568 105 1,673 75 1,748 179 1,926 148 Monroe 2 1,082 207 1,289 197 1,486 129 1,614 148 1,762 152 Glades 10 1,348 154 1,502 174 1,676 71 1,747 139 1,886 161 Lee 2 1,212 267 1,478 178 1,656 94 1,750 175 1,925 167 Miami-Dade 4 1,215 171 1,386 117 1,503 99 1,602 72 1,674 178 Charlotte 2 1,247 229 1,475 189 1,664 52 1,716 174 1,890 182 Miami-Dade 2 1,215 161 1,376 142 1,518 74 1,592 77 1,669 205 Miami-Dade 2 1,218 159 1,377 142 1,519 77 1,596 73 1,669 214 Miami-Dade 2 1,214 159 1,373 144 1,517 63 1,580 88 1,668 232 Monroe 0 1,154 232 1,385 92 1,477 96 1,573 101 1,675 235 Palm Beach 8 1,110 75 1,185 271 1,456 40 1,496 94 1,590 236 Manatee 17 1,184 208 1,392 176 1,568 66 1,633 119 1,752 243 Indian River 15 --1,150 41 1,190 68 1,258 106 1,364 250 Lee 9 1,234 332 1,567 151 1,718 81 1,798 64 1,862 259 St Lucie 5 --1,359 143 1,502 110 1,612 91 1,703 265 Palm Beach 5 1,298 137 1,435 294 1,729 64 1,793 115 1,908 269 Glades 12 1,335 140 1,475 106 1,581 92 1,673 94 1,767 271 Lee 7 1,219 356 1,574 114 1,689 59 1,748 104 1,852 Table 3-2: Geologic unit picks for exploratory/discovery and waste-disposal wells evaluated in this study.

PAGE 192

174 Well P# County Elev (m) Top of Middle Cedar Keys Formation (m bls) Total Thick. (m) Top of Lower Cedar Keys Formation (m bls) Total Thick. (m) Top of Lawson Formation Upper Member (m bls) Total Thick. (m) Top of Lawson Formation Lower Member (m bls) Total Thick. (m) Top of Taylor Age Rocks (m bls) 278 Miami-Dade 3 1,094 298 1,392 224 1,616 61 1,677 186 1,863 279 Hendry 12 1,244 253 1,497 149 1,646 63 1,709 87 1,796 280 Monroe 0 1,056 377 1,433 74 1,507 53 1,559 165 1,724 284 Monroe 0 1,190 303 1,494 71 1,564 59 1,624 142 1,766 289 Lee -5 --1,585 48 1,633 62 1,695 287 1,981 296 Monroe 0 1,179 255 1,434 72 1,506 32 1,539 182 1,721 304 Pinellas 0 1,054 132 1,186 35 1,221 79 1,300 101 1,401 310 Charlotte 8 1,248 247 1,495 118 1,613 80 1,694 144 1,837 311 Collier 5 1,227 241 1,468 138 1,607 71 1,677 137 1,814 319A Collier 12 1,252 253 1,505 154 1,659 62 1,721 94 1,815 331 Miami-Dade 3 1,214 167 1,381 212 1,594 80 1,674 128 1,802 376 Miami-Dade 2 1,215 305 1,520 75 1,595 74 1,669 182 1,851 385 Palm Beach 4 1,251 373 1,624 41 1,666 61 1,727 121 1,847 386 Miami-Dade 3 1,208 185 1,394 62 1,456 59 1,514 161 1,675 401 Collier 7 1,235 247 1,483 150 1,633 60 1,692 136 1,828 403 Polk 46 1,037 241 1,277 30 1,307 68 1,375 183 1,558 407 Lee 9 1,238 220 1,458 184 1,642 91 1,733 73 1,806 408 Lee 8 1,272 242 1,514 151 1,665 53 1,718 157 1,875 437 Hendry 10 1,239 262 1,501 149 1,650 63 1,713 95 1,807 472 Charlotte 9 1,238 244 1,482 178 1,660 91 1,752 91 1,843 475 Charlotte 12 1,212 226 1,438 166 1,605 104 1,709 197 1,906 539 Osceola 20 1,009 52 1,061 40 1,101 59 1,160 78 1,238 543 Osceola 18 932 53 985 43 1,028 55 1,083 100 1,184 564 Monroe 3 1,163 269 1,432 114 1,546 30 1,576 141 1,718 565A Hendry 6 1,254 160 1,414 177 1,591 73 1,664 176 1,840 596 Collier 3 1,221 211 1,432 110 1,542 31 1,572 181 1,753 597 Polk 37 998 53 1,051 197 1,248 71 1,319 104 1,423 606 Hendry 7 1,259 201 1,460 179 1,639 86 1,725 107 1,832 609 Desoto 18 1,200 231 1,431 92 1,523 77 1,600 193 1,793 620 Hendry 8 1,307 167 1,474 86 1,560 65 1,625 123 1,748 662 Hendry 6 1,263 250 1,512 165 1,677 74 1,752 112 1,864 679A Desoto 29 1,119 243 1,362 85 1,447 99 1,546 127 1,673 683 Charlotte 8 1,245 274 1,520 112 1,631 77 1,708 187 1,895

PAGE 193

175 Well P# County Elev (m) Top of Middle Cedar Keys Formation (m bls) Total Thick. (m) Top of Lower Cedar Keys Formation (m bls) Total Thick. (m) Top of Lawson Formation Upper Member (m bls) Total Thick. (m) Top of Lawson Formation Lower Member (m bls) Total Thick. (m) Top of Taylor Age Rocks (m bls) 697 Collier 9 1,321 166 1,487 149 1,636 93 1,729 75 1,804 710 Okeechobee 13 1,087 31 1,118 133 1,251 78 1,329 140 1,469 732 Okeechobee 21 1,069 40 1,109 145 1,254 88 1,342 118 1,460 740 Palm Beach 4 1,306 122 1,429 160 1,588 86 1,675 127 1,802 758 Lee 6 1,206 273 1,479 141 1,620 75 1,695 119 1,814 759 Manatee 8 1,150 187 1,337 205 1,542 75 1,617 97 1,714 760 Collier 9 1,253 260 1,513 151 1,665 63 1,728 85 1,813 768 Hendry 9 1,324 168 1,492 180 1,672 91 1,763 121 1,884 772 St Lucie 29 968 339 1,307 34 1,341 49 1,390 107 1,497 804 Lee 7 1,228 195 1,423 208 1,632 76 1,708 105 1,813 813 Lee 8 1,227 229 1,456 182 1,639 73 1,712 101 1,813 821 Collier 5 1,303 145 1,448 180 1,628 78 1,706 100 1,806 838 Collier 5 1,284 144 1,428 198 1,626 73 1,699 104 1,803 853 Collier 7 1,233 259 1,492 148 1,640 60 1,699 132 1,831 864 Hendry 8 1,243 254 1,497 148 1,646 77 1,723 92 1,815 865 Collier 5 1,200 217 1,416 137 1,553 111 1,664 103 1,767 871 Collier 4 1,285 141 1,426 152 1,578 99 1,677 123 1,800 926 Hendry 10 1,244 258 1,503 142 1,645 78 1,723 75 1,798 947 Collier 8 1,257 252 1,509 147 1,656 58 1,713 135 1,848 972 Palm Beach 4 1,248 42 1,290 351 1,641 38 1,680 105 1,785 979 Lee 9 1,235 255 1,490 154 1,644 69 1,713 153 1,866 982 Collier 5 1,340 130 1,470 148 1,618 59 1,677 146 1,823 983 Hendry 11 1,265 231 1,496 148 1,644 68 1,712 101 1,813 990 Hendry 11 1,266 210 1,476 172 1,647 68 1,715 104 1,819 1014 Lee 7 1,227 260 1,487 144 1,631 77 1,708 103 1,811 1032 Martin 9 ----1,312 57 1,369 187 1,555 1050 Hendry 9 1,313 173 1,486 212 1,698 101 1,799 140 1,939 1059 Collier 5 1,254 146 1,400 138 1,538 112 1,650 135 1,786 1063 Collier 4 1,179 223 1,403 166 1,569 79 1,647 121 1,769 1065 Collier 5 1,268 229 1,497 132 1,629 33 1,661 109 1,770 1085 Hendry 9 1,236 243 1,479 150 1,629 84 1,713 97 1,810 1147 Hendry 9 1,266 227 1,493 146 1,639 68 1,707 115 1,822 1151 Hendry 9 1,233 256 1,489 156 1,645 84 1,729 204 1,933

PAGE 194

176 Well P# County Elev (m) Top of Middle Cedar Keys Formation (m bls) Total Thick. (m) Top of Lower Cedar Keys Formation (m bls) Total Thick. (m) Top of Lawson Formation Upper Member (m bls) Total Thick. (m) Top of Lawson Formation Lower Member (m bls) Total Thick. (m) Top of Taylor Age Rocks (m bls) 1169 Broward 4 1,209 280 1,489 125 1,614 89 1,704 99 1,802 1193 Glades 10 1,329 166 1,495 74 1,569 83 1,652 86 1,738 1199 Collier 8 1,247 240 1,487 151 1,638 61 1,700 136 1,836 1201 Collier 7 1,327 165 1,492 147 1,639 61 1,700 138 1,839 1208 Collier 7 1,243 239 1,482 150 1,632 59 1,690 144 1,834 1240 Collier 5 1,226 241 1,468 122 1,590 91 1,680 154 1,834 1264 Okeechobee 16 1,094 190 1,284 28 1,311 36 1,347 85 1,433 1323A Highlands 53 ----1,449 65 1,514 133 1,647 -= No data available

PAGE 195

177 3.3.1.2 Lawson Formation The Lawson Formation was deposited on a shallow, partly restricted marine shelf during the Late Upper Cretaceous (Applin & Applin, 1967). The formation occurs in the northeastern and peninsular regions of Florida, and is generally about 274 m (900 ft) thick. The Lawson Formation is divided into a lower and an upper member, each with unique lithology and fossil assemblages. Figur es 3-14 through 3-22 are cross-sections for the nine transects depicted in Figure 3-4. These cross-sections display the stratigraphy of the upper and lower members of the Lawson Formation with decreasing elevation, using sea level as the datum. Lower Member The lower member of the Lawson Formation is generally ~91 m (300 ft) to 122 m (400 ft) thick, although in the study area it is as thin as 64 m (210 ft) and as thick as 287 m (940 ft). The unit tends to deepen southward from around 671 m (2,200 ft) bls in north Florida (Applin & Applin, 1944) to 1,799 m (5,902 ft) bls in south Florida. Figure 3-23 is an isolith map that displays the top of the lower member of the Lawson Formation throughout the study area. In south-central and southern Florida, the lower member has low permeability throughout, and is mostly a soft, white chalk that is interbedded with lenses of chalky dolomite and dolomitic chalk. Minor am ounts of gypsum and anhydrite can also be found in lenses throughout the lower member. The boundary between the lower and upper members of the Lawson Formation is gradational, where the soft, white chalk of the top portion of the lower member grades upward into a dolomitic chalk found in the basal portion of the upper member (Applin & Applin, 1967). The chalks of Taylor age and the lower member of the Lawson Formation form the lower seal for the CKLIZ.

PAGE 196

178 Figure 3-14: Stratigraphic cross-section displaying the Lawson Formation for Transect A-A’. Transect location is depicted in Figure 3-4.

PAGE 197

179 Figure 3-15: Stratigraphic cross-section displaying the Lawson Formation for Transect B-B’. Transect location is depicted in Figure 3-4.

PAGE 198

180 Figure 3-16: Stratigraphic cross-section displaying the Lawson Formation for Transect C-C’. Transect location is depicted in Figure 3-4.

PAGE 199

181 Figure 3-17: Stratigraphic cross-section displaying the Lawson Formation for Transect D-D’. Transect location is depicted in Figure 3-4.

PAGE 200

182 Figure 3-18: Stratigraphic cross-section displaying the Lawson Formation for Transect E-E’. Transect location is depicted in Figure 3-4.

PAGE 201

183 Figure 3-19: Stratigraphic cross-section displaying the Lawson Formation for Transect F-F’. Transect location is depicted in Figure 3-4.

PAGE 202

184 Figure 3-20: Stratigraphic cross-section displaying the Lawson Formation for Transect G-G’. Transect location is depicted in Figure 3-4.

PAGE 203

185 Figure 3-21: Stratigraphic cross-section displaying the Lawson Formation for Transect H-H’. Transect location is depicted in Figure 3-4.

PAGE 204

186 Figure 3-22: Stratigraphic cross-section displaying the Lawson Formation for Transect I-I’. Transect location is depicted in Figure 3-4.

PAGE 205

187 Figure 3-23: Isolith map of the top of the lower member of the Lawson Formation.

PAGE 206

188 The fossil assemblage in the lower member is distinct and uniform, although lack of complete preservation can make fossil identification difficult. Microfauna characteristic of the lower member of the Lawson Formation include foraminifera such as Lepidorbitoides spp., brachiopods, bryozoan fragments, echinoid spines, Saccocoma spp., and diskand ball-shaped algae (Applin & Applin, 1967). The highest occurrence of Lepidorbitoides is within the uppermost extent of the lower member, where it typically co-occurs with Sulcoperculina cosdeni At its northernmost limit adjacent to the Suwannee Saddle in southern Georgia, the lower member of the Lawson Formation pi nches out and is overlain by the upper member of the Lawson Formation (Applin & Applin, 1967; Miller, 1986). Upper Member The upper member of the Lawson Formation is generally ~60 to ~90 m (200-300 ft) thick, although in the study area it is as thin as 30 m (100 ft) and as thick as 129 m (422 ft). The unit tends to deepen southward from around 610 m (2,000 ft) bls in north Florida (Applin & Applin, 1944) to as deep as 1,729 m (5,672 ft) bls in south Florida. Figure 3-24 is an isolith map that displays the top of the upper member of the Lawson Formation throughout the study area. The upper member of the Lawson Formation is predominantly a cream-colored or light-tan, coarsely crystalline dolomite with interbedded lenses of gypsum and anhydrite. The unit is primarily an algal and rudistid biostrome that has been extensively altered by diagenesis, although some relic grains can be observed (Applin & Applin, 1944; Applin & Applin, 1967; Kaiser, 1971; Miller, 1986; Winston, 1994). Wave-action typical of a shallow-water marine environment probably contributed to the alteration of the upper member sediments before lithifi cation commenced, as indicated by the abrasion and partial or complete destruction of a majority of the fundamental skeletal material (Applin & Applin, 1967). Porosity and permeability for the upper member are

PAGE 207

189 Figure 3-24: Isolith map of the top of the upper member of the Lawson Formation.

PAGE 208

190 generally good; therefore, this portion of the Lawson Formation is included in the CKLIZ. Secondary porosity dominates the unit throughout its extent; however, some primary porosity is present via finely nodular, abraded, and partially dissolved relic grains that have irregular porosity (Applin & Applin, 1967). As in the lower member of the Lawson Formation, post-depositional alteration resulted in poorly preserved fossil specimens and fragments of microfossils in the upper member; however, in addition to rudistids and algae, two species of large foraminifera, Vaughanina cubensis and Orbitoides brownie can commonly be seen in chalky, pocketlike areas where they were probably protec ted from structure-altering environmental factors (Applin & Applin, 1967). In addition, rotalids are common, but are often recrystallized. According to data presented in Applin & Applin (1967), the upper member of the Lawson Formation, at its northernmost extent adjacent to the Suwannee Saddle, onlaps onto the underlying Taylor-age rocks and pinches out in southern Georgia, approximately 35 km (~20 mi) north of where the lower member of the Lawson Formation pinches out. 3.3.1.3 Cedar Keys Formation The Lawson Formation is overlain by the Midway age Cedar Keys Formation, a thick anhydrite and dolomite sequence that is thought to have been deposited during the Paleocene, based upon its stratigraphic position, although its deposition may have continued into the Eocene (Miller, 1986; Pollastro et al., 2001; Winston, 1995). The Cedar Keys Formation represents a lagoonal facies found in peninsular Florida that was deposited in the back-reef environment of the Rebecca Shoal reef, a 1,609-km (1,000mi) long reef system that resembled a giant atoll during the Paleocene and Upper Cretaceous ages (Winston, 1994). The depth of occurrence and thickness of the Cedar Keys Formation is variable in the study area of south-central and southern Florida;

PAGE 209

191 however, the top of the formation generally occurs at approximately 823 m (2,700 ft) bls in south-central Florida and deepens southward to approximately 1,036 m (3,400 ft) bls in southern Florida (Winston, 1994). According to Winston (1994), the contact between the Cedar Keys Formation and the Lawson Formation is sharp in northern Florida, and generally the base of the Cedar Keys Formation contains brown, finely crystalline dolomite that is distinct from the light-col ored, coarsely crystalline dolomite of the upper member of the Lawson Formation. Additionally, Borelis sp. is only found in the Cedar Keys Formation, and can often provide for distinction between the two units. In this study for south-central and southern Florida, the contact between the Cedar Keys Formation and the upper member of the Lawson Formation is typically marked by a lens of low-permeability anhydrite or dolomite of varying thickness. Winston (1994) divides the Cedar Keys Formation into six subunits (Units A-F), based upon varying amounts of anhydrite content. According to Winston (1994), Units A and B are predominantly relatively porous dolomites, with some thin, irregular lenses of anhydrite that occur mainly in the SFB. Some very fine to fine relic grains, such as oolites and pellets, occur in units A and B, and porosity in south-central and southern Florida is commonly granular and intercrystalline, ranging from 10 to 20%. Unit C is mostly anhydrite that occurs in numerous beds varying from a meter in thickness to 183 m (600 ft) or more. The unit contains intervening dolomite and occasional relic grains, especially in the SFB. Where porosity is present in Unit C, it is for the most part exclusively chalky, especially in the SFB; however, random and intermittent zones of intergranular, moldic, and pinpoint porosity occur in south-central Florida, with porosity values ranging from 5 to 10%. Unit D is a dolomite unit that has some relic grains and relatively thin lenses of anhydrite in south-central and southern Florida. Porosity ranges from 5 to 20% and is typically intergranular, pinpoint, and intercrystalline in south-central and southern Florida, and chalky in the southernmost extent of southern Florida. Unit E

PAGE 210

192 resembles the overlying Unit D, with the exception of having fewer relic grains. According to Winston (1994), Unit E is correlative with the upper member of the Lawson Formation in northern and central peninsular Florida. Unit F is a dolomite unit with highly variable thickness and porosity, and is only present in the SFB. Anhydrite rarely occurs in Unit F, but where it is found, it exists as thin beds or nodules. For this study, the Cedar Keys Formation was divided into three informal units: the lower Cedar Keys Formation, the middle Cedar Keys Formation, and the upper Cedar Keys Formation. Lower Cedar Keys Formation The lower Cedar Keys Formation is included in the CKLIZ. For this study, the geologic unit is identified as the porous interval (having porosity values of at least 10%) between the base of the middle semi-confining unit of the Cedar Keys Formation, herein known as the middle Cedar Keys Formation, and the top of the upper member of the Lawson Formation. The lower Cedar Keys Formation can be equated with units D-F of Winston (1994). Because the lower Cedar Keys Formation in this study is delineated based upon the porosity percentage, the thickness and depth of occurrence for the lower Cedar Keys Formation fluctuates due to variation in anhydrite content, which ultimately determines the porosity. In general, however, the lower Cedar Keys Formation occurs between 1,400 m (4,600 ft) and 1,500 m (4,900 ft) bls, and the thickness of the unit is approximately 122 m (400 ft) to 152 m (500 ft) but is as thin as 26 m (84 ft) and as thick as 351 m (1,152 ft). The lower Cedar Keys Formation typically consists of light-brown to gray, finely crystalline to micro-crystalline dolomite with interbedded, thin lenses of anhydrite and nodular anhydrite. According to Miller (1986), Borelis sp. is abundant in this portion of the Cedar Keys Formation and can be used to distinguish the unit from the underlying upper member of the Lawson Formation; however, because the geologic units in this

PAGE 211

193 study were primarily examined using geophysica l logs, fossil assemblages could not be examined. Middle Cedar Keys Formation The middle Cedar Keys Formation, which forms the lower confining unit of the Floridan Aquifer System (FAS) and is proposed as the upper seal for the CKLIZ, consists of one or more thick, aerially extensive anhydrite beds (Miller, 1986). The middle Cedar Keys Formation presented in this study and in Miller (1986) is correlative with Unit C from Winston (1994). The top of the geologic unit is typically encountered between 1,200 m (~3,930 ft) and 1,300 m (~4,250 ft) bls within the study area. The thickness of the middle Cedar Keys Formation is generally about 200 m (~650 ft) to 300 m (~980 ft), but is as thick as 446 m (1,463 ft). Only one distinct trend can be identified in the thickness of the middle Cedar Keys Formation throughout the study area. As depicted in the stratigraphic cross-sections of figures 3-5 to 3-13 and according to the data presented in Table 3-2, the unit becomes comparatively thinner moving towards the northeast and in areas of Osceola, Okeechobee, and Palm Beach counties, where unit thickness is as thin as 22 m (72 ft). Although the middle Cedar Keys Formation in this region of Florida may not have numerous or massive anhydrite beds that often exist elsewhere in the study area, at least one signi ficantly thick anhydrite bed exists in this region which would likely provide sufficient confinement for the underlying CKLIZ. Upper Cedar Keys Formation The upper Cedar Keys Formation is generally a gray to cream, coarsely crystalline dolomite that is moderately to highly porous, and is typically part of the lower FAS (Miller, 1986). The upper Cedar Keys Formation presented in this study is correlative with Unit A and Unit B, collectively, from Winston (1994). The thickness and extent of the geologic unit was not evaluated in this study; however, typically the upper Cedar Keys Formation is found around 853 m (2,800 ft) to 915 m (3,000 ft) bls and is

PAGE 212

194 around 230 m (750 ft) thick (Winston, 1994). Locally within the study area, mostly in southern peninsular Florida below Lake Okeechobee, the upper Cedar Keys Formation forms the “Boulder Zone,” a thick horizon of cavernous solution-cavities that mainly developed parallel to bedding planes at numerous intervals within a vertical extent that could reach over 50 m (160 ft) (Miller, 1986). Where the Boulder Zone occurs, porosity and permeability are extremely high. The Borelis sp. indicative of the Cedar Keys Formation is not present in this portion of the formation (Miller, 1986). Because of the extent of dolomitization within the upper Cedar Keys Formation, the unit cannot be dated using fossil assemblages, and has been assigned a Paleocene age based on its stratigraphic position. 3.4 Methods and Procedures 3.4.1 Well Selection There were 103 exploratory/discovery oil wells and one waste-disposal well examined throughout the study area (Figure AIII-2 of Appendix III). All evaluated wells provide information for Cedar Keys Formation, Lawson Formation, and Taylor-Age rock picks; however, only 54 of the 104 wells could be used to derive and interpolate porosity values for the CKLIZ. For those wells used for porosity derivation, there were three major criteria for the well-selection process: 1) the well had to penetrate the entire CKLIZ, 2) the well had to have at least one geophysical log available that covered the entire storage zone from which porosity could be derived, and 3) for wells that had intentional or unintentional curves in the wellbore, the porosity log had to be reported in true vertical depth TVD. For P# 1032 (Martin County), no porosity logs could be identified that covered the entire storage zone; however, one porosity log was identified and included that covered most of the storage zone (158.5 m [520 ft]), minus about 1530 m (50-100 ft) in the uppermost region.

PAGE 213

195 Another objective in the well-selection process was to identify at least three wells for each county, which met all outlined criteria, that were arranged in such a way as to provide sufficient county-wide spatial coverage; however, several counties within the study area had little to no oil-exploration or aquifer-injection activity, and therefore lacked suitable well-coverage and provided limited geophy sical data. For counties with limited well-coverage, any wells in that particular county that provided geophysical data that could be used for formation and storage-zone delineation or porosity derivation were included in the study. Five wells in this study were located offshore (P# 232, P# 284, P# 289, P# 296, and P# 304) and were included because, in addition to meeting wellselection criteria, these wells provided information on the geologic units of interest beyond the current subaerial extent of peninsular Florida, and provided some insight into how the porosity and extent of these units trends offshore. 3.4.2 Porosity Determination Geophysical logs for exploratory/discovery oil wells and one waste-disposal well within the study area were examined in order to obtain data for the estimation of porosity for the CKLIZ, and to identify the upper and lower boundaries of the middle Cedar Keys Formation, lower Cedar Keys Formation, Lawson Formation upper member, and Lawson Formation lower member, as well as the t op of the Taylor-age rocks. All geophysical porosity logs were provided by the FDEP Bureau of Mining and Minerals Regulation Oil and Gas Section. All geophysical logs reviewed in this study were created by Schlumberger and were interpolated using figures created by the company specifically for Schlumberger geophysical-log interpretation. Schlumberger (1989) provided all Schlumberger porosity-log interpretation figures for porosity determination, and copies of each figure are located in Appendix II. The types of geophysical porosity logs used in this study for the purpose of deriving porosity values included bulk density logs, BCS logs, CNLs, and CNL-FDC logs.

PAGE 214

196 As discussed in Chapter 2, the measurements made during the generation of sonic, neutron, and density logs depend upon the porosity of the penetrated formation, the lithology of the formation, the type of formation fluid, and, in some instances, the geometry of the pore structure (Schlumberger, 1989). When the lithology of the formation is known, correct porosity values can be obtained using a single geophysical log; however, when the lithology is unknown, more than one geophysical log must be used or the lithology has to be confirmed using cores or well cuttings for the appropriate well, or by using mud logs and core descriptions or analyses which describe the lithology of the formation at various intervals. Rock cores and well cuttings were provided by the FGS, when necessary. For this study, ev ery effort was made to use wells that had more than one porosity log available, so that more than one method of porosity determination could be used to ultimately derive the most accurate value of porosity for the CKLIZ. In addition, cross-plots were used when multiple porosity logs were available, which were effective tools for evaluating porosity and lithology determinations. Due to the limitations in identifying sufficient geophysical data for each county within the study area, ten wells (P#s 475, 982, 606, 864, 926, 1151, 407, 408, 758, and 304) which met the well-selection criteria, but had no available means for determining lithology, were included in the study to ensure adequate spatial coverage. For these wells, the most conservative porosity values were extrapolated. Section 2.5.2 of Chapter 2 explains how porosity values were derived from each type of porosity log used in this study. 3.4.3 Storage Capacity Calculation Storage capacities for the CKLIZ were calculated using the volumetric equation for capacity calculation in saline formations provided by NETL (2007). The same equation was used for calculating storage capacities for the Sunniland Formation in

PAGE 215

197 Chapter 2, and a detailed description of the volumetric equation and its variables is provided in Section 2.5.3. One large polygon was created in ArcGIS™ Suite that encompassed the study area, which is depicted in Figure 3-1. ArcGIS™ Suite used this polygon to calculate A for the study area, for inclusion in the estimation of storage capacity for the CKLIZ within the boundaries of the study area. Brennan et al. (2010) present methodologies recently developed by the USGS for evaluating geologic CO2 storage units, and identify units with porosities of at least 8% as suitable for CO2 sequestration. This investigation has an even more conservative approach, and identified porous zones within the CKLIZ with porosity values greater than or equal to 10% as appropriate for injection and storage of CO2. Many exploratory/discovery oil wells, as well as the waste-disposal well, that were evaluated for porosity in this study have multiple porous zones vertically within the CKLIZ that have porosities greater than 10%, which are separated by layers of dolomite or anhydrite of low porosity (<10%) and permeability and varying thickness. This vertical heterogeneity is displayed in the striplogs created for each well, located in Appendix V. For each well evaluated for porosity in the study area, if a low-permeability layer occurred within the confines of the CKLIZ that exceeded 5% of the total thickness of the CKLIZ for that well, then multiple, separate storage sub-zones were assigned to that well as part of the CKLIZ, which were separated by the low-permeability layer(s). Specifically, if there were two separate stor age sub-zones in each well for the CKLIZ, they were termed the “upper” and “lower” storage zones, and if there were three separate storage sub-zones in each well for the CKLIZ, they were termed the “upper,” “middle,” and “lower” storage zones. The value of hg for each evaluated well was equal to the thickness of the CKLIZ within that well. If multiple storage sub-zones were assigned to a given well, then hg for that well was the total thickness of all the sub-zones

PAGE 216

198 in that well, or the sum of all of the thicknesses estimated for each sub-zone within that well. The final value of hg that was used in the storage capacity calculation for the entire study area was the average of each hg value calculated for each well. In order to calculate the value of tot for the CKLIZ used in the storage capacity estimation for the study area, a tot value was first determined for each well, and was based upon an average of all the porosity values that were derived from the well’s geophysical logs throughout the vertical extent of the CKLIZ within that well. If there were multiple storage sub-zones assigned to a given well, then avg was first estimated for each sub-zone, and then tot for that well was the average of each sub-zone’s estimated avg value. The final value of tot that was used in the storage capacity calculation for the study area was an average of the tot values that were estimated for each well. The density of CO2 and the value used in the storage capacity estimation was 725 kg/m3, which was calculated using the hydrostatic pressure of the CKLIZ (150 bar) and the average temperature for every hg assigned to each evaluated well (43 C). Limited temperature data are available for the CKLIZ within the study area; therefore, a plot was created with available temperature data for all study wells (Figure 3-25). From this plot, a calibration trend-line was used to estimate temperature for a given depth, specifically the depths of each hg. As with the Sunniland Formation, the value of E used in the storage capacity estimation for the CKLIZ was 0.03. Further explanation of E and how its value is established is provided in Section 2.5.3 of Chapter 2. 3.4.4 Data Modeling, Interpolation, and Presentation Porosity values derived from geophysical logs for each well evaluated were recorded in 5% range-increments. This dataset is located in Table IV-2 of Appendix IV.

PAGE 217

199 Figure 3-25: Geothermal gradient used to extrapolate temperature values for given depths within the CKLIZ. R = 0.79080 20 40 60 80 100 120 10001250150017502000225025002750300032503500375040004250Temperature ( C)Depth (m)Calibration Trend-Line for Geothermal Extrapolation within the CKLIZ

PAGE 218

200 For porosity interpolations and cross-sections in this study, porosity values in 10% range-increments were used for graphical clarity. Similar to simulations conducted in C hapter 2, RockWorks™ and ArcGIS™ Suite were used to graphically represent geometries and lithologies for the geologic units evaluated in this study using striplogs, cro ss-sections, solid models, and isolithand isopach-contour maps. RockWorks™ and ArcGIS™ Suite were also used to interpolate and model the porosity data for the CKLIZ within the study area. ArcGIS™ Suite was used to interpolate and model the estimated CO2 storage capacity for the CKLIZ within the region. The RBF spline methods were used for all interpolations conducted in this study using ArcGISTM. Similar to the scenario in Chapter 2, the RBF spline methods were chosen for this study due to the sparse and widespread distribution of the study wells, in addition to the large-scale of the overall CKLIZ study area, and were considered to be the most appropriate methods for modeling parameters because they have the least inherent-error of all the interpolation methods available in Geostatistical Analyst. The use of the RBF method created interpolated contoursurfaces that were bound by the outermost data points in the CKLIZ study area, which resulted in small regions within the study area that contained no predicted raster surface, and were subsequently identified in each figure as having either “Insufficient Stratigraphic Data” or “Insufficient Porosity Data.” Specifically, data-availability constraints resulted in the interpolation of 84% of the total study area for the CKLIZ. Further description of the “Horizontal Lithoblending” and RBF spline method algorithms, functions, and procedures that were utilized with these programs are provided in Section 2.5.4 of Chapter 2. The Map Algebra and Raster Math tools in the ArcGISTM Spatial Analyst toolbox were used to perform the CO2 storage capacity calculation for the CKLIZ. The interpolated sequestration reservoir thickness (hg) and average porosity ( tot) variable

PAGE 219

201 rasters were multiplied by the storage efficiency factor (E) and the CO2 density ( ) constants to derive a single raster output. The interpolated area (84% of the total study area) was also factored into the storage capacity equation using the Raster Math tool. The output raster layer, which contained the results of the storage capacity calculation, was reclassified into 101,432 1-km2 cells in order to determine the amount of CO2 that could potentially be sequestered in each square kilometer of the interpolated-area. The final raster was a functional display of CO2 storage capacity in 1,000 tCO2 per 1-km2 model cell. 3.5 Results 3.5.1 Porosity Table AIV-2 of Appendix IV provides porosity values for the CKLIZ that were derived from the 54 wells in the study area that meet the porosity derivation wellselection criteria. Appendix V provides a striplog for each of these wells, which displays porosity variation with depth for the CKLIZ. Porosity cross-sections were created for each of the nine transects presented in Figure 3-4; however, three of these transects (A-A’, B-B’, and C-C’) cover extensive distances which make the presentation of porosity interpolation difficult. Therefore, each of these three transects are divided into two “sub-transects.” Specifically, Transect A-A’ is divided into Transect A-A1 and Transect A1-A ’; Transect B-B’ is divided into Transect B-B1 and Transect B1-B’; and Transect C-C’ is divided into Transect C-C1 and Transect C1-C’, as seen in Figure 3-4. The porosity-interpolation cross-sections created for each transect within the study area are displayed in figures 3-26 to 3-37. These crosssections show porosity variation with decreasing elevation, using sea level as the datum. Figure 3-38 is a porosity-contour map that displays average porosity variation for the CKLIZ throughout the study area.

PAGE 220

202 Figure 3-26: Cross-section displaying interpolated porosity for Transect A-A1. Transect location is depicted in Figure 3-4.

PAGE 221

203 Figure 3-27: Cross-section displaying interpolated porosity for Transect A1-A’. Transect location is depicted in Figure 3-4.

PAGE 222

204 Figure 3-28: Cross-section displaying interpolated porosity for Transect B-B1. Transect location is depicted in Figure 3-4.

PAGE 223

205 Figure 3-29: Cross-section displaying interpolated porosity for Transect B1-B’. Transect location is depicted in Figure 3-4.

PAGE 224

206 Figure 3-30: Cross-section displaying interpolated porosity for Transect C-C1. Transect location is depicted in Figure 3-4.

PAGE 225

207 Figure 3-31: Cross-section displaying interpolated porosity for Transect C1-C’. Transect location is depicted in Figure 3-4.

PAGE 226

208 Figure 3-32: Cross-section displaying interpolated porosity for Transect D-D’. Transect location is depicted in Figure 3-4.

PAGE 227

209 Figure 3-33: Cross-section displaying interpolated porosity for Transect E-E’. Transect location is depicted in Figure 3-4.

PAGE 228

210 Figure 3-34: Cross-section displaying interpolated porosity for Transect F-F’. Transect location is depicted in Figure 3-4.

PAGE 229

211 Figure 3-35: Cross-section displaying interpolated porosity for Transect G-G’. Transect location is depicted in Figure 3-4.

PAGE 230

212 Figure 3-36: Cross-section displaying interpolated porosity for Transect H-H’. Transect location is depicted in Figure 3-4.

PAGE 231

213 Figure 3-37: Cross-section displaying interpolated porosity for Transect I-I’. Transect location is depicted in Figure 3-4.

PAGE 232

214 Figure 3-38: Average interpolated-porosity contours for the CKLIZ throughout the study area.

PAGE 233

215 3.5.2 Storage Capacity The total estimated CO2 storage capacity for the CKLIZ throughout the extent of the study area is approximately 79 BtCO2. This value was estimated using the following variables: A = 73,559,441,205.70 m2; hg = 198.33 m; tot = 0.23; = 725 kg/m3; and E = 0.03. Table 3-3 is a summary of data that was extrapolated from the 54 wells used for porosity derivation, which was ultimately used in the estimated storage capacity calculation. Figure 3-39, which shows variation in estimated CO2 storage capacity by 1,000 tCO2 km2, displays how storage capacity varies throughout the study area. 3.5.3 Temperature Gradient An average-temperature contour map was created using existing and extrapolated temperatures for all evaluated we lls within the study area, and is provided in Figure 3-40. 3.5.4 Potential Leakage Points Table 3-4 lists all of the unplugged wells in south Florida that are currently either producing oil, are used for waste disposal, or are “shut in.” Since these wells provide a conduit to the surface, they therefore serve as potential leakage points for CO2 following CO2 injection into the CKLIZ. Winston (1995) discusses several suspected, small displacement (i.e., 3-15 m [10-50 ft]), normal faults within the Cedar Keys Formation, located along the coastline of the southeastern boundary of the study area within the region where no wells could be identified that met the well-selection criteria for this investigation. This region, containing insufficient data, is denoted on each figure providing interpolated data that was created for this study. The faults discussed in Winston (1995) are generally discussed for Unit A and Unit B of the formation (herein collectively known as the upper Cedar Keys Formation), and their occurrence in Unit C (herein the middle Cedar Keys Formation) is not discussed.

PAGE 234

216 Table 3-3: Data used to calculate estimated storage capacity for the CKLIZ. Well P# h g (m) Total h g (m) Average Temperature (C) 279 206 206 0.200.20 45.28 284 (Upper) 64 120 0.21 0.22 42.78 284 (Lower) 56 0.2243.89 296 (Upper) 21 64 0.18 0.18 40.55 296 (Middle) 14 0.1541.11 296 (Lower) 29 0.2241.67 304 114 114 0.210.21 37.78 310 194 194 0.290.29 47.22 311 203 203 0.210.21 44.72 319A (Upper) 142 197 0.20 0.22 44.44 319A (Lower) 55 0.2345.55 331 292 292 0.240.24 45.28 385 (Upper) 80 96 0.23 0.20 45.55 385 (Lower) 16 0.1745.55 401 (Upper) 70 193 0.19 0.21 42.78 401 (Lower) 123 0.2345.55 403 97 97 0.270.27 39.44 407 275 275 0.240.24 45.55 408 (Upper) 72 187 0.17 0.19 43.33 408 (Lower) 115 0.2045.55 472 269 269 0.230.23 46.67 475 270 270 0.260.26 45.55 539 98 98 0.270.27 35.55 543 (Upper) 34 92 0.23 0.26 33.89 543 (Lower) 58 0.2834.44 564 (Upper) 42 134 0.21 0.23 40.83 564 (Lower) 92 0.2442.78 565A 248 248 0.260.26 44.72 596 139 139 0.240.24 42.78 597 (Upper) 89 238 0.23 0.26 35.00 597 (Middle) 27 0.2935.55 597 (Lower) 122 0.2638.33 606 265 265 0.220.22 45.55 609 167 167 0.240.24 43.33 679A 184 184 0.280.28 42.22 683 (Upper) 54 256 0.22 0.19 42.22 683 (Middle) 84 0.1744.44 683 (Lower) 118 0.1745.00 697 241 241 0.230.23 46.11 710 211 211 0.230.23 38.33 732 230 230 0.230.23 38.33 740 246 246 0.230.23 45.00 758 209 209 0.230.23 45.28 759 279 279 0.240.24 43.89 760 (Upper) 74 194 0.19 0.20 43.33 760 (Lower) 120 0.2045.55 768 (Upper) 135 256 0.19 0.22 43.89 768 (Lower) 121 0.2446.39

PAGE 235

217 Well P# h g (m) Total h g (m) Average Temperature (C) 772 81 81 0.230.23 39.44 853 (Upper) 72 170 0.18 0.19 42.78 853 (Middle) 47 0.2043.89 853 (Lower) 51 0.1945.00 864 223 223 0.210.21 45.55 865 (Upper) 54 230 0.21 0.22 41.11 865 (Lower) 176 0.2344.44 871 250 250 0.240.24 45.00 926 214 214 0.200.20 45.55 947 (Upper) 69 187 0.20 0.20 42.78 947 (Lower) 118 0.2045.28 972 (Upper) 296 370 0.19 0.18 43.33 972 (Lower) 74 0.1645.00 979 (Upper) 72 204 0.19 0.20 42.78 979 (Lower) 132 0.2145.55 982 205 205 0.210.21 45.00 1014 219 219 0.220.22 45.55 1032 (Upper) 84 141 0.24 0.24 37.78 1032 (Lower) 57 0.2439.44 1059 (Upper) 63 233 0.23 0.24 41.11 1059 (Lower) 170 0.2444.17 1063 243 243 0.210.21 44.44 1085 234 234 0.220.22 45.55 1151 240 240 0.210.21 45.55 1169 (Upper) 45 202 0.22 0.23 41.67 1169 (Lower) 157 0.2345.00 1193 (Upper) 20 140 0.23 0.23 41.67 1193 (Middle) 37 0.2442.78 1193 (Lower) 83 0.2244.44 1208 203 203 0.210.21 45.00 1240 207 207 0.220.22 45.28 1264 (Upper) 19 53 0.25 0.29 37.78 1264 (Lower) 34 0.3238.33

PAGE 236

218 Figure 3-39: Storage-capacity contour map for the CKLIZ throughout the study area.

PAGE 237

219 Figure 3-40: Average interpolated-temperature contours for CKLIZ within the study area.

PAGE 238

220 Table 3-4: Unplugged oil/gas and waste disposal wells in south Florida. Well P# Oil Field Operator Location Well Type Permit Status 563 BreitBurn Bear Island Field Oil/Gas Expired 640 BreitBurn Bear Island Field Oil/Gas Expired 733 BreitBurn Bear Island Field Oil/Gas Expired 761 BreitBurn Bear Island Field Disposal Operating 800 BreitBurn Bear Island Field Oil/Gas Operating 856 BreitBurn Bear Island Field Disposal Operating 962AH BreitBurn Bear Island Field Oil/Gas Operating 981BH BreitBurn Bear Island Field Oil/Gas Operating 1060 BreitBurn Bear Island Field Oil/Gas Expired 1064 BreitBurn Bear Island Field Oil/Gas Operating 1118A BreitBurn Bear Island Field Oil/Gas Expired 1119 BreitBurn Bear Island Field Oil/Gas Operating 1170 Peninsular Oil Company Corkscrew Field Oil/Gas Operating 1199A Newport Oil Corporation Corkscrew Field Oil/Gas Operating 1201A BreitBurn Corkscrew Field Oil/Gas Operating 1224BH BreitBurn Corkscrew Field Oil/Gas Operating 401AH US Capital Energy, Inc Lake Trafford Field Oil/Gas Operating 841 BreitBurn Lehigh Park Field Oil/Gas Operating 1019 BreitBurn Lehigh Park Field Oil/Gas Operating 904 BreitBurn Mid-Sunoco Felda Field Oil/Gas Operating 925 Peninsular Oil Company Mid-Sunoco Felda Field Oil/Gas Operating 915 BreitBurn Raccoon Point Field Oil/Gas Expired 998 BreitBurn Raccoon Point Field Oil/Gas Operating 1031 BreitBurn Raccoon Point Field Oil/Gas Operating 1061 BreitBurn Raccoon Point Field Oil/Gas Expired 1082AH BreitBurn Raccoon Point Field Oil/Gas Operating 1121 BreitBurn Raccoon Point Field Disposal Operating 1130 BreitBurn Raccoon Point Field Oil/Gas Operating 1141AH BreitBurn Raccoon Point Field Oil/Gas Operating 1149 BreitBurn Raccoon Point Field Oil/Gas Operating 1167 BreitBurn Raccoon Point Field Oil/Gas Expired 1190AH BreitBurn Raccoon Point Field Oil/Gas Operating 1215 BreitBurn Raccoon Point Field Oil/Gas Operating 1289CH BreitBurn Raccoon Point Field Oil/Gas Operating 1331AH BreitBurn Raccoon Point Field Oil/Gas Drilling 1332 BreitBurn Raccoon Point Field Oil/Gas Drilling 1333 BreitBurn Raccoon Point Field Oil/Gas Drilling 102 BreitBurn Sunniland Field Disposal Operating 312AH BreitBurn Sunniland Field Oil/Gas Operating 323A Oryx Energy Company Sunoco Felda Field Oil/Gas Operating 416 BreitBurn West-Sunoco Felda Field Oil/Gas Operating 442W BreitBurn West-Sunoco Felda Field Disposal Operating 645DH BreitBurn West-Sunoco Fe lda Field Oil/Gas Operating 748 BreitBurn West-Sunoco Fel da Field Disposal Operating 1294DH BreitBurn West-Sunoco Felda Field Oil/Gas Operating 1295H BreitBurn West-Sunoco Felda Field Oil/Gas Operating

PAGE 239

221 No additional leakage points, including faults or fractures in the upper seal, were apparent in the geophysical logs or core samples evaluated for the CKLIZ during this study. 3.6 Discussion 3.6.1 Study Limitations Identifying wells that penetrated the complete CKLIZ throughout the entire extent of the study area was challenging. Hillsborough, Hardee, Highlands, and Indian River counties had wells with geophysical logs from which only formation and storage zone delineations could be made, but from which porosity could not be derived. Pinellas, Manatee, St. Lucie, Martin, Glades, Broward, and Miami-Dade counties had multiple wells available that had geophysical data for formation and storage zone delineations; however, each had only one well that provided porosity data. Similarly, Polk, Osceola, and Desoto counties had multiple wells available that provided geophysical data for formation and storage zone delineations; however, each had only two wells that provided porosity data. No geophysical logs that could be used for formation and storage zone delineation, as well as porosity derivation, were available for Brevard and Sarasota counties. Several wells had geophysical logs from which porosity could be derived; however, core/well cutting samples, mud logs, or lithological descriptions were not available for lithological confirmation, which was necessary for a more definitive porosity value determination. Notwithstanding, this porosity data was still considered useful to the study, and was therefore included using the most conservative porosity values for porosity interpolations and storage capacity estimations. Some wells in the study area had curved wellbores that had geophysical logs only reported in measured depth, and the associated well record lacked the information needed to convert the depths to TVD for accurate representation of the depth and extent of the CKLIZ and its upper seal; as such, these wells were excluded from the study.

PAGE 240

222 Evaluation of the CKLIZ within the study area was also limited to the existing well-coverage, which in some regions was dense due to the presence of past or current oil production/exploration or waste disposal injection, while in other regions wellcoverage was sparse and widespread, such as the northern and eastern boundaries, as well as the southern-tip, of the study area. Well-coverage limitations affected the ability to conduct parameter-interpolations on a relatively small scale throughout the entire extent of the CKLIZ study area, using the RBF methods in ArcGISTM. As discussed in Section 2.5.4 of Chapter 2, because interpolated surfaces only go through actual data points when using the RBF methods, interpolated contour-surfaces were bound by the outermost data points in the study area. Therefore, the interpolated-surfaces for each type of parameter interpolation (i.e., isolith and isopach contours, porosity contour, storage capacity contour, and temperature contour) was consequently developed for approximately 84% of the CKLIZ study area. 3.6.2 Porosity and Permeability of the Cedar Keys/Lawson Injection Zone Porosity within the CKLIZ primarily exists within the porous dolostone of the lower Cedar Keys Formation and the upper member of the Lawson Formation, although porous limestone also occurs locally within these geologic units, as seen in Table AIV-2. For the CKLIZ, few fractures were observed in the geophysical logs used for this study; however, additional geophysical logs, such as seismic logs, would need to be evaluated in order to better-identify fractures within the storage zone. Regardless, most of the observed porosity in the storage reservoir is intergranular, or interparticle. Average porosity for the CKLIZ throughout the extent of the study area is 23%, and ranges from 10% to greater than 40% in the porous intervals of the storage zone. Figure 3-38 shows that porosity values within the CKLIZ tend to be greater in the northern-most extent of the study area (south-central Florida) and the southeastern-most

PAGE 241

223 extent. Generally, porosity is lowest in the central portion of the SFB, and progressively increases to the north and south. Laterally, porosity within the CKLIZ is relatively homogeneous throughout the study area, as depicted in figures 3-26 through 3-37. Vertically, however, some heterogeneity exists within the storage reservoir in the form of semi-confining anhydrite or low-permeability dolomite that occurs in thicknesses ranging from 0.3 m (1 ft) to 24 m (80 ft), as seen in Table AIV-2 and in the striplog created for each evaluated well (Appendix VI). In many instances, the relatively thick, low-permeability layers create one or more storage sub-zones within the vertical extent of the reservoir that are laterally continuous. As mentioned in Chapter 2, both of these conditions are preferable for a potential CO2 storage zone, as the lateral homogeneity increases the storage capacity of the reservoir, while the vertical heterogeneity slows the vertical migration of injected-CO2 and increases the CO2 storage efficiency of the reservoir. 3.6.3 Storage Capacity of the Cedar Keys/Lawson Injection Zone For this study, porous intervals that had porosities > 10% were deemed suitable for CO2 storage, and were therefore included in the CKLIZ. Porosity values > 10% is a somewhat-conservative porosity delineation compared to other CCS studies that have been conducted, which use lower porosity values for storage-zone delineation, on the order of 8% (Brennan et al., 2010). The conservative porosity delineation used in this study results in a more conservative storage capacity estimate for the CKLIZ, as it affects the confines of the CKLIZ vertically, and thus affects the estimated value of hg used in the storage capacity calculation. The conservatively estimated total CO2 storage capacity for the CKLIZ within the study area is approximately 79 BtCO2. As seen when comparing Figure 3-3 with Figure 3-39, the regions within the study area that have comparatively higher storage capacities are generally located in the same areas where the CKLIZ is thicker, while the areas with

PAGE 242

224 lower storage capacities are generally located in regions of the study area where the CKLIZ is comparatively thinner. Only 84% of the study area could be interpolated using ArcGISTM in this figure. Since most major large-scale power plants in south Florida produce 4-10 MtCO2 per year, and have an average lifespan of about 40 years, the CKLIZ has the ability to potentially support CO2 storage for many Florida power plants, especially those located in south-central and southern Florida. Specifically, the CKLIZ has the potential to sequester CO2 for about 490 large-scale coal-fired power plants for the entire lifespan of each power plant, or nearly 990 coal-fired power plants for half the lifespan of each plant, depending upon the size of the power plant and the respective annual CO2 emission. 3.6.3.1 Effects of Study Limitations and Uncertainties on Estimated Storage Capacity The CO2 storage capacity calculated for the CKLIZ throughout the study area is not a definitive calculation, but rather it is an estimation based upon the available data, which have limiting factors such as availability of wells for spatial-coverage, as well as the availability of lithologic and geophysical data at each well. Errors may exist in the storage capacity estimation as a result of uncertainties in the study area and available data, as well as uncertainties that exist in the physical and geochemical processes that occur in the system following CO2 injection, such as factors affecting plume migration, brine displacement, and trapping mechanisms. These errors and uncertainties may increase or decrease the estimated CO2 storage capacity calculated for the CKLIZ in this study. Given the available data, it is difficult to estimate these uncertainties. The northern boundary of the study area for the CKLIZ is delineated from available well data in that region. Geophysical data indicate a depth of >914 m (3,000 ft) bls for the CKLIZ in Pinellas, Hillsborough, Polk, and Osceola counties, and a depth

PAGE 243

225 <914 m (3,000 ft) bls, as indicated by at least one well, in the counties to the north of this region. Brevard County has no available well data; however, five wells in adjacent Osceola County, west of Brevard County, show the top of the CKLIZ to be below 914 m (3,000 ft) bls in its northernmost and easternmost extents, near the boundary with Brevard County. Therefore, it is assumed that the top of the CKLIZ continues to be below 914 m (3,000 ft) bls in adjacent Brevard County. With the exception of Osceola County, 1-2 wells were available for each county to delineate the northern extent of the CKLIZ study area. Most of the wells are located in the central and southern portions of the counties; therefore, the northernmost extent at which the top of the CKLIZ lies above 914 m (3,000 ft) bls within these counties cannot be delineated, only estimated. The area used in the estimated CO2 storage capacity for the CKLIZ is ~7.4 x 1010 m2; however, the lateral extent of the CKLIZ could be slightly less or slightly more than this (i.e., by ~5.0 x 108 m2). Nevertheless, the difference in area as a result of the uncertainty in the northern boundary would likely result in a difference in storage capacity of less than 0.01%. The porosity of the CKLIZ was derived from geophysical logs for wells within the study area, and tot used in the storage capacity calculation represents the average of these derived-porosity values. When more than one geophysical log was available, cross-plots were used to best-determine porosity values within the unit; however, in many instances only one geophysical log was available for porosity derivation, which often required that the lithology be determined in order to obtain the correct porosity value. Depending upon the type of geophysical log used, differences in lithology could result in a difference in porosity of 5-10% fo r a given porous interval of varying thickness (i.e., 0.5 or more meters). If the designated lithology chosen in this study does not match the true lithology within the unit for a given porous interval, the average porosity determination and tot value could be slightly less or slightly more, but probably not more

PAGE 244

226 or less than 0.5-1%, which could result in a difference of ~5-10% of the estimated storage capacity. The designated, or derived, porosity throughout the CKLIZ also affects the thickness of the porous intervals and ultimately the value of hg, as designated porous intervals in this study had to have a porosity of at least 10% to be included in the storage capacity calculation. The amount of formation-water that is displaced as a result of CO2 injection determines the storage efficiency of a given aquifer. Including the effects of gravity, CO2 and formation-water displacement are dependent upon the lateral homogeneity of the storage reservoir (van der Meer, 1995). Porosity interpolations presented in this study show lateral continuity with the porous intervals of the CKLIZ, and as discussed in Section 2.5.3 of Chapter 2, simulations conducted to date at USF show significant lateral displacement of formation-brines following CO2 injection, both of which increase storage efficiency. Additionally, the vertical heterogeneity of the CKLIZ, as presented in this study, also increases the storage efficiency in the reservoir, as it slows the vertical migration of CO2. For these reasons, an E value of 0.03 was selected to represent the storage efficiency of the CKLIZ; however, without knowing the residual brine saturation, which is the amount of brine remaining in the pore spaces of the unit after the CO2 front has passed through, it is extremely difficult to determine the value of E at such a small scale. Because the value of E typically ranges from 0.01-0.04 (NETL, 2007), the estimated storage capacity for the CKLIZ potentially ranges from ~26 BtCO2 to ~105 BtCO2, depending upon which value of E is used in the storage capacity calculation, which is a difference of 33-67% of the estimated storage capacity. This study provides numerous cross-secti ons and interpolations that display the vertical heterogeneity and lateral continuity of porous intervals and layers of low permeability within the CKLIZ; however, these interpolations are on a regional-scale and distances between each well vary throughout the study area. The wells used in this

PAGE 245

227 study are spatially dependent, as some wells occu r in “clusters” in areas with extensive oil exploration, and other wells are separated by greater distances where no potential source rocks exist and little oil exploration has been conducted; therefore, a moredetailed, small-scale examination of the lithology in the CKLIZ is unavailable. As such, for this study, it is assumed that all well data are equally valid and that there is no objective basis for differentially weighting the data from individual wells. Figure 3-39 is an interpolation of the CO2 storage capacity within the CKLIZ throughout 84% of the study area, which was created using ArcGISTM. Essentially, ArcGISTM was used to integrate each variable in the storage capacity equation on a cellby-cell basis (using 101,432 cells), thereby resulting in a calculated CO2 storage capacity for the CKLIZ. ArcGISTM also allows for the calculation of spatial-statistics associated with a raster layer. The spatial-statistics for the storage-capacity raster layer indicate that the sum of the cells in the model equate to approximately 63 BtCO2, which is ~80% of the manually-derived CO2 storage capacity for the CKLIZ (~79 BtCO2). The manually-derived CO2 storage capacity represents an extrapolated storage capacity for the entire study area, which is approximately 16% larger than the area for which the geospatially-derived CO2 storage capacity was calculated. Because the geospatiallyderived CO2 storage capacity was calculated for 84% of the total study area, the fact that the total storage capacity calculated using this method for the reduced study area was ~80% of the manually-derived storage capacity corroborates the general accuracy of the manually-derived CO2 storage capacity, with a 4% difference between the two storage capacity calculation methods. 3.6.4 Cedar Keys/Lawson Injection Zone Seals The middle Cedar Keys Formation is proposed as the upper seal or caprock for the CKLIZ during potential CO2-injection operations, and the lower member of the Lawson Formation together with the rocks of Taylor age are proposed as the lower seal.

PAGE 246

228 Within the study area, the average thicknes s of the middle Cedar Keys Formation is generally about 200 m (~650 ft) to 300 m (~980 ft), but it could be as thick as 446 m (1,463 ft) or as thin as 22 m (70 ft) depending upon location within the study area, as denoted in Table 3-2. The unit becomes comparatively thinner in the northeastern regions of the study area; however, at least one significantly thick anhydrite bed exists in this region which would potentially provide sufficient confinement for the underlying CKLIZ provided there were no identified leakage points. No faults or fractures were apparent in the middle Cedar Keys Formation during the evaluation of geophysical logs and core samples for this study. Like the Lake Trafford Formation discussed in Chapter 2, if post-depositional faults and fractures ever existed within the middle Cedar Keys Formation, anhydrites within the geologic unit would likely have filled these features and reinforced the semi-confining nature of the unit. The suspected small displacement, normal faults presented in Winston (1995) occur within the upper Cedar Keys Formation, along the coastline of the southeastern boundary of the study area and within a region where no wells could be located that met the well-selection criteria for this study; therefore, no geophysical logs were examined for this “suspected-fault area” that could have confirmed or denied the presence of such faults. However, because the 3-15 m (10-50 ft) displacements of these faults are relatively small when compared to the aver age thickness of the middle Cedar Keys Formation, it is likely that formation anhydrites would have sealed these small displacement faults. Based upon the core samples and geophysical logs that were evaluated in this study, and on the fact that the middle Cedar Keys Formation serves as the lower confining unit for the FAS, the geologic unit is believed to be a structurally sound and potentially effective upper seal for the CKLIZ; however, no seismic data were available

PAGE 247

229 for review during this study, which would likely provide a better determination of the effectiveness and suitability of the middle Cedar Keys Formation as an upper seal. 3.6.5 Carbon Sequestration in the Cedar Keys/Lawson Injection Zone Based upon the criteria outlined in Chapter 1 for successful CCS operations in geologic formations, the CKLIZ throughout the extent of the study area could potentially be used as a CO2 storage zone for the following reasons: Geographic Location As shown in Figure 3-41, numerous electricity-generating power plants are located within the study area. Specifically, the two biggest CO2-emitting power plants in Florida, Progress Energy’s Crystal River power plant in Citrus County and TECO’s Big Bend power plant in Hillsborough County, are located in south-central Florida and are either within or in very close proximity to the study area. The geographic location of the electricity-generating power plants either within or in very close proximity to the study area means that not only will the supercritical CO2 have to travel short distances, but also less complex means of CO2 transportation will be required, both of which result in a decrease in overall costs for CCS projects. In fact, in many cases CO2 could potentially be injected at the power-plant site from which the CO2 was captured, which is a significant cost reduction for CCS operations. Depth The depth at which the CKLIZ occurs within the study area meets the CCS depth-criteria of greater than 914 m (3,000 ft) bls. Additionally, the comparatively shallow depth of the CKLIZ is a major reason why the storage reservoir is being considered for potential CCS operations in Florida. As seen in Chapter 2, there are other geologic units and formations in Florida which could potentially serve as CO2 sequestration reservoirs; however, the CKLIZ is the shallowest storage zone that could potentially be used for GS. Consequently, the CKLIZ is probably the least-expensive

PAGE 248

230 Figure 3-41: Major electricity-generating power plants within and in close proximity to the CKLIZ study area.

PAGE 249

231 CO2 storage reservoir in south-central and southern Florida that could be used in CCS operations, as the final depths of CO2-injection wells would be significantly shallower than other units and would therefore cost less to install and operate. Porosity and Storage Capacity Average porosity of the CKLIZ within the study area is 23%, which suggests that the reservoir is potentially suitable for use as a geologic storage unit for CCS. Additionally, the estimated CO2 storage capacity of the CKLIZ within the study area is about 79 BtCO2, which means the reservoir potentially has the ability to support CCS for several hundred large-scale power plants for their entire lifespan. Caprock The middle Cedar Keys Formation and the lower member of the Lawson Formation, together with rocks of Taylor age, occur throughout the study area and appear to be potentially sufficient upper and lower seals for the CKLIZ for its use in CCS operations. 3.6.6 Temperature Gradient for the Cedar Keys/Lawson Injection Zone Within the central portion of the SFB, temperatures were generally the highest, as depicted in Figure 3-40. From there, temperatures progressively decrease toward the north, northwest, and northeast into south-central Florida; however, temperatures generally remain relatively stable, or slightly decrease by a degree or two, toward the south and throughout southern Florida, including the Florida Keys. 3.6.7 Potential Leakage Points for the Cedar Keys/Lawson Injection Zone As discussed in Section 2.7.7 of Chapter 2, if an oil exploratory well has no show of oil, it is plugged and abandoned in accordance with the rules and procedures outlined in FAC 62C-29.009, and if a producing-well ceases oil production, operators either plug and abandon the well immediately in accordance with FAC 62C-29.009, or the well is “shut in” until a decision is made by the operator to either plug and abandon the well,

PAGE 250

232 deepen the well for further oil exploration, or convert the well to an injection/disposal well. In many cases, a well is often “shut in” for months or years. Any unplugged wells in south-central and southern Florida that penetrate the upper seal of the CKLIZ, which are identified in Table 3-4, are potential leakage points for CO2 following CO2-injection operations. For many decades, wells were not always plugged properly, and were instead simply filled with mud-laden fluid (Metz et al., 2005); therefore, improperly plugged and abandoned wells could potentially serve as leakage points for CO2. In addition, the condition of many plugged and abandoned wells may have deteriorated significantly over time, thereby making them a conduit for CO2 leakage into the overlying strata. Prior to the implementation of any type of CCS operation in the CKLIZ, any unplugged wells in the vicinity of the proposed injection site should be identified and plugged in accordance with FAC 62C-29.009, and any plugged and abandoned wells in the vicinity should be identified and examined for proper and secure plugging practices. It is also imperative that the location, depth, and well-characteristics of boreholes that have penetrated the CKLIZ within the area of review for a proposed injection-site, but that reached total depth before penetrating the formation, be evaluated, as these wells could also represent potential leakage pathways. As discussed earlier, no faults or fractures were apparent in the middle Cedar Keys Formation during the evaluation of core samples and geophysical logs conducted during this study; however, additional geophysical logs, such as seismic logs, would need to be evaluated in order to rule out the occurrence of these leakage-features within the upper seal. 3.7 Conclusion As presented and discussed in chapters 1 and 2, Florida has been targeted by many as a potentially promising CO2 storage reservoir within the southeast due to its multitude of highly porous and permeable, deep geologic units that are separated by

PAGE 251

233 thick layers of low permeability. Specifically, the CKLIZ has been of great interest to Florida utilities due to its shallow depth and vertical and lateral expanse in south-central and southern Florida, all of which greatly affects and reduces the ultimate cost of CCS to the utilities. Until now, few studies have provided an in-depth stratigraphic and hydrogeologic examination of the Cedar Keys and Lawson formations, and more importantly to the CCS technology, few studies have evaluated these formations for their potential use as storage reservoirs. The CKLIZ would potentially be suitable for CCS operations due to its geographic location and close proximity to electricity-generating power plants, its high porosity and storage capa city, and its potentially effective seals. The lower Cedar Keys Formation and upper member of the Lawson Formation form the CKLIZ, which, as described here, is a highly porous and permeable interval of varying thickness that is sealed by the overlying middle Cedar Keys Formation and underlying lower member of the Lawson Formation and rocks of Taylor age. From rock samples and data evaluated in this study, the middle Cedar Keys Formation appears to be a suitable upper seal; however, further geophysical evaluation, such as the examination of seismic logs, could provide a better determination of its suitability, and is recommended prior to the implementation of any CO2 injections into the CKLIZ. The total estimated CO2 storage capacity of the CKLIZ within the study area is approximately 79 BtCO2. The regions which appear to have the highest storage capacities per km2 seem to correlate with the regions where the CKLIZ is thickest. Given the total estimated storage capacity, and depending upon the size of the power plant and the respective annual CO2 emission, the CKLIZ has the potential ability to support CO2 storage for several hundred power plants for their entire lifespan. The average porosity of the CKLIZ is 23%. Porosity tends to be lowest in the central portion of the SFB, and gradually increases to the north and south within the study area. Laterally, porosity in the CK LIZ is relatively homogeneous, which provides

PAGE 252

234 for increased storage capacity; however, vertically, some heterogeneity exists in the porosity, which could potentially slow the vertical migration of injected-CO2 and increase the efficiency of the formation as a CO2 storage reservoir. Unplugged, plugged, and abandoned wells have been identified as potential CO2-leakage points for CO2 injection in the CKLIZ. Prior to the commencement of any CCS operations, such wells should be identified and either plugged in accordance with FAC 62C-29.009, or inspected for proper and secure plugging and abandonment, in order to close and alleviate CO2-leakage conduits. Additionally and as suggested above, further examination of the middle Cedar Keys Formation via geophysical data, such as seismic logs, should be conducted prior to CCS operations in order to rule out the occurrence of faults or fractures. Like the Sunniland Formation discussed in Chapter 2, the data provided in this study for the CKLIZ could be incorporated into preliminary mathematical models of injection, using a numerical code such as TOUGH2/ECO2N that can simulate the injection of supercritical CO2 into brine-filled geologic units, to analyze the effects of CO2 injection into the reservoir. This type of modeling would give an estimate of the volume of CO2 that could be injected, examine the physical effects of CO2 injection, such as changes in fluid pressures and brine displacement, and monitor the potential for migration of the CO2 plume after injection had ceased.

PAGE 253

235 Chapter 4: Statewide Assessment of Other Deep Geologic Units of Florida Considered for Carbon Dioxide Sequestration 4.1 Introduction Chapters 2 and 3 provide an in-depth evaluation of the Lower Cretaceous Sunniland Formation and the Upper Cretaceous to Paleocene Lawson and Cedar Keys formations within the SFB, respectively, for their potential use as sequestration reservoirs for CCS operations in Florida. This chapter provides a more-cursory evaluation of deep geologic units throughout the state of Florida, including other rocks of Paleocene and Upper Cretaceous age through to rocks of Ordovician age. Numerous units have been identified within this interval that have adequate porosity and permeability, vertical and lateral extent, geographic location, and potential confinement that would make them potentially suitable for use as CO2 sequestration reservoirs, not only in CCS operations, but in some cases, in CO2-EOR operations, as well. 4.2 Potential Areas for Additional Geologic Sequestration in Florida 4.2.1 Rebecca Shoal Dolomite According to Winston (1994), the Rebecca Shoal Dolomite, formerly termed the “deep Boulder Zone,” is a dolomitized reef-complex of Upper Cretaceous to Paleocene age. The reef system is 1,609 km (1,000 mi) long, completely surrounding the Florida peninsula, and is generally 24 km (15 mi) to 32 km (20 mi) wide, although around the Sarasota Arch in south-central Florida the reef widens to about 80 km (50 mi) (Figure 41; Winston, 1994). The length of the Rebecca Shoal reef can be compared to that of the

PAGE 254

236 Figure 4-1: Regional structure of Rebecca Shoal reef (adapted from: Winston, 1994).

PAGE 255

237 Great Barrier Reef of Australia, but the Great Barrier Reef is a linear feature, whereas the Rebecca Shoal reef essentially resembles a massive atoll. Around the Sarasota Arch, the unit reaches a maximum composite thickness of about 914 m (3,000 ft), and then progressively thins towards the north to a thickness of about 183 m (600 ft) in southeastern Georgia (Winston, 1995). The below-sea-level elevations for the Rebecca Shoal Dolomite are about -396 m (-1,300 ft) in the northwestern region of peninsular Florida to about -1067 m (-3,500 ft) in the Florida Keys (Winston, 1994). The Cedar Keys Formation discussed in Chapter 3 was deposited in the restricted, back-reef, lagoonal-environment of the Rebecca Shoal barrier reef (Winston, 1994). According to Winston (1994), the anhydrites of the middle Cedar Keys Formation, which is the proposed upper seal for the CKLIZ, was deposited in the Late Upper Cretaceous or Early Paleocene, when the rapid extension of the reef reached the point where it completely encircled the Florida peninsula. Porosity within the Rebecca Shoal Dolomite ranges from intercrystalline to highly porous caverns and cavities that are characteristic of Florida’s “Boulder Zone” (Winston, 1978). The geologic unit is inconsistent lithologically, and can contain the Upper Cretaceous Card Sound Tongue, the Upper Cretaceous to Paleocene Plantation Tongue, and/or the Paleocene Tavernier Tongue, depending upon the location within Florida. The Rebecca Shoal Dolomite may have existed into the Early Eocene; however, there is no stratigraphic evidence of this, nor is there evidence of why the reef system, which existed for roughly 40 milli on years, abruptly disappeared (Winston, 1995). No paleontologic data is available for the Rebecca Shoal Dolomite to moreaccurately determine the age of the unit or its various Tongues; therefore, age has been assigned to the unit based upon its stratigraphic position (Figure 4-2).

PAGE 256

238 Figure 4-2: Generalized stratigraphic column for the Rebecca Shoal Dolomite (adapted from: Winston, 1994; Winston, 1995).

PAGE 257

239 Around the Florida Keys, the Rebecca Shoal Dolomite is rather abundant, and contains the Card Sound Tongue, a finely crystalline dolomite with up to 10% vuggy porosity in scattered beds; the Plantation Tongue, a cryptocrystalline and fineto medium-crystalline dolomite with vuggy and in tercrystalline porosity ranging from 5-15%; and the Tavernier Tongue, a fineto coarse-crystalline dolomite with vuggy and intercrystalline porosity ranging from 5-25% (Winston, 1978; Winston, 1994; Winston, 1995). In some areas of the Florida Keys, the Tavernier Tongue is overlain and underlain by the Cedar Keys Formation; however in other areas it is overlain by the Delray Dolomite and underlain by the Cedar Keys Formation. The Plantation Tongue and Tavernier Tongue are inseparable in certain areas of the Florida Keys, and in this scenario, the Cedar Keys Formation is missing and the resulting Rebecca Shoal Dolomite unit overlies the Pine Key Formation (Winston, 1994). The “Boulder Zone” areas of the Rebecca Shoal Dolomite only exist in the Florida Keys, and are typically located near the basal portion of a Tongue or the continuous reef (Winston, 1995). Little information is published for the entire vertical extent of the Rebecca Shoal Dolomite in south Florida, north of the Florida Keys, as few wells seem to penetrate the unit below the Plantation Tongue. According to Winston (1995), the Tavernier-Plantation section of the Rebecca Shoal Dolomite in St. Lucie County is mostly cryptocrystalline dolomite with occasional beds of fineto medium-crystalline dolomite, and vuggy porosity is dominant. In St. Lucie, Martin, and northeastern Palm Beach counties, this section of the Rebecca Shoal Dolomite is predominantly a non-porous, anhedral dolomite; however, in some areas there is finely crystalline, euhedral dolomite with intercrystalline porosity that is up to 15% (Winston, 1995). In west-central peninsular Florida, the Rebecca Shoal Dolomite is mostly composed of the Tavernier Tongue. Onshore, this unit is generally a non-porous, cryptocrystalline dolomite; however, offshore, porosity of the unit increases to about 20%

PAGE 258

240 in the form of intercrystalline, vuggy, and pin-point porosity (Winston, 1994). The Card Sound Tongue does not exist in this region of Florida, and there is only a very thin section of the Plantation Tongue. In northwest peninsular Florida, only the Tavernier Tongue represents the Rebecca Shoal Dolomite. In the core environment of the Rebecca Shoal reef, dolomite is mostly euhedral and fineto medium-crystalline with up to 20% intercrystalline porosity, although some anhedral dolomite occurs with vuggy porosity of about 5% (Winston, 1994). In the flanks of the reef, porosity decreases and the lithology changes to a finer-crystalline, euhedral dolomite, while in the forereef/backreef environment, the unit is typically interbedded with the dolomit e and anhydrite of the Cedar Keys Formation or the cherty limestone of the MADco Suite (Winston, 1994). In its onshore portion of southeastern and southern Florida, the Rebecca Shoal Dolomite could potentially serve as a storage reservoir for CCS operations, where the porosity is highest and the unit occurs below 914 m (3,000 ft) bls; however, further detailed examination of the unit’s porosity and potential storage capacity would need to be conducted. The middle Cedar Keys Formation could possibly serve as the upper seal for certain sections of the Rebecca Shoal Dolomite (i.e., Plantation Tongue and Card Sound Tongue) in specific locations; however, based upon the background literature, it is not entirely clear where this stratigraphic relationship occurs throughout the unit’s entire lateral extent, and an adequate upper seal for the Rebecca Shoal Dolomite would need to be further investigated and confirmed. Additionally, as much of the Rebecca Shoal Dolomite occurs offshore, there is the potential that the geologic unit could also be used as an offshore CO2 storage reservoir. 4.2.2 Potential, Existing, and Depleted Oil and Gas Reservoirs Numerous oil and gas fields are located throughout Florida, either in western panhandle Florida or in southern peninsular Florida within the SFB. Although petroleum

PAGE 259

241 production has slowed significantly over the past few decades since the discovery of oil in the early 1940’s, Florida was once a major contributor of oil and gas to the U.S. (Lane, 1994). Oil and gas production in Florida was on a steady incline for several decades following its discovery, and peaked for many of Florida’s oil fields in 1979; however, since then, production has been on a sharp, decreasing trend for existing oil fields, and many are considered depleted and therefore are “inactive.” Several other geologic units in onshore and offshore portions of Florida have been studied and proposed by many as potential petroleum source rocks; however, these units have yet to be further examined and utilized for commercial oil and gas production. Most of the oil-producing geologic units in Florida are composed of carbonate rocks, although in some cases the source rock is sandstone. For the most part, oil fields in southern peninsular Florida produce oil from traps that were created by dense rocks of low permeability which overlie the porous source rocks, while the oil traps in the Florida panhandle were created by evaporite beds, faulting, and stratigraphic traps (Lane, 1994). Like the Sunniland Formation discussed in Chapter 2, many of the potential, existing, and depleted oil and gas reservoirs in Florida could potentially be used in CO2EOR operations or CCS operations. 4.2.2.1 South Florida Basin In addition to the Sunniland Formation, several other geologic units in the SFB have exhibited signs of petroleum and reserv oir potential. These units are discussed below, and their layout is presented in the stratigraphic column of Figure 2-4 in Chapter 2. Sunniland-Dollar Bay Total Petroleum System The Sunniland-Dollar Bay Total Petroleum System (TPS) includes all source rock, reservoir rock, seals, and accumulations of stratigraphic units between the Dollar

PAGE 260

242 Bay Formation and the Sunniland Formation within the Lower Cretaceous age rocks (Figure 2-4; Pollastro et al., 2001). The lateral extent of this TPS is displayed in Figure 4-3. Primary oil and gas production for the Sunniland-Dollar Bay TPS is from the Sunniland Formation; however, additional production is expected from the Dollar Bay Formation, as well. Dollar Bay Formation The Lower Cretaceous Dollar Bay Formation is the youngest source rock in the SFB that is located onshore in Florida, and varies in thickness from 145 m (476 ft) to 168 m (551 ft) (Pollastro et al., 2001; Winston, 1972). Like the Sunniland Formation, which is located 457 m (1,500 ft) or more below the Dollar Bay Formation, this geologic unit contains many highly porous intervals throughout its vertical extent, and is mainly composed of sequences of evaporites and carbonates that were deposited during sea level regressions and transgressions; however, locally the Dollar Bay Formation can contain thin beds of calcareous shale, mudstones, salt, and lignitic material (Applin & Applin, 1965; Mitchell-Tapping, 1990; Pollastro et al., 2001; Winston, 1972). The Dollar Bay Formation is immediately overlain by the Lower Cretaceous Panther Camp Formation, a low-permeability sequence of limestone, dolostone, and anhydrite that is ~95 m (310 ft) thick (Pollastro et al., 2001; Winston, 1976). The Panther Camp Formation is overlain by the Lower Cretaceous Rookery Bay Formation, a 145-m (480 ft) thick, regionally extensive anhydrite unit containing numerous, low-porosity, chalky limestone and dolostone beds (Amato et al., 1986; Winston, 1976). The Panther Camp and Rookery Bay formations collectively provide a thick upper seal for the Dollar Bay Formation. Hydrocarbon shows have been observed in numerous wells of the Dollar Bay Formation, mostly confined to dolostones of the upper portion of the unit or to bioherm limestones, all of which typica lly have low API gravities around 15-20 (MitchellTapping, 1990; Winston, 1971). Reservoir porosities range from about 9 to 33% in the

PAGE 261

243 Figure 4-3: Extent of Sunniland-Dollar Bay TPS (adapted from: Pollastro et al., 2001).

PAGE 262

244 limestone sections of the unit, while the dolostone sections have porosities that range from about 14 to 29% (Mitchell-Tapping, 1990). Due to low API gravities reported within the Dollar Bay Formation, some believe the reservoir may not be suitable for commercial oil production onshore, but could possibly be suitable offshore where the formation-oil is thought to be more thermally mature (Pollastro et al, 2001); however, some disagree and concede that the onshore portion of the unit should be considered a primary target for commercial oil production in the region up-dip and northeast of the Trend (MitchellTapping, 1990; Winston, 1971). Notwithstanding, there is no question about the presence of a porous interval of significant thickness within the Dollar Bay Formation, as well as the presence of a low-permeability, upper seal. During the evaluation of geophysical logs for characterization of porosity within the Sunniland Formation (Chapter 2), a significantly thick, highly porous interv al overlain by a thick unit with very low porosity (probably anhydrite) was observed ~400+ m (1,300+ ft) above the Sunniland Formation in many of the study wells, the identity of which is believed to be the Dollar Bay Formation. Pre-Punta Gorda Total Petroleum System The Pre-Punta Gorda TPS is an Upper Jurassic(?) and Lower Cretaceous system located below the Punta Gorda Anhydrite, which is expected to be a source rock and reservoir with significant petro leum production and adequate seal, based upon geochemical evidence and geologic interpretation of various lithological and geophysical data (Figure 2-4; Pollastro et al., 2001). This TPS is composed of the “brown dolomite zone” within the Twelve Mile Member of the Lehigh Acres Formation, and porous dolomite intervals within the Pumpkin Bay and Wood River formations. Numerous, thick, intraformational anhydrite beds with regional persistence, as well as local and regional, impermeable micritic carbonates, exist below the Punta Gorda Anhydrite, which could potentially serve as upper seals for units within the Pre-Punta Gorda TPS (Applegate et

PAGE 263

245 al., 1981; Pollastro et al., 2001). Additionally, the Punta Gorda Anhydrite, which forms the lower seal for the Sunniland Formation as discussed in Chapter 2, has strong potential to serve as the upper seal for the entire Pre-Punta Gorda TPS. The extent of the Pre-Punta Gorda TPS is displayed in Figure 4-4, and a brief description of each of these stratigraphic units is presented below. Brown Dolomite Zone An area in the subsurface known as the “brown dolomite zone” is located within the Twelve Mile Member, a minimum of 15 m (50 ft) below the top of the member, of the Lower Cretaceous Lehigh Acres Formation, and is approximately 91 m (300 ft) below the base of the Punta Gorda Anhydrite, around 3,658 m bls (12,000 ft) (Applegate, 1984; Pollastro et al., 2001). The Twelve Mile Member averages about 46 m (150 ft) thick and is mostly composed of skeletal grains and miliolids (Winston, 1987), while the brown dolomite zone within this unit is typically composed of euhedral or anhedral, fineto coarse-crystalline dolostone that typically has good porosity (10-20%) which ranges from pin-point intercrystalline to vuggy (Applegate, 1984). Generally, the brown dolomite becomes less porous with depth. The geologic unit is most developed and most porous in northern Lee, northern Hendry, Charlotte, Glades, southwest Highlands, and southeast Desoto counties of the southwestern region of peninsular Florida, although it also has significant occurrence in the western Florida Keys (Applegate, 1984). On the Florida mainland, the unit has a maximum thickness of ~30 m (100 ft); however, in the Florida Keys the unit is up to 64 m (210 ft) thick (Applegate, 1984; Winston, 1987). Offshore, the maximum thickness of the brown dolomite is around 122 m (400 ft), and occurs in the proximity of Marquesas Key (Applegate, 1984). Oil staining has been observed in the brown dolomite, and the unit is thought to contain considerable amounts of oil, especially offshore (Applegate, 1984; Pollastro et al., 2001; Winston, 1987). Because this unit is located deeper in the subsurface and below the Sunniland

PAGE 264

246 Figure 4-4: Extent of Pr e-Punta Gorda TPS (adapted from: Pollastro et al., 2001).

PAGE 265

247 Formation, oil gravities and gas-to-oil ratios are believed to be higher than those of the Sunniland Formation and the oil is believed to be more thermally mature (Applegate, 1984; Pollastro et al., 2001). Stratigraphic and structural traps, as well as the numerous, dense anhydrite beds that overlie the unit, prov ide a potentially sufficient upper seal for the brown dolomite (Applegate, 1984). Pumpkin Bay Formation The Lower Cretaceous Pumpkin Bay Formation is predominantly micritic limestone with intermittent beds of dolostone and anhydrite (Winston, 1987); however, at its northernmost extent around southern Highlands, southern Desoto, Charlotte, and west Glades counties, the formation is mostly a porous dolostone (Pollastro et al., 2001). The unit is typically about 274 m (900 ft) thi ck, and good petroleum potential is believed to exist in the upper portion of the unit (Applegate et al., 1981; Applegate, 1984; Winston, 1987). Porous intervals within the Pumpkin Bay Formation typically have pinpoint intercrystalline to vuggy porosity that can have values in excess of 20%, and the formation is typically thickest around southern Highlands, southern Desoto, Charlotte, and west Glades counties, where thickness can be up to 366 m (1,200 ft) (Applegate et al., 1981; Pollastro et al., 2001). Porosity and oil-potential are believed to be better offshore on the West Florida Shelf than onshore (Applegate et al., 1981). Wood River Formation The Wood River Formation is probably Upper Jurassic in age based upon its stratigraphic position, and is the lowest sedimentary unit in the SFB (Pollastro et al., 2001; Winston, 1987). Although few wells have penetrated the geologic unit, existing data show that it consists of limestone, dolostone, and anhydrite sequences with thin salt stringers, and averages ~520 m (1,700 ft) thick, although its maximum thickness is ~820 m (2,700 ft) (Pollastro et al., 2001). Relatively thick clastic units (30-46 m [100-150 ft]) composed of dark-red shale and fineto coarse-grained arkosic sandstone and

PAGE 266

248 calcareous sandstone occur in the basal portion of the formation (Pollastro et al., 2001). Dolostone within the Wood River Formation is typically euhedral and very-fine microcrystalline to microcrystalline, with abundant oolitic relic grains (Winston, 1987). Limestone is generally micritic with some oolitic beds, and overall becomes more predominant basin-ward within the formation (Winston, 1987). Recorded porosity values in the formation are as low as 8% and as high as 23%, and geophysical logs indicate the presence of multiple horizons with the potential for commercial gas production (Pollastro et al., 2001). The depositional environment of the Wood River Formation was probably reefal, especially in the southern areas of its lateral extent; therefore, a combination of source-, seal-, and reservoir-potential is believed to exist for the unit (Pollastro et al., 2001). Estimated Storage Capacity of the Sunniland-Dollar Bay and Pre-Punta Gorda TPS A total estimated CO2 storage capacity of ~200 BtCO2 was calculated for the Sunniland-Dollar Bay TPS and Pre-Punta Gorda TPS, collectively, using the combined areas of the two systems (129,607,119,102 m2); the (642.57 kg/m3), tot (0.15), and E (0.03) values that were used to calculate the storage capacity for the Sunniland Formation; and an hg value (465 m) that was the sum of all the thicknesses calculated for each porous interval observed within the two systems, which was derived from geophysical logs for P# 472 of Charlotte County (total depth = 3,962 m [13,000 ft]). This was done in order to formulate some concept of the potential CO2 storage capacity for these systems; however, this is a “rough estimate”, and further investigation should be conducted to better-determine the potential CO2 storage capacity, as well as the seals, for these systems and the units that comprise them. Notwithstanding, this estimate of CO2 storage capacity for the two systems demonstrates the massive-scale at which CO2 sequestration could be implemented in deep geologic units of Florida, both onshore and offshore. With a potential, collective CO2 storage capacity of ~200 BtCO2, the deep

PAGE 267

249 geologic units of the Sunniland-Dollar Bay TPS and Pre-Punta Gorda TPS potentially have the capability to support CO2 sequestration operations for the entire 40-year lifespan of over 1,000 large-scale, coal-fired power plants. 4.2.2.2 Western Florida Panhandle Oil production in Florida made its way north into the western Florida panhandle in June of 1970, with the discovery of Jay Field, the largest North American on-shore oil field discovered since the discovery of Prudhoe Bay Field on the Alaskan North Slope in 1968 (Lloyd et al., 1986). Currently, there are eight oil fields in Escambia and Santa Rosa counties of the Florida panhandle (Jay, Mt. Carmel, Coldwater Creek, Blackjack Creek, Bluff Springs, McLellan, Sweetwater Creek, and McDavid fields), which produce from either the Smackover Formation or Norphlet Sandstone, at depths ranging from 4,420 m (14,500 ft) bls to 5,120 m (16,800 ft) bls (Lane, 1994). The Smackover Formation and Norphlet Sandstone occur throughout the Gulf Coast, and extend into neighboring states such as Alabama, Mississippi, and Louisiana. Jay, Mt. Carmel, Coldwater Creek, and Blackjack Creek oil fields are positioned along the “Jay Trend,” a feature associated with a normal fault complex that runs alongside the Gulf Coast and potentially extends into the Gulf of Mexico, while Bluff Springs, McLellan, Sweetwater Creek, and McDavid oil fields were likely created as a result of the formation of salt structures from the underlying Louann Salt, or are associated with the stratigraphic pinch-out of the Smackover Formation (Figure 4-5; Lane, 1994). To date, no data have shown which specific trapping mechanism produced the Smackover Formation reservoir in the latter fields (Lloyd, 1991). To demonstrate how CO2-EOR operations might be useful in the oil and gas fields of western panhandle Florida, Jay Field, the largest oil and gas producing field in Florida, can be used as an example. A ccording to Lawrence and others (2002), the OOIP for Jay Field is ~830 million barrels of oil, and according to the FGS Annual

PAGE 268

250 Figure 4-5: Generalized stratigraphic colu mn displaying oil-producing units of western panhandle Florida (from: Lloyd, 1991).

PAGE 269

251 Production Report (2008), 421 million barrels of oil have been produced from the field, which means the recovery rate is ~50%. If an additional 10% of the OOIP could be recovered using CO2-EOR, then additional oil in Jay Field worth ~$8.3 trillion USD (at $100/barrel of oil) could potentially be recovered. During such CO2-EOR operations, the source rock for Jay Field (Smackover Formation) could also be used by Florida utilities as a CO2 sequestration reservoir. Smackover Formation Most of the oil production in the Florida panhandle comes from the Upper Jurassic Smackover Formation. In Florida, the Smackover Formation is predominantly composed of dolostone and limestone, but in some locations also contains a mixture of carbonates and clastics (Lane, 1994; Lloyd et al., 1986). Porosity in the Smackover Formation is highly variable (Applegate, 1983); however, in the porous regions of the formation, porosities can be as high as 40% (Lloyd et al., 1986). The carbonates of the Smackover Formation have both primary interparticle and secondary oomoldic and intercrystalline porosity that resulted from post-burial dolomitization, which only occurred in portions of the formation where grainstones were not deposited (Lloyd et al., 1986). The formation is underlain by the Upper Jurassic Norphlet Sandstone and Middle Jurassic Louann Salt, and overlain by the U pper Jurassic Buckner Member of the Haynesville Formation. The Buckner Member is an evaporite unit, predominantly composed of anhydrite, which forms the upper seal for much of the Smackover Formation and traps the formation-oil, along with a porosity barrier of dense, micritic limestone, as well as faulting and associated structural features and traps (Lane, 1994; Applegate & Lloyd, 1985; Lloyd, 1991). Norphlet Sandstone The Norphlet Sandstone in Florida is an arkosic sand unit of Upper Jurassic age, which is underlain by the Middle Jurassi c Louann Salt and overlain by the Upper

PAGE 270

252 Jurassic Smackover Formation (Lane, 1994). Porosity and permeability within the unit is typically very good, with interparticle poros ity values generally around 20%. Mt. Carmel Field is the only oil field that produces from the Norphlet Sandstone, in addition to its oil production from the overlying Smackover For mation; however, some oil production has occurred from this unit in Blackjack Creek Field (Applegate & Lloyd, 1985). 4.2.2.3 Apalachicola Embayment The pre-Cenozoic Apalachicola Embayment is located in east-central panhandle Florida, and represents a massive, shallow bay that was part of the Georgia Channel System, a basin-feature that affected sedimentation during the Paleogene (Scott, 1997). Currently, the area is not actively being drilled or explored for potential petroleum production; however, past exploratory-drillin g in the Apalachicola Embayment has resulted in wells containing oil shows, as well as porous intervals of at least 27 m (90 ft) thick, in the Smackover Formation of Gulf and Franklin counties (Applegate, 1983). Furthermore, the Smackover Formation is believed to have potential hydrocarbonproduction in Bay, Gulf, Franklin, and Liberty counties (Applegate, 1983). Considering what has already been presented for the Smackover Formation and its potential as a CO2 sequestration reservoir, the Apalachicola Embayment could serve as an additional area within Florida where GS could potentially be implemented using this formation, and possibly the underlying Norphlet Sandstone. 4.2.3 Deep Saline Aquifers in the Southern Florida Peninsula As aforementioned, during the evaluation of geophysical logs for porosity derivation in the Sunniland Formation, a highly porous rock unit of significant thickness was observed above the Sunniland Formation that is believed to be the Dollar Bay Formation. Additionally, several other intervals that were less vertically extensive, but highly porous, were observed in the Lower Cretaceous rocks that appear to have some intraformational, low-porosity rocks, as well as upper seals. The following geologic units

PAGE 271

253 could potentially correlate with some of these porous intervals; however, no official correlation or in-depth examination of the intervals was conducted in this study. Corkscrew Swamp Formation The Lower Cretaceous Corkscrew Swamp Formation is generally ~138 m (~450 ft) thick, and in the southern peninsula is mainly composed of limestone with some interbedded, thin lenses of anhydrite and microcrystalline dolomite (Amato et al., 1986; Winston, 1976). The top of the Corkscrew Swamp Formation is 2,623 m (8,607 ft) bls, and the upper portion of the formation is typically marked by a thin bed of anhydrite, although locally it can be limestone (Winston, 1976). The Corkscrew Swamp Formation is overlain by the green shales of the basal portion of the Upper Cretaceous Pine Key Formation and is underlain by a laterally extensive anhydrite unit of the Lower Cretaceous Rookery Bay Formation (Winston, 1976), which forms part of the upper seal for the Dollar Bay Formation. The Gordon Pass Formation, Marco Junction Formation, and Rattlesnake Hammock Formation occur between the Sunniland Formation and the Dollar Bay Formation and are thus part of the Sunniland-Dollar Bay TPS; however, these formations are not considered to be potential petroleum source rocks, and as such, few studies have been conducted which document their porosity and extent. Nevertheless, because these formations occur within the Sunniland-Dollar Bay TPS, they are subjected to the same intraformational, low-permeability rocks and upper seals, and could serve as additional sequestration reservoirs during CO2 injection. Gordon Pass Formation The Lower Cretaceous Gordon Pass Formation underlies the Dollar Bay Formation, and occurs ~3,160 m (~10,360 ft) bls, averaging ~160 m (~525 ft) in thickness. The upper portion of the formati on is composed of anhydrite interbedded with

PAGE 272

254 dense, micritic limestone, while the basal portion of the formation is mainly a dense and chalky limestone with some thin layers of anhydrite (Amato et al., 1986; Winston, 1976). Marco Junction Formation The Lower Cretaceous Marco Junction Formation underlies the Gordon Pass Formation, and is mainly composed of a dense or chalky limestone with dolomite and anhydrite beds locally interbedded (Winston, 1976). In the northern regions of the SFB, the unit becomes dolostone-dominated (Amato et al, 1986; Winston, 1976). The top of the Marco Junction Formation typically occurs ~3,315 m (10,880 ft) bls and thickness is generally ~100 m (~330 ft). Rattlesnake Hammock Formation The Lower Cretaceous Rattlesnake Hammock Formation underlies the Marco Junction Formation, and overlies the Lake Trafford Formation, which has been identified as the upper seal for the Sunniland Formation (Chapter 2). The top of the Rattlesnake Hammock formation generally occurs at ~3,420 m (11,210 ft) bls, and is marked by a thick, laterally extensive anhydrite bed that dominates the upper portion of the unit (Winston, 1976). The basal portion of the Rattlesnake Hammock Formation typically consists of a dense limestone with some thin anhydrite beds (Winston, 1976). Around the center of the SFB, anhydrite content increases southward in the formation (Amato et al., 1986). The Bone Island Formation occurs between the Pumpkin Bay Formation and Wood River Formation, and is thus located within the confines of the Pre-Punta Gorda TPS; therefore, the formation could be included in any CO2 sequestration operations that took place throughout the remaining TPS. In addition to intraformational anhydrites or low-permeability dolostone within the Bone Island Formation, any intraformational or upper seals that exist for the Pumpkin Bay Formation would also serve as such for the Bone Island Formation.

PAGE 273

255 Bone Island Formation The Lower Cretaceous Bone Island Formation is overlain by the Lower Cretaceous Pumpkin Bay Formation and underlain by the Upper Jurassic (?) Wood River Formation. The average thickness of the Bone Island Formation is ~400 m (1,300 ft), and like many of the Lower Cretaceous units in Florida, lithology is mainly composed of limestone, dolostone, and anhydrite sequences (Winston, 1987). The limestone within the formation is predominantly micritic, although there are some skeletal, oolitic, and pelletal grains locally, and dolost one is typically euhedral and very-fine microcrystalline with occasional skeletal and oolitic relic grains (Winston, 1987). Oilproduction is not considered likely for the formation; however, potential gas-production has been suggested (Palacas et al., 1982). 4.3 Geologic Units Considered Unsuitable for Carbon Dioxide Sequestration Three wells drilled in Levy, Citrus, and Pinellas counties (two of which penetrated Paleozoic rock and one of which terminated in the Lower Cretaceous) showed no significant evidence of petroleum and had few intervals with considerable porosity (Lloyd, 1991). Five additional wells penetrated Paleozoic rock to the north of this area, in Taylor, Madison, Lafayette, and Dixie counties, all of which had no shows of oil (Lloyd, 1991). From geophysical logs of wells drilled in this region of Florida, Paleozoic rocks of north Florida are composed of Silurian and Devonian shales with intermittent sand stringers and, in some cases, good organic carbon content, as well as highly indurated Ordovician sandstones and orthoquartzites (Applegate, 1983). Shales are typically porous but have low permeability, and the sandstone within these units is extremely indurated with low porosity and permeability (Applegate & Lloyd, 1985); therefore, the Paleozoic rocks of Florida are not considered suitable reservoirs for CO2 sequestration.

PAGE 274

256 4.4 Conclusion Chapters 2 through 4 have evaluated deep geologic units throughout Florida, from Paleocene age rocks of the Cenozoic era to Ordovician age rocks of the Paleozoic era. Numerous units have been identified within this interval, predominantly of the Mesozoic era, which could potentially serve as CO2 sequestration reservoirs; however, due to low porosity and permeability, Paleozoic rocks of Florida are not likely to be suitable for CO2 storage. Due to the porosity, geographic location, and depth of the Upper Cretaceous to Paleocene age Rebecca Shoal Dolomite in its onshore portion of southeastern and southern Florida, the unit could potentially serve as a storage reservoir for CCS operations in this region, where the porosity is highest and the unit occurs below 914 m (3,000 ft) bls; however, further examination of the unit’s porosity, potential storage capacity, and seals would need to be conducted. Additionally, as much of the Rebecca Shoal Dolomite occurs offshore, there is the potential that the geologic unit could also be used as an offshore CO2 storage reservoir. The high porosity and permeability, thickness, and geographic location of the Lower Cretaceous Dollar Bay Formation of the Sunniland-Dollar Bay TPS make the unit a potentially suitable reservoir for GS during CCS operations, and it could quite possibly be used for CO2-EOR operations as well, where additional CO2 could be sequestered with conjunctive oil production. These CO2 sequestration techniques could likely be utilized both onshore and offshore in the formation, and the Lower Cretaceous Panther Camp and Rookery Bay formations could potentially serve as the upper seals for the reservoir. Because the Rattlesnake Hammo ck Formation, Marco Junction Formation, and Gordon Pass Formation are positioned between the Sunniland Formation and Dollar Bay Formation source rocks, they are thus located with the confines of the SunnilandDollar Bay TPS, even though they have shown no signs of petroleum production and are

PAGE 275

257 not considered potential source rocks themselves. Nonetheless, CO2 could potentially be sequestered in these non-source rocks during CO2 injection throughout the remaining TPS, and intraformational anhydrites, as well as the Panther Camp and Rookery Bay formations, could serve as seals for these potential sequestration reservoirs. Due to adequate porosity, vertical and lateral extent, and geographic location, the geologic units of the Pre-Punta Gorda TPS could be considered as possible CO2 sequestration reservoirs for both CCS and CO2-EOR operations. The intraformational anhydrite beds, as well as the local and regional, impermeable micritic carbonates, that exist below the Punta Gorda Anhydrite within this system could potentially serve as upper seals for units within the Pre-Punta Gorda TPS. Additionally, the Punta Gorda Anydrite could serve as an upper seal for the entire TPS. Because the Bone Island Formation is located between the Pumpkin Bay and Wood River formations of the PrePunta Gorda TPS, potential CO2 sequestration could occur in the Bone Island Formation during CO2 injection throughout the remaining TPS, and rocks that serve as upper seals for units younger than the Bone Island Formation within the TPS would also confine and seal the Bone Island Formation. The Sunniland-Dollar Bay TPS and Pre-Punta Gorda TPS collectively have the potential to support over 1,000 large-scale power plants for their entire 40-year lifespan, which is based upon a “rough estimate” of the potential CO2 storage capacity (~200 BtCO2) for the systems that was calculated using geophysical data from a deep well (P# 472) in Charlotte County. Although this is an estimate based upon data from a single well, it does provide some insight into the massive-scale at which CO2 sequestration could potentially be implemented in the deep geologic units of these systems. The Upper Jurassic Smackover Formation and Norphlet Sandstone could potentially be used for GS both in CCS operations and in CO2-EOR operations. Such techniques could be implemented not only in western panhandle Florida, where

PAGE 276

258 additional oil production could be worth trillions of USD, but could likely be implemented within the Apalachicola Embayment as well, where oil shows and significant porosity have been observed within the Smackover Formation. Notwithstanding, the Smackover Formation and Norphlet Sandstone both have areas of high porosity and permeability and potentially adequate upper seals within their extent that provide them with the potential to serve as CO2 sequestration reservoirs. During the evaluation of geophysical logs for characterization of porosity in the Sunniland Formation and CKLIZ (Chapter 1 and Chapter 2, respectively), several other highly porous intervals of varying thi ckness were observed between the Lower Cretaceous Sunniland Formation and Upper Cretaceous Lawson Formation, each separated by rock of low porosity and varying thickness. A significantly thick, highly porous interval overlain by a thick unit of lo w porosity was consistently observed in many of the geophysical logs around the depth interval where the Dollar Bay Formation occurs. Additionally, other intervals with si gnificant porosity and varying thickness in the Lower Cretaceous rocks were also observ ed in the geophysical logs, which could potentially be the Corkscrew Swamp Formation, Rattlesnake Hammock Formation, Marco Junction Formation, Gordon Pass Formation, or Bone Island Formation. No rock units, other than those examined during the Sunniland Formation and CKLIZ evaluations, were officially identified, examined, or correlated with the porous intervals of the geophysical logs; therefore, further investigation would need to be conducted in order to identify and correlate the porous intervals, as well as to confirm any seals, for their use in CCS operations.

PAGE 277

259 Chapter 5: References Amato, R.V., Sweet, W.E., Edson, G.M., O’Hara, C.J., Clark, D.M., & Pickens, G. (1986). Regional geology and petroleum potential of the Straits of Florida planning area. Minerals Management Service, Atlantic and Gulf of Mexico OCS Regions. Applegate, A.V., Winston, G.O., & Palacas, J.G. (1981). Subdivision and regional stratigraphy of the pre-Punta Gorda rocks (lowermost Cretaceous-Jurassic?) in south Florida. Gulf Coast Association of Geological Societies (GCAGS) 31, 447453. Applegate, A.V. (1983). Principal oil fields in Florida and possible future oil and gas fields in the state and offshore. The Interstate Oil Compact Commission Committee Bulletin 25(2), 38-41. Applegate, A.V. & Pontigo, F.A. (1984). Stratigraphy and oil potential of the Lower Cretaceous Sunniland Formation in south Florida FGS Report of Investigations No. 89. Applegate, A.V. & Lloyd, J.M. (1985). Summary of Florida petroleum production and exploration, onshore and offshore, through 1984 FGS Information Circular No. 101. Applin, P.L. & Applin, E.R. (1944). Regional subsurface stratigraphy and structure of Florida and southern Georgia. American Association of Petroleum Geologists (AAPG) Bulletin 28(12), 1673-1753.

PAGE 278

260 Applin, P.L. & Applin, E.R. (1965). The Comanche Series and associated rocks in the subsurface in central and south Florida USGS Professional Paper No. 447. Applin, P.L. & Applin, E.R. (1967). The Gulf Series in the subsurface in northern Florida and southern Georgia USGS Professional Paper No. 524-G. Bachu, S. (2000). Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Conversion & Management 41, 953-970. Bachu, S. & Adams, J.J. (2003). Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion & Management 44, 3151-3175. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., & Mathiassen, O.M. (2007). CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control 1, 430-443. Bachu, S. (2008). CO2 storage in geological media: Role, means, status and barriers to deployment. Progress in Energy and Combustion Science 34, 254-273. Barry, J.P., Seibel, B.A., Drazen, J.C., Tamuburri, M.N., Buck, K.R., Lovera, C., …Brewer, P.G. (2003). Deep-sea field experiments on the biological impacts of direct deep-sea CO2 injection. 2nd Annual Conference on Carbon Sequestration. Beinert, R.J. (1976). The geology of the Estero-Corkscrew-Seminole area: Lee, Hendry & Collier counties, Florida FGS Geological Report No. 2. Benson, S.M. (2005a). Monitoring and verification of CO2 storage in geological formations [PowerPoint slides]. Retrieved from http://pangea.stanford.edu Benson, S.M. (2005b). IPCC special report on carbon dioxide capture and storage: Storage in deep underground geological formations [PowerPoint slides]. Retrieved from http://pangea.stanford.edu

PAGE 279

261 Bradshaw, J., Bachu, S., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N.P., & Mathiassen, O.M. (2007). CO2 storage capacity estimation: Issues and development of standards. International Journal of Greenhouse Gas Control 1, 62-68. Brennan, S.T., Burruss, R.C., Merrill, M.D., Freeman, P.A., & Ruppert, L.F. (2010). A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage USGS Open-File Report 2010-1127. Bressand, F., Farrell, D., Haas, P., Morin, F., Nyquist, S., Remes, J.,…& Woetzel, J. (2007). Curbing global energy demand growth: The energy productivity opportunity San Francisco, CA: McKinsey Global Institute. Broder, J.M. (2010, September 14). The Clean Air Act turns 40. New York Times Retrieved from http://green.blogs.nytimes.com/2010/09/14/clean-air-act-turns40/ Caldeira, K. & Rau, G.H. (2000). Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications. Geophysical Research Letters 27(2), 225-228. Chang, Y., Coats, B.K., & Nolen, J.S. (1998). A compositional model for CO2 floods including CO2 solubility in water. SPE Reservoir Evaluation & Engineering 1(2), 155-160. Chu, S. (2009). Carbon capture and sequestration. Science 325, 1599. CSA Group. (2008). Assessment of the potential for geological storage of carbon dioxide for the island of Ireland Retrieved from http://www.seai.ie Dewan, J.T. (1983). Essentials of modern open-hole log interpretation Tulsa, OK: PennWell Publishing Company. Doughty, C. & Pruess, K. (2004). Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone Journal 3, 837-847.

PAGE 280

262 Duncan, J.G., Evans III, W.L., & Taylor, K.L. (1994). Geologic framework of the Lower Floridan Aquifer System, Brevard County, Florida FGS Bulletin No. 64. EPA. (2008). Geologic CO2 sequestration technology and cost analysis EPA Technical Support Document 816-B-08-009. EPA. (2010a). EPA’s Clean Air Act turns 40/Agency achieved significant health and environmental benefits Retrieved from http://yosemite.epa.gov/opa/admpress.nsf/0/F80D115E276A3C548525779E0055 9817 EPA. (2010b). Underground Injection Control Program Retrieved from http://water.epa.gov/type/groundwater/uic/index.cfm ESRI. (2007). ArcGIS 9.3 Desktop Help Retrieved from http://webhelp.esri.com/arcgisdesktop/9.3/index Ferber, R.J. (1985). Depositional and diagenetic history of the Sunniland Formation (Lower Cretaceous) Lehigh Park Field, Lee County, Florida. Unpublished master’s thesis, University of Southwestern Louisiana. FGS. (2008). 2008 Oil and Gas Annual Production Report Retrieved from http://www.dep.state.fl.us/water/mines/oil_gas/production.htm French, T.M. (1989). Comments on crude oil gravity adjustments Baton Rouge, LA: Louisiana Department of Natural Resources. G8 Summit. (2009). Clean energy & technology Retrieved from http://www.g8italia2009.it Garcia, J.E. (2003). Fluid dynamics of carbon dioxide disposal into saline aquifers Unpublished doctoral dissertation, University of California at Berkeley. Gerdemann, S.J., Dahlin, D.C., O’Connor, W.K., & Penner, L.R. (2003). Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. US DOE Report ARC-2003-018.

PAGE 281

263 Griffin, G.M., Tedrick, P.A., Reel, D.A., & Manker, J.P. (1969). Geothermal gradients in Florida and southern Georgia. GCAGS Annual Meeting Transactions 19, 189193. Grinnell, Jr., P.C. (1976). The Sunniland Limestone within the Forty Mile Bend area, Monroe and Dade counties, Florida Unpublished master’s thesis, University of Florida. Gunter, W.D., Bachu, S., Law, D.H.-S., Marwaha, V., Drysdale, D.L., MacDonald, D.E., & McCann, T.J. (1996). Technical and economic feasibility of CO2 disposal in aquifers within the Alberta Sedimentary Basin, Canada. Energy Conversion Management 37(6-8), 1135-1142. Halley, R.B. (1985). Setting and geologic summary of the Lower Cretaceous, Sunniland Field, southern Florida. In P.O. Roehl (Ed.), Carbonate Petroleum Reservoirs (pp. 443-454). New York, NY: Springer-Verlag. Halliburton. (2008) Log interpretation charts Retrieved from http://www.halliburton.com Haszeldine, R.S. (2009). Carbon capture and storage: How green can black be? Science 325, 1647-1652. Hassanzadeh, H., Pooladi-Darvish, M., & Keith, D.W. (2009). Accelerating CO2 dissolution in saline aquifers for geological storage – Mechanistic and sensitivity studies. Energy & Fuels 23, 3328-3336. Heiskanen, E. (2006). Case 24: Sn hvit CO2 capture and storage project National Consumer Research Centre Report ECN-E-07-058. Hine, A.C., Brooks, G.R., Davis, Jr., R.A., Doyle, L.J., Gelfenbaum, G., Locker, S.D., … & Weisberg, R.H. (2001). A summary of findings of the West-Central Florida Coastal Studies Project USGS Open File Report 01-303. IEA. (2009). Carbon capture and storage: Full-scale demonstration progress update La Maddelena to L’Aquilla G8 Summit. Retrieved from http://www.ieagreen.org.uk

PAGE 282

264 IEA GHG R&D Programme. (2000). Depleted oil and gas fields for CO2 storage Retrieved from http://www.ieagreen.org.uk Kaiser Aluminum and Chemical Corporation. (1971). Application for permit to construct and engineering report for disposal well system at Kaiser Aluminum and Chemical Corporation, Mulberry, Florida Kiehl, J.T. & Trenberth, K.E. (1997). Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society. 78(2), 197–208. Klopp, H.C. (1975). Petrographic analysis of the Sunniland Formation, an oil-producing formation in south Florida. Geology Studies 22(1), 3-27. Lackner, K.S. (2003). A guide to CO2 sequestration. Science 300, 1677-1678. Lane, E. (Ed.). (1994). Florida’s geological history and geological resources FGS Special Publication No. 35. Lawrence Berkeley National Laboratory. (2007). The issue of geologic storage Retrieved from http://esd.lbl.gov/CO2GeoStorage/index.html Lawrence, J.J., Maer, N.K., & Stern, D. (2002). Jay nitrogen tertiary recovery study: Managing a mature field. Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, United Arab Emirates. Lloyd, J.M., Ragland, P.C., Ragland, J.M., & Parker, W.C. (1986). Diagenesis of the Jurassic Smackover Formation, Jay Field, Florida. GCAGS Transactions 36, 201-211. Lloyd, J.M. (1991). Part I 1988 and 1989 Florida petroleum production and exploration FGS Information Circular No. 107. Lloyd, J.M. (1996). 1994 and 1995 Florida petroleum production and exploration FGS Information Circular No. 111. Mackintosh, S.J., Ballentine, C.J., & Gawthorpe, R. (2006). The use of noble gases as a tracer in carbon dioxide sequestration. Goldschmidt Conference Abstracts

PAGE 283

265 Metz, B., Davidson, O., Coninck, H., Loos, M., & Meyer, L. (Eds.). (2005). Carbon Dioxide Capture and Storage Intergovernmental Panel on Climate Change Special Report. New York, NY: Cambridge University Press. Miller, J.A. (1986). Hydrogeologic framework of the Floridan Aquifer System in Florida and parts of Georgia, Alabama, and South Carolina USGS Professional Paper No. 1403-B. Mitchell-Tapping, H.J. (1986). Exploration petrology of Sunoco Felda trend of south Florida. AAPG Bulletin 70:9(36), 241. Mitchell-Tapping, H.J. (1990). New oil exploration play in Florida: The Upper Fredericksberg Dollar Bay Formation. GCAGS Association Round Table Abstract 74(9), 1505. NETL. (2003). CO2 sequestration by mineral carbonation using a continuous flow reactor. Retrieved from http://www.netl.doe.gov NETL. (2007). Carbon sequestration atlas of the United States and Canada. Retrieved from http://www.netl.doe.gov Oglesby, W.R. (1966). Folio of South Florida Basin: A preliminary study FGS Map Series No. 19. Okwen, R. (2009). Enhanced CO2 storage in confined geologic formations Published Doctor of Philosophy dissertation, University of South Florida. Palacas, J.G., Daws, T.A., & Applegate, A.V. (1982). Petroleum source-rock assessment of deep portion of S. Florida basin (12,000-18,600 ft). Oil & Gas Journal 221. Petroleum Technology Research Centre. (2005). The IEA Weyburn CO2 monitoring and storage project. Retrieved from http://www.cslforum.org/projects/weyburn.html Pollastro, R.M., Schenk, C.J., & Charpentier, R.R. (2001). Chapter 1: Assessment of undiscovered oil and gas in the onshore and state waters portion of the South Florida Basin, Florida – USGS Province 50 USGS Digital Data Series 69-A,

PAGE 284

266 National Assessment of Oil and Gas Project: Petroleum Systems and Assessment of the South Florida Basin, Supersedes USGS Open-File Report 00317. Pontigo, Jr., V.A. (1980). The Sunniland Trend of south Florida. In P. J. Gleason (Ed.), Water, oil, and the geology of Collier, Lee and Hendry counties: The 1980 field trip (pp. 67-68). Miami, FL: Miami Geological Society. Puri, H.S. & Banks, J.E. (1959). Structural features of the Sunniland oil field, Collier County, Florida. AAPG Bulletin 9, 121-130. Raistrick, M., Hutcheon, I., Shevalier, M., Nightingale, M., Johnson, G., Taylor, S., …Gunter, B. (2009). Carbon dioxide-wa ter-silicate mineral reactions enhance CO2 storage; evidence from produced fl uid measurements and geochemical modeling at the IEA Weyburn-Midale Project. Energy Procedia 1, 3149-3155. Ray, R. (2009). TECO plans 25 MW solar power plant in Florida Retrieved from http://www.energycurrent.com RockWare. (2008). RockWorks 14 User Manual Golden, CO: RockWare, Inc. Schlumberger. (1989). Log interpretation principles/applications Sugar Land, TX: Schlumberger Wireline & Testing. Scott, T.M. (1997). Miocene to Holocene history of Florida. In A.F. Randazzo & D.S. Jones (Eds.), The geology of Florida (pp. 57-67). Gainesville, FL: University Press of Florida. Sneider, R. & Young, T. (2009). Facing major challenges in carbon capture and sequestration. GSA Today 19(11) 36-37. Southeast Regional Carbon Sequestration Partnership. (2008). SECARB annual status report for relational database and GIS/SECARB atlas Cambridge, MA: Massachusetts Institute of Technology.

PAGE 285

267 The Spokesman-Review. (2010). BP fined $15 million for refinery violations Retrieved from http://www.spokesman.com/stories/2010/oct/01 Tzimas, E., Georgakaki, A., Garcia Cortes, C., & Peteves, S.D. (2005). Enhanced oil recovery using carbon dioxide in the European energy system Petten, Netherlands: Institute of Energy. U.S. Energy Information Administration. (2010). Texas Inland Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries. Retrieved from http://tonto.eia.doe.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MCRAP3A2&f =M van der Meer, L.G.H. (1995). The CO2 storage efficiency of aquifers. Energy Conversion Management 36(6-9), 513-518. Winston, G.O. (1971). Regional structure, stratigraphy, and oil possibilities of South Florida Basin. GCAGS Annual Meeting Transactions 21, 15-29. Winston, G.O. (1972). Dollar Bay Formation of Early Cretaceous (Fredericksburg) age in south Florida. AAPG Bulletin 56(9), 1609. Winston, G.O. (1976). Six proposed formations in the undefined portion of the Lower Cretaceous section in south Florida. GCAGS Annual Meeting Transactions 16, 69-72. Winston, G.O. (1978). Rebecca Shoal reef complex (Upper Cretaceous and Paleocene) in south Florida: Geologic notes. AAPG Bulletin 62, 121-127. Winston, G.O. (1987). Additional data on the regional stratigraphy of the Pre-Punta Gorda rocks in south Florida. In Symposium on south Florida geology (pp. 226229). Miami Geological Society Memoir 3. Miami, FL; Miami Geological Society. Winston, G.O. (1994). The Paleogene of Florida Miami, FL: Miami Geological Society. Winston, G.O. (1995). The Boulder Zone dolomites of Florida Miami, FL: Miami Geological Survey.

PAGE 286

268 Wyland, J. (2009). Enhanced oil recovery revives petroleum fields and reduces greenhouse gas emissions. ArcWatch Retrieved from http://www.esri.com/news/arcwatch/index.html

PAGE 287

269 Appendix I: Acronyms and Abbreviations

PAGE 288

270 Appendix I A area AAPG American Associat ion of Petroleum Geologists ACESA American Clean Energy and Security Act API American Petroleum Institute BCS borehole-compensated sonic BHT bottom-hole temperature bls below land surface BreitBurn BreitBurn Energy Partners L.P. BtCO2 billion tons of carbon dioxide C Celsius Ca2+ calcium CAA Clean Air Act CCS carbon dioxide capture and sequestration CKLIZ Cedar Keys/Lawson Injection Zone CO2 carbon dioxide CO3 2carbonate CO2-EOR carbon dioxide-enhanced oil recovery CNL compensated neutron log CNL-FDC compensated neutron-compensated formation density DOE Department of Energy E CO2 Storage Efficiency Factor EO Executive Order EPA Environmental Protection Agency F Fahrenheit

PAGE 289

271 Appendix I (Continued) FAC Florida Administrative Code FAS Floridan Aquifer System FDEP Florida Department of Environmental Protection Fe2+ iron FGS Florida Geological Survey ft feet GCO2 mass estimate of CO2 storage capacity GCAGS Gulf Coast Association of Geological Societies GHG greenhouse gas GS geologic sequestration GSGI gravity stable gas injection GtCO2 gigatons of carbon dioxide hg gross thickness HCO3 bicarbonate H2CO3 carbonic acid I isolated well IDW Inverse Distance Weighted IEA International Energy Agency IEA GHG R&D Programme International Energy Agency Greenhouse Gas Research and Development Programme IGCC Integrated Gasification Combined Cycle IPCC Intergovernmental Panel on Climate Change IU industrial utilization kg kilograms km kilometers

PAGE 290

272 Appendix I (Continued) km2 square kilometers m meters m2 square meters m3 cubic meters M million Mg2+ magnesium mi miles mi2 square miles MS mineral sequestration MtCO2 million tons of carbon dioxide MW megawatt NETL National Energy Technology Laboratory NP near production well NPHI ratio-method thermal neutron porosities OOIP original oil in place OS oceanic sequestration P production well P# permit number ppm parts per million R&D research and development RBF Radial Basis Function SDWA Safe Drinking Water Act SFB South Florida Basin tCO2 tons of carbon dioxide TECO Tampa Electric Company

PAGE 291

273 Appendix I (Continued) TNPH environmentally-corrected thermal neutron porosities TPS Total Petroleum System Trend Sunniland Trend TS terrestrial sequestration TVD true vertical depth UF University of Florida UIC Underground Injection Control US United States USD United States dollars USDW underground source of drinking water USF University of South Florida USGS United States Geological Survey vf fluid velocity vma matrix velocity WAG water alternating gas yr year degrees % percent porosity avg average porosity tot total porosity sec/ft microseconds per foot density

PAGE 292

274 Appendix I (Continued) b true bulk density f fluid density log log-derived bulk density ma matrix density

PAGE 293

275 Appendix II: Porosity Derivation Figures for Geophysical Log Interpretation

PAGE 294

276 Appendix II Figure AII-1: Corrections to obtain true bulk density from log density (from: Schlumberger, 2009).

PAGE 295

277 Appendix II (Continued) Figure AII-2: Determination of porosity from true bulk density (from: Schlumberger, 2009).

PAGE 296

278 Appendix II (Continued) Figure AII-3: Determination of porosity using interval transit time (from: Schlumberger, 2009).

PAGE 297

279 Appendix II (Continued) Figure AII-4: Sonic-density cross-plot u sed to determine lithology and porosity (from: Schlumberger, 2009).

PAGE 298

280 Appendix II (Continued) Figure AII-5: Sonic-neutron cross-plot for lithology and porosity determination (from: Schlumberger, 2009).

PAGE 299

281 Appendix II (Continued) Figure AII-6: Sonic-neutron cross-plot for lithology and porosity determination (from: Halliburton, 2008).

PAGE 300

282 Appendix II (Continued) Figure AII-7: True porosity determination from apparent porosity for limestone matrix (from: Schlumberger, 2009).

PAGE 301

283 Appendix II (Continued) Figure AII-8: CNL-FDC cross-plot for lithology and porosity determination (from: Schlumberger, 2009).

PAGE 302

284 Appendix II (Continued)Figure AII-9: CNL-FDC cross-plot for lithology and porosity determination (from: Halliburton, 2008).

PAGE 303

285 Appendix III: Study Area Well Location Maps

PAGE 304

DADE COLLIER HENDRY LEE BROWARD MONROE PALM BEACH GLADES CHARLOTTE MARTIN 92 990 951 947 864 831 760 700 697 684 596 564 561 527 683 475 472 148 386 214 205 129 115 758 425 488 437 279 871 853 736 311 278 1292 1216 1202 1134 1127 1086 1063 1057 1026 1016 1014 1065 565A 1059 1240 1208 813 702 360 982 821 477 376 331 1131 1147 1201 167 865 858 735 904 662 326 998 897 384 300 401 1151 1118 1119 1142 1167 APPENDIX III Figure AIII-1: Location map for Sunniland Formation study wells. AREA OF DETAIL 0 20 40 10 Kilometers Legend Sunniland Study Wells Dry Hole I Dry Hole NP Producer P Sunniland Trend Oil Fields County Boundaries

PAGE 305

148 115 205 214 376 278 331 167 386 564 129 596 1063 1059 1065 865 871 982 565A 662 821 838 1118 1240 311 864 947 401 697 760 1208 1201 853 437 926 990 279 983 1147 407 1151 472 1014 813 758 683 475 12 232 108 280 22 16 284 296 130 1169 265 740 620 1085 1050 768 1199 161 250 979 271 408 319A 235 385 972 152 606 289 310 178 269 1193 1032 772 259 1323A 710 732 1264 609 679A 62 236 759 243 403 29 597 75 304 539 543 91 8 81 POLK DADE COLLIER OSCEOLA PALM BEACH HENDRY LEE BROWARD HIGHLANDS GLADES PASCO MANATEE HARDEE DE SOTO MONROE HILLSBOROUGH BREVARD ST. LUCIE OKEECHOBEE SARASOTA CHARLOTTE MARTIN INDIAN RIVER ORANGE LAKE Area of Detail Figure AIII-2: Location map for CKLIZ study wells. Appendix III (Continued) Legend CKLIZ Study Wells CKLIZ Study Area County Boundaries 0 50 100 25 Kilometers

PAGE 306

288 Appendix IV: Porosity Datasets

PAGE 307

Appendix IV Table IV-1: Porosity data for the Sunniland Formation. Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 110881109911 64-66 -----------14-15---------------19-20 -------11102111075 64-65 -----------14-15---------------19-20 -------11107111103 66-67 -----------15-16---------------20-21 -------11110111166 64 -----------14---------------19 -------11116111215 82 ----------28 ----------------31-------11121111287 68 ----------17 ----------------22-------11130111366 64 ----------14 ----------------19-------11136111404 57 ----------7 ----------------12-------11145111483 57 ----------7 ----------------12-------11148111513 60 ----------11 ----------------16-------11151111543 70 -----------19---------------24 -------11154111562 59 ----------9 ----------------14-------11156111626 61-64 ----------11-14 ----------------17-19-------11166111693 56 ----------7 ----------------12-------11169111745 60 ----------11 ----------------16-------111781118810 60-64 ----------11-14 ----------------17-19-------11188111902 58 ----------8 ----------------13-------11190 11194 4 61-63 ---------11-13 ----------------17-19-------11194111973 55 ----------6 ----------------11-------111971120811 65-68 -----------15-17---------------21-22 -------11208112135 55-58 ----------6-8 ----------------11-13-------112131123017 61-66 ----------11-15 ----------------17-20-------11240112422 55 ----------6 ----------------11-------112421126220 60-66 ----------11-15 ----------------16-20-------112641127511 60-66 ----------11-15 ----------------16-20-------11275112783 58 ----------8 ----------------13-------112801129212 58-59 ----------8-9 ----------------13-14-------112921131422 60-66 ----------11-15 ----------------16-20-------11314113228 67 -----------16---------------21 -------11322113242 63 -----------13---------------19 -------11324113273 73-74 -----------22---------------26 -------11327113303 57 ----------7 ----------------12-------11330113377 67 -----------16---------------21 -------109111092211 ---2.62-2.64--4-5 ---------------12-13 -------------10922109264 ---2.47-2.5---12-14---------------20-21 -------------10926109359 ---2.62-2.65--4-5 ---------------12-13 -------------10935109383 --2.5 ---12---------------20 -------------10938109413 --2.26 ---26---------------32 -------------109411095413 ---2.59-2.6--6-7 ---------------14-15 -------------10954109595 --2.33 ---22---------------29 -------------10959109678 ---2.65-2.67--3-4 ------------11-12 -------------10967109736 ---2.6-2.61--6 ---------------14 -------------10973109785 ---2.63-2.65--4-5 ---------------12-13 -------------10978109824 --2.6 --6 ---------------14 -------------10989109945 ---2.53-2.54--10-11 ---------------18 -------------110041101410 --2 -->40 --------------->40 -------------110141102713 ---2.62-2.64--4-5 ---------------12-13 -------------11027110336 ---2.39-2.43---17-19---------------23-25 -------------11033110352 --2.57 --8 ---------------16 -------------11035110394 ---2.4-2.43---17-18---------------23-25 -------------11039110434 --2.17 --32 ---------------38 -------------11043110518 ---2.46-2.5--12-15 ---------------20-22 -------------11051110598 ---2.62-2.63--5 ---------------13 -------------11059110667 --2 -->40 --------------->40 -------------11066110682 --2.5 --12 ---------------20 -------------11068110691 --2.35 ---21---------------28 -------------11069110723 --2.24 ---27---------------33 -------------11072110819 ---2.47-2.55--10-14 ---------------16-21 -------------11081110876 ---2.56-2.59--7-9 ---------------15-17 ----------475Charlotte4013236 Dolostone 472Charlotte2913000 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone

PAGE 308

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11087110903 --2.63 --5 ---------------13 -------------11090110955 ---2.46-2.47---14-15---------------21-22 -------------11095111005 --2.57 --8 ---------------16 -------------111001117474 ---2.6-2.65--4-6 ----------------12-14-------------111931121017 64-66 --2.65-2.67---3-4----14-15---------11-12 ---19-20 13-14 -----11212112186 68 -2.42 --17 ---17 16 --------24----22-------11218112246 79 -2.02 -->40 ---25 30 -------->40----30-------11226112304 68 -2.43 --17 ---17 17 --------23----22-------11234112428 63 -2.67 ---3----13---------11 ---19 12 -----11242112464 59 -2.75 ---0----9---------5 ---14 8 -----112491126314 60 --2.64-2.69--2-4 ---11 5-7 --------10-12----16-------11263112674 56-57 --2.7-2.73--0-1 ---7 3-4 --------5-9----12-------11267112758 71 -2.6 ---6----20---------14 ---24 16 -----11286112915 72 --2.15-2.21--29-33 ---21 23-25 --------34-38----25-------112911130110 56 -2.67 ---3----7---------11 ---12 10 -----11303113096 65-66 -2.07 --37 ---15 25 ----->40----20-------11309113167 63 -2.55 --10 ---13 14 --------16----19-------11318113224 62 -2.6 ---6----12---------14 ---18 14 -----113221133210 67-68 --2.49-2.52--11-13 ---16-17 13-14 --------19-20----21-22-------11332113364 62-64 --2.49-2.52--11-13 ---12-14 12 --------19-20----18-19-------113361135115 67-71 --2.35-2.43--17-21 ---16-20 17-18 -----23-28----21-24-------11351113532 56 -2.7 ---1----7---------9 ---12 9 -----113531136310 64-66 --2.44-2.52--11-16 ---14-15 12-15 --------19-23----19-20-------113701138212 68-71 --2.43-2.44--16-17 ---17-20 16 -----23----22-24-------11382113886 56-58 -2.71 ---0----7-8---------9 ---12-13 9-10 -----113901141222 56-59 --2.65-2.7---1-4----7-9---------9-12 ---12-14 10-11 -----114121142715 60-66 --2.64-2.71---0-4----11-15---------9-12 ---17-20 12 -----11427114347 67-68 -2.63 ---5----16-17---------13 ---21-22 14-15 -----11436114437 66 -2.69 ---2----15---------10 ---20 12 -----11462114664 60 -2.72 ---0----11---------8 ---16 10 -----11533115363 59 -------9 --------------14 ------11536115448 61-64 ----------11-14 --------------17-19-------11548115546 60-66 ----------11-15 --------------16-20-------11554115595 59 ----------9 --------------14-------11559115623 64 -----------14-------------19 -------11562115719 76-79 ----------23-25 --------------28-30-------11571115721 59 ----------9 --------------14-------11572115742 62 ----------12 --------------18-------11574115806 72-73 -----------21-22-------------25-26 -------11580115822 55 ----------6 --------------11-------11582115864 70 ----------19 --------------24-------11586115926 74-77 -----------22-23-------------26-28 -------11592115953 70 ----------19 --------------24-------11595116027 74 -----------22-------------26 -------11602116042 61 ----------11 --------------17-------11604116084 73 -----------22-------------26 -------11608116113 71 ----------11 ------------17 -------11611116132 72 -----------21-------------25 -------11613116152 71 ----------11 --------------17-------11615116227 73-74 -----------22-------------26 -------11622116253 70 -----------19-------------24 -------11625116294 72 -----------21-------------25 -------11629116389 63-66 ----------13-15 --------------19-20-------116381165113 67-71 ----------16-20 --------------21-24-------116511166312 63-66 ----------13-15 --------------19-20-------11663116707 56-58 ----------7-8 --------------12-13-------116701168717 60-66 ----------11-15 --------------16-20-------11687116914 58 ----------8 --------------13-------11691116998 68-70 ----------17-19 --------------22-24-------300Collier1911821 683Charlotte2511500

PAGE 309

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 116991171415 60-64 --------11-14 --------------16-19-------11714117184 58-59 ----------8-9 --------------13-14-------117201173313 61-66 ----------11-15 --------------17-20-------11733117363 55 ----------6 --------------11-------11736117415 64 ----------14 --------------19-------11743117507 62-64 ----------12-14 --------------18-19-------11752117586 64-66 ----------14-15 --------------19-20-------117601177010 54-59 ----------4-9 --------------10-14-------117701178515 60-62 ----------11-12 --------------16-18-------11785117894 54-59 ----------4-9 --------------10-14-------11789117923 62 ----------12 --------------18-------11792117975 54-59 ----------4-9 ----------------10-14-------11587115914 63 -----------13-------------19 -------11591115943 59 -----------9-------------14 -------11594116017 63-64 -----------13-14-------------19 -------11601116054 -----------<10-----------------------11605116072 55 ---------6-------------11 -------11607116114 60 -----------11-------------16 ----11611116165 55 -----------6-------------11 -------11616116193 62 -----------12-------------18 -------11619116223 59 -----------9-------------14 -------11622116264 70 ----------19 --------------24-------11626116293 73 ----------22 --------------26-------11629116323 70 -----------19-------------24 -------11632116342 61 ----------11 --------------17-------11634116417 72-76 -----------21-23-------------25-28 -------116411165110 74-76 ----------22-23 --------------26-28-------11651116587 71-73 -----------20-22-------------24-26 -------11658116635 68 -----------17-------------22 -------11663116685 63 -----------13-------------19 -------11668116768 65-67 -----------15-16-------------20-21 -------11676116782 61-66 -----------11-------------17 -------116781169517 61-66 ----------11-15 ----------------17-20-------11452114586 58-60 -----------8-11--------------13-16-------11458114668 75 -----------23--------------27-------11470114744 62 -----------12------------18 -------11477END-58 -----------8----------------13-------11566115759 70 -----------19-------------24 -------11575115794 73 -----------22-------------26 -------11583115874 67 ----------16 --------------21-------115871159811 72-74 ----------21-22 --------------25-26-------11598116002 63 ----------13 --------------19-------11600116044 72 ----------21 --------------25-------11604116062 54 ----------4 --------------10-------11606116126 67-69 ----------16-18 --------------21-23-------11612116142 56 ----------7 --------------12-------11614116184 73 -----------22-------------26 -------116181163416 65-71 ----------15-20 --------------20-24-------11634116362 59 ----------9 --------------14-------116361165721 63-65 ----------13-15 --------------19-20-------11657116592 56 ----------7 --------------12-------11659116645 62-63 ----------12-13 --------------18-19-------11664116662 55 ----------6 --------------11-------11666116693 63 ----------13 -----------19-------11669116712 59 ----------9 --------------14-------11671116743 63 ----------13 --------------19-------11674116784 75 -----------23-------------27 -------11680116833 72 -----------21-------------25 -------11683116841 67 ----------16 ----------------21-------319ACollier3811495 311Collier1711695 384Collier1611705

PAGE 310

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11682116886 62 ----------12 --------------18-------11688116924 59 ----------9 --------------14-------11692116964 62 ----------12 --------------18-------117001171111 61-64 ----------11-14 --------------17-19-------11711117198 67 ----------16 --------------21-------11719117245 58 ----------8 --------------13-------11724117295 60 ----------11 --------------16-------117291174819 57-59 ----------7-9 --------------12-14-------117481176719 62-63 ----------12-13 --------------18-19-------11767117703 55 ----------6 --------------11-------11777117825 55 ----------6 --------------11-------117821179816 60-61 ----------11 --------------16-17-------117981181517 63-66 ----------13-15 --------------19-20-------11819118212 79 ----------25 --------------30-------11821118232 85 ----------29 --------------33-------11823118241 92 ----------33 --------------36-------118241184319 61-63 ----------11-13 --------------17-19-------11843 11851 8 57-59 ---------7-9 --------------12-14-------11853118596 58 ----------8 --------------13-------11859118645 62 ----------12 --------------18-------11864118717 55 ----------6 --------------11-------118731188916 56-59 ----------7-9 --------------12-14-------118891190516 62-64 -----------12-14-------------18-19 -------11914119228 64 -----------14---------------19 -------117041172016 70 ---13-17 -----19 --------------24-------11722117242 59 ----------9 --------------14-------117241173814 69 ----------18 --------------23-------117411175312 58-59 ----------8-9 --------------13-14-------117561178327 61-64 ----------11-14 --------------17-19-------11792117986 56-58 ----------7-8 --------------12-13-------117981180810 60 ----------11 --------------16-------118081181911 64 ----------14 --------------19-------11819118278 67 ----------16 --------------21-------11827118303 55 ----------6 --------------11-------11830 11861 31 61-65 ---------11-15 --------------17-20-------11861118698 59 ----------9 --------------14-------11869118745 62 ----------12 --------------18-------11874118784 55 ----------6 --------------11-------11878118835 57 ----------7 --------------12-------11883118874 59 ----------9 --------------14-------118871189710 56-58 ----------7-8 --------------12-13-------118971190710 60-62 ----------11-12 --------------16-18-------11909119134 63 ----------13 ----------------19-------11722117286 64 21 -7 -----14 14 -16 ------------19-------11728117324 58 11 -7 -----9 8 -8 ------------13-------11732117353 55-57 9 -3 -----7 6-7 -6-7 ------------11-12-------117351175419 63-6614-17 -3 -----9-11 13-15 -12-14 ------------19-20-------11754117617 68 20 -6 -----15 17 -16 ------------22-------11761117643 66 11 -7 -----10 15 -12 ------------20-------11764117717 73-79 15 -11 -----15 22-25 -15-18 ------------26-30-------11771 117765 80-85 21 -16 ----20 26-29 -22-24 ------------30-33-------11776117815 61 13 -3 -----9 11 -10 ------------17-------11784117906 65 16 -7 -----13 15 -14 ------------20-------11792117964 58 9 -3 -----7 8 -8 ------------13-------11796118004 60 14 -2 -----9 11 -10 ------------16-------118021181311 60-62 12 -3 -----8 11-12 -9-10 ------------16-18-------11818118246 61 12 -3 -----8 11 -10 ------------17-------11827118325 56-57 9 -1 -----6 7 -6-7 ------------12-------11834118362 86 9 -0 -----5 29 -21 ------------33-------477Collier2112050 401Collier2411987 596Collier916456

PAGE 311

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11836118415 75 11 --1 -----6 23 -15 ------------27-------11846118515 78-80 1 --5 -----0 24-26 -12-13 ------------29-30-------11864118695 82 15 --4 -----8 28 -20 ------------31-------11931119398 62 24 -3 --------12-------------14 18 -16 ---11967119714 72 1 --5 -----0 21 -14 ------------25-------119711198615 90-9844-45 -44-45 ------44-4532-34---------------35-38 -35 ---12011120187 90-9844-45 -44-45 ------44-4532-34---------------35-38 -35 ---114891150718 64-6621-25 -15-19 --------14-15-------------19-23 19-20 -16-20 ---11509115145 56 11 -9 -----10 7 -8 ------------12-------115161154630 61-6619-24 -18-19 --------11-15-------------18-22 17-20 -15-20 ---115461155711 67-7026-28 -21-24 --------16-19-------------22-27 21-24 -21-23 ---115591157112 58-59 17 -9 --------8-------------14 13 -11-12 ---11571115765 63 15 -12 -----13 13 -12 ------------19-------11578115835 68 19-20 -12-13 -----17 17 -17 ------------22-------11583115852 63 24 -22 ------2313---------------19 -17 --11587 11593 6 63 21 -14 --------13-------------19 19 -15 ---11593116007 68 23-24 -8 --------17-------------15 22 -21-22 ---116001161616 61-64 15 -4-5 -----10-11 11-14 -11-13 ------------17-19-------116181163113 68-7025-26 -18-20 --------17-19-------------22-24 22-24 -19-20 ---116311164110 56-59 9 -6 -----8 7-9 -7-8 ------------12-14-------116441165713 61-6413-16 -5-6 -----10-12 11-14 -10-12 ------------17-19-------116571168023 55-595-9 -5-9 -----5-9 6-9 -5-9 ------------11-14-------11680116844 60 21 -6 --------11-------------14 16 -14 ---11700117088 59 10 --4 -----5 9 -9 ------------14-------11648116535 59 ----------9 --------------14-------116531166411 61-64 -----------11-14---------------17-19 -------11664116684 56-58 ----------7-8 ----------------12-13-------116701168010 55-58 ----------6-8 ----------------11-14-------11682116875 59 ----------9 ----------------14-------11689116912 59 ----------9 ----------------14-------11691116976 60-61 ----------11 ----------------16-17-------11699117023 59 ----------9 ----------------14-------117021173129 60-65 -----------11-15---------------16-20 -------11731 11733 2 56 ---------7 ----------------12-------11733117407 61 ----------11 ----------------17-------117401175616 53-59 ----------4-9 ----------------10-14-------11756117604 63 ----------13 ----------------19-------11760117622 59 ----------9 ----------------14-------11762117642 62 ----------12 ----------------18-------11764117662 55 ----------6 ----------------11-------11766117704 63 ----------13 -------------19-------11772117764 55 ----------6 ----------------11-------11776117782 76 -----------23---------------28 -------11778117791 63 ----------13 -------------19-------11781117865 57 ----------7 ----------------12-------11788117891 54 ----------4 ----------------10-------11791117976 58 ----------8 ----------------13-------11806118137 54-56 ----------4-7 ----------------10-12-------11815118227 60 ----------11 ----------------16-------11832118375 58-59 ----------8-9 ----------------13-14-------11839118456 58-59 ----------8-9 ----------------13-14-------118471186821 54-55 ----------4-6 ----------------10-11-------11874118784 55 ----------6 ----------------11-------11882118853 55 ----------6 ----------------11-------118901190212 55-57 ----------6-7 ----------------11-12-------11527115358 66 23 -13 --------15-------------19 20 -18 ---11535115372 56 6 -2 -----5 7 -6 ---------12-------115371154710 72 27 -25 -----27 21 -21 ------------25-------11547115525 68 24 -18 --------17-------------22 22 -19 ---736Collier1511924 697Collier2913000

PAGE 312

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11552115553 64 14 -9 -----13 14 -13 ------------19-------11558115635 61 13 -13 -----13 11 -11 ------------17-------115701158010 67 21 -20 --------16-------------20 21 -18 ---11580115844 65 17 -16 -----15 17 -15 ------------20-------11586115915 66 19 -16 -----18 15 -15 ------------20-------11591115932 62 15 -15 -----15 12 -12 ------------18-------115931160613 67-7117-24 -15-21 -----17-23 16-20 -15-19 ------------21-24-------11607116114 64 21 -8 --------14-------------16 19 -16 ---11613116185 55-5617-18 -7-10 --------6-7-------------12-14 11-12 -11-12 ---11623116274 58 11 -10 -----11 8 -9 ------------13-------11628116335 65 22 -4 --------15-------------14 20 -17 ---11633116363 59 23 -11 --------9-------------17 14 -14 ---11636116415 64 27 -19 --------14-------------23 19 -18 ---116431165411 68 17-19 -14-17 -----16-18 17 -15-17 ------------22-------11654116562 63 20 -14 --------13------18 19 -16 --11656 11658 2 60 8 -7 -----8 11 -9 ------------16-------11658116679 69 23 -21 -----22 18 -18 ------------23-------116671168215 61-6212-13 -3-4 -----9-10 11-12 -10 ------------16-18-------116841169713 68 22 -18 --------17-------------21 22 -19 ---11700117088 56-598-9 -6-7 -----7-9 7-9 -7-9 ------------12-14-------117121172210 63-6512-13 -6 -----10-11 13-15 -11-13 ------------19-20-------11725117349 56-584-7 -3-4 -----4-6 7-8 -5-7 ------------12-13-------11741117509 58-597-8 -7-8 -----7-8 8-9 -7-9 ------------13-14-------114131142310 69-70 26 -20 --------18-19-----------24 23-24 -20 ---114231143714 80-8431-34 -22-23 -----27-28 26-29 -26-28 ----------30-32-------11437114403 68 27 -20 --------17-----------25 22 -20 ---114401145616 60-6516-21 -16-18 -----16-19 11-15 -12-16 ----------16-20-------114661147812 67 21 -18 --------16-----------20 21 -18 --11488 11491 3 59 10 -4 -----10 9 -10 ----------14-------114911152332 62-6511-16 -4-5 -----10-14 12-15 -10-14 ----------18-20-------115251154621 64-6617-20 -17-19 -----17-19 14-15 -14-16 ----------19-20-------11546115504 58 16 -3 --------8-----------13 13 -11 ---11550115544 62 18 -16 --------12-----------17 18 -15 ---11554115617 68 21 -20 -----20 17 -17 ----------22-------11570115788 64 13 -3 -----11 14 -12 ----------19-------115781159618 65-67 21 -20 -----20 15-16 -17 ----------20-21-------116111162413 62-6512-14 -4-6 -----11-13 12-15 -11-13 ------------18-20-------11563115696 57-58 ----------7-8 ----------------12-13-------11572115775 64 ----------14 ----------------19-------11577115803 64 -----------14---------------19 -------11583115929 67 -----------16---------------21 -------11592115975 60 -----------11---------------16 -----11597116003 68 -----------17---------------22 -------11562115664 64 -2.45 --15 ---14 14 -------22 ----19-------115661157711 67 -2.45 --15 ---16 15 -------22 ----21-------11580115855 62 ----------12 --------------18-------11620116266 69 -2.43 --17 ---18 16 -------23 ----23-------116261164216 72-74 --2.35-2.4--18-21 ---21-22 18-19 -------25-28 ----25-26-------11642116464 72 --2.35-2.4--18-21 ---21 18-19 -------25-28 ----25-------11646116493 64 -2.42 --17 ---14 15 -------24 ----19-------116491165910 69 --2.4-2.43--17-18 ---18 16 -------23-25 ----23-------11661116643 60 --2.64-2.67---3-4----11---------11-12 ---16 10-12 -----11670116744 62 -2.5 --12 ---12 12 -------20 ----18-------11674116751 62 -2.47 --14 ---12 13 -------21 ----18-------11675116827 64-65 --2.45-2.51--12-15 --14-15 12-14 -----19-22 ----19-20-------11682116886 62 -2.55 --10 ---12 10 -----------18-------117041172420 60-64 --2.5-2.57--8-12 ---11-14 11 -------16-20 ----16-19-------838Collier1811613 829Collier1111658 760Collier2911780 853Collier2211815

PAGE 313

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11724117284 64 --2.63-2.67--3-5 ---14 12-13 -------11-13 ----19-------11728117357 67 -2.69 ---2----16---------10 ---21 11 -----117401177636 61-64 -2.53 --11 ---11-14 11-12 -------18 ----17-19-------11778117835 59 -2.68 ---2----9---------10 ---14 11 -----11783117907 62 -2.65 ---4----12----------12 ---18 12 -----11483114907 60 20 -1 -----11 11 -11 ----------16-------11493114985 64 19 -5 -----12 14 -14 ----------19-------11500115066 59 25 -11 --------9-----------18 14 -15 ---11506115104 61 29 -13 --------11-----------21 17 -17 ---11512115142 61 33 -17 --------11-----------24 17 -17 ---11514115206 69 33-36 -18-24 --------18-----------26-30 23 -21-23 ---11520115255 66 31 -30 --------15-----------30 20 -22 ---11525 11531 6 59 23 -20 -------9-----------20 14 -14 ---11531115365 59 17 -7 --------9-----------12 14 -12 ---11536115415 70 31 -27 --------19-----------28 24 -21 ---11543115474 81 29 -18 -----25 27 -25 ----------31-------11547115569 66 21 -13 --------15-----------18 20 -17 ---115561158832 65-6720-25 -15-17 --------15-16-----------18-20 20-21 -16-18 ---11591115976 65 28 -10 --------15-----------19 20 -18 ---11602116119 62 17 -13 -----14 12 -12 ----------18-------116111162110 56-57 22 -4 --------7-----------14 12 -13 ---11623116274 57-59 22 -3 --------7-9-----------13 12-14 -12-13 ---11630116366 67 22 -11 -----17 16 -16 ----------21-------11647116525 65 19 -10 -----14 15 -14 -------20-------11652116575 55 22 -4 --------6-----------13 11 -11 ---11657116614 70 32 -12 --------19-----------22 24 -21 ---116611167110 58 28 -9 --------8-----------18 13 -15 ---11672116764 60 14 -10 -----11 11 -11 ----------16-------117091172516 62-6516-19 -13-15 -----14-17 12-15 -12-14 ------------18-20-------11625116316 58 9 -7 -----9 8 -8 ---------13-------116311164211 60-6410-13 -9-11 -----10-12 11-14 -10-12 ---------16-19-------116451165510 57-5910-11 --1-0 --------7-9---------6-7 12-14 -9-10 ---116551166510 61-6211-17 -10 -----11-13 11-12 -10-12 ---------17-18-------11667116703 56 17 -7 -----7---------13 12 -13 --11670 11680 10 61-6322-25 -9-12 --------11-13---------17-19 16-19 -15-19 ---11680116855 60 10 -11 -----11 11 -9 ---------16-------11687116914 59 12 -0 --------9---------7 14 -11 ---116911170716 69-7119-21 -17-20 -----18-20 18-20 -17-22 ---------23-24-------117071171710 65-6616-17 -14-15 -----15-16 15 -14-15 ---------20-------11719117223 60 20 -10 --------11---------16 16 -16 ---11722117242 57 11 -7 -----9 7 -8 ---------12-------11724117306 61 21 -10 --------11---------16 17 -17 ---11730117377 58 14-17 -4-6 --------8---------10-12 13 -11-12 ---11769117712 59 11 -9 -----10 9 -9 ------14-------11771117776 62 15 -11 -----14 12 -14 ---------18-------11777117792 57 9 -5 -----6 7 -8 ---------12-------11779117845 59 12 -10 -----11 9 -10 ---------14-------117911181221 58-597-9 -2-3 -----4-7 8-9 -7-8 ---------13-14-------11816118226 63 16 -12 -----14 13 -13 ---------19-------118371184710 59-609-10 -1-3 -----7-8 9-11 -9 ---------14-16-------11850118566 59 10 -9 -----10 9 -9 ---------14-------11856118615 60 9 -1 -----7 11 -9 ------------16-------11598116079 67 20 -2 -----11 16 -17 -----------21-------116071161811 61 11 -10 -----11 11 -11 -----------17-------116181162810 67 19 -4 -----13 16 -16 --------21-------116281166436 65-6815-19 -15-19 -----15-19 15-17 -15-16 -----------20-22-------116671168316 65-6716-19 -16-19 -----16-19 15-16 -14-15 -----------20-21-------116831171128 57-599-12 -9-12 -----9-12 7-9 -8-9 -----------12-14-------117111173120 56-5810-13 -4-6 -----8-11 7-8 -7-9 -----------12-13-------871Collier1411920 865Collier1511823 897 Collier 17 11897

PAGE 314

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11731117387 64-655-6 -5-6 -----5-6 14-15 -10 -----------19-20-------117381175214 62-6610-13 -2-3 -----7-10 12-15 -10-13 -----------18-20-------11754117617 59 9 -9 -----9 9 -9 -----------14-------117661178620 63 9-12 -9-12 -----9-12 13 -10-11 -----------19-------11867118758 65-67 ----------15-16 --------------20-21-------118751189116 62 ----------12 --------------18-------11891118932 71 ----------20 ----------------24-------11375113805 60-6210-11 -1-4 -----5-6 11-12 -10 -----------16-18-------11393113996 69-70 24 -18 --------18-19-----------22 23-24 -------11401114076 63 24 -13 --------13-----------20 19 -------114071142417 73-7628-30 -22-23 --------22-23-----------26-27 26-28 -------114241144824 68-7022-25 -17-18 --------17-19-----------21-24 22-24 -------114481150759 64-6616-19 -11-13 -----14-16 14-15 --------------19-20-------115111152514 62-6621-24 -6-15 --------12-15-----------18-21 18-20 -------11525115283 67 23 -16 --------16-----------21 21 ----115281154820 64-66 18 -15 -----16 14-15 --------------19-20-------11548115579 68-7019-21 -3-6 -----14-16 17-19 -17-19 -----------22-24-------115611157817 60-6114-16 -7-10 --------11-----------13-15 16-17 -12-13 ---11587115936 64 12 -6 -----12 14 -12 -----------19-------115951161419 67-6823-24 -16-18 --------16-17-----------21-23 21-22 -------116281164012 62-666-9 -5-6 -----6-8 12-15 -8-12 ------------18-20-------11688116924 60 9 -9 -----9 11 -9 ---------16-------116921171826 67-7016-18 -16-18 -----16-18 16-19 -17-18 ---------21-24-----11718117246 65-66 16 -16 -----16 15 -14 ---------20-----11724117273 67 14-16 -14-16 -----14-16 16 -14-15 ---------21-----11727117292 66 17 -15 -----17 15 -15 ------20-----11729117334 68 17 -16 -----17 17 -16 ---------22-----11733117374 64-6615-16 -13-14 -----14-16 14-15 -13-15 ---------19-20-----117371174710 68-7015-19 -14-17 -----16-19 17-19 -15-17 ---------22-24-----11747117558 66 16 -15 -----16 16 -16 ---------21-----11755117616 69 21 -17 -----19 18 -18 ---------23-----11761117632 63 15 -15 -----15 13 -12 ---------19-----11763117696 68 16 -15 -----16 17 -15 ---------22-----117691178112 61-6422-24 -14-15 --------11-14---------18-21 17-19 -14-15 ---11781 117865 68 27 -18 -------17---------24 22 -20 ---117861179711 61-6312-14 -12-14 -----12-14 11-13 -10-12 ---------17-19-----11797118036 57-59 16 -10 -----7-9---------14 12-14 -11-12 ---11803118129 61-6310-15 -12 -----12-14 11-13 -10-12 ---------17-19-----11812118153 54-55 9 -6 -----8 4-6 -6-7 ---------10-11-----118151183621 62-6512-15 -12-15 -----12-15 12-15 -11-13 ---------18-20-----11838118468 55-59 7 -7 -----7 6-9 -6-8 ---------11-14-----118481186214 55-596-10 -3-10 -----5-10 6-9 -5-9 ---------11-14-----11864118684 58 7 -2 -----5 8 -7 -------13 -----11868118735 63 12 -6 -----11 13 -11 ---------19-----11873118763 55 5 -5 -----5 6 -6 ---------11-----11878118868 61-6510-12 -3 -----8-10 11-15 -10-12 ---------17-20-----11886118904 53-54 3 -3 -----3 4 -3 ---------10-----118901190313 62-6511-12 -1-2 -----7-8 12-15 -10 ---------18-20 ----119031191310 66 12-14 -12-14 -----12-14 15 -13 ---------20-----119151193217 54-596-7 -1-4 -----4-7 4-9 -6-8 ---------10-14-----11932119375 61 11 -6 -----10 11 -10 ---------17-----11937 11958 21 54-57 2-6 -1-5 -----2-6 4-7 -4-5 ---------10-12-----11958119613 60 10 -3 -----7 11 -9 ------------16-------11646116559 65 ----------15 --------------20-------11658116679 66 ----------15 --------------20-------116701169424 65-67 ----------15-16 --------------20-21-------11694116995 70 ----------19 --------------24-------11699117067 74-75 ----------22-23 --------------26-27-------11706117115 82 ----------28 --------------31-------947Collier2611965 928Collier1212991 897 Collier 17 11897

PAGE 315

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 117111172918 78 ----------24 --------------29-------117291174112 58-59 ----------8-9 --------------13-14-------117411176019 63-64 ----------13-14 --------------19-------117601177010 56 ----------7 --------------12-------117761178610 56 ----------7 --------------12-------11800118066 59 -----------9-------------14 -------118121182614 60-62 ----------11-12 --------------16-18-------118261184115 57-58 ----------7-8 --------------12-13-------11841118443 60 ----------11 --------------16-------118441186117 55-57 ----------6-7 --------------11-12-------11861118632 67 ----------16 --------------21-------11863118696 57 ----------7 --------------12-------11887118958 57 ----------7 --------------12-------11898119057 60 ----------11 --------------16-------11905119105 58 ---------8 ----------------13-------116041162016 54-59 ----------4-9 --------------10-14-------11620116299 69 ----------18 --------------23-------11629116334 64-65 ----------14-15 -----------19-20-------11633116429 67-69 ----------16-18 --------------21-23-------116421166725 61-66 ----------11-15 --------------17-20-------11667116703 67 ----------16 --------------21-------11670116777 64-65 ----------14-15 --------------19-20-------116771168912 67-70 ----------16-19 --------------21-24-------116891171425 61-66 ----------11-15 --------------17-20-------11714117206 57 ----------7 --------------12-------11720117255 67 ----------16 --------------21-------11725117338 65-66 ----------15 --------------20-------11733117396 67-68 ----------16-17 --------------21-22-------11739117467 62 ----------12 --------------18-------117481177022 60-63 ----------11-13 --------------16-19-------11770117722 56 ----------7 --------------12-------11772117797 68 ----------17 --------------22-------11779117856 66 ----------15 --------------20-------11787117936 58-59 ----------8-9 --------------13-14-------11796117982 68 -------17 --------------22-------11798118035 64 ----------14 ----------------19-------11806118137 54-57 ----------4-7 --------------10-12-------11820118255 60 ----------11 --------------16-------11825118316 56-57 ----------7 ----------------12-------11448114568 58 11 -3 -----8 8 -9 ---------13----11459114656 64 14 -4 -----12 14 -12 -----------19-------114691147910 56-598-11 -2-3 -----5-8 7-9 -6-9 ---------12-14-------11489114989 66 21 -15 --------15-----------20 20 17 -----11500115055 60 16 -9 --------11-----------15 16 12 -----11505115094 56 10 -7 --------7---------11 12 9 -----11509115145 59 14 -4 -----11 9 -10 ---------14-------115141152915 67-7019-23 -17-22 -----19-22 16-19 -18-20 ---------21-24-------115291155425 -21-23 -19-22 -----21-22 ------------------------11513115163 71 36 -22 --------20---------29 24 -23 ---11516115204 61 14 -10 -----13 11 -12 ---------17-------11520115233 57 19 -7 --------7---------14 12 -12 ---11532115364 64 23 -14 --------14---------20 19 -16 ---11546115537 71 17-21 -12-21 -----19-20 20 -16-18 ---------24-------11553115596 65 15 -14 -----15 15 -14 ---------20-------115651159429 65-7016-20 -17-19 -----19 15-19 -14-17 ---------20-24-------11607116136 72 22 -22 -----21 21 -19 ---------25-------116131163219 61-6613-16 -13-16 -----14-15 11-15 -11-14 ---------17-20-------11632116375 68 25-28 -17 --------17---------22-23 22 -19-20 --11637 11642 5 63-64 24 -14 --------13-14---------20 19 -17 ---1057Collier3111573 1016Collier3711840 982Collier1611934 1059 Collier 15 11830

PAGE 316

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11643116529 58-59 10 -7 -----9-11 8-9 -8-9 ------------------11654116584 56 11 -4 -----8 7 -8 ---------12-------116581167315 62 12-14 -11 -----12-14 12 -11-12 ---------18-------11673116818 54 9 -3 --------4---------9 10 -8 ---11698117035 64 14 -12 -----14 14 -12 ---------19-------11706117115 61 9-11 -2 -----6 11 -9-10 ---------17-------117111172413 64 11-15 -9-14 -----10-15 14 -11-13 ---------19-------11725117305 55 9 -5 -----6 6 -6 ---------11-------11741117476 58 8-10 -2 -----6 8 -8 ---------13-------11756117615 59 10 -2 -----6 9 -9 ---------15-------11767117725 55 9 --2 -----6-------------5 11 -8 ---11449114567 61 21 -16 --------11---------19 17 -14 ---11456114615 56 21 -4 --------7---------13 12 -13 ---11463114685 60 29 -10 --------11---------20 16 -17 ---11470114766 55 22 -4 --------6---------14 11 -13 ---11479114834 57 17 -8 --------7---------13 12 -11 ---114831150522 67-6824-26 -16-19 --------16-17---------20-24 21-22 -18-19 ---11505115105 62 17-18 -13 --------12---------16-17 18 -14 ---11510115144 56 22 -9 --------7---------16 12 -13 ---11522115264 53 20 -2 --------4---------11 10 -10 --11533 11536 3 53 19 -2 --------4---------11 10 -10 ---115361155822 61-6617-25 -9-17 --------11-15---------17-20 17-20 -13-17 ---11558115613 56 19 -2 --------7---------11 12 -11 ---11561115665 63 20 -16 --------13---------19 19 -16 ---11566115715 67 25 -18 --------16---------22 21 -19 ---115711160029 62-6620-25 -13-16 --------12-15---------18-21 18-20 -15-18 ---11600116099 67-6923-24 -4-6 -----15-16 16-18 -16-18 ---------21-23-------11609116123 56 14 -4 --------7---------11 12 -10 ---11612116186 60-62 18 -9-13 --------11-12---------15-17 16-18 -13-14 --11620 11626 6 63 21 -14 --------13---------19 19 -15 ---11626116348 56 11 -3 -----8 7 -8 ---------12-------11634116395 59 13 -7 --------9---------11 14 -11 ---11639116434 61 12 -2 -----7 11 -10 ---------17-------11643116507 62 18 -12 --------12---------16 18 -14 ---116501166111 60-6113-15 -3-4 -----10-11 11 -10-12 ------16-17-------116611167716 63-6619-24 -12-16 --------13-15---------18-20 19-20 -15-18 ---11689116956 62 16 -5 -----12 12 -13 ---------18-------11695117005 57 14 -5 --------7---------11 12 -10 ---11703117107 56-599-12 -3-5 -----7-9 7-9 -7-9 ---------12-14-------11504115095 58 14 -3 --------8---------9 13 -12 ---11513115218 63 20 -6 --------13---------14 19 -15 ---11523115318 61 18 -9 --------11---------13 17 -13 ---11531115376 55-57 20 -7 --------6-7---------14 11-12 -11-12 ---11537115414 66 32 -10 --------15---------20 20 -22 ---11541115487 62 21-23 -3-12 --------12---------12-18 18 -15 ---11548115513 59 14 -3 --------9---------10 14 -12 ---115511157322 61-6413-19 -11-14 -----11-16 11-14 -11-14 ---------17-19-------11573115752 59 16 -9 -----13 9 -10 ---------14-------11575115827 68 25 -16 --------17--------20 22 -19 --11582 115897 60 24 -7 --------11---------16 16 -16 ---116011161413 67 22 -18 -----16 16 -16 ---------21-------116141163016 61-6416-21 -12-14 -----14-17 11-14 -12-15 ---------17-19-------11630116344 60 15 -11 -----14 11 -11 ---------16-------116341164814 66-6820-25 -12-19 -----17-22 15-17 -15-17 ---------20-22-------11648116546 57 31 --1-7 --------7---------17 12 -19 ---116611167615 55-5618-23 -6-7 --------6-7---------11-15 11-12 -11-13 ---11676116837 59 25 -9 --------9---------17 14 -17 ---11683116929 64 30 -13 --------14---------21 19 -19 --11732 11748 16 64 18 -15 -----15 14 -14 ------------19-------1065Collier1611800 1063Collier1411760 1059 Collier 15 11830

PAGE 317

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11457114625 59 -----------9-------------14 -------11462114708 66 -----------15-------------20 -------114701148313 69-70 ----------18-19 --------------23-24-------11483114885 62 -----------12-------------18 -------11488114957 57 ----------7 --------------12-------11495114983 54 ----------4 --------------10-------114981152123 62-65 ----------12-15 --------------18-20-------11521115232 56 ----------7 --------------12-------11523115274 57 ----------7 --------------12-------11527115336 62 ----------12 --------------18-------11534115428 54-57 ----------4-7 --------------10-12-------115421155210 67-69 ----------16-18 --------------21-23-------11552115553 59 ----------9 --------------14-------11555115616 64 ----------14 --------------19-------115611157514 56-59 ----------7-9 --------------12-14-------115751159217 62-66 ----------12-15 --------------18-20-------11595116005 57 ----------7 --------------12-------11603 11609 6 54-56 ---------4-7 --------------10-12-------11611116143 59 ----------9 --------------14-------116141162511 60-62 ----------11-12 --------------16-18-------11625116272 54-55 ----------4-6 ----------------10-11-------11627116347 60 ----------11 --------------16-------11634116406 56-57 ----------7 ----------------12-------11860118677 64 16-19 -9 -----13-15 14 -13-15 ---------19-------11872118797 57 16 -7 --------7---------12 12 -12 ---11880118855 64 24 -15 -----14---------21 19 -21 ---118871189710 67 14-15 -16-17 -----16-17 16 -14 ---------21-------11908119157 69-7115-18 -18 -----17-18 18-20 -15-17 ---------23-24-------11915119172 61 13 -13 -----13 11 -11 ---------17-------119171193518 60-6613-17 -12-15 -----13-17 11-15 -10-14 -------16-20 -------11937119425 56-57 8 -8 -----8 7 -7 ---------12-------11962119686 -21 -13 ---------------------16 ---------11968119779 -28-30 -17 ---------------------22-24 ---------11977119792 -18 -10 ---------------------15 ---------119791199314 -12-14 -11-12 -----------------------12-13 ---------11982119897 57-59 7 -9-10 -----8-9 7-9 -8-9 ---------12-14-------11991119987 60-6519-20 -1 -----11 11-15 --12-15 ---------16-20-------12002120097 55-5915-17 -5-9 --------6-9---------11-13 11-14 -10-13 ---12014120184 60 20 -13 --------11---------17 16 -16 ---12018120202 57 12 -9 --------7---------11 12 -10 ---12020120255 64 9-11 -15 -----12-14 14 -11-12 ---------19-------12025120272 60 14 -11 -----12 11 -10 -------16-------12027120314 67 12 -17 -----14 16 -13 ---------21-------12031120343 62 9 -8 -----9 12 -9 ---------18-------12057120614 62 14 -13 -----14 12 -11 ---------18-------12061120665 64 26 -16-18 --------14---------20-22 19 -21 ---12066120726 -26-27 -16-18 -------------------20-23 ---------12072120764 -22-24 -20 -----20-21 -----------------------12076120782 -19 -11 -----15 -----------------------12078120835 -22-23 -12-13 -------------------17-18 ---------120831209310 -17-19 -15-16 -----17 -----------------------12093121007 -17-18 -8-11 -----------------------12-14 ---------11653116607 55-568-11 -2 -----5-6 6-7 -6-7 ---------11-12-------11663 11670 7 65 22 -4 ----14 15 -15 ---------20-------116771168912 54-597-15 -6-11 -----8-13 4-9 -6-10 ---------10-14-------116931171219 67-7118-22 -18-22 -----18-22 16-20 -15-18 ---------21-24-------117121172412 64-6618-19 -17-18 -----18-19 14-15 -14-16 ---------19-20-------11724117306 68 21 -19 -----20 17 ------------22-------11730117333 65 19 -17 -----18 15 ------------20-------1119Collier1912145 1118Collier1712000 1086Collier1011680

PAGE 318

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 117331174512 67-69 20 -19 -----20 16-18 ------------21-23-------117451177328 62-6614-19 -14-17 -----14-17 12-15 -11-15 ---------18-20-------11773117785 54-58 19 -11 --------4-8---------15 10-13 -11-13 ---117781180123 63-6515-19 -14-18 -----15-19 13-15 -15-16 ---------19-20-------11804118139 55-56 12 -6-8 --------6-7---------10-11 11-12 -9 ---118131183320 61-6415-18 -12-16 -----13-17 11-14 -11-13 ---------17-19-------11835118449 62 16 -4 -----11 12 -13 ---------18-------11844118495 56 12 -7 -----9 7 -9 ---------12-------11849118589 63-6516-19 -4 -----11-12 13-15 -13-15 ---------19-20-------118601187515 62-6416-17 -3 -----10-11 12-14 -13-14 ---------18-19-------118751188712 67 18-22 -15-17 ---17-19 16 -15-17 --------21-------118871190215 57-5811-13 -4 -----8-9 7-8 -8-9 ---------12-13-------11903119118 59 13 -6 -----10 9 -10 ---------14-------11911119154 55 13 -11 --------6---------12 11 -9 ---11915119183 53 10 -4 --------4---------8 10 -7 ---119201193111 53-5712-13 -4-8 --------4-7---------9-10 10-12 -8-9 ---11931119376 62 16 -12 -----14 12 -13 ---------18-------119371194710 56-598-12 -1-4 -----5-9 7-9 -6-9 ------------12-14-------11686116948 56-577-10 -3-4 -----7 7 -6-8 ---------12-------11696117037 64 20 -4 -----13 14 -14 ---------19-------11721117254 64 14 -13 -----14 14 -12 ------19-------117251173914 67-6817-19 -14-17 -----16-19 16-17 -15-16 ---------21-22-------11741117465 66 16 -15 -----16 15 -14 ---------20-------11746117548 68-7019-20 -17-18 -----18-19 17-19 -16-17 ---------22-24-------11754117562 65 17 -15 -----16 15 -14 ---------20-------11756117659 71-7221-23 -20-21 -----20-22 20-21 -18-19 ---------24-25-------11765117672 69 20 -19 -----19 18 -17 ---------23-------11767117747 71 22 -20 -----21 20 -18 ---------24-------11774117762 66 18 -15 -----16 15 -15 ---------20-------11776117804 68 19 -16 -----18 17 -16 ---------22-------117801179111 63-66 19 -13 --------13-15---------17 19-20 -16-20 --11791 11797 6 69 27 -20 --------18---------24 23 -20 ---117971180811 62-66 14 -16 -----16 12-15 -11-13 ---------18-20-------11808118135 57 12 -7 -----7 7 -9 ---------12-------11813118229 67 14 -16-17 -----15-16 16 -14 ---------21-------11822118319 63-64 11 -14-15 -----13-14 13-14 -11 ---------19-------118351184510 54-588-11 -8-9 -----8-10 4-8 -6-9 ---------10-13-------118451185914 63-6415-16 -13-15 -----15-16 13-14 -15-16 ---------19-------11861118698 62 13 -3 -----10 12 -11 ---------18-------11869118712 55 5 -5 -----5 6 -6 ---------11-------118711188312 64-6615-16 -3-4 -----10-11 14-15 -13-14 ------19-20-------118861190317 61-6311-14 -1-3 -----7-9 11-13 -10-11 ---------17-19-------119041191511 64-66 16 -14-15 -----15 14-15 -13-14 ---------19-20-------119171192710 58-597-9 -4-5 -----7-8 8-9 -7-8 ---------13-14-------11930119355 60 11 -6 -----10 11 -10 ---------16-------11956119604 60 13 -11 -----12 11 -10 ---------16-------11969119756 59 11 -3 -----10 9 -9 ---------14-------11984119895 63 19 -5 -----13 13 -13 ------------19-------11559115667 65 22 -5 -----14 15 -16 ---------20----11581115865 68 17 -17 -----17 17 -15 ---------22-------115861162337 72-7621-24 -18-19 -----20-22 21-23 -19-21 ------25-28-------11623116285 64-66 21 -16 -----17 14-15 -14-15 ---------19-20-------116281163911 61-6625-27 -16-18 --------11-15---------22 17-20 -15-20 ---11639116489 73-7721-25 -15-18 -----20-22 22-23 -20-22 ---------26-28-------116481166214 61-6314-15 -12-14 -----14-15 11-13 -12 ---------17-19-------11662116719 71 18 -18 -----18 19 -17 ---------24-------11671116754 62 18 -12 --------12---------16 18 -14 ---11675116772 59 14 -8 -----11 9 -10 ---------14-------11677116825 63 16 -14 -----15 13 -13 ---------19-------1142Collier2011760 1134Collier2312030 1127Collier2311995

PAGE 319

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11682116864 59 13 -11 -----12 9 -10 ----------14 -------11686116926 57-59 16 -13 --------7-9---------15 12-14 -12-14 ---11692116986 65 20 -10 -----16 15 -15 ---------20-------11700117044 94 34 -39 -----35 34 -33 ---------37-------11704117084 74 32 -23 --------22---------26 27 -24 ---117131173118 61-6316-22 -12-20 --------11-13---------16-20 17-19 -13-15 ---11731117354 -12 -6 -----10 -----------------------11735117449 -16 -2 -----------------------10 ---------11551115576 -23 -4 -------------------15 ---------11557115647 -16 -17 -----17 -----------------------11564115684 -13 -11 -----14 -----------------------11568115768 -10-11 -6 -----10 --------------------115761159418 -20-21 -20 -----20-21 -----------------------11594115962 -15 -11 -----14 -----------------------115961162226 -20-21 -18-19 -----19-20 -----------------------11622116242 -18 -15 -----17 -----------------------11624116262 -14 -11 -----14 -----------------------11626116304 -18 -14 -----17 -----------------------11630116344 -14 -12 -----14 -----------------------11634116395 -17 -16 -----17 -----------------------11639116456 -20 -19 -----20 -----------------------116451166318 -22-24 -21-24 -----23-24 -----------------------11663116663 -16 -3 -------------------10 ---------116661167610 -24 -14 -------------------20 ------11676116804 -14 -13 -----14 -----------------------11680116866 -19 -17 -----19 -----------------------11686116937 -17 -7 -------------------13 ---------11703117085 -24 -13 -------------------19 ---------11708117124 -27 15 -------------------22 ---------11712117153 -13 -7 -----11 -----------------------11715117249 -18 -16 -----18 -----------------------117241174420 -11-18 -4-8 -----10-11 -----------------------11769117745 -16 -5 -------------------11 ---------11774117839 -16 -11 -----14 ---------------------------114481145810 -2-6 -1-3 -----2-3 -----------------------11460114644 -9 -1 -----6 -----------------------11468114779 -8-9 -3-4 -----6 --------------------11481114854 -12 -3 -----8 -----------------------114901150919 -16-19 -15-18 -----16-19 -----------------------11511115154 -8 -6 -----8 -----------------------11517115225 -9 -3 -----7 -----------------------115221153715 -11-16 -11-15 -----11-16 -----------------------115371156427 -19-23 -15-19 -----17-20 -----------------------115641158117 -15-17 -4-13 -----11-15 ---------------------------11586115937 59 21 -4 --------9---------13 14 -14 ---115931163441 60-6522-27 -16 --------11-15---------19-22 16-20 -15-20 ---116341164410 64-6521-28 -9-17 --------14-15---------16-23 19-20 -16-20 ---11644116473 69 30 -19 --------18---------26 23 -23 ---11647116558 65 20-23 -17-12 --------15--------18-19 20 -16-17 ---11659 116667 63 16 -13 -----14 13 -13 ---------19-------11692116964 58 12 -11 -----12 8 -9 ---------13-------116961171620 60-6414-17 -11-14 -----13-17 11-14 -10-14 ---------16-19-------117241173410 57-59 19 -8 --------7-9---------14 12-14 -12-13 ---11734117428 63 16 -13 -----14 13 -13 ---------19-------11744117495 61 13 -2 -----8 11 -12 ---------17-------11751117598 63-6514-18 -2-3 -----9-11 13-15 -13-15 ---------19-20-------117641178925 61-6312-14 -1-2 -----7-9 11-13 -10-11 ---------17-19-------117891179910 61 14 -12 -----13 11 -12 ---------17-------11799118045 59 9 -2 ---6 9 -9 --------14-------1208Collier2211850 1202Collier3211613 1201Collier2211849

PAGE 320

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11804118106 63 13 -10 -----12 13 -12 ---------19-------11822118275 -10 -7 -----9 -----------------------11827118325 -12 -11 -----12 ---------------------------11456114637 58 18 -1 --------8---------10 13 -12 ---11463114696 65 30 -7 --------15---------19 20 -19 ---11475114794 57 16 -7 --------7---------14 12 -11 ---11481114865 59 18 -8 --------9---------13 14 -12 ---11486114904 60 25 -12 --------11---------19 16 -15 ---114921150210 61-6228-32 -11-12 --------11-12---------20-22 17-18 -17-18 ---11502115097 53-5515-25 -3-5 --------4-6---------10-15 10-11 -9-13 ---11509115123 59 18 -15 --------9---------16 14 -14 --11512 11519 7 67-68 31 -21-22 --------16-17---------25-26 21-22 -21-22 ---11519115245 60-6315-16 -11-12 -----13-15 11-13 -11-13 ---------16-19-------115241153612 67-7023-24 -16-19 --------16-19---------20-22 21-24 -20-22 ---115361157135 61-6619-29 -12-16 --------11-15---------16-21 17-20 -13-20 ---11571115732 57 16 -8 --------7---------12 12 -11 ---11573115829 68-7127-28 -19 --------17-20---------24-25 22-24 -20-21 ---11582115897 66 24-25 -16 --------15---------20-21 20 -17-18 ---11589115967 56-5722-24 -4 --------7---------13-14 12 -13 ---11596116015 67 24 -16 --------16---------20 21 -17 --11601 11610 9 66 23 -16 --------15---------19 20 -17 ---11610116144 68 24 -4 -----15 17 -18 ---------22-------116141162814 60-6421-24 -10-14 --------11-14---------17-20 16-19 -14-17 ---116281163911 56-5917-18 6-8 --------7-9---------13-14 12-14 -11-12 ---116391165011 60 18 -10-11 --------11---------15-16 16 -13 ---11655116616 58-59 8 -3 -----7 8-9 -8 ---------13-14-------116611167312 60-6315-17 -14 -----15-16 11-13 -10-12 ---------16-19-------11675116783 59 10 -2 -----7 9 -9 ---------14-------11678116846 60-6211-12 -1-2 -----7-9 11-12 -11-12 ---------16-18-------11684116906 64 19 -15 --------14--------18 19 -15 --11690 1170111 60-6115-16 -11-12 -----13-15 11 -12-13 ---------16-17-------11710117177 60 9 -3 -----7 11 -9 ------------16-------11652116586 64 20 -1 -----11 14 -14 ---------19-------11663116685 60 15 -3 -----11 11 -11 ---------16-------116771168912 60-6212-18 -8-12 -----11-12 11-12 -10-13 ---------16-18-------11691116954 63 22 -4 -----13 13 -14 ---------19-------11695117049 61 7-9 -10-12 -----9-11 11 -9 ---------17-------11741117487 63 11 -14 -----13 13 -11 ---------19-------11748117557 61 8 -11 -----11 11 -9 ---------17-------11758117635 60 8 -8 -----8 11 -8 ------16-------11772117786 62 6 -6 -----6 12 -8 ---------18-------11799118056 62 13 -3 -----10 12 -11 ---------18-------11824118317 61 9 -6 -----10 11 -9 ------------17-------11422114264 58 -2.29 ---24----8-------31 ---13 18 -----11426114326 62 --2.35-2.37---20-21----12-------26-28 ---18 16 -----11432114375 59 -2.45 ---15----9-------22 ---14 12 -----11437114392 54 -2.55 --10 ---6 8 -----16 ----11-------11439114445 61 --2.55-2.59--7-10 ---11 8-9 -----15-16 ----17-------11444114462 54 -2.55 --10 ---8 8 -----16 ----13-------11446114504 55-56 -2.59 --7 ---6-7 6-7 -----15 --11-12 -------11455114594 55 --2.51-2.53--11-12 ---6 9-10 -----18-19 ----11-------114591146910 53-57 -2.21 --29 ----4-7-------34 ---10-12 18-19 -----11469114745 70-71 --2.23-2.26--26-28 ---19-20 22 -----32-34 ----24-------11474114839 62-65 --2.23-2.27--25-28 ----12-15-------31-34 ---18-20 21-22 -----114831150017 66-69 -2.23 --28 ----15-18-------34 ---20-23 22 -----11500115066 56-57 -2.23 --28 ----7-------34 ---12 18 -----11506115104 67 -2.25 --27 ----16-------33 ---21 22 -----115101152414 66-70 --2.23-2.45--15-28 ---15-19 15-21 -----22-34 ----20-24-------11524115295 60 -2.55 --10 ---11 10 -----16 ----16-------279 Hendry 38 11646 1240Collier1611879 1216Collier1311755

PAGE 321

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11529115312 53 -2.31 --23 ----4-------29 ---10 15 -----115311154615 60-61 --2.37-2.41--18-20 ----11-------25-26 ---16-17 15-16 -----11546115515 58 -2.61 --6 ---8 6 -----14 ----13-------11551115576 60 -2.61 --6 ---11 6 -----14 ----16-------11557115592 58 -2.61 --6 ---8 6 -----14 ----13-------115591157011 62-63 -2.61 --6 ----12-13-------14 ---18-19 14 -----11570115777 58-59 -2.61 --6 ---8-9 6-7 -----14 ---13-14 -------115771159013 63-66 --2.49-2.61--6-13 ---13-15 12-14 -----14-20 ----19-20-------11590115966 59 -2.61 ---6----9-------14 ---14 13 -----115971161114 60-63 --2.49-2.55--10-13 --11-13 11-12 ----16-20 ---16-19-------116111163625 54-58 --2.55-2.61--6-10 ---4-8 5-8 --------14-16----10-13-------11449114534 67 ----------16 ----------------21-------11453114574 72 ----------21 ----------------25-------11457114636 66 ----------15 ----------------20-------11465114705 59 -----------9---------------14 -------114721148513 72-73 ----------21-22 ----------------25-26-------11485114916 65-67 ----------15-16 ----------------20-21-------11491114932 55 ----------6 ----------------11-------11493115007 66-70 ----------15-19 ----------------20-24-------11500115033 63 -----------13---------------19 -------11505115116 62 -----------12---------------18 -------115161152812 55-57 -----------6-7---------------11-12 -------11528115335 69 ----------18 ----------------23-------11533115429 59 ----------9 ----------------14-------11544115484 64 ----------14 ----------------19-------115481155810 66-69 ----------15-18 ----------------20-23-------11558115635 61-65 ----------11-15 ----------------17-20-------11563115652 57 ----------7 ----------------12-------115651158318 60-66 ----------11-15 ----------------16-20-------11583115852 55 ----------6 ----------------11-------11585115916 62-63 ----------12-13 ----------------18-19-------11594115984 63 ----------13 ----------------19-------11600116055 62 ----------12 -------------18-------11605116083 68 ----------17 ----------------22-------11424114306 60 ----------11 ----------------16-------11430114322 59 ----------9 ----------------14-------11434114373 64 ----------14 ----------------19-------11443114518 60-64 ----------11-14 ----------------16-19-------11451114543 57 ----------7 ----------------12-------11459114623 66 ----------15 ----------------20-------11462114675 57 ----------7 ----------------12-------11467114736 74-77 ----------22-23 ----------------26-28-------11473114752 67-69 ----------16-18 ----------------21-23-------11475114772 73 ----------22 ----------------26-------11477114825 70-71 ----------19-20 ----------------24-------11484114884 60 ----------11 ----------------16-------11491114954 89 ----------31 ----------------34-------11495115016 83-84 ----------28-29 ----------------32-------11501115076 67-69 ----------16-18 ----------------21-23-------326Hendry3511612

PAGE 322

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11507115092 66 ----------15 ----------------20-------11509115112 54-55 ----------4-6 ----------------10-11-------11511115121 69 ----------18 ----------------23-------11512115131 73 ----------22 ----------------26-------11513115152 68 ----------17 ----------------22-------11515115194 73 ----------22 ----------------26-------11519115223 59 ----------9 ----------------14-------11522115264 61 ----------11 ----------------17-------11526115282 56 ----------7 ----------------12-------11531115332 58 ----------8 ----------------13-------11535115372 63 ----------13 ----------------19-------11539115467 60-62 ----------11-12 ----------------16-18-------11546115504 68 ----------17 ----------------22-------11550115522 60 ----------11 ----------------16-------11552115575 73 ----------22 ----------------26-------11557115603 62 ----------12 ----------------18-------115601157111 67-71 ----------16-20 ----------------21-24-------11571115765 61-62 ----------11-12 ---------------17-18 -------11576115782 59 ----------9 ---------------14 -------115781159517 61-65 ----------11-15 ---------------17-20 -------11595115972 54 ----------4 ----------------10-------11597116047 65-66 ----------15 ----------------20-------11606116115 60-63 ----------11-13 ----------------16-19-------11613116207 60-63 ----------11-13 ----------------16-19-------11620 11622 2 67 ---------16 ----------------21-------11627116303 60 ----------11 ----------------16-------11630116344 55 ----------6 ----------------11-------114511146211 58 ----------8 ----------------13-------11462114653 63 ----------13 ----------------19-------11465114672 55 ----------6 ----------------11-------11467114725 64 ----------14 ----------------19-------11474114795 62 ----------12 ----------------18-------11479114856 67 ----------16 ----------------21-------11485114905 61-62 ----------11-12 ----------------17-18-------11490114922 58 ----------8 ----------------13-------11492114953 63 ----------13 ----------------19-------114951151015 72-75 ----------21-23 ----------------25-27-------11510115122 58 ----------8 ----------------13-------11512115153 60 ----------11 ----------------16-------11515115216 65 ----------15 ----------------20-------11521115243 73 ----------22 ----------------26-------11524115317 67-70 ----------16-19 ----------------21-24-------11531115365 62 ----------12 ----------------18-------11536115382 57 ----------7 ----------------12-------11538115435 66-67 ----------15-16 ----------------20-21-------11543115452 61 ----------11 ----------------17-------11545115527 70 ----------19 ----------------24-------437Hendry3411690 360Hendry3411640

PAGE 323

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11552115608 60-61 ----------11 ----------------16-17-------115601157111 65-68 ----------15-17 ----------------20-22-------11571115732 58 ----------8 ----------------13-------11573115796 64 ----------14 ----------------19-------11583115896 62 ----------12 ----------------18-------11589115967 65 -----------15---------------20 -------115961162024 62-65 -----------12-15---------------18-20 -------11620116244 64 ----------14 ----------------19-------11626116315 61 ----------11 ----------------17-------11633116396 60-65 ----------11-15 ----------------16-20-------11644116473 57 ----------7 ----------------12-------11647116492 73 ----------22 -------------26-------11649116523 56 ----------7 ----------------12-------11652116531 60 ----------11 ----------------16-------11653116596 56 ----------7 ----------------12-------11659116634 60 ----------11 ----------------16-------11663116707 55 ----------6 ----------------11-------11418114268 57-58 ----------7-8 ----------------12-13-------11426114326 60 ----------11 ----------------16-------114361145216 55-56 ----------6-7 ----------------11-12-------11452114619 62-63 ----------12-13 ----------------18-19-------11461114643 58 ----------8 ----------------13-------11464114684 62 ----------12 ----------------18-------114681147810 73 ----------22 ----------------26-------114801149111 74 ----------22 ----------------26-------11491114954 62 ----------7-8 -------------12-13-------114951152631 66-71 ----------15-20 ----------------20-24-------11526115348 62-65 ----------12-15 ----------------18-20-------11534115362 77 ----------23 ----------------28-------115361155418 65-71 ----------15-20 ----------------20-24-------11554115562 58 ----------8 ----------------13-------11556115593 61 ----------11 ----------------17-------11559115667 57-58 ----------7-8 ----------------12-13-------11566115748 64 ----------14 ----------------19-------11574115806 58 ----------8 ----------------13-------115851161227 60-61 ----------11 ----------------16-17-------116121162210 64 ----------14 ----------------19-------11622116275 55 -----------6---------------11 -------116271163710 60-63 -----------11-13---------------16-19 -------11637116414 57 -----------7---------------12 -------11367113769 58 ----------8 ----------------13-------11376113837 61 ----------11 ----------------17-------11384113884 61 ----------11 ----------------17-------11388113968 56-58 ----------7-8 ----------------12-13-------113961141317 67-69 ----------16-18 ----------------21-23-------11419114234 ----15-18 ---------------------------------114241143511 67 ---15 -----16 ----------------21-------11436114415 56 ---15 -----7 ----------------12-------486Hendry3211725

PAGE 324

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11443114518 64 ---15 -----14 ----------------19-------11452114608 61-64 -----------11-14-------18-20 -----17-19 -------11462114664 67 ---12-15 -----16 ----------------21-------11466114704 67 -----------16-------22-23 -----21 -------11470114722 ---------------------9 ---------------11474114806 67-70 -----------16-19-------23 -----21-24 -------11480114877 67 ---13-17 -----16 ----------------21-------114871150215 57 -----------7-------11-14 -----12 -------11502115042 ----18 ---------------------------------11504115073 ----14 ---------------------------------115071151710 ---------------------23-26 ---------------11435114427 58 ----------8 ----------------13-------11448114513 58 ----------8 ----------------13-------11455114594 58 ----------8 ----------------13-------11466114704 60 ----------11 ----------------16-------114721148210 56-59 ----------7-9 ----------------12-14-------11483114907 62 -----------12---------------18 -------11495115016 62 -----------12---------------18 -------11501115032 58 ----------8 ----------------13-------115031151714 72-75 ----------21-23 ----------------25-27-------11517115225 65-67 ----------15-16 ----------------20-21-------115241153511 60-66 -----------11-15---------------16-20 -------11535115427 68-70 ----------17-19 ----------------22-24-------11544115506 64-65 -------14-15 ----------------19-20-------11550115533 56 ----------7 ----------------12-------11555115583 55 ----------6 ----------------11-------11394114039 60 25 -10 --------11-------------18 16 -15 ---11403114074 54 15 -3 --------4-------------10 10 -10 ---114071142215 56-5718-21 -3-6 --------7-------------11-14 12 -11-13 ---11422114297 62 16 -10 -----13 12 -13 ------------18-------11429114345 60 10 -6 -----9 11 -9 ------------16-------11439114478 61 15 -10 -----12 11 -12 ------------17-------11447114536 70 22 -17 -----19 19 -18 ------------24-------11453114563 59 13 -8 -----10 9 -10 ------------14-------11456114659 65 17-21 -7-13 -----13-16 15 -14-16 ------------20-------114651147510 61-63 28 -10 --------11-13-------------19 17-19 -17-18 ---114781149315 63-6515-20 -6-12 -----12-16 13-15 -12-15 ------------19-20-------11493114974 59 12 -6 -----9 9 -9 ------------14-------11498115020 57 13 -4 --------7-------------9 12 -10 --1150211512 10 65 19 -13 -----16 15 -15 ------------20-------11526115348 64 18 -11 -----14 14 -14 ------------19-------11535115416 59 8 -2 -----7 9 -8 ---------14-------115411156423 60-62 12 -3 -----8-11 11-12 -10-11 ------------16-18-------11383113929 55-56 -----------6-7---------------11-12 -------11395114005 60 -----------11---------------16 -------11403114085 59 -----------9---------------14 -------11408114135 55 -----------6---------------11 -------11413114218 66 ----------15 ----------------20-------561Hendry2111589 488Hendry3211517 565AHendry1917025

PAGE 325

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11423114252 54 ----------4 ----------------10-------11425114294 57 ----------7 ----------------12-------11429114378 66 -----------15---------------20 -------11437114436 68 -----------17---------------22 -------11443114452 57 ----------7 ----------------12-------11445114527 63 ----------13 ----------------19-------114521146210 57-58 ----------7-8 ----------------12-13-------11462114642 55 -----------6-9---------------11-14 -------11466114704 60 -----------11---------------16 -------11470114733 60 ----------11 ----------------16-------11473114763 62 -------12 ----------------18-------11484114873 56 ----------7 ----------------12-------114871150114 61-65 ----------11-15 ----------------17-20-------11503115074 56 ----------7 ----------------12-------115071151912 65-67 ----------15-16 ----------------20-21-------11519115234 54 ----------4 ----------------10-------11523115285 57 ----------7 ----------------12-------115281154113 61-65 -----------11-15---------------17-20 -------11541115443 56 ----------7 ----------------12-------11546115471 60 -----------11---------------16 -------11547115492 57 -----------7---------------12 -------11549115523 61 -----------11---------------17 -------115521156311 57-58 ----------7-8 ----------------12-13-------11565115705 59 -----------9---------------14 -------115701158212 60-63 ----------11-13 ----------------16-19-------11585115916 59 ----------9 --------------14-------11591115965 54-55 ----------4-6 ----------------10-11-------11606116126 58 ----------8 ----------------13-------11617116236 55-56 ----------6-7 ----------------11-12-------11631116387 61-64 -----------11-14---------------17-19 -------11638116402 56 ----------7 ----------------12-------116401167232 60-66 ----------11-15 ----------------16-20-------11672116764 56 ----------7 ----------------12-------116761168913 61-66 -----------11-15---------------17-20 -------11689116956 56-57 ----------7 ----------------12-------116951170712 67-71 ----------16-20 ----------------21-24-------11707117158 63-66 ----------13-15 ----------------19-20-------11715117216 67 -----------16---------------21 -------11721117276 65 -----------15---------------20 -------11727117358 68 -----------17---------------22 -------11735117383 56 ----------7 ----------------12-------11738117446 60-62 ----------11-12 ----------------16-18-------11749117534 61 ----------11 ----------------17-------117551176611 60-61 ----------11 ----------------16-17-------11766117759 68 -----------17---------------22 -------11776117793 82 ----------28 ----------------31-------11779117801 56 ----------7 ----------------12-------11780117811 75 ----------23 ----------------27-------700Hendry2411912 662Hendry1911651

PAGE 326

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11781117832 68 -----------17---------------22 -------11783117863 62 ----------12 ----------------18-------11788117913 56 ----------7 ----------------12-------117931181522 57-59 ----------7-9 ----------------12-14-------11818118268 62 ----------12 ----------------18-------11834118428 56 ----------7 ----------------12-------11848118557 55-59 ----------6-9 ----------------11-14-------11383113929 57-59 -----------7-9---------------12-14 -------11396114015 62 -----------12---------------18 -------11404114062 59 -----------9---------------14 -------11406114082 62 -----------12---------------18 -------11410114155 56-57 -----------7---------------12 -------11415114238 63-65 ----------13-15 ----------------19-20-------11423114252 57 -----------7---------------12 -------11425114283 61 ----------11 ----------------17-------11428114302 55 ----------6 ----------------11-------11430114333 59 -----------9---------------14 -------11433114363 62 -----------12---------------18 -------114361145317 68-69 -------17-18 ----------------22-23-------114531146613 58-59 ----------8-9 ----------------13-14-------11469114767 61-62 -------11-12 ----------------17-18-------114761148913 67-70 ----------16-19 ----------------21-24-------11489114945 62-64 ----------12-14 ----------------18-19-------114941150410 56-59 ----------7-9 ----------------12-14-------115041151713 62-66 ----------12-15 ----------------18-20-------11520115266 60 ----------11 -------------16-------115261153610 64-65 ----------14-15 ----------------19-20-------115361155418 55-59 ----------6-9 ----------------11-14-------11554115595 63 ----------13 ----------------19-------11559115645 54-57 ----------4-7 ----------------10-12-------115641157814 61-65 -----------11-15---------------17-20 -------11578115846 55-59 ----------6-9 ----------------11-14-------11584115884 61-63 -----------11-13---------------17-19 -------115881160012 55-57 -----------6-7---------------11-12 -------11603116063 61 -----------11---------------17 -------11606116093 59 -----------9---------------14 -------116091162112 56-59 -----------7-9---------------12-14 -------11566115748 59 ----------9 ----------------14-------11579115834 62 ----------12 ----------------18-------11588115924 58 ----------8 ----------------13-------11594115984 56 ----------7 ----------------12-------11602116119 66 -----------15---------------20 -------116141162713 56-59 ----------7-9 ----------------12-14-------11629116345 60 ----------11 ----------------16-------11636116393 59 ----------9 ----------------14-------11640116455 68 ----------17 ----------------22-------11645116494 72 ----------21 ----------------25-------702Hendry1911641

PAGE 327

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11649116512 68 -----------17---------------22 -------116511166716 69-71 ----------18-20 ----------------23-24-------11667116725 56 ----------7 ----------------12-------11672116753 62 ----------12 ----------------18-------116751168914 68-71 -----------17-20---------------22-24 -------11692116964 56-58 -----------7-8---------------12-13 -------117011171615 60-64 ----------11-14 ----------------16-19-------11716117182 55 ----------6 ----------------11-------11718117246 64 ----------14 ----------------19-------11724117262 55 ----------6 ----------------11-------117261173610 68-69 ----------17-18 ----------------22-23-------11736117382 60 ----------11 ----------------16-------11738117435 59 ----------9 ----------------14-------117441175915 61-62 ----------11-12 ----------------17-18-------11759117612 58 ----------8 ----------------13-------11761117698 66 ----------15 ----------------20-------117701178919 56-59 ----------7-9 ----------------12-14-------117931180411 61-63 ----------11-13 ----------------17-19-------11809118145 57 ----------7 ----------------12-------11826118348 57-59 ----------7-9 ----------------12-14-------11454114606 --2.7 ---1---------------10 -------------11480114844 --2.65 ---3---------------11 -------------11484114884 ---2.56-2.61---6-9---------------14-17 -------------11488114979 --2.37 --20 ----------------26-------------11497115025 --2.45 --15 ----------------22-------------11502115086 ---2.58-2.6--6-8 -------------14-15-------------11508115102 --2.49 --13 ----------------20-------------11510115177 --2.4 ---18---------------25 -------------11517115225 --2.47 --14 ----------------21-------------11522115264 --2.68 ---2---------------10 -------------11526115293 --2.55 ---10---------------16 -------------11529115334 --2.65 ---4---------------12 -------------11533115407 ---2.55-2.58---8-10---------------15-16 -------------11540115488 ---2.57-2.61---6-8---------------15-16 -------------11548115524 --2.64 --4 ----------------12-------------11552115575 --2.54 --10 ----------------18-------------11566115737 --2.55 --10 ----------------16-------------11458114657 --2.69 --2 ----------------10-------------11480114811 --2.68 --2 ----------------10-------------11481114854 --2.57 --8 ----------------16-------------11485114883 --2.64 ---4---------------12 -------------11488114946 ---2.56-2.6--6-9 ----------------14-17-------------11494114962 --2.63 --5 ----------------13-------------11496115004 --2.52 --11 ----------------19-------------11500115055 --2.34 ---21---------------28 -------------11505115083 ---2.43-2.44---16-17---------------23 -------------11508115135 ---2.38-2.39---18-19---------------25-26 -------------11513115152 --2.45 --15 ----------------22-------------904Hendry3411686 864Hendry2511864

PAGE 328

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11518115235 ---2.56-2.63--5-9 ----------------13-17-------------115231153714 ---2.37-2.44---16-20---------------23-26 -------------11537115403 ---2.65-2.66--3-4 ----------------11-12-------------115401155717 ---2.47-2.52--11-14 ----------------19-21-------------11557115592 --2.68 --2 ----------------10-------------11559115667 ---2.49-2.53--11-13 ----------------18-20-------------11566115715 ---2.64-2.68--2-4 ----------------10-12-------------11571115743 --2.6 --6 ----------------14-------------11578115857 ---2.64-2.68--2-4 ----------------10-12-------------11585115872 --2.58 --8 ----------------15-------------11587115925 ---2.53-2.55--10-11 ----------------16-18-------------11603116074 ---2.67-2.69--2-3 ----------------10-11-------------11609116123 --2.67 --3 ----------------11-------------11616116259 ---2.67-2.68--2-3 ----------------10-11-------------11627116314 ---2.66-2.67--3 ----------------11-------------11631116376 ---2.57-2.61---6-8---------------14-16 -------------116371164811 ---2.67-2.69--2-3 ----------------10-11-------------11650116533 --2.6 --6 ----------------14-------------11653116585 ---2.68-2.69--2 ----------------10-------------11661116676 ---2.65-2.69--2-4 ----------------10-12-------------11667116692 --2.61 --6 ----------------14-------------11669116723 ---2.63-2.64--4-5 ----------------12-13-------------11356113626 61 5 -2 -----5 11 -8 ---------17-------11362113642 56 3 -1 -----3 7 -5 ------12-------113661137610 62-668-11 -2-3 -----5-7 12-15 -10-12 ---------18-20-------11376113848 55-573-4 --1-2 -----2-3 6-7 -3-4 ---------11-12-------113861140014 54-572-6 -1-6 -----2-6 4-7 -2-6 ---------10-12-------11400114088 66 13 -11 -----12 15 -13 ---------20-------11412114197 62 9 -9 -----9 12 -10 ---------18-------114211143514 62-6612-14 -12-14 -----12-14 12-15 -11-13 ---------18-20-------11435114372 55 7 -7 -----7 6 -6 ---------11-------11437114392 64 14 -10 -----13 14 -12 ---------19-------114391145213 71 18-19 -18-19 -----18-19 20 -17 ---------24-------11452114597 54-5913-19 -3-4 --------4-9---------10-14 10-14 -9-13 --11459114645 66 25 -15 --------15---------20 20 --18---114651147712 55-5911-15 -7 --------6-9---------11-13 11-14 --9-11---11477114847 67-6824-27 -15-18 --------16-17---------21-23 21-22 --18-20---11484114884 61 16 -7 -----13 11 -12 ---------17-------11488114913 56 2 -2 -----2 7 -5 ---------12-------114941150410 56-59 7 -2 -----5 7-9 -6-8 ---------12-14-------11504115128 60-61 8 -2 -----5 11 -8-9 ---------16-17-------11512115142 59 6 -1 -----4 9 -7 ---------14-------115141153723 60-62 9 -3 -----7 11-12 -8-9 ---------16-18-------11537115447 54-592-7 -0-3 -----2-5 4-9 -2-8 ---------10-14-------11546 11553 7 60-63 6-12 -3-5 -----5-10 11-13 -8-10 ---------16-19-------11553115552 57 6 -5 -----6 7 -6 ---------12-------11557115592 55 3 -3 -----3 6 -3 ---------11-------115591157819 54-590-3 -0-3 -----0-3 4-9 -0-3 ------------10-14-------11449114567 62 15 -2 -----9 12 -14 ---------18-------114621147917 63-6618-21 -9-15 -----15-18 13-15 -16-17 ---------19-20-------11481114865 58 12 -4 -----8 8 -9 ---------13-------11488114946 62 10 -3 -----7 12 -10 ---------18-------114941150410 65 20 -14 -----17 15 -15 ---------20-------11504115095 68 20 -19 -----17 17 -16 ---------22-------951Hendry2912603 926Hendry3411705

PAGE 329

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 115091152112 74-7625-28 -21-22 -----23-26 22-23 -21-23 --------26-28-------115211153615 64 22 -7 -----14 14 -15 ---------19-------11536115382 59 15 -8 --------9---------12 14 -12 ---11538115402 63-6417-19 -9 -----14 13-14 -13-14 ---------19-------11540115433 70 22 -18 -----19 19 -18 ---------24-------11543115518 74 25 -21 -----22 22 -21 ---------26-------11551115609 63-6612-17 -10-12 -----11-14 13-15 -11-14 ---------19-20-------115601157010 64 15 -2 -----9 14 -13 ---------19-------11570115744 58-5910-11 -2-3 -----8-9 7-8 -8-9 ---------13-14-------115741159420 60-6410-16 --1-4 -----6-10 11-14 -10-13 ---------16-19-------11596 11612 16 60-65 11-19 -4-12 -----10-15 11-15 -10-14 ---------16-20-------116141162511 61-6513-14 -2-4 -----9-10 11-15 -10-13 ---------17-20-------11629116389 55-57 9 -3-4 -----7 6-7 -7 ---------11-12-------11640116466 62 13 -1 -----8 12 -11 ------------18-------11351113565 60 14 -5 -----10 11 -11 ---------16-------11356113593 56 12 -3 -----8 7 -9 ---------12-------113591137011 61-63 14 -5 -----10 11-13 -10-12 ---------17-19-------11380113855 57 17 -5 --------7------10-20 --11 12 -11 ---11385113949 57-5917-18 -6 --------7-9------10-20 --11-12 12-14 -11-12 ---11394113984 57 17 -5 --------7------10-20 --11 12 -11 ---11398114024 61 19 -9 -----11------10-20 --15 17 -13 ---11402114086 59 19 -9 --------9------10-20 --15 14 -13 ---11408114146 56 11 -9 -----10 7 -9 ---------12-------11414114217 69 21 -20 10-20 ---20 18 -18 ---------23-------11421114287 64 17-18 -14 -----16 14 -14 ---------19-------11428114346 -17 -13 -----15 -----------------------11434114439 -22 -18 -----19 -----------------------11443114518 -19-20 -4-6 5-10 ---------------------12-14 ---------114661148620 58 ----------8 ----------------13-------11489114967 61-63 ----------11-13 ----------------17-19-------114961150711 72 ----------21 ----------------25-------11354113628 55-595-9 -0-3 -----5-9 6-9 -6-9 ---------11-14-------11365113683 59 11 -2 -----7 9 -9 ------14-------11371113754 61 12 -5 -----10 11 -10 ---------17-------11377113825 57-588-10 -3-4 -----6-7 7-8 -7-8 ---------12-13-------11385113872 55 10 -6 -----7 6 -8 ---------11-------11387113936 56 15 -2 --------7---------11 12 -10 ---11402114108 55-56 16 -5 --------6-7---------11 11-12 -10-11 ---11419114223 64 14 -14 -----14 14 -13 ---------19-------11422114242 56 11 -8 -----9 7 -9 ---------12-------11424114339 62-6317-18 -12-13 -----15-16 12-13 -12-13 ---------18-19-------11433114352 58 13 -7 -----10 8 -9 ---------13-------114351145015 67-6920-22 -15-19 --------16-18---------19-20 21-23 -20-21 --11454 11459 5 -15 -9 -----13 -----------------------11461114665 -17-18 -4-11 -----14-19 -----------------------11466114737 -20-23 -18-19 -----20-21 -----------------------114731148613 -18 -11-15 -----15-17 ---------------------------113791140021 54-584-9 -1-6 -------------3-8 5-8 ---------------11401114054 64 21 -15 -------------19 19 ---------------11409114156 60-61 12 -12 -------------12 12 ---------------11417114225 60 12 -12 -------------12 12 ---------------11425114294 62 7 -1 -------------5 9 ---------------11429114367 60 9-12 -9-11 -------------9-12 10-11 ---------------1026Hendry3011696 1151Hendry3111492 1147Hendry3111545 1070Hendry3111462

PAGE 330

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11436114415 71 19 -17 -------------18 18 ---------------11441114443 64 14 -14 -------------14 13 ---------------11444114517 71-72 19 -18 -------------18 18 ---------------11451114554 63 14 -14 -------------14 12 ---------------11455114627 70 24 -21 -------------21 20 ---------------11463114696 61 11 -9 -------------10 10 ---------------11469114745 65 19 -10 ---------------------------1616 11474114806 69 19 -16 ---------------------------1717 11480114844 63 13 -11 -------------13 12 ---------------114841149511 60-6211-12 -13-14 -------------12 10-12 ---------------11495115027 66 18 -4 ---------------------------1415 115021152624 57-596-8 -0-1 ---------------------------6-86-8 115261153711 62-6410-11 -1-2 ---------------------------910-11 11537115414 54-55 6 -5 -------------5 5 ---------------11541115454 64 11 -10 -------------11 11 ------------115451155914 58 3 -1 -------------2 4 ---------------11570115744 62 9 -2 -------------------------------99 11470114755 62 ----------12 ------------18-------114751148914 57-59 ----------7-9 ------------12-14-------11489114967 65 ----------15 ------------20-------11496114993 57 ----------7 ------------12-------115071155548 65-70 ----------15-19 ------------20-24-------11555115649 59 ----------9 ------------14-------11564115706 61-65 ----------11-15 ------------17-20-------115701159121 64-65 -----------14-15-----------19-20 -------11591115965 59 -----------9-----------14 -------115961161620 58 -----------8-----------13 -------116261166640 61-64 ----------11-14 ------------17-19-------11668 11672 4 59 ---------9 ------------14-------11672116764 61 ----------11 ------------17-------11676116815 56 ----------7 ------------12-------11693116985 57 ----------7 ------------12-------11703117074 57-59 ----------7-9 ----------------12-14-------11415114216 57-58 ----------7-8 ------------12-13-------11421114265 68 -----------17-----------22 -------11426114282 62-64 -----------12-14-----------18-19 -------11428114313 59 ----------9 ------------14-------114311144413 60-65 ----------11-15 ------------16-20-------11447114481 61 ----------11 ------------17-------11448114502 79 -----------25-----------30 -------11450114522 87 -----------30-----------33 -------11452114575 61-66 -------11-15 ------------17-20-------11457114592 54 ----------4 ------------10-------114591147213 67-70 -----------16-19-----------21-24 -------114721148311 60-62 ----------11-12 ------------16-18-------11483114852 56 ----------7 ------------12-------11485114916 60-62 ----------11-12 ------------16-18-------11491114932 56 ----------7 ------------12-------11493114985 63 ----------13 ------------19-------11498115024 57 ----------7 ------------12-------11502115086 60-61 ----------11 ------------16-17-------11508115146 57-59 ----------7-9 ------------12-14-------115141152713 60-63 ----------11-13 ------------16-19-------11534115395 56 ----------7 ----------12 -------11540115411 70 -----------19-----------24 -------11542115486 58-59 ----------8-9 ------------13-14-------11556115659 58-59 ----------8-9 ------------13-14-------11565115672 60 ----------11 ------------16-------11567115692 58 ----------8 ------------13-------527Lee2811712 425Lee3011743 1292Hendry3011620

PAGE 331

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11569115723 60 ----------11 ------------16-------11572115786 58-59 ----------8-9 ------------13-14-------115781159416 60-63 ----------11-13 ------------16-19-------11596116048 57-59 ----------7-9 ------------12-14-------11628116324 61 ----------11 ----------------17-------11472114808 57-59 ----------7-9 ------------12-14-------11480114822 69 -----------18-----------23 -------114821150523 73-74 -----------22-----------26 -------115051151712 65-66 ----------15 ------------20-------11517115192 56 ----------7 ------------12-------115191153415 61-66 ----------11-15 ------------17-20-------11534115395 68 -----------17-----------22 -------11539115456 63-65 -----------13-15-----------19-20 -------11545115472 59 ----------9 ---------14-------115471156215 62-64 ----------12-14 ------------18-19-------11562115708 56-59 ----------7-9 ------------12-14-------11573115785 59 ----------9 ------------14-------11580115822 57 ----------7 ------------12-------11584115906 64 -----------14-----------19 -------11590115999 58 ----------8 ------------13-------11608116124 56-58 ----------7-8 ------------12-13-------116201165636 62-66 ----------12-15 ------------18-20-------11659116623 59 ----------9 ------------14-------11662116664 62 ----------12 ------------18-------11687116925 68 -----------17---------------22 -------11703117063 55 2 -----2 -6 -1 -----0--11-------11706 11710 4 64 22 -----22--22--------14 -19 -19 ---11710117144 54-59 15 ------15--4-9--------7 -10-14 -9-11 ---117141172410 67-6916-17 -----16-17 -16-18 -15-16 -----8-9--21-23-----11724117262 59 21 ------21--9------13 -14 -15 ---117261173812 73-7420-21 -----20-21 -22 -18-19 -----12-13--26-----11740117433 66 16 -----16 -15 -15 -----8--20-----11743117529 69-7118-21 -----18-21 -18-20 -18 -----10-13--23-24-----11752117564 63 9 -----9 -13 -10 -----3--19-----11756117615 68 17 -----17 -17 -17 ----922-----11761117676 60-6412-14 -----12-14 -11-14 -11-13 -----5-7--16-19-----11767117747 72 18-20 -----18-20 -21 -16-18 -----10-12--25-----117741180228 66-7116-18 -----16-18 -15-20 -14-16 -----8-10--20-24-----118021181513 60-6613-17 -----13-17 -11-15 -11-14 -----6-9--16-20-----11815118172 55 17 ------17--6--------9 -11 -10 ---11817118214 63 13 -----13 -13 -11 -----6--19-----118211183312 54-588-11 -----8-11 -4-8 -7 -----2-4--10-13-----11833118374 60 11 -----11 -11 -10 ----4-16-----11837118392 54 5 -----5 -4 -6 -----1--10-----11839118456 64 13-14 -----13-14 -14 -12-13 -----6-7--19-----11845118494 59 12 -----12 -9 -9 -----5--14-----11856118637 60 9 -----9 -11 -9 -----3--16-----11863118685 58-598-9 -----8-9 -8-9 -8-9 -----2-3--13-14-----118681189628 60-639-13 -----9-13 -11-13 -9-11 -----3-6--16-19-----11896118982 57 11 -----11 -7 -10 -----4--12----11903 11908 5 58 4-7 -----4-7 -8 -7-8 -----0.5-2--13-----11908119146 61 10 -----10 -11 -10 -----4--17-----11914119173 58 9 -----9 -8 -8 -----3--13-----11932119397 56-57 6 -----6 -7 -7 --------1--12-------11384113928 54 10-13 -8-11 --------4---------9-11 10 -8-9 ---11392114008 56 21 -12 --------7---------16 12 -14 ---11400114088 58 19 -16 --------8---------16 13 -14 ---114101142919 55 17 -15 --------6---------16 11 -10 ---11445114527 53 16 -6 --------4---------10 10 -10 --735 Lee 3112000 684Lee2911740

PAGE 332

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11452114564 53 21 -15 --------4---------19 10 -10 ---11456114615 72 35 -23 --------21---------30 25 -24 ---11461114643 66 21 -18 -----18 15 -15 ---------20-------114671148619 58 9 -9 -----9 8 -8 ---------13-------11486114926 53 12 -9 --------4---------10 10 -10 ---11572115819 56 17 -6 --------7-------------12 12 -12 ---116931170310 56-58 ----------7-8 ------------12-13-------11703117074 61 ----------11 ------------17-------11710117144 63 ----------13 ------------19-------11714117195 53-55 ----------4-6 ------------10-11-------11722117264 58 ----------8 ------------13-------11728117324 58 ----------8 ---------13-------11732117408 62-63 ----------12-13 ------------18-19-------11740117433 58 ----------8 ------------13-------11747117492 61 ----------11 ------------17-------11752117586 66 ----------15 ------------20-------11758117613 65 ----------15 ------------20-------11761117676 72-73 -----------21-22-----------25-26 -------11767117747 67-71 -----------16-20-----------21-24 -------11774117784 65-66 ----------15 ------------20-------11778117835 67-68 ----------16-17 --------------21-22-------11783117852 66 ----------15 ------------20-------11785117872 67 ----------16 --------------21-------117871180114 60-66 ----------11-15 --------------16-20-------11801118076 66-67 ----------15-16 -----------20-21-------118071181710 61-63 ----------11-13 --------------17-19-------11828118324 60 ----------11 ----------------16-------11663116718 56-58 ----------7-8 ------------12-13-------11671116754 61 ----------11 ------------17-------11679116834 61 ----------11 ------------17-------11683116918 55-57 ----------6-7 ------------11-12-------11693117018 58-59 ----------8-9 ------------13-14-------11701117054 54 ----------4 ------------10-------11705117138 61 ----------11 ------------17-------117211174423 69-70 -----------18-19-----------23-24 -------11744117539 63-65 ----------13-15 ------------19-20-------11753117596 67 -----------16-------------21 -------11759117678 61-65 ----------11-15 ------------17-20-------117711178615 62-66 ----------12-15 ----------------18-20-------11425 11434 9 55-59 10 -2-4 ----6-8 6-9 -7-9 ---------11-14-------11434114384 60 11 -4 -----10 11 -10 ---------16-------11441114443 62 13 -5 -----11 12 -11 ---------18-------11444114495 59 6 -1 -----5 9 -7 ---------14-------11452114597 54-56 14 -2 --------4-7---------9 10-12 -9-10 ---11459114645 61 18 -2 --------11----------10 17 -15 ---114641148319 69-7019-21 -18-19 -----18-20 18-19 -16-17 ---------23-24-------11487114914 59 10 -10 -----10 9 -9 ---------14-------11491114998 69-7021-22 -19-22 -----20-22 18-19 -17-18 ---------23-24-------11499115034 64-6517-18 -15-16 -----17 14-15 -15-17 ---------19-20-------11503 11509 6 68 18 -17 ----18 17 -16 ---------22-------115091151910 60-6315-16 -13 -----14-15 11-13 -11-13 ---------16-19-------11519115223 59 13 -9 -----11 9 -10 ---------14-------11522115319 68-6920-21 -16-19 -----18-20 17-18 -16-17 ---------22-23-------11531115376 72 23 -21 -----22 21 -19 ---------25-------11538115435 61 25 -12 --------11----------19 17 -15 ---11543115463 58 25 -10 --------8---------18 13 -17 ---115461155711 54-5619-22 -6-7 --------4-7---------13-15 10-12 -11-13 ---11557115614 68 25 -6 --------17---------16 22 -21 ---11561115654 66 23 -6 --------15---------16 20 -17 --758 Lee 2012601 1014Lee2311695 859Lee1911786 858Lee1911834

PAGE 333

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11565115738 54-594-13 -4-10 -----4-12 4-9 -4-8 ---------10-14-------115731159118 62-6315-17 -10-14 -----13-16 12-13 -12-13 ---------18-19-------115911160918 59 9-11 -2-4 -----6-9 9 -8-9 ---------14-------11609116145 60 12 -5 -----10 11 -10 ---------16-------11614116162 59 10 -3 -----8 9 -9 ---------14-------11616116193 60 12 -2 -----7 11 -9 ---------16-------11619116234 59 11 -2 -----7 9 -9 ---------14-------116231164118 60-6311-17 -1-4 --------11-13---------7-11 16-19 -11-15 ---11643116529 57 7-10 -3-4 -----6-7 7 -7-8 ---------12-------11669116745 59 10 -2 -----7 9 -9 ------------14-------113871140316 62-64 -----------12-14-------------18-19 ----114031141512 64-66 ----------14-15 --------------19-20-------11415114183 75 ----------23 --------------27-------11418114213 65-66 -----------15-------------20 -------11421114243 73 -----------22-------------26 -------11424114262 70 -----------19-------------24 -------11426114271 75-78 -----------23-24-------------27-29 -------11427114303 82 -----------28-------------31 -------11430114388 61-65 ----------11-15 --------------17-20-------11438114402 58 ----------8 --------------13-------114401146424 61-64 ----------11-14 --------------17-19-------11464114662 58 ----------8 --------------13-------11466114759 63 ----------13 --------------19-------114751150934 65-68 ----------15-17 --------------20-22-------11509115112 64 ----------14 --------------19-------11511115176 67 ----------16 --------------21-------11517115203 61 ----------11 --------------17-------115201153414 63-66 ----------13-15 -----------19-20-------11534115384 61-62 ----------11-12 --------------17-18-------11538115479 66-69 ----------15-18 --------------20-23-------11547115492 61 ----------11 --------------17-------11549115523 65 ----------15 --------------20-------11552115564 61 ----------11 --------------17-------115561156812 68 ----------17 --------------22-------11568115702 61 ----------11 --------------17-------115701158414 65-67 ----------15-16 --------------20-21-------11584115862 59 ----------9 --------------14-------11586115893 59 -----------9-------------14 -------11589115923 59 ----------9 --------------14-------11592115986 64 -----------14-------------19 -------11598116002 58 ----------8 --------------13-------11600116011 63 -----------13-------------19 -------11601116032 65 ----------15 --------------20-------116031161714 64-66 -----------14-15-------------19-20 -------11617116192 61 -----------11----------17 -------11619116256 65 ----------15 --------------20-------116251164621 60-62 -----------11-12---------------16-18 -------11333113352 54 ----------4 --------------10-------11335113416 62-63 ----------12-13 --------------18-19-------11341113465 56-59 ----------7-9 --------------12-14-------11346113504 67 ----------16 --------------21-------11350113588 62-64 ----------12-14 --------------18-19-------11358113602 55 ----------6 --------------11-------11360113644 67 ----------16 --------------21-------11364113717 62-66 ----------12-15 --------------18-20-------113711138312 67-70 -----------16-19-------------21-23 -------11383113852 59 ----------9 --------------14-------11385113949 60-66 ----------11-15 --------------16-20-------11394113973 55 ----------6 --------------11-------278Miami-Dade1011675

PAGE 334

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11397114047 57-59 ----------7-9 --------------12-14-------114071143730 64-66 ----------14-15 --------------19-20-------11437114403 55-56 ----------6-7 --------------11-12-------11440114433 62 ----------12 --------------18-------11443114485 57-59 ----------7-9 --------------12-14-------11448114546 63-65 ----------13-15 --------------19-20-------11454114617 54-56 ----------4-7 --------------10-12-------11461114665 73 -----------22-------------26 -------11466114704 65-66 -----------15-------------20 -------11470114722 54-55 ----------4-6 --------------10-11-------11472114764 63 ----------13 --------------19-------11476114793 59 ----------9 --------------14-------114791148910 60-66 ----------11-15 --------------16-20-------11489114912 58 ----------8 --------------13-------114911150211 63 ----------13 --------------19-------11502115086 54-55 ----------4-6 --------------10-11-------11508115157 62-64 ----------12-14 --------------18-19-------11517 11531 14 62-66 ---------12-15 --------------18-20-------11531115332 59 ----------9 --------------14-------11533115352 55 ----------6 --------------11-------11535115394 60 ----------11 --------------16-------11539115412 54 ----------4 --------------10-------11541115443 60 ----------11 --------------16-------11544115506 54-55 ----------4-6 --------------10-11-------11554115584 54-55 ----------4-6 ----------------10-11-------11365113672 60 ----------11 --------------16-------113671138619 63-65 ----------13-15 --------------19-20-------113861140317 72-77 ----------21-23 --------------25-28-------11403114085 61 ----------11 --------------17-------11408114113 59 ----------9 --------------14-------114191143112 64-66 ----------14-15 --------------19-20-------11431114365 67 ----------16 --------------21-------114361144812 64-65 ----------14-15 --------------19-20-------114481145911 56-59 ----------7-9 --------------12-14-------11459114678 65 --------15 --------------20-------11469114789 73 ----------22 --------------26-------11478114879 63-65 ----------13-15 --------------19-20-------114891149910 60 ----------11 --------------16-------11499115023 56 ----------7 --------------12-------11502115119 60 ----------11 --------------16-------115231153815 61-64 ----------11-14 ----------------17-19-------11681116832 61 -2.95 ---0----11-------5 ---17 3 -----11685116872 58 -2.95 ---0----8-------5 ---13 2 -----11694116962 63 -2.95 ---0----8-------5 ---19 3 -----11696116993 59 -2.95 ---0----8-------5 ---14 2 -----11699117023 60 -2.95 ---0----8-------5 ---16 3 -----11702117053 81 -2.52 ---11----27-------19 --31 22 ----11705117094 67 -2.46-2.48 --13-15 ---16 14-15 ------21-22----21-------11709117123 77 -2.52 --11 ---23 22 ------19----28-------11713117163 69 -2.63 ---5----18-------13 ---23 15 -----11716117171 77 -2.68 ---2----23-------10 ---28 15 -----11717117214 80-81 -2.65-2.67 ---3-4----26-27-------11-12 ---30-31 17 -----11721117265 65-66 -2.66-2.7 --1-3 ---15 14 ------9-11----20-------11726117282 75 -2.63 --5 ---18 17 ------13----27-------11728117335 60-66 -2.63-2.69 --2-5 ---11-15 5-7 ------10-13----16-20-------11733117363 59 -2.65 ---4----9-------12 ---14 12 ---11736 117426 61-64 -2.6-2.65 --4-6 ---11-14 10-12 ------10-12----17-19-------11742117453 55 -2.6-2.63 --4-5 ---6 5-6 ------10-13----11-------11745117516 77 -2.56 ---9----23-------17 ---28 19 -----376Miami-Dade911538 331Miami-Dade911615 564Monroe912662

PAGE 335

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Dolostone Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zone s True Bulk Density Density Porosity (d)Estimated Porosity Value (%) Limestone 11752117542 56 -2.5 --12 ---7 10 ------20----12-------11757117603 55 -2.55 --10 ---6 8 ------16----11-------11760117633 59 -2.54-2.57 --8-10 ---9 8-9 ------16-18----14-------11771117765 58 -2.64-2.68 ---2-4----8-------10-12 ---13 11-12 -----11778117868 58-59 -2.65-2.73 ---0-4----8-9-------8-12 ---13-14 11-12 -----11786117882 71 -2.72 ---0----20-------8 ---24 12 -----11788117902 80 -2.72 ---0----26-------8 ---30 15 -----11790117944 60-65 -2.55 --10 ---11-15 10-12 ------16----16-20-------11794117984 67-68 -2.37-2.44 --16-20 ---16-17 16-18 ------24-26----21-22-------11798118024 63 -2.46-2.51 --12-15 --13 12-14 -----19-22----19-------11802118108 56-59 -2.49-2.57 --8-13 ---7-9 8-10 ------16-20----12-14-------11811118143 63 -2.6-2.68 ---2-6----13-------10-14 ---19 12-14 -----11816118182 61 -2.85 ---0----11-------5 ---17 5 -----118181182810 56 -2.65-2.73 ---0-4----7---------5-12 ---12 8-9 -----114801149919 -9-14 -2-12 -----12-13 -------------------------11501115098 -14 -10 -----13 -------------------------115161154226 -12-14 -1-3 ---------------------10 ---------115541157319 -10-15 -10-14 -----10-15 -------------------------116191163920 -10-15 -2-15 -----10-15 ---------------------------Lithology determined using this method Lithology determined using another method Upper Porous Zone Middle Porous Zone Lower Porous Zone 754Monroe512865

PAGE 336

Appendix IV (Continued)Table IV-2: Porosity data for the CKLIZ. Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 48854893 8 68 -----------17---------------22 -------48994903 4 64 -----------14-------------19 -------49034910 7 73 -----------22-------------26 -------49104915 5 63-64 -----------13-14-------------19 -------49174921 4 58 -----------8-------------13 -------49214927 6 62-64 -----------12-14-------------18-19 -------4927495124 66-70 -----------15-19-------------20-24 -------49574960 3 68 -----------17-------------22 -------49604967 7 74 -----------22-------------26 -------49674975 8 66-71 -----------15-20-------------20-24 -------4975498914 73-78 -----------22-24-------------26-29 -------49894995 6 67-69 -----------16-18-------------21-23 ----49955001 6 73 -----------22-------------26 -------50095018 9 56-57 -----------7-------------12 -------50185027 9 77 -----------23-------------28 -------50275031 4 70 -----------19-------------24 -------5075508712 58-59 -----------8-9---------------13-14 -------50875089 2 61 -----------11-------------17 -------50915099 8 61 -----------11-------------17 -------50995103 4 66 -----------15-------------20 -------51035109 6 79 -----------25-------------30 -------51095117 8 80-86 -----------26-29-------------30-33 -------5117512710 70 -----------19-------------24 -------5127513912 63-66 -----------13-15-------------19-20 -------51415149 8 59 -----------9-------------14 -------51605169 9 72-75 -----------21-23-------------25-27 -------51695174 5 82 -----------28-------------31 -------5174519117 71-76 -----------20-23-------------24-28 -------5191520110 85-86 ----------29 -----------33-------52015205 4 92 -----------33-------------36 -------5205521712 74-79 -----------22-25-------------26-30 -------52175221 4 82 -----------28-------------31 -------5221524322 72-79 -----------21-25-------------25-30 -------5243525512 65-69 -----------15-18-------------20-23 -------52555261 6 63 -----------13-------------19 -------5261527413 74-75 -----------22-23-------------26-27 -------52745277 3 81 -----------27-------------30 -------52775281 4 74 -----------22-------------26 -------5281529110 80-81 -----------26-27-------------30-31 -------5296532428 72-76 -----------21-23-------------25-28 -------53245327 3 66 -----------15-------------20 -------53275333 6 82 -----------28-------------31 -------5333534916 71-77 -----------20-23-------------24-28 -------53495358 9 66-67 -----------15-16-------------20-21 -------53585365 7 73 -----------22-------------26 -------53675372 5 67 -----------16-------------21 -----5372539725 72-77 -----------21-23-------------25-28 -------53975402 5 68 ----------17 --------------22-------5402541715 72-75 -----------21-23-------------25-27 -------54175425 8 65 -----------15-------------20 -------54255431 6 73 -----------22-------------26 -------5431544110 67-69 -----------16-18-------------21-23 -------54415445 4 63 -----------13-------------19 -------5450546313 62-65 -----------12-15-------------18-20 -------54635468 5 68 -----------17-------------22 -------54715479 8 67-68 -----------11-15-------------16-20 -------54795483 4 74 -----------22-------------26 -------54835485 2 59 -----------9-------------14 -------54855492 7 64 -----------14-------------19 -------Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 1169Broward1211604 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)

PAGE 337

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 54925499 7 68-69 -----------17-18-------------22-23 -------54995501 2 61 ----------11 -------------17 -------55015509 8 66-71 -----------15-20-------------20-24 -------55095515 6 74 -----------22-------------26 -------55155517 2 57 -----------7-------------12 -------55175524 7 70-71 -----------19-20-------------24 -------55245527 3 73 -----------22-------------26 -------55275534 7 65-70 -----------15-19-------------20-24 -------55345537 3 58-59 -----------8-9-------------13-14 -------5537554811 66-69 -----------15-18-------------20-23 -------55485550 2 58 -----------8-------------13 -------5550557222 62-64 -----------12-14-------------18-19 -------55725577 5 76 -----------23-------------28 -------55775579 2 60 ----------11 --------------16-------55795583 4 66-67 ----------15-16 --------------20-21-------55835589 6 73 ----------22 ----------------26-------49064911 5 73 -2.43 ---17----22---------23 ---26 22 ---4911 4915 4 67 -2.49 ---13----16---------20 ---21 19 -----49314938 7 76 -2.32 --23 ---23 22 --------29----28-------49384945 7 65-69 -2.57 ---8----15-18---------16 ---20-23 15-17 -----49454948 3 62-64 -2.63 ---5----12-14---------13 ---18-19 13 -----49544958 4 61-62 -2.53 --11 ---11-12 11 --------18----17-18-------49584962 4 69-70 -2.41 --18 ---18-19 17 --------25----23-24-------49624965 3 64 -2.64 ---4----14---------12 ---19 13 -----49664970 4 68-70 -2.41 --18 ---17-19 17 --------25----22-24-------49704974 4 63-66 -2.53 ---11----13-15---------18 ---19-20 17-18 -----49744979 5 74 -2.4 --18 ---22 18 --------25----26-------49794987 8 74 -2.49 ---13----22---------20 ---26 21 -----49874993 6 76-78 -2.29 ---24----23-24---------31 ---28-29 27-28 -----49934997 4 65-67 -2.51 ---12----15-16---------19 ---20-21 17-18 -----49975002 5 60-64 -2.53 --11 ---11-14 10-15 --------18----16-19-------50025010 8 73-76 --2.32-2.36---20-23----22-23---------27-29 --26-28 25-26 ---50105018 8 80-82 -2.25 --27 ---26-28 26 --------33----30-31-------50185022 4 73 -2.41 ---18----22---------25 ---26 24 -----50225024 2 69 -2.47 ---14----18---------21 ---23 20 -----50245029 5 74 -2.33 ---22----22---------29 ---26 25 -----50295033 4 67 -2.45 ---15----16---------22 ---21 20 -----50385042 4 65-67 -2.51 ---12----15-16---------19 ---20-21 17-18 -----50425049 7 76-79 -2.38 ---19----23-25---------26 ---28-30 25-26 -----50495053 4 82 -2.20 --29 ---28 28 --------35----31-------50535061 8 79 -2.33 ---22----25---------29 ---30 28 -----5061507514 72-77 --2.36-2.42--17-20 ---21-23 17-20 --------24-27----25-28-------5075508510 66-71 --2.37-2.42---17-20----15-20---------24-26 ---20-24 20-24 -----50935101 8 71 -2.39 ---18----20---------25 ---24 24 -----5101512322 60-64 --2.5-2.55---10-12----11-14---------17-20 ---16-19 15-18 -----5131514918 62-65 --2.45-2.52---11-15----12-15---------19-22 ---18-20 16-20 ---5164 5173 9 60-62 -2.52 --11 ---11-12 10-11 --------19----16-18-------51815185 4 57 -2.67 ---3----7---------11 ---12 11 -----5185519712 60-61 --2.58-2.61---6-8----11---------14-15 ---16-17 13-14 -----52005205 5 60-62 -2.53 --11 ---11-12 11 --------18----16-18-------5205521914 54-59 --2.56-2.59--7-9 ---4-9 6-8 --------15-16----10-14-------52195227 8 63 -2.58 ---8----13---------15 ---19 15 -----52375241 4 67 -2.45 ---15----16---------22 ---21 20 -----5241525110 61-65 --2.54-2.56---9-10----11-15---------16-18 ---17-20 15-17 -----5259527314 62-66 --2.58-2.6---6-8----12-15---------14-15 ---18-20 13-15 -----5293530310 62-66 --2.56-2.59---7-9----12-15---------15-16 ---18-20 15-16 -----5303531310 72 --2.39-2.43---17-18----21---------23-25 ---25 22-23 -----53135318 5 80 -2.30 ---24----26---------30 ---30 29 -----5318535941 72-79 --2.33-2.38---19-22----21-25---------26-29 ---25-30 24-28 -----310Charlotte2612459

PAGE 338

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 53595364 5 68-71 -2.44 --16 ---17-20 15-16 --------23----22-24-------53645370 6 80 -2.33 ---22----26---------29 ---30 28 -----5370538111 75 --2.34-2.36---20-21----23---------27-28 ---27 26 -----5383539411 72-76 --2.33-2.34--21-22 ---21-23 20-21 --------28-29----25-28-------53965403 7 72-76 -2.25 --27 ---21-23 22-24 --------33----25-28-------54035409 6 69-71 -2.36 --20 ---18-20 18-19 --------27----23-24-------54095413 4 61-64 -2.49 --13 ---11-14 11-12 --------20----17-19-------5430544111 64-66 -2.46 ---15----14-15---------22 ---19-20 19-20 -----54615470 9 59 -2.63 ---5----9---------13 ---14 12 -----54725479 7 57-58 --2.64-2.66---4----7-8---------12 ---12-13 11-12 -----5482549210 61-66 --2.48-2.53--11-13 ---11-15 11-14 --------18-21----17-20-------54925497 5 61 -2.66 ---3----11---------11 ---17 12 -----54995508 9 61-65 --2.48-2.51--12-13 ---11-15 11-13 --------19-21----17-20-------55105519 9 66-70 --2.43-2.49---13-17----15-19---------20-23 ---20-24 19-21 -----55195524 5 64 -2.49 --13 ---14 13 -----20----19-------5526554317 61-64 --2.43-2.49--13-17 ---11-14 11-14 --------20-23----17-19-------48624869 7 66-67 -----------15-16-------------20-21 -------48694872 3 63 -----------13-------------19 -------4872488311 67-70 -----------16-19-------------21-24 -------48944899 5 67-70 -----------16-19-------------21-24 -------4899491516 71-79 -----------20-25-------------24-30 -------49154919 4 68-70 -----------17-19-------------22-24 -------49194922 3 63 -----------13-------------19 -------49224925 3 58 -----------8-------------13 -------49334940 7 60-66 -----------11-15-------------16-20 -------49404943 3 57 -----------7-------------12 -------49434946 3 65 -----------15-------------20 -------49464953 7 74-78 -----------22-24-------------26-29 -------49574961 4 66 -----------15-------------20 -------4961497514 71-73 -----------20-22-------------24-26 -------49754978 3 68 -----------17-------------22 -------4978500123 71-79 --------20-25-------------24-30 -------50015007 6 63-66 -----------13-15-------------19-20 -------50155020 5 80 -----------26-------------30 -------5020503010 73-79 -----------22-25-------------26-30 -------50305034 4 80 -----------26-------------30 -------5034504410 71-77 -----------20-23-------------24-28 -------50445046 2 64 -----------14-------------19 -------5046505812 71-74 -----------20-22-------------24-26 -------50685074 6 63 -----------13-------------19 -------5078508810 71 -----------20-------------24 -------5091510817 62-66 -----------12-15-------------18-20 -------5119513314 61-63 -----------11-13-------------17-19 -------51515158 7 61-66 -----------11-15-------------17-20 -------5171518514 61-64 -----------11-14-------------17-19 -------5188521325 60-66 -----------11-15-------------16-20 -------52315239 8 60-64 -----------11-14-------------16-19 -------52395243 4 59 -----------9-------------14 -------5247 5258 11 62-66 ----------12-15-------------18-20 -------52715277 6 73 -----------22-------------26 -------52775281 4 68-69 -----------17-18-------------22-23 -------52815285 4 65 -----------15-------------20 -------5285535368 71-79 -----------20-25-------------24-30 -------5355538025 74-79 -----------22-25-------------26-30 -------53805384 4 64 -----------14-------------19 -------53845391 7 77 -----------23-------------28 -------5402541311 62-66 -----------12-15-------------18-20 -------54135417 4 57 -----------7-------------12 -------54235429 6 55-57 -----------6-7-------------11-12 -------472Charlotte2913000

PAGE 339

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 54335437 4 59 -----------9-------------14 -------54445448 4 59 -----------9-------------14 -------54515456 5 68 -----------17-------------22 -------54565461 5 75 -----------23-------------27 -------54615469 8 65-68 -----------15-17-------------20-22 -------5472548311 65-71 -----------15-20-------------20-24 -------5483549512 61-65 -----------11-15-------------17-20 -------54995503 4 63 -----------13-------------19 -------55035507 4 71 -----------20-------------24 -------5507551710 62-66 -----------12-15-------------18-20 -------55295538 9 67-68 -----------16-17-------------21-22 -------55385547 9 78 -----------24-------------29 -------55475550 3 69 -----------18-------------23 -------55505559 9 74-76 -----------22-23-------------26-28 -------55595564 5 82-83 -----------28-------------31-32 -------5564558218 76-79 -----------23-25-------------28-30 -------5582560321 79-84 -----------25-29-------------30-32 -------5603 5607 4 73-75 ---------22-23-------------26-27 -------5607565649 76-88 -----------28-30-------------32-33 -------56565659 3 56-57 -----------7-------------12 -------56595668 9 73-77 -----------22-23-------------26-28 -------5676568913 88-89 -----------30-31-------------33-34 -------5689570516 73-79 -----------22-25-------------26-30 -------57055710 5 60-64 -----------11-14-------------16-19 -------57105719 9 69 -----------18-------------23 -------5720573313 72-76 -----------21-23-------------25-28 -------57355743 8 79 -----------25---------------30 -------4719473617 ---2.45-2.5---12-15--------------20-22-------------47434750 7 --2.25 ---27--------------33-------------47504754 4 --2.37 ---20--------------26-------------47544759 5 --2.5 ---12--------------20-------------47654769 4 --2.27 ---25--------------31-------------4769478516 ---2.36-2.41---18-20--------------25-27-------------47854788 3 --2.27 ---25--------------31-------------47884791 3 --2.33 ---22--------------29-------------47914794 3 --2.6 ---6--------------14-------------48004808 8 ---2.35-2.36---20-21--------------27-28-------------4808482214 ---2.39-2.45---15-18-------------22-25 ------------4822483816 ---2.22-2.29---24-28--------------31-34-------------48384841 3 --2.18 ---31--------------37-------------48414844 3 ---2.24-2.28---25-27--------------31-33-------------4844486117 ---2.12-2.19---30-35--------------36-40-------------48614863 2 --2.32 ---23--------------29-------------48634870 7 ---2.22-2.27---25-28--------------31-34-------------48704876 6 ---2.41-2.47---14-18--------------21-25-------------48764881 5 ---2.26-2.29---24-26--------------31-32-------------4881490019 ---2.11-2.18---31-35--------------37-40-------------4900491515 --2.2-2.3 ---24-29--------------30-35-------------49154923 8 ---2.3-2.34---21-24--------------28-30-------------4923494825 ---2.43-2.5---12-17--------------20-23-------------4953497522 ---2.39-2.48---13-18--------------21-25-------------4984499713 ---2.54-2.57---8-10--------------15-18-------------5003503229 ---2.5-2.59---7-12--------------15-20-------------50325039 7 --2.45 ---15--------------22-------------50395045 6 --2.66 ---3--------------11-------------5051506615 ---2.33-2.39---18-22--------------25-29-------------5066508216 ---2.39-2.48---13-18--------------21-25-------------50865088 2 --2.64 ---4--------------12-------------50965099 3 --2.68 ---2--------------10--------------

PAGE 340

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 50995105 6 --2.45 ---15--------------22-------------51055110 5 ---2.54-2.56---9-10--------------16-18-------------51105115 5 ---2.36-2.37---20--------------26-27-------------5115516853 --2.2-2.3 ---24-29--------------30-35-------------5168518012 ---2.31-2.37---20-23--------------26-29-------------5180520121 ---2.2-2.28---25-29--------------30-35-------------52015209 8 --2.35 ---21--------------28-------------5219523213 ---2.39-2.5---12-18--------------20-25-------------52345238 4 --2.68 ---2--------------10-------------5265527914 ---2.3-2.38---19-24--------------26-30-------------52795285 6 ---2.43-2.44---16-17--------------23-------------52855288 3 --2.66 ---3--------------11-------------52885297 9 ---2.4-2.48---13-18--------------21-25-------------52975303 6 ---2.52-2.54---10-11--------------18-19-------------53035306 3 ---2.39-2.43---17-18--------------23-25-------------5306532115 ---2.3-2.36---20-24--------------27-30-------------53215325 4 --2.48 ---13--------------21-------------5325533712 ---2.33-2.36---20-22--------------27-29-------------53465352 6 --2.42 ---17--------------24-------------5352537321 ---2.3-2.41---18-24--------------25-30-------------5373538310 ---2.39-2.48---13-18--------------21-25-------------5383542441 ---2.32-2.41---18-23--------------25-29-------------5424544521 ---2.12-2.18---31-35--------------37-40-------------5445547126 ---2.2-2.25---27-29--------------33-35-------------5471548918 ---2.12-2.15---33-35--------------38-40-------------54895492 3 --2.37 ---20-------------26------------54925496 4 --2.58 ---8--------------15-------------54965499 3 --2.53 ---11--------------18-------------54995502 3 --2.63 ---5--------------13-------------5507552013 ---2.31-2.38---19-23--------------26-29-------------55205524 4 ---2.46-2.49---13-15--------------20-22-------------55245525 1 --2.37 ---20--------------26-------------55255528 3 --2.24 ---27--------------33-------------55285531 3 --2.18 ---31--------------37-------------55315535 4 --2.23 ---28--------------34-------------55355538 3 --2.39 ---18--------------25-------------5538555315 ---2.17-2.19---30-32--------------36-38-------------55535558 5 ---2.41-2.43---17-18--------------23-25-------------55585562 4 --2.35 ---21--------------28-------------5562559432 ---2.39-2.5---12-18--------------20-25-------------5594560511 ---2.57-2.59---7-8----------------15-16-------------4986499711 65-70 --2.42-2.47--14-17 ---15-19 14-16 --------21-24----20-24-------49995007 8 56-58 --2.62-2.66---3-5----7-8---------11-13 ---12-13 11-12 -----50125018 6 72 -2.39 --18 ---21 18 --------25----25-------5018503214 66-68 --2.43-2.47--14-17 ---15-17 14-16 --------21-23----20-22-------50325039 7 74 -2.32 --23 ---22 21 --------29----26-------50395047 8 68-71 --2.39-2.47---14-18----17-20---------21-25 ---22-24 20-23 ---5047 5055 8 67 --2.47-2.5---12-14----16---------20-21 ---20 20 -----50555062 7 73-74 --2.33-2.38--19-22 ---22 19-20 --------26-29----26-------50625071 9 66-68 --2.47-2.49--13-14 ---15-17 13-14 --------20-21----20-22-------5071508413 72-75 --2.37-2.39---18-20----21-23---------25-26 ---25-27 23-25 -----50845087 3 65 -2.63 ---5----15---------13 ---20 14 -----5087510114 74-78 --2.28-2.36---20-25----22-24---------27-31 ---26-29 25-29 -----5101511110 67-71 --2.4-2.45---15-18----16-20---------22-25 ---21-24 20-23 -----51115115 4 61 --2.55-2.56---9-10----11---------16-17 ---17 15-16 -----51175121 4 70 -2.37 ---20----19---------26 ---24 24 -----5121513716 75-79 --2.23-2.28---25-28----23-25---------31-34 ---27-30 27-30 -----5137514710 81-82 --2.24-2.27---25-27----27-28---------31-33 ---30 29-30 -----51475149 2 74 -2.38 ---19----22---------26 ---26 24 -----475Charlotte4013236

PAGE 341

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 51495158 9 71-77 --2.33-2.38---19-22----20-23---------26-29 ---24-28 23-27 -----51585164 6 69 -2.42 ---17----18---------24 ---23 22 -----5198521719 61-63 --2.5-2.59---7-12----11-13---------15-20 ---17-19 14-17 -----5228524113 60 -2.54 --10 ---11 10 --------18----16-------5251526413 61 --2.55-2.56--9-10 ---11 9-10 --------16-17----17-------5264528218 56-59 --2.54-2.59---7-10----7-9---------15-18 ---12-14 12-15 -----5282529311 60-63 --2.49-2.53---11-13----11-13---------18-20 ---16-19 15-17 -----5296532125 60-62 --2.52-2.58--8-11 ---11-12 8-11 --------15-19----16-18-------53215326 5 59 -2.6 ---6----9---------14 ---14 13 -----53265333 7 57 -2.58 ---8----7---------15 ---12 13 -----53525358 6 58 -2.64 ---4----8---------12 ---13 11 -----5358538325 70-72 --2.36-2.4--18-20 ---19-21 17-19 --------25-27----24-25-------5383539411 65-66 --2.44-2.49--13-16 ---15 13-15 --------20-23----20-------53945401 7 68 --2.39-2.4--18 ---17 17 --------25----22-------5401541110 73-74 --2.32-2.33---22-23----22---------29 ---26 25-26 ---5411 5415 4 68 -2.41 --18 ---17 16 --------25----22-------54155419 4 73 -2.42 ---17----22---------24 ---26 23 -----5421543817 71-75 --2.33-2.41---18-22----20-23---------25-29 ---24-27 22-26 -----5438545012 66-69 --2.43-2.46--15-17 ---15-18 14-16 --------22-23----20-23-------54645469 5 59 -2.59 ---7----9---------15 ---14 13 -----54695475 6 65 -2.49 ---13----15---------20 ---20 19 -----55145519 5 62 -2.54 --10 ---12 10 --------18----18-------55195525 6 68 -2.45 --15 ---17 15 --------22----22-------55255527 2 61 -2.56 ---9----11---------16 ---17 15 -----55275533 6 63 -2.46 ---15----13---------22 ---19 18 -----55375546 9 62-63 --2.5-2.56---9-12----12-13---------16-20 ---18-19 15-17 -----5548558537 60-65 --2.49-2.58---8-13----11-15---------15-20 ---16-20 14-18 -----48174825 8 59 -----------9-------------14 -------48274829 2 61 -----------11-------------17 -------48294832 3 76 -----------23----------28 -------48324840 8 80-84 -----------26-29-------------30-32 -------48404849 9 54-58 -----------4-8-------------10-13 -------48494853 4 85 -----------29-------------33 -------48534856 3 82 -----------28-------------31 -------4856485992 92 -----------33-------------36 -------48594862 3 77 -----------23-------------28 -------48624865 3 64 -----------14-------------19 -------48654867 2 56 -----------7-------------12 -------48674873 6 87 -----------30-------------33 -------48734879 6 73-79 -----------22-25-------------26-30 -------48794887 8 81-85 -----------27-29-------------31-33 -------48874893 6 61-66 -----------11-15-------------17-20 -------48934897 4 77 -----------23-------------28 -------48974900 3 83 -----------28-------------32 -------49004905 5 79 -----------25-------------30 -------49054912 7 67-71 -----------16-20-------------21-24 -------49124916 4 74 --------22-------------26 -------4919493314 63-65 -----------13-15-------------19-20 -------49334937 4 68-71 -----------17-20-------------22-24 -------49374939 2 65 -----------15-------------20 -------49394942 3 60 -----------11-------------16 -------49614965 4 62 -----------12-------------18 -------49654966 1 55 -----------6-------------11 -------4972498412 61-66 -----------11-15-------------17-20 -------4999501314 65-70 -----------15-19-------------20-24 -------50195021 2 59 -----------9-------------14 -------5021503110 61-64 -----------11-14-------------17-19 -------5031504211 67-69 -----------16-18-------------21-23 -------50425046 4 62 -----------12-------------18 -------683Charlotte2511500

PAGE 342

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 50465048 2 58 -----------8-------------13 -------50765080 4 62 -----------12-------------18 -------50855093 8 54-56 -----------4-7-------------10-12 -------50955102 7 80-81 -----------26-27-------------30-31 -------51025109 7 77-79 -----------23-25-------------28-30 -------51095117 8 63-65 -----------13-15-------------19-20 -------51175119 2 59 ----------9 --------------14-------5119512910 63-66 ----------13-15 --------------19-20-------5129514213 72-74 ----------21-22 --------------25-26-------51425145 3 66 ----------15 --------------20-------5145515813 73-76 -----------22-23-------------26-28 -------5158517315 65-68 -----------15-17-------------20-22 -------5187519710 66-71 ----------15-20 --------------20-24-------51975201 4 64 ----------14 --------------19-------5201521918 67-71 -----------16-20-------------21-24 -------52195225 6 72 -----------21-------------25 -------52255231 6 67-70 -----------16-19-------------21-24 -------5231 5236 5 61-63 ---------11-13-------------17-19 -------52435249 6 60-62 -----------11-12-------------16-18 -------52495253 4 55-56 -----------6-7-------------11-12 -------52535258 5 61-63 -----------11-13-------------17-19 -------52585263 5 54-56 -----------4-7-------------10-12 -------52715276 5 61 -----------11-------------17 -------52765279 3 57 -----------7-------------12 -------52835285 2 58 -----------8-------------13 -------5285529712 60-63 -----------11-13-------------16-19 -------52975299 2 57 -----------7-------------12 -------5299531314 60-65 -----------11-15-------------16-20 -------53135315 2 58 -----------8-------------13 -------53155321 6 68-70 -----------17-19-------------22-24 -------53215323 2 73 -----------22-------------26 -------53235325 2 61 -----------11-------------17 -------53255328 3 74 -----------22-------------26 -------53285334 6 67-71 -----------16-20-------------21-24 ----53345336 2 63 -----------13-------------19 -------53365339 3 69 -----------18-------------23 -------53395341 2 64 -----------14-------------19 -------5359536910 75-79 -----------23-25-------------27-30 -------53745377 3 54 -----------4-------------10 -------5377538811 71-74 -----------20-22-------------24-26 -------53885392 4 54-57 -----------4-7-------------10-12 -------53925395 3 73 -----------22-------------26 -------53955401 6 62-64 -----------12-14-------------18-19 -------54015406 5 74-75 -----------22-23-------------26-27 -------54095411 2 68 -----------17-------------22 -------54115415 4 80 -----------26-------------30 -------54155419 4 54-55 -----------4-6-------------10-11 -------54215425 4 65 -----------15-------------20 -------54255432 7 84 -----------29-------------32 -------54325437 5 76-77 -----------23-------------28 -------54395441 2 72 -----------21-------------25 ----5441546928 80-90 -----------26-32-------------30-35 -------54695477 8 74-76 -----------22-23-------------26-28 -------54775483 6 82 -----------28---------------31 -------49384946 8 74-76 -----------22-23-------------26-28 -------49464951 5 56 -----------7-------------12 -------49514955 4 70 -----------19-------------24 -------49554961 6 72 -----------21-------------25 -------49634967 4 56 -----------7-------------12 -------311Collier1711695

PAGE 343

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 49674972 5 62-64 -----------12-14-------------18-19 -------49724977 5 89 -----------31-------------34 -------4984499410 72-74 -----------21-22-------------25-26 -------49944996 2 62 -----------12-------------18 -------4996501216 71-75 -----------20-23-------------24-27 -------50155018 3 68 -----------17-------------22 -------50185024 6 73 -----------22-------------26 -------50245033 9 62-64 -----------12-14-------------18-19 -------50375042 5 60 -----------11-------------16 -------50425045 3 80 -----------26-------------30 -------50455048 3 62 -----------12-------------18 -------50505054 4 62 -----------12-------------18 -------50545063 9 57-58 -----------7-8-------------12-13 -------50655071 6 58-59 -----------8-9-------------13-14 -------50865089 3 55 -----------6-------------11 -------5089509910 60-64 -----------11-14-------------16-19 -------5107511912 66-67 ----------15-16 --------------20-21-------5121 5123 2 95 --------34 --------------37-------51255127 2 68 ----------17 --------------22-------51365138 2 95 ----------34 --------------37-------51395143 4 65 ----------15 --------------20-------51435146 3 95 ----------34 --------------37-------51505155 5 62 ----------12 --------------18-------51645168 4 92 -----------33-------------36 -------51705173 3 58 -----------8-------------13 -------51735177 4 62-63 -----------12-13-------------18-19 -------51995207 8 87 ----------30 --------------33-------52235231 8 61-66 ----------11-13 --------------17-19-------5237526427 62-66 -----------12-15-------------18-20 -------52645268 4 68 -----------17-------------22 -------5268529224 71-76 -----------20-23-------------24-28 -------52925295 3 64 -----------14-------------19 -------52955298 3 73 -----------22-------------26 -------52985301 3 66 -----------15-------------20 ----5301531312 72-79 -----------21-25-------------25-30 -------53135319 6 63-64 ----------13-14 --------------19-------5323533310 94-97 ----------34 --------------37-38-------53335338 5 66-67 ----------15-16 --------------20-21-------53385341 3 61-64 ----------11-14 --------------17-19-------53415344 3 68 ----------17 --------------22-------53475355 8 69-71 ----------18-20 --------------23-24-------53555357 2 57 ----------7 --------------12-------53575364 7 70 ----------19 --------------24-------5385540116 60-64 ----------11-14 --------------16-19-------54015404 3 58 -----------8-------------13 -------5443546118 71-77 -----------20-23-------------24-28 -------5461547615 67-71 -----------16-20-------------21-24 -------54785484 6 67-70 -----------18-20-------------23-24 -------54845486 2 63 -----------13-------------19 -------54865489 3 73 -----------22-------------26 -------5489550112 79-85 -----------25-30-------------29-33 ----55015503 2 61 -----------11-------------17 -------55035512 9 68-71 -----------17-20-------------22-24 -------55125514 2 56 -----------7-------------12 -------55145519 5 74 -----------22-------------26 -------5527554013 55-57 -----------6-7-------------11-12 -------55405544 4 62 -----------12-------------18 -------5544555410 76 -----------23-------------28 -------55585564 6 78 -----------24-------------29 -------319ACollier3811495

PAGE 344

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 55675572 5 76 -----------23-------------28 -------55725579 7 55-58 -----------6-8-------------11-13 -------55815586 5 76 -----------23-------------28 -------55865591 5 67-68 -----------16-17-------------21-22 -------55915595 4 73 -----------22-------------26 -------55955599 4 68-69 -----------17-18-------------22-23 -------55995602 3 77 -----------23-------------28 -------56025607 5 82 -----------28-------------31 -------5607561912 69-71 -----------18-20-------------23-24 -------56195625 6 76 -----------23---------------28 -------48654868 3 56 -----------7-------------12 -------48684874 6 62-65 -----------12-15-------------18-20 -------48784881 3 62 -----------12-------------18 -------48814885 4 71 -----------20-------------24 -------48854889 4 60 -----------11-------------16 -------48954904 9 67-70 -----------16-19-------------21-24 -------49044906 2 74 -----------22-------------26 -------49064910 4 65 -----------15----------20 -------49144920 6 81 -----------27-------------31 -------49204927 7 79 -----------25-------------30 -------49274930 3 71 -----------20-------------24 -------4930494717 75-79 -----------23-25-------------27-30 -------49474951 4 68-71 -----------17-20-------------21-24 -------49514956 5 75 -----------23-------------27 -------49564957 1 61 -----------11-------------17 -------49574963 6 72 -----------21-------------25 -------49634967 4 57-59 -----------7-9-------------12-14 -------4967498316 62-66 -----------12-15-------------18-20 -------50025010 8 60-61 -----------11-------------16-17 -------50155022 7 57-59 -----------7-9-------------12-14 -------5022503210 62-63 -----------12-13-------------18-19 -------50475050 3 59 -----------9-------------14 -------50505058 8 61-62 -----------11-12-------------17-18 -------50585061 3 59 -----------9-------------14 -------50695074 5 60 --------11-------------16 -------50775081 4 59 -----------9-------------14 -------50865090 4 63 -----------13-------------19 -------50905095 5 58-59 -----------8-9-------------13-14 -------51415148 7 62-65 -----------12-15-------------18-20 -------5152518129 68-71 -----------17-20-------------22-24 -------5181519413 73-75 -----------22-23-------------26-27 -------51945198 4 71 -----------20-------------24 -------51985201 3 73 -----------22-------------26 -------52015206 5 65-71 -----------15-20-------------20-24 -------52065209 3 74 -----------22-------------26 -------52095215 6 67-71 -----------16-20-------------21-24 -------52155220 5 74 -----------22-------------26 -------52205226 6 70 -----------19-------------24 -------5236524610 71-73 -----------20-22-------------24-26 -------52465248 2 66 -----------15-------------20 -------5248527527 73-79 -----------22-25-------------26-30 -------5277 5282 5 63 ---------13-------------19 -------52895295 6 62 -----------12-------------18 -------52955298 3 79-82 -----------25-28-------------30-31 -------52985302 4 62 -----------12-------------18 -------53075313 6 58-59 -----------8-9-------------13-14 -------53135316 3 61 -----------11-------------17 -------53565361 5 56-58 -----------7-8-------------12-13 -------53615369 8 63 -----------13-------------19 -------401Collier2411987

PAGE 345

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 53695375 6 72 -----------21-------------25 -------53755378 3 59 -----------9-------------14 -------53785386 8 66-71 -----------15-20-------------20-24 -------53865390 4 73 -----------22-------------26 -------53905394 4 62-64 -----------12-14-------------18-19 -------53945396 2 59 -----------9-------------14 -------53965399 3 62 -----------12-------------18 -------5402542018 66-71 -----------15-20-------------20-24 -------5438544810 74-77 -----------22-23-------------26-28 -------54545461 7 81 -----------27-------------31 -------54645469 5 57 -----------7-------------12 -------54745477 3 56 -----------7-------------12 -------54815483 2 58-59 -----------8-9-------------13-14 -------54835488 5 98-100-----------34-35-------------38-39 -------5488549911 67-71 -----------16-20-------------21-24 -------5499551112 90 -----------32-------------35 -------55115519 8 81-84 -----------27-29-------------31-32 -------5519 5526 7 70-71 ---------19-20-------------24 -------55265533 7 83 -----------28-------------32 -------55335537 4 57 -----------7-------------12 -------55405545 5 64 -----------14---------------19 -------46984705 7 66 30 -11 --------15------------23 20 -20 ---47074711 4 56 17 -1 --------7------------12 12 -11 ---4711472312 70-71 42 -19-20 --------19-20------------32 24 -25 ---4729474213 72-75 48 -22-24 --------21-23------------36-37 25-27 -28-29 ---4742475715 68-7134-43 -15-17 --------17-20------------26-32 22-24 -22-26 ---47764785 9 72-7341-42 -18-19 --------21-22------------31 25-26 -26 ---47854789 4 71 40 -13 --------20------------29 24 -25 ---4789480920 73-7743-48 -18-24 --------22-23------------32-36 26-28 -27-31 ---48094813 4 69 37 -16 --------18------------28 23 -24 ---48134821 8 62 28-31 -10-13 --------12------------21-24 18 -17-19 --4823 4829 6 57-59 23-25 -6-7 --------7-9------------13-15 12-14 -13-15 ---48394843 4 64 33 -12 --------14------------25 19 -20 ---48434851 8 72 40 -18 --------21------------30 25 -25 ---48694873 4 56 22 -3 --------7------------16 12 -12 ---4891490312 72-73 45 -17 --------21-22------------32 25-26 -28 ---4903491714 62-6632-36 -10-13 --------12-15------------24-27 18-20 -19-21 ---49174920 3 68 36 -16 --------17------------28 22 -23 ---4920493111 80 45 -24 --------26------------35 30 -30 ---49314939 8 71-74 32 -14 --------20-22------------25 24-26 -22-24 ---4939497233 60-6631-37 -10-12 --------11-15------------23-26 16-20 -18-21 ---49724975 3 83 39 -20 --------28------------31 32 -30 ---49754983 8 77-78 37 -14-16 --------23-24------------27-28 28-29 -26-27 ---49834984 1 82 37 -16 --------24------------28 29 -27 --4984 4990 6 96-100 45 -25 --------34-35------------36 38-39 -37-39 ---4990500111 79-90 45 -24-25 --------25-32------------35-36 30-35 -30-35 ---5001501110 71-77 41 -20 --------20-23------------32 24-28 -25-28 ---50115020 9 92-9543-44 -17-19 --------33-34------------32-34 36-37 -35-37 ---50205022 2 80 39 -16 --------26------------30 30 -29 ---50225026 4 67 34 -17 --------16------------27 21 -22 ---50265031 5 63 31 -11 --------12------------24 19 -19 ---50315035 4 68 31 -11 --------17------------24 22 -21 ---50355037 2 74 39 -18 --------22------------30 26 -26 ---5037504912 65-6934-35 -13 --------15-18------------27 20-23 -21-24 ---50495054 5 62-63 22 -5 --------12-13------------17 18-19 -15 ---50545058 4 69 22 -5 -----17 18 18 ------------23 -------5058 5062 4 60 22 -3 -------11------------16 16 -14 ---50625067 5 68 30 -12 --------17------------23 22 -20 ---5067508518 71-7936-45 -16-22 --------20-25------------30-35 24-30 -24-30 ---596Collier916456

PAGE 346

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 50855089 4 59 17 --2 --------9------------12 14 -12 ---50915100 9 68-7134-36 -12-16 --------17-20------------25-28 22-24 -22-24 ---51005103 3 62 27 -6 --------12------------19 18 -17 ---51035107 4 59 27 -5 --------9------------19 14 -15 ---51075111 4 66 34 -14 --------15------------25 20 -21 ---51115115 4 74 37 -19 --------22------------30 26 -25 ---5115512712 81-84 45 -26 --------27-29------------36 31-32 -31-32 ---51275135 8 73 30 -17 --------22------------25 26 -22 ---51355143 8 68 25 -13-14 --------17------------21 22 -19 ---5143515310 65-66 34 -14-16 --------15-------------26-27 20 -21 ---48794885 6 56 17 -2 --------7------------13 12 -11 ---48854891 6 67 26 -10 --------16------------21 21 -19 ---48914895 4 59 12 -1 -----10 9 -9 ---------14 ------4897490912 67-7128-32 -12-16 --------16-20------------22-26 21-24 -20-22 ---49154919 4 71 29 -13 -----23 20 -21 ----------24 -------49194926 7 88 40 -25 --------30------------33 33 -32 ---49314940 9 75 42 -23-24 --------23------------34 27 -27 ---49404942 2 66 36 -17 --------15------------28 20 -21 ---49424945 3 72 39 -22 --------21------------32 25 -25 ---49454948 3 71 40 -22 --------20------------32 24 -25 ---4948495810 76 48 -28 --------23------------38 28 -30 ---4967498922 65-7131-44 -17-21 --------15-20------------26-33 20-24 -20-26 ---49934999 6 67 34 -16 --------16------------27 21 -22 ---4999501819 62-6526-35 -11-17 --------12-15------------21-28 18-20 -16-21 ---50215029 8 67 36 -19 --------16------------29 21 -22 ---5039 5042 3 58 24-25 -10 -------8------------20 13 -15 ---5054506511 62 32 -14 --------12------------25 18 -19 ---5075508611 61-6430-31 -13-14 --------11-14------------24-25 17-19 -17-19 ---50915098 7 58-59 22 -10 --------8-9------------18 13-14 -14 ---5105511914 60 24-26 -9 --------11------------19-20 16 -15 ---51395144 5 55 13 -0 --------6------------10 11 -9 ---51475153 6 55 16 -5 --------6------------13 11 -10 ---51595167 8 67 35 -16 --------16------------27 21 -22 ---51725181 9 66-6835-38 -19-20 --------15-17------------29-30 20-22 -21 ---51815185 4 66 32 -19 --------15------------27 20 -20 ---5185520520 60-6524-33 -10-18 --------11-15------------20-27 16-20 -15-20 ---52055210 5 65-7034-43 -16-22 --------15-19------------27-34 20-24 -21-26 ---52105212 2 62 26 -12 --------12------------22 18 -16 --5212 5243 31 60-7135-42 -16-22 --------15-20------------27-33 20-24 -19-25 ---52435250 7 61-64 29 -14 --------11-14------------23 17-19 -17-18 ---5257527619 65-7029-43 -15-24 --------15-19------------24-34 20-24 -19-21 ---5284529713 69 38-40 -20-23 --------18------------30-33 23 -24 ---5297531316 74-7640-44 -22 --------22-23------------33-35 26-28 -24-27 ---5325533813 59 21 -6 --------9------------12 14 -14 ---53555362 7 59 18 -7 --------9------------15 14 -12 ---5367539730 65-7028-36 -14-18 --------15-19------------23-28 20-24 -17-24 ---5397540811 75-76 41 -24 --------23------------33 27-28 -26-27 ---5408542113 80-83 45 -29 --------26-28------------37 30-32 -30-32 ---54215425 4 62-63 26 -15 --------12-13------------22 18-19 -16-17 ---5425544217 67-7133-39 -19-21 --------16-20------------27-31 21-24 -21-22 ---5463547512 83-86 45 -32-33 --------28-29-----------38-39 32-33 -32-33 --5475 548611 72-7440-42 -16-19 --------21-22------------30-32 25-26 -25-26 ---5486549711 76-79 45 -26-28 --------23-25------------36 28-30 -28-30 ---54975503 6 80 45 -34 --------26------------39 30 -30 ---55035507 4 77-79 45 -26 --------23-25------------36 28-30 -28-30 ---5507551912 91-96 45 -33-39 --------32-34------------38-42 36-38 -35-37 ---5519553112 89-90 45 -31-34 --------31-32------------38-39 34-35 -35 ---55315537 6 96 45 -37 --------34------------40 38 -37 ---5537556730 84-88 45 -32-36 --------29-30------------38-40 32-33 -32-34 ---697Collier2913000

PAGE 347

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 5571559120 82-8943-45 -26-34 --------28-31------------35-39 31-34 -31-35 ---55945598 4 60 12 -1 -----10 11 -10 ----------16 -------56005607 7 61 15 -2 -----12 11 -12 ----------17 -------5611563322 77-7944-45 -24-26 --------23-25------------35-36 28-30 -29-30 ---56335635 2 60 17 -7 -----14 11 -12 ----------16 -------56355637 2 59 17 -7 --------9------------14 14 -12 ---5637567134 80-9040-45 -27-36 --------26-32-------------35-40 30-35 -29-35 ---49654968 3 57 16 -4 --------7------------13 12 -11 ---49684976 8 75 35 -20 --------23------------29 27 -25 ---4982499513 72 34 -20 --------21------------29 25 -23 ---50015005 4 66 24-27 -17 --------15------------22-24 20 -18-19 ---50055009 4 93 36 -22 -----30 33 -33 ----------36 ----50095014 5 68 25 -15 --------17------------22 22 -19 ---5019503920 72-7733-39 -19-23 --------21-23------------27-32 25-28 -23-27 ---5051506110 68-6931-32 -18-19 --------17-18------------26-27 22-23 -21 ---50615067 6 62 29 -13 --------12------------23 18 -17 ---50695073 4 61 24 -11 --------11------------20 17 -15 ---50735076 3 55 15 -3 --------6------------12 11 -10 ---5076509317 60-6318-29 -13-16 --------11-13------------18-24 16-19 -13-18 ---50955101 6 62 23 -13 --------12------------20 18 -15 ---51155121 6 59 23 -10 --------9------------19 14 -14 ---5121513110 65 25-27 -14 --------15------------21-22 20 -18 ---5137515114 65-6629-30 -16-19 --------15------------24-26 20 -19-20 ---5163517512 63-6627-30 -16-17 --------13-15------------23-25 19-20 -17-20 ---51795187 8 61 24 -12 --------11------------20 17 -15 --5192 5198 6 58 22 -8 -------8------------17 13 -14 ---5199520910 56-59 25 -11-12 --------7-9------------21 12-14 -13-14 ---52585267 9 62 27 -12 --------12------------22 18 -15 ---52725280 8 65-6732-34 -15-16 --------15-16------------25-27 20-21 -20-22 ---5280531535 62-6526-29 -9-16 --------12-15------------22-24 18-20 -16-19 ---5315534429 65-7131-35 -14-19 --------15-20------------25-29 20-24 -20-24 ---53445351 7 60-6123-24 -7-8 --------11------------18-19 16-17 -15 ---5359538728 65-6830-35 -12-16 --------15-17------------25-28 20-22 -19-23 ---53875391 4 63 29 -14 --------13------------23 19 -18 ---53915396 5 56 21 -7 --------7------------17 12 -12 ---54135421 8 58-5913-15 --3--1 --------8-9------------10-11 13-14 -10-11 ---5421543211 62-6315-22 -0-9 -----11-18 12-13 13-15 ------------18-19 -------5459 5465 6 59 19 -5 ------9------------15 14 -13 ---54715477 6 62 24 -8 --------12------------18 18 -16 ---5477548811 65-6728-32 -14-15 --------15-16------------23-25 20-21 -18-20 ---54885496 8 61-6225-27 -7 --------11-12------------19-20 17-18 -15-17 ---54965501 5 56-58 20 -4-5 --------7-8------------15-16 12-13 -12-13 ---5501551211 61-6327-31 -12-13 --------11-13------------22-24 17-19 -16-19 ---55125517 5 71 31 -18 --------20------------26 24 -22 ---55175526 9 79 45 -24 --------25------------30 30 -30 ---5526554519 65-7025-30 -13-16 --------15-19------------21-25 20-24 -18-21 ---55695576 7 75 33 -15 --------23------------26 27 -25 ---55835589 6 82 37 -22 --------28------------31 31 -30 ---5605562520 68-7125-26 -16-17 --------17-20------------22-23 22-24 -19-20 ---56255631 6 80 45 -23 --------26------------35 30 -30 --5631 5638 7 73-76 26-34 -19-20 --------22-23------------24-28 26-28 -21-25 ---5638565113 65-7022-26 -15-19 --------15-19-------------20-24 20-24 -16-20 ---4894490612 67 --2.48-2.53---11-13----16---------18-21 ---21 17-19 -----49124915 3 65 -2.49 ---13----15---------20 ---20 18 -----49154921 6 86 -2.38 ---19----29---------26 ---33 27 -----49214927 6 68 -2.53 ---11----17---------18 ---22 17 -----4929494415 74-79 --2.35-2.41---15-18----22-25---------22-25 ---26-30 23-26 -----4944495814 71-74 --2.38-2.39---18-19----20-22---------25-26 ---24-26 23-25 -----49584961 3 64 -2.6 ---6----14---------14 ---19 14 -----760Collier2911780

PAGE 348

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 49614966 5 68 -2.49 ---13----17---------20 ---22 19 -----49664972 6 75 --2.37-2.41---18-20----23---------25-26 ---27 24-25 -----49724978 6 68 -2.56 ---9----17---------17 ---22 17 -----49784986 8 64 -2.53 ---11----14---------18 ---19 17 -----49884993 5 68 -2.47 ---14----17---------21 ---22 20 -----49934997 4 62 -2.54 --10 ---12 10 --------18----18-------49975001 4 69 -2.53 ---11----18---------18 ---23 18 -----50255032 7 57-59 -2.55 ---10----7-9---------16 ---12-14 12-14 -----50325036 4 64 -2.56 ---9----14---------17 ---19 16 -----5046506115 60-62 -2.54 --10 ---11-12 10-11 --------18----16-18-------50715076 5 59 -2.58 --8 ---9 7 --------15----14-------50765078 2 76 -2.53 ---11----23---------18 ---28 20 -----50785087 9 61-62 --2.56-2.58--8-9 ---11-12 8-9 --------15-17----17-18-------50975104 7 62 --2.56-2.6---6-9----12---------14-17 ---18 13-15 -----51085116 8 61 -2.61 ---6----11---------14 ---17 14 ---5116 513014 60-66 --2.51-2.53--11-12 ---11-15 10-12 --------18-19----16-20-------51825187 5 69 -2.42 --17 ---18 17 --------24----23-------51875189 2 79 -2.42 ---17----25---------24 ---30 24 -----51895191 2 65 -2.46 --15 ---15 14 --------22----20-------51915195 4 71-73 --2.46-2.48---13-15----20-22---------21-22 ---24-26 21-22 -----51955197 2 63 -2.53 --11 ---13 11 --------18----19-------51975199 2 79 -2.48 ---13----25---------21 ---30 22 -----51995203 4 65-68 --2.48-2.5---12-13----15-17---------20-21 ---20-22 18-20 -----52035205 2 79 -2.44 ---16----25---------23 ---30 23 -----52055207 2 68 -2.43 --17 ---17 16 --------23----22-------52075210 3 72 -2.4 ---18----21---------25 ---25 23 -----52105213 3 69-71 -2.38 --19 ---18-20 17-18 --------26----23-24-------52135219 6 73-79 -2.43 --17 ---22-25 17-19 --------23----26-30-------52195221 2 65 -2.48 --13 ---15 13 --------21----20-------5221 5230 9 73 -2.39-2.46 ---15-18----22---------22-25 ---26 22-24 -----52305233 3 82 -2.42 ---17----28---------24 ---31 25 -----52335235 2 67 -2.44 --16 ---16 15 --------23----21-------52355239 4 84 --2.39-2.4---18----29---------25 ---32 22 -----5239525617 71-78 --2.43-2.49---13-17----20-24---------20-23 ---24-29 20-23 -----52565264 8 73 -2.53 ---11----22---------18 ---26 19 -----5270528212 76-79 --2.44-2.47---14-16----23-25---------21-23 ---28-30 22-24 -----52825289 7 92-93 -2.51 ---12----33---------19 ---36 25 -----52895291 2 68 -2.49 --13 ---17 13 --------20----22-------52915297 6 75-79 -2.49 ---13----23-25---------20 ---27-30 21-22 -----52975300 3 65-67 --2.51-2.53--11-12 ---15-16 11-13 --------18-19----20-21 -----53005302 2 71 -2.54 ---10----20---------18 ---24 18 -----5302531513 76-80 --2.33-2.34--21-22 ---23-26 21-23 --------28-29----28-30-------53285337 9 60-63 -2.61 ---6----11-13---------14 ---16-19 13-14 -----5390541424 64-67 2.53-2.57---8-11----14-16---------16-18 --19-21 15-17 ---5414542713 65-70 --2.41-2.46--15-18 ---15-19 14-17 --------22-25----20-24-------54275434 7 64 -2.57 ---8----14---------16 ---19 15 -----54365442 6 62-64 -2.57 ---8----12-14---------16 ---18-19 14-15 -----5442545210 71-75 --2.45-2.55---10-15----20-23---------16-22 ---24-27 17-22 -----54525454 2 64 -2.65 ---4----14---------12 ---19 13 -----54775486 9 68 -2.49 --13 ---17 14 --------20----22-------54925501 9 79 -2.39 ---18----25---------25 ---30 25 -----5516555741 71-79 --2.29-2.38---19-24----20-25---------26-31 ---24-30 23-28 -----46474652 5 72 32 -17 --------21------------26 25 -23 ---46524656 4 68 22 -11 -----18 17 -17 ----------22 -------4659467314 65-7128-30 -14-15 --------15-20------------23-25 20-24 -18-22 ---46774686 9 72-7736-37 -22-24 --------21-23------------30-31 25-28 -24-26 ---46864689 3 80 39 -26 --------26------------33 30 -29 --4689 4699 10 73-7735-38 -18-25 --------22-23------------28-32 26-28 -24-27 ---47024706 4 64 25 -10 --------14------------20 19 -17 ---853Collier2211815

PAGE 349

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 47064710 4 68 30 -16 --------17------------25 22 -20 ---47104717 7 75 36 -22 --------23------------30 27 -26 ---47204725 5 61 18 -4 -----12 11 -13 ----------17 -------4725473914 66-6926-32 -13-16 --------15-18------------22-25 20-23 -18-21 ---47534761 8 57-5816-18 -2 --------7-8------------12-14 12-13 -11-12 ---4761477110 64-6526-28 -11-13 --------14-15------------21-23 19-20 -18 ---4778479113 69-7133-36 -17-20 --------18-20------------27-30 23-24 -22-24 ---47974805 8 63 25 -11 --------13------------21 19 -17 ---48054812 7 67 28 -14 --------16------------23 21 -20 ---4814482511 67 31 -17 --------16------------26 21 -20 ---48734879 6 62 19 -6 -----13 12 -14 ----------18 -------4894490511 72-7633-37 21-24 --------21-23------------28-31 25-28 -23-26 ---4905495752 60-6621-30 -7-14 --------11-15-----------17-24 16-20 -15-20 --4971 499019 68-7128-36 -13-20 --------17-20------------23-29 22-24 -20-24 ---4990500414 74-7633-39 -23 --------22-23------------29-32 26-28 -24-27 ---5004501713 67-7027-30 -12-16 --------16-19------------22-25 21-24 -19-21 ---5023503815 61-6621-29 -8-15 --------11-15------------17-24 17-20 -14-20 ---5047505710 74-7536-37 -21-22 --------22-23------------30 26-27 -25-26 ---50955103 8 64 21 -7 -----14 17 -15 ----------22 -------5103511512 67-7027-30 -11-13 -----16-19------------19-21 21-24 -19-21 ---5115513015 70-7128-33 -13-19 --------19-20------------21-26 24 -21-23 ---5130516434 73-8033-38 -18-23 --------22-26------------27-31 26-30 -24-28 ---51645168 4 69 28 -16 --------18------------23 23 -20 ---5178519214 71-7329-32 -16-20 --------20-22------------23-25 24-26 -21-23 ---5194521521 72-7633-34 -19-23 --------21-23------------26-29 25-28 -23-25 --5215 5245 30 82-9137-48 -28-34 --------28-32------------33-42 31-36 -30-36 ---52455249 4 73 42 -28 --------22------------33 26 -26 ---52495258 9 91 39-43 -28-31 --------32------------34-37 36 -33-34 ---52585266 8 86-8741-43 -29-31 --------29-30------------35-38 33 -32-34 ---52665275 9 76-77 39 -24 --------23------------32 28 -27 ---52755282 7 83 36 -25 -----26 28 -29 ----------32 -------52825289 7 73-7431-33 -16-17 --------22------------23-25 26 -23-24 ---52895295 6 68 22 -9 -----15 17 -17 ----------22 -------5295532227 72-7731-40 -16-25 --------21-23------------25-33 25-28 -22-28 ---5322533210 79-8237-39 25-26 --------25-28------------31-33 30-31 -24-30 ---53345342 8 59 12-14 --1-1 -----7-9 9 -9-10 ----------14 -------5352536614 75-7935-40 -24-25 --------23-25------------31-32 27-30 -27-28 --5367 5376 9 89 45 -33 -------31------------40 34 -35 ---53765378 2 72 31 -17 --------21------------25 25 -22 ---53785385 7 79 38 -26 --------25------------33 30 -28 ---53885392 4 76 35 -24 --------23------------30 28 -25 ---53925400 8 85 39 -27 --------29------------34 33 -31 ---54025411 9 82 42 -27 --------28------------34 31 -30 ---54115416 5 67 18 -6 -----15 16 -15 ----------21 -------5416542913 85 37-40 -28 --------29------------34 33 -30 ---54295433 4 73 31 -20 -----22------------27 26 -23 ---5433545219 68-7119-22 -19-22 -----19-22 17-20 -16-19 ------------22-24-------4679469516 69-70 -----------18-19------------23-24 -------4707471811 72-77 -----------21-23------------25-28 -------47184723 5 59 -----------9----------14 ------47254733 8 83 -----------28------------32 -------47334737 4 63 -----------13------------19 -------4741475312 73-77 -----------22-23------------26-28 -------4757476710 69-70 -----------18-19------------23-24 -------47674770 3 75 -----------23------------27 -------4770478313 81-84 -----------27-29------------31-32 -------47834786 3 65 -----------15------------20 -------47894797 8 85 -----------29------------33 -------47974801 4 79 -----------25------------30 -------865Collier1511823

PAGE 350

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 48014803 2 72 -----------21------------25 -------4803481310 83-86 -----------28-29------------31-33 -------48134815 2 77 -----------23------------28 -------48154821 6 80-82 -----------26-28------------30-31 -------48214827 6 75-77 -----------23------------27-28 -------48314839 8 67-69 -----------16-18------------21-23 -------48394841 2 56 -----------7------------12 -------4842485513 62-65 -----------12-15------------18-20 -------4868488214 56-59 -----------7-9------------12-14 -------48824888 6 61-62 -----------11-12------------17-18 -------4895490914 65-68 -----------15-17------------20-22 -------49154921 6 64 -----------14------------19 -------4925494116 62-65 -----------12-15------------18-20 -------49644967 3 59 -----------9------------14 -------4980499111 75-78 -----------23-24----------27-29 ------49914999 8 63 -----------13------------19 -------49995001 2 57 -----------7------------12 -------5001501110 60-64 -----------11-14------------16-19 -------5011504231 65-68 -----------15-17------------20-22 -------50425051 9 64 -----------14------------19 -------50705077 7 69 -----------18------------23 -------5077510629 74-77 -----------22-23------------26-28 -------5113512512 60-62 -----------11-12------------16-18 -------5125514520 67-69 -----------16-18------------21-23 -------51535156 3 61 -----------11------------17 -------51665173 7 64 -----------14------------19 -------5181520120 64-66 -----------14-15------------19-20 -------5201524039 72-79 -----------20-25------------25-30 -------52445253 9 71 -----------20------------24 -------5253 5259 6 82 ---------28------------31 -------52595263 4 74 -----------22------------26 -------52635267 4 65 -----------15------------20 -------52675272 5 74 -----------22------------26 -------52735279 6 69-71 -----------18-20------------23-24 -------52795282 3 63 -----------13------------19 -------52825289 7 75-77 -----------23------------27-28 -------52895295 6 67-69 -----------16-18------------21-23 -------5295532328 75-78 -----------23-24------------27-29 -------5323533512 92-96 -----------25-30------------30-33 -------5335538146 79-88 -----------25-29------------30-33 -------53815389 8 74-78 -----------22-24------------26-29 -------53935399 6 67 -----------16------------21 -------54065413 7 90 -----------32------------35 -------54135418 5 86 -----------29----------33 ------5418543113 91-92 -----------32-33------------36 -------54315435 4 75 -----------23------------27 -------54355438 3 66 -----------15------------20 -------54385445 7 73-77 -----------22-23------------26-28 -------54455448 3 67 -----------16------------21 -------5453547320 80-83 -----------26-28------------30-32 -------5473548310 68 -----------17------------22 -------54835485 2 60 -----------11------------16 -------5485549914 68-71 -----------17-20---------------22-24 -------4951496312 74-75 25 -11-16 -----21-23 22-23 -21-22 ----------26-27 -------49714977 6 67-7123-25 -12-16 -----20-23 16-20 -18-20 ----------21-24 -------49774983 6 63-64 22 -5 -----16 13-14 -14-15 ----------19 -------4988500113 76-77 34 -20-21 --------23------------28-29 28 -25 --5001 5003 2 64 21 -11 -------14------------19 19 -16 ---50035012 9 75-7630-33 -24-27 --------23------------28-30 27-28 -23-25 ---871Collier1411920

PAGE 351

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 50125016 4 77-79 26 -16 -----23 23-25 -23-24 ----------28-30 -------5016502812 74-7631-32 -21-23 --------22-23------------27-28 26-28 -23-25 ---5028503810 67-6924-28 -13-15 --------16-18------------21-23 21-23 -18-20 ---5038505820 63-6622-25 -11-15 --------13-15------------19-22 19-20 -15-18 ---50585062 4 69 27 -16 --------18------------23 23 -20 ---5087510013 60-6521-25 -9-11 --------11-15------------17-21 16-20 -14-18 ---51085115 7 68 26 -10 --------17------------21 22 -19 ---51155119 4 59 17 -3 --------9------------13 14 -12 ---5130514212 62-6322-23 -11-12 --------12-13------------19-20 18-19 -15-16 ---51485156 8 60-65 27 -3-10 --------11-15------------19-21 16-20 -16-18 ---51595165 6 58 15 -0 --------8------------11 13 -11 ---5169517910 53-59 19 -6 --------4-9------------15 10-14 -10-13 ---52265233 7 60-61 25 -7 --------11------------19 16-17 -15 --5237 5255 18 65-6725-26 -13-15 --------15-16------------21-22 20-21 -18-19 ---5255529338 61-6624-27 -12-16 --------11-15------------20-23 17-20 -15-18 ---52935297 4 68 28 -19 --------17------------25 22 -20 ---52975305 8 64-6625-26 -10-12 --------14-15------------20-21 19-20 -17-18 ---53055308 3 59 20 -7 --------9------------16 14 -13 ---5308531810 61-6419-22 -4-9 --------11-14------------15-18 17-19 -13-16 ---53255331 6 74 28 -17 -----24 22 -22 ----------26 -------5331534110 62-6621-27 -8-15 --------12-15------------17-23 18-20 -15-19 ---5341536322 67-7128-31 -16-18 --------16-20------------24-26 21-24 -20-22 ---53635371 8 75 33 -20 --------23------------28 27 -25 ---53765383 7 57 13 -2 --------7------------11 12 -10 ---5390540111 60-6115-16 -1 -----11-12 11-12 -11-12 --------17-18 ------5432544715 60 18 -2-4 -----13-14 11 -11 ----------17 -------54475449 2 59 17 -6 --------9------------14 14 -12 ---5449547728 61-6619-26 -7-13 --------11-15------------16-22 17-20 -13-18 ---5481549110 62-6420-23 -8-11 --------12-14------------18-19 18-19 -15-16 ---54915497 6 77 33 -17 --------23------------27 28 -25 ---54975502 5 66 22 -9 --------15------------18 20 -17 ---55225529 7 82 33 -24 -----29 28 -27 ----------31 -------55295535 6 78 35 -23 --------24------------30 29 -26 ---55415550 9 74-7625-27 -15-16 -----22-23 22-23 -22-23 ----------26-28 -------5567558518 61-6621-29 -12-13 --------11-15------------19-23 17-20 -14-20 ---55855592 7 78 21 -19 -----20 24 -21 ----------29 -------55925597 5 84 40 -27 --------29-----------34 32 -31 --5597 560811 71-7221-22 -16-18 -----19-20 20-21 -18-19 ----------24-25 -------56085613 5 69 28 -14 --------18-------------23 23 -20 ---4823483411 62 -----------12--------------18-------48364839 3 57 -----------7--------------12-------4839484910 85 -----------29--------------33-------48494851 2 65 -----------15--------------20-------48514855 4 79 -----------25--------------30-------48594865 6 75 -----------23--------------27-------48654872 7 101 -----------35--------------40-------4878489315 74-75 -----------22-23--------------26-27-------48934899 6 80 -----------26--------------30-------48994903 4 71 -----------20--------------24-------49054909 4 55 -----------6--------------11-------49094915 6 70-71 -----------19-20--------------24-------49154920 5 74 -----------22--------------26-------49204925 5 65-66 -----------15--------------20-------49254933 8 72-74 -----------21-22--------------25-26-------49374942 5 66 -----------15--------------20-------49424947 5 56 -----------7--------------12-------4947496215 64-66 -----------14-15--------------19-20-------49794988 9 59 -----------9--------------14-------49914996 5 59 -----------9-----------14-------947Collier2611965

PAGE 352

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 49965003 7 63-64 -----------13-14--------------19-------5012502816 63-66 -----------13-15--------------19-20-------50415048 7 64 -----------14--------------19-------5051506110 66 -----------15--------------20-------50655070 5 62 -----------12--------------18-------50705074 4 58 -----------8--------------13-------51015105 4 56 -----------7--------------12-------51195123 4 67 -----------16--------------21-------5123513310 74 -----------22--------------26-------5135514712 64-66 -----------14-15--------------19-20-------51475153 6 69 -----------18--------------23-------51535155 2 63 -----------13--------------19-------5155518530 66-71 -----------15-20--------------20-24-------51855189 4 64-65 -----------14-15--------------19-20-------51895194 5 71 -----------20--------------24-------51945197 3 61 -----------11--------------17-------52135220 7 65-68 -----------15-17--------------20-22-------52205228 8 63-66 -----------13-15--------------19-20-------52285232 4 71 -----------20--------------24-------5235525520 65-68 -----------15-17--------------20-22-------52555257 2 62 -----------12--------------18-------52715278 7 62 -----------12--------------18-------52825285 3 57 -----------7--------------12-------52965301 5 57 -----------7--------------12-------5313534128 61-66 -----------11-15--------------17-20-------5341535312 68 -----------17------------22-------53535357 4 74 -----------22--------------26-------53575360 3 68 -----------17--------------22-------5360537919 61-66 -----------11-15--------------17-20-------53905396 6 59 -----------9--------------14-------5401541413 71-74 -----------20-22--------------24-26-------54185421 3 56 -----------7--------------12-------5421543110 76-78 -----------23-24--------------28-29-------54315439 8 65-68 -----------15-17--------------20-22-------544254581689-100-----------31-35--------------34-39-------54585461 3 85 -----------29--------------33-------54615468 7 77 -----------23--------------28-------5468547911 67-71 -----------16-20--------------21-24-------54795484 5 79 -----------25--------------30-------5484549511 71 -----------20----------------24-------45934601 8 59 -----------9---------------14 -------46034610 7 70 -----------19---------------24 -------46104615 5 64 -----------14---------------19 -------4618462911 69-71 -----------18-20---------------23-24 -------4636464913 73-76 -----------22-23---------------26-28 -------46494657 8 82 -----------28---------------31 -------46574663 6 74 -----------22---------------26 -------4666468721 72-77 -----------21-23---------------25-28 -------4687469912 61-66 -----------11-15---------------17-20 -------46994705 6 67-68 -----------16-17---------------21-22 -------47054711 6 65 -----------15---------------20 -------4719473314 60 --------11---------------16 -------4735474510 66 -----------15---------------20 -------4750476313 66-71 -----------15-20---------------20-24 -------47684775 7 64 -----------14---------------19 -------4778479921 68-69 -----------17-18---------------22-23 -------48534859 6 74 -----------22---------------26 -------48594863 4 70 -----------19---------------24 -------48694874 5 72 -----------21---------------25 -------982Collier1611934

PAGE 353

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 48744876 2 66 -----------15---------------20 -------48764884 8 69-71 -----------18-20---------------23-24 -------4886489913 63-65 -----------13-15---------------19-20 -------4899492930 65-71 -----------15-20---------------20-24 -------4935495419 72-75 -----------21-23---------------25-27 -------4957497316 78-79 -----------24-25---------------29-30 -------49734982 9 82-83 -----------28---------------31-32 -------49824989 7 68 -----------17---------------22 -------50055011 6 57 -----------7---------------12 -------50165023 7 62-65 -----------12-15---------------18-20 -------5030504111 53-54 -----------4---------------10 -------50475051 4 68 -----------17---------------22 -------50515055 4 74 -----------22---------------26 -------5057507013 66-67 -----------15-16---------------20-21 -------50705077 7 83 -----------28---------------32 -------50775081 4 70 -----------19---------------24 -------5081509918 77-78 -----------23-24---------------28-29 -------509951111295-100 -----------34-35---------------37-39 -------51115114 3 68 -----------17---------------22 -------5118514022 71-75 -----------20-23---------------24-27 -------51445152 8 71-73 -----------20-22---------------24-25 -------51605164 4 70 -----------19---------------24 -------51645171 7 73-74 -----------22---------------26 -------51715178 7 79-81 -----------25-27---------------30-31 -------51785182 4 71 -----------20---------------24 -------51825185 3 63 -----------13---------------19 -----51855190 5 78 -----------24---------------29 -------51905192 2 67 -----------16---------------21 -------51925196 4 78 -----------24---------------29 -------51965200 4 80 -----------26---------------30 -------52005205 5 68-70 -----------17-19---------------22-24 -------5205521611 71-73 -----------20-22---------------24-26 -------52165223 7 70 -----------19---------------24 -------52235229 6 74 -----------22---------------26 -------52295234 5 68 -----------17---------------22 -------52385245 7 62-65 -----------12-15---------------18-20 -------5247525710 68-71 -----------17-20---------------22-24 -------52605264 4 59 -----------9---------------14 -------52645272 8 63-64 -----------13-14---------------19 -------5272528614 67-71 -----------16-20---------------21-24 -------5286530115 73-78 -----------22-24---------------26-29 -------53015305 4 69 -----------18---------------23 -------53165321 5 69-71 -----------18-20---------------23-24 -------5328533911 81-83 -----------27-28---------------31-32 -------53435350 7 71 -----------20---------------24 -------53505357 7 60-66 -----------11-15---------------16-20 -------5357537417 65-68 -----------15-17---------------20-22 -------53745378 4 72 -----------21---------------25 -------53805388 8 68 -----------17---------------22 -------5390540414 83-85 -----------28-29---------------32-33 -------54075410 3 74 -----------22---------------26 -----46024609 7 68 -----------17------------22 -------46094612 3 62 -----------12------------18 -------4616462610 62-65 -----------12-15------------18-20 -------4633465320 68-71 -----------17-20------------22-24 -------46534659 6 74 -----------22------------26 -------4659467415 65-71 -----------15-20------------20-24 -------46744679 5 72 -----------21------------25 -------46794687 8 66-69 -----------15-18------------20-23 -------1059Collier1511830

PAGE 354

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 4689469910 60-65 -----------11-15------------16-20 -------4699471617 65-66 -----------15------------20 -------47284737 9 60 -----------11------------16 -------47404745 5 65 -----------15------------20 -------4754476814 65-69 -----------15-18------------20-23 -------47734781 8 65 -----------15------------20 -------4787480619 67-71 -----------16-20------------21-24 -------48284832 4 55 -----------6------------11 -------4851486211 68 -----------17------------22 -------48694874 5 68 -----------17------------22 -------48744879 5 73 -----------22------------26 -------48794885 6 71 -----------20------------24 -------4892491624 62-66 -----------12-15------------18-20 -------49164925 9 57-59 -----------7-9------------12-14 -------49394943 4 63 -----------13----------19 ------4943497532 72-78 -----------21-24------------25-29 -------49754983 8 65-71 -----------15-20------------20-24 -------49834988 5 73 -----------22------------26 -------49935001 8 60 -----------11------------16 -------50095015 6 61 -----------11------------17 -------50205025 5 55 -----------6------------11 -------50305039 9 54-57 -----------4-7------------10-12 -------50455051 6 70 -----------19------------24 -------50515055 4 64 -----------14------------19 -------50555060 5 59 -----------9------------14 -------5060508929 65-71 -----------15-20------------20-24 -------50895094 5 74 -----------22------------26 -------50945098 4 82 -----------28------------31 -------50985101 3 76 -----------23------------28 -------5101 5107 6 85 ---------29------------33 -------51075111 4 75 -----------23------------27 -------5111512716 68-70 -----------17-19------------22-24 -------51275131 4 55 -----------6------------11 -------51335141 8 83 -----------28------------32 -------5147516114 72-79 -----------21-25------------25-30 -------51615165 4 81 -----------27------------31 -------51655168 3 79 -----------25------------30 -------51685173 5 68 -----------17------------22 -------5173519522 72-79 -----------21-25------------25-30 -------5195521116 65-71 -----------15-20------------20-24 -------52115220 9 72-74 -----------21-22------------25-26 -------5220523414 65-70 -----------15-19------------20-24 -------52345241 7 61-62 -----------11-12------------17-18 -------52415248 7 72-75 -----------21-23----------25-27 ------52485250 2 59 -----------9------------14 -------5250528333 66-71 -----------15-20------------20-24 -------5304532925 72-78 -----------21-24------------25-29 -------53295334 5 66 ----------15 -------------20-------53345343 9 55-58 -----------6-8------------11-13 -------53435352 9 62-63 ----------12-13 -------------18-19-------53525355 3 57 -----------7------------12 -------5355537318 60-66 ----------11-15 -------------16-20-------5373538310 75 -----------23------------27 -------53835390 7 67-68 -----------16-17------------21-22 -------53905398 8 76 -----------23---------------28 -------48614865 4 54 -----------4------------10 -------48654871 6 61 -----------11------------17 -------48744881 7 68 -----------17---------------22 -------48814885 4 61 -----------11------------17 ----1063Collier1411760

PAGE 355

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 48924897 5 63 -----------13------------19 -------48974899 2 54 -----------4------------10 -------48994903 4 73 -----------22------------26 -------49034906 3 65 -----------15---------------20 -------49094913 4 69 -----------18------------23 -------4913492310 77 -----------23------------28 -------4923493916 70-71 -----------19-20------------24 -------49394943 4 64 -----------14-------------19 -------49434952 9 70-71 -----------19-20------------24 -------4952497826 62-66 -----------12-15------------18-20 -------49995007 8 59 -----------9------------14 -------5013502714 60-62 -----------11-12------------16-18 -------5040505515 57-59 -----------7-9------------12-14 -------50585062 4 54 -----------4------------10 -------50625070 8 61-64 -----------11-14------------17-19 -------5072508412 57-59 --------7-9------------12-14 -------50845087 3 62 -----------12-------------18 -------50875091 4 57 -----------7------------12 -------51165121 5 56 -----------7------------12 -------51295138 9 60-62 -----------11-12------------16-18 -------5143515815 65-68 -----------15-17------------20-22 -------51585162 4 64 -----------14-------------19 -------5162517210 68-70 -----------17-19-------------22-24 -------5172518513 71-74 -----------20-22-------------24-26 -------5185521328 65-71 -----------15-20-------------20-24 -------52135218 5 64 -----------14-------------19 -------52295235 6 72 -----------21-------------25 -------52355239 4 64 -----------14-------------19 -------5239525415 72-77 -----------21-23-------------25-28 -------52545260 6 63-65 -----------13-15-------------19-20 -------52605268 8 75-76 -----------23-------------27-28 -------52685275 7 82 --------28-------------31 -------5292530210 62 -----------12-------------18 -------53045307 3 58 -----------8-------------13 -------53075314 7 62 -----------12-------------18 -------53425348 6 60 -----------11---------------16 -------5353536512 61-64 -----------11-14---------------17-19 -------53655372 7 68 -----------17---------------22 -------53725379 7 63-66 -----------13-15---------------19-20 -------5379538910 67-70 -----------16-19---------------21-24 -------53895396 7 61-62 -----------11-12---------------17-18 -------53995405 6 68 -----------17---------------22 -------54055410 5 64 -----------14-------------19 -------54105412 2 57 -----------7---------------12 -------54125417 5 65 -----------15---------------20 -------5436544610 71 -----------20---------------24 -------54535461 8 71-74 -----------20-22-------------24-26 -------5481549514 71-73 -----------20-22---------------24-26 -------54955500 5 91 -----------32---------------36 -------5500551212 85-86 -----------29---------------33 -------55125519 7 71-72 -----------20-21---------------24-25 -------55195527 8 83 -----------28---------------32 -------4815482510 61-66 -----------11-15------------17-20 ----4827484215 72-76 -----------20-23------------24-28 -------48454849 4 55 -----------6------------11 -------4849486112 65-69 -----------15-18------------20-23 -------4861488726 72-77 -----------20-23------------24-28 -------48874894 7 80-81 -----------26-27------------30-31 -------48944903 9 72-76 -----------20-23------------24-28 -------1208Collier2211850

PAGE 356

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 49034905 2 68 -----------17------------22 -------49054909 4 77 -----------23------------28 -------49094914 5 76-78 -----------23-24------------28-29 -------49144917 3 71 -----------20------------24 -------4917492710 65-68 -----------15-17------------20-22 -------49294934 5 70 -----------19------------24 -------49394945 6 54-56 -----------4-7------------10-12 -------4947496417 66-69 -----------15-18------------20-23 -------4980499111 54-58 -----------4-8------------10-13 -------4994500511 61-66 -----------11-15------------17-20 -------5016502913 63-65 -----------13-15------------19-20 -------50385047 9 61-68 -----------11-17------------17-22 -------50495056 7 66-67 -----------15-16------------20-21 -------50595067 8 61-62 -----------11-12------------17-18 -------50975102 5 56 -----------7----------12 ------51205128 8 77-78 -----------23-24------------28-29 -------51285131 3 82 -----------28------------31 -------51315135 4 78 -----------24------------29 -------5135514813 68-71 -----------17-20------------22-24 -------5148517123 72-79 -----------21-25------------25-30 -------51715174 3 84 -----------29------------32 -------51745179 5 78 -----------24------------29 -------51795186 7 80-84 -----------26-29------------30-32 -------5186519711 66-71 -----------15-20------------20-24 -------51975201 4 61 -----------11------------17 -------5215523621 72-77 -----------20-23------------24-28 -------52385244 6 65-69 -----------15-18------------20-23 -------5244525814 72-73 -----------21-22------------25-26 -------52585264 6 66-67 -----------15-16------------20-21 -------5273 5279 6 63 ---------13------------19 -------52795283 4 57 -----------7------------12 -------52885292 4 60 -----------11------------16 -------5302532018 55-58 -----------6-8------------11-13 -------5320533010 63-66 -----------13-15------------19-20 -------53305333 3 59 -----------9------------14 -------53335341 8 60-61 -----------11------------16-17 -------53415347 6 65-69 -----------15-18------------20-23 -------53475350 3 60 -----------11------------16 -------53505357 7 74 -----------22------------26 -------5357536811 62-65 -----------12-15------------18-20 -------53685373 5 70 -----------19------------24 -------53735376 3 62 -----------12------------18 -------53765381 5 56-58 -----------7-8------------12-13 -------53815383 2 61 -----------11----------17 ------53835386 3 57 -----------7------------12 -------54015407 6 58 -----------8------------13 -------54135422 9 69-71 ----------18-20 -------------23-24-------54225431 9 72-77 -----------20-23------------24-28 -------54355441 6 72 -----------20------------23 -------54415445 4 57 -----------7------------12 -------54455451 6 66 ----------15 -------------20-------5453546916 82-85 -----------28-29------------31-33 -------54695477 8 73-79 -----------22-25------------26-30 -------5477548710 69-71 -----------18-20------------23-24 -------54875495 8 75-78 -----------23-24---------------27-29 -------46944699 5 72 31 -18 --------21------------26 25 -22 ---46994705 6 70 32-33 -14-17 --------19------------25-26 24 -22 ---47054711 6 73 32 -18 --------22------------27 26 -23 --4711 4719 8 70 27 -12 ----22 19 -20 ----------24 -------1240Collier1611879

PAGE 357

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 47194724 5 77 34 -21 --------23------------28 28 -25 ---47244729 5 82 36 -24 --------28------------31 31 -29 ---47294731 2 67 26 -12 --------16------------21 21 -19 ---47314736 5 76 34 -22 --------23------------28 28 -25 ---47364738 2 70 28 -17 --------19------------24 24 -21 ---47384745 7 82 39 -24 --------28------------32 31 -30 ---47674775 8 85 42 -28 --------29------------35 33 -32 ---4775478813 75-7633-34 -20-21 --------23------------28-29 27-28 -23-25 ---47984803 5 67 22 -12 --------16------------19 21 -18 ---48034808 5 65 16 -8 -----14 15 -15 ----------20 -------48084813 5 77-7836-37 -20 --------23-24------------30 28-29 -26-27 ---48134817 4 71 20 -10 -----17 20 -19 ----------24 -------4822484119 79-8634-45 -22-29 --------25-29-----------29-37 30-33 -26-33 --4841 4844 3 77 36 -18 --------23------------29 28 -26 ---4844486420 83-8641-43 -27-29 --------28-29------------35-36 32-33 -31-33 ---48644867 3 63 22 -10 --------13------------18 19 -15 ---48674873 6 79 33 -20 -----28 25 -26 ----------30 -------48784885 7 95 45 -33 --------34------------39 37 -37 ---4885490520 79-8632-39 -21-25 --------25-29------------28-33 30-33 -26-31 ---49134921 8 60-6417-18 -3-6 -----13-15 11-14 -11-14 ----------16-19 -------49264935 9 77-79 39 -21 --------23-25------------31 28-30 -27-28 ---4935494510 83-8741-42 -25 --------28-30------------34-35 32-33 -31-32 ---49454951 6 66 22 -12 --------15------------19 20 -17 ---4953496815 80-8742-45 -22-27 --------26-30------------33-37 30-33 -30-34 ---49684977 9 65-71 27 -16 -----23 15-20 -18-20 -------20-24 -------49774985 8 84 46 -25 --------29------------37 32 -33 ---49854991 6 78 41 -24 --------24------------33 29 -28 ---49975000 3 66 27 -13 --------15------------22 20 -19 ---5000502525 75-7937-41 -24-28 --------23-25------------31-35 27-30 -28-29 ---50255033 8 81-8540-48 -29-32 --------27-29------------35-39 31-33 -30-34 ---50335039 6 77 40 -24 --------23------------33 28 -28 ---5042508947 71-7731-36 -17-23 --------20-23------------26-30 24-28 -22-26 ---50895096 7 65-7127-34 -14-18 -----22-28 15-20 -15-21 ----------20-24 -------5096512933 74-7934-43 -21-26 --------22-25------------29-35 26-30 -24-30 ---5129515122 66-7125-30 -11-17 -----21-25 15-20 -15-20 ----------20-24 -------51515156 5 73 32 -21 --------22------------28 26 -23 ---5156517620 61-6627-29 -13-16 --------11-15-----------22-24 17-20 -16-20 --5185 519712 67-7130-31 -16-19 --------16-20------------25-26 21-24 -20-22 ---51975204 7 63-6522-24 -10-12 --------13-15------------18-20 19-20 -15-17 ---52045210 6 80 34 -22 --------26------------29 30 -27 ---5217522811 72-73 32 -16-19 --------21-22------------25-27 25-26 -23 ---52285231 3 65 25 -10 --------15------------20 20 -18 ---52375241 4 66 16 -5 -----14 15 -14 ------------20-------4469450132 72-7831-34 -16-21 -----25-28 21-24 -21-25 ----------25-29 -------45214529 8 72-76 34 -22 -----28 21-23 -22-24 ----------25-28 -------45294535 6 81-84 44 -28 --------27-29------------36 31-32 -30-32 ---45354543 8 74-7935-37 -22-23 --------22-25------------30-31 26-30 -25-28 ---4555456914 67-7128-29 -17-19 --------16-20------------24-25 21-24 -20-21 ---45694571 2 73 37 -22 -----31 22 -24 -----31 26 -24 ---45714577 6 83 39 -24 -----31 28 -30 ----------32 -------4582459715 73-7534-37 -21-25 --------22-23------------29-32 26-27 -24-26 ---45974602 5 91 40 -31 -----35 32 -34 ----------36 -------46024606 4 81 41 -28 --------27------------35 31 -30 ---46064614 8 94 43 -34 --------34------------39 37 -36 ---46144619 5 76 34-36 -19-20 --------23------------28-29 28 -25-26 ---46194622 3 67 32 -15 --------16------------25 21 -20 ---46224625 3 76 40 -27 --------23------------34 28 -27 ---46254629 4 109 43 -31 -------->35------------37 >40 -44 ---46294633 4 76 34 -24 --------23------------30 28 -25 ---609Desoto6013000

PAGE 358

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 4636466024 81-88 43 -31-34 --------27-30------------37-38 31-33 -31-34 ---46604662 2 75 39 -26 --------23------------33 27 -26 ---46624667 5 86 40 -27 --------29------------34 33 -31 ---46674669 2 58 23 -8 --------8------------18 13 -14 ---4669467910 85-86 45 -33 --------29------------39 33 -32-33 ---46794684 5 76 35 -19 -----29 23 -24 ----------28 -------46844689 5 64 26 -11 --------14------------21 19 -18 ---46954703 8 68-7127-30 -18-19 --------17-20------------24-26 22-24 -20-22 ---47034711 8 61-62 16 -8 -----14 11-12 -12-13 ----------17-18 -------4711472211 82-8542-43 -29-30 --------28-29------------36-37 31-33 -31-33 ---47224730 8 72-78 37 -26 --------21-24------------32 25-29 -24-27 ---47304734 4 64 34 -20 --------14------------28 19 -20 ---47464751 5 76 37 -24 --------23-----------31 28 -26 --4751 4755 4 84 43 -28 --------29------------36 32 -32 ---47554760 5 78 43 -26 --------24------------35 29 -29 ---4760477515 79-8540-41 -24-28 --------25-29------------33-34 30-33 -29-31 ---4777479619 74-7936-39 -23-26 --------22-25------------31-33 26-30 -25-28 ---48044809 5 70-71 34 -20 --------19-20------------29 24 -23-24 ---4809483526 75-7937-41 -22-26 --------23-25------------31-34 27-30 -26-29 ---48354840 5 80 42 -27 --------26------------34 30 -30 ---4840485212 74-7636-39 -22-25 --------22-23------------30-33 26-28 -25-27 ---48524857 5 70-7133-34 -19 --------19-20------------27-28 24 -22-23 ---4857491457 72-7936-40 -21-26 --------21-25------------30-34 25-30 -24-29 ---4914493117 65-7127-30 -13-17 -----21-24 15-20 -17-21 ----------20-24 -------49314934 3 73 35 -21 -----28 22 -23 -------26 -------49344941 7 61-6625-29 -11-13 --------11-15------------21-23 17-20 -15-20 ---4941495514 66-7130-33 -13-18 --------15-20------------24-27 20-24 -20-23 ---49554957 2 57 23 -11 --------7------------19 12 -13 ---49574963 6 63-6529-30 -15-16 --------13-15------------24-25 19-20 -18-19 ---49634967 4 71 33 -18 --------20------------27 24 -23 ---49674970 3 63 29 -14 --------13------------24 19 -18 ---49704977 7 65-6928-30 -15-20 -----22-25 15-18 -17-19 ----------20-23 -------49774984 7 61-65 27 -12-13 --------11-15------------22 17-20 -16-18 ---4984500016 72-7936-39 -22-25 --------21-25------------30-33 25-30 -24-28 ---50005004 4 66 29 -21 --------15------------25 20 -20 ---5004501915 75-76 39 -24-25 --------23------------32-33 27-28 -26-27 ---50215024 3 61 19 -4 -----14 11 -12 -------17 -------50365041 5 73 38 -23 --------22------------31 26 -25 ---50415049 8 68-7127-31 -15-18 --------17-20------------23-26 22-24 -20-22 ---50495053 4 60-62 23 -10 -----18 11-12 -14 ----------16-18 -------50535059 6 63 22 -11 -----18 13 -14 ----------19 -------5059507314 72-7933-38 -19-23 --------21-25-------------28-32 25-30 -23-28 ---49054912 7 68 -----------17------------22 -------49154919 4 61 -----------11------------17 -------49314938 7 65 -----------15------------20 -------4938495719 73-78 -----------22-24------------26-29 -------49574965 8 66-68 -----------15-17------------20-22 -------49654971 6 75 -----------23------------25 -------50025010 8 68-70 -----------17-19------------22-24 -------50105015 5 63 -----------13------------19 ----50155021 6 56 -----------7------------12 -------50255029 4 66 -----------15------------20 -------50295033 4 59 -----------9------------14 -------50355041 6 73 -----------22------------26 -------50415047 6 70 -----------19------------24 -------50475051 4 83 -----------28------------32 -------5051508736 76-77 -----------23------------28 -------50875090 3 69 -----------18------------23 -------5090510717 72-75 -----------21-23------------25-27 -------679ADesoto9611660

PAGE 359

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 51075112 5 70 -----------19------------24 -------51125119 7 72-75 -----------21-23------------25-27 -------51195123 4 62 -----------12------------18 -------5149516314 74-75 -----------22-23------------26-27 -------51635168 5 68 -----------17------------22 -------5168518012 72-75 -----------21-23------------25-27 -------51805186 6 60 -----------11------------16 -------51885196 8 68-69 -----------17-18------------22-23 -------51985207 9 71 -----------20------------24 -------5210522919 65-68 -----------15-17------------20-22 -------5237524811 67-68 -----------16-17------------21-22 -------52485255 7 63 -----------13------------19 -------5255527116 66-67 -----------15-16------------20-21 -------52715280 9 62-64 -----------12-14------------18-19 -------52845288 4 59 -----------9----------14 ------52975303 6 62 -----------12------------18 -------53035309 6 65-68 -----------15-17------------20-22 -------53095313 4 72 -----------21------------25 -------53135317 4 81 -----------27------------31 -------5317535336 72-78 -----------21-24------------25-29 -------5353536815 68-70 -----------17-19------------22-24 -------5368538214 72-75 -----------21-23------------25-27 -------53825389 7 68 -----------17------------22 -------53895391 2 60 -----------11------------16 -------5391540514 65-69 -----------15-18------------20-23 -------54055413 8 59 -----------9------------14 -------54135421 8 64 ----------14 ----------------19-------49114917 6 64 -2.23 ---28----14---------34 ---19 20 -----4921493110 67-68 --2.27-2.30---24-25----16-17---------30-31 ---21-22 20-21 -----49364941 5 66 -2.30 ---24----15---------30 --20 19 ---4941495110 76-77 -2.28 --25 ---23 23 --------31----28-------4955497520 72-76 --2.17-2.18---31-32----21-23---------37-38 ---25-28 28-30 -----4975501136 65-71 --2.26-2.35---21-26----15-20---------28-32 ---20-24 23-25 -----5011504130 60-64 --2.35-2.39--18-21 ---11-14 15-16 --------25-28----16-19-------50435050 7 63 -2.4 ---18----13---------25 ---19 20 -----5061507110 65 -2.32 --23 ---15 19 --------29----20-------5079508910 64-65 --2.30-2.31---23-24----14-15---------29-30 ---19-20 24 -----5101511413 63-64 -2.27 ---25----13-14---------31 ---19 25 -----51175125 8 62 -2.38 --19 ---12 15 --------26----18-------51295135 6 59 -2.50 --12 ---9 10 --------20----14-------51385145 7 64 -2.37 ---20----14---------26 ---19 21 -----51675172 5 56 -2.65 ---4----7---------12 ---12 11 -----51875193 6 63 -2.44 ---16----13---------23 ---19 20 -----52025211 9 67 -2.36 --20 ---16 18 -----27----21-------5215524429 65-71 --2.31-2.34---21-23----15-20---------28-29 ---20-24 23-25 -----5244525410 76-77 --2.13-2.16---32-34----23---------38-39 ---28 32-34 -----52545261 7 69-71 -2.2 ---29----18-20---------35 ---23-24 25-26 -----5261530039 72-76 --2.2-2.25---27-30----21-23---------33-35 ---25-28 27-30 -----5305531712 74-76 --2.19-2.25--27-30 ---22-23 24-25 --------33-36----26-28-------53175321 4 66-68 -2.29 ---24----15-17---------31 ---20-22 24 -----53215326 5 69 -2.28 ---25----18---------31 ---23 26 -----5328533810 66-71 --2.25-2.28---25-27----15-20---------31-33 ---20-24 20-25 -----53385344 6 61 -2.46 ---15----11---------22 ---17 17 -----5354537319 62-64 --2.34-2.38--18-21 ---12-14 14-17 --------25-28----18-19-------53995407 8 62 -2.47 --14 ---12 13 --------21----18-------5411545443 65-69 --2.31-2.36---20-23----15-18---------27-29 ---20-23 22-25 -----54545461 7 61 -2.43 ---17----11---------23 ---17 19 -----54635469 6 60-64 -2.43 ---17----11-14---------23 ---16-19 17-19 -----5469548617 72-77 --2.28-2.29--24-25 --21-23 20-22 ------31----25-28-------279Hendry3811646 1193Glades329238

PAGE 360

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 55045509 5 57 -2.67 ---3----7---------11 ---12 10 -----55095517 8 69-71 -2.37 ---20----18-20---------26 ---23-24 23 -----55235529 6 72 -2.36 --20 ---21 19 --------27----25-------55315537 6 69 -2.46 ---15----18---------22 ---23 20 -----55415544 3 58 -2.61 ---6----8---------14 ---13 13 -----55465555 9 60 -2.36 --20 ---11 15 --------27----16-------55555561 6 81-82 -2.21 ---29----27-28---------34 ---31 31 -----55615564 3 64 -2.36 --20 ---14 16 --------27----19-------55645569 5 72 -2.26 ---26----21---------32 ---25 27 -----5569557910 61-65 --2.34-2.36---20-21----11-15---------27-28 ---17-20 20-22 -----55795587 8 75-76 -2.23 ---28----23---------34 ---27-28 28 -----4639466526 -26-30 -9-14 -----------------------20-24 ---------4667468922 -39-43 -23-25 -----------------------32-35 ---------46894695 6 -35-36 -19-20 -----------------------29 ---------4695471116 ->45 -24-26 -----------------------38 ---------47114719 8 -36 -17 -----------------------28 ---------47194725 6 -43 -20 -----------------------33 ---------4725474318 -31-33 -13-17 --------------------25-27 ---------47434749 6 -35-37 -21 -----------------------29-30 ---------47494752 3 -41 -21 -----------------------32 ---------47524755 3 -35 -17 -----------------------28 ---------47554759 4 -23 -9 -----------------------18 ---------47724780 8 -31-32 -12-13 -----------------------24-25 ---------47804783 3 -17 -5 -----------------------14 ---------4783480118 -35-36 -18-19 -----------------------28-29 ---------4805482217 -36-38 -16-18 -----------------------28 ---------48224830 8 -32 -10 -----------------------23 ---------48334839 6 -31 -13 -----------------------24 ---------48394842 3 -22 -9 -----------------------18 ---------48424846 4 -31 -13 -----------------------24 ---------48464852 6 -40 -19 -----------------------31 ---------48724876 4 -24 -8 -----------------------19 ---------49114920 9 -39 -20-21 -----------------------30-31 ---------49204924 4 -33 -19 -----------------------27 ---------4924493410 -26 -12 -----------------------21 ---------4934497137 -32-37 -14-20 -----------------------25-30 ---------4971498413 -27-32 -14-15 -----------------------22-25 ---------4991500312 -37-40 -20-22 -----------------------30-32 ---------50035005 2 -31 -17 -----------------------25 ---------5005501510 -45 -23 -----------------------35 ---------50155017 2 -32 -16 -----------------------26 ---------5017502710 -40 -22 -----------------------32 ---------50275035 8 -26 -13 -----------------------22 ------50515060 9 -24 -7 -----------------------19 ---------5060507010 -30 -16 -----------------------24 ---------5101512322 -30-35 -16-22 -----------------------25-29 ---------51235132 9 -26-27 -11-13 -----------------------21-22 ---------51325141 9 -35-36 -18-20 -----------------------29-30 ---------51415148 7 -38-42 -22 -----------------------31-33 ---------51485151 3 -35 -19 -----------------------29 ---------565AHendry1917025

PAGE 361

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 5151517322 -42-43 -28-30 -----------------------35-36 ---------51735178 5 -23 -10 -----------------------19 ---------5178519113 -35-37 -21-24 -----------------------29-31 ---------51915195 4 -22 -13 -----------------------20 ---------5202521311 -37-39 -24-25 -----------------------31-33 ---------52215225 4 -15 -2 -----------------------12 ---------5225524823 -39-42 -19-26 -----------------------31-34 ---------52485253 5 -32 -16 -----------------------26 ---------5253533178 -35-42 -18-23 -----------------------30-34 ---------5331534514 -30-33 -15-18 -----24-27 ---------------------------53455351 6 -25-27 -11-12 -----------------------20-22 ---------53515357 6 -33-36 -16-20 -----------------------26-29 ---------53575361 4 -20 -9 -----------------------17 ---------5361537110 -39-40 -18-19 -----------------------30-31 ---------5371540130 -31-37 -16-20 -----------------------25-30 ---------54015403 2 -22 -8 -----------------------17 ---------5403541310 -34-36 -18-19 -----------------------27-29 ---------54135415 2 -23 -7 -----------------------18 ---------5415542611 -26-29 -11-13 -----------------------21-23 ---------5426544216 -21-25 -8-12 -----------------------17-20 ---------5442545210 -31-32 -14 -----25-26 ---------------------------479047955 69-71 -----------18-20----------------23-24-------4795481318 72-75 -----------21-23----------------25-27-------481348163 66 -----------15----------------20-------4816484024 76-79 -----------23-25----------------28-30-------484148454 60 -----------11----------------16-------4868488214 69-71 -----------18-20----------------23-24-------489749014 65 -----------15----------------20-------490149098 75 -----------23----------------27-------491849202 61 -----------11----------------17-------4920 4927 7 72 ----------21----------------25-------493249364 63 -----------13----------------19-------493649426 80 -----------26----------------30-------4947495710 72-74 -----------21-22----------------25-26-------495749614 60 -----------11----------------16-------4961498019 66-71 -----------15-20----------------20-24-------4980499010 60-61 -----------11----------------16-17-------4997501215 63-66 -----------13-15----------------19-20-------5019504122 60-65 -----------11-15----------------16-20-------504450528 60-63 -----------11-13----------------16-19-------5061507716 60-62 -----------11-12----------------16-18-------50905094 4 60-61 -----------11----------------16-17-------50965102 6 64 -----------14----------------19-------512251253 61 -----------11----------------17-------513851457 68-69 -----------17-18----------------22-23-------515751658 72-75 -----------21-23----------------25-27-------5169522455 65-71 -----------15-20----------------20-24-------522452317 73-75 -----------22-23----------------26-27-------523152343 68 -----------17----------------22-------523452373 62 -----------12----------------18-------523752447 65-69 -----------15-18----------------20-23-------525152609 70 -----------19----------------24-------526052644 62 -----------12----------------18-------5272529523 80-86 -----------26-29----------------30-33-------606Hendry2411424

PAGE 362

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 5295531015 73 -----------22----------------26-------5310532313 60-66 -----------11-15----------------16-20-------536353696 65 -----------15----------------20-------5386540620 74-79 -----------22-25----------------26-30-------5406542822 65-70 -----------15-19----------------20-24-------5428544012 72-77 -----------21-23----------------25-28-------5440545010 82 -----------28----------------31-------545054555 65 -----------15----------------20-------546254675 75 -----------23----------------27-------546754725 68 -----------17----------------22-------547754792 61 -----------11----------------17-------547954834 77 -----------23----------------28-------548354896 66-68 -----------15-17----------------20-22-------5489550718 72-77 -----------21-23----------------25-28-------550755147 65-68 -----------15-17----------------20-22-------551455206 75 -----------23----------------27-------552055244 66 -----------15----------------20-------5527559063 82-90 -----------28-32----------------31-35-------559055944 72 -----------21----------------25-------5597560912 72 -----------21----------------25-------5616562812 72-73 -----------21-22----------------25-26-------5628563810 86 -----------29----------------33-------563856479 70 -----------19----------------24-------5647565811 63-66 -----------13-15----------------19-20-------48954903 8 63-65 19 -10 --------13-15------------17 19-20 -15-16 ---49114915 4 68 29-31 -12 --------17------------23-24 22 -20-21 ---49154918 3 73 29-31 -12 -----22-23 22 -22-23 ----------26 -------49184922 4 68 29-31 -12 --------17------------23-24 22 -20-21 ---49294933 4 65 23 -8 --------15------------18 20 -17 ---49334936 3 81 23 -9 -----19 27 -23 ----------31 -------49364939 3 57 13 --4 --------7-----------11 12 -10 --4943 496926 74-7837-42 -19-25 --------22-24------------29-33 26-29 -25-29 ---49694974 5 62-6428-29 -11 --------12-14------------22-23 18-19 -17-18 ---4974498410 66-7028-32 -14-17 --------15-19------------23-25 20-24 -19-22 ---4987501528 66-7127-35 -12-19 --------15-20------------22-29 20-24 -19-24 ---5019502910 59 20 -6 --------9------------16 14 -13 ---50335038 5 60 25 -11 --------11------------21 16 -15 ---50385043 5 57 19 -4 --------7------------15 12 -12 ---50455053 8 62 24 -11 --------12------------20 18 -16 ---5059507314 60-6223-25 -9 --------11-12------------19-20 16-18 -15-16 ---50755077 2 56 18 -1 --------7------------13 12 -11 ---50775084 7 66 29 -13 --------15------------23 20 -20 ---5087510316 64-6526-27 -12-13 --------14-15------------22 19-20 -18 --51035107 4 57 14 -7 -------7------------13 12 -10 ---51335139 6 60 13 -4 -----10 11 -10 ----------16 -------51415149 8 56-57 13 --2 --------7------------10 12 -9-10 ---51585164 6 68 32 -14 --------17------------25 22 -21 ---5169518516 73-7538-45 -20-24 --------22-23------------30-36 26-27 -25-28 ---5185520520 62-6425-28 -10-12 --------12-14------------20-22 18-19 -16-18 ---5205523732 65-6926-34 -12-18 --------15-18------------21-27 20-23 -18-22 ---5237524710 62 23 -9 --------12------------18 18 -15 ---5255527318 61-6621-27 -10-14 --------11-15------------18-22 16-20 -14-19 ---5286530317 72-7535-36 -20-21 --------21-23------------29-30 25-27 -24-26 ---53035305 2 60 25 -10 --------11------------20 16 -15 ---53055311 6 70 27 -14 --------19------------23 24 -20 ---53275330 3 57 16 --2 --------7-----------11 12 -11 --5330 5339 9 64-66 23 -8-9 --------14-15------------18-19 19-20 -16-17 ---53855391 6 66-68 24 -7 -----18 15-17 -17-18 ----------20-22 -------53915395 4 74 29 -14 --------22------------24 26 -23 ---768 Hendry 29 16000

PAGE 363

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 5395541116 74-7936-46 -22-24 --------22-25------------31-36 26-30 -25 ---54115420 9 66-67 32 -11-13 --------15-16------------24-25 20-21 -20 ---54205426 6 75 34 -18 --------23------------27 27 -25 ---5426543913 86-8741-47 -25-30 --------29-30------------34-39 33 -32-35 ---54395446 7 77 36 -22 --------23------------30 28 -26 ---5446545711 66-6826-28 -13-14 --------15-17------------21-23 20-22 -18-20 ---5464547410 65-6725-27 -12-14 --------15-16------------21-22 20-21 -18-19 ---5485550924 72-7937-41 -22-25 --------21-25------------31-34 25-30 -24-29 ---55095514 5 63 25 -9 --------13------------20 19 -17 ---5514552915 67-6830-33 -16-19 --------16-17------------25-27 21-22 -20-21 ---5529553910 74-7734-36 -19-20 --------22-23------------28-29 26-28 -24-26 ---5539555112 66-7129-33 -15-18 --------15-20------------24-27 20-24 -20-23 ---55515558 7 62-6423-25 -12-13 --------12-14------------20-21 18-19 -15-17 --5558 5562 4 75 34 -20 -------23------------28 27 -25 ---55625565 3 67 31 -14 --------16------------25 21 -20 ---5565558419 62-6625-27 -10-13 --------12-15------------20-22 18-20 -16-19 ---5584559511 74 32 -18 --------22------------27 26 -24 ---5602561715 78-7941-45 -25-26 --------24-25------------34-37 29-30 -28-30 ---56175622 5 69 29 -16 --------18------------24 23 -20 ---56225627 5 64 26 -10 --------14------------21 19 -18 ---5627563912 66-6821-24 -13-14 -----18-20 15-17 -16-18 ----------20-22 -------5639565516 62-6523-25 -12-13 --------12-15------------19-21 18-20 -15-18 ---56605663 3 59 21 -9 --------9------------17 14 -14 ---5663567512 67-6824-31 -13-17 --------16-17------------21-25 21-22 -18-21 ---56775680 3 65 30 -13 --------15------------24 20 -19 ---5680569313 80-81 46 -24-26 -----26-27------------36 30-31 -31 ---56935699 6 62-6521-24 -10-12 --------12-15------------18-20 18-20 -15-17 ---56995703 4 68 27 -18 --------17------------24 22 -20 ---57035706 3 64 18 -10 --------14------------17 19 -15 ---57065715 9 67-68 25 -15 --------16-17------------22 21-22 -19 ---5715573621 61-6618-22 -10-14 --------11-15------------17-20 16-20 -13-17 ---57395747 8 72 34 -18 --------21------------28 25 -23 ---57515759 8 80-84 44 -26 --------26-29------------36 30-32 -30-32 ---5759576910 67-6921-24 -16-18 -----19-21 16-18 -16-18 ----------21-23 -------5769578112 80-81 44 -25 --------26-27-------------35 30-31 -30-31 ---49134918 5 58 -----------8----------------13-------4918492911 61-66 -----------11-15----------------17-20-------4931494413 76-78 -----------23-24----------------28-29-------49444948 4 56 -----------7----------------12-------49484953 5 61 -----------11----------------17-------49534961 8 87 -----------30----------------33-------49654969 4 75 -----------23----------------27-------4969498516 82-83 -----------28----------------31-32-------49854991 6 57 -----------7----------------12-------4991500312 73-75 -----------22-23----------------26-27-------50035005 2 59 --------9----------------14-------50055013 8 74 -----------22----------------26-------50135019 6 60 -----------11----------------16-------5019503516 68-70 -----------17-19----------------22-24-------50355040 5 61 -----------11----------------17-------50575061 4 59 -----------9----------------14-------5061507312 63-64 -----------13-14----------------19-------50755079 4 56 -----------7----------------12-------5079509112 66 -----------15----------------20-------768 Hendry 29 16000

PAGE 364

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 5104511915 63-66 -----------13-15----------------19-20-------51215125 4 57 -----------7----------------12-------51255133 8 61-62 -----------11-12----------------17-18-------5137515518 60-63 -----------11-13----------------16-19-------51735180 7 53-55 -----------4-6----------------10-11-------51835187 4 56 -----------7----------------12-------51935200 7 63-64 -----------13-14----------------19-------5204522016 67-70 -----------16-19----------------21-24-------5220523616 57-59 -----------7-9----------------12-14-------5236528347 60-66 -----------11-15----------------16-20-------52935298 5 67 -----------16----------------21-------5298532325 60-66 -----------11-15----------------16-20-------53235331 8 71 -----------20----------------24-------5347536619 59 -----------9----------------14-------53705375 5 57 -----------7----------------12-------53865392 6 60 -----------11----------------16-------5399541213 63-66 -----------13-15----------------19-20-------54125415 3 68 -----------17----------------22-------54155423 8 61-65 -----------11-15----------------17-20-------54235426 3 59 -----------9----------------14-------54265433 7 61 -----------11----------------17-------54335437 4 70 -----------19----------------24-------54375442 5 77 -----------23----------------28-------54425447 5 81 -----------27----------------31-------5447545710 62-65 -----------12-15----------------18-20-------54705474 4 62 -----------12----------------18-------5474548511 65-69 -----------15-18----------------20-23-------5485549510 61-65 -----------11-15----------------17-20-------54955499 4 68 -----------17----------------22-------54995507 8 74-77 -----------22-23----------------26-28-------55075512 5 80 -----------26----------------30-------55125514 2 77 -----------23----------------28-------5514554127 83-90 -----------28-32----------------32-35-------5541555110 92 -----------33----------------36-------55515558 7 71-75 -----------20-23----------------24-27-------5558558325 83-87 -----------28-30----------------32-33-------55835586 3 77 -----------23----------------28-------55865594 8 80-81 -----------26-27----------------30-31-------55945600 6 78-79 -----------24-25----------------29-30-------56005604 4 81 -----------27----------------31-------56065614 8 65-68 -----------15-17----------------20-22-------56145617 3 56 -----------7----------------12-------56205624 4 70 -----------19----------------24-------56245628 4 79 -----------25----------------30-------56285632 4 83 -----------28----------------32-------5632564513 75-79 -----------23-25----------------27-30-------4931494110 ---2.5-2.51---12----------------19-20-------------49464953 7 ---2.57-2.6---6-8----------------14-16-------------864Hendry2511864

PAGE 365

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 4953496815 ---2.4-2.45---15-18----------------22-25-------------49684971 3 --2.33 ---22----------------29-------------4971498514 ---2.37-2.46---15-20----------------22-26-------------49854993 8 ---2.49-2.51---12-13----------------19-20-------------49975001 4 --2.5 ---12----------------20-------------5001501110 ---2.36-2.41---18-20----------------25-27-------------50115019 8 ---2.45-2.5---12-15----------------20-22-------------5021503716 ---2.6-2.66---3-6----------------11-14-------------5037504710 ---2.5-2.53---11-12----------------18-20-------------50495057 8 --2.56 ---9----------------17-------------5070508010 ---2.57-2.63---5-8----------------13-16-------------50905093 3 --2.61 ---6----------------14-------------50935100 7 ---2.55-2.57---8-10----------------16-17-------------5111512312 ---2.55-2.58---8-10----------------15-17-------------51295137 8 ---2.53-2.54---10-11----------------18-------------51375143 6 --2.67 ---3----------------11-------------51485156 8 --2.52 ---11----------------19-------------51875195 8 ---2.55-2.57---8-10----------------16-17-------------52055214 9 --2.57 ---8----------------16-------------52215226 5 --2.46 ---15----------------22-------------5226524115 ---2.49-2.55---10-13----------------17-20-------------5241525211 ---2.43-2.5---12-17----------------20-23-------------52525261 9 ---2.35-2.37---20-21----------------26-28-------------52615266 5 ---2.43-2.49---13-17----------------20-23-------------52665270 4 --2.36 ---20----------------27-------------52705279 9 ---2.39-2.49---13-18----------------20-25-------------52795288 9 ---2.5-2.52---11-12----------------19-20-------------52885296 8 ---2.4-2.47---14-18----------------21-25-------------52965298 2 --2.54 ---10----------------18-------------52985303 5 --2.47 ---14----------------21-------------5311532514 ---2.4-2.49---13-18----------------20-25-------------53255327 2 --2.57 ---8----------------16-------------5327534316 ---2.5-2.52---11-12----------------19-20-------------5355537015 --2.6 ---6----------------14-------------53985404 6 --2.64 ---4----------------12-------------5409543930 ---2.39-2.49---13-18----------------20-25-------------5439545011 ---2.5-2.58---8-12----------------15-20-------------5452547119 ---2.39-2.5---12-18----------------20-25-------------5489549910 ---2.44-2.45---15-16----------------22-23-------------55045513 9 --2.37 ---20----------------26-------------55285537 9 ---2.57-2.59---7-8----------------15-16-------------55375545 8 ---2.43-2.49---13-17----------------20-23-------------5545555712 ---2.27-2.32---23-25----------------29-31-------------55575560 3 --2.6 ---6----------------14-------------55645567 3 --2.45 ---15----------------22-------------55675575 8 ---2.25-2.3---24-27----------------30-33-------------5575563257 ---2.39-2.49---13-18----------------20-25-------------485248608 58-59 -----------8-9---------------13-14 -------926Hendry3411705

PAGE 366

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 486248664 62 -----------12---------------18 -------486648715 71 -----------20---------------24 -------487148776 63 -----------13---------------19 -------488048855 54-55 -----------4-6---------------10-11 -------4885489712 72 -----------21---------------25 -------4901491110 72-75 -----------21-23---------------25-27 -------491149143 62 -----------12---------------18 -------491449217 81 -----------27---------------31 -------4921493817 77-79 -----------23-25---------------28-30 -------493849413 70 -----------19---------------24 -------4941495312 62-65 -----------12-15---------------18-20 -------495549627 65 -----------15---------------20 -------496249653 58 -----------8---------------13 -------496549694 64 -----------14---------------19 -------4969499021 67-69 -----------16-18---------------21-23 -------4999501011 61-64 -----------11-14---------------17-19 -------5017502710 61-63 -----------11-13---------------17-19 -------5035504712 63-65 -----------13-15---------------19-20 -------505350607 61-62 -----------11-12---------------17-18 -------5062508321 63-66 -----------13-15---------------19-20 -------50985107 9 62-63 -----------12-13---------------18-19 -------511051155 56 -----------7---------------12 -------512551338 68-69 -----------17-18---------------22-23 -------5139515314 72-74 -----------21-22---------------25-26 -------5153517421 60-66 -----------11-15---------------16-20 -------5174520329 65-69 -----------15-18---------------20-23 -----520352052 59 -----------9---------------14 -------5205521510 61-64 -----------11-14---------------17-19 -------5221523413 60-65 -----------11-15---------------16-20 -------523452395 72 -----------21---------------25 -------524352518 72-74 -----------21-22---------------25-26 -------525152576 70-71 -----------19-20---------------24 -------525752625 73 -----------22---------------26 -------526252697 81 -----------27---------------31 -------527452817 63 -----------13---------------19 -------529553038 59 -----------9---------------14 -------5303531411 61-66 -----------11-15---------------17-20 -------532253253 59 -----------9---------------14 -------533353396 56 -----------7---------------12 -------534553494 69 -----------18---------------23 -------5349536213 63-65 -----------13-15---------------19-20 -------536253719 77 -----------23---------------28 -------537153754 71 -----------20---------------24 -------537553816 75-76 -----------23---------------27-28 -------5381539716 81-84 -----------27-29---------------31-32 -------539754003 71 -----------20---------------24 -------540054033 81 -----------27---------------31 -------540354085 74-75 -----------22-23---------------26-27 -------540854135 69 -----------18---------------23 -------541554183 58 -----------8---------------13 -------541854279 68-71 -----------17-20---------------22-24 ----542954334 59 -----------9---------------14 -------543354429 74 -----------22---------------26 -------544254475 62-66 -----------12-15---------------18-20 -------5447546114 74-77 -----------22-23---------------26-28 -------546154676 66 -----------15---------------20 -------546754714 78 -----------24---------------29 -------547154798 89 -----------31---------------34 -------547954867 80-89 -----------26-31---------------30-34 -------1085Hendry3011676

PAGE 367

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 548654915 93 -----------33---------------36 -------5491550110 82-88 -----------28-30---------------31-33 -------550155043 69 -----------18---------------23 -------550455139 75-77 -----------23---------------27-28 -------5513553118 65-71 -----------15-20---------------20-24 -------553155376 80 -----------26---------------30 -------5537554710 74-75 -----------22-23---------------26-27 -------556355685 70 -----------19---------------24 -------556855724 75 -----------23---------------27 -------557255819 80-82 -----------26-28---------------30-31 -------558155843 69 -----------18---------------23 -------558455917 72 -----------21---------------25 -------5591560615 65-69 -----------15-18---------------20-23 -------560656137 76 -----------23---------------28 -------561356196 67 -----------16---------------21 -------4885489712 60-63 -----------11-13----------------16-19-------489749069 66-68 -----------15-17----------------20-22-------490649104 63 -----------13----------------19-------4916493014 61-66 -----------11-15----------------17-20-------4933495724 72-76 -----------21-23----------------25-28-------495749625 64 -----------14----------------19-------496949734 71 -----------20----------------24-------497349807 72-73 -----------21-22----------------25-26-------4980499515 67-69 -----------16-18----------------21-23-------499550027 62 -----------12----------------18-------500450117 62 -----------12----------------18-------5011502312 57-59 -----------7-9----------------12-14-------502950367 63 -----------13----------------19-------504750547 58-59 -----------8-9----------------13-14-------5067507710 60-62 -----------11-12----------------16-18-------5085509712 57-59 -----------7-9----------------12-14-------510051099 62 -----------12----------------18-------511351185 56 -----------15----------------20-------512251319 62-63 -----------12-13----------------18-19-------516451717 57 -----------7----------------12-------5181519110 63-65 -----------13-15----------------19-20-------5195 5213 18 67-70 ----------16-19----------------21-24-------521352174 72 -----------21----------------25-------521752258 80 -----------26----------------30-------5225523510 75-77 -----------23----------------27-28-------5235525116 68-71 -----------17-20----------------22-24-------5251526211 71-72 -----------20-21----------------24-25-------5262527513 80 -----------26----------------30-------527552805 69 -----------18----------------23-------5287531427 72-76 -----------21-23----------------25-28-------5314532511 63-66 -----------13-15----------------19-20-------5333535522 61-64 -----------11-14----------------17-19-------538453895 61 -----------11----------------17-------5396541519 67-70 -----------16-19----------------21-24-------541554172 62 -----------12----------------18-------5417543518 67-71 -----------16-20----------------21-24-------543554383 63 -----------13----------------19-------543854424 67 -----------16----------------21-------544554549 79 -----------25----------------30-------545454584 61-63 -----------11-13----------------17-19-------545854646 77 -----------23----------------28-------546454695 68 -----------17----------------22-------546954745 80 -----------26----------------30-------549355007 66 -----------15----------------20-------1151Hendry3111492

PAGE 368

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 550455128 69 -----------18----------------23-------551655215 69 -----------18----------------23-------552155243 60 -----------11----------------16-------552455295 69 -----------18----------------23-------5534554612 81-84 -----------27-29----------------31-32-------5546555711 73-77 -----------22-26----------------26-28-------555755658 80 -----------26----------------30-------556555694 63 -----------13----------------19-------556955789 72 -----------21----------------25-------557855846 60 -----------11----------------16-------558455884 67 -----------16----------------21-------558855957 80 -----------26----------------30-------5614562915 74-79 -----------22-25----------------26-30-------562956356 63-65 -----------13-15----------------19-20-------5635564712 68-71 -----------17-20----------------22-24-------5647566114 81-88 -----------27-30----------------31-33-------5661567312 69-71 -----------18-20----------------23-24-------47844786 2 74 -----------22----------------26-------47864788 2 54 -----------4----------------10-------47884790 2 70 -----------19----------------24-------47904793 3 108 ----------->35---------------->40-------47934796 3 127 ----------->35---------------->40-------48054810 5110-115----------->35---------------->40-------48144820 6105-120----------->35---------------->40-------48234825 2 57 -----------7----------------12-------48254828 3 66 -----------15----------------20-------48284833 5 110 ----------->35---------------->40-------48384847 9 62-66 -----------12-15----------------18-20-------48474851 4 78 -----------24----------------29-------48534855 2 103 ----------->35---------------->40-------48554857 2 87 -----------30----------------33-------48624864 2 65 -----------15----------------20-------48684870 2 67 -----------16----------------21-------48794885 6 62-65 -----------12-15----------------18-20-------48854888 3 72 -----------21----------------25-------48904895 5108-120----------->35---------------->40-------49004904 4 86-88 -----------29-30----------------33-------49044909 5 60 -----------11----------------16-------49094911 2 62 -----------12----------------18-------49114919 8 56 -----------7----------------12-------49194925 6 65-71 -----------15-20----------------20-24-------49324935 3 76 -----------23----------------28-------49354938 3 70 -----------19----------------24-------49384940 2 89 -----------31----------------34-------49404949 9 67 -----------16----------------21-------4949496213 73-76 -----------22-23----------------26-28-------4962497917 67-70 -----------16-19----------------21-24-------49794981 2 101 ----------->35---------------->40-------4987500215 72-76 -----------21-23----------------25-28-------50025010 8 64-66 -----------14-15----------------19-20-------5010502515 60-62 -----------11-12----------------16-18-------5029 5035 6 62 ---------12----------------18-------50355039 4 72-75 -----------21-23----------------25-27-------50455051 6 57-58 -----------7-8----------------12-13-------5058506810 60-62 -----------11-12----------------16-18-------5080509111 56 -----------7----------------12-------50975100 3 61 -----------11----------------17-------51035108 5 59 -----------9----------------14-------51135118 5 60-63 -----------11-13----------------16-19--------

PAGE 369

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 51185124 6 56-57 -----------7----------------12-------51305132 2 69 -----------18----------------23-------51625168 6 56-58 -----------7-8----------------12-13-------51755177 2 58 -----------8----------------13-------51815186 5 67 -----------16----------------21-------51865189 3 61-62 -----------11-12----------------17-18-------5189519910 63-66 -----------13-15----------------19-20-------51995208 9 67-70 -----------16-19----------------21-24-------52085209 1 66 -----------15----------------20-------5209523223 72-78 -----------21-24----------------25-29-------52325236 4 70-71 -----------19-20----------------24-------52365241 5 77 -----------23----------------28-------52415247 6 67-69 -----------16-18----------------21-23-------52475252 5 72-73 -----------21-22----------------25-26-------52525254 2 68 -----------17----------------22-------52545256 2 115 ----------->35---------------->40-------52565258 2 72 ----------->35---------------->40-------5258527315 67-71 -----------16-20----------------21-24-------52735275 2 62 -----------12----------------18-------52815286 5 73 -----------22----------------26-------52865289 3 69 -----------18----------------23-------52895298 9 73-76 -----------22-23----------------26-28-------5302531715 72-76 -----------21-23----------------25-28-------53365341 5 56 -----------7----------------12-------53415345 4 59 -----------9----------------14-------53455350 5 61-65 -----------11-15----------------17-20-------53505354 4 59 -----------9----------------14-------5388540719 65-70 -----------15-19----------------20-24-------54075412 5 57 -----------7----------------12-------54125415 3 66 -----------15----------------20-------54155417 2 110 ----------->35---------------->40-------5417543215 73-76 -----------22-23----------------26-28-------54325436 4 79 -----------25----------------30-------54425446 4 77 -----------23----------------28-------54465452 6 82 -----------28----------------31-------54525455 3 71-73 -----------20-22----------------24-26-------54585461 3 55-57 -----------6-7----------------11-12-------54615463 2 71 -----------20----------------24-------54635466 3 86 -----------29----------------33-------54725474 2 57 -----------7----------------12-------54745476 2 67 -----------16----------------21-------54785485 7 80-85 -----------26-29----------------30-33-------54855491 6 63-64 -----------13-14----------------19-------54915495 4 59 -----------9----------------14-------5495550712 67-69 -----------16-18----------------21-23-------55075510 3 76 -----------23----------------28-------5510552717 67-71 -----------16-20----------------21-24-------5527554922 72-79 -----------22-25----------------26-30-------55495555 6 68-70 -----------17-19----------------22-24-------55555559 4 75-76 -----------23----------------27-28-------55595562 3 84 -----------29----------------32-------5562 5564 2 76 ---------23----------------28-------5564558218 81-88 -----------27-30----------------31-33-------55825586 4 68-69 -----------17-18----------------22-23-------55865591 5 78 -----------24----------------29-------5591560716 81-84 -----------27-29----------------31-32-------56075609 2 66 -----------15----------------20-------56095612 3 72 -----------21----------------25-------56215624 3 76 -----------23----------------28-------407Lee 3115710

PAGE 370

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 56245625 1 112 ----------->35---------------->40-------5625563813 72-77 -----------21-23----------------25-28-------56385641 3 70 -----------19----------------24-------56415648 7 80-82 -----------26-28----------------30-31-------5648565911 76-79 -----------16-18----------------21-23-------56595666 7 82 -----------28----------------31-------56665669 3 68 -----------17----------------22-------56695673 4 62-66 -----------12-15----------------18-20-------56735678 5 66-68 -----------15-17----------------20-22-------56785685 7 84 -----------29----------------32-------49674971 4 56 -----------7----------------12-------49714975 4 60 -----------11----------------16-------49754978 3 54 -----------4----------------10-------49784987 9 65-70 -----------15-19----------------20-24-------4990500010 62-66 -----------12-15----------------18-20-------50005003 3 57 -----------7----------------12-------50055012 7 67-68 -----------16-17----------------21-22-------50125019 7 72-74 -----------21-22----------------25-26-------5019503516 65-71 -----------15-20----------------20-24-------5044507632 68-71 -----------17-20----------------22-24-------5076509822 60-63 -----------11-13----------------16-19-------5117512710 57-58 -----------7-8----------------12-13-------5131514211 60-62 -----------11-12----------------16-18-------51545163 9 63 -----------13----------------19-------51635167 4 59 -----------9----------------14-------51715174 3 54 -----------4----------------10-------51745181 7 58-59 -----------8-9----------------13-14-------51835189 6 55 -----------6----------------11-------51935199 6 61-62 -----------11-12----------------17-18-------51995204 5 57 -----------7----------------12-------52445251 7 58-59 -----------8-9----------------13-14-------5259528021 68-71 -----------17-20----------------22-24-------5280529515 75-78 -----------23-24----------------27-29-------5295533136 67-71 -----------16-20----------------21-24-------53565361 5 61 -----------11----------------17-------5379539314 60-62 -----------11-12----------------16-18-------5395540510 55-57 -----------6-7----------------11-12-------54355441 6 61 -----------11----------------17-------54515457 6 58 -----------8----------------13-------5461547615 70-71 -----------19-20----------------24-------54765483 7 62 -----------12----------------18-------5483550320 66-68 -----------15-17----------------20-22-------5520553111 74-76 -----------22-23----------------26-28-------55375546 9 82 -----------28----------------31-------5549556314 54-56 -----------4-7----------------10-12-------5563558926 65-71 -----------15-20----------------20-24-------5589560213 75-78 -----------23-24----------------27-29-------5602561210 66-71 -----------15-20----------------20-24-------56125620 8 76 -----------23----------------28-------4853486613 54-59 -----------4-9----------------10-14-------486648704 63 -----------13----------------19-------4870 4873 3 57 ----------7----------------12-------487748803 58 -----------8----------------13-------4880489717 60-65 -----------11-15----------------17-20-------4897491215 66-71 -----------15-20----------------20-24-------491249142 61 -----------11----------------17-------4914492713 66-68 -----------15-17----------------20-22-------49304937 7 70 -----------19----------------24-------4937495720 72-76 -----------21-23----------------25-28-------408Lee 2611960

PAGE 371

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 4957497720 60-64 -----------11-14----------------16-19-------4979498910 61 -----------11----------------17-------49955002 7 56-57 -----------7----------------12-------5009502314 56-59 -----------7-9----------------12-14-------50345041 7 56-59 -----------7-9----------------12-14-------50415044 3 61 -----------11----------------17-------50445049 5 59 -----------9----------------14-------5051506110 54-58 -----------4-8----------------10-13-------50645070 6 57 -----------7----------------12-------50725081 9 57-59 -----------7-9----------------12-14-------50965099 3 57 -----------7----------------12-------51055110 5 55 -----------6----------------11-------51175123 6 64 -----------14----------------19-------5135514712 64 -----------14----------------19-------5147517629 72-78 -----------21-24----------------25-29-------51765179 3 65-66 -----------15----------------20-------51795185 6 71-73 -----------20-22----------------24-26-------51855189 4 67 -----------16----------------21-------5189520112 71-73 -----------20-22----------------24-26-------52015208 7 67 -----------16----------------21-------52085217 9 74-76 -----------22-23----------------26-28-------52175219 2 66-67 -----------15-16----------------20-21-------52195225 6 75 -----------23----------------27-------52335239 6 73 -----------22----------------26-------52395245 6 67-70 -----------16-19----------------21-24-------5245525510 76 -----------23----------------28-------5255527015 65-70 -----------15-19----------------20-24-------52715277 6 58 -----------8----------------13-------52775281 4 60 -----------11----------------16-------53155323 8 62-65 -----------12-15----------------18-20-------53235329 6 58-59 -----------8-9----------------13-14-------53295333 4 63 -----------13----------------19-------5333534613 71-73 -----------20-22----------------24-26-------5349536112 74 -----------22----------------26-------536353685 70-71 -----------19-20----------------24-------536853779 71-77 -----------20-23----------------24-28-------537753792 58 -----------8----------------13-------537953889 73 -----------22----------------26-------538853913 69 -----------18----------------23-------539153998 61-64 -----------11-14----------------17-19-------5405541611 67-68 -----------16-17----------------21-22-------5419543112 80-83 -----------26-28----------------30-32-------5431544312 71-78 -----------20-24----------------24-29-------54435449 6 83 -----------28----------------32-------5449548334 73-79 -----------22-25----------------26-30-------54835486 3 63-64 -----------13-14----------------19-------5486549913 72-77 -----------21-23----------------25-28-------54995503 4 70 -----------19----------------24-------55035511 8 81-82 -----------27-28----------------31-------55115513 2 76 -----------23----------------28-------55135519 6 84 -----------29----------------32-------5519 5524 5 77 ---------23----------------28-------5524553915 82-86 -----------28-29----------------31-33-------4887489710 54-5816-18 -0--1 --------4-8------------12 10-13 -10-12 ---48974903 6 69 32 -18 --------18------------27 23 -21 ---49034907 4 62 20 -5 --------12------------16 18 -15 ---49094918 9 60-6127-28 -11 --------11------------16-17 16-17 -22-23 ---49184925 7 69 32-33 -16-19 --------18------------26 23 -27 ---49254933 8 66-6833-34 -20-22 --------15-17------------27-29 20-22 -20-22 ---758Lee 2012601

PAGE 372

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 4933494310 73-74 40 -26-27 --------22------------34 26 -26 ---4943496219 67-7031-36 -21-25 --------16-19------------27-31 21-24 -20-24 ---4966497913 72 36-40 -28-30 --------21------------32-35 25 -24-25 ---4979499617 69-7131-35 -23-24 --------18-20------------28-30 23-24 -21-24 ---4999501112 56-5921-25 -10-13 --------7-9------------18-21 12-14 -12-15 ---5011502918 60-6225-31 -11-13 --------11-12------------20-24 16-18 -15-18 ---50475055 8 58 25 -11 --------8------------20 13 -15 ---5062507210 60 27-28 -14 --------11------------22-23 16 -16 ---5081509312 60 23-26 -12-15 --------11------------20-22 16 -16 ---5102511513 61 26-28 -13-16 --------11------------21-24 17 -16-17 ---51175123 6 62 25 -11 --------12------------20 18 -16 ---5181519211 57-5918-22 -5-9 --------7-9------------14-18 12-14 -11-14 ---5192521927 68-7133-36 -24-27 --------17-20------------29-30 22-24 -21-24 --5219 5224 5 73 39 -28 -------22------------34 26 -26 ---5224525127 67-7131-35 -19-24 --------16-20------------26-30 21-24 -20-24 ---52515255 4 74 36 -21 --------22------------30 26 -25 ---52555259 4 69 32 -23 --------18------------27 23 -21 ---52595267 8 61-6529-32 -18-23 --------11-15------------25-28 17-20 -17-20 ---52775285 8 77 39 -27 --------23------------34 28 -27 ---5285529712 66-7028-35 -16-22 --------15-19------------24-30 20-24 -19-24 ---5297531215 72-7536-37 -26-27 --------21-23------------32-33 25-27 -24-26 ---53125318 6 70 29 -23 -----26 19 -21 ----------24 -------5327534619 64 26-28 -14-15 --------14------------22-23 19 -18 ---53785382 4 57 16 -0 --------7------------12 12 -11 ---53935396 3 59 23 -8 --------9------------18 14 -14 ---5396541418 60-6524-29 -10-12 -----11-15------------20-22 16-20 -15-19 ---54145418 4 68 35 -21 --------17------------29 22 -23 ---5423544118 72-7436-38 -25-26 --------21-22------------31-33 25-26 -24-25 ---5441546524 65-6929-34 -15-19 --------15-18------------24-28 20-23 -19-22 ---54655470 5 72 35 -24 --------21------------30 25 -24 ---54815488 7 60 19 -5 -----15 11 -12 ----------16 -------54915498 7 75 26 -11 -----21 23 -22 ----------27 -------54985503 5 69 26 -11 -----21 18 -19 ----------23 -------55035508 5 62 18 -3 -----14 12 -13 ----------18 -------55115516 5 59 18 -5 --------9------------15 14 -12 ---55175522 5 81 42 -28 --------27------------35 31 -30 ---55225531 9 74-79 37 -23 --------22-25------------31 26-30 -25-28 --5531 5536 5 83 37 -23 -------28------------31 32 -30 ---55365539 3 61 23 -4 --------11------------16 15 -15 ---55395545 6 69 31 -20 --------18------------27 23 -21 ---55455549 4 64 25 -13 --------14------------21 19 -17 ---5549557021 74-7640-41 -28-29 --------22-23------------34-35 26-28 -26-27 ---55705576 6 69 33 -17 --------18------------27 23 -22 ---55765583 7 72 38 -24 --------21------------32 25 -25 ---55835587 4 65 30 -17 --------15------------25 20 -19 ---55875593 6 56-57 22 -7 --------7------------17 12 -13 ---55935598 5 60 24 -11 --------11------------20 16 -15 ---56075613 6 63 19 -1 -----14 13 -14 ------------19-------48804885 5 56 -----------7---------------12 -------48854889 4 61 -----------11---------------17 -------48914894 3 63 -----------13---------------19 -------4894 4899 5 71 ---------20---------------24 -------49034909 6 69 -----------18---------------23 -------49094913 4 74 -----------22---------------26 -------49134921 8 61-63 -----------11-13---------------17-19 -------49214927 6 67 -----------16---------------21 -------4927493912 73-75 -----------22-23---------------26-27 -------49394943 4 66 -----------15---------------20 -------49434948 5 74 -----------22---------------26 -------979Lee 2811807

PAGE 373

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 49484953 5 65 -----------15---------------20 -------4958496810 73-74 -----------22---------------26 -------49684971 3 71 -----------20---------------24 -------49714977 6 72-75 -----------21-23---------------24-27 -------4977498811 70-71 -----------20-21---------------24-25 -------4988501628 56-59 -----------7-9---------------12-14 -------5023503815 56-59 -----------7-9---------------12-14 -------5045505914 60-61 -----------11---------------16-17 -------5063507512 60 -----------11---------------16 -------50755077 2 59 -----------9---------------14 -------50795086 7 54-55 -----------4-6---------------10-11 -------50895095 6 58 -----------8---------------13 -------5097510710 63 -----------13---------------19 -------51415146 5 66 -----------15---------------20 -------51605164 4 63 -----------13---------------19 -------5167518215 67-68 -----------16-17---------------21-22 -------5182519311 73-77 -----------22-23---------------26-28 -------51935197 4 71 -----------20---------------24 -------5197520372 72 -----------21---------------25 -------52035211 8 80 -----------26---------------30 -------52115213 2 67 -----------16---------------21 -------52135219 6 78 -----------24---------------29 -------52195223 4 62-64 -----------12-14---------------18-19 -------52235227 4 68 -----------17---------------22 -------5227524316 75 -----------23---------------27 -------52455249 4 74 -----------22---------------26 -----52495257 8 78 -----------24---------------29 -------52575259 2 63 -----------13---------------19 -------52595263 4 57 -----------7---------------12 -------52695275 6 77 -----------23---------------28 -------52755279 4 71 -----------20---------------24 -------5279529314 74-79 -----------22-25---------------26-30 -------52935299 6 67-71 -----------16-20---------------21-24 -------52995307 8 74 -----------22---------------26 -------5317533215 56-59 -----------7-9---------------12-14 -------53525359 7 61-63 -----------11-13---------------17-19 -------53595363 4 58 -----------8---------------13 -------5363537613 63-66 -----------13-15---------------19-20 -------53765385 9 67-69 -----------16-18---------------21-23 -------53895393 4 63 -----------13---------------19 -------53935399 6 73 -----------22---------------26 -------54015405 4 72 -----------21---------------25 -------54055409 4 63-64 -----------13-14---------------19 -------54095414 5 80 -----------26---------------30 -------5414543319 66-71 -----------15-20---------------20-24 -------54335439 6 73 -----------22---------------26 -------5447545710 71-72 -----------20-21---------------24-25 -------54575461 4 63-64 -----------13-14---------------19 -------54615463 2 67 -----------16---------------21 -------54635469 6 74-76 -----------22-23---------------26-28 -------54695475 6 81 -----------27---------------30 ----5475548813 66-71 -----------15-20---------------20-24 -------54885490 2 63 -----------13---------------19 -------5490550111 65-71 -----------15-20---------------20-24 -------55015503 2 62 -----------12---------------18 -------55035510 7 71-73 -----------20-22---------------24-26 -------55105517 7 69-70 -----------18-19---------------23-24 -------55175519 2 64 -----------14---------------19 -------55195524 5 65-67 -----------15-16---------------20-21 -------1014Lee 2311695

PAGE 374

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 55245529 5 79 -----------25---------------30 -------55295536 7 69-71 -----------18-20---------------23-24 -------55365539 3 82 -----------28---------------31 -------55395543 4 77 -----------23---------------28 -------55435549 6 80 -----------26---------------30 -------5549557122 74-79 -----------22-25---------------26-30 -------55715578 7 82 -----------28---------------31 -------55785582 4 78 -----------24---------------29 -------55835587 4 56 ----------7 ----------------12-------55915599 8 63 ----------13 ----------------19-------43854392 7 73-75 31 -17 --------22-23------------26 26-27 -23-24 ---4392440412 67-7119-26 -15-16 --------16-20------------20-23 21-24 -15-19 ---44044411 7 72-7328-30 -18-19 --------21-22------------25-26 25-26 -22 ---44114414 3 70 25 -16 -----21 19 -19 ----------24 -------44304435 5 76 30 -14 -----23 23 -24 ----------28 -------44354443 8 77-7834-36 -19-21 --------23-24------------28-30 28-29 -25-27 ---44434451 8 80-8334-35 -23 -----28-29 26-28 -27-28 ----------30-32 -------4451 4458 7 70-7127-28 -14 -------19-20------------22-23 24 -20-21 ---44584467 9 83 32 -19 -----26 28 -27 ----------32 -------44754484 9 84-8734-36 -19-24 -----28-31 29-30 -28-31 ----------32-33 -------44844491 7 78-7935-36 -21 --------24-25------------30 29-30 -26-27 ---44914499 8 80-8133-34 -20-22 -----28-29 26-27 -27 ----------30-31 -------4499451112 85-8839-41 -24-27 --------29-30------------34 33 -31-33 ---4511452413 81-8434-39 -22-25 -----29-33 27-29 -27-30 ----------31-32 -------4524454319 74-7928-34 -16-22 --------22-25------------24-29 26-30 -23-26 ---4543455310 83-8636-37 -24-25 --------28-29------------31-32 32-33 -29-31 ---45534558 5 73-7830-33 -17-20 --------22-24------------25-28 26-29 -22-26 ---4558460648 80-8634-40 -21-25 --------26-29------------29-33 30-33 -27-31 ---4606461610 88 45-46 -27-28 --------30------------36-37 33 -34-35 --4616 4623 7 85 34-37 -22 ----29-31 29 -29-31 ----------33 -------4623463310 77 33 -18 --------23------------27 28 -25 ---4635465419 82-8332-37 -20-24 -----27-31 28 -27-30 ----------31-32 -------46544658 4 65 25 -11 --------15------------20 20 -18 ---4658466911 76-78 31 -19-22 --------23-24------------26-28 28-29 -24-25 ---4669468213 83 39-43 -25-26 --------28------------33-35 32 -29-31 ---4682471937 73-7933-37 -22-25 --------22-25------------28-32 26-30 -24-28 ---4719478263 80-8633-36 -21-22 -----28-30 26-29 -27-30 ----------30-33 -------47824789 7 86 38 -26 --------29------------33 33 -31 ---4789480920 80-8633-36 -21-22 -----28-30 26-29 -27-30 ----------30-33 -------48094817 8 73-7428-29 -16 -----23-24 22 -21-22 ----------26 -------4817 4834 17 77-79 34-36 -21-22 --------23-25------------28-30 28-30 -25-27 ---4834485925 63-6621-25 -10-13 --------13-15------------18-21 19-20 -18-19 ---48594866 7 72-7932-34 -21-22 --------21-25------------28-29 25-30 -23-26 ---4866487711 72-73 28 -16-18 -----22-23 21-22 -22 ----------25-26 -------48774880 3 68 22 -15 -----19 17 -18 ----------22 -------48804886 6 82 33 -22 -----29 28 -27 ----------31 -------4886489610 76-77 31 -22 --------23------------28 28 -24 ---48964901 5 87 38 -23 --------30------------32 33 -31 ---49014905 4 69 21 -11 -----18 18 -17 ----------23 -------49054907 2 64 14 -4 -----12 14 -12 ----------19 -------4910492919 72-7526-28 -13-18 -----22-25 20-23 -19-22 ----------24-27 -------4936495418 69-7122-23 -9-11 ---17-18 18-20 -18 ---------23-24 -------4954496612 73 22-23 -10-11 -----17-18 22 -20 ----------26 -------49664972 6 63-6417-18 -5-6 -----14-15 13-14 -13-14 ----------19 -------4972498917 72-7424-28 -12-17 -----19-24 21-22 -19-21 ----------25-26 -------49894995 6 75 29 -18 -----24 23 -22 ----------27 -------49955001 6 77 31 -21 --------23------------27 28 -24 ---5001505655 65-7124-29 -12-16 --------15-20------------20-24 20-24 -17-21 ---5059508627 72-7929-35 -16-26 --------21-25------------24-31 25-30 -22-27 ---759Manatee2511000

PAGE 375

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 50865089 3 60 17 -6 -----13 11 -12 ----------16 -------50895096 7 83 42 -30 --------28------------36 32 -31 ---50965100 4 78 34 -25 --------24------------30 29 -26 ---51005103 3 62 19 -10 --------12------------17 18 -14 ---51035110 7 71 27 -14 -----22 20 -20 ----------24 -------51105117 7 79 36 -25 --------25------------31 30 -27 ---51175119 2 60 20 -8 --------11------------16 16 -14 ---51195128 9 68-69 25 -13 -----20 17-18 -18 ----------22-23 -------51285137 9 72-7328-31 -20 --------21-22------------25-27 25-26 -22-23 ---51375144 7 59 19-20 -6-7 --------9------------16 14 -13 ---5144515410 72 30 -16 -----24 21 -22 ----------25 -------5154516713 61-6619-24 -10-16 --------11-15------------17-22 17-20 -13-17 --5167 5178 11 66-71 27 -17 --------15-20------------24 20-24 -18-20 ---51845189 5 62 18 -4 -----13 12 -13 ----------18 -------51895191 2 58 13 -1 --------8------------10 13 -10 ---51915200 9 75 32 -19 --------23------------27 27 -24 ---52005206 6 61 16 -3 -----12 11 -12 ----------16 -------52065214 8 68 27 -16 --------17------------23 22 -20 ---52145217 3 56 14 -3 --------7------------12 12 -10 ---52175223 6 70 26 -16 --------19------------23 24 -20 ---5223523310 60-6413-16 -2-5 -----11-12 11-14 -10-13 ----------16-19 -------5233526128 65-7124-28 -13-15 --------15-20------------21-23 20-24 -17-21 ---52775282 5 58-59 16 -6 --------8-9------------13 13-14 -11-12 ---52825289 7 62 17 -11 -----15 12 -14 -------18 -------52895296 7 73 27 -16 -----23 22 -21 ----------26 -------52965301 5 61 16 -4 -----12 11 -12 ------------17-------39713980 9 65-69 -----------15-18---------------20-23 -------39803984 4 87 -----------30---------------33 -------39843988 4 77-79 -----------23-25---------------28-30 -------39883990 2 83 -----------28---------------32 -------3990400313 72-78 -----------21-24---------------25-29 -------4003402926 69-71 -----------18-20---------------23-24 -------40294033 4 73 -----------22---------------26 -------40374041 4 68 -----------17---------------22 -------40414043 2 79 ----------25 ----------------30-------40434046 3 86 ----------29 ----------------33-------40464049 3 69 ----------18 ----------------23-------4049406011 73-76 ----------22-23 ----------------26-28-------40604064 4 64 -----------14---------------19 -------4064407915 74-77 -----------22-23---------------26-28 -------40794086 7 69-70 -----------18-19---------------23-24 -------40864092 6 74-75 -----------22-23---------------26-27 -------40924099 7 66-71 -----------15-20---------------20-24 -------4099411213 60-63 -----------11-13---------------16-19 -------41124114 2 68 -----------17---------------22 -------4114412915 73-79 -----------22-25---------------26-30 ----41294132 3 69 -----------18---------------23 -------41324135 3 74 -----------22---------------26 -------41354139 4 88 -----------30---------------33 -------4139415112 72-77 -----------21-23---------------25-28 -------41514153 2 68-69 -----------17-18---------------22-23 -------4153416714 72-77 -----------21-23---------------25-28 -------4167418114 80-85 -----------26-29---------------30-33 -------41814185 4 72 -----------21---------------25 -------41854189 4 56-57 -----------7---------------12 -------41894198 9 66-71 -----------15-20---------------20-24 -------4198421113 72-77 -----------21-23---------------25-28 -------42114219 8 65-66 -----------15---------------20 -------42234228 5 72 -----------21---------------25 -------1032Martin2913198

PAGE 376

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 42284237 9 67-69 -----------16-18---------------21-23 -------42374240 3 72 -----------21---------------25 -------42404245 5 100 ----------->35--------------->40 -------4305432722 54-57 -----------4-7---------------10-12 -------43314340 9 66-71 -----------15-20---------------20-24 -------43404345 5 77 -----------23---------------28 -------4345436520 65-71 -----------15-20---------------20-24 -------43654368 3 80-84 -----------26-29---------------30-32 -------43684374 6 72-79 -----------21-25---------------25-30 -------43744381 7 80 -----------26---------------30 -------4381442039 72-78 -----------21-24---------------25-29 -------4420446545 80-87 -----------26-30---------------30-33 -------44654471 6 72-74 -----------21-22---------------25-26 -------44714474 3 69 -----------18---------------23 -------44744480 6 63 -----------13---------------19 -------4480449111 56-59 ----------7-9 ----------------12-14-------45324541 9 57-59 -----------7-9---------------12-14 -------45464555 9 62 -----------12---------------18 -------45624565 3 57 -----------7---------------12 -------45654567 2 62 -----------12---------------18 -------4567457912 70-71 -----------19-20---------------24 -------45794585 6 71-72 -----------20-21---------------24-25 -------45854588 3 64 -----------14---------------19 -------45884593 5 55-59 -----------6-9---------------11-14 -------4593463239 60-66 -----------11-15---------------16-20 -------46324634 2 55 -----------6---------------11 -----46344639 5 60 -----------11---------------16 -------46394643 4 56 -----------7---------------12 -------46554661 6 56-57 -----------7---------------12 -------4689470011 60-62 -----------11-12---------------16-18 -------4700471515 55-58 -----------6-8---------------11-13 -------47154722 7 61-62 -----------11-12---------------17-18 -------4722473311 75-77 -----------23---------------27-28 -------47334741 8 55 -----------6---------------11 -------4756478024 62-63 -----------12-13---------------18-19 -------47804786 6 59 -----------9---------------14 -------47864790 4 64 -----------14---------------19 -------47904799 9 66-68 -----------15-17---------------20-22 -------47994807 8 60-62 -----------11-12---------------16-18 -------48094815 6 62 -----------12---------------18 -------48154819 4 56-59 -----------7-9---------------12-14 -------4819483011 60-63 -----------11-13---------------16-19 -------48304839 9 56-57 -----------7---------------12 -------4845485510 55-59 -----------6-9---------------11-14 -------48574863 6 54-56 -----------4-7---------------10-12 -------48654868 3 55 -----------6---------------11 -------4875489015 55-59 -----------6-9---------------11-14 -------48904897 7 62 -----------12---------------18 -------4897490710 57-58 -----------7-8---------------12-13 -------49074910 3 60 -----------11---------------16 -------4910493525 55-57 -----------6-7---------------11-12 ----4938494911 54-56 -----------4-7---------------10-12 -------4949496112 70-71 -----------19-20---------------24 -------4961497716 80-83 -----------26-28---------------30-32 -------49774980 3 77 -----------23---------------28 -------4980499010 79-82 -----------25-28---------------30-31 -------49904993 3 75 -----------23---------------27 -------49935001 8 70-71 -----------19-20---------------24 -------5001502928 74-78 -----------22-24---------------26-29 --------

PAGE 377

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 50295034 5 68 -----------17---------------22 -------50345036 2 57 -----------7---------------12 -------50365039 3 60 -----------11---------------16 -------50395045 6 81 -----------27---------------31 -------50455048 3 78 -----------24---------------29 -------50485053 5 80-82 -----------26-28---------------30-31 -------50535057 4 77 -----------23---------------28 -------50575065 8 88 -----------30---------------33 -------5065507510 78-79 -----------24-25---------------29-30 -------50755081 6 84 -----------29---------------32 -------50815083 2 77 -----------23---------------28 -------5083510724 80-87 -----------26-30---------------30-33 -------51075114 7 87-90 -----------30-32---------------33-35 -------51145123 9 82 -----------28---------------31 -------51235127 4 74 -----------22---------------26 -------51275134 7 81-82 -----------27-28---------------31 -------51345137 3 78 -----------24---------------29 -------51375141 4 83 -----------28---------------32 -------51415145 4 77 -----------23---------------28 -------51455148 3 86 -----------29---------------33 -------51485151 3 76-78 -----------23-24---------------28-29 -------51515152 1 82 -----------28---------------31 -------51525155 3 91 -----------32---------------36 -------51555164 9 77-79 -----------23-25---------------28-30 -------5164517511 65-71 -----------15-20---------------20-24 -------51755181 6 72-74 -----------21-22---------------25-26 -----51815184 3 68 -----------17---------------22 -------51845188 4 82 -----------28---------------31 -------5188519810 76-78 -----------23-24---------------28-29 -------5198521315 80-86 -----------26-29---------------30-33 -------52135221 8 74-79 -----------22-25---------------26-30 -------52215230 9 84 -----------29---------------32 -------52305232 2 56 -----------7---------------12 -------52325235 3 63 -----------13---------------19 -------52355239 4 68 -----------17---------------22 -------5239525112 72-77 -----------21-23---------------25-28 -------5251526716 88-97 -----------30-34---------------33-38 -------52675271 4 81-86 -----------27-29---------------31-33 -------5271528211 65-71 -----------15-20---------------20-24 -------52825285 3 58-59 -----------8-9---------------13-14 -------5285531227 71-79 -----------20-25---------------24-30 -------53125318 6 81 -----------27---------------30 -------53185321 3 60 -----------11---------------16 -------53215329 8 72-77 -----------21-23---------------25-28 -------5329534516 80-83 -----------26-28---------------30-32 -------53455347 2 71 -----------20---------------24 -------53475352 5 81-87 -----------27-30---------------31-33 -------53525358 6 95 -----------34---------------37 -------53585365 7 76 -----------23---------------28 -------53655369 4 79-80 -----------25-26---------------30 -------536953851688-101-----------30-35---------------33-39 ----5385540318 79-82 -----------25-28---------------30-31 -------5403542320 72-77 -----------21-23---------------25-28 -------5423543411 68-71 -----------17-20---------------22-24 -------54345441 7 73-77 -----------22-23---------------26-28 -------54415447 6 83 -----------28---------------32 -------54475455 8 72-76 -----------21-23---------------25-28 -------54555459 4 69 -----------18---------------23 -------54595464 5 73-74 -----------22---------------26 -------331Miami-Dade911615

PAGE 378

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 54645467 3 69-70 -----------18-19---------------23-24 -------54675470 3 72-79 -----------21-25---------------25-30 -------54705476 6 80-83 -----------26-28---------------30-32 -------54765481 5 72-75 -----------21-23---------------25-27 -------54815487 6 84-87 -----------29-30---------------32-33 -------54875491 4 73-76 -----------22-23---------------26-28 -------4900492121 65-71 -----------15-20---------------20-24 -------49214923 2 64 -----------14---------------19 -------4923494926 67-70 -----------16-19---------------21-24 -------4951496716 60-66 -----------11-15---------------17-20 -------49674972 5 58-59 -----------8-9---------------13-14 -------49724981 9 62-64 -----------12-14---------------18-19 -------49854993 8 60 -----------11---------------16 -------50095012 3 66 -----------15---------------20 -------50125014 2 74 -----------22---------------26 -------5021503110 53-55 -----------4-6---------------10-11 -------50475050 3 53 -----------4---------------10 -------50555058 3 53 -----------4---------------10 -------50585062 4 75-76 -----------23---------------27-28 -------50625065 3 69 -----------18---------------23 -------5065507611 54-56 -----------4-7---------------10-12 -------50765079 3 79 -----------25---------------30 -------50795082 3 84 -----------29---------------32 -------50825083 1 72 -----------21---------------25 -------50945099 5 73-76 -----------22-23---------------26-28 -------5101511110 80-88 -----------26-30---------------30-33 -----51325137 5 72-78 -----------21-24---------------25-29 -------51375141 4 54 -----------4---------------10 -------51415150 9 66-68 -----------15-17---------------20-22 -------51505153 3 55-56 -----------6-7---------------11-12 -------51535156 3 71 -----------20---------------24 -------51565158 2 58 -----------8---------------13 -------51625165 3 67 -----------16---------------21 -------51675171 4 85 -----------29---------------33 -------51715173 2 57 -----------7---------------12 -------51755180 5 87 -----------30---------------33 -------5180519010 72-76 -----------21-23---------------25-28 -------519052091998-126 ----------->35--------------->40 -------52095211 2 80 -----------26---------------30 -------52115213 2 55 -----------6---------------11 -------52215229 8 54-59 -----------4-9---------------10-14 -------52375243 6 56 -----------7---------------12 -------52435245 2 66 -----------15---------------20 -------52455247 2 86 -----------29---------------33 -------52475251 4 107 ----------->35--------------->40 -------52515253 2 86-88 -----------29-30---------------33 -------52535257 4 60-66 -----------11-15---------------17-20 -------52575259 2 53-54 -----------4---------------10 -------52595261 2 63 -----------13---------------19 -------52615265 4 87 -----------30---------------33 -------52655266 1 77 -----------23---------------28 ----52665268 2 67-71 -----------16-20---------------21-24 -------52685270 2 60-62 -----------11-12---------------16-18 -------52705272 2 68 -----------17---------------22 -------52725274 2 56 -----------7---------------12 -------52745277 3 63-64 -----------13-14---------------19 -------52775283 6 72-78 -----------21-24---------------25-29 -------52835285 2 55 -----------6---------------11 -------52855290 5 72-77 -----------21-23---------------25-28 -------284MonroeSea Level15294

PAGE 379

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 53105312 2 58 -----------8---------------13 -------53125315 3 75 -----------23---------------27 -------47064709 3 63-64 -----------13-14---------------19 -------47094713 4 57 -----------7---------------12 -------47134717 4 53-56 -----------4-7---------------10-12 -------47174720 3 76 -----------23---------------28 -------47204723 3 58 -----------8---------------13 -------47304732 2 62 -----------12---------------18 -------47324734 2 70 -----------19---------------24 -------47344735 1 58 -----------8---------------13 -------47354741 6 96 -----------34---------------38 -------47424744 2 66 -----------15---------------20 -------47444747 3 82 -----------28---------------31 -------47514754 3 88 -----------30---------------33 -------47544757 3 63 -----------13---------------19 -------47574762 5 53-54 -----------4---------------10 -------47654769 4 60 -----------11---------------16 -------47714774 3 54-55 -----------4-6---------------10-11 -------48194827 8 54-55 -----------4-6---------------10-11 -------48444847 3 59 -----------9---------------14 -------48484852 4 72 -----------21---------------25 -------48554858 3 56 -----------6---------------11 -------48584862 4 63 -----------13---------------19 -------48624864 2 57 -----------7---------------12 -------49424944 2 60 -----------11---------------16 -------49474949 2 57 -----------7---------------12 -----49514954 3 55-56 -----------6-7---------------11-12 -------49554958 3 77 -----------23---------------28 -------49584961 3 80-84 -----------26-29---------------30-32 -------49614964 3 95 -----------34---------------37 -------49644966 2 79 -----------25---------------30 -------49664969 3 97 -----------34---------------38 -------49694973 4 59 -----------9---------------14 -------49764978 2 56 -----------7---------------12 -------49854991 6 83 -----------28---------------32 -------49914994 3 66-68 -----------15-17---------------20-22 -------49945002 8 55-58 -----------6-8---------------11-13 -------50025003 1 68 -----------17---------------22 -------50035005 2 73-74 -----------22---------------26 -------50055008 3 93 -----------33---------------36 -------50085010 2 78 -----------24---------------29 -------50105015 5 83-84 -----------28-29---------------32 -------50155018 3 72 -----------21---------------25 -------50205022 2 74 -----------22---------------26 -------50265029 3 56-59 -----------7-9---------------12-14 -------50295032 3 78 -----------24---------------29 -------50325036 4 60 -----------11---------------16 -------50365038 2 71 -----------20---------------24 -------4697470912 60-65 -----------11-15---------------16-20 -------4713474128 66-71 -----------15-20---------------20-24 -------47414745 4 63 -----------13---------------19 ----47454750 5 57 -----------7---------------12 -------4757477619 66-70 -----------15-19---------------20-24 -------4776479519 74-79 -----------22-25---------------26-30 -------47954802 7 66-67 -----------15-16---------------20-21 -------48024806 4 58 -----------8---------------13 -------4823483613 61-65 -----------11-15---------------17-20 -------4863488623 54-58 -----------4-8---------------10-13 -------48864895 9 60-66 -----------11-15---------------16-20 -------296MonroeSea Level7871

PAGE 380

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 4895491520 71-77 -----------20-23---------------24-28 -------49154924 9 66-68 -----------15-17---------------21-22 -------4937496528 71-76 -----------20-23---------------24-28 -------49654969 4 69 -----------18---------------23 -------4969499526 74-79 -----------22-25---------------26-30 -------4995501116 66-70 -----------15-19---------------20-24 -------50115017 6 62 -----------12---------------18 -------5017502912 60-64 -----------11-14---------------16-19 -------50295037 8 65-68 -----------15-17---------------20-22 -------50375042 5 73 -----------22---------------26 -------5045506419 61-66 -----------11-15---------------17-20 -------5071508918 84-90 -----------29-32---------------32-35 -------5089510011 71-78 -----------20-24---------------24-29 -------51005105 5 69 -----------18---------------23 -------51055108 3 72 -----------21---------------25 -------51085111 3 69 -----------18---------------23 -------51115114 3 61-62 -----------11-12---------------17-18 -------51145121 7 58-59 -----------8-9---------------13-14 -------5121513211 64-66 -----------14-15---------------19-20 -------51355140 5 66 -----------15---------------20 -------5140515212 71-78 -----------20-24---------------24-29 -------51525156 4 61 -----------11---------------17 -------51565164 8 57-59 -----------7-9---------------12-14 -------3668368517 76-7937-40 -21-25 --------23-25------------30-33 28-30 -26-29 ---36853689 4 82 45 -30 -----28------------38 31 -31 ---3689370617 75-7939-43 -24-27 --------23-25------------32-35 27-30 -26-30 ---37063709 3 66 37 -18 --------15------------29 20 -21 ---37093717 8 73 39 -20 --------22------------31 26 -26 ---37173725 8 65-6832-34 -16-20 --------15-17------------26-28 20-22 -20-22 ---37253728 3 60 23 -8 --------11------------18 16 -15 ---3734375117 65-6932-36 -16-21 --------15-18------------26-30 20-23 -20-24 ---37563762 6 62-64 28 -15 --------12-14------------23 18-19 -17-18 ---37623769 7 73 37 -22 --------22------------31 26 -24 ---37693774 5 66 29 -13 --------15------------23 20 -20 ---37743783 9 54-56 16 -6 --------4-7------------13 10-12 -10-11 ---3783379512 74-7739-40 -22 --------22-23------------32 26-28 -26-28 ---38053814 9 80-8238-40 -24-28 --------26-28------------32-34 30-31 -28-30 --3814 3818 4 76 30 -17 -------23------------25 28 -24 ---38223827 5 62 22 -9 --------12------------18 18 -15 ---38313838 7 74 37 -22 --------22------------31 26 -25 ---38383843 5 69 31 -16 --------18------------25 23 -21 ---38483855 7 80 43 -25 --------26------------35 30 -30 ---3859387516 66-7128-36 -15-19 --------15-20------------23-29 20-24 -19-24 ---38833886 3 58 13 -2 -----9 8 -10 ----------13 -------38863890 4 62 11 -2 -----10 12 -10 ----------18 -------38933900 7 71 33 -19 --------20------------27 24 -23 ---39003904 4 59 12 -2 -----9 9 -9 ----------14 -------39043912 8 66-6928-35 -12-13 --------15-18------------22-26 20-23 -19-24 ---39123919 7 83 44 -28 --------28------------36 32 -32 --3919 3927 8 66 23-27 -11-16 -------15------------19-23 20 -17-19 ---3927394922 72-7938-40 -21-25 --------21-25------------31-34 25-30 -25-29 ---39493956 7 68-7128-32 -18 --------17-20------------25-26 21-24 -20-22 ---39643969 5 64 19 -5 -----13 14 -14 ----------19 -------39733978 5 68-71 26 -13 -----20 17-20 -18-19 ----------21-24 -------39783983 5 85 43-44 -28-29 --------29------------36 33 -32 ---3983399310 77 34-39 -19-24 --------23------------28-32 28 -25-27 ---39933999 6 86 43 -26 --------29------------35 33 -33 ---39994004 5 70 24 -8 -----18 19 -18 ----------24 -------4008401810 85-8940-44 -30-31 --------29-31------------35-37 33-34 -31-34 ---564Monroe912662

PAGE 381

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 40184025 7 74-7933-37 -22-24 --------22-25------------28-31 26-30 -24-28 ---40324041 9 74-7932-35 -19-23 --------22-25------------27-30 26-30 -24-27 ---4041405110 80-8337-42 -22-27 --------26-28------------31-35 30-32 -28-31 ---40514059 8 96-99>45 -37 --------34-35------------>40 38-39 ->40 ---40594065 6 81 39 -26 --------27------------33 31 -30 ---40674069 2 68 15 -14 -----14 17 -15 ----------22 -------4069408011 84-8543-44 -30-31 --------29------------37 32-33 -32 ---40844091 7 86 44 -28 --------29------------36 33 -33 ---40914094 3 77 36 -25 --------23------------31 28 -26 ---40944101 7 81 34 -27 -----30 27 -26 ----------31 -------4105412217 77-7936-40 -24-25 --------23-25------------31-38 28-30 -26-29 ---41224125 3 70 32 -18 --------19------------26 24 -22 ---41254129 4 73 34 -19 --------22-----------28 26 -24 --4129 415122 81-8642-45 -26-31 --------27-29------------35-38 31-33 -30-33 ---4151417120 74-7734-41 -21-26 --------22-23------------29-34 26-28 -24-28 ---4171418211 85-8943-45 -30-35 --------29-31------------36-40 33-34 -32-35 ---41824187 5 75-76 34 -21 --------23------------29 27-28 -25 ---41874193 6 89 46 -32 --------31------------39 34 -35 ---41934200 7 75-7933-39 -25-27 --------23-25------------30-34 27-30 -25-28 ---4200421111 87-8843-44 -30-32 --------30------------36-38 33 -33-34 ---42114213 2 70 27 -19 -----23 19 -19 ----------24 -------42134217 4 86 37 -28 --------29------------33 33 -31 ---42174221 4 76 35 -19 --------23------------28 28 -25 ---42214225 4 70 27 -16 -----22 19 -19 ----------24 -------4225424621 72-7835-42 -19-24 --------21-24------------28-34 25-29 -24-29 --42464253 7 80 42-44 -29 -------26------------36-37 30 -30 ---42534255 2 65 28 -15 --------15------------24 20 -18 ---42554262 7 72-73 37 -20-23 --------21-22------------30-31 25-26 -24 ---42624266 4 65-6827-30 -14-18 -----21-25 15-17 -17-19 ----------20-22 -------4266428216 74-7933-45 -22-26 --------22-25------------28-36 26-30 -24-30 ---42824291 9 81 33 -29 -----31 27 -26 ----------31 -------42914294 3 58 19 -8 --------8------------16 13 -13 ---4294430511 80 33-35 -25 -----29 26 -26 ----------30 -------4305431813 65-7126-30 -14-17 -----21-24 15-20 -17-20 ----------20-24 -------43184324 6 57-59 15 -5 -----12 7-9 -9-10 ----------12-14 -------43244329 5 63 27 -19 --------13------------24 19 -17 --4329 4334 5 69 35 -25 -------18------------31 23 -24 ---43344340 6 62 18 -8 -----15 12 -14 ----------18 -------43404344 4 55 16 -7 --------6------------14 11 -10 ---43524355 3 60 20 -5 -----14 11 -13 ----------16 -------43554360 5 56-59 17 -8 --------7-9-------------15 12-14 -11-12 ---36393648 9 61-66 -----------11-15---------------17-20 -------3652367220 66-71 -----------15-20---------------20-24 -------36723681 9 83 -----------28---------------32 -------36813688 7 72 -----------21---------------25 -------36883692 4 66-68 ----------15-17 ----------------20-22-------36973705 8 66-68 ----------15-17 --------------20-22-------37053709 4 59 -----------9---------------14 -------37113716 5 74 -----------22---------------26 -------3716372812 67-71 -----------16-20---------------21-24 -------3737375417 62-66 -----------12-15---------------18-20 -------37663774 8 78 -----------24---------------29 -------37743778 4 66 ----------15 ----------------20-------37853793 8 69 -----------18---------------23 -------38013805 4 64 -----------14---------------19 ----3809382314 72-75 -----------21-23---------------25-27 -------38233827 4 63 ----------13 ----------------19-------38273833 6 73 -----------22---------------26 -------38333835 2 55 ----------6 ----------------11-------710Okeechobee4311300

PAGE 382

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 3845385510 74-77 -----------22-23---------------26-28 -------38553859 4 81 -----------27---------------31 -------38593864 5 73 -----------22---------------26 -------38653869 4 55 ----------6 ----------------11-------38743879 5 56 ----------7 ----------------12-------38803889 9 60-65 -----------11-15---------------16-20 -------38943901 7 82 -----------28---------------31 -------3909393526 60-66 -----------11-15---------------16-20 -------3935394914 72-73 -----------21-22---------------25-26 -------39513957 6 72 -----------21---------------25 -------39593963 4 64 -----------14---------------19 -------39813990 9 69-71 -----------18-20---------------23-24 -------39903994 4 60 -----------11---------------16 -------39943999 5 68 -----------17---------------22 -------39994003 4 74 ----------22 ----------------26-------40034006 3 65 -----------15---------------20 -------4008402113 73-75 -----------22-23---------------26-27 -------40354037 2 92 -----------33---------------36 -------40374039 2 74 -----------22---------------26 -------4042405412 86 -----------29---------------33 -------4064407713 80-81 -----------26-27---------------30-31 -------40834089 6 81 -----------27---------------31 -------4089409910 72-77 -----------21-23---------------25-28 -------41134115 2 57 ----------7 ----------------12-------41154119 4 74 -----------22---------------26 -------4119413920 65-71 -----------15-20---------------20-24 -----4141415211 81 -----------27---------------31 -------41524155 3 72 -----------21---------------25 -------41554157 2 58 ----------8 ----------------13-------41574164 7 78 -----------24---------------29 -------4164418117 80-87 -----------26-30---------------30-33 -------41814189 8 92 -----------33---------------36 -------4189419910 66-69 -----------15-18---------------20-23 -------41994202 3 62-64 -----------12-14---------------18-19 -------42024207 5 74 -----------22---------------26 -------42074211 4 70 -----------19---------------24 -------42114217 6 74 -----------22---------------26 -------42174225 8 86 -----------29---------------33 -------42254228 3 60 -----------11---------------16 -------4235426126 72-79 -----------21-25---------------25-30 -------42614265 4 62 -----------12---------------18 -------42654272 7 67-70 -----------16-19---------------21-24 -------4272429927 73-79 -----------22-25---------------26-30 -------42994301 2 60-62 -----------11-12---------------16-18 -------4301432423 73-79 -----------22-25---------------26-30 -------43244329 5 81 ----------27 ----------------31-------43294338 9 66-71 -----------15-20---------------20-24 -------4338436325 76-79 -----------23-25---------------28-30 -------43634367 4 82 -----------28---------------31 -------43674370 3 71 -----------20---------------24 -------43704375 5 78 -----------24---------------29 ----43754383 8 70-71 -----------19-20---------------24 -------4383439512 75-76 -----------23---------------27-28 -------4211422110 -24 -12 -----------------------20 ---------42254228 3 -25 -17 -----------------------22 ---------42314236 5 -23 -13 -----------------------20 ---------42364239 3 -18 -3 -----------------------14 ---------42394242 3 -31 -21 -----------------------27 ---------732Okeechobee6810774

PAGE 383

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 42424248 6 -41 -30 -----------------------35 ---------42484252 4 -33 -21 -----------------------28 ---------42524255 3 -37 -24 -----------------------31 ---------42554258 3 -28 -19 -----------------------25 ---------4258426810 -31-33 -21-22 -----------------------27-29 ---------42684273 5 -27 -18 -----------------------24 ---------4302431412 -33-35 -22-25 -----------------------28-30 ---------43224327 5 -45 -37 -----------------------40 ---------43274335 8 -35-36 -23-29 -----------------------30-33 ---------43354342 7 -33 -20 -----------------------28 ---------4342435816 -34-39 -27-30 -----------------------31-35 ---------43584361 3 -31 -20 -----------------------27 ---------43614364 3 -38 -29 -----------------------34 ---------43644368 4 -29-30 -18-20 -----------------------25-26 ---------43684372 4 -37-42 -30-33 -----------------------34 ---------43724380 8 -39-42 -30-33 -----------------------35-37 ---------43804386 6 -36-41 -29-30 -----------------------33-35 ---------4388440315 -37-40 -27-35 -----------------------33-35 ---------4403441411 -32-34 -27-28 -----------------------30-31 ---------34823490 8 78 -----------24---------------29 -------34903495 5 85 -----------29---------------33 -------34953500 5 69 -----------18---------------23 -------35003503 3 55 -----------6---------------11 -------3508352012 80-84 -----------26-29---------------30-32 -------3520353919 55-56 -----------6-7---------------11-12 -------35393546 7 64 -----------14---------------19 ----35523557 5 73 ----------22 ----------------26-------35573561 4 67-70 -----------16-19---------------21-24 -------35613568 7 73 -----------22---------------26 -------35683571 3 60 -----------11---------------16 -------35713578 7 67 -----------16---------------21 -------35783585 7 75-77 -----------23---------------27-28 -------35853594 9 67-69 -----------16-18---------------21-23 -------35943598 4 63 -----------13---------------19 -------36123621 9 93 -----------33---------------36 -------36213627 6 80-83 -----------26-28---------------30-32 -------36273629 2 79 -----------25---------------30 -------36293635 6 95 -----------34---------------37 -------36353639 4 67 ----------16 ----------------21-------36393642 3 59 -----------9---------------14 -------36423647 5 84 -----------29---------------32 -------36473652 5 93 -----------33---------------36 -------36523656 4 76 -----------23---------------28 -------36563662 6 83 -----------28---------------32 -------36623668 6 91 -----------32---------------36 -------36683673 5 76 -----------23---------------28 -------3673368310 82-84 -----------28-29---------------31-32 -------36833687 4 94 -----------34---------------37 -------3687369811 84-85 -----------29---------------32-33 -------36983701 3 74 ----------22 ----------------26-------37013705 4 70 -----------19---------------24 ----37053707 2 90 -----------32---------------35 -------37073711 4 86 -----------29---------------33 -------3711372110 80-84 -----------26-29---------------30-32 -------37213725 4 74 -----------22---------------26 -------539Osceola677935 1264Okeechobee538185

PAGE 384

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 37253729 4 79 -----------25---------------30 -------3729380273 72-79 -----------21-25---------------25-30 -------32333239 6 86 -----------29---------------33 -------32393246 7 77 -----------23---------------28 -------32463255 9 56 -----------7---------------12 -------3255326712 76 -----------23---------------28 -------3267328720 55-59 -----------6-9---------------11-14 -------32873291 4 66 -----------15---------------20 -------32913294 3 56 -----------7---------------12 -------32943300 6 66 -----------15---------------20 -------33003306 6 82 ----------28 ----------------31-------3306332418 74-79 -----------22-25---------------26-30 -------33243328 4 89 -----------31---------------34 -------33283334 6 83 -----------28---------------32 -------33343337 3 63 -----------13---------------19 -------33373343 6 75 -----------23---------------27 -------33633369 6 59 -----------9---------------14 -------3369339122 75-79 -----------23-25---------------27-30 -------33913398 7 83 -----------28---------------32 -------33983404 6 65 -----------15---------------20 -------34043407 3 86 -----------29---------------33 -------34073412 5 95 -----------34---------------37 -------34123416 4 79 -----------25---------------30 -------34163421 5 83 -----------28---------------32 -------34213425 4 80 -----------26---------------30 -------34253431 6 96 -----------34---------------38 -----34313438 7 85-86 -----------29---------------33 -------3438345012 78-79 ----------24-25 ----------------29-30-------3450346010 86 -----------29---------------33 -------34603467 7 93 -----------33---------------36 -------34673471 4 88 -----------30---------------33 -------3471348211 76-77 -----------23---------------28 -------34823485 3 68 -----------17---------------22 -------34853489 4 74 -----------22---------------26 -------34893497 8 84 -----------29---------------32 -------34993504 5 71 -----------20---------------24 -------35043512 8 81 -----------27---------------31 -------35123517 5 78 -----------24---------------29 -------35173522 5 87 -----------30---------------33 -------3522353210 90 -----------32---------------35 -------35323541 9 81 -----------27---------------31 -------3541355413 65-68 ----------15-17 ----------------20-22-------5329534920 64-66 -----------14-15---------------19-20 -------5351537120 68-70 -----------17-19---------------22-24 -------5371545988 72-76 -----------21-23---------------25-28 -------54595462 3 61 -----------11---------------17 -------54655470 5 62 -----------12---------------18 -------54705474 4 57 -----------7---------------12 -------5476548812 63-64 -----------13-14---------------19 -------54885493 5 78 -----------24---------------29 -------54935497 4 84 -----------29---------------32 ----54975501 4 66 -----------15---------------20 -------55015508 7 74-79 -----------22-25---------------26-30 -------55175520 3 71 -----------20---------------24 -------55205528 8 85 -----------29---------------33 -------55285530 2 66 -----------15---------------20 -------55305533 3 85 -----------29---------------33 -------55335541 8 63-65 -----------13-15---------------19-20 -------55415542 1 59 -----------9---------------14 -------385Palm Beach1410905 543Osceola676900

PAGE 385

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 55425544 2 72 -----------21---------------25 -------5544555511 65-71 -----------15-20---------------20-24 -------55555561 6 64 -----------14---------------19 -------55675570 3 66 -----------15---------------20 -------55725576 4 85 -----------29---------------33 -------55765578 2 69 -----------18---------------23 -------55795583 4 56 -----------7---------------12 -------55835585 2 62 -----------12---------------18 -------55885590 2 68 -----------17---------------22 -------56125616 4 57 -----------7---------------12 -------56165619 3 62 -----------12---------------18 -------56195623 4 58 -----------8---------------13 -------5625564924 60-65 -----------11-15---------------16-20 -------5649566011 66-68 -----------15-17---------------20-22 -------56605665 5 59 -----------9---------------14 -------4687469710 66-7129-37 -13-16 --------15-20------------23-29 20-24 -20-24 ---46974704 7 74 38 -18 --------22------------29 26 -25 ---4715472914 68 30-33 -13-14 --------17------------24-26 22 -20-21 ---47294733 4 63 25 -8 --------13------------19 19 -17 ---4739474910 65-6626-27 -9-10 --------15------------20-21 20 -18-19 ---47494757 8 74 34 -15 --------22-----------26 26 -24 --4757 4761 4 67 21 -3 -----14 16 -16 ----------21 -------47634769 6 74 32 -16 --------22------------26 26 -24 ---47694771 2 68 29 -9 --------17------------21 22 -20 ---4771479423 72-7533-37 -17-21 --------21-23------------26-30 25-27 -23-26 ---47944797 3 62 24 -6 --------12------------18 18 -16 ---47994803 4 65 22 -6 -----16 15 -15 ----------20 -------48034806 3 71 30 -16 --------20------------25 24 -22 ---4806482923 73-7930-38 -16-23 --------22-25------------25-31 26-30 -25-30 ---48294836 7 65 27 -10 --------15------------21 20 -18 ---4838485719 68-7133-35 -11-19 --------17-20------------25-29 22-24 -21-24 ---48574862 5 77 36 -19 --------23------------29 28 -26 ---48644873 9 76 39 -24 --------23------------33 28 -27 --48734887 14 68-6931-33 -13-15 --------17-18------------24-26 22-23 -21-22 ---4887490114 72-73 40 -17-18 --------21-22------------31 25-26 -25-26 ---4909492112 67-6833-36 -15-18 --------16-17------------26-28 21-22 -21-23 ---49214923 2 63 26 -8 --------13------------20 19 -17 ---4923493613 67-7031-33 -13-16 --------16-19------------24-26 21-24 -20-22 ---4941495312 67-6830-34 -11-16 --------16-17------------23-27 21-22 -20-22 ---49534957 4 62 24 -7 --------12------------18 18 -16 ---4975498510 65-6625-26 -8-10 --------15------------20-21 20 -18 ---4989500112 66-7024-28 -4-11 -----16-20 15-19 -17-20 ----------20-24 -------50075013 6 69 34 -13 --------18------------26 23 -22 ---50155022 7 74 36 -19 --------22------------29 26 -25 ---50225028 6 69 28 -12 -----21 18 -19 -------23 -------5030508252 61-6624-33 -8-13 --------11-15------------18-25 17-20 -15-20 ---5087510417 58-59 21 -5-6 --------8-9------------15-16 13-14 -13-14 ---51045111 7 71 33 -16 --------20------------26 24 -23 ---51115119 8 73 37 -20 --------22------------30 26 -24 ---5119513314 65-6727-33 -12-18 --------15-16------------22-27 20-21 -19-21 ---5149516516 65-7230-33 -14 --------15-21------------24-26 20-25 -19-23 ---51855192 7 61 15 --2 -----11 11 -12 ----------17 -------51995206 7 65 23 -5 -----16 15 -16 ----------20 -------5211522817 72-7430-37 -13-17 -----23-28 21-22 -21-24 ----------25-26 -------5228524820 65-7124-27 -7-12 -----18-20 15-20 -16-21 ----------20-24 -------52485256 8 81 38 -22 --------27------------31 31 -29 ---52565263 7 65-6927-30 -10-13 ------15-18------------21-24 20-23 -18-20 ---52655269 4 63 28 -9 --------13------------21 19 -18 ---52695273 4 72 34 -15 --------21------------26 25 -23 ---740Palm Beach149792

PAGE 386

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 52735281 8 68-6926-28 -9-11 -----19-21 17-18 -18-20 ----------22-23 -------52885296 8 74 29 -14 -----22 22 -22 ----------26 -------53035308 5 79 41 -22 --------25------------32 30 -29 ---5308533426 72-7535-42 -17-20 --------21-23------------28-32 25-27 -24-27 ---53345341 7 70 35 -17 --------19------------28 24 -24 ---5341535716 82-8640-41 -22-27 --------28-29------------32-34 31-33 -30-32 ---53575360 3 77 33 -19 --------23------------27 28 -25 ---5360537111 68-7128-30 -12-13 --------17-20------------22-24 22-24 -20-22 ---53715376 5 72 36 -14 --------21------------27 25 -24 ---5376539620 74-7935-39 -19-21 --------22-25------------29-31 26-30 -25-28 ---53965405 9 66-7127-31 -9-13 --------15-20------------21-24 20-24 -19-22 ---54055412 7 72-7434-38 -19-20 --------21-22------------28-30 25-26 -23-25 ---5413542512 67-69 30 -13-14 --------16-18-----------24 21-23 -20 --5425 544116 73-7737-39 -18-22 --------22-23------------30-32 26-28 -24-27 ---54415446 5 68 31 -13 --------17------------24 22 -21 ---5446546317 77-7937-43 -22-23 --------23-25------------31-34 28-30 -26-30 ---5463547714 65-7026-31 -8-12 --------15-19------------20-24 20-24 -18-22 ---54775481 4 73 35 -15 --------22------------27 26 -24 ---54815483 2 71 32 -12 --------19------------25 24 -22 ---5483549411 74-7535-38 -16-20 --------22-23-------------28-31 26-27 -25-26 ---4233424310 75-7737-45 -22 --------23------------31-35 27-28 -26-29 ---42434246 3 63 29 -5 --------13------------21 19 -18 ---42464250 4 81 44 -26 --------27------------36 31 -31 ---42504254 4 77 40 -20 --------23------------31 28 -28 ---4259427314 83-90 50 -26-30 --------28-32------------>40 32-35 -35-36 ---4273 4279 6 72-7539-40 -16-19 -------21-23------------30-31 25-27 -25-27 ---42794285 6 66 32 -3 --------15------------21 20 -20 ---42954298 3 57 23 -0 --------7------------16 12 -13 ---42984303 5 76 35 -17 --------23------------28 28 -25 ---4303431310 66-6733-35 -11-14 --------15-16------------25-27 20-21 -20-22 ---4321435130 72-7837-45 -20-25 --------21-24------------30-35 24-29 -24-29 ---43514355 4 65-69 36 -13-14 --------15-18------------27 20-23 -21-24 ---4355437217 75-7740-46 -21-25 --------23------------32-36 27-28 -27-30 ---43724381 9 68 33-36 -7-10 --------17------------23-25 22 -21-23 ---43814386 5 78 43 -22 --------24------------33 29 -29 ---43864390 4 63 22 -1 -----14 13 -14 ----------19 -------4390440717 69-7137-39 -16-20 --------18-20------------28-31 23-24 -24 ---44074415 8 73 40 -21 --------22------------32 26 -26 --4421 4433 12 76-7940-45 -25-28 --------23-25------------33-37 28-30 -27-30 ---4433444512 62-6628-33 -10-12 --------12-15------------22-25 18-20 -17-20 ---44454451 6 67 42 -17 --------16------------31 21 -24 ---44514456 5 56 20 --1 --------7------------14 12 -12 ---44564462 6 60 29 -10 --------11------------22 16 -17 ---44624469 7 69 38 -16 --------18------------29 23 -24 ---4475450126 67-6835-37 -14-18 --------16-17------------26-30 21-22 -22-23 ---45014505 4 60 21 --4 --------11------------16 16 -14 ---4505451611 61-6633-38 -11-16 --------11-15------------24-29 17-20 -18-22 ---45274535 8 74-7542-43 -24 --------22-23------------35 26-27 -26-27 ---45354538 3 68 35 -14 --------17------------26 22 -23 ---4545456015 70-7236-39 -18-19 --------19-21------------29-30 24-25 -24-25 ---4560 4566 6 59 29 -7 ------9------------21 14 -16 ---45714577 6 57-5832-35 -8-10 --------7-8------------23-25 12-13 -16-17 ---45774585 8 66 43 -17 --------15------------32 20 -24 ---4585459712 55-5934-35 -9-11 --------6-9------------25 11-14 -15-17 ---46014605 4 53 32 -8 --------4------------22 10 -13 ---4605461510 66-6938-42 -17-20 --------15-18------------29-33 20-23 -22-24 ---4615463318 53-5528-33 -1-8 --------4-6------------18-23 10-11 -13-15 ---46384645 7 60-6134-37 -12-13 --------11------------26-27 16-17 -18-19 ---4645467530 66-7138-43 -16-21 --------15-20------------29-33 20-24 -22-26 ----

PAGE 387

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 46754684 9 60-6336-39 -11-14 --------11-13------------26-28 16-19 -19-20 ---4684469511 53-5531-34 -7-11 --------4-6------------22-25 10-11 -14-16 ---46954702 7 74 43 -22 --------22------------33 26 -27 ---47024706 4 61-6435-39 -11-12 --------11-14------------26-28 17-19 -19-20 ---47064709 3 68 37 -17 --------17------------29 22 -23 ---47094713 4 64 37 -14 --------14------------27 19 -21 ---47134719 6 59 34 -9 --------9------------24 14 -17 ---4719472910 63-6434-39 -12-14 --------13-14------------25-29 19 -20 ---47294733 4 68 43 -17 --------17------------31 22 -25 ---47334742 9 64 38-40 -13 --------14------------26-27 19 -21 ---4742475513 67-7137-39 -18 --------16-20------------29-30 21-24 -22-24 ---4755481358 72-7942-48 -21-25 --------21-25------------32-37 25-30 -26-31 ---48134819 6 57 23 --7 --------7------------12 12 -13 --4819 4823 4 64 35 -13 -------14------------29 19 -20 ---4823483411 72-7340-43 -18-19 --------21-22------------30-32 25-26 -25-27 ---48344836 2 59 31 -3 --------9------------20 14 -16 ---48364841 5 62-64 39 -13 --------12-14------------28 18-19 -19-20 ---4841487534 72-7743-45 -19-26 --------21-23------------32-36 25-28 -26-29 ---48754877 2 63 34 -11 --------13------------25 19 -20 ---4877489922 65-6833-39 -16-18 --------15-17------------26-30 20-22 -20-24 ---48994901 2 58 22 --3 --------8------------13 13 -14 ---4901492726 72-7538-45 -14-23 --------21-23------------30-35 25-27 -25-28 ---4930494919 54-5920-29 -1-9 --------4-9------------14-21 10-14 -11-16 ---49494957 8 63 34 -18 --------13------------28 19 -20 ---49594965 6 59 29 -7 --------9------------21 14 -16 ---49694974 5 55 25 -7 --------6------------19 11 -13 --4977 4981 4 54 21 -5 -------4------------16 10 -12 ---4981500322 54 18-21 -1-3 --------4------------13-15 10 -10-12 ---50195023 4 54 16 --1 --------4------------11 10 -10 ---5025503813 53-5517-21 --1-2 --------4-6------------11-15 10-11 -9-12 ---5052507523 53-5920-23 -3-7 --------4-9------------16 10-14 -10-14 ---5078508911 53-5916-20 -1-8 --------4-9------------12-16 10-14 -9-13 ---5091510514 64-6628-30 -10-11 --------14-15------------21-22 19-20 -18-20 ---51055107 2 53 21 -8 --------4------------16 10 -11 ---51075116 9 65-7025-31 -10-11 --------15-19------------20-23 20-24 -18-22 ---51165125 9 55-5619-22 -2-5 --------6-7------------14-16 11-12 -11-13 ---51255130 5 64 25 -12 --------14------------21 19 -17 ---51305136 6 57-5919-23 -4-10 --------7-9------------14-19 12-14 -12-14 ---5139 5147 8 62-63 25-27 -8-12 -------12-13------------19-21 18-19 -16-17 ---5147516215 54-5822-23 -3-7 --------4-8------------16-18 10-13 -12-14 ---5162517412 61-6525-31 -10-13 --------11-15------------20-24 17-20 -15-20 ---51745177 3 55 24 -6 --------6------------18 11 -13 ---51775183 6 63 29 -12 --------13------------22 19 -18 ---5183519310 65-6634-38 -15-17 --------15------------26-30 20 -21-22 ---51935197 4 63 38 -17 --------13------------29 19 -21 ---51975201 4 57 26 -10 --------7------------21 12 -14 ---52035203 0 54 20 -0 --------4------------14 10 -11 ---5269528314 60-6429-32 -7-8 --------11-14------------21-23 16-19 -17-19 ---5283529714 55-5927-34 -7-16 --------6-9------------20-27 11-14 -14-17 ---5327534215 53-5620-23 --1-2 --------4-6------------14-16 10-11 -10-13 ---5358538527 53-5722-26 -2-5 --------4-7------------15-19 10-12 -11-14 --5385 5415 30 65-7134-38 -15-18 --------15-20------------27-28 20-24 -21-24 ---5415543318 63-6531-35 -11-16 --------13-15------------24-28 19-20 -19-21 ---5433544310 55-5826-31 -4-10 --------6-8------------19-23 11-13 -13-14 ---54435449 6 67-69 34 -10-13 --------16-18------------24-25 21-23 -22 ---5449546213 63-6529-32 -9-12 --------13-15------------21-24 19-20 -18-20 ---5462547210 54-57 28 -9 --------4-7------------21 10-12 -13-15 ---54725475 3 67 35 -13 --------16------------26 21 -22 ---5475551136 54-5927-31 -8-14 --------4-9-------------21-24 10-14 -13-16 ---972Palm Beach1211000

PAGE 388

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 38903893 3 61 -----------11----------------17-------38933898 5 68-71 -----------17-20----------------22-24-------38983900 2 77 -----------23----------------28-------39003904 4 80-84 -----------26-29----------------30-32-------390439191593-114----------->35---------------->40-------39193921 2 85 -----------29----------------33-------39213923 2 93 -----------33----------------36-------39253926 1 76 -----------23----------------28-------39263933 7 98-108----------->35---------------->40-------39333938 5 81-87 -----------27-30----------------31-33-------39383941 3 72 -----------21----------------25-------39413949 8 81-85 -----------27-29----------------31-33-------39493953 4 67-69 -----------16-18----------------21-23-------39533958 5 80-84 -----------26-29----------------30-32-------39583961 3 123 ----------->35---------------->40-------3961397110 71-74 -----------20-22----------------24-26-------39713979 8 82-83 -----------28----------------31-32-------39793985 6 70-73 -----------19-22----------------24-26-------39853989 4 83-85 -----------28-29----------------32-33-------39893991 2 78 -----------24----------------29-------3991400110 80-90 -----------26-32----------------30-35-------40014006 5 72 -----------21----------------25-------4006402721 65-68 -----------15-17----------------20-22-------4027404316 62-66 -----------12-15----------------18-20-------4043405916 54-56 -----------4-7----------------10-12-------40594061 2 61 -----------11----------------17-------40614063 2 57 -----------7----------------12-------40654067 2 59 -----------9----------------14-------40674073 6 60-61 -----------11----------------16-17-------40734077 4 58 -----------8----------------13-------40774082 5 63 -----------13----------------19-------40824089 7 66-67 -----------15-16----------------20-21-------40894094 5 60-61 -----------11----------------16-17-------40964101 5 59 -----------9----------------14-------41014107 6 69 -----------18----------------23-------41074110 3 63 -----------13----------------19-------41104111 1 58 -----------8----------------13-------41274134 7 65-66 -----------15----------------20-------41344137 3 57-58 -----------7-8----------------12-13-------41374146 9 60-61 -----------11----------------16-17-------41464150 4 55-57 -----------6-7----------------11-12-------41574160 3 63 -----------13----------------19-------4167417811 62-64 -----------12-14----------------18-19-------41784182 4 67 -----------16----------------21-------41824190 8 63-66 -----------13-15----------------19-20-------41904198 8 56-59 -----------7-9----------------12-14-------41984204 6 62-63 -----------12-13----------------18-19-------42044207 3 55-58 -----------6-8----------------11-13-------42074215 8 72-77 -----------21-23----------------25-28-------42154216 1 61 -----------11----------------17-------42164217 1 56 -----------7----------------12-------4217 4226 9 60-64 ---------11-14----------------16-19-------42264227 1 56 -----------7----------------12-------42314239 8 58-59 -----------8-9----------------13-14-------42394242 3 63 -----------13----------------19-------42424247 5 55-57 -----------6-7----------------11-12-------42474248 1 73 -----------22----------------26-------42484252 4 62 -----------12----------------18-------42524259 7 55-57 -----------6-7----------------11-12-------304PinellasSea Level10600

PAGE 389

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 42594265 6 61-63 -----------11-13----------------17-19-------4191420716 73-77 -----------22-23---------------26-28 -------4207423124 80-84 -----------26-29---------------30-32 -------42314239 8 72-75 -----------21-23---------------25-27 -------42514258 7 65-66 -----------15---------------20 -------42584263 5 73-76 -----------22-23---------------26-28 -------4263427411 84 -----------29---------------32 -------42744277 3 71 -----------20---------------24 -------42794285 6 65 -----------15---------------20 -------42854289 4 74 -----------22---------------26 -------42894295 6 93 -----------33---------------36 -------42954298 3 85 -----------29---------------33 -------4298431113 93 -----------33---------------36 -------43114318 7 81 -----------27---------------31 -------43184321 3 71 -----------20---------------24 -------43214327 6 87 -----------30---------------33 -------43274331 4 73 -----------22---------------26 -------43314340 9 80-83 -----------26-28---------------30-32 -------43404345 5 94 -----------34---------------37 -------43454354 9 82-83 -----------28---------------31-32 -------43544361 7 94 -----------34---------------37 -------43614364 3 74 -----------22---------------26 -------43644367 3 67-68 -----------16-17---------------21-22 -------43674373 6 84 -----------29---------------32 -------4376439418 84-87 -----------29-30---------------32-33 -------43944399 5 75 -----------23---------------27 -------4399 4415 16 81-83 ----------27-28---------------31-32 -------44154421 6 76 -----------23---------------28 -------44214427 6 69 -----------18---------------23 -------4434444410 85 -----------29---------------33 -------44444449 5 66 -----------15---------------20 -------44494456 7 82 -----------28---------------31 -------44564463 7 79 -----------25---------------30 -------4463447310 69-71 -----------18-20---------------23-24 -------44734477 4 73 -----------22---------------26 -------44774479 2 69-71 -----------18-20---------------23-24 -------44794483 4 75 -----------23---------------27 -------44834487 4 71 -----------20---------------24 -------44874493 6 77-79 -----------23-25---------------28-30 -------44934499 6 58-59 -----------8-9---------------13-14 -------44994503 4 68 -----------17---------------22 -------45034508 5 63 -----------13---------------19 -------34483454 6 81 --2.32-2.33---22-23----27---------29 ---31 27-28 -----3454346713 74-78 --2.3-2.39---18-24----22-24---------25-30 ---26-29 24-28 -----34673469 2 69 -2.44 ---16----18---------23 ---23 22 -----3469348415 75-79 --2.29-2.34--21-24 ---23-25 21-24 -------28-31---27-30 -------34843488 4 71 --2.37-2.38--19-20 ---20 19 ----26---24 -------34883493 5 77 -2.33 --22 ---23 22 -------29---28 -------34933495 2 63 -2.54 ---10----13---------18 ---19 17 -----3495350813 72-75 --2.34-2.36---20-21----21-23---------27-28 ---25-27 25-26 -----35083517 9 65-71 --2.42-2.52---11-17----15-20---------19-24 ---20-24 18-23 -----3517353619 66-71 --2.35-2.43--17-21 ---15-20 15-19 -------23-28---20-24 -------3536356529 72-77 --2.32-2.38---19-23----21-23---------26-29 ---25-28 24-27 -----3571358514 74-76 --2.28-2.33--22-25 ---22-23 21-23 -------29-31---26-28 -------35853589 4 81 -2.23 --28 ---27 26 -------34---31 -------35893592 3 76 -2.29 --24 ---23 23 -------31---28 -------36063612 6 82 -2.34 ---21----28---------28 ---31 28 -----36123618 6 65-69 --2.44-2.5--12-16 ---15-18 13-16 -------20-23---20-23 -------36183623 5 74-76 --2.35-2.36---20-21----22-23---------27-28 --26-28 25-26 ---403Polk1519670

PAGE 390

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 36233631 8 81 -2.24 --27 ---27 26 -------33---31 -------36393643 4 57 -2.64 ---4----7---------12 ---12 12 -----3643366219 80-88 --2.22-2.24---27-28----26-30---------33-34 ---30-33 30-33 -----36673673 6 77 -2.41 ---18----23---------25 ---28 25 -----36733676 3 60 -2.67 ---3----11---------11 ---16 11 -----36763679 3 67-71 --2.44-2.47---14-16----16-20---------21-23 ---21-24 19-22 -----36793682 3 76 -2.31 --23 ---23 22 -------29---28 -------36823691 9 80-87 --2.24-2.25---27----26-30---------33 ---30-33 30-33 -----36913695 4 73 -2.44 ---16----22---------23 ---26 23 -----37133717 4 66 -2.59 ---7----15---------15 ---20 16 -----37173724 7 72-78 --2.35-2.43--17-21 ---21-24 17-21 -------23-28---25-29 -------3724373410 86-87 --2.23-2.26---26-28----29-30---------32-34 ---33 30-32 -----37343740 6 79 -2.35 ---21----25---------28 ---30 27 -----3794381521 84-87 --2.18-2.25---27-31----29-30---------33-37 --32-33 32-34 ---38273832 5 80-82 --2.27-2.29---24-25----26-28---------31 ---30-31 29-30 -----38323835 3 78 -2.33 --22 ---24 22 -------29---29 -------38353842 7 87 -2.19 --30 ---30 29 -------36---33 -------3842385210 73-74 --2.36-2.44---16-20----22---------23-26 ---26 25 -----38543859 5 84 -2.28 ---25----29---------31 ---32 30 -----38633869 6 81 -2.26 ---26----27---------32 ---31 30 -----38693872 3 72-75 -2.4 --18 ---21-23 18-19 -------25---25-27 -------3872388210 82-83 --2.28-2.33---22-25----28---------29-31 ---31-32 28-30 -----39283934 6 86 -2.26 ---26----29---------32 ---33 31 -----39343940 6 73-76 -2.44 ---16----22-23---------23 ---26-28 22-23 -----39453953 8 66 --2.55-2.56---9-10----15---------16-17 ---20 16 -----39533957 4 73 -2.44 --16 ---22 16 -------23---26 -------3957 3960 3 69 -2.55 ---10 ----18---------17 ---23 17 -----3969398718 80-85 --2.26-2.29---24-26----26-29---------31-32 ---30-33 29-32 -----39903997 7 78 -2.36 ---20----24---------27 ---29 26 -----40094016 7 81-82 --2.26-2.28---25-26----27-28---------31-32 ---31 30-31 -----40164019 3 70-71 -2.38 --19 ---19-20 19 -------26---24 -------4019403314 75-79 --2.3-2.37---20-24----23-25---------26-30 ---27-30 25-27 -----4033405118 80-83 --2.2-2.28---25-29----26-28---------31-35 ---30-32 30-33 -----40514053 2 70 -2.43 ---17----19---------23 ---24 23 -----40534057 4 79 -2.29 --24 ---25 24 -------31---30 -------40574059 2 69 -2.49 ---13----18---------20 ---23 20 -----40594066 7 74 --2.42-2.45--15-17 ---22 16-17 -------22-24---26 -------4066407913 82-86 --2.18-2.28---25-31----28-29---------31-37 ---31-33 30-34 -----40954098 3 70 -2.45 ---15----19---------22 ---24 21 -----4098411012 76-79 --2.29-2.31--23-24 ---23-25---------29-31 ---28-30 27-29 -----41104113 3 66 -2.48 --13 ---15 14 -------21---20 -------4113413118 74-76 --2.32-2.4---18-23----22-23---------25-29 ---26-28 24-26 -----4131415120 80-83 --2.21-2.25---27-29----26-28---------33-34 ---30-32 30-33 -----41514158 7 84 -2.22 ---28----29---------34 ---32 32 -----41584160 2 61 -2.57 ---8----11---------16 ---17 15 -----41604165 5 69 -2.46 ---15----18---------22 ---23 23 -----4165418318 72-76 --2.36-2.4--18-20 ---21-23 18-20 -------25-27---25-28 -------4183419916 81-86 --2.26-2.33---22-26----27-29---------29-32 ---31-33 30-31 -----41994203 4 77 --2.31-2.32--23 ---23 22 -------29---28 -------4203421916 80-85 --2.24-2.29---24-27----26-29---------31-33 ---30-33 29-31 -----4219423516 75-78 --2.28-2.35--21-25 ---23-24 21-24 -------28-31---27-29 -------4235426429 83-87 --2.21-2.24---27-29----28-30---------33-34 ---32-33 31-33 ---4264 427713 73-78 --2.29-2.37---20-24----22-24---------26-31 ---26-29 24-27 -----42774280 3 67 -2.51 --12 ---16 13 -------19---21 -------4280432343 74-78 --2.32-2.37---20-23----22-24---------26-29 ---26-29 25-27 -----43234328 5 82 -2.26 ---26----28---------32 ---31 30 -----4289430516120-145----------->35--------------->40 -------43124315 3 74 -----------22---------------26 -------43154317 2 127 ----------->35--------------->40 -------597Polk1205000

PAGE 391

Appendix IV (Continued) Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Lithlog Figure AII-2 Figure AII-7 Figure AII-8 Figure AII-3 Figure AII-4 Figure AII-5 Figure AII-6 Figure AII-9 Top (ft) Bottom (ft) Total Thickness (ft) Interval Travel Time ( sec/ft)Neutron Porosity (n)Bulk Density Density Porosity (d)Permit No. County Ground Elevation (ft) Total Depth (ft) Porous Zon e Estimated Porosity Value (%) Limestone Dolostone 43244326 2 74 -----------22---------------26 -------43264329 3115-125----------->35--------------->40 -------43294332 3 62 -----------12---------------18 -------43324334 2 84 -----------29---------------32 -------43344335 1 65 -----------15---------------20 -------43404347 7 80 -----------26---------------30 -------4347436720 72-76 -----------21-23---------------25-28 -------43674374 7 66-70 -----------15-19---------------20-24 -------43744376 2 73 -----------22---------------26 -------43764383 7138-140----------->35--------------->40 -------43834392 9 75-76 -----------23---------------27-28 -------43924395 3 56 -----------7---------------12 -------43994404 5 54-55 -----------4-6---------------10-11 -------44044409 5 60 -----------11---------------16 -------4411443120 67-70 -----------16-19---------------21-24 -------44344440 6 63 -----------13---------------19 -------44404449 9 57-59 -----------7-9---------------12-14 -------4449447223 61-65 -----------11-15---------------17-20 -------44804485 5 64 -----------14---------------19 -------4485450217 67-71 -----------16-20---------------21-24 -------4502452220 72-76 -----------21-23---------------25-28 -------45224526 4 65 -----------15---------------20 -------45264530 4 59 -----------9---------------14 -------4530454010 66-67 -----------15-16---------------20-21 -------4542455412 69-70 ----------18-19 ----------------23-24-------Lithology determined using this method Lithology determined using another method Upper Porous Zone Middle Porous Zone Lower Porous Zone 772 St Lucie 95 12652

PAGE 392

374 Appendix V: Striplogs Displaying Porosity for Sunniland Formation Study Wells

PAGE 393

375

PAGE 394

376

PAGE 395

377

PAGE 396

378

PAGE 397

379

PAGE 398

380

PAGE 399

381

PAGE 400

382

PAGE 401

383

PAGE 402

384

PAGE 403

385

PAGE 404

386

PAGE 405

387

PAGE 406

388

PAGE 407

389

PAGE 408

390

PAGE 409

391

PAGE 410

392

PAGE 411

393

PAGE 412

394

PAGE 413

395

PAGE 414

396

PAGE 415

397

PAGE 416

398

PAGE 417

399

PAGE 418

400

PAGE 419

401

PAGE 420

402

PAGE 421

403

PAGE 422

404

PAGE 423

405

PAGE 424

406

PAGE 425

407

PAGE 426

408

PAGE 427

409

PAGE 428

410

PAGE 429

411

PAGE 430

412 Appendix VI: Striplogs Displaying Porosi ty for CKLIZ Study Wells

PAGE 431

413

PAGE 432

414

PAGE 433

415

PAGE 434

416

PAGE 435

417

PAGE 436

418

PAGE 437

419

PAGE 438

420

PAGE 439

421

PAGE 440

422

PAGE 441

423

PAGE 442

424

PAGE 443

425

PAGE 444

426

PAGE 445

427

PAGE 446

428

PAGE 447

429

PAGE 448

430

PAGE 449

431

PAGE 450

432

PAGE 451

433

PAGE 452

434

PAGE 453

435

PAGE 454

436

PAGE 455

437

PAGE 456

438

PAGE 457

439