USF Libraries

The distribution and ecology of benthic foraminifera of Tampa Bay, Florida

MISSING IMAGE

Material Information

Title:
The distribution and ecology of benthic foraminifera of Tampa Bay, Florida
Physical Description:
xiii, 197 leaves : ill., maps ; 29 cm.
Language:
English
Creator:
Dix, Thomas L.
Publisher:
University of South Florida
Place of Publication:
Tampa, Florida
Publication Date:

Subjects

Subjects / Keywords:
Foraminifera -- Florida -- Tampa Bay   ( lcsh )
Foraminifera, Fossil -- Florida -- Tampa Bay   ( lcsh )
Dissertations, Academic -- Marine Science -- Doctoral -- USF   ( fts )

Notes

General Note:
Includes vita. Thesis (Ph.D.)--University of South Florida, 2001. Includes bibliographical references (leaves 158-171).

Record Information

Source Institution:
University of South Florida
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
aleph - 028200119
oclc - 48260001
usfldc doi - F51-00212
usfldc handle - f51.212
System ID:
SFS0036441:00001


This item is only available as the following downloads:


Full Text

PAGE 1

THE DIS T RIBUTION AND ECOLOGY OF B ENT HIC FORAMINIFERA OF TAMPA BAY FLOR IDA b y THOMAS LINN DIX A diss ertatio n s ubmitt ed in partia l fulfillm e nt of the r eq uir e m e n ts f o r the deg r e e of Doctor of Philosop h y Co l leg e of Marine Sci e nc e Univer sity of So uth F l orida May 200 1 Majo r Pr ofesso r : P amela H allock Muller. Ph.D.

PAGE 2

Examining Committee: Office of Graduate Studies University of South Florida Tampa, Florida CERTIFICATE OF APPROVAL Thi s is to certify that the dissertation of THOMAS LINN DIX in the graduate degree program of Marine Science was approved on April 3, 2001 for the Doctor of Philosophy degree. Major Professor: Pamela Hallock Muller, Ph D Member: Gregg Brooks Ph.D. Member: Larry Doyle Ph.D. Member : Joan Rose, Ph.D Member : E dvvard Van Vleet Ph .D.

PAGE 3

ACKNOWLEDGMENTS I wou ld like to acknow ledge my major professor, Pamel a H allock Muller, Ph D for patience and guidance in the completion of this dissertation. Thanks to my committee members: Gregg Brooks, Ph.D.; Larry D oyle, Ph.D .; Joan R ose, Ph.D. and Edward Van Vleet Ph.D. for s u ggestions a nd comments wh i ch great l y improved the text. This study would not have been possible without samples from Dr. Brooks and Dr. D oyle. These samples wer e from two proje cts: A Characterization of Tampa B ay Sediments Pha se III distribution of sed im e nt s a nd sedimentar y contaminants in 1992" and "Di st ribution pattern s and accumu l ation rate s of fine-gr a i ned sediment s in upper Tampa Bay, Florida in 1991" funded by of grants from the Florida D epartment of Natural Resources, the Southwest Fl ori da Manage ment Di st rict the City of Tampa, and United States Geological Survey between 1983 and 1 996. I appreciate th e help from R obert Oix, K aren Di x, Dean Gray, Holli Tempe, and R obert Tempe who h elped collect samples from Hillsbor o ugh Bay and Charl otte H a rbor. Dr. Muller's research on foraminifera as env ir o nm e ntal indi c tors i s funded by U.S. EPA-ORD-NCERQA-GAD# R 825869. I acknowledge the personnel at th e Depa rtm e nt of Environmental Protection a nd the Counseling & Career Center at Univer si t y of South Florida for he l p in this dissertation. Many thanks go to my parent s, Or. R obert and Mrs Barb ara Di x, for their encouragement, physical involvement, and suppo rt emotionally and financ iall y to thi s dissertation. Many thank s go to m y wife, Karen Dix, for her assistance and e nc ouragement i n all areas of this di sse rtati on.

PAGE 4

TABLE OF CONTENTS LIST OFT ABLES v LIST OF FIGURES vu ABSTRACT XI CHAPTER ONE INTRODUCTION 1 Ph ys iography And Enviro nm e ntal Parameters Of Tampa B ay 1 Anthropogenic Inputs To Tampa Bay 9 Background I nformation On F oraminife r a I 2 U s efu l ness Of F ora miniferal In Environmental Re search 1 5 Habitats Of Estuarin e Foraminifera 1 8 Prev iou s Resear c h On Tampa B ay Foraminife r a 22 Foraminife ral Respon ses t o Anthropogenic Impact s 24 Sewage 24 Thermal 29 Chemical 29 Purpose For Resear c h 30 Objectives 3 I CHAPTER TWO 32 DISTRIBUTIONS OF FORAMINIFERAL ASSEMBLAGES I N TAMPA BAY, FLORIDA 32 Introductio n 32 Method s 33 Result s 37 Cluster Analysi s Of Foraminiferal Assemblage s 40 Foraminferal A ssemblages Compar ed T o En vi r o nment a l Parameter s And Anthropogeni c Contaminants 40 Percent Sand And Mea n Phi 40 S ali nit y And W a ter Depth 44 Foram ini fera l D e n si tie s 44 Number Of Anthropogenic Contami nants 50 H abita t s 50 Cluster Analys i s Of Gene ric A ssoc iations 53 Spearman R a nk Correlat i o n Of Genera 53

PAGE 5

Di sc u ssion 53 Environmental Sigificance Of Ammonia And Elphidium 59 L obatu l a Assemblage 60 Ammobaculites Assemblage 64 Ha ynes i na-Ammonia Assem b l age 66 Ammonia-Elphidium Assemblage 67 Amm onia Assemblage 67 Environmental R e l at i o n ships 68 Gene r i c Association s 69 Conclusion 70 CHAPTER THREE 72 ANALYSIS OF FORAMINIF ERA L ASSEMBLAGES IN HILLSBORO UG H BAYCORES 72 Introduction 72 Brief History Of Hill sborough Bay 73 S edime nt at i o n R ates In Hill sboro u g h Bay 75 M e thod s 75 Core D esc rip t ion s And Int erpre t a tion s 79 Core 3 7 80 D esc ripti on 80 Interpret a tion 80 Core 3 -13 84 De sc ription 84 Interpretation 84 Core 3-22 84 De scr ipti o n 84 Int erpre t a tion 89 Core 3-30 89 D esc ripti o n 89 Int erpre t ation 94 CoreS-15 94 Description 94 Interpretation 98 Core 10-8 98 D escription 98 Int erpretat i o n 103 Core 10-20 103 Description 103 Int erp r e t at i o n 106 Cor e 1 3-6 I 06 De sc ription 106 Int e r pretation 111 II

PAGE 6

Discussion Faunal Changes Planktonic Foraminifera Faunal Shifts Number Of Genera Foraminiferal Densities Ammonia Test Deformities Ammonia Test Size Index Of Preservation Of Ammonia Tests Conclusions CHAPTER FOUR COMPARISON OF FAUNAS IN HILLSBOROUGH BAY AND CHARLOTTE HARBOR Intr oduction Methods Results Environmental Parameters Sediment Texture Relative Abundance Cluster Analys i s Q-mode R-mode Absolute Abundance Total Assemblage Live Assemblage Number Of Genera Spearman Rank Correlations Ammonia Te sts Deformities Size Analysis Index of Preservation Discussion Environmental Relationship Faunal Analysis Stress Group Nutrient-loading Group Charlotte Harbor Group Generic Associations Morphological Variations Of Ammonia T es ts Conclu s ions 111 11 1 112 112 113 114 115 115 116 117 118 120 120 120 121 131 131 132 132 132 132 136 136 136 138 138 138 142 142 142 142 143 143 144 145 146 148 148 149 151

PAGE 7

CHAPTER FIVE FORAMINIFERA AS ENVIRONMENTAL INDICA TORS IN TAMPA BAY CONCLUSIONS Summary Of Research General Conclusion Future Res earch REFERENCES APPENDICES Appendix 1 Tables ABOUT THE AUTHOR IV 153 153 153 154 154 158 172 173 End Page

PAGE 8

LIST OF TABLES Table 1. Tampa Bay physical, chemical, geological and biological characteristics 2 Table 2. Point source di sc harges into Tampa Bay in 1985 (Moon, 1985 ) 1 1 Table 3. Percent change for Tampa Bay physical characteristics fro m 18 80 to 1985 (Lewis and Estevez, 1988) 13 Tab le 4. Anthropogenic mishaps between 1970 and 1992 (Murp hy and Port, 1993) 14 Table 5. Characterizations of foraminiferal habitats in estuaries 20 Table 6. Pre v iou s studies of foraminiferal distributions in Tampa Bay 23 Table 7. A s ummary o f known env ironm e ntal requirements of comm on genera found in Tampa Bay 25 Table 8. Kolmogoro v -Smirnov test to assess the differences between the subsamples in which 100 foraminifera were sorted. 36 Table 9. The maximum and minimum relative ab undance(%) for each genus and the percent of sites co ntainin g each ge nu s for the fora mini fe r al assemblages 43 Table 10 Spearman Rank Correlation for genera and e n vironmenta l variables 55 Table 11. Sample depth for eac h sediment co r e 77 Table 1 2. Summary of changes up sectio n for the Hill s b o r ough Bay cores 119 Table 1 3. The latitude, longitude collection time, water depth, bottom water temper atu re salinit y, pH turbidity sea state, associated vegeta ti o n assoc i ated fauna visual app e arance of sed im ent type and s tress level for the Hillsborough Bay ( June 14, 1 997) an d Charlotte Harbor (June 15, l997)site s 124 Table 14. Physical, chemical geo lo g ical co mponent s for se lecte d s ites ( Long et al., 1994 ; Brooks and D oy l e, 1992) 1 25 v

PAGE 9

Table 15. Spearman Rank Correlation comparing genera and environmental variables for Hillsborough Bay and Charlotte Harbor 139 Table 16. Genera of foraminiferia (perce nt) in 75 sam ple s from Tampa Bay used in the cluster analysis 173 Table 17. The samples that contain rare genera from the 75 Tampa Bay samples. 177 Table 18. Environmental data and foraminiferal abundance (total number per gram of sediment) at each s ite sa mpled. 179 Table 19. Desc ription of Hillsborough Bay sed iment cores (Brooks et al., 1991) 182 Table 20. The total number of foraminifera counted an d relative abundance (%) for each genus for the Hill s borough Bay sediment cores 183 Table 21. The percent sand, number foraminifera per gram, and number of genera, for Hillsborough B ay s ediment cores 188 Table 22. The number of Ammonia, percent of deformed Ammonia, the percent of Ammonia with Index of Preserv at ion > II, and the percent of Ammonia >0.2 mm for each core from Hillsborough Bay 190 Table 23. Input type number of genera, number of foraminiferal counted, number of foraminiferal per gram, number a nd percent of live foraminifera percent Ammonia for (deformities, >0.2 mm and >II Inde x of Preservation) for Hill s borough Bay and Charlotte Harbor samples 193 Table 24. Percent for each genus for Hill s borough Bay a nd Charlotte Harbor s ite s 195 Table 25. The maximum difference of inter-replicate variabi lity (IRep-A vgl) compared with the inter-site variability (total A vg Difference of lA vg Avgl from site to s ite) for each measure 197 VI

PAGE 10

LIST OF FIGURES Figure I. The seve n s ubdi visio n s of Tampa Bay ( L ew i s and Whit man 19 85). 6 Figure 2. A map of soc ioeconomic land u ses s urr ounding Tampa B ay, Florida in 1983 (U. S Fish a nd Wildlife Service an d Mineral Management Service 1983) 7 Figure 3. The major biological habitats for Tampa B ay (U.S. Fi s h and Wildlife Service and Mineral Management Service, 1983). 19 Figure 4. The location s of the 75 Tampa Bay sa mple stations collec ted by Brooks and Doyle (1992). 34 Fi g ur e 5. The dominant genera of T ampa Bay: Ammonia, Triloculina, Ha y nesina Tr ochammina Quinquel oculina, Elph.idium, Ammobaculites, Bulliminella T extularia, Nonion, Bigenerina, Lobatula Noionella, R osa/ina, Bri zalin.a, Orbulina ( P lank toni c) and Genu s B. Scale Bar= 1 mm. 38 Figure 6. The cluster analysis identified five foraminiferal assemblages for Tampa Bay. 41 Figure 7. The distribution of the five foraminiferal assemblage s th roug hout T ampa Bay 42 Figu re 8. The percentage of sand in sample s dominate d by each of the five foraminiferal assem bl ages found in Tampa Bay. 45 Figure 9. The mean phi of sedime nt s for sample s c h a rac terized by each of the five fora minifer a l assemb la ges found in Tampa B ay. 46 Figure l 0. W ate r depth distributions for each of the five fo ramin iferal asse mblag es in Tampa B ay. 4 7 Figure 11. Average sa linity at th e s it es charac teri zed b y the five fora m i nifer al assemblages in Tampa B ay. 48 Figure 12. Abundance of fora minifera (tests I gram) at s ite s characterized by th e five foraminiferal as s emblages in Tampa B ay. 49 Vll

PAGE 11

Figure 13. Numbers of anthropogenic cont ami nant s detected at the si te s c haracteri ze d by each of t h e f i ve foraminiferal assemblages in T ampa B ay. F i gu r e 14. Hab it a t s where eac h of the five foram in iferal assemb l ages occurred i n 51 Tampa Bay. 52 Figure 15. R-mode clu s t e r analysis of generic assoc iation s in Tampa Bay identified three assemblages. 54 Figure 1 6. The loc atio n s of th e 8 se diment cores from Hill s borough Bay collecte d by Brooks et al, 1991. 76 Figure 1 7. T h e relative abundances (percent) of domina nt foraminiferal genera t hroughout core 3-7. 8 1 Fi gu re 1 8 Cluster ana l ys i s fo r core 3 7 indicat e d t wo groups and two o u t l iers. 82 Figure 19. The p e rcen t of sa nd number of genera, total number of fo raminifera p e r gram, the p erce nt of Ammon ia (deformities,> 0 2 mm a n d IP >II) observed throu g hout core 3-7. 83 Figure 20. The rel ative abundance s (pe rcent ) of dominant foraminiferal genera th ro u g h out core 31 3. 85 Figure 2 1 Cluster anal ysis for core 3-13 indicated three groups 86 Figure 22. The percent of sa n d, number of gene ra, tota l number o f for am in ifera p e r gram, the p erce nt of Ammonia (defo rmities,> 0.2 mm a n d IP >II) obser ved th ro u gho ut core 3 13. 87 Figure 23. The relati ve ab und a nce s ( p erce nt ) of d o minant f o rami nife r al genera through o u t cor e 3 -2 2. 88 F i g ure 24. C luster analysis for cor e 3 -22 indicated four groups. 90 Figure 25. The percent of sa nd, number of gen e r a, total number of foraminifera per gram, the percent of Amm o nia (defor mi t ies,> 0.2 mm and IP > II ) obser ve d throu g h o ut core 3-22. 91 Figure 26. The re l ative abu ndan ces ( percent) of dominant fo r aminife r al genera th rougho ut core 3-30. 92 Fi gure 27. Clu s ter ana l ys i s for cor e 3 -30 indicated three gro up s. 93 Vlll

PAGE 12

Figure 28. The percent of sand number of genera, total num ber of foraminifera per gram, the percent of Ammonia (deformities,> 0.2 mm and IP >II) observed throu g h out core 3-30. 95 Figur e 29. The relative abundance s (percent) of dominant foraminiferal genera through ou t core 5 -15. 96 Figure 30. Cluster analysi s for core 5-15 indicat e d three groups 97 Figure 31. The percent of sand, number of genera, total number of foraminifera per gram, th e percen t of Ammo nia ( deformities,> 0.2 mm and IP >II) obse rved throu g hout core 5-15 99 Figure 32. The relativ e abundances (percent) of dominant foraminiferal genera throughout core 10-8. l 00 Figure 33. Cluster analysi s for core 10-8 indicated two groups. 101 Figure 34. The percent o f sa nd number of genera, total number of foraminifera per gram, the percent of Ammoni a (deformit ies,> 0.2 mm and IP >II) observed throu ghou t core 10-8. 102 Figur e 35. The relative a bundances (percent) of d o minant foraminiferal genera throughout core 10-20. 104 Figure 36. Cluster analys i s for core 10-20 indicated four group s 105 Figure 37. The percent of sand, number of genera, total number of foraminifer a per gram, the percent of Amm onia ( deformitie s > 0.2 111m a nd IP > II ) o b se r ved throughout cor e I 0 -2 0 107 Figure 38. The relativ e abundances (percent) of dominant foraminifera l genera throughout core 13-6. 108 Figure 39. Clu s ter analysi s for core 13-6 indi cated three groups. 109 Figure 40. The percent o f sand number of ge n e r a total number of fo r ami nifer a p e r gram, th e pe r ce nt of Amm o nia ( deformi t i es > 0.2 mm an d IP >II) observed throu g hout core 1 3-6 110 Figure 41. The l ocations o f the Hill s borough Bay site s. 122 Figure 42. The locati o n s of th e Charlotte Harb o r s ite s. 123 IX

PAGE 13

Figure 43. The percent sand, number of genera, total number of foraminifera per gram, live (percent and per gram), percent of Ammonia (deformities, > 0.2 mm, and IP > II) for Hillsborough Bay and Charlotte Harbor samples. 133 Figure 44. Relative abundances of dominant foraminiferal genera for Hillsborough Bay and Charlotte Harbor. 134 Figure 45. Q-mode cluster analysis for Hillsborough Bay and Charlotte Harbor sites indicated three groups: stress group, Charlotte Harbor group, and nutrient-loading group. 135 Figure 46 The cluster analysis for generic associations identified two assemblages; one had two subgroups while the other had three subgroups. 137 X

PAGE 14

THE DISTRIBUTION AND ECOLOGY OF BENTHIC FORAMI N IFERA OF TAMPA BAY FLORIDA by THOMAS LINN DIX An Ab s tract of a dissertation submitted in partial fulfillment of the requirements for the degr e e of Doctor of Philosophy College of Marine Science Univer sity of South Florida May 2001 Major Professor: Pam ela Hallock Muller Ph.D. XI

PAGE 15

This study examines the distribution of, historical changes in, and influences of anthropogenic impacts on benthic foraminifera and their assemblages in Tampa Bay Florida. Approximately 150 foraminifera (live and dead) were picked or two grams of sediment were sorted per sample examined. Foraminifera were identified to genus. Cluster analysis identified five groups from 75 sediment samples collected in 1990 throughout Tampa Bay. Lobatula assemblage is characterized by genera attached to coarse sands in ship channels. Ammobaculites assemblage is characterized by genera found in fine sands near or in vegetation with salinities of 18-20. Haynesina-Ammonia assemblage is characterized by genera that tolerate muddy sediments in restricted areas. Ammonia-Elphidium assemblage is characterized by genera found in variable environmental conditions near vegetation. Ammonia totally dominated the fifth assemblage which generally was found in sediments lacking vegetation. Eight sediment cores from Hillsborough Bay were examined for historical changes. Most cores depicted changes that appear to be related to anthropogenic influence over the last 100 years. Planktonic foraminifera, probably introduced from ballasted ships used in shipping between 1915 and 1980, were found in the upper sections of four cores and throughout two cores. Faunal shifts and higher relative abundances of opportunistic taxa in the upper 50 em may have been caused by nutrient loading from anthropogenic sources. Sediment samples from Hillsborough Bay (15 sites) and Charlotte Harbor (3 sites) targeted specific anthropogenic influences on foraminiferal assemblages. Cluster analysis identified three groups of sites: ( 1) impacted sites, where foraminiferal test abundances were < 35 tests per gram, (2) nutrient loading sites, with foraminiferal abundances up to 5.7 x 103 tests per gram, and (3) partially impacted sites, where foraminiferal abundances were 50-160 tests per gram. Xll

PAGE 16

Foraminifera are useful bioindicators in Tampa Bay and sim ilar estuaries. Advantages of incorpora t in g foraminifera into environmental research include a) h istor ical perspective in the sediment record, b) ability to compare refere n ce and imp a c t s i tes both past and present, and c) assessing responses of key indicator taxa. The historical record available in sediments arc of particular value for ecosyste m management and habitat restoration. Abstract Approved:. _ ________________ Major Professor: Pamela Hallock Muller, Ph.D Professor, Department of Marine Science DateApproved: Oz:zQ-s/0/ XII I

PAGE 17

CHAPTER ONE INTRODUCTION Physiography And Environmental Parameters Of Tampa Bay Tampa Bay is located between 27 30' Nand 28 15' N la ti tude and 82 1 5' Wand 82 45' W longitude. It connects with the Gulf of Mexico and extends 60 km northeastward in a "Y" s h ape pattern (Galperin et al., 1991 ). Some of Tampa Bay s physical chemical, geological and biological characteristics are listed in Table 1. It is divided into seven subdivisions: Old Tampa Bay Hill sborough B ay, Middle Tampa Bay, Lower Tampa Bay, Boca Ciega Bay, Terra Ceia Bay and th e Manatee Rive r ( L ewis and Whitman, 1985) (Figure 1). The Tampa Bay area was h eav il y populated in 1980 w ith the Pinellas count y population at 85 I ,659, Hillsborough county at 834,054 and Manatee county at 211,707 for a total population of 1 ,897,420 (Ferna ld et al., 1984). Pin e ll as county is the secon d smallest county in F l ori d a but had the hi ghest population density i n 1985 ( Giovanelli and Murdoch, 1985). Most of Tampa Bay is s urround ed by urban l a nd agricultural l a nd and range land (U.S. Fis h and Wildlife Service, and Mineral M a n agement Service 198 3) (Figure 2) The human population uses Tampa Bay for food so u rces t r an s port, was t e di s posal a n d recreation. The r esu ltin g a nthr opoge ni c effects o n Tampa Bay a r e greate r than o n unpopulated coas t a l environmen ts.

PAGE 18

Table 1. Tampa Bay physical, chemical, geological and biological characteristics Type of characteristic Tampa Bay Width Mouth Width Shoreline Length Open Water Area Watershed Area Annual Mean Freshwater Runoff Average River discharge rate Hillsborough River Alafia River Manatee River Little Manatee Selected Streams and Rivers Mean Specific conductance pH Total N organic Total P DO Fluoride Organic carbon Mean Annual Rainfall Continued on next page Actual value 15 km 8km 1,454 km 1 ,030 km 2 4,600 km 2 63m3 /sec 265 X I o6 I/ day 386 x I 0 6 1/day 216 x 10 6 1/day I 17 x 106 1/da y 4.5 x 102 to 2 x 104 umho/cm(25C) 6.7 to 7.7 0.02 to 1 .83 mg/1 0.1 to 0.4 mg/1 0.1 to 1.2 mg/1 1.0 to 4.7 mg/1 5.0 to 8.0 mg/1 0.5 t o 9.85 mg/1 8 to 16 mg/1 127 to 140 em 2 Reference Galperin et al., 1991 Galperin et al. 1991 Lewis and Whitman, 1985 Galperin et al. 1991 Lewis and Estevez, 1988 Galperin et al., 1991 Lewis and Estevez, 1988 Lewis and Estevez, 1988 Lewis and Estevez, 1988 Lewis and Estevez, 1988 Dooris and Dooris 1985 Doori s and Dooris 1985 Dooris and Dooris, 1985 Dooris a nd Dooris. 1985 Dooris and Dooris, 1985 Dooris and Dooris, 1985 Dooris and Dooris, 19 85 Dooris and Dooris, 1985 Doori s and Doori s. 1985 Lewis and Estevez, 1988

PAGE 19

Table I. (Continued) Type of characteristic.: Actual va lu e R e f ere nc e Annual Average Temperature 23C Wooten 1985 Average S umm e r Lows 22 .2 t o 23.1 C Wooten 1985 Average S ummer High s 32.1 t o 32.3 C W oo ten 1985 Average Winter High s 21.4to 25.6 C Wooten 1985 Average Winter Lows I 0.1 t o II C Wooten 1985 Average Humidit y 88 % W o ot e n 1985 A verage Freezing Temperatures 4 nights/yr Wooten, 1985 A verage Depth 4 m Galperin e t al. 1991 Average Channel D e pth 15m Galperin et al .. 1991 Deepest D e pth (Navigational C h a nn e l Northwest 27 .5 m International Sa ilin g S uppl y Chart# 22 of Egmont Key) A v erage Tidal Range 0. 7 m Galperin e t al. 1991 Seaso nal Variab ilit y Sea Le v el C hange 0 .3 m Galpe r in et al.. 1 99 1 Tidal Currents Tampa Bay Mouth 1.2 t o 1.8 m /se Galperin e t al., 1 99 1 Hillsbo roug h Bay Mouth 0.15 m/sec Galperin e t al., 1991 Spec ific Condu cta nce (25C) Typical Tampa Bay Mouth 46 t o 50 millimhos/cm(25C) O ld Tampa Bay 38 t o 39 millimho s/c m(25C) Hillsborough Bay 32 to 39 millimh os/c m (2 5C) High Tampa Bay Mouth 53 t o 50 millimhos/cm(25C) Old Tamp a Bay 42 t o 44 millimhos/cm(25C) Continu ed on next page 3 Lewi s a n d Estevez. 1988 Lewi s a nd Es t evez. 1988 L ewis and Es te vez. 19 88 Lewi s and Este vez. 1988 Lew i s a nd Est evez. 1988

PAGE 20

Table 1. (Contin u ed) Type of characteristic Actual value Reference Hillsborough Bay 39 to 44 millimhos/cm(25C) Lewi s and Estevez, I 988 Low Tampa Bay Mouth 36 to 42 millimhos/cm(25C) Lewis and Estevez, I 988 Old Tampa Bay 20 t o 30 millimh os/c m(25C) Lewis and Estev ez, I 988 Hill sbo rough Bay 22 to 30 millimh os/cm(25C) Lewis and Estevez, I 988 Salinity Hillsbo rough Ba y Tampa Bay Color (P l atinum-Cobalt Units) Upper part of Tampa Bay Lower part of Tampa Bay Chlorophyll a Hillsborough Bay Tampa Bay Organic Carbon Concentrations Hills b o rough Bay Tampa Bay Mouth Turbidity Hillsborough Bay Tampa Bay Mouth Mean Annual Light Penetration (1982) Hillsb o rough Bay Upper O l d Tampa Bay Tampa Ba y Mouth Continued on next page 20 % Galper i n et al. I 99 I 33% Galperin et al., I 991 >9 Lewi s and Estevez 1988 5 to 9 Lewis and Estevez I 988 >20 ug/1 Lewi s and Estevez I 988 5I 0 ug/1 Lewis and E s t evez, 1 988 > 9 mg/ 1 Lewis and Estevez I 988 3-6 mg/ 1 Lewi s and Estevez, I 988 >7NTU Lewi s and Estevez. I 988 3-5 NTU Lewis and E stevez, I 988 < 1.3 m Lewis and Este vez. I 988 < 1.3 m Lewis and E s t evez. I 988 >2.8 m Lew i s and Estevez. I 988 4

PAGE 21

Tab l e 1 (Continu ed) T y p e of characteristic Act u a l value Refe re nce General Wat erQuali t y Index ( Body contact, 1978 to 1 983) Hil lsbo r o u g h Ba y U nd es ir ab l e t o Poor Lewi s and Es t evez, 1 988 ; Wol fe and D rew, 1990 O l d Tampa Mouth P oo r to Good Lewi s and Estevez, 1988 ; Wol f e a n d Drew, 1990 T ampa Bay Mouth Good t o Excelle n t Lewi s and Estevez. 1988 ; Wo l fe and Drew, 1990 Uptak e Rates fo r Sediments Orthophosphate Hillsboro u g h Bay Hig h L ew is and Estevez I 988 (4 mg P / hr/m 2 ) Re s t of T ampa B ay Medium Lewi s a nd Est evez, 1988 ? (3 m g P / h r /m-) A mm o n ia Hillsborou g h Bay High ( I 2 mg NH 3 !hr/m2) Le w i s and Es tevez, 1 988 Re s t of Tampa Bay Medium (8 m g N H 3 /hr/m2) L ew i s and E s t evez, 1 988 D O Hills borou g h Bay Very High L ewis and Es t evez. 1 988 (0 .20 g m c\Jhr /rn2 ) R es t o f Tampa B ay Medium L ew i s a nd Es t evez. 1988 ? (0.11 g m 02 / hr /m-) Mang r oves 9,34 1 h a Es tevez a nd Mosura, 1 985 Tidal Mar s he s 3 1 27 h a Es t evez a nd Mos ura 1985 Scagrass Meadows 5,750 ha Lewi s e t al., 1 985 5

PAGE 22

I I n Bay 0 .: Midd l e Tampa Bay Y Bay T SCALE 1 250,000 st.twl" 1.. Q Lower T ampa Bay '-[;A-""'_ &.JTerra Ceia Ba y r ..--Fi g u re 1. The s even subdivisions o f Tampa Bay ( L ewis an d Wh i tman, 1985 ) 6

PAGE 23

LEGEND LAND USE Urban Land = Agric ultural Land Range Land uv \ II All other land u se classificat i ons not potrayed co n s i s t primari l y of wetlands and oth .:r habit ats I 'tet .. t-"'.. S I i.r_,_.,i -Figure 2. A map of socioeconomic l and uses s urr o unding Tampa Bay, Florida in 1983 (U.S. Fis h a nd Wildlife Service and Mineral Management Service 1983). 7

PAGE 24

The Hillsbor o u g h Alafia, Manate e and Littl e M a natee Rivers con st itute 76% o f the total surface water discharge int o Tampa B ay. The rest of the surface water disch a rg e enters Tampa Bay via tidal creeks and direct runoff. The four major rivers flow mainly through agri c ultural lands Most of the surface water discharge in to Tampa Bay occurs between June and September, because more th a n h alf of the a nnu a l rainfall occurs durin g thi s tim e (Galp e rin et al., 1991 ). Generall y, Tampa B ay s ummers are l ong, h o t and humid while the winters are mild (Wooten, 1985). The winds are weakest during the summer except durin g local a ft e rnoon thunderstorms an d tro pical storms ( Galperin e t al., 1991 ). The salinit y of Tampa Bay i s well mi xed verticall y while there are d e n s it y gradients horizontally ( W e isb e r g a nd Willi ams, 19 9 1 ) The s ubtidal c ir c ul atio n i n Tampa Bay is the classical two-layer es tuarin e pattern ; the su r face currents are fresher and flow out of Tamp a Bay w hil e the bottom c urr en t s a r e saltier a n d flo w int o Tampa Bay Nort heasterly wi nd s int e n s i fy the tw o -l aye r c ir culat i o n in Tamp a Bay w hil e southwest erl ies weake n this pattern. The sou t hwesterl y wi nd s c reate stro n g n o r theas t ward c urr e nt s alon g th e east ern and western banks of the Bay. Northwesterl y winds affec t c u rre nt ci rcul at i on in their own direction much the same as the southwesterly winds by decreasing th e flow and makin g it quas i barotropic. South easterlies steer th e surface c urrent s in their own direction w h i l e t he near-bottom c urrents reverse the norm a l two l aye r c i rc ul ation patterns. In the reverse two-layer c ir culati on, the s u rface water currents flow landward w hile near-b o tt o m c urr ents flow into middle Tampa B ay (Galper in et al., 1 99 1 ). Tidal c urr e nt velocities in Tampa Bay a r e un iform t hroughout the water column a n d 8

PAGE 25

the tidal currents are aligned with the bottom throughout the bay (Weisberg and Willi a ms, 1991 ). Flood-tide water enters in the vicinity of Egmont Key and propagates up to Middle Tampa Bay where it bifurcates following the navigational channels into Hillsborough Bay and Old Tampa Bay. During ebb tide the pattern reverses The ebb cycle is shorter than the flood cycle and maximum ebb velocities exceed the corresponding t1ood velocities. The flood tide takes 3.5 hours to propagate from the mouth of Tampa Bay to it s upper reaches (Galperin et al., 1991 ). The residual water movement after a complete tidal cycle i s toward the Gulf of Mexico. Most of the sediments in Tampa Bay are fine to very fine quartz sands (Goodell and Gorsline, 1961; Doyle, 1985; Wolfe and Drew, 1990; Brooks and Doyle, 1991 ) However, Old Tampa Bay and Hillsborough Bay have more mud ( < 63 urn ) (Goodell and Gorsline, 1961; Wolfe and Drew 1990; Brooks and Doyle, 1991). The s hipping channel s of Middle Tampa Bay hav e carbonate sediments comprised mostly of molluscan s h e ll fra g ment s (Goodell and Gorsline, 1961 ; Doyl e, 1985). Anthropogenic Inputs To Tampa Bay The average phosphate co ncentration in Tampa Bay water was 14 uM in 1980 (Fanning and Bell, 1985 ). Most of the ph osphate comes from the leaching of Florida's phosphate beds, drainage of fertili zer from adjace nt agric ultural land s, industrial companies a nd sewage inputs The bay a lso ha s a lar ger fraction of inorganic nitrogen in the form of ammonia (0 84) than many other estuaries. After the rainy season, total inorganic nitrogen d ecreases but inorganic phosphate does not. The highest nutri e nt concentrations (Ortho-P NH 4 N03 and organic N) in the Tampa Bay area were in Hill sboro u g h Bay tFanning and Bell, 1985). 9

PAGE 26

Total hydrocarbon concentration of Tampa Bay sediments averaged 2.9 3.2 ppm (ug g1 ) in 1982. Elevated levels of hydrocarbons were found in Hillsborough Bay. Hydrocarbon concentrations of Tampa Bay were much lower than other estuarine surface sediments from around the U.S. (VanVleet, 1985). Dredging and filling operations have been changing Tampa Bay since 1879 (Fehring, 1985) Between 1900 and 1912 a channel was dredged down the middle of Hillsborough Bay. Between 1912 and 1932 side channels were dredged and middle Tampa Bay was dredged. Between 1932 and 1971 more dredged channels were added to the major channels, and increased filling was accomplished around the ports (Fehring, 1985). In 1950 the Hookers Point Primary Wastewater Treatment Plant was completed and Tampa Bay began to received its discharge. The Tampa Sewage Treatment Plant contributed ammonia, nitrogen and biological oxygen demand (BOD) to Hillsborough Bay. The Fecal Coliform was high (50 x 10 6 numbers/100ml) near the plant. An Advanced (secondary) Wastewater Treatment Plant (A WT) at Hookers Point was constructed in 1978. The A WT plant reduced the level of pollution by more than 90% for BOD, suspended solids, nitrogen and phosphorus (GarTity et al., 1985). Tampa Bay had 59 point sources of effluent discharge (Table 2) (Moon, 1985). The largest contribution of phosphorus and nitrogen to Tampa Bay was from domestic sources (Moon, 1985). Major nonpoint sources of pollution into Tampa Bay are from storm runoff (Giovanelli and Murdoch, 1985) Hillsborough Bay has at least nine major point sources for pollution: A1afia River; Hillsborough River and downtown Tampa; Palm River and Tampa Bypass Canal; Nitram, Inc. and Delaney Creek; Cargill Fertilizer, Inc.; Hookers Point 10

PAGE 27

Table 2. Point source discharges into Tampa Bay in 1985 (Moon, 1985) Location Old Tampa Bay Hillsborough Bay Middle Tampa Bay Lower Tampa Bay Boca Ciega Bay Terra Ciea Bay Manatee River Sources Florida Pow er, Higgin s; Florida Power, Bartow ; Aerosonic Corporation; Boulevard Park; Southgate Mobile Home Park; City of Oldsmar; City of Tarpon Springs; Carrollwood SID; City of Largo; East Plant Clearwater; Northeast Clearwater; River Oaks Hookers Point; Gardinier, Inc.; Alafia Motor Home Park; IMC Port Sutton; Gibsonton Speed Wash; Eastside Water Company; Bayshore Palm s Apts ; City of Mulberry; Farmland Industrie s; W.R. Grace Bartow; Mobil Chemical Corp ; Conservation Spillway s; IMC King sfo rd; Brewster Pho s phate s; Agrico; Amax; Brew s ter Spillways; Adamo A cres Facility; City of Plant City; Meadowbrook Motor Park; Foxwood SID; Kraft foods; Seaboard Coast line Northeast St. Pet e STP ; Albert Whitted STP; Bahi a Beach Res taurant ; Ruskin Laundromat Amax, Piney Point South Cross Ba yo u ; Northwest St. Pete ; Ft. Bay DeSoto Park #1, #2 #3, and #5 ; Holiday Harbor Trailer Park; Mcka y Creek; Clearwater, Mars hall Pl a nt; Southwest St. Pete STP City of Palmetto City of Bradenton ; Tidevue Estates; Tillman Elementary School s ; Ru s kin Laundromat 11

PAGE 28

Wastewater Plant; MacDill AFB Wastewater Plant; fertilizer shiploading terminals; and the Sutton Channel in East Bay (Johansson, 1991). Hillsborough Bay received 15% to 30% of its pollution from point sources, 10% to 25% from urban runoff and 45% to 65% from river flows (Garrity eta!., 1985). Tampa Bay's phys ical characteristics changed between I 880 and 1985 (Table 3) (Lewis and Estevez, 1988). Besides dredging and filling operations, Tampa Bay had at least 19 major anthropogenic mishaps between 1970 and I 992 (Table 4) (Murphy and P o rt, I993). Over the 100 years prior to I985, lo ss of habitat has included 4,423 ha ( 44 %) of emergent vegetation and 25,000 ha (81 %) of submergent vege tation (Hoffman eta!., 1985). The Water Quality Index for Tampa Bay improved between I98I and 1989 (Boler eta!., I991). Background Information On Foraminifera The Class Foraminifera is classified in th e Kingdom Protocti sta, and Phylum Granuloreticulosea (Sen Gupta, 1999 ) Foraminiferal shells, commonly refered to as "tests", can be organic (AIIogromiida), agglutinate (including the orders Astrorhizida, Litu o lida Trochamminida, and Textulariida), calcareous (incl udin g th e orders Fusulinida, Milioida, Carterinida. Spirillinida Lagenida, Buliminida Rotalida. Globigerinida. Involutinida and Robertinida), or si lice o u s (S ilicoloculinina) (Sen Gupta, I 999). Agglutinate species can have sediment loosely attached in an organic membra ne, o r they may have sedim e nt g rain s h e ld together by calcareous or ferruginous cement. The species which are calcareous may have a s hiny white surface (porce laneous). a radial structure, or may not have any distinct pattern (Loelich and Tappan. 1988). Foraminifera can be s uspensi o n feeders detrital scavengers herbivores or carnivor es (Hay n es. 1981 ). 12

PAGE 29

Tabl e 3. P erce nt c h a nge fo r T a mp a B ay p h ysica l c haracteristics from 1 880 to 1985 ( L e w is an d Estevez, 1 988) Loca tio n Lowe r Tampa Bay Mi d dle Tamp a Bay O l d Tampa Bay Hi ll sboroug h Bay S ur face Area (km2 ) 4.9 % -3. 9 % 9.8 % -35. 2 % W a ter Volume (km2-m) +0.3% +0.4 % + 0.7 % +8.1% 1 3 Average Depth (m) + 0.7 % +0. 5 % + 1 .4 % + 8.5 % T i da l P r ism (km2-m) -3.1 % -4.0% 4 3 % 12.2 %

PAGE 30

Tabl e 4. Anthropogenic mish aps between 1970 and 1992 (Murp hy and Port, 1993 ) D a t e Type of Mis h a p Fe h 1970 Oil spill (840 000 gallo n s o f diesel fuel from the De/ian Apollon) Jan 1 977 Oil s pill (20,000 gallo n s o f diese l f u e l f rom the New York) Oc t 197R Oil spil l (30,000 ga l lons o f di ese l fue l from the H owa r d S tarr) Jun 1 980 Oil s pill (2,500 gallo n s o f di ese l fuel fro m the D oma r 118) Feb 198 1 Cras h (Liquilassie s l ams into Gandy Bridge) Fe b 1 987 Chemical spill (700, 000 gallons o f am m o nium nitrate from a s t o r age tank at Nitram) Apr 1987 Oil spill (3.000 gallons of diesel f u e l from the /Je/ileran ce) May 1 988 Ch emica l s pill (40.000 gallo n s o f phosp h oric ac i d from a s t orage tank a t Cargill Fertilizer) Dec 1 988 Gas c l oud (a mmoni a leak from the H emi n a) M ay 1 989 Chemica l spill (200 000 gallo n s of p h osp h oric acid fro m s t orage tank a t GATX) Aug 1 989 C hemi cal spi II ( 4 300 ton s o f sulfuric a cid from a pipe l ea k at Roys t er Pho sp hat e termin a l ) May 1 99 0 Exp l os i o n (35 .000 gallo n s of alco h o l a t GATX) Jul y 1 990 Oi l s p ill (8. 000 gallo n s of die se l fue l from the Geor g e D Williams) Feb 1 99 1 Ga s cloud ( chlo rin e l ea k f ro m h alf-full cylind er at a s hrimp process ing p l ant) Jul y 1 99 1 Oi l s pill ( 6.000 gallo n s of die se l fuel from the s t orage ta n k at Coas t a l Feuls ) Oct 1 99 1 Gas c l oud ( 1 .200 p o und s o f ammo nia gas from a p ipe l ea k a t IMC Fe rtili zer facility) Ja n 1 992 C r as h (Lui g i Lagran ge co llid es w ith the b a r g e M. V. Bl ed) Apr 199 2 Cras h ( Over seas Alice collides with deck ba r ge in Ybor C h annel) A pr 1 992 F ire (tug boat B e1-erlr And erso n gutted w hile p us hin g coa l ) 1 4

PAGE 31

Usef uln ess Of Foraminifera In Environmenta l Research Se paratin g the e ffect s o f n a tur a l and a n thr o p ogenicallyindu ced c h anges on f oraminif e ral di s trihuti o n s c a n be pr oble m atic (Alve, 1 995; Ya n ko e t al., 1999). M a n y s tudi es h ave b ee n d o n e o n the d i s tributi o n o f f o raminifera, but p r ec i se co ntr o l s o n the di s tributi o n a n d nic h e o r eac h t axo n a r e s till n ot k n ow n ( A ive, 1995). D i stributio n of f o r a minifer a can be influ e n ce d b y f ac t o r s th a t inc lude wa t e r t emperat ur e, sa l inity, cu rr e nts n utr i ent a vail a b ility, sed im e n t typ e, wa t e r d ep th, and p H ( A le j o e t al., 1 999), as well a s t oxic c h emicals (Aive, 1 9 9 5). A bi o indicat o r i s a n o r ganis m w h ose p r es en ce and abund ance p rovides specif i c i nfor mat i o n r ega rdin g e n v ironm enta l co n d i t i o n s ( Wil so n 1994). T h e m ore that i s k n o wn a b out the relati o n s hip b e twee n the o r ganis m and its env ir o n ment the bette r bioind i ca t o r it will b e ( W i l son 1 994). F o r amin if e r a liv ing in estuaries a n d coastal e n v i ro n me nts a r e i mpacted by variable co n ditio n s a n d a nth ropogenic pr ess ur es (A ive, 1 995; H alloc k 2000) Wate r q u ality a n d sed im ent c h arac t e ristics c a n be u sed t o assess th e contami nant l oads i n es tuarine sys tems (Wilson 199 4 ) Bio l og i ca l c r i t eria se rve t o in depe n de n t l y evalua t e t he q u ality of ma r ine e n v ir o nm ents, a n d t o sup p l e m ent t ox i city a n d c h emica l met h ods ( D auer, 1 993). Th e disadvantage of sediment and wat e r quality assess m ent i s that they do n o t necessarily r etlec t the l imit s o f availabilit y to, o r u p t a k e by liv in g o r ga n isms ( W i l son, 1 994) Disa d va nt ages of m onito rin g bio t a a r e their r es tri c t e d r a n ges, an d thei r ge n e r ally u nkn O \\ n r ange r es p o n ses t o specific st r esso r s ( W ilson 1 994 ) and thei r unkn ow n r espo n ses t o multi p l e s tr es s ors. W h e n u s ing biolog i cal orga nism s to depic t 1 5

PAGE 32

impacts, the biologist should strive to determine the causes and significant changes from normal situations (Elliott 1994 ). Estuarine organisms can be indicators of defined sets of environmental conditions, indicators of contaminant loads on the system, and indicators of the overall health of the system (Wilson, 1994). Benthic macrofauna! communities are often used to indicate environmental health because benthic animals are relatively sedentary, exhibit different tolerances to stress, and have important roles in nutrient cycling (Dauer, 1993). The advantages of using foraminifera in monitoring environmental health are that I) foraminifera record the environmental changes as indicated by changes in foraminiferal assemblages in the sediments, 2) foraminifera are abundant, diverse, and widespread in marine environments, 3) shell morphologies can sometimes indicate stress, 4) living populations and surface-sediment assemblages can assess current conditions while dead foraminiferal tests in cores can assess decadal-, century, and millennial-scale changes in community structure (historical record) 5) some species can be maintained in culture to determine responses to selected stresses, 6) field transplant studies can be made from reference sites to impacted sites, 7) as a result of small size (normally < 2 mm) and wide abundance, statistically significant sample sizes can be collected quickly and inexpensively with minimal environmental impact, 8) as a result of short reproductive cycles, and rapid growth, community structure responds to environmental changes relatively quickly, and 9) there are species-specific responses to ecological conditions (Yanko et al., 1999; Hallock 2000). Benthic foraminifera have been used extensively to indicate marine and brackish environmental and paleoenvironmental conditions (Alve 1995; Brewster-Wingard 16

PAGE 33

and Ishman, 1999; Yanko et al, 1999). Foraminifera have been used as sedimentary indicators (tidal effects, water movement, settling velocities, sediment transp o rtation ), anthropogenic indicators (sewage, heavy metals, petroleum chemical, pesticide s, ash, eutrophication, anoxia, and salinities changes), and global indicators (UV B radiation and sea level changes) (Alve, 1995; Alejo et al, 1999; Brewster-wingard and Ishman, 1999; Yanko eta!., 1999; Hallock, 2000). Foraminifera can be used to define present assemblages under local environmental conditions, to compare impact sites with reference sites, and to document historical changes (Hallock, 2000). The major focus of monitoring programs are to obtain baseline data and to detect natural and anthropogenic trends in status and conditions over time (Dauer and Alden, 1995; Overton and Stehman, 1996 ). Foraminiferal tests are valuable in preserving and recording e nvironmental stress through time thus providing hi storica l bas el ine data in th e absence of background s tudie s (Yanko et a!., 1999). Sites which are truly unimpacted are becoming scarcer and using refer e nce sites from remote areas has drawbacks in that the e nvironmental conditions may not be comparable to the impact s ite s (Sheppard, 1995 ) The reference areas used may have drifted farther away from a "t rue p ris tin e condition so the baseline conditions may be drifting eve r farther away from th ei r original sta rtin g point (Sheppard, 1995). Using foraminifera in cores provid es in sigh t into past conditions, natur a l range of variability and re spo nse to changes in the system (BrewsterWingard and Ishman, 1999). For exa mpl e, modern faunal-environmental assoc i ations were compared to down core assemblages to interpret historical tends in Florida Bay ( Brew ster Wingard and Ishman 1999). Simplicity is a desirable design c rit e rion in biological monit o rin g (Overton and 17

PAGE 34

Stehman, 1996). Grouping foraminifera to genus or family level identification, rather than using species, decreases costs, reduces error resulting from misidentification, and creates a design that is repeatable by future researchers (Ferraro and Cole, 1990). Sampling and archiving costs are also a function of sample size. Since foraminifera can be collected in statistically significant samples sizes from a small volume of sediment, the cost will be lower than for macrobenthic organisms (Ferraro and Cole, 1990). Foraminiferal taxonomic diversity provides the potential for diverse biological responses to different anthropogenic inputs (Yanko et al., 1999). Perturbations are relatively easy to detect and do not require sophisticated techniques, but it is often difficult to attribute causes (Elliott, 1994; Wilson, 1994). Chronic stress may have a different effect than an acute stress and foraminifera may be useful in detecting differences since microorganisms respond relatively quickly to changes (Odum, 1985). Habitats Of Estuarine Foraminifera A variety of habitats are available for foraminifera in Tampa Bay (Figure 3). Estuarine foraminifera are found in tidal marshes, mangrove swamps, tidal flats, sandy beaches, rocky shorelines submerged live bottoms, and open water (Table 5). Most estuaries provide an abundant source of food for foraminifera (Murray, 1973 ), though sediments in seagrass marsh and mangrove settings generally have twice the organic and carbonate content than unvegetated sand flats (Lewis et al. 1985). Marsh foraminiferal assemblages are not diverse (Murray 1973). The acidic pH accounts for the predominance of agglutinate tests in sediments, as calcareous tests dissolve after the death of the individual (Murray, 1973 ; Hedley and Adams. 1976). 18

PAGE 35

!3 T idal M ars h M a n grove Bed S C A LE I 250 000 J (.1l r,E Figure 3. The major bi o l o gical habitat s for Tampa Bay (U. S. Fi s h and W il dl ife Serv i c e and Minera l Management S e r v ic e 1 983). 19

PAGE 36

N 0 Table 5. Characterizations of foraminiferal habitats in estuaries Habitat Type Tidal Marshes Major Environmental Parameters Exposure (elevation gradient relative to mean sea level), extreme fluctuations of salinity and temperature, pH 6 to 7 5, low energy environments Macro Fauna I Vegetation Spartina alterniflora* }uncus roemerianus* Key Taxa Hyposaline Textularida and Rotaliida ; normal marine salinity some Textularida, Rotaliida, and Miliolida; hypers a line Miliolida, Rotaliida and Textularida References : Phleger, 1960; Murray, 1973; Estevez and Mosura, 1985; Wolfe and Drew 1990 ; Jennings and Nelson, 1992 Mangrove Swamps Similar conditions as tidal marshes Rhizophora mangle* A vicennia germinans* Laguncularia racemosa* Similar to tidal marshes ; in hypersaline conditions in Florida, Textularida can be 50% of the species and Miliolida can also be a substantial component References: Murray, 1973 ; Hedley and Adams, 1976; Estevez and Mosura, 1985 Tidal Flats Exposure; extreme fluctuations of salinity and temperature; low energy environments References: Murray 1973 None Sandy Beaches Relatively high energy environments None References: Murray 1973 = Found in Tampa Bay Continued on next page Rotaliida some Miliolida, and Textularida Miliolida (Quinqueloculina, and Miliolinella), Rotaliida (Elphidium, Ammonia, Rosalina, and Cibicides) are also common

PAGE 37

10 ...... Table 5. (Continued) Habitat Type Rocky Shorelines and Submerged Live Bottoms Open Water Major Environmental Parameters Similar to sandy beaches, some live bottoms have little to no exposure Macro Fauna I Vegetation Sargassum filipendulum* Caulerpa mexicana other various attach alage, Leptogoria virgulata (sea whips)* Spheciospongia vesparia (loggerhead sponges)*, Cliona spp (boring sponges)*, and tunicates* References : Murray, 1973 ; Derrenbacker and Lewis 1985 Variable in environmental parameters (e.g. salinity, temperature and oxygen) Little to no exposure Thalassia testudinum* Syring odium filiforme* Halodule wrightii* Ruppia maritima* Halophila engelmannii* References: Murray 1973 ; Hedley and Adams 1976 ; Lewis eta!., 1985 = Found in Tampa Bay Key Taxa Similar to sandy beaches, some Textularida Trochamminida (Trochammina) Fresh water (thecamoebians) hyposaline (Textularida such as Miliamminafusca); lower estuary (Rotaliida such as Elphidium spp., and Ammonia beccarii) ; near normal salinities (Miliolida increase e.g. Quinqueloculina and Triloculina )

PAGE 38

M ars h f oraminife r a l assemblages can vary fr o m abundant to n o liv in g f o r aminifera ( Phleger 1960). Di s tin ctio n s b e t wee n high a nd low mars h s p ecies are recogni zed worldwide (Jenni ngs and Nelson, 1992). Agg l u t inate s pecie s dominate in mars h es (Jennings and Nel son, 1 992). Mangrove swamp conditions a re s imilar t o t id a l mars h condi tion s M a n y of th e same or similar foraminifera from tidal marshes are found in m ang rove swamps (Murray 1 973; Hedley and Adams, 1976). Tida l Dat s are harsh e nvironm e nts for f o raminifera The o n ly way a foraminifer can protect itsel f i s t o burrow. Bec a use sedime nt s below I t o 2 em a r e usually anaerobic burrowin g may be disadvantageou s to for aminife ra (Murr ay, 1973). Storms and tid a l c urr e nt s can transport a nd bury tida l flat for a minifera ; buried indi v idu a l s move toward the sedime nt s urface (Murray, 197 3). S a nd y beaches are con s tant l y cover e d and uncovered by water. Shelter is scarce for fo raminife r a. Thus, most t es t s found in beach san ds are e mp ty. F o r aminifera o f rocky s h o r e line s a n d submerged liv e bottoms a re gen e r a ll y indi genous. When a for aminifer di es, it i s destroyed by a brasion or tran sported t o o th e r a reas (Murray, 1 973). Estu aries a r e s ubject t o con tinu a l tidal flu c tu ations a nd seaso n al changes. Great e r variabilit y o f e n v ir o nment a l conditi o n s in the uppe r part of a n est uary result in higher di ve r s it ie s in th e l o wer p art (Murray, 197 3). Previ o us R ese arch On Tampa Ba y F o r a m inifera Previo u s s tudies o f f o r aminifera l distributi o n s have been don e in Tampa Bay (Table 6). A lth o u g h Ammon i a and /phidi um wer e widesp read th r o ugh o ut Tampa B ay 22

PAGE 39

Tabl e 6. Previou s s tudie s of foraminifera l di s tribution s in Tampa Bay Genus/Species Reference Genu s /Specie s Upper Tampa B ay Ammobac ulites dilata tu s Ammobac ulites sa/sus Ammo tium sa/sum Ammotium Ammonia b ecca rii Ammonia t epidus Elph idium spp Elphidium deli c atululll Gaudryina ex ilis Reophax nan a Widespread Ammon ia Ammo nia beccarii B o l ivina striatula Elphidium advenum (2) ( I ) (2) (3) (2) ( I ) (2) (2) (2) (2) Elph idium incer tum mexicanwn Elphid iu m Elph idiu m poeyan11111 Quinquelo c ulina poeyana I =Ban dy 1956 ( 1 ,3) (2) (2) (2) (2) (2) (2) (2) Middle Tampa Ba y Ammonia tepidtu T ext ula r i a seca.w!llsis Triloculin a trigonula Qui nquelocul ina akn e rina Quinqu e loculina 2 =Walto n. 1964 Referenc e ( I ) (I) ( I ) (I) (I) 3 = Poag, 198 1 Genus/Specie s Lower Tampa B ay Ammonia hecc arii Ammonia tepidu s Elphidium spp. Elphiditllll m a t agorda num Quinquelo c ulina s pp. Quinqueloculina co m pta Quinqu e l oc u lina poeyana Qu inquelo c ul ina semi nulum Triloculina hrev id e ntata Triloculin a tf nowliformis Rosa/ina parkeri Cockroach Bay Ammobac11lites exilis Ammonia beccarii E lphidium mexi c w1um H ayn esin a germ a ni c a Trochammin a laevigata 4 = Patton. 1982 R e f ere nce l2) ( I ) (1.2.3) (2) ( 1.3 ) (2) (2) (2) (2) (2) (2) (4) (4) (4) (4) (4)

PAGE 40

some genera arc more common in upper Tampa Bay, while others are found in the l owe r bay (Table 6). Ammonia, Ha y nesina Trochammina, Ammobaculites and Nonion thrive in estuarine conditions while Tril oculina, Te xtularia, Quinqueloculina, Buliminella, Nonionella, and /Jri z alina pr efer n ea r-n o rmal marin e sa linitie s ( Tabl e 7). Foraminiferal Responses To Anthropogenic Impacts f-oraminiferal distribution s in an estuary can be affect e d b y pollution (Alve, 1 995) Anthrop og enic impacts that affect Tampa Bay inc lude sewage effluent thermal efnuent and c h em ical e rtlu ent ( h eavy m e tals p es ticid es and oil) Sewage Maj o r rev ie w papers on the effects of p o llut a nts o n foraminifera h ave been published in recent yea r s (i.e. Alve 1995; Yanko e t al., 1999). These reviews i ndi cate that sewage e ffluent influenc es f o ram i nif e ral asse mbl ages in thr ee major ways: by increasing foo d su ppli es, in c rea s in g biologic a l oxyge n demand and r educin g p H. Opportunistic t axa tha t can t o l erate episodic anoxia ma y bloom (Al ve, 1 995), though low pH ma y result in p ost m o rtem dissolution of calca r eo us t ests (M urra y 1 9 7 1 ; Murray, 1 973; Re sig, 197 4 ; Akpati, 1 975; Bra s ier 1975a; Scott, 1 976; Scott and Lecki e, 1990 ; Je nnings and Ne l so n 1992). The effec t s of point so urc es of se\:vage o n foraminiferal assemblages h as b ee n describ ed by Murray (1973) and Schaefer ( 1 973), and s umm arized by Alve (1995) as follows. In the imm ed i a t e v i cinity of the point so ur ce, n ear ahiotic condit i o n s ma y occur. B oth numb e r s of foraminifera and diver sity a r e lo w With distance from the p o int s o urce, b oth abundance and diver sity inc r ease t o a n a u reole of maximum abundance and diver s ity 24

PAGE 41

N VI Table 7. A summary of known environmental requirements of common genera found in Tampa Bay Genus Ammonia Elphidium Haynesina Habitats Widely distributed thoughout many estuaries and lagoons saltmarshes, marsh slopes, channels, mangrove swamps, brackish water ponds, open-sea beaches, and tidal flats Remarks Primary opportunist; wide range of sediments; one of the genera most resistant to pollutants and stressful conditions; prefers the intermediate salinity zone above 14; asexual reproduction occurs at 20 C to 30 C and salinities of 15 to 40 with no reproduction at < 15 and no growth at 8 References : Said, 1951; Ronai, 1955; Ph Ieger 1956; Bradshaw 1961; Todd and Low, 1961; Phleger and Bradshaw 1966 ; AI bani, 1968 ; Nichols and Norton 1969 ; Ellison and Nichols 1970; Murray 1973 ; Re sig, 1974 ; Brasier, 1975a; Bra s ier 1975b; Hedley and Adams, 1976 ; Scott et al., 1976; Otvos 1978 ; Albani and Barbero, 1982 ; Schafer, 1982; Albani et al., 1984; Alve and Nagy 1986; Ellison et al., 1986; Lidz and Rose, 1989 ; Jennings and Nelson, 1992 ; Goldstein and Moodley, 1993; Yanko et al., 1994 ; Alve, 1995 ; Culver and Buzas 1995 ; Hayward et al., 1996 Normal marine areas, lagoons estuaries tidepools and beaches around the world Has been found in channels and shoal areas from upper to the lower parts of Tampa Bay References : Ronai, 1955; Bandy 1956 ; Phleger 1960; Cooper, 1961; Todd and Low, 1961; Walton 1964; Murray 1973 ; Thompson, 1978; Scott et al., 1980; Poag, 1981; Murray 1983 ; Schafer and Smith 1983 ; Williams, 1995 Estuaries, tidal flats Abundant in muddy sediments References : Todd and Low, 1961; Ellison 1984 ; Alve and Nagy, 1986 ; Jennings and Nelson 1992 al., 1994 ; Culver and Buzas 1995 Continued on next page

PAGE 42

N 0\ Table 7. (Continued) Genus Triloculina Trochammina Textularia Habitats Normally considered normal marine but also has been found in bays lagoons, beaches mangrove swamps and mudbanks Remarks Wide rang e of sediment types, sa linities above 30 to hypersalin e conditions; appears to be one of the most resistant genera to pollutants in the Mediterranean References: Ronai 1955 ; Phleger 1960 ; Albani, 1968; Brasier 1975a; Brasier, 1975b ; Lidz and Ro se, 1989; Cockey, 1994; Yanko et al., 1994 Saltmarshes, bogs mangroves tidal flat and fore-reef environments Seem to prefer large grain size particles for attachment such as plant fragments in mud or sand or on mollusk shell fragments References : Phleger and Bradshaw, 1966 ; AI bani 1968; Murray 1971; Murray, 1973; Bra sier, 1975b ; Hedley and Adams, 1976 ; Scott and Medioli 1978 ; Scott et a l., 1980 ; Goldstein, 1988; Scott and Lecki e, 1990 ; Jennings and Nelson 1992; Williams, 1995 Cosmopolitan distribution from intertidal to continental shelf in the more stable normal marine areas channels, bays marshes, tidal flats, marine fore-reef and tidal pool s Ha s been found on rocks and plant s but prefers unconsolid a ted sediments of sand and mollusk s hell fragments References : Miller, 1953 ; Bandy 1956; Phleger 1960 ; Todd and Low, 1961; Phleger and Brad s haw 1966 ; Albani, 1968; Akers 1971; Murray 1971; Lankford and Phleger, 1973; Murray, 1973 ; Schafer, 1973; Frenkel 1974 ; Brasier 1975b ; Hedley and Adams, 1976 ; Scott et al., 1976 ; Thompson 1978 ; Scott et al. 1980 ; Lidz and Ro se, 1989; Goldstein, 1988 ; Scott and Laeckie 1990 Continued on next page

PAGE 43

N -...) Table 7. (Continued) Genus Quinqueloculina Buliminella Nonionella Habitats Temperate and tropical areas, beaches, tidal flats, tidepools bays, and lagoons Remarks Prefer high salinities and shallow warm waters (most abundant in water with a temperature between 22 C to 32 C); Some lose control of their pseudopodia! activity at salinities less than 30 and/or precipitation of their high magnesium calcite shell became more difficult References: Loelich and Tappan, 1964; Bandy eta!., 1965 ; Murray, 1973; Haynes, 1981; Buzas and Severin 1993 ; Hallock-Muller and Williams 1998 Middle lagoons and open bays to the outer continental shelf, a normal marine to fluvial marine foraminifer Found in the salinity zone of II to 34, but prefer near normal salinities Reference s : Miller, 1953; Phleger, 1960; Bandy eta!., 1965; Murray 1971; Brasier, 1975b; Hedley and Adams, 1976; Scott eta!., 1976 ; Ovtos 1978 ; Thompson, 1978; Scott eta!., 1980 ; Goldstein, 1988 Outer bay s to the continental shelf a normal marine to fluvial marine foraminifer References: Said, 1951; Miller 1953; Phleger, 1956; Phleger 1960; Otvos, 1978; Buzas eta!., 1989 Continued on next page

PAGE 44

N 00 Table 7. (Continued) Genus Ammobaculites Bri z alina Nonion Habitats Generally has been found in the upper parts of many estuaries Remarks Abundant at low salinities where there is considerable fresh water input References: Ellison and Nichols 1970 ; Nichols and Norton 1969; Asseez et al., 1974; Scott et al., 1980; Williams, 1995 Inner lagoon to outermost continental shelf Prefers more oceanic conditions on rock and sand; tolerates low oxygen conditions References: Murray, 1971 ; Lankford and Phleger, 1973 ; Scott et al. 1976 ; Poag, 1981; Murray et al. 1982 Cosmopolitan distribution from intertidal to continental shelf, bays sounds, estuaries, marshes, mudflats and tidal flats Abundant in all types of sediments and salinities but prefers the intermediate salinity zone; algal chloroplasts have been found inside Nonion which may play a metabolic role in oxygen poor environments and polluted waters References: Said 1951; Miller 1953 Ronai 1955 ; Phleger, 1956; Seiglie, 1968 ; Murray, 1971; Murray, 1973; Seigle, 1973 ; Frenkel, 1974 ; Scott et al., 1976; Otvos, 1978; Thompson, 1978; Ellison and Peck, 1983; Murray, 1983; Albani et al., 1984; Alve and Nagy, 1986; Cluver 1987

PAGE 45

in the zone where the food s upplie s are enha nced P ast the aureole, densities and diversities return to normal background conditions. Other e ffects of sewage on foraminifera have been documented. Murray ( 1973) noted that Elphidium .spinatum and Nonionella basispinata may devel op test abnormalities in a reas of sewag e discharges. Waltkin s (1961) and Yanko et al. (1994) r e p o r ted that foraminifera l tests in areas of sewage discharge were unu s ually lar ge, and well ornamented, with rel a tively few deformities. Thermal Effects of therma l p o llut ants were rev i ewed by Alve ( 1995) and Y anko et al. (1999 ) Thermal effluent appears to effect foraminifera in three ways : an increase or decrease in abundance, decrease in diver sity, and tes t abnormalities ( Schafer 197 3; Alve. 1991 ; Yanko et al., 1994 ). Only Elplzidium (low densities) were found in the se dim ents n ea r a power p l ant in L o n g I s land Sound (Aive, 1995). Schafer (1973) r eported that many f o raminifera were s tunted in the plume zone of a pow er plant in Smithtown Bay, New York. High therma l s tress can cause Ammobaculires and Quinqu elocu lina to ha ve deformed chambers (Al ve, 1991 ). Chemica l Effects o f some chemical pollutants, particu l arly h eavy m e tals, \\'ere als o di scussed in the reviews by Alve (1995) and Yanko e t al. ( 1 999). H e av y met
PAGE 46

Several studies have recognized the changes in f ora miniferal assemblages and te sts due t o heavy metal s. Alve (1991) notic e d that Eggerelloides scabrus populations r e placed Verneuilina media population s in ext remely polluted areas of Smjord, Norway. Ellison eta!. ( 1986) noted that Ammoba c ulites crassus flouri s hed in areas with heavy metal s. AI bani and Barbero ( 1982 ) considered the biotope wi th equal numbers of Anunonia beccarii and Nonion pauciloculum was an indictor of environmental s tre ss in Venice, Italy. Alve ( 1991) distinguished seven modes of foraminifera l test deformation f rom h eavy meta l a r eas: double apertures, r educed s i ze of one or more chambers, protub e ran ces on one or more chambers, t w i s ted chambers, e nlarged ape rtures aberrant chamber shape, and twinned forms. Purpose For Research Onl y a few distri bution a nd ecological s tudi es of benthic foraminifera in Tampa Bay have been p u b li s hed. Two major di s tribution s tudie s were conducted in th e l ate 1950's to earl y 1 960's (Walton, 1 964; Bandy, 1956). An eco logical s tud y of benthic foraminifera in Cockroach Bay was con du cte d in early 1980's ( P a tt o n 1982). Hillsborou g h B ay has not been in ves ti gated in previous st udi es. Hill sborough Bay has different environmental parameters a nd i s more hea vily influenced b y anthropogenic inputs than the rest o f Tampa Bay. The purpose of this project was to dete rmin e how the e n v ironment a l and anthropogenic fac t o r s influen ce th e d i stribution a nd eco lo gy of benthic fo r aminiferal assemblages in t h e Tampa Bay area of Florida w ith emphas i s o n Hill s b o rough B ay. Changes in th e distribution o f Hill s borou g h Ba y for am iniferal asse mbl ages from the prein dustria l period unti l presen t wer e a l so inve s tigat ed. 30

PAGE 47

Objectives I. To assess the distribution of foraminiferal assemblages in th e Tampa Bay, Florid a in 1990 and to determine if the se di s tributions correlate with environmental p aramete r s (s alinity water depth, sediment type and habitat type). 2. To determine if foraminiferal assemblages in Hill s b oro ugh B ay h ave changed over time, particularly, as a re s ult of human influence. 3. To determine the effects of different types of pollution (sewage outfall areas he avy metal areas, and thermal di sch arge area s) on Hill s borough Bay foraminiferal assemblage s, including population c han ges and s h e ll morph o l ogy. 31

PAGE 48

C H APTE R TWO DISTRIB U TIO N S O F F ORAMI N IFER A L ASSEM B LAGES IN TAMPA HAY, F LORIDA Intr oductio n Estuari es a r c d y n amic w ith var y in g environmental co n d i tio n s. E n v iron ment a l par amet er s tha t v ar y i n a n es tuary inc lud e wate r tempe r at ure, sa l ini ty, c ur rents nut r i ent ava i labi lity, se diment type, wate r de pth and p H All of t hese p ara m e t e r s can i nflu e n ce the dis trihution of benthic foraminife r a ( Mur ray, 1 973 ; A l ejo e t al., 1 999). Th ree s t udies h ave co n ce ntr a t e d o n c i t i ng the effect s o f emiro nmental variab l es to the dis tribut i o n of f o r a min ifera i n Tam p a Bay. Bandy ( 1 956) no t ed that foram i nifera a r e div i ded int o s h oa l and c h anne l asse m b l ages. W alto n ( 1 964) concluded that sa lin ity i s t h e m a j o r e n v i ronmenta l fac t o r res p o n s ibl e for for a minifer a l dis t r i bution. P at t on ( 1 982) found only one fora min i f era l assemb l age i n Cockroach Bay (F i gure 1), but foun d d iffer e n ces in r e l ative abunda n ces o f s p ecies amo n g ma n grove. seagrass a n d unvegetated sand a r eas. My study proYides base l ine d a t a o n th e dis tr ibution of for aminife ral assemb l ages i n T a mp a B ay i n 1 990. F o r a minifer a l assem b lages and gen era were compared t o envir onme ntal and a nthrop ogenic conta minants. 32

PAGE 49

Methods The di s tributions of foraminiferal assemblages in Tampa Bay Florida, were assessed by anal yzing 75 samples that were collected by SCUBA and Ponar or Ekman Grab sampler from Tampa Bay in 1990 for a sediment characterization s tudy (Figure 4) (Brooks and Doyle, 1992). Samples were store d in a freezer until processed. Mean phi and concentrations of anthropogenic contaminants (Al, Ag, Cd, Cr, Cu, Hg, Ni Pb, Zn, N, and P) are availab l e from previous work by Brook s and Doyle (1992). Average salinities were obtained from th e Galperin et a!. ( 1991) mode l of circulat ion in Tampa Bay. Water depths were obtained from nautic a l chart #22 (In te rnational Sailing Supply) and habitat type s were defined by Ecological Atla ses (U.S. Fi s h and Wildlife Service/Mineral Management Service, 1983; Florida Department of Natura l Resources, 1993 ) The sediment was weighed and the weight-percent of san d was dete rmined for each sample by wet s ieving over a 0.063 mm s ieve, air drying, and weighing each fraction. A 0.063 mm sieve eliminates si lt and clay while ret a ining most foraminifera and sand (Schroder e t a!. 1987 ) A s tereo-microscop e was used t o v iew the samples and identify the foraminifera. Tota l foraminife ral fauna (living plu s dead individual s) fr o m the> 0.063 mm sediment fr ac tion was picked for each s ample. Sedime nt was shaken and random scoops of sediment wer e placed o n a sorting tray. All recognizabl e f o raminiferal fragments were picked. Foraminifera were sorted from the sediment because some were attached to shell and l arge sediment parti cles. Foraminifera were placed on micropalentological s lides wit h a 000 paintbru s h. A 5 % to 10 % water-so l ub l e glue and water mixture was 33

PAGE 50

SCALE I 250.000 5 6 a I I S i '-t ... s I Ne..tce l ,.,, .. '5 Figure 4 T he locations of the 75 Tampa Ba y sample s tati o n s collected b y Brooks and D oy l e ( 1 992). 34

PAGE 51

used to attach foraminifera to the micropalentological s lide A g l ass s l ide was placed on top of the micropalentological s lide to protect specimens. Studies of foraminiferal assemblages have tr a diti o n ally utili zed counts of 300 spec imen s per sample (Murray, 1973 ) Becau se this work is extreme l y time cons umin g, I te s ted 12 samp l es to determine if picking and identifying 100 specime n s would provide an adequate assessmen t of the f oram iniferal assemblage. For each of the 12 samp les, three subsamples of 100 specime n s were picked. The Kolmogorov-Smironov goodness fit test (Sakal and R ohlf, 1969) was used to compare each of the sets of 100 specimens against each ot her and the pooled s ample of 300. All accepted the null hypothe sis at the 0.05 a nd 0.01 level, except for samp le 35 (subsample 1 versu s subsample 3), indicating that each 100 count had s imilar foraminifera and abundances in most samples (Table 8). Several studies have utili zed 100 and 150 s pecimen cou nt s t o identify and map foraminiferal compositions and associat ion s, ( Hayward et al., 1996; Hall ock-M uller and Williams, 2000). I utilized a 150 count in stead of a 100 count as compromise between resolution and time The foraminifera were identified to generic level instead of species for seve ral reasons. Few spec i es are represented in each ge nu s Species-level identification was difficult because of the s mall size and often poor preserva tion of the te s ts. The e nlargement of pore s and the o bliteration of ornamentation due to b r eakage a nd di ss olution often hind ers or prevents identification of specimens to specieslev e l (Cottey and Hallo ck, 1988). C l us ter analysi s usi n g speciesle ve l identifications were unduly influenced by rare spec ie s. Several previous studies have successfu ll y used generic-level and even family-level identification (Frenke l, 1974 ; Ferraro and Cole 1990 ; Cockey e t al., 1996). 35

PAGE 52

v.> 0\ Table 8. Kolmogorov-Smimov test to assess the differences between the subsamples in which 100 foraminifera were sorted. Also each subsample was test against the pooled 300 Station Sub(l +2) # Max Sign 57 56 71 68 35 49 63 50 61 70 75 66 diff level (%) 8.2 0.05 7.7 0 05 7.6 0 05 6.8 0.05 11.1 0.05 12.1 0.05 21.8 0.05 16.7 0.05 10.5 0.05 4 2 0.05 17.6 0.05 2.4 0.05 Sub = Subsamples Sub(1+3) Max Sign diff level (%) 9.6 0.05 18.8 0.05 12. 7 0 05 13.1 0.05 28.4 Reject 10.5 0.05 14.0 0.05 12.8 0 05 21.2 0.01 3.1 0.05 18. 7 0 05 2 2 0.05 Sub(2+3) Max Sign diff level (%) 13. 7 0.05 20.1 0.05 5.3 0.05 9.3 0 05 17.3 0.05 1.6 0.05 11.0 0.05 4.3 0.05 14.4 0.05 7.3 0 05 5.4 0.05 3.3 0.05 Sub 1 + 300 Max Sign diff level (%) 6.0 0.05 5.7 0.05 6.9 0.05 6.8 0.05 13. 0 0 .05 7.5 0 05 8 9 0 05 9.5 0 05 9.5 0.05 1.7 0.05 9.9 0.05 0 9 0.05 Max diff = Maximum difference Sub 2 + 300 Max Sign diff level (%) 6.3 0.05 6.3 0.05 1.9 0 05 0.7 0.05 1.9 0 05 4.6 0.05 13.6 0.05 7.2 0.05 2.7 0.05 3 8 0.05 7.7 0.05 1.8 0.05 Sub 3 + 300 Max Sign diff level (%) 7.4 0.05 17.3 0.05 5 8 0.05 6.3 0.05 15.3 0.05 3 0 0.05 6.6 0.05 3.3 0 05 11.7 0.05 3 5 0.05 8.8 0.05 1.9 0.05 Sign level= Significance Level

PAGE 53

Finally, morphologie s of estuarin e foraminifera a re highl y varia ble ; Ammonia and t-'lphidiwn produced individuals with characteri stics of different "species" from cl o ne s grown under different tempe ratures (Boltovskoy eta!., I 991 ). Therefore, generic-level analysis was judged to provide the most robu s t a nalyse s. Genera that occurred in < 5 samples ( < 6.7 % ) were considered rare and we re n o t included in further analyses. Cluster analyses (Flexible Strategy u sing Relative Euclidean Distance with Beta= 0.25) were used to discern distributional patterns of foraminifera in Tampa Bay (Q-mode) and generic associa tion s (R-mode) Flexible s trategy is monotonic, which can contr ol th e space-co n servi ng properties of the cluster s trate gy. The vario us level s (d i s tance s) introduc e relatively little distortion when compared to the SU x SU 0 matrix distances (Ludwig and Reynolds, 1988). Histograms were constructed for per ce nt sand mean phi, water depth, average salinity, numbe r of foraminife ra p e r gram anthropogenic contaminants and types of h ab itat s. Correlation analysis was used to determine if generic distribution patterns are related to environmental variables, anthropogenic contaminants, and/or other genera. Results Thirty-two foraminifera l gener a were identified from the 75 samples from Tampa Bay (Appendi x I (Table 16, Table I 7)). The most common genera in Tampa Bay sediments a re Ammobawlires, Ammonia, Bigenerina, Briz.a/ina, Bulimin el/a, Elphidium, Hayne sina, Lobatu/a Nonion, Noionel/a Orbulina (pl a nkt o nic). Quinque/oculina. Rosa/ina Textularia, Trilocu/ina and Trochammina (Figure 5). Genus B was thought robe a foraminife r at the time of collection ; its affiliation i s still uncertain (Figure 5). 37

PAGE 54

Ammonia I I l Trilo culina / '"='' . --,. ,:, t _, H avnesina : .I 1". ; i : : ). .o; -.....--f .... .-Tro cha mmina I Qu inqueloculina Bulliminel!a Figure 5 Th e dominant genera o f T ampa Bay: Ammonia. Tr iloculina, H a_vnesina, Tr o cha mmina Quin q u eloculina, El phidium Amm o ba c ulires. Bulliminella, Textularia, Nonion, Bigen eri n a. L nbarula No i one/la R o sa/ina Bri::.alina. Orbulina (Planktonic) and Genus B. Scale Bar= l mm. C o nt inued o n next page 38

PAGE 55

, .... _ Textularia Non ion Lobatula N o ionella Figure 5. ( Continued) 39 ,_,J. r::\.--,.'A .. .. ;_ .... Rosa/ina @ Brioalina : i . ./ Orbulina -.... . \ \, Genu s B

PAGE 56

Cluster An alys i s Of Fora miniferal Assemblag es Cluster analysis was done on the 75 samp l es to determine th e distribu t i o n of the d o min a nt for a minifera of T ampa Bay Genu s B was retained in the anal yses becau se individual s were common, consistently identi f iable and contributed to th e classification of assem blage s. The cluster a naly s i s identified five groups, which were characterized by five foraminiferal asse mblage s (F i g ure 6) The di st ribution of the five assemblages thr o ughout Tampa Bay is s hown in Figur e 7. The d o min a nt genera in th e L ohatu/a asse m b la ge were L ohatu l a, R osa/ina, Ammonia, an d Quinquel ocu lina (Table 9) The d o minant genera in the Ammohaculi t es ass embl age were Ammohaculites Bi ge n e rin a, Elphidium, and Ammonia ( T a bl e 9) Th e domin a nt genera in th e Ha y n es in.a-Amm o nia as se mblag e were Ha y n.esina, Ammonia and Elphidium ( T able 9). The dominant genera in the Ammon i a -Eiphidium assemblage wer e Ammo nia Elphidium, and Ammohaculites ( Table 9). The dominate genus in the Ammonia assemblage was Ammonia ( Table 9). Foraminiferal Assemblages Compare d To Environmental Parame te r s And Anthropogenic Contaminant s E nvi r onmen tal parameters ( percent san d, m ean phi salinit y, wate r depth foraminiferal d e n s iti es, th e numb e r of a n t hropogeni c contaminants an d typ e of habitat ) we r e t all i ed by foraminife r a l assemblage type f o r each site (Ap p e ndix l ( Tabl e 18)) P ercen t Sand and M ean Phi S ediments a t sample s it es rang e d from coarse sa nd s to mud s. Mean phi va lues were obtained fro m Bro o k s a nd D oy le ( 1 992) Site s d o minat e d b y th e L oha tula asse mbl age wer e predominately medium to coa r se sa n ds w ith mean phi value s be tw ee n 1.1 40

PAGE 57

3.4 3 2 3 0 2 8 .....l 2.4 > 2.2 2.0 1.8 1.6 (/) 1.4 2 1.2 u 80 60 Tampa Bay Cluster Analysis Q -mode 1.0 Q nTI : -lr r11 ...... .IO nl?; rn 1 _, ,. 10 69 m. L .. ,!l,,;, ., .. ," ,. "'" ," 41 37348153913644f49 5T 61 72 21 I 8 44 52 46 Sites# I Ha y nesina-Ammonia I Lobutula I Ammonia Elphidium I Ammobaculites Dominant Assemblage Figure 6. The cluster analysis identified five foraminiferal assemblages for Tampa Bay Ammonia

PAGE 58

IE \Ill LEG E N D tobawlu assemb l age Amuwbantlir eJ a sse m b l age H uyneww-AmllwlliU ass e m b l age Ammo11iu Eiphid iu m assemb la ge .-\tiiiiiCIIIia asse m blage SCA L E I 250.000 I 5 \ o \ w \ollol S e .... I Nault c a l " t.. S Fi g ur e 7. Th e dis tri b uti o n o f the f i ve for amini f e r a l asse mbl ag e s thr o u g h out T ampa Bay. 42

PAGE 59

Table 9. The maximum and minimum relative abundance (%) for each genus and the percent of sites containing each genus for the foraminiferal assemblages Genus Foraminiferal Assemblages Lob Amb Hay-Amm Amm-Elp Amm --Relative Relative Relative Relative Relative Abundance % Abundance % Abundance % Abundance % Abundance % Min Max of Min Max of Min Max of Min Max of Min Max of % % Sites % % Sites % % Sites % % Sites % % Sites Ammonia I 37 100 0 26 91 6 41 100 14 45 100 56 98 100 Elphidium 0 8 80 0 18 73 0 20 91 0 57 91 0 9 77 Ammobaculites 0 0 0 24 98 100 0 19 73 0 43 68 0 22 81 +::-. Genus B 0 0 0 0 13 64 0 15 82 0 5 77 0 8 46 VJ Haynes ina 0 0 0 0 27 55 30 81 100 0 18 81 0 17 62 Triloculina 0 5 60 0 3 27 0 10 64 0 16 55 0 1 3 50 Quinqueloculina 3 19 100 0 2 27 0 5 45 0 52 50 0 17 31 Nonion 0
PAGE 60

a nd 3 (Fi gures 8, 9). Most sites d omi n a ted by Ammobacu lite s an d Ammonia-Elphidium assemblages were fin e sand wit h mean phi va lue s between 2. 1 t o 4 0 (Figures 8, 9). Most sites d ominated by th e H aynes inaAmmonia assemblage were very fine sand s or muds with mean phi val ue s between 4.1 to 7 (Figure 8, 9). Site s d o min a ted b y th e Ammonia assemblage included b ot h mud s and sand s ( Figures 8, 9). Sa li nity and Water D ep th Wate r depth for the s ites wer e det e rmin e d by u s ing the Tampa Bay n a utical chart# 22 (I n ternat i o n al Sailing Supply) and average salinities wer e obtained from G a lp erin e t al. ( 1991 ) model of c ircula t i o n in Tampa B ay. W ate r d e pth s were from 0.2 m to 1 8.3 m and a linities were b e t ween 1 2 and 32. Si tes d o minated by t h e L oba t ula assemblage occurred a t water depths> 2 rn, with average sal init ies> 2 1 (Figures 10 11) S ites d ominated by the Ammobaculites assembl age occurred at water dep t h s < 4 m and 64% of the s ites had salini t ie s between 18 and 20 ( Fi g ure s I 0 11). Most s ite s d o minated b y the Ha y n es ina-Amm onia asse mblage occu rred at water depth< 4 m and nearl y tw o thirds had salinities b e tween 24 a nd 26 ( Fi g ure 10 l 1). S ites d omina ted by th e Ammo ni a-Eip hidium an d b y A mm on i a assembl age occurTed pred o minately at \:Vater depths < 4 m, and appeared to be ind e p e nd e nt of s a linit y (Fi g ures I 0 11 ). F oraminife ral D e n s iti es Abundances of foraminife ra l tes t s (#/g) wer e determined f o r a ll s ites ( Fi g ur e 12). D e n s i tie s were t y pically low a t s i tes dominated by th e Lob atula asse mbl age. with s: 50 te s ts/gat 60% of the si t es. Test densit ies also t e nded t o be low at s ites dominated by th e Ammo ba c u/it es assemblage, w i th s: 100 te s ts/gat 9 1 o/c of the s ite s Test d e n sities a t 44

PAGE 61

+>-VI 100 90 80 70 60 -0.. 50 '-0 40 30 20 10 0 0 20 21-40 Lobatula (5) F:d AmmoniaElphidium (22) 4160 Percent Sand Ammobaculites (11) f?il Ammonia (26) 61-80 81-100 B Haynesina-Ammonia (11) Figure 8 The percentage of sand in samples dominated by each of the five foraminiferal assemblages found in Tampa Bay Number of samples in each assemblage class is shown in parenthesis ( )

PAGE 62

0\ 100 90 80 70 C/.) 60 tl) 0.. 50 Cl) '+-< 0 40 30 20 10 0 1.1-2 2.1-3 Lobatula (5) Ammonia-Elphidium (22) 3.1-4 4.1-5 Mean Phi (11) ll!lll Ammonia (26) 5.1-6 6 .1-7 7.1-8 BHaynesina-Ammonia (11) Figure 9. The mean phi of sediments for samples characterized by each of the five foraminiferal assemblages found in Tampa Bay Number of samples in each assemblage class is shown in parenthesis ( ).

PAGE 63

80 ... 70 _, :Jj 60 8 C/) 50 _, c 40 30 j 20 j 1 0 I 0 __ .,o.>o>::::::JU.O 0-2 >2-4 L o h a t ula (5) J\.m mo n i a-E i phi dium (22) >4-6 >6-8 Dep t h (m ) A m mobacu l ites (II) fi:l A mm o ni a (26) >8 -10 >I 0 -12 > 1 2 1 4 >14 B Hayn esin a-J\.mmo n ia (II) h g u rc I 0. W a t e r d e p t h dis tribu tio n s for each o f the rive f ora m inife r a l assemblages in Tampa Bay. Numbe r of sc.m1 ples in each assemblage c lass i s s hown i n parent hesis ( ).

PAGE 64

1 00 90 l 80 70 -:/.) 60 0 ..... (/) -50 40 -30 20 1 0 () 12 -14 1 5-17 I X-20 21-23 24-26 27-29 Average Salinity Lohatu l a (."\) Ammohacu lit es ( I I ) m Ammonia (26) B Hayn csina-Ammonia ( 11) Ammonia-Eiphidium (22) l'"igure II. Averag e salinities at th e s it es c h a r acterized hy five foraminiferal asse mhl ages in Tampa Bay. Numher o r samp l es in each assemb l age class is s ho w n in parenthe s i s ( ). 30-32

PAGE 65

100 90 80 70 :r, 60 (/) 50 -._ ,... 40 1 30 l 20 10 0 4 0-10 11-50 Lobatula (5) Ammonia-Eiphidium (22) 51-1 00 101 -500 Numhcr or tcsts/g !SI Ammohacu litcs (II) 00 Ammon ia (26) 50 1 1000 >100 1 B Hayncsina-Amrn o ni a ( I I) Fi gure 12. Ahundanccs or f oraminifera (tcs t s/gmm) at sites c h a racteriz e d hy five rnraminifcral asscmhlagcs in T
PAGE 66

the s ite s dominate d b y the Ha ynesi na -Ammonia assemblage were about twice those at Lobatula si t es, w ith densities between 50 and 100 tests/gat 45 % of th e sites. D e n s itie s wer e ty p ically hig h es t at the s ites dominated by Ammonia-Elph idium and Ammonia assemblages, with densities b e twe e n I 00 an d 500 tests/g a t roughly 50% of the s ite s. Number ofAnthropogenic Contaminants Anthropogenic contaminants (A I Ag Cd, Cr, Cu, H g, N i Pb, Zn, N, a nd P ) were measured at each of the sample s ite s b y Brook s and Doyle ( 1992 ) L ess than 25% of the s i te s d o minated by th e Ammonia, AmmoniaElphidium and A m m o baculit es assemblages had> 3 anthro pogenic contaminants wh il e 40% o f th e s ite s dominated b y the Lobatula assemblage a nd 46% of th e si tes dominated b y th e Ha y nes ina-Amm oni a assemblage had > 3 anthropogenic contaminant s (Figure 13). Habit ats Habi ta t s ( Fi gure 14) wer e determined for eac h site u si n g th e Boater's Guide To Tampa B ay map (Florida Department of Natural Resources, 1993) and Fl o rid a Ecological Atlas (U. S. Fi s h and Wildlife Service and Mineral M anagement S e rvic e, 1983). The L o batula assemblage was only found in s hi p c h a nn e l s a nd on hard bott o m The Ammobaculites assemblage was found predominately in seag ra ss beds a nd othe r veget a tion The Ha y n esi n a -Amm on i a asse mbl age occurred particularly in dead e nd canals. The A nun onia-Eiph idiunz assemblag e mos t commonly occune d in o r n ear seagrass beds and m angrove swamps. Sites w ith o ut vege tation were d o min a t e d by the Ammo nia ass emblage. 50

PAGE 67

100 .., 90 80 70 C/.l 60 2:l c 50 4 0 30 20 10 0 <=2 3 LohalUia ( 5) J\mmonia -Eiphidium (22) 4 5 (i 7 Number of Anthro pogenic Contaminanls (II) [it Ammonia (26) B Haynesina-J\mmonia ( I I ) Fi gure 13. Numbers or a nthropo genic co ntamin ants dete c t e d at the sites characterizeJ hy each or the five f oram iniferal assemblages in Tampa Bay. Number or sample s in each assemhlage class i s s h own in parenthesi s ( ).

PAGE 68

Ul N 100 90 80 70 Cl) 60 ....... ..-< C/) 50 4-< 0 40 30 20 10 0 "@ Habitats @ u 0.. ..-< ..c C/) 8 4-< 4-< "@ 0 0 @ t:: 'Op:::; u 0 "'""'1 ;...c C/) '0 ....... Cl) 1:: .36 '0 :I: ro Q Lobatula (5) Ammonia-Elphidium (22) Cl) Cl) C/) 6 0.. @ :::SC/) ,--._ -Cl) Cl) ..c ro uJS "-' Ammobaculites ( 11) Ill Ammonia (26) 1:: 0.. o,--.. "-' Cl) -ro ..c u ,--._ 6 1:: 1-< @ 01) ..c u;g ,--._ Cl) Cl) ro C/) "-' 1:: 0.. 0 ,--._ 1:: ;> 8 p..OI) 0 6 B HaynesinaAmmonia ( 11) Figure 14 Habitats where each of the five foraminiferal assemblages occmTed in Tampa Bay Number of samples in each assemblage class is shown in parenthesis ( ) Cl) ro 1:: Cl) 0.. 0

PAGE 69

Cluster A na lysi s Of Generic A sso ciations R-mode clu ste r analysis id e ntified four generic assemblage s : two near n orma l marine clu s ter s, an estuarine cluster, and Tr ilocu/i na which did not clu s t e r with any group (F i g ur e 15). Th e near n orma l marine clu s t er co n s i s t of two subgro ups: the het e r oge neou s se diment asse mbl age (Non i onella, Bulimi nella, T extular ia Bri z alina, Orbulina, Bi generina) and the coa r se sed im ent ass e mblage ( Trochammina R osa lina, Lobu lata and Quinquel oc ulin a) (F i g ur e 15) Th e estua rine asse mblag e co n s i s ted of o n e group: a h y p osa line asse mbla ge (Ammonia, Elphidium Ammoba c u/ites H aynesina, Nonion and G en u s B ) ( Figure 15). Spearman Rank Corre l at i o n O f G e n e r a Spearman R a nk Co rr e l atio n compared environmen t a l variabl es and g enera ( T a ble 10) The s e cor rela t i o n s had 0.05 s i gnif i ca n ce at 0 .227, 0 .0 1 signif i cance at 0.297 a nd 0.00 I s i g nifi ca n ce at 0.375. Muddy s ediments in ge n eral had high concentrations o f h eavy m e t a ls, TOC N, and CaC03 ; sa n dy se diment s in ge n e ral were l ow i n these constit uen ts. Common ge nera in muddy se dim en t s we r e Ammonia H aynes ina and Genu s B C o mmon ge n era in sandy se dim ents were Triloculin a, Quinqueloculina. Tro c hanunina Bige nerina and Textularia Discussion Ammonia is the ove r whe lmingl y pr edo min a n t genus o f foraminifera in Tamp a Bay, w ith Elphidium second in importanc e Five foraminifer a l a ssemblages, all o f which have s i g nificant Ammonia components and three o f whic h h ave s ignific ant Elphidium com p o n ents, were identi f ied and found assoc i a ted with particular habit a ts. 53

PAGE 70

VI > j 1-; v:l ;:J 0 Genus 9 8 7 1 6 -! ---5 \ 4 I 3 i .I I I 2 1 Tampa Bay Clu s ter Analysis R-mode Near-Normal Marine -I-----)-I I I I E s tuarine -----(Tr 0 I _......L ___ ----J ______ ..... _____ 1 -----'---__ f----___ _.. ______ t----_1. ___ ______._ _______ _________ ._ ____ ._ __ ----------.... '? <(;) o<::' -:::., ..::,._0-..; '5,.V -$> "-<(;) <(;) .... / 0-$' ';(;)"' <2,0? '!.J"' _<$' :\> ..::,._0 '!.J"' _.... \) ,_,('lv (:P <(;)'>""' 2J' v 0 "-,"-"> A,o _<$' '"-cf "?"{;>v Heterogeneous Sediments I Coarse sediments Hyposaline Figure 15. R-mode cluster analysis of generic associations in Tampa Bay identified three assemblages. Triloculina did not cluster with other assemblages

PAGE 71

Table 10. Spearman Rank Correlation for genera and environmental variables Genus Genus A E H GB Am T Q N* L Tr R Na Or Bi Tx Br E -0.179 H -0.02 -0 .363** GB -0.069 0.378*** 0.514*** Am -0.129 0.221 -0.015 0.340** T 0 .051 0.197 -0 .001 -0.067 -0.097 Q -0.272* 0.154 -0.036 -0 149 -0.298** 0.091 N* -0.257 0.108 0.222 0.168 -0.151 0.183 -0.018 L -0.142 -0 1 00 -0.240* -0.135 -0 353* 0.086 0.435*** 0.080 Tr -0.145 0 058 -0.164 -0 160 -0.012 0.050 0 286 -0.007 0 .285* VI R -0.112 -0.042 -0.268* -0.111 -0.18 1 0.078 0.333*** 0.015 0.483*** 0.476** VI Na -0 .132 -0.132 -0.050 -0 066 -0 204 0.034 0 .111 0 239* -0 018 -0 074 0 1 32 Or -0.016 -0.030 0 .191 0 190 -0 080 -0.021 -0.110 0 207 0.030 0.009 0.028 0 093 Bi -0 388*** 0 153 -0 218 0 154 0 653*** -0.199 0.020 -0 .071 -0 055 0.166 -0.090 -0 092 -0.182 Tx -0 073 0 032 -0 099 -0.038 0 070 -0048 0.237* -0.020 0.051 0.346** 0 273* -0. 135 -0.008 0.132 Br -0.248 -0 186 0.084 -0. 110 -0.283* 0.121 0 029 0 355** 0.110 0.047 0.086 0.095 -0.086 -0.210 0 140 8 1 -0.064 -0 .03 -0.0 1 6 0.115 -0.119 0.033 0.264* 0.225 0 245* 0.037 0.291 0 322** 0 133 -0 .021 0 090 0.013 Significance =0. 5 ** = 0 .01 *** = 0.001 A =Ammonia E = E lph idium H = Haynesina GB =Genus B Am= Amnu)baculites T = Trilo c ulin a Q = Quinqueloculina N* =Non ion L = Lobatula Tr = Trochammina R =Rosa/ina Na = Nonionel/a Or= Orbulina Tx =Tex tul aria Bi =Bi gene rin a Br = Bri z alin B1 = Bu l iminella Continued on n ext page

PAGE 72

VI 0\ Table 10. (Continued) En vir Var A E Sd% -0.321 *** 0.194 Md % 0 321 *** -0 194 H GB -0.405*** -0. 192 0.405*** 0.192 Am 0.128 -0.128 Mp CC% AI Ag Cd Cr Cu 0 277* 0 146 -0.334* ** 0.406*** 0.159 0.207 0 013 -0.338* Hg Ni Pb Zn N p -0.078 0 379*** -0 .062 0.278* 0.037 0.303** 0.043 0.363** -0.054 0.284* 0.307* -0.047 0.030 0.281 -0.029 0.216 -0.096 0.304* -0.045 0 240* 0 067 TOC 0 247* -0.047 0.054 0.002 0.256* 0.389*** 0.315** -0.065 0.010 0.083 0.004 0.260* 0.356** 0 069 0.397** 0.308** 0 012 0.463** 0.270* -0 .070 0 157 0.034 -0 078 0.359** 0.262* -0.106 0 266* 0 236* -0.091 0.426*** 0.279* -0 .060 0.484*** 0.327** 0.082 -0.065 -0.066 -0.131 0.410*** 0.358** 0.118 T 0.269* -0.269 Q 0.333* -0.333** Genus N* -0.059 0.059 L 0 150 -0 150 Tr R 0.284* 0.171 -0.284* -0 .171 Na 0.073 -0 073 Or -0.265* 0 265* Bi Tx Br Bl 0.314** 0.346** -0.129 -0.016 -0 314** -0 346** 0.129 0 016 -0 316* -0.178 -0 393*** 0 058 0.023 0.090 -0 341 ** -0 .259 -0.313** -0 061 0.137 -0.086 0.053 -0 001 -0.307** -0215 -0.312** 0 011 0.259* -0.319* -0.087 0.099 -0 024 0 .070 -0.306** -0.344** 0.053 -0.113 -0 .26 1 -0.165 -0.333** -0.176 0.082 -0 .232* -0. 136 -0.120 -0.194 -0.333** 0 152 -0.202 -0.251 -0.094 -0.294* 0.413** 0.045 -0 .235* -0.248 -0.166 -0.200 -0.320** -0 115 0 318** -0.024 -0.207 -0.245 -0.245* 0 065 -0 180 -0 .121 -0.219 -0 142 0 255* -0.276* -0.225 -0.204 0.026 0 .032 -0 .072 -0.126 0.037 -0.059 -0 178 -0.183 -0.108 0.293* -0.184 -0.205 -0.047 -0.009 0.331 ** -0.268* -0.239* -0.009 -0.011 0 037 0 .341 ** -0.265 -0.202 0.003 -0.027 -0.058 0. 152 -0.178 -0. 194 -0.139 -0.118 -0 156 -0.286* -0 045 -0. 127 -0. 1 86 -0.162 -0.095 0 368** -0.336** -0.185 -0.012 -0 028 -0.235* -0.336 -0 .034 -0 204 -0.236* -0 352** -0.123 -0.205 -0.255 -0.229 0.015 0.077 0 158 -0.212 0.132 0.091 -0.206 -0.154 -0 .042 0 300** -0.175 -0.193 -0 086 -0.031 0.168 -0 130 -0.038 0 375** -0.294* -0.186 -0.044 -0.036 -0.243* -0.169 0.073 0.217 0.090 0.311 ** -0.127 -0.240 0.143 -0.024 -0.009 -0.076 -0.039 0.268* -0.026 0.148 0.188 -0.428*** 0.087 -0 .255* -0.225 -0.182 0.046 0.234* -0 166 -0.202 -0.034 -0 .053 Dept 0.324** -0.065 -0 022 0.147 0 146 -0.129 -0.488*** 0.165 0.080 0 202 0 336** 0.026 0.251 0.050 0 177 -0.554** -0 .072 0.320** 0 .152 oloo -0 316** -0.099 -0 035 -0 530 *** 0 .022 0.444*** 0.167 0.462*** 0.198 0 288* 0.218 -0 028 -0.179 0 152 0.292* 0 294* # fm/g 0.502*** -0.066 -0 .054 -0 055 0 139 -0.254 0 244* -0.068 -0.213 -0 .023 -0 184 0 011 -0.286* -0.15 1 0.224 0.044 Significance = 0.5 = 0 .01 *** = 0.001 A =Ammonia E = Elplzidittm H = Hayn es ina GB =Genus B Am= Ammoba c ulites T = Tri/oculina Q = Quinqueloculina N* =Non ion L = Lobatula Tr = Troclwmmina R =Rosa /ina Na = Nonionella Or= Orbulina Tx =Textularia Bi =Bige n e rina Br = Brizalin Bl = Buliminella Sd% =Sand % Md % = Mud % Mp =Mean phi CC% =Calcium Carbonate Dept= Water Depth # fm/g =#of foraminiferids per g ram Continued on next page

PAGE 73

Table 10. (Continued) En vir Environmenta l Variables Var Sd% Md% Mp CC% AI Ag Cd Cr C u H g Ni Pb Zn N p TOC De pt o loo Md% 1.000 *** Mp -0.894*** 0.894*** CC% -0.588*** 0.588*** 0.418*** AI -0.845*** 0 .8 94*** 0.774*** 0.617*** Ag -0.358*** 0 358*** 0 344*** 0.333** 0.458*** Cd -0.563*** 0 563*** 0.543*** 0.405*** 0.656*** 0 583*** Cr -0.865*** 0.865*** 0.833*** 0 .501 *** 0.916*** 0.470*** 0 744*** Cu -0.746*** 0.746*** 0.723*** 0.556*** 0.787*** 0.460*** 0.659*** 0.825*** Hg -0.483*** 0.483*** 0.492*** 0.338*** 0.578*** 0.831 *** 0.596*** 0 576*** 0.535*** Vl --l Ni -0.694*** 0 694*** 0 6 1 0*** 0.638*** 0.802*** 0.540*** 0.783*** 0.827*** 0.826*** 0 .61 0*** Pb -0.625*** 0.625*** 0.561 *** 0.642*** 0.758*** 0.513*** 0 652*** 0.743*** 0.776*** 0.586*** 0.813*** Zn -0.701 *** 0.701 *** 0. 7 37*** 0.572*** 0.828*** 0 .541 *** 0 753*** 0 864*** 0.885*** 0.629*** 0.874*** 0.838*** N -0.723*** 0 723*** 0.737** 0.383*** 0 .641 *** 0.244* 0.475*** 0.677*** 0.605*** 0 354 *** 0 503*** 0 5 1 2*** 0.658*** p 0. 137 0.137 -0. 110 0 .021 -0.003 0.072 -0 112 0 .108 -0.146 0 088 -0.138 0 049 -0 079 -0 1 86 TOC -0. 739 *** 0.739*** 0.706*** 0.452*** 0 762*** 0.358*** 0 .591 *** 0.788*** 0.685*** 0.502*** 0.632*** 0.629*** 0.755*** 0.771 *** -0.008 Dept -0. 305*** 0.305*** 0.157 0.457*** 0.230* 0.166 0.1 66 0 237* 0.147 0 .107 0.305** 0.189 0.286 0.093 0.069 0.133 oloo 0.077 0.077 -0. 1 94 0.207 -0.163 -0.278** 0.299** 0.270* -0.188 -0 .244* -0.177 0.105 -0.198 -0.043 0.1 39 -0.2 1 5 0.227* # -0.318*** 0.318*** 0.231* 0.156 -0.275* 0.134 0.276* 0.309** 0 246* 0.115 0.219 0.149 0.292* 0 235* 0.110 0 .17 5 0.398*** -0.136 fm/g Significance = 0 5 ** = 0.01 *** = 0.00 1 Sd % =San d % Md %=Mud% Mp =Mean phi CC % =Calcium Carbonate Dept= Water Depth # fm/g =#of foraminiferids per gram

PAGE 74

a) The L obatula asse m b l age, wh i c h includes L obatula, R osalina, Ammonia and Quinqueloculina as domin a nt gen era, i s c harac teristic of coarse san d s in ship c h a nn e l s and hard bottom a r eas in wate r depths > 2m, where salinitie s are moderately hyposalin e (24-26). T ota l ab undan ces o f foraminiferal tests te nd to be low in sediments f rom the s e a reas ( < 50 tests/g sed im e n t). b) The Ammobaculites assembl age, wh i c h inclu des Ammobaculites, Bigenerina Elph idium and Ammon ia as dominant ge n era, i s c h a ract eristic o f fine san d s in s eagr ass beds in water depths< 2m, where sa lin it i es are hyposalin e (18-20). Total abundances of f oraminife ral tes t s te nd to be low in sediments from these a r eas ( < I 00 tests/g sedimen t). c) The Ha ynesina-Ammonia assemblage, wh i c h include s H aynesina, Ammonia, and Elphid i um as dominant ge n era, i s characteri stic of muddy sediments in dead e nd canals, a t water depths < 4 m where saliniti es a r e moder a t e l y hyposalin e (2 1-2 9). Total ab und a n ces of foraminiferal t es t s tend to b e intermedi a t e in the sediments from these areas (50 to 100 t es t s/g). d) The Ammo nia -E iph idium assemb l age, w hi ch i nclu des Ammoni a, Elphidiwn and Ammobaculi t es as dominant genera, i s char ac t erist i c of medi u m to fine muddy sand s in m ost soft-bottom h abi t a t s nea r vege t atio n in water depths< 4 m, w h ere salinities are hyposaline (12-32). T ota l ab undan ces of foraminiferal tests tend t o be r e l ative ly hi g h in the sediments from th ese a r eas (100 to 500 tesUg). e) The Ammonia assemblage in which Ammonia i s the dominant genus, i s c h a racteris tic of fine or muddy san d s in ope n areas, in wat e r depths < 4 m where 58

PAGE 75

salinitie s are hyposalin e ( 12-32 ) Tota l abundances of foraminiferal te s t s tend to be relatively high in the sediments from the s e areas (100 to 500 te st/g). Environmenta l Significance Of Ammonia And Elphidium Ammonia spp. are clas sic s h a llow-wat e r oppo rtuni sts and hav e cosmopolitan di s tribution in tempe ra te to tr o pical marine e n v ironment s (Bandy 1956 ; Phleger, 1960 ; Akers 1971 ; Detmar, 1974; Res ig 1974 ; H e dley and Adams, 1976; Thompso n 1978 ; Williams 1995 ; G esli n eta!., 1998 ) Ammonia i s an ubiquitou s genus in Tampa Bay (Bandy 1956; Walton, 1964 ; Poag 1981) Ammonia was found at all saliniti es and se diment typ es record e d for Tampa Bay Ammonia i s normall y found in the int e rmediat e s alinity zone(> 14 ), but it can to l e rat e eury h a lin e conditions (0. 5 to 90) ( Said 195 I ; Bandy 1956 ; Nichol s and Norton 1969 ; Akers 1971; Brasie r 1975a ; Hedley a nd Adams, 1976; Otvos 19 7 8 ; Phleger and Lankford, 1978 ; Ellison eta!., 1986; Debenay 1990 ; Gold stein and Moodley, 1 993; Williams, 1995 ; Hayward eta!., 1996). Members of thi s genu s gen e rall y prefer sandy and muddy sediments (Miller 195 3; T od d and L ow, 1961 ; Akers, 197 1 ; Frenk e l 1974 ; Lidz and Rose, 1989). Ammonia can t o l erate a wide range o f h arsh conditions, including sal t pan areas (Bras i e r 19 75a), oxygen-de ficient e nvir o nm ents ( Seiglie 19 73; Ak.pati, 1975), high turbidity a r eas (Phleger, 1956), a s m a ll 25-year-old hypersa l ine pool 100 km from the nearest marine coas t (Almog i-L ab in e t a!., 1992 ) and polluted area s (Albani a nd Barbero, 1982 ; A lve and Nagy, 1 986; Yanko et al. 1 994; Alve 1995; Culver and Buzas, 1995). Ammonia i s typical l y abundant und e r s tr essfu l conditi o ns and in p o llut e d a r eas (Seiglie, 1968 ; Schafer, 198 2; Lid z a nd Rose, 1989). 59

PAGE 76

Elphidium spp have a cosmopolitan distribution a nd are the dominant taxa in shallow waters o f n orma l salinit y in mid-latitudes (Bandy, 1956 ; Phleger, 1956; Ellison and Nichols, 1970; Akers, 1971 ; Murray, 197 1 ; Murray 1973; H e dl ey a nd Adams, 1976; Thompson, 1978; Elli son and Peck, 1983; Cockey, 1994; Hayward e t al., 1996). Bandy ( 1 956) and Walton ( 1 964) found Elphidium thr o ughout Tampa Bay. While Elphidium i s normally foun d a t salinities between 14 t o 34, it can t o le rate euryhalin e conditi o n s (0.5 to 90) (Sai d, 1 951; B a nd y, 1 956; Nichols and Norton, 1969 ; Akers, 19 7 1 ; Hedl ey an d Adams, 1976; Otvos, 197 8; Ellison e t al., 1986; Debenay, 1 990; Williams, 1995; Hayward et al., 1996). Elphidium has a hig h degree of to l erance for different marine sedime nt s (Akpati, 19 75). Elphidium generally prefer s sand y and muddy sediments (Mi ll er, 195 3; Todd a nd Low, 1961 ; Lankford and Phl eger, 1 973; Frenkel, 1 974; Akpati, 1 975; Brasier, 1975a; Bras i e r 1975b; Lidz a nd Rose, 1989). Elphid i um h as been found in sediment s w ith a high o rgani c carbon cont e nt s uch as mangroves, m a r s h es a nd mars h c h a nn e l s (Phleger and Bradshaw, 1966 ; Murray, 1973; Schafer, 1973; Lidz and Rose, 1 989; Jennings and Nelson, 1992). Lobatula Assembl age The L obatu l a assemblage was dominated by ge nera w h ose li fe mode i s e i t her attac hed or e pibi o tic, includ i n g Lobatula, Rosa/ina and Tro c hammina. The a ttached life mode is particularly well suite d for h ig her e ner gy e n v i ronmen t s found o n h ard bottom and coarse sands in ship channel s. The other gen u s character i st i c of this assemblage i s Quinqueloculina which are p orcel l aneous foraminifera. L obatula s pp. are found attac hed to firm s ub s trata in near-normal or ope n marin e sett ing s s u c h a s h a rd r oc k y 60

PAGE 77

bottom, rubble, algae and firm sand bottom (Phleger, 1960; Todd and Low, 1961; Atkinson, 1969; Brasier, 1975b; Lankford and Phleger, 1973). Lobatula has been typically considered an open-shelf foraminifera but it has been found in inlets, outer bays and in the lower parts of estuaries (Said, 1951; Pheleger, 1960 ; Todd and Low, 1961; Atkinson, 1969; Akpati, 1975; Hooper, 1975; Thompson, 1978; Scott et al., 1980; Murray et al., 1982; Ellison and Peck, 1983; Goldstein, 1988). While Rosalina is often considered an open-shelf genus (Phleger, 1960), representatives have been found in middle and outer lagoons, bay mouths, and marginal and nearshore environments (Akpati, 1975; Todd and Low, 1961; Albani, 1968; Murray, 1971; Hedley and Adams, 1976; Scott et al., 1976; Thompson, 1978; Scott et al., 1980; Murray et al., 1982; Buzas et al., 1989; Lidz and Ro se, 1989) Individuals have the ability to unattach and be mobile (Atkinson, 1969). Members of this genu have been found attached to bouyant kelp fronds, algae, mangroves, rocks, and occasionally on sand and molluscan shell fragments (Atkin on, 1969; Akers, 1971; Murray, 1971; Frenkel, 1974; Lankford and Phleger 1973; Hedley and Adams, 1976; Scott et al., 1976). Trochammina, which was less common than Lobatula and Rosalina in Tampa Bay samples, has been found in a wide range of environments from saltmarsh and estuary to the deep sea ( Ronai 1955; Todd and Low, 1961; Phlege r and Brad s h aw, 1966; Bandy et al., 1965; Albani, 1968; Ellison and Nichols, 1970; Akers, 1971; Murray, 1971; Murray, 1973; Resig 1974; Akpati, 1975; Brasier, 1975a; Brasier, 1975b; Hedley and Adams, 1976; Scott et al., 1976; Scott and Medioli, 1978; Scott et al., 1980; Ellison and Peck, 1983; Albani et al., 1984; Schroder et al., 1987; Goldstein, 1988; Scott and Leckie, 1990; Jennings and Nelson, 1992; Williams, 1995). Trochammina in Florida Bay was restricted 61

PAGE 78

to m o re n o rmal salin e wate r and was not s een in the brackish areas ( Lidz a nd R ose, I 989). M embers o f this genus appear to favor th e low pH and the high concentra t ions of organ i c m a tter o f mars h e nvir o nment s and h ave been found clinging to seaweed ( T od d a nd Low, 1 96 1 ; Murray, 1 971; Patton, 1982). Thi s genus seems to be sen si tive to s uberi a l exposure but ins e n s itiv e t o sal inity (Scott et al., 1980). Although the procellaneou s order Miliolid a t e nd to d ominate tropical marine to hypersaline s h allows h e l f and reef habitats some Quinquelo cu/ilza spp. are somewha t tolerant of moderately hyposalin e condition s ( S a id 1951 ; Mill e r 195 3; B andy eta!., 1965; A1bani, 1968 ; Brasier, 1975a ; Bras i e r 1975b; Murray, 19 73; Hayn es, 19 81; Lidz an d R ose, 1989; Williams, 1995; Hayward e t a!., 1 9 96). This gen u s h as a cosmopolitan di s tribution in temperate to tropical marine envi r o nments ( R o nai, 1 9 55 ; B andy, 1 956; Phleger, 1956 ; Phleger, 1960 ; Cooper, 1 961; T o dd a nd Low 1961; Albani 196 8; Akers, 1971; Murray, 1971, Murray, 19 73; Thompson 1 978; Scott eta!., 1980; Ellison a n d Peck, 1983 ; Lidz and Rose, 1 989; Cocky, 1994 ; Williams 1995). Some members of t hi s genus are also found in mang r ove c reeks a nd sal t m a r shes ( Bra s i er. 1 975a; Brasie r 1975b; Albani eta!., 198 4; Murray, 1973). Qu inque/oculi n a p refe r coarse sedime nt s uch as sand, rock, a nd molluscan shell frag m e nt s but has also been f o und in fine grained sediments (Miller, 1953 ; Todd and Low, 1961 ; Akers, 1971: Lankford a nd Ph l eger 1973; Murray, 1973; Albani eta!.. 1 984; Lidz and R ose, 1 989) Sometimes i n d i v iduals a r e found clinging to algae and a lgal ho1dfa s t s ( A t kinson 196 9). Quinqu e l o Clllina demons trated the ability t o emerge in minute s after burial in sandy sedime nt s ( Severin and Ers kian 19 8 1 ) Thi s i s ben e ficial in s trong c urr e nt a nd wave-influ e nced environments. 62

PAGE 79

The Lobatula assemb lage was found in or near the ship channel in some of the coarsest sediments. The channels with the highest currents had the highest carbonate values in Tampa Bay, predominantly due to molluscan shell fragmen t s in the sediments (Doyle, 1985; Schoellhamer, 1991). Some of th e most intense bottom currents occur in the s hip channel (Gal perin et al., 1991 ). The typical current speeds range from 1.2 to 1.8 m/s at the entrance to Tampa Bay, althoug h in Hill s borough Bay they are le ss than 0.14 m/s ( Lewi s and Estevez, 1988). Abundances o f Tri loculina, Quin.queloculina, Tr oc hammina and Textularia were posit ivel y correl ated to sandy sediments and l arge r grai n sizes. L obatula and R osalin.a were positive l y correlated to larger grain s i zes. L obatula, Rosalina, and Trochammina can mai ntain t h ei r pos i tion without being swept away in strong currents by attaching t o the molluscan fragments in the sediments (Akpati, 1975; Todd and Low, 1961 ) Lobatula, Quinqueloculina, and Rosa/ina dominate in areas that were influenced by strong tidal cu rrent s (Akpati, 1975). Quinqueloculina and L oba tula were negatively correlated to TOC, probably because v igorous current s or turbu lence prevent deposition of TOC into the sediment s (Phleger, 1956 ; Brasier, 1975a; Brasier, 1975b; D oy le 1985). The L obatula assemblage s i tes also had some of th e high est average salinities in Tampa B ay, w hi c h i s m os t lik e ly due to the l arge tidal cu rrents a nd proximity to the mouth of Tampa B ay. L obatula, R osa /ina B riza/ina, and Quinqueloculina were positively correlated to higher salinities. Quinqu eloc ulina may lo s e cont rol of their pseudopodia! ac t ivity when saliniti es fall below 30 (Murray, 1973). Some porc e laneous gen e r a become membranous (lacking the CaC03 ) in low salinit ies (Loeblich and T appan, 63

PAGE 80

1964). P o r ce l aneous, h i gh-magnesium calc i te shel l s a re eas ier to precipitate i n h ype r sal in e waters because of higher carbo n ate sat ur at ion states ( H allock-M u ller and Willi a m s, 2000). Some of th e s it es where the Lobatula as se mblage occ ur red have fossil foraminifera be c ause of the repos iti o nin g of the sed iment s by curr e nt s and dredgi n g act i v i t i es. Fossil fo raminifera from the Mi oce nce in t h e J ames River Estuary of Chesapeake Ba y made up 0.1 to 8.6 % of the tota l asse mbl age, a nd the r epos itin g of t he sedi ments was main l y due t o scou rin g and/or dredging of the channel floor (N ichols and Norton, 1969). L o batula, R osalina, and Brizalina we r e po s i t i ve l y correl a t ed w i th water depth. All the main channel s from Tampa and P o rt Tampa to Egmont K ey were r edre d ged in the 1 950's t o 1960's t o the depth of 10.4 meter s (Fe hring et al., 1 985). The dredging of the n av i gat i onal channel s could have mixed fossil foraminife r a l assemblages wit h modern forami ni fera l assemb l ages. Ammobacul i tes A ssemb lage The Ammobaculites assemblage was dominated by agglutinate foramin i fera, includ i ng Ammobaculit es a nd B igenerina. Agglutinate foraminifera are pa11icu l arl y well s uited for vegeta t ed environments in h yposa lin e intertidal to s ubtidal zones. Most sites of t h e Ammoba c ulit es asse mbl age were in seag r ass bed s a nd in in tert i dal zones near vege t ation. Ammoba culites s pp ha ve cos m opol i tan d i str i b uti ons ( Ph lege r, 1956; Akers, 1971; Murray, 1 9 73). Ammoba cu lites a r e norm a ll y f o und i n hyposalin e, n ormal, a n d h ypersali n e marshes and mangro v e s but memb ers of this genus have also been fou nd in c h a nn e l s, s hoal s, and mudflats ( Ronai 1 95 5 ; Elli so n and Nich o l s, 1970 ; Akers, 197 1 ; Murray, 1973; H edley and Adams, 1976; Otvos, 1978; Phl eger and L ankford, 1978 ; 64

PAGE 81

Alve a nd Nagy, 1 986; Jennings and Nel son, 1 992; Williams, 1995) Ammobaculites was found in upper Tampa B ay and in river h ab i tats mainly in s hallow shoal s in prev ious studies ( B a nd y 1956; Walton 1 964). However P atton ( 19 82) found Ammobaculites more common in seagrass th a n in e ith e r mang rove or sandy habi t ats in Cockroach Bay. Ammoba c ulites h as been found in salinitie s as low as 0.5 to sal init i es as hi g h as 70 ( B andy, 1956; N i chol s and Norton, 1969 ; Akers, 1971 ; Asseez eta!., 1 974; Hedley and Adams, 1976 ; Otvos 1978; Phleger and Lankfo rd, 1978; Debenay, 1990). Ammoba c ulites was negativ e ly corre l ated wi th salinities in Tampa Bay. Members of th i s genus are comm o n in the uppe r parts of many estuaries where the r e i s con s iderabl e fresh water input ( Elli son and Nichols 1970 ; Nichol s a nd Norton 1969 ; Asseez e t a!., 1974; Scott et a!., 1980; Will iams, 1995). Bigenerina i s normally considered an open -shelf foraminifer ( Phleger, 1960). This genus has been found from marine f o r e-reef to the o uter shelf ( Phleger 1956: B rasier. 1 975b; Buzas eta!., 1 989). P atto n ( 1982) considered Bigen e rina r a re in Cockroach Bay. Ammobac ulites has been fo un d in san dy sediments (Mi ll er, 1953; Akers, 19 7 1 ; Buzas, 1989; Buzas, 199 3), and in h i gh l y o rganic and ve1y fine reducing sediments (Buzas, 1974; Scott eta!., 1980; Debenay, 1990; Buzas, 1 993). Bi generina was positively correlated to sandy sediment s in Tampa Bay. Ammobaculites and Bi ge nerina a r e aggl utin ate tax a that requir e s and grains to bui l d their te sts Amm obac ulit es indi v idu als in mixed cal careous a n d quart z sand s const ructed q u artz sand te s t s, and they use whatever grain s izes are avai la b l e (Buzas, 1989; Boltovsk oy et al., 1 991 ). Ammobac ulites and Big e n e rina were negatively correlated with water depth. probably 65

PAGE 82

because s hallower sites tended to hav e lower salinitie s and sandy sediments. These genera a l s o were negatively correlated with cal cium carbonate c o ncentrati o n in th e sediments In other regions, low calcium carbona t e ha s been associated with low salinity ( Boltovsky et al., 1991). Arenaceous genera tend to dominate in low salinities because they do not secrete calcareous te sts ( Bandy, 1956 ; Buzas 1989). Ha y n.esina-Ammonia Assemblage Ha y nesina-Ammonia assemblage was found predominately in muddy dead-end canals. Site s where the H aynesina-Ammonia asse mblage dominated typically had the mos t a nthrop oge nic contaminants compared to t he other sites in Tampa Bay. Ha ynes ina and Anun on ia are hardy genera and can handl e low 0 2 and restricted water flow (Todd and Low, 1961 ; Seiglie, 1973; Scott et al., 1995 ; Akpati, 1975; Lid z and Rose, 1989). Thes e genera thrive in h arsh e n v ironment s b eca u se o f the reduced predation, low competition, and l arge amount of avai l able "food" (epiphytic diatoms, bacteria and detritu s) (Lee et al., 1966; Culver, 1987 ; Al ve, 1995). Ha y nesina ha s a cosmopolitan distribution in brackish-water tidal pond s, mudflat s, near s hore and bay environments which typically ha ve mudd y sediments (Ronai, 1 955; T o dd and Low, 1 961; Boltov s k y a nd L e na 1971; Murray 1 973; Elli so n 1984 ; AI ve and Nagy, 1986 ; Jennings a nd N e l so n 1992 ; Willi a m s, 1995 ; Hayward et al. 1996). H ay nesina can tolerate extrem e l y euryhaline conditions, from fre s hwater area s to normal s alinity, but i s typically found in the int e rmediate salinity zone ( > 14 ) (Said, 1951 Todd and Low, 1961; Boltov s ky a nd Lena 1971; Hedley and Adams 1976 ; Murray, 1 983; Elliso n, 1984 ; William s, 1995 ) 66

PAGE 83

Ammonia-Elphidium Assemblage The Ammonia-Elphidium assemblage predominately made up of Ammonia Elphidium and Ammobacul it es, was found mainly in or near seagrasses mangroves, or marshe s throughout Tampa Bay Other researches have also found Elphidium and Ammobaculites in seag ra sses, mangrove s, mars hes marsh channels, an d tidal flat s near vegetation (Ronai, 1955 ; Phle ge r 1956 ; Phleger and Brad shaw, 1966; Murray, 197 3; Frenkel 1974; Hedley and Adams, 197 6 ; Lidz and Ro se, 1989; Jenning s and Nelson, 1992 ; Williams, 1995). These genera are tolerant of a wide range of salinitie s and sediment types (Said 1951; Miller 1953 ; Bandy, 1956; Todd and Low 1961 ; Albani, 1968; Nichols and Norton, 1969; Akers, 1971; Murray, 1973 ; Asseez eta!., 1974; Buzas, 1974 ; Akpati 1975; Hedley and Adams, 1976 ; Phleger and Lankford 1978; Otvos, 1978 ; Buzas, 1989; Debenay, 1990; Buzas 1993). Ammonia As se mblage The Ammonia assemblage was found predominately areas without vegeta ti o n Ammonia is th e dominant foraminiferal taxa in Tampa Bay, with the highest percent ages in the Ammon ia assemblage. Ammobaculites and Elpidium were present at mo st of these s ites but in low numbers, p ossi bl y due to the lack of vege tation or to stressfu l conditions. Lobatul a R osa/ina. a nd Tro chammi na were also uncommon, p ossib ly becau se the se diments tended t o be finer providing Jess substrata for attac hment. QuiTzque!oc u!ina generally preferred salinities above 30 and most of these s it es had salinities betw ee n 18 and 23 ( MurTay 197 3). 67

PAGE 84

Arnmonia was n egat iv e ly corr e l ated with salini ty in Tampa Bay Ammo nia may have o ut competed o th e r genera a nd /o r these si te s were too har s h for other genera. Environmental Relation s hip s Muddy sed im e nt s w e r e p os itiv e ly correlated w ith depth in Tampa Bay. Finer sediments occur in upper Tampa Bay ( < 0.0625 mm) in bath y m e tric depres s ions (Brook s eta!., 1991 ). Shallow nearshore sediments and deep s hip c hannel s tend e d t o be coarse g rain e d (Tay l o r e t a!., 1970; Do y l e eta!., 1989; Brook s et al., 1991; Schoellhame r 1991 ). S a linity was also pos itivel y c o rrelat e d with depth Sites in th e s hip c hannel s of lower Tampa B ay had sal init i es that were near normal marine. Fine-grained sedi m e nt s were pos it ive l y corr elated with h eavy metals, TOC, and N in T ampa Bay. Fine-grained sediments have been known to be more efficient a t accumulating all typ e o f p o llutants compared to coarse gra ined sediments ( Ellison 1984 ; Doyle et a !., 1989). G e n e r a that wer e more lik e l y to b e found in muddy sediments wer e positivel y correlated to mos t h eavy metal s, while the genera that were found in sand y sedime nt s were n egat i ve l y corr elated to som e h e a vy metals. Muddy sedime nt s were pos itiv e l y correl ated to calcium carbonate Brooks eta!. ( 1991) f o und s hell ric h l aye r s intercalat e d in mudd y sed iment s These s hell layer s m ay have been d e posited by storms or other hi g h energy events (Brooks et a l. 1991). Foraminiferal d e n s iti es ( te sts/g) t e nd e d t o be high e r in muddy sediments in Tampa B ay, which i s con s i s t e nt with o th e r st u dies ( Phl eger, 1956; Ph1eger 1960; T odd and Low, 1961 ; Lankford and Phleger, 1973 ; Akpati 1975; Bra sier, 1975a; Brasier, 1975b ; E l lison 1 98 4 ; Bu z a s e t al., 1989 ; Lid z and R ose, 1989 Scot t a nd Leckie 1 990). Muddy sediments u s uall y contai n more organic m a tt e r, which may provid e m o r e "food" 68

PAGE 85

(mircoorganisms, detritu s and in org anic particle s) for foraminifera ( Elli s on, 1984 ). The highes t densitie s of f oram i nifera h ave been f o un d in th e areas wi th the weakest tidal c urrent s because sedi m ent movement may des tr oy th e feeding net o f foraminife ra (Alve and Nagy, 1986) Anoth e r poss ibilit y i s that foraminifera were tran s ported by dredging activities o r storms t o these muddy sedime nt s M odes t winds constantly s u s p e nd and red e posit sand througho ut Tampa Bay and dredging activ iti es release fine-grained sediments int o the water column (Doyle et a l., 1989 ). Small foraminiferal test s ( < 200 um rounded or < 300 um elongated) that a re not attached can move with tid es and settle out in lo w energy environments (Loose, 1970; Murray et a l 1982 ; Murray 1983 ) Dredging activities o r s torm s are prob a bl y not as imp o rt ant for increasing foraminifera d e n s iti es c o mpared to nutrification. Seve ral studies conclude that storms and tides do n o t phy s ically affect th e regional integrity of foramini fera l assemblages to it s subenvironments ( Phleger 1956; Nichol s and Nort o n, 1969; Murray et al. 19 82; Lidz and Rose, 1989 ) Phospha te did not correlate w ith other environmental variables or foraminifera. Phosphate is not a limiting nu tr ient in Tampa Bay a nd p h osp hate enters Tampa B ay from n atural deposit s in the Floridan aquife r atmospheric deposition, nonpoint a nd point source s (Garrity et al., 19 8 5; Brooks et al., 199 3; Zarbock et al., 1994). Generic A sso ciati o n s Gene ra in Tampa B ay cluster into a near-n o rm a l marine asse mblag e an d an estuarine a sse mblage. The near-normal marin e assemblage consi sts of No i o n el/a Bulimin e/la, T exu/aria, Bri z a/ina, Orbulin a, Bigene rin a, T rochammina, Rosa/ina, 69

PAGE 86

L o lmlata, and Quinqueloculina Th e es tuarine assemblage consis t s of Ammonia. l:.:tpllidiwn Ammohacu lit es, H a y n es ina Nonion, and Genus B. Tri/ oculi na t.li d no t cluster w ith the o ther ge n era. The n ca r n ormal marine assemb l age cons i s t of two subgro ups: h eteroge n eo u s sediment assemblage and coa r se se dim ent assemb l age. Quinquelo cu lina Lobutula Troclwmmina, Rosa/ina were in the coa rse sediment assemb l age, characterist i c o f ship c hannel s Nonionella and Buliminella were found in the heterogeneous sediment assemb l age. Buliminella po sitively correla ted to hig her sa linitie:-. in Tampa Bay. Genera in the est u a r ine assemblage are typically f ound in h y p oha lin e or e ur yhaline co nditi o ns. The hypo sali n e assemblage t ole rat e the l owe r salinitie s w hil e the near norm < d assemb l age p r efe r the higher sa linit ies. Conclusions T a mp a Bay ha s severa l e n v ir onm enta l variab l es (se diment type. o,alinit y. water de pth. h abita t t ype and a n thropogen i c i nput s) tha t app ea r to influenc e the di-.tr i butio n o f ocmhic f o raminifera Five benthic fora m inife ral assemblage-. were f ound in T ampa B ay: L oba tula Ammohacu lit es, Ha y nesina -A mm o nia Ammon ia-Eiphidium. and Ammoma. T h e L obat ula assemblage was domi n ante d by genera that were fol!llnd nt
PAGE 87

near vegetati on. The assemblage dominated by Ammonia was generally found in areas wi th o ut vegetati o n Muddy sediments wer e generally found in deeper wat e r with hi g h he avy metal s, TOC, N, CaC03 and higher foraminiferal test den s itie s. Sandy sediments general l y h a d opposite condition s Phosphate did not corre l ate with any other parameters. Common genera in muddy sediments were Amm o nia H aynes ina and Genus B Common gen e ra in sandy sediment s were Trilo cu lina, Quinquelo c ulina Trochammina Bigenerina and Textularia Probabl y as result of estuarine s tratification saliniti es were pos iti ve ly correlated with depth in Tampa Bay Lobatula R osa /ina Bri z alina, Quinquelo c ulin a and Bulimin e lla were positively correlated w ith s alinity. Amm o baculites and Bigenerina were negatively correl ated w ith depth and CaC03 con centratio n s but only Ammoba c ulit es w as negativel y correlated to salini ty. Genera in Tampa Bay clustered into near-normal marine a nd estuarine assemblages. 7 1

PAGE 88

CHAPTER THRE E ANALYSIS OF FORAMINIFE RAL ASSEMBLAGES I N HILLSBOROUGH BAY CORES Introduction Most estu aries have l o n g h is tories of a n t h ro pogeni c impact. N everth e l ess, d oc ument atio n of p re-impact e n viro n ments a n d biota are ty p ica ll y lacki ng. S e diment cores can provide at least a p a r tia l record of t h e envi r onme nt a l a n d bioti c hi story of a n estu ary Data fro m m icrofossils, sedi ment textures an d sedi ment c h emis tries can indicat e how m u c h the e n vironme nt h as been a l te r e d H ill s borou g h Bay i s a good location to test t h e u t ility o f fo ramin ife r a l assemblages from dated cor es. T h e bay h as been i nfluenced h eavi l y b y anthro pogeni c in puts a n d t h e hi s tory o f a n t hropogen ic impact is r e l at i ve l y well known I a n a lyzed e i g h t sediment cores from Hillsborou g h Bay th at wer e collec ted for a s tu dy o f d i st ri b ution p a tt e rn s an d acc umulati o n r ates of f in e-g r a i ned sedi me nt s ( B rooks et a!.. 1991 ). Changes in fo r aminife r a l assemblages of H illsborou g h B ay from the p re-indu stria l p eriod u n til present were examin ed. Foramini fe r a l asse m b l ages a n d assoc i a t e d dat a from H i llsborou g h Bay cores cann o t b e int erpre t e d w i tho ut considering: 1 ) th e h i story of Hillsborou g h B ay an d i t s imme d ia t e water s h ed, a n d 2) sed imen tat i o n ra t es in Hillsborough Bay. 72

PAGE 89

Brief History Of Hill s b o rough Bay Tampa Bay had no incorporated town s in 1840, although 452 people lived in the area (Cov in gton, 1985). Tampa was found e d in 1887. Populati o n g rowth r es ulted in un sa nitary conditions; o utdoor pri v i es were the n o rm (Garrity eta!., 1985 ) The first centralized sewage collection sys tem in Tampa, w h ic h was con st ructed in the 1 890's, di sc harged directly int o the Hillsbor o ugh Ri ve r a nd Hill s borough Bay. Nevertheless, the primary methods of sewage di s p osa l were privie s and se ptic tanks until 1949 ( G a rrit y et al., 1985). Hookers Point primary waste rwat e r treatment plant wa s completed in the 1 950's, but l acked a d vanced wastewater treatm ent until 1978 (Garrit y eta!., 1985) Hillsborough Bay e mitted noxiou s odors as ear l y as 1928 and by 1 941 was desc ribed as grossly p o llut e d du e to p oo rl y treated domestic wastewater a nd indu s tri a l was te (Johansson 1991 ; TNEP, unpubli s hed). The principal pollutants from domes tic and in dustria l sewage were compounds of pho s phoru s, nitro ge n an d hi ghly org anic s u spe nded so lid s ( T ay lor e t al. 1970). The point so urc e loadings of nitrogen in th e l ate 1960' s were a l most f i ve time s the 1990 lev e l s (TNEP, unpubli s h e d). The estim a ted t ota l nitrogen so ur ce loadin g int o Hill sboro ugh Bay w a s 1 83 t o n s/ye ar in 1938, 4,006 to ns/year (wor st case) in 197 6 and 404 to n s/y ear bet wee n 1985 to 1991 (TNEP, unpubli s hed) Phosp h o ru s w as not a limiting nu t rient in Hill sbo rou g h B ay ( G arr it y e t al., 19 85). Environmenta l problem s r elated to sewage d i sc har ge between th e 1950' s and 1980' s wer e n ox iou s o d ors, high tur bidities, high f ecal coliform concentrations, low dissol ved oxygen level s, high den s iti es of planktoni c a l gae and s i g ni ficant r e ducti o n of seag ra ss bed s (Taylor eta!., 197 0 ; Garrit y eta!., 1 985; L ew i s eta! 1985: J o h ansso n 1991 ; B o l e r 73

PAGE 90

e t al., 1991 ) These problems were closely r e lated to nu trie nt s which cause a n imb a lan ce in a lgal growth o r e ut ro phi ca tion (Garri ty et a l., 1985). In t he 1960's, fro m Jun e through August, bottom sediment s frequently became a n ox i c and f in e deeper water sediments were probably anoxic throughout the year (Taylor e t al., 1 970). Oy ste r ( Crassostrea v i rg ini ca) populations declined dramatically after th e 1 950's (Tay lor e t al., 1970 ; Doyle et al., 1989) In 1970 an es tim a t e d 42 p e r cent of the Hill sbo r o ugh Bay bottom a rea was considered unhealth y, 36 percent marginal an d o nl y 22 p e r ce nt health y (Taylo r e t al., 1970) Water qu a lit y h as i mpr oved s ince 1981 t h o u g h there ha ve be e n e pi sodes of e utrophica t i o n in H i ll sboro u g h B ay (Boler et al., 1991 ). The hi sto r y of shipping in Tamp a Bay i s a l so n ec essary t o consider. Tampa's role as a n imp o rtant seap o rt began afte r t h e C i vil War (186 1 -65), s hip ping m a inl y agric ultur a l goods ( 27 ,000 tons ) (Fe hr i n g, 1985). The s hipping of cargo dramatically in creased in th e 1 880's after the discovery of phosphate. Between 1 9 10 a n d th e 19 20's, ann ual t o nn age s tabilized aro und 1.5 million tons until the 1950 's w h e n it s harply increa se d to 50 million tons. By the 198 0 's activity remain s si milar t o that of the I 950's (Fe hrin g, 1 985). The de ve lo p ment o f th e pre se n t port h as involved num e r ous dre d ging projec t s ext en din g over a period of m ore t han 100 yea r s ( s in ce 1879 ) (Fe hrin g, 1985; Brook s e t al., 199 1 ). A network of approximate l y 1 3 0 km of s hipping c h a nn els were dredg ed to an ave r age d ep th of 13m ( F e h ring 1985). Hundr eds o f acre s of bay bottom h ave b ee n filled t o constru ct wate r s id e terminal s and s poil di s po s al island s (Fehr in g, 1985). Change s t o Hill sboro ugh B ay s in ce 188 0 include decreased s urf ace area a n d tid al pri s m in c reased depth and volume, l arge flood and eb b tid e tr anspo r t cause d b y th e filling of Hill s b o rough B ay, and changes in n e t c ir c ul ation ( L ew i s and E s t evez, I 988). 74

PAGE 91

Sedimentation Rate s In Hill sborough Bay Brooks et al. (1991 ) us e d 210Pb and 137 c s m e thod s to estimate the sediment accumulation rates in the cores that I analyzed. Meas ur e d r ates ranged from 0. I 3 to 0.42 em/year, and were esti mated at approxim ate l y 0.25 em/year over the past 100 year s. These rate s are believed to b e a pproximately an order of magnitude fa s ter than pr e-a nthropog e nic rates for the past seve ral th o usand years (Brooks et al., 1991 ). As s uming th a t sign ifi cant a nthropog e nic imp ac t began in Hill s borough Bay approx imately 130 years ago (i.e., 1860 ), and ass uming se dimentation rate s of 0.25 t o 0.42 em/year, approximate l y th e upper 30 t o 50 em of each core s hould repre se nt deposition under ant hropogeni c influ ence, unle ss a ddit iona l ev idenc e indicate s ot h e r f act o r s affecting de po s iti o n, s uch as mi xi n g b y bioturb a t io n o r dredging Methods Eight pre v i ously coll ected sed im e nt cores (Brooks e t al. 1991 ) from Hill s borough B ay (Fi g ur e 16) w e r e examined t o determine if foram inife ra l a sse mblag es have cha ng e d over time. The "Surfi c ial Uni t" was defin ed as the upper 0 .9 5 or 2.5 meter s for each core ( Appendix I ( T a ble 19)) by Bro o k s et al. ( 1991 ). M os t cores were sampled b y taking 2 g of dry sedime nt a t 10 e m int ervals from the surfac e to 1 meter ( Table 11 ). Some cores were la c king th e 2 g o f sedime nt in the upper 30 em (Table 11 ). T o determine if a s maller interva l might pro v i de bett e r resolu tion, t h e upper 50 em of core 3-7 wa s sa mpl e d at 5 em ( Table 11). To d e termine i f foraminiferal assemb lag es cha ng e a t de p t h s > I m, c ore 1 3-6 was samp l ed a t 20 em int e rval s from 120 em to 280 em (Table II). 75

PAGE 92

3-7 10-2 0 3-13 3-22 5-15 3-30 Hillsborough Bay Figure 1 6. The locatio n s of th e 8 sediment cores from H illsboroug h Bay collected by Brooks e l al. ( 1991 ). 76

PAGE 93

Tab l e I I. Sample dept h for eac h se diment co re DEPTH LEVEL e m 3-7 0 X 5 X 1 0 X 1 5 X 20 X 25 X 3 0 X 35 X 40 X 45 X so X 60 X 70 X 80 X 90 X 100 X 1 1 0 1 2 0 1 40 160 1 8 0 2 00 22 0 24 0 2 60 28 0 10-8 N N ... x-: X X X X X X X X X CORE# 1 3-6 3-13 3 22 X X X''' X* X X X''' X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X = A sa mpl e was tak e n a t thi s l eve l X =Less than 2 grams availabl e for th e sa mpl e N =No sed im ent availabl e a t thi s l evel 77 3-30 5-15 10-20 X N X X N X X X X X X X X X X X X X X X X X X X X X X X X X X X X

PAGE 94

The sediment was weighed a nd the percent of sand was determined for each sample. Samples were wet-sieved over a 0 .063 mm s ieve and air dried. This proces s el imin ated the s ill a nd clay while retaining most foraminifera and sand (Schroder et al., 1 987). A s tereo-microscope was used to view the sampl es. Total foraminiferal fauna (l ivin g plu s dead individuals) fro m the> 0.0 63 mm sedime nt fraction was picked for each sample. The fir s t 150 s pecimens were picked or> 0.063 mm fractions were compl etely sorted for each sample All recognizable foraminiferal fragmen ts wer e picked. Foraminifera were sorted from the sediment because some were a tt ac hed to shells o r l a rge sediment particle s. Specimens were placed on micropalentological s lid es with a 000 paintbru s h. A 5 % t o 10 % water-solu b l e glue and water mixture was used to attach f o r aminife r a t o the micropalentological s lide. A g lass s lid e was placed on top of th e mi c ropal en tological sl ide to protect s pecime n s. The foraminifera were iden t ifi ed to generic l eve l in s t ead of spec i es for sever al reason s. Few species are r e presented in each gen us. Specie sl evel identificati o n was difficult because o f the s mall size and often poor preservatio n of the te sts. The enl a rgement of p o r es a nd the obli t e r ation of ornamentation due to breakage an d dissolut ion often hinders o r p revents identification of specimen s to spec i esl evel (Cotte y and H a ll ock., 1988 ) Previ o u s s tudi es have s uccessfull y u sed gen ericlevel and even family-level identifications (Fr e nkel 1974 ; Ferr a r o and Col e, 1990; Cockey e t a l 1 996). Finally morphologies of es tuarine foraminif era a re hig hl y variable ; Ammonia a nd Elphidium reproduced individuals w ith charac t eristics of different "s peci es" from clo ne s grown und e r di ffe rent temperatures ( B oltovsk.oy et al., 1991 ). 78

PAGE 95

Genus B ( Figure 5 in C h apte r 2) was thought to be a foraminifer a t the t ime of collectio n ; i t s affiliati on is still un certain. Genus B was retain ed in th e anal yses because in dividuals were common, con sistently id e ntifiabl e, a n d cont ributed to th e interpr e tation o f t h e core s. Cluster analysis ( Fl exib l e Strategy using Euclidean Di stance with Beta=0.25) was done for each core. Flexible s tr ategy is m o notonic, whic h can contro l the spaceconserving propert ies of the cluster s trategy. The var ious level s ( di s t ances) in troduce rela t iv e ly littl e distortion when compared to the SU x SU D m a trix di sta nces (Ludwig a n d Rey nold s, 19 88). Boltovskoy and Torah ( 1 992) I ndex of Preservation was used to g rade th e Ammonia te s ts: I ( 100 % pre served), II (75 % pre se r ve d ), III (50% preser ved), IV (25 % pre serve d ), and V ( < 25 % preser ved). The number and type of te s t defo rmities were recorded for Ammonia. Test deformi t ies were classifi ed as en l arged chambers, stunted chambers. twi sted tests and twin s pecimen s (Aive, 1991 ) Percentages of sand, ab und ances of d o minant genera, deformed Ammo nia Ammonia> than 0 2 mm, and Ammonia with I ndice s of Pre servat i on >II were g raphed for each core, as were foraminife ral den s iti es ( te s t s/g). C ore De sc ription s And Int e rpretati o n s Foraminifer a were i dentified from the eig h t Hill s borough Bay cores. Number of for a m i nife r a picked and relative ab undances(%) for each sample are tallied in Appendix 1 (Table 20). Appendix 1 (Table 2 1 ) l i s t s percent sand, foram i niferal densities (tes t s/g), and numbe r of gene r a. Appendix l ( Tabl e 22) records data fr o m Amm onia te s t s: percent d e f ormed, lndex o f Pre s ervati on> IL and > 0.2 mm. 79

PAGE 96

Core 3 7 Descript i o n Ammonia domin ated th roug h out th e 100 em cor e leng th ana lyzed (Fi g u re 1 7). P lanktonic fo r aminiferal test s wer e com mon betwee n 25 e m an d 50 em. T h e re l a tive abundance of Ammobaculites decreased below 35 em. Ot h e r gene r a remai ned re l ative l y constant throughout th e cor e. Clus ter a n alysis i n d icated two grou ps: to p (025 em an d 40 em) a n d bottom (35 e m 45 em, a n d 60-1 0 0 em); two sampl es did not cl uster (30 e m a n d 50 e m ) (Fi gure 1 8). T h e cor e was domin ated by sand (Fi g u re 1 9). T h e n umber of gener a was re l ativel y con stant, except a t 30 em w h e r e i t peaked at I 0 (Fig ur e 1 9). Test densi t y was hi g h est a t 0 em (370/g) (Figure 1 9). D efo rmi t i es i n A mm onia tes t s we r e mor e common above 35 em a n d t ests near t h e surface te nded to be slig h t l y la rger than down core (Fi g ur e 19). Ammonia tes t s were also th e bes t p reserved above 35 em (Figure 19) I n t e 1pre I at i o n T h e san d -dominated cor e 3-7 was ex t e n sivel y d i s tur bed as ind icated by t h e prese nce o f planktonic fo r ami n ife r al tests to a dept h of 80 em a n d by con sis tency of many parameters wi th th e excep tion of t hose noted below. Clus t e r anal ysis revealed two dist i nct p acke t s of d i stu r bed sediment s. T h e upper packet (0 40 e m ) was characterized by h ig h e r pe rcen tages of A mm obacu! i tes. and higher percentages of Ammonia th at were d e for m ed, l arger a n d/or better preserved. 80

PAGE 97

% Ammonia % Genus B o/r N onio n o/n Elphidium Core 3-7 100 50 0 25 l 12.5 2 5 12. 5 0 25 12 s I 25 .... Amm o ba culii e s 0 o/c Pla n ktonic 50 25 A .A. 0 0 5 1 0 15 20 25 30 35 40 45 50 60 7 0 80 90 I 00 P o t entially Im pacted* A Prc-i mpal'l Co r e Dep t h Lew I ( em ) a m aximum nf 0.-12 c m / yr Fig ur e 17. The r e l ative abundances ( p ercent) or dominant foraminifera l ge n e ra throughout core 3-7. 8 1

PAGE 98

1 3 0 1 20 1 1 0 100 90 80 7 0 6 0 50 40 30 2 0 1 0 0 I Co r e 3-7 C lu s t e r Ana l ys i s (Fl exi bl e, Beta = -0.25) l ----f-. ------I r I I I I I l I l I I l I RO 100 4." 90 70 1 5 20 0 5 Cme Depth Level analysis for core J 7 indicat e d tw n groups a nd 1w 0 o utlier s. ------l l I I 1 0 25 40 30 50

PAGE 99

100 k S;Uid .'iO #or Cicn cra T o tal tcst/g () 1 0 0 .'i.OE+02 2 .'iE+02 O.OE+OO-.'iO (I< A111111onia Dcrormitics 2) 0 100 % AIIIIIIOIIiCI > 0.2 mm () 2.'i fJr A111monia 12 .5 lP > II 0 0 .5 Core 37 .....__. . ----..... ....... .__...... 10 1.5 20 ? -_ ) 30 35 40 -l.'i .'iO 60 10 go 90 100 P o t e ntiall y lmpactccl* .6. Pre-imp ac t Co r e D e pth Level (em) a maximum .'edirnenlalinn rate of OA2 c m/yr Figu r e 19. Th e percent o r sand. numher o r g e n e ra. t otal n umher or foraminifera p e r gram. percent or Ammon ia ( d cro nniti cs. > 0.2 mm and IP >II) obse rved t hrou ghout core 1-7. 83

PAGE 100

Core 3-13 Description Ammonia agai n dominated throughout the core (Figure 20). Planktoni c fo raminife ral tests were o nly found in upper 3 0 em. The r e lative abundance for Genus B peaked at 40 em. The relative abundance for Non i on and E/phidium generally increased down core while other genera remained relatively constant. Cluster analysis indicated three groups: top (0-30 em), int e rmediat e (40 em), a nd bottom (50-100 em) (Figure 2 I). The core was dominated b y mud (Fig ur e 22). The number of genera was r e lativ e l y constant throughout the co re Tests densities peaked from 50 em to 60 em. Deformities in Ammonia tests were more common in th e upper 50 em (Figure 22). Ammon ia tests were s m a ller bet ween 20 em a nd 60 em (Figure 22). Ammonia te s ts had th e poorest preservation between 40 em to 60 em (Fi g ur e 22). In rerpreta tion Core 3-13 exhibited distinct upper and lower sect i ons, as reveal e d by distribution of planktonic foraminifera (0 -30 em), and b y the clustering of samples into upper 40 em group and below 50 em g roup. Nonion and Elph idium relative abundance, total abundance, and Ammonia s ize and preservation change ove r this inter val. Changes in percentages of defo rmiti es, size, and preservation in Ammonia tests may be responses to anthropogenic nutrients. Core 3-22 Description Ammonia dominated throughout the core ( Figur e 23). Other genera were 84

PAGE 101

rxEipflidillln (k, Havnesina % PI
PAGE 102

Cor e 3-13 Clu s ter Ana l ys i s (Flexib l e, Beta= 0.25) 120 1 1 0 100 90 80
PAGE 103

'fo S;Uld # o f Genera Total tc s t/g Co re 3-1 3 50 0--10 l () -I.OE+04 l 5 0E+03 l O.OE+OO -50 25 f})-, llmm o n i a Deformities () -.. .....---1.,__ _, ....___-:==--e % 1 \ mmonia > 0.2 111111 'lr Amm o nia I P >II 50 -0 -50 25 ----..... ---...---0 -0 1 0 20 30 -+0 50 60 70 P otentially Impacte d .A. Pre -impact Core D epth Level (em) Ass uming a rnaxirnurn sedime ntat i o n rate o f 0.42 crn/ yr 90 F igu r e 22. T h e pe r cent or sa nd. numbe r or g e n era. t o ta l number or f o rami nif era p e r g r am. percen t of Amm o nia ( defo r mit i es. > 0.2 mm and I P >II) o b se rved t hr o u ghout core 3-13. 87 100

PAGE 104

Core 3-22 (11, A111111onia ] 25 %Ge nus B 12.5 0 25 fl( N o nion 12.5 0 .... 25 -( k t :tphidi/1111 12.5 -0 25 -?r Haynesina 12 .'i 2.'i -12.5 Plcmktonic I 0 1 0 20 3 0 4 0 .'iO 60 70 8 0 90 Pot entially Impac t ed Prt!-i mpact Core Dcptl1 Lnt!l (em) i\.
PAGE 105

les s common and more variable. Planktonic foraminiferal te s t s were found onl y in the surface sampl e. Cluster analysis indicated four groups: A (0-I 0 em), B (30 em, 40 e m, SO em, 80 em), C (60-70 em), and D (20 em, 90 em, 100 em) (Figure 24). The core was dominated by mud (Figure 25 ) The number of genera was r e lativ e ly constant throughout the core. Tes t d e n s iti es were va riabl e, with a peak from 30 em t o SO em. Deformities in Ammonia were more common in the upp e r 50 em (Figure 25). Ammonia te s t s i zes were variable throughout the core. Ammonia te sts were s lightly b e tter preserved down core. In te tpretation The relative homogeneity of most par ameters indicates the possibility of reworking. However unlik e obviousl y disturbed core s 108 and 3-7 (seep. 80 an d p. 98) with planktonic foraminife ra throughout the core, this core only had plankt o nic foraminifera in the surface sample. Cluster analysis further indicated disturbance by the cluste ring of disparate samples (30, 40, and 50 em clustered wi th 80 em, and 20 em clustered with 90 and I 00 em). Core 3-3 0 D escrip ti o n Ammonia d ominate d through out the core, but relative abundance decreased down core as Nonion and Ha y n esi na incre ased (F i g ur e 26). The highest relative abundance for Nonion was from 80 em to 100 e m Other genera remain e d relative l y constant thr ougho ut th e core. Cluster analysis indicated three g roup s : top (0-20 em), intermediate (30 -70 em), and bottom (80 I 00 em) (Figure 27). 89

PAGE 106

Core 3-22 Cluster Analysis (Flexible, Beta= -0.25) 40 1 35 I I 30 25 -v > \0 20 ..... 0 (/) :::s 0 ---.... -------_,. -----15 105 I 0 _______ l_ _ ---------------------------------------------20 90 100 50 80 30 40 0 10 60 70 Core Depth Level (em) Figure 24. Cluster analysis for core 3-22 indicated four groups

PAGE 107

100 % S;Uld 50 0 1 0 l #or Gen e r a () _I_ 1 .0E+04 -1 Tot a l 5.0E+03 j test!g 0.01:+00 -25 l % i \ Ill Ill 0 II i (I Dcrormitics % A111111o nia > 0.2 m m 50 l I 25 --( k Ammonia IP > I I 25 Cor e 3-22 ---0 _! _____________ ____ 0 10 20 30 -W 50 60 7 0 80 90 100 Pot clllially Impacted* .A. Pre-impact Core Depth Lcn:'l ( e m ) a maxitn unl S(!dim c nlati o n rah: of 0.-'2 cnt' y r 25. The perce n t or sa nd. o r gen e ra. tot a l numb e r o r f o raminifer a p e r g r a m p e r ce n t o r Ammonia (deformit ies. > 0 2 mm and IP >II) o bser ved t hr oug h out core 3-22 9 1

PAGE 108

fY,, A111mo niu % 100 75 50 25 0 25 Genu s B 1 2.5 % N o n i o n o/r Elpflidiu111 % H ayn e sina 0 -50 25 0 25 -, 12. 5 J 0 r _) l 12.5 1 Core 3 -30 0 ._l 0 1 0 20 30 40 50 60 70 9 0 Potentially I mpacted P r eimp act Core Dept h L eve l (em) a r:ll e o f 0 .4 2 c m/yr Fig ur e 26. The r e l ative abundances ( p e r ce nt ) of dominant f o raminif e r a l ge n e r a throug h out core 3-30. 92 100

PAGE 109

Core 3-30 Cluster Analysis (Flexible, Beta= -0 25) 120 110 100 90 80 70 > Cl) .....l \0 .... 60 Cl) u.> ..... VJ ;:I u 50 40 30 -4 ---1 ------., -20 10 t 0 -'-______ )_ ______ L -r 10 20 0 40 60 30 50 70 80 90 100 Core Depth Level (em) Figure 27. Cluster analysis for core 3-30 indicated three groups.

PAGE 110

The core was predominately sand above 30 em and predominately mud below ( Fi gure 28). There were only three genera in the upper 20 em, while below th e numbe r of gener a was generally 5. P eaks in test densities occurred at 20 em and 70 em (Figure 28). Deformities in Ammonia tests were most prevalent above 40 em (Fi gu r e 28). Test s ize for Ammonia was relati ve l y constant throughout the core. Ammonia t ests had sl i g h tly poorer preservation above 50 em. Int erpretation My analyses of cor e 3-30 show relatively minimal d i stu rbance even though Brooks e t al. ( 1991) considered the sediments slightly disturbed based on sed iment texture, 2 10 Pb and 1 37 Cs methods This co r e ex hibited chan ge ove r time as re vea led by decrease in the amount of mud and number of genera near the surface. The foraminifer al assembla ges near the s urface were mainly Ammonia and Genus B The r e lati ve abundances of Nonion and Hay nesina increa se d dow n cor e. Core 5-15 Description Ammonia dominated throughout th e core, but its r elative ab undance began to decline below 50 em w ith a correspondin g increase in Ammobaculites (Figure 29). The r e l a ti ve abundance of Genus B peaked from 60 em to 90 em. Other gener a remained relatively constant throughout t h e core except Nonion which i n creased slig htl y at 100 em. Cl uster a n a l ysis indicated th ree grou ps: top (20-60 em), intermediate (70 em), a nd bottom (80 I 00 em) (Figure 30). The core was predominately mud above 50 em an d predominately sand 94

PAGE 111

rfo ScUld #or G e n e r a 100 [ () Cor e 3-30 0 ----------1.5E+04 To t a l [.()1:+04 t cst/g 5.0E + 03 O.OE+OO -25 f fo 12.5 A111111onia D e form i ties 0 50 % A111monia 25 > 0.2 mm 5 0 l % A1111110nia IP >II 0 0 1 0 20 30 4 0 50 60 70 8 0 90 Pot e ntially Impa c ted .A. Pre -impact Core DepU1 Lev d (em ) i\."umin g a max i m um .'cdirnc nlal ion rail' o f 0.4 2 .:m/ y r 1 00 F i gure 28. The perc ent o f san d number o f g e nera. t o t a l number o r fomminif e r a p e r gram. p e rc e nt or Ammonia (deformities,> 0.2 mm and IP >II) obse rved t hrou gho ut cor e 3-30 9 5

PAGE 112

% Ammonia % Genus B % 1\111 mobar u li 1 es o/r Non ion f;f, Cor e 5 -15 100 25 1 2.5 25 .., 12. 5-' () 25 l 1 2.5 0 ....... ----...-===-----. 1 2.5 -0 20 30 40 50 60 70 80 90 100 Pot e nti ally Impa cted .._ P r e-i mpa c t Co r e D cpt11 L eve l (e m ) i\, 'lllning a maximum 'cdimc ntati,,n rate nf OA2 c m/yr Fig ur e 29. Th e r elative a bundan ces ( p e r cent) o r d o min a nt f o nuninif e r a l ge n e r a t hrough out cor e 5 -15. 9 6

PAGE 113

Core 5-15 Cluster Analysis (Flexible, Bet a = -0.25) 120 110 100 I 90 l 8o I 70 -> j ...... 60 \0 a) -...1 ....... Vl ;::l 0 50 -t---40 30 20 J 1 '------j __________ _______ __. _____ __.___ __.___ __ 20 50 40 30 60 80 90 100 70 Core Depth L evel (em) Figure 30 Cluster a naly sis for core 5-15 indicated three groups

PAGE 114

below (Figure 31 ). The numb er of genera incr eased be l ow 60 em (fi gu r e 3 1 ). Test densitie s were generally high es t in the upper 50 em D efo rmi ties in Ammonia tes t s were m os t common above 60 em (fi gure 3 1 ) Te s t size for Ammonia was r elatively co n s t a n t throughout the co re. Preser va tion was poor below 60 em. Interpretation Core 5-15 appeared t o be relatively undisturbed, exhibi tin g a distinct upper s ection to 50 em depth, and a d i s tin c t lower section from 60 -I 00 em. More than half of the param e ters(% Ammonia,% Genu s B,% Ammobaculites, % s and number of genera tota l abunda n ce, Ammonia deformities and preservat i on) s howed a shif t at approx im ately 50 60 em depth. Core 10-8 Des cr ipti on Ammonia d o minat e d throughou t the core except at 110 em whe r e the rel ative abundance for No n ion and Elphidium increased (F i g ur e 32). Other genera were rel ative l y co nstant. Planktoni c foraminiferal test s were found throughout the core. U\' i ge rina an off s h ore genus, was found at 110 em (Append i x I ( Table 20) ) Cluste r analys i s indicated t wo groups: (2 0 e m 40 em 50 em, 70 em, 80 em, 90 em) and (30 em, 60 em, 100 em, 110 em) ( Figure 33). The core was dominated by sand (Figure 34 ) The number of ge n e ra slight l y incr ease d above 60 em. T es t densities were var i able thr oug h o u t the core. D eformities i n Ammonia t ests were most commo n at 30 em (a sa mple with low test 98

PAGE 115

% S;md #or Gcnrca T ota l t esl/g Core 51 5 100 -1 50 1 0 -"------------7.5E+02 1 5.0 E+02 1 2 5E+02 l O.OE+OO o/c Ammonia Dcrormil i es o/c 25 l 0 Ammonia 2 5 > 0.2 mm % 50 l Ammonia 25 1 IP> I I o-! 20 30 40 50 60 70 P o t entially Impact e d Pre-impa c t Core Depth Level (em ) A,.,umin g a maximum s.: dimc nla l i o n rat e of 0.4 2 c m/yr 80 90 100 Figure 3 1 The percent o r sand numb e r or ge n e ra. t ota l numb e r or foraminife ra p e r gram, perc e nt of Ammo nia (deformities. > 0.2 mm and IP > II ) o bserve d throu_ghout c ore 51 5 99

PAGE 116

% Ammonia % Elp h idium o/r Non ion o/r 1-layncsina o/r /\mmo ba culi t cs % P lankt o n ic Core 1 0-8 100 I SOL 0 () ---------50 25 -() 25 1 2.5 0 25 12.5 0 25 l 1 2.5 I () 20 30 40 50 60 70 80 90 100 Potentially I mpa cted* .A. Pre impact Con.: D e pth Le Y cl (em) A.<.
PAGE 117

Core 10-8 Cluster Analysis (Flexible, Beta= -0 25) 160 150 140 I 130 120 uo I ------------100 -90 > Cl) ...4 80 .... E 0 (/) 70 ::::1 u 60 50 40 30 r 20 -r 10 0 r ______ ] l L ___ --__ _[ _____ __ ------.____ _____ -----20 90 50 70 40 80 60 100 30 110 Core Depth Level (em) Figure 33. Cluster analysis for core 10-8 indicated two groups.

PAGE 118

% S 0.2 111111 2 5 ..... 0 % A mmonia rr > r r Q 20 30 40 50 60 70 8 0 90 100 110 Potent i ally Impa c ted* _.. Pre-impact Cor e D eptJ1 Lc\-cl (em ) a maximum of 0..12 cm/yr Figure 34. The percent o r sand. number o r genera. tota l numbe r or fomminifera p e r gnm1. percent o r Ammonia ( def o rmities.> 0.2 mm and IP >II) observed throughout c or e I 0-8. 1 02

PAGE 119

d e n s i ty) ( Figur e 34). Ammon ia t ests we r e generally s mall e r d own co r e w h ile t e s t pr ese rvati o n w a s r e lati vely co n stant. I n terpre tati o n This sand-do minat ed core I 0 8 wa s hig hl y d i sturbed, a s indi ca t ed b y the presence of plank t onic foraminiferal t es t s thr oug h ou t the c ore and b y the results o f cluste r ana lysi s, wh i ch r eve led no down core pat t ern. Offshore ge n era (Uvigeri n a a t 110 em and Cassidu!itw a t 20 e m and I I 0 em) were found in the core. Uvigerina i s n ormally found f r om the oute r s h elf to bat h yal oce a nic envi r onments a n d is not ada pt e d t o est u a r y co nditi o n s ( Phl ege r 1956 ; Albani 1 968; Brasier, 1 975b; Th om p so n 1978; P oag, 1981; B ol t ovskoy et al., 1991; Buzas e t al., 1 989). Cassidu /in a i s normally f o und in sandy a nd r oc k y se dim ents from the inn er s h e l f t o wate r depths> 100m and u s uall y does n ot occ ur int e r t idall y (Phleger 1 9 56 ; Lankf ord and Phl ege r 1973; Sch a f er 1973; Br a s ier, 1 975b ; H oo p e r 1975 ; Otvos, 1978 ; Th ompso n 1 978; Scott e t al., 1 980; Murray e t a !.. 1982 ; Buzas e t al. 1 989 ; B oltovo k soy e t a l., 1991 ). Th ese ge n era may indica t e reworking of fossi l mater ial. Core 10-20 Description Ammonia d o m inat ed throughout the core (Figur e 35) Plankt onic foraminif eral tests we r e f ound only near the s urface Nonion and E lphidi um were n ot f o und above 60 e m Othe r gen e r a r emaine d r elativel y co n s t ant thr o u g h out the core. Clus t er a n a l ys i s i ndi cate d f o ur sample g r oups : t op ( 0 e m I 0 em) u p p er int e rm ed i at e ( 20 50 e m), low e r int e rm ed iat e (60-70 e m), and botto m (80-1 00 em) ( Figure 36). was a mix tur e o f mud a n d s and above 50 e m w ith a sa nd y l aye r from 60 em 1 03

PAGE 120

% Amm on i a % Genu s 13 % Nonion % Elphidiwn % Haynes i na o/r PlcUJktonic Core l 0-20 10 0 50 25 l 12.5 0 25 J 12.5 0 25 1 2.5 0 10 20 30 40 50 60 70 80 Potent i ally Impact e d .A. Pr e -impa c t Cor e D ept11 Lev e l ( e m ) i\ssumin!! a maximum sedime ntati o n r at e , f cm/yr 90 100 Figure 35. The relativ e abundances ( p e rcent ) of dominant foraminif eral genera throughout core l 0-20. 104

PAGE 121

Core 10-20 Cluster Analysis (Flexible, Beta= -0.25) ---------j _____ ] _______ l _____ l ______ L L_ __ f _____ J -___ _.___ __ 40 20 50 60 70 90 100 80 0 10 Core Depth Level (em) Figure 36. Cluster analysis for core 10-20 indicated four groups.

PAGE 122

to 70 em and was muddy below 70 em (Figure 37). The number of genera increased below 50 em. Test densit y peaked at 30 em. D efo rmiti es for Ammonia tests were more common f rom 20 em to 30 em than in the r est of core (Figure 37). Ammonia tests were larger below 50 em. The poorest preservation was found from 20 em to 50 e m l nterpretat ion Sediments in core 10-20 appeared to be relativel y undisturbed, as indicated by the presence of planktonic foram inifera only in the upper 10 e m of the core. C lu s ter analysis revealed four g roups that indicated chan ge down cor e. A major break occurred b e t ween 50 a nd 60 em, below which diversity increased and Ammonia tests were larger and better preserved. Core 13-6 Description Core 1 3-6 was examined to 280 em. Planktonic foraminifera were most abundant at the surface, but were present to 40 em (F i g ur e 38). Ammonia dominated the upper 70 em. Genu s B dominated from 90 em to 160 em. Elphidium was relatively uncommon above 160 em. Ha ynes ina was not found between 50 em and 260 em. Cluster a n a l ysis indicated three groups: A (0-10 em), B (50-60 em), a nd C (all ot h ers) (Figure 39) The core was predominately mud in the upper 200 em and below 200 em was predominately sand ( Figure 40). The number of genera was relatively low throughout the core Foraminiferal tests were relatively u ncommon throughout the cor e and the highest test densities we r e a t 0 em a n d 50 em. 106

PAGE 123

Core 1 0-20 % Sand #ol" Gen e ra 1 0 I 5 -....... ._ __ -----t....--1.1 E+04 Total test/g 5.5E+03 Amm onia D e formities 25 -12.s I () -----<.........-... --------= .... ..... ---1lr A111111011ia 75 -5 0 > 0.2 111111 25 7c Amm onia IP > II ()-50 0 1 0 20 30 4 0 5 0 60 70 80 90 100 Po t entially Im pacted .A. Pre-impac t Cor e Depth LcYcl ( ern) Assumin!,! a maximum scdimcn!a!i<>n r a! c of cm/yr Figur e 37. Th e p ercent o r s and. numb e r of genera. total numh e r o r f o r amin i f era p e r g r a m p e r ce n t or Ammo nia (defo rmiti es. > 0.2 mm and IP > II) o bserve d thro ughout core I 0-20. 1 0 7

PAGE 124

% Ammo nia % Genus 13 % Uphidiu m Core 1 3 6 100 so -0 J 100 so 0 25 0 e e I ____..____,_ 25 -I % 1 2.5 -D. Ha ynesina 0 ... ,__ .. % Pl
PAGE 125

,_.. 0 \0 230 220 210 .. 200 190 180 170 160 150 140 g:: 130 120 t 110 '@ 100 u 90 80 70 .. 60 50 40 30 20 10 0 Core 136 Clu s ter Analysis (Flexible, Beta= -0 25) ---------------------I I I l l -------------_ J __ ._ __ _J ___ ] ___ j ____ ----.f-120 160 140 180 240 200 280 30 70 20 220 260 90 100 110 80 40 50 60 0 10 Core Depth Level (em) Figure 39 Cluster analysis for core 13-6 indicated three groups.

PAGE 126

% S 0.2 mm % Ammonia IP> I I Core 13-6 [()() 500 l 2500 } ........ -----..... ..... ...... ...... 75 l 501 251 A .. c 0 0 0 0 -Nrr.-r Pot e n t iall y Impact e d Pre-impac t Core D eptJ1 Leve l (em) As.'lnni n g a maximum scdi nwntati o n rat e of 0.42 c m/yr Figur e 4 0 The percent o f san d numbe r of gen era. total numb e r of foraminif e r a l per gram. percent of Ammonia ( deformit ies.> 0.2 mm and IP >II) obs e rved thr oug hout core 1 3-6. ]]Q

PAGE 127

The most deformities in Ammonia were found in the s ur face samples ( Figure 40) Size and pr eservat i o n were variable thr oughout the co r e. I nterpretation A l though core 13-6 is quite variable, the relative co n s i stency of much of that variab ilit y i ndicates minim a l mixing. Ther e i s a distinct "anthr opogenically-i nflu e n ced'' unit i n the upper 30 em cha r acterized by the presence of plank t onic foraminifera. Ammonia abundance and parameters also change in that interval. Th ere is also a deep section be l ow 200 em, where the se diment t ex tur e c han ge d dramatically, as d i d a variety o f other parameters. Discussion Int e rpr eta tion o f the cores i s dependent upon the amount of sed im e n t m i xing. The e i g ht cores we r e c l ass ified by the extent of disturbance t o the sediments: four cores ( 10-20 5-15, 3-13, and 13-6 ) had relatively undis turb ed sediments, two cores (3-30 and 3 -22 ) ex hibit ed some disturbed sediments, and two cores ( I 0-8 and 3 7) exh i bited extens i ve mixing of sediments. Since the H olocene tr ansgression, mud -domina t ed sedi ment s h ave accumu l ated with no obse r vable disruption (Broo k s et al., 1991 ) I n no co r es exce pt I 0 8 we r e the upp e r 50 e m complete l y mixed, eve n thou g h burrows were obse r ved ind i cating that bioturbation was active ( Br ooks e t al., 1991 ). B rooks et al. ( 1991) co n cluded that co r e I 0-8 co n s i sted entire l y of dredge spoil. Core 3-7 was san d-d om i na t ed which may ex plain the dis turb a n ce of sediments ( Br ooks e t a !.. 1991 ). The m obi l izat i o n of 1 37 Cs through out core 3-30 may be due t o extensive bioturbation ( Bro oks et a!.. 1991 ). eve rth e l ess. this core exhibited a distinct upp er and lower unit with a break between l I I

PAGE 128

30 em and 40 em. Most of the undi s turb ed cores exhibited distinct u ppe r and l ower sec tion s with the break typically between 40 and 60 em, w here pre-anthropogenic and anthropogenic influ e n ce would be expected. Faunal Changes Foram inif e ral assemblages may be influenced by the introdu ctio n of exotic genera faunal shif t s, changes in numb er of genera, and foraminiferal densities. Planktonic Foraminifera Planktonic foraminif era do n ot live in Tampa Bay. They are pelagic organisms normally found n ear oceanic slope a n d ou t er platform margins as well a s in the open ocean (Bandy 1956 ; Hooper 1 975; Scott et al., 1976; Haq and Boersma 1978; Scott et al., 1980; Lid z and Rose, 1 989). Planktonic foraminifera in the Hill sboroug h Bay cores were most likely introduced by cha n geable-ballasted s hips that pumped their bilge water int o Tampa Bay. Hallegraeff et al. ( 1990) reported that planktonic organism s have been found in th e bilge water of cargo sh ips. Changeable-ballasted s hippin g into Hillsborough Bay did not occur prior to World War I ( 19141 9 17) (Lee Chapin and Cmgil Fertilizer. Inc., Per so n a l Com muni cat i o n). The pumping of bi l ge wate r has been banned b y the 1972 Clean Water Act but e nforcement was not fully effective until the ear l y 1980's (U.S. Coast Guard Personal Communication ) Thus planktonic foraminifera we r e probably introduced into the sediments of Hillsborough Bay for about 65 years ( 1915 to 1 980) and appear to be a biomarke r for that time int erval. Planktonic fora minifer a were found only near the tops of cores I 0 -20. 3-13. 3-22, and 112

PAGE 129

13-6, providin g a marker for ant hr o pogenic influence in these cores. P l anktonic foramini fera were fo und throughout cores I 0-8 and 3-7, providing strong evid e nce for extreme disturbance of these sedi m e nt s. The two cores t h a t lacked pl a nktonic foraminifera, cores 51 5 a nd 3-3 0 were collected a t loc atio n s fart hest away fr o m the P o rt of Tampa (Fig u re 16). Plankto nic for aminifera in h a rbor sediments can b e useful his t orical bi o m a rkers for anth r o p ogen i c influence s o r indicate th e degree of sediment rework i n g. Faunal Shifts Faunal shif t s may res ult fr o m natural e n v ironmental c h anges, biological fact o r s, o r a nth ro pogeni c input s Fauna l s hi f t s in Hill sborough Bay m ay h ave been caused b y c hanges in sed iment texture, n at ural changes ove r tim e a nd/or increases in a nthropogeni c inputs. Fauna l s hift s were found i n cores 10-20 5-15 3-30, 3-13 3 -22, 3-7 a nd 13-6. Several cores (3-22, 3-30,5-15 a n d 10-20 ) h ad sediments change from mud tO sand or sand t o mud. C hanges in sedime nt textures may b e th e result of natura l c h a nge s in sedime n t di stribut i o n (waves, tides an d s t o rm) a nd/or dredging act i v i t ies (s u spending and red e posi t in g sedi ment s). C h anges in th e r e l ative abu ndance o f Noi n o n Elphidium Genu s B and Ammohaculites may reflec t th e s hi f t in sedime nt texture in these cores. The faunal s hift for cor e 1 3-6 a bove 180 e m may have r eflected th e shif t t o a more r ecent foraminife rid assemblage. Sedimen t s b e low 1 8 0 em f o r cor e 13-6 were dated t o 5200 4 1 0 years (Brooks e t al., 1 99 1 ). The disappearanc e of Non i on an d E lphi di um in core I 0-20 abo,e 5 0 e m a nd th e decrease in Nonion r e l a t ive abund a n ces above 40 e m in cores 3 -13 and 3-22 may be due t o incre ased anthro pogenic ac ti v iti es The incr e a se in r e l ati,e abundances of I 1 3

PAGE 130

Ha ynesina above 50 e m in cor e 13-6 an d o f Ammobaculites above 3 0 em in cor e 3-7 could h av e resu l ted from anthropogenic activities th a t were favorable t o these genera. Another possi bi lit y for increase re l at i ve a bund a nc e for Ammobacu lite s i s th e natural t endency of Ammo ba culites te sts to disintegrate down core. Ove r all agglutinated foraminifera have poor preservat i o n pot ential ( Ozar ko e t a!., 1 997). R e l a ti ve abundance of Ammonia i ncreased in the upper s ecti o n s for four cores (3-30, 5-15, 10-8 13-6 ), w hile o ther cores had n o observable trend s in this para m e ter. Ammo nia was the most commo n ge nu s in all t h e Hill s borough B ay cor es, jus t as it was the most common genu s thro u g h ou t Tampa B ay (C h a pter 2). The most abundan t and a d aptable species to environmental var i a ti o n s (opportuni s t s) t e nd to be th e most re s i s tant t o p o lluti o n effec t s (Al ves, 1995 ; Culver and Buzas, 1 995). Fauna l s hift s i n Hillsborough Bay cores are most likely cau sed by an t hropogen i c stress, a lth o u g h facto r s of sediment texture and preser v ati o n h av e to be taken in to consideration. Number of Genera P rev i o u s s tudies h ave fo un d that opportunistic ge ner a t e n d to d ominate under sever e anthropogenic stress because of t h e hi g h to le ran ce a nd the lack of comp e tition (Alve, 19 9 5 ; Schafer eta!., 1 995). With increased po llution, m o r e t olerant species increase a t the expense of m o re se n s iti ve taxa a nd finally the m os t tolerant or opp o rtunistic species take over (Al ve, 1 995). In some cases o n ly o n e o pp o rtu nistic s pecie s r emains (A1 ve, 1995 ; Scott et al., 1 995). Hill s b o r o ugh B ay had opp ortu nistic a n d "po l lution indicator b e nthic macroinver teb rat e s p ec ies at several l oc ation s (Simmon and M ahadevan 1985). Four cores (3-13, 3-22, 5-15 and I 02 0 ) h ad in creases in the number of gen e ra down core, while o nly o n e core (10-8) h ad an d ecrease in th e numbe r of gen era. The o th e r 114

PAGE 131

cores (3-7, 3 -3 0 a nd 1 3-6) h a d no t r e n ds i n thi s p a r ame t e r Brook s et al. ( 1991 ) con s idered cor e I 08 con s i s ted e n t ir e l y o f dre d g e spoil w hich m ay explain the dec re ase in t h e numbe r o f gen e ra down cor e. The gen e ral increase in th e numbe r o f gen e r a downcore in undisturb e d cor es m ay i ndicat e l ess stressful p re a nthropogenic conditi o n s. Fo r a minifer al D ens it ie s Prev i o u s s tudi es h a v e f o und th at f o r a m inife ral d e n s iti es c h a nge w ith anthropogenic i mpact s ( Phlege r, 1 9 5 6; B a nd y et al., 1965 ; N i c h o l s an d No rt o n 1969 ; E llison a nd Ni c h o l s, 1970; S c h a f e r 1 973; S cott, 1 976; Phleger a nd L ankford 1978; B ates and Spencer, 1979; Ellison e t al., 1986; A l ve, I 995; S c h a f e r et al., 1995) However comp arison of H ills b oro u g h Bay cor es w i t h r e l ative l y r elia bl e r e c o rd s ( Al ve, 1995) in d icates t h a t test ab undan ces wer e s impl y to o va r ia bl e t o b e useful. However w h e n considered a l o n g w i t h te st p reservati o n t a ph o n o mi c l oss o f f o r am i nife r a l test s down cor e does not appear t o be a n i ss u e for int e rpr e t atio n o f t h ese cores. A m mon i a T es t Deformi ties P ro p e rt i e s o f tes t d efo rmiti es h ave bee n proposed as a p o t e nt ia l i ndicat o r o f p o lluti o n (Ges lin et al. 1 9 9 8; A l ve 1995: Y a nko e t al., 199 4). H owever, t hey can occ ur natura ll y, especi ally u n d e r salinit y s tr ess (Coo p e r 1 96 1 ; R es i g, 1974; B o ltovskoy e t al., 1991 ) Deforme d fo r a mini fe r a h ave been r e p o rt e d fro m extr e m e l y r es tri c t e d n atura l e n viro nment s rapidl y c h ang in g e n vi r onment s, n utri t ionally poo r e n v i ronments, and a nthr o pogenicall y p o llut e d e n v i ro nm e nt s (Al ve, 1 99 1 ; B o l tovskoy e t al., 199 1 ; Al m ogi L a bi n e t al., 1 992: G es l in e t al., 1 998; Yanko e t al., 1 998). Foramin ife ra i n h e a vy meta l e n v i ro nm e nt s h a d d e f o rmed a p e rtur es, a dditi o n a l c h a mb e r s, pr o tu bera n ces. d efo rmed o r twiste d c h a mb e r s h a p es, and t w in ned speci m e n s 115

PAGE 132

(Alve, 1991; Yanko et al., 1 994; Geslin et al. 1998). I f ound en lar ged chambers s lllnted chambe r s twis t ed shapes a nd twinned specimens in A111111onia from Hill sborough Bay. D eformi t i es o f foraminifera tend to occ ur more frequently in p o llut ed areas than in non p o l l ut ed areas (Alve. 1991; Alve. 1995). atu ral variability f o r foraminiferal de f or m i ties we r e reported i n up to I 'lc of the t ota l a sse mblage exami n ed b y Yanko et al. ( 1998). De f ormed forami nif era l tes t s i n n o n-p o lluted a r eas with ex t r e me s aliniti es were I 'lr t o 1 7% of the assem h l ages ( R esig, 1 974: Almogi L abin e t a l.. 1992 ) wh ile defo rmed f o ramin if era l tests in polluted areas wer e 2c1c to 30o/c of the assemblages ( Yanko et al.. 1994: Alve. 1 995 : Yank o e t al., 1 998). Percentages of Alllllwnia tests exhib itin g deformit i es gene r all y increased in the upp e r sect i o n of a l l cores except co r e 10-20. Th e s e increases in defo rmitie s ma y hav e been caused b y the anthropogenic i nlluen ce ove r t h e past century. Distinguish ing which s tress ca uses deformities i n a p opu lation is d iffi cu l t t o impossible (Gesl i n et al., 1998 ) A111111onio Test Siz e Test si?.c in a f oramin i feral popu l ati o n o r asse mbl age can rcl'k c t eit her biologica l fact ors t hat influ e n ce growth and reprodu c tion o r phys ical sorti n g of the sediments. A pr edo minance o f \'cry small tests has been co nsidered as p oss ible evid e n ce f or en v ironmenta l and a nthrop o genic stre ss ( R o n ai. 1955: Todd and LO\\. 1961: Bradshaw. 1961 : Bolto vs ko y and L ena. 1971; Murra y 1971: Resig. 1974: Haq and B oe rsma. 1978: Ellison and Peck. I
PAGE 133

environments o r favo rable conditions (Todd and Low, 196 1 ; Seiglie 1968; Ellison and Peck, 1983 ; Boltovskoy eta!., 1991). Small foraminifera l tests can be susp e nded and r edepos ited with tid es, waves, s t orms or dredging activities ( L oose, 1970 ; Murray eta!., 1 982; and Murray, 1983 ). Dre d g ing activities tended to be a fining process in Tampa Bay ( D oy l e, 1985). Murray eta!. (1982) reported that juveniles and small individual s wer e a bsent in areas of the English Channel where sediments wer e rework ed. Cores 3-7 an d 10-8 h ad th e l argest Ammonia t ests in th e upper 50 e m w hile core I 0-20 h a d the smallest. Tes t s i ze in Ammonia in Tampa B ay did not prove to be useful parameter. Test s i ze can incre ase or decrease in both s tressful o r favorable conditions, therefore it i s difficult t o interpret the r esu lt s. Inde x Of Preser vat i o n Of Ammonia T ests Foraminifera are lo s t after deposition by abrasion, dissoluti o n reworking of the sediments by scave n gi n g organisms, a nd a variety of physica l agent s (Hooper, 1975). The dominant f o rm of damage to t h e foraminiferal te s t s in physically active environments i s breakage. Cores 3-7 and 5-15 exhi bite d poorer preser va ti o n of Ammonia t es t s below 40 50 em, w hich was con s i stent with a downcore incre ase in s and. E tching thin test s, aberrant f orms, and disso l ution of th e calcareou s foraminiferal tes t s have been fo und in areas w ith low pH and org anic acids ( R es i g 1974 ; Akpati 1 975; Bra s ier, 1975a). Minimal preservation has bee n k nown to occur in highl y bioturbated a r e a s wi th o rganic-ri c h sedime nt s (Al ler, 198 2; Coney and H a ll ock, 1 988). Poo r e r pre servat i o n s fo r Ammonia t ests i n the upp e r sectio n of cores 10 -20. 3-13 and 3-30 may have b een due to in c r eased a n t hr opogenic act i v iti es: dredging (b reakage) 117

PAGE 134

a nd/or sewage in p ut s ( dissoluti o n ). I n cores l 0 -8 a nd 3-2 2 p reser vat i o n of Amm onia test s was re l ative l y constant thr o u g h o u t whic h p robabl y r eflects sed i m e nt mixing f r o m dredgi n g a nd/or bi ot urb a ti o n activities. P rese r v a tio n of Ammonia tes t s was simply too variable to b e useful. Taphonomi c loss o f f o r a m i n ifera l tes t s downcor e does n ot a ppear t o b e a n issue for i nterpretat i o n o f th ese cor es. I f t a ph o n o mi c loss o f test was of concern preservation stat e a n d f o ramini fe r a l d e n s ities would u s u a ll y decrease downcor e (Al ve, 1 995). Conclu s ions P ara meter s t h a t provided useful i n dica t ors of an t hropoge ni c i nflu e nce on fora mini fe r a l f aunas in Hillsborough Bay sedime nt cores in c lud e d: (a) p resence o r absence o f ship-ballast-t r ans p o rt e d pl a n ktonic fo ramini fera, (b) rela t ive abu nd a nce of Nonion w hi c h ty p ical l y decreased up sect i o n (c) relative ab undance of A mmon ia, w h ic h in c reased up section i n sever a l cor es, ( d ) number o f ge n era, w h ic h te nded to decrease u p s ecti o n a nd (e) p roportio n s o f Ammonia tests ex h ibiting defo rmiti es, w h ic h t e nd e d to in c rease up sect i o n (Tab l e 12) P a r amete r s o f lim i ted u sefu lne ss wer e t o t al ab und a nce a n d s i ze o f Ammonia tes t s. Test preservati o n d i d n ot a ppear t o p l ay a r o l e in cont rolli n g fo ramini fera l asse mbl ages, s ince p reser vat i o n i n creased downcor e as o f te n as it dec reased ( T a bl e 1 2). 118

PAGE 135

T a bl e 12. Summar y of c h a nges up section for the Hillsborough Bay cor es Parame t e r s Cor es 3 7 3-13 3-22 3 3 0 5-15 10-8 10-2 0 1 3-6 % Amm o nia NT NC NC I NC I %Genus B D NT NT I D A I D % N o n i o n N T D D D NT D D A % Elphidium NT D NT I D D NT % H a y nesina A NC D A I NC % Amm obac ulit e s I A A A A NT A A % Pl anktonic NT I I A A NT I I %Sand NC NC NC D NC NT #of Genera N T D D NT D I D NT Abundance ( te s t/g ) I D I NT I NT PK (30 e m ) PK (50 em) Amm o nia Deformities I I I NT I Amm onia > 0 .2 mm 1 NT NT NT NT I D NT Ammonia IP > II D D D NT NT I =Increase D =Decrease PK =Pe ak NC = N o c hange NT= No tr e n d A= Absen t o r number to low fo r i nterpreta t i o n

PAGE 136

CHAPTER FOUR COMPARISON OF FAUNAS IN HILLSBOROUGH BAY AND CHARLOTTE HARBOR Introduction The decline in health of a system is generally defined as the amount of departure from a control s ituation and by some measure of change in community s tructure or departure from natural re sponse by the individual (Wilson, 1994 ) Many different anthropogenic inputs are discharged in to marine environment s and foraminiferal responses may vary with diffe rent types of a nthr o po gen i c inpu ts (Alve, 1995 ) Some microorgani s m s re spon d quickly to change, therefore microorganisms may b e useful in detecting early-warning or early-recovery changes in th e environment (Odum, 1985 ). Most smaller foraminifera have r e lativel y s hort life hi stories so the y respond qui c kly to natural or anthropogenic c h anges in their environment ( Alve, 1995 ). Hillsborough Bay i s an ideal location for comparing the effects of anthropogenic inputs on foraminiferal assemblages because Hill sboroug h Bay i s a confined bas in with relatively homogeno u s natural environmental conditions w ith multiple anthropogenic influences. Since all s ite s in Tampa Bay hav e likel y been affected by anthropogenic inputs, samples from Charlotte Harbor were collected for comparisons. The purpose of thi s st udy was to examine foraminiferal assemblages under th e influence of several anthropogenic input s. 120

PAGE 137

Methods Hillsborough Bay sample s we r e collected to determine the response of foraminiferal assemblages to different types of anthropoge nic inputs: sewage, therma l and chemical toxicity. Sediment s urfac e grabs in Hill sborough Bay were collected with a LaMotte dredge at 15 s ites (11 anthropogenic impact, 3 reference and 1 unknown ) (Figure 41 & Table 13). Sediment surface grabs were collected in Charlotte Harbor at s ites CH, CH 13 and CH 14 (Figure 42 & Table 13) Physical, c hemical and geolo g ical measurements from past studies wer e available for several s ites (Table 14). No previous data were available for s ites Sl, S2, Tl, T2, 31, CH, CH13, and CH14. Sites 9A, 11C, (Long eta!., 19 94) and 18 (Brooks and Doyle, 1992) were considered r e ference sites in Hillsborou g h Bay because of their non-toxi c constitution. Two separate sewage o ut falls were sampl e d in Hillsborough Bay. Site S2 was near MacDill Air Force Base outfall an d s ites S 1 and 6B were near Hookers P o int outfall (Figur e 41 ). Two sites were sampled at Hookers P o int outfall to determine if distance from a sewage outfall would influence the foraminiferal assemblages. SiteS 1 was th e closer of the two si te s to th e outfall. Sites T I T 2, a nd 37 were collected near the Big Bend Power Station t o determin e thermal e ffect s o n foraminifer a l assemblages. Site T 1 was the closest to th e power plant outfall, while S i t e 37 was the farthest (Fig ur e 41). Toxic si tes had a combination of heavy metal s and chemical s such as pesticides. Different level s of toxicit y were in vest igated Sites 3C a nd 8B failed one of th e three toxicity tests in Long eta!. (1994) study, and were considered Tox 1 (low). Sites 4A and I B failed two of the three toxicity 1 2 1

PAGE 138

Hillsborough River Mac D ill A i r Force Base Hill sborough Bay 18 Palm River Alafia River Figure 41. The location s of the Hill sboroug h Bay sites. 122

PAGE 139

Myakka River Charlotte Harbor Peace River Figure 42. The locati ons of the Charlotte Harbor si tes. 123

PAGE 140

Table 13. The latitude, longitude, collection time, water depth, bottom water temperature, salinity, pH, turbidity, sea state, associated vegetation, associated fauna, visual appearance of sediment type and stress level for the Hillsborough Bay (June 14, 1997) and Charlotte Harbor (June 15, 1997) sites Site Latitude Longitude Time Water W a ter Salinity pH Turbidity Sea s A ssoc Assoc Sediment Stre ss # Depth (m) Temp (C0 ) ppt JTU m V eg Fauna T y p e Level Hill s borough Reference 9A 27 54.01 82 27.57 1408 5 5 30 0 30.0 7 8 20 3. 6 ND Worm s Sd 11C 27 51.58 82 25. 34 1512 5 5 29.0 30 0 8.8 30 .3.6 ND ND Sd 18 27 50.09 82 27 52 0900 7 3 31.5 29.0 8 0 70 3. 6 ND ND Md with Sd Sewage 6B 27 54 28 82 26.45 1154 7 6 29.5 29 0 8 5 20 .3-.6 ND ND Md with Sd S1 27 54.38 82 26 24 1210 4.0 31.0 28 0 8.5 100 .3. 6 ND Bstar Sd S2 27 5l.l0 82 28.48 0945 1.8 27 0 28 0 8.5 0 .3-.6 ND ND Sd ,__ Thermal N 37 27 47 93 82.16 1613 4.3 32 0 30 0 8 0 100 .3-.6 ND ND Sd T2 27 47.70 82 25.20 1623 3.0 36 0 30 0 8 5 10 6. 9 ND ND Sd 2 Tl 27 47.60 82 24 90 1634 1.2 38.5 30 0 8 7 0 < 3 Alg M ats ND Sd & Alg 3 Chemical Toxicity 3C 27 56 .10 82 25. 62 1330 5 5 30 0 26 0 7 8 0 < 3 ND ND Sd 8B 27 54 .91 82 28 .35 1027 4.8 29 0 29.0 8 5 80 .3-.6 ND ND Sd I 1B 27 56.43 82 27.42 1100 12.2 28 5 28.5 7 7 100 0 ND ND Black Md 2 4A 27 56.52 82 24 80 1308 10.4 29 5 28 0 8 5 0 <.3 ND ND Md 2 2A 27 57 .18 82 26 .57 1120 18.3 29.0 28.0 8 8 0 0 ND ND Blac k Md 3 Unknown 31 27 56.51 82 24 .55 1247 0.9 30 0 26 0 8.7 10 0 M g KC&Oy Md Sd & SF Charlotte Harbor CH 26 57.63 82 06 77 0900 2 .0 30.0 25.5 8 5 10 3-.6 ND Oy Sd, Md,& SF CH13 26 56.47 82 03 .14 1145 2 5 30.5 25.0 8.6 20 3-.6 ND Oy Sd Md,& SF CHI4 26 54 60 82 05. 66 1230 1.5 30 0 27.0 8.3 37 0 Mg KC&Oy Black Md & Sd ND = Not detected Mg = Mangrove trees Alg =Algae Bstar = Brittle s tar KC = King Crown s Oy =Oys ters Md =Mud Sd =Sand SF= Shell fragments Stress l evel= 1-low 2-intermediate 3high

PAGE 142

Tab l e 14. (Co ntinued) l:n, & ch<:nuc:d ----I'CH 101 l ng/g) PCB 77. 15-1 ln)!/J!l PCB 1 10 l ng/gJ P C B 15:1 l ng/g) PCB 105 lng/gJ PCB 13X fng/g) I'Cil 12(1 K<: Sewage Thcnnal TtJX :i ---------.1 5 -1 X 7. 1 I -1 15 <) <)() <) 27. 6 33.6 Ill 1.0 1-1.0 I (> 0 1 --' 12. 5 1 1 IJ.I 1.-1 I 5.1> -IX.(> Ill 02 0 1 35 7 Ill 01 0.1 2-1) 0 1 0.-1 0 1 J.(l 0 1 0.(1 .1_1 1 0 1 0. 1 0.1 1 3 -1 0 1 0 1 (>X.2 21. 0 0.3 I 2 IU I (J..' IU IU -11.-1 W 2 7X.I1 .\-IX.2 XOO.(l 7X 1 I :'i7 2 (l.-1 11>0 1.2 2 1 I < ) I.() (1.0 XO (1.0 r 11 11.0 (10 1>.1) I >II 11.11 1 > 0 (>.() ---Tox = Tt1Xicily ILcv d = I low. 2 >ntcnncdialc .I h >ghl = Nn da1a a a i l able -1,\ i:iH Tnx I i(J -1 1 :. 6X 2 5 ' I > 6 0 1 Ill 0. 1 -1. 1 01 01 2X.7 0 .. 1 ) 1-1 (1 < ) l) 5 .(1 I 9:! I I Ill 1112 2 i I X (l 0.5 (1.11 1>.11 (>.I ) N l ) Nol dt:IL'Cic d -'C Tox I

PAGE 143

Table 14. (Co ntinued) Environmen tal Sites & c h emica l IIC 1 8 6 B 2A IR -lA S B component Reference Refer e n ce S.:wag<: Therm a l Tox .1 T ox 2 T ox 2 Tox I T o x I Total butyl tin s lng/g) 18. 0 1 8.0 20 0 I S O -1. 4'DDD tng/gJ 1.9 1 .9 -1 I.S 1 7 9 2.4'-DDT In/g) 1.0 0 9 2-1.6 15. 6 5.-1 -1.4'-DDT C ng/g) 0 1 1.4 7-1. 2 5.-1 * 2.-1'-DDE ( ng/g) 2.5 2 !! 1 8 2 1 0.2 Total DDTs ( ng/gl 5.5 7 0 120.0 4 1.9 Napthah: n<: l n g/gJ 0.07 0.07 0. 1 4 O.o7 0 07 * Accna phtyh:nc.: ( ng/g) 0.08 0.08 0 1 0 0 .12 An: naphth en<: 1 ng/g) 0 08 ().()8 0.31 0.08 O.OS Fluon:nc ( ng/g) 0 .0'.! 0 .0'.! 0 44 IDO 0 09 * Phcnc.: natlwn c ( ng/g) 0 .0'.! 0 .0'.! 2.1 7 0 .81 0.-11 Anthracene 1 n g/gJ 0 .()<) 0.0'.! 05-1 0. 1 6 0 .09 * Fluuranthl-rlnc ( n )!/g) 0 .11 0.11 ) 20 1.-18 l'yn:nc lng/g) 0. 1 X 0 27 )40 1 .87 !lent. (a) anth c rl'lll' 0 1 1 o n I N O .X2 * 1 n g/g J 0 .11 on 2 65 1 72 0.1!0 l luoranth cll.'nc ( n J'If' J 0 1 7 0 1 7 4 .'.!7 .\ 2 0 I.JI T lh:nl 050 1'<:1 ylcnr 111):/):J () 1 7 () 1 7 (J..\) 0 .27 0 .17 I'YI<'IH' I II ) /)' I on 0 .2.1 I. 'IS I 04 0.-1-1 ''"'h"'' <'Ill' tnp/vJ II 2 1 0 2 1 I .XO I o q 0.56 Tnt11l 1 .1'"11 lllpiJ:I I 1 )11 4 .1JX 52 !.X ( > Tnt.lllll' t\lltnvh'. l \ ) I O l .10.05 I X .'l7 10.25 T11t : III'AII IIIJ:IJ:J 1.' :-,,:-,1 .\5 0 1 1 I') 1 2 .11 Tu. \ 'I U\h' l t y ( I ('\I' I 1 h w. tllh'tllll' dat a ;n;ulahlc N D =Not dch:.: t cd

PAGE 144

test s in Long et al. (1994) study, and were considered Tox 2 (intermediate). Site 2A failed all three toxicity tests in L o ng et al. ( 1994) s tud y, an d was considered Tox 3 ( hi g h ). Site 3 1 was origin ally intend e d to be a Tox 3 ( hi gh) site but later a navigation error was discovered. The Brooks and Doyle (1992) s ite 31 (27 56.50 N 82 24.85 W) was located in the center of the channel an d consi s ted of black foul, s melly mud. My s it e 31 (27 56.51 N 82 24.5 5 W) was in s h allow water on an oyster reef> 50% sand. M y s it e 31 was thus consid ered an unknown site Stress was cl ass ified into different levels: level I was none to low, level 2 was intermediate, a nd level 3 was high (Table 13 ) All reference and sewage s ite s were considered stress lev e l 1. Also, the thermal s ite w ith lowest temperature, Tox 1 s ite s, and site 3 1 (unknown) were con s id e r e d s tres s level 1. The thermal s ite with int ermediate temperature, and Tox 2 sites were considered stress le ve l 2. The thermal s ite with hi g hest temperature a nd Tox 3 s it e were considered stre s s level 3. Samples were collected in two day s to minimize seasonal factors. Hillsbor o ugh Bay samples were collected o n 1 un e 14, 1997 and th e Charlotte H arbor samples were collected o n June 15, 199 7 (Tab le 1 3 ) Three r e plicate sample s were collected at each si te. Samples were collected along an 8.6 meter transect 4.3 meters apart. Samples were preserved in a 7 % formalin solution b uffered with b o ra x for 4 8 h o ur s (McRae et al., 1998). Formalin has been considered one of the bes t f ix a ti ves to preserve foraminiferal protoplasm ( Phleger, 1960; Walker et al., 1974 ). Samples were then tr a nsferred from form a lin to 70% e thanol containing Rose-Bengal (McRae et al. 199 8). The s taining time for th e e than o l and Rose-B e n gal 128

PAGE 145

solution was four weeks (Hald and Steinsund, 1992). Samples were shaken once a week. After four weeks, sampl es were air dried. Two grams of dry sediment from eac h sample were wet-sieved with water over a 0 .063 mm s ieve and air dried. Thi s proce ss eliminated the si lt and clay whi l e retaining mos t fo raminifera and sand (Schroder et al., 1 987). The sediment was weighed and the percent of sand was determined fo r each sample A stereo-microscope was used to v iew the foraminifera. Total foraminiferal fauna (living plu s dead individuals) from the> 0.063 mm sediment f r action was p icked for each sample. The first 150 specimens were picked or> 0.063 mm fract ions were completely sorted for each sample. A ll recogniz able foram in ifera l fragments were picked. Foraminifera were sorted from the sediment because some were attached t o shell or large sedime nt particle s. Foraminifera were placed on micropalentological slides w ith a 000 paintbrush. A 5% to 10 % g lu e and water-soluble g lu e and water mixture was u sed to attach foraminifera t o the micropalentogical slide. A glass slide was p l aced on top of the micropalentological slide to protect specime n s. Stained foraminifera were considered to be live at time of collecti on. The Rose-Bengal protein stain i s fairly r eliab l e and effic i ent for r ecog ni z in g liv in g foraminifera even though the s tain has several problem s s uch as more f o raminiferal test s s tained than actually wer e alive and sometime s o ther organic material (bacteria) in dead foraminiferal te sts s tains (Walton, 1 952; Walker et al., 1 974; Bernhard, 1988: Scott and Lackie, 1 990). The fo ram inifera were identified to generic l evel in s t ead of species for several reasons. 1 29

PAGE 146

Few species are repre sented in each genu s. Spec ie slevel identi f icatio n was difficult because of the s mall s iz e and ofte n poor pre s ervation of the tests. The enlargement of pore s a nd the obl i te rati o n of o rnament a ti o n du e t o breakage and dissolution often hinders o r prevents identification of s p ecime n s to s pecieslevel (Couey and Hall ock, 1988). Previ o u s studies have successfully used generic-level and eve n famil ylevel identi f ication s (Frenkel, 1974 ; Ferraro and Col e, 1990 ; Cockey et al, 1996 ) Fin a ll y morphologies of estuarine foram inifer a are hig hl y varia bl e; Ammonia a nd E l p hidiu m reproduce indi v idual s with c har ac teri stics of di ffe rent "speci es" from cl o n es grown under di f f e r e nt t e mperature s (Boltovs k oy e t al., 1991 ) Genus B ( Fi g ure 5 in Chapter 2) was thought to be a f oraminifer at the time of collectio n ; it s affiliation is s till unknown. G e nu s B was retain e d in the analyses because indi v idu a l s were common, consistently identi f iable and contributed to the interpretation of th e s ite s B o ltovskoy a nd T ora h 's ( 1992 ) Index of Pre se rvation was used t o g r a d e Ammonia tests: I ( 100 % preser ve d ), II (75 % pre s erved), III (5 0 % preserved) IV ( 25 % preserved), and V (less than 25 % preserved). Ammonia test defo rmiti es were class ifi e d as enlarged chambers, s tunted chamber s, tw i ste d tests, a nd twin s p ec im e n s (Al ve, 1991 ). Cluster analys es ( Flexibl e Strategy u si ng Euclid e an Di sta nc e with B eta= 0.25) were used to discern s ite groups ( Q m o d e) a nd genera association (R-mode). Flexible strategy is m o notonic which can control th e s p ac e-c onserv in g prop e rtie s of th e clus t e r s tra tegy. The various level s (di s tanc es) introduc e r e lativ e l y littl e di s tortion when compared t o the SU x SUD matri x distances ( Ludwi g and Re ynol d s, 1988). Hi stog ram s wer e con s tructed for r e lative abundances of th e domin ant ge n e ra Hi stog ram s we re also con s tru c ted for 130

PAGE 147

perc e nt sand, numb e r of f oraminiferal gen era, foramin ifer al dens itie s (test/g), number of live f ora minif era ( t es t/ g), percentage of live foraminifera, percentage o f Ammoni a d efo rmi t i es, p e r ce nta ge of Ammonia> 0.2 mm and p erce nta ge of Ammo nia w ith Indi ces o f Pre se r vatio n > II. S p ea rman R ank Correlation analysi s was used t o determine if genera a r e r e l ated t o e n viro nmental va ria b l es and/or o ther gen era Results Environmen t a l P aramete r s Environmental d ata for the s ite s sa mpled in Hill sboro ugh Bay and C h arlotte Harbor are s hown in Tabl e 13. The water d e pth for Hill s b oroug h Bay s it es ranged from 0 9 to 1 8.3 m and the wate r dep th for Charlotte H arbo r sites r a n ge d from 1.5 to 2.5 m. The water temperature for Hill s b o r o u g h Bay sites rang e d from 27.0 C0 to 3 1.5 C0 except at t he the rmal sites which r a n ged fro m 32.0 C0 t o 38. 5 C0 The wa t er t e mp e rature f or the Charlotte H arbor sites r ange d from 3 0 0 C0 t o 30.5 C0 The sa linit y for Hill s borough Bay s it es ranged f r om 26 t o 3 0 a n d the sa linit y f or the Charlotte Harb o r s it es r anged from 25 to 27. Th e pH for Hill s b oro u g h Ba y si t es ran ged from 7.7 t o 8.8 and the pH for the Charlotte Harb o r sites ran ged from 8.3 to 8.6. The turbidit y for Hill sbo r oug h Bay s i tes r a n ged from 0 JT U to 100 JT U and the turbidit y for the Charlotte H ar b or s i tes r a n ged fro m 10 J TU t o 37 JT U Th e sea s t ate durin g sa mplin g for Hill sbo rough Ba y Sit es r a nged from 0 to 0.9 m and the C h arlo tte Harb o r seas ranged from 0 t o 0.6 m. The on l y sites in Hill sboro ugh Bay w i t h a ssoc i a ted vegetatio n were s i te 31, which had mangro ve t r ees, and s ite T I whic h had al gae m a ts. The only Charlotte Harb o r site w ith assoc i ate d vege tati o n was sit e CH 14, whi c h had m ang r ove tr ees 1 3 1

PAGE 148

Ass o c iated fa un a were only detected for Hillsborough B ay s ites S 1 31, and 9A. All Charlotte Harbor s ite s h ad oys ters and sit e CH 14 h a d M e longena co rona ( Kin g Crown s). S ediment Texture Sand-s ized sediments predominated a t most Hill s b o rough B ay sites (Figure 43 & Appendi x 1 ( T able 23)). Excepti o n s in cl u ded refe rence s ite 18, sewage site 6B T ox 3 si te 2A and Tox 2 s i tes (lB a n d 4A) ( Figure 43 & Appe n d ix !(Ta bl e 2 3)). S ediments at Charlotte Harbor s it es were san d a nd/or mud wit h oyste r fragment s. O f the Charlo tt e H a rb o r si t es, CH 14 had th e mos t mud (Figure 43 & App e ndi x 1 ( Tabl e 23 )). Relati v e Abund ance Ammonia w as commo n at all sites and d omi nant at a majori ty of s it es (Figure 44 & Appendix 1 ( T able 2 4). Ammobaculites was t h e seco nd most common foraminifer. G e nus B was common at so me of the s it es Elphidium Ha y nesina and Trilo c ulina were well represented at Cha rl o tte Harb o r s it es CH a nd C H 1 3, w hil e they wer e generall y poorly represent e d in the o ther sites. Nonion was occas i o n ally commo n a t some of Hillsbor o u g h B ay s ites. The other gener a were generally< 1 0 % o f t he asse m b l age a t mos t s ites. Clu s ter An a ly s i s Q-mode a nd r-mode cl u s t e r anal yses were a pplied to th e data. Q m o de The relative abundances ( p ercentages) for each gen u s f o r Hillsbor o u g h Bay and Charl o t te Harbo r sampl es are lis ted in Ap p e n dix 9. Q mode clu s ter analysis indicated three g roups of samples (Fi g u re 45). 1 32

PAGE 149

....... VJ VJ % Sa nd # Gener a Hill s b oro u g h B a y and Cha rlott e Harbor S a mpl es 1:: . ThW ool I H 0 H H B B 0 0 I I I I I I I I 0 n I I I I I I I I I B B H 1 I B B a I I I I I I Live # / g L i ve % Ammo nia Deformiti es % Ammonia >0.2 mm % l..B a n a , 1 1 1 1 , 1 1 , , n a B , , 1 , 1 , , , 1 1:: 1 , , , , 1 1 1 1 , B , 1 , , , :: l a o , H n o , , , B , 1 B n. I I I 100 ] 1 1 111 1 1 1 1 1a1n1A1111111111111 Ammonia > II 50 100 l % 0 -"a t., ,II l n R n n a od, B I ,II I o Ill 0 D D A o I I I I I 1 I I I I I I I I I 1 I 1 I Si t e N u mbe r 5 i i a a a a a a -I Charlotte Ha rbor I I Refere n ce I I Sewage I I Thermal IIHigh ToxiiUnknownll Medium Tox I I Low Tox II Figure 4 3 T h e pr ece nt san d num b e r o f g e n era, total num b er of foraminifera p er gram, li ve ( p erce n t an d per gram), p rece n t of Amm o nia ( d efor mit ie s > 0 2 mm and IP >II) for Hillsb oro u g h Bay an d Ch ar l o tt e H ar b o r sam pl es

PAGE 150

Relative Abundances of Dominant Foraminiferal g e n e ra An:_m "''" ':: . ..... Genu s B % A mm o ba c ulit es % ,_. N o ni o n % E lphidium % H ay n esi na % Tril oc ulina % 50 l 1 ' ' . , 1 . . . 1 . 1 1 1 ' ' 1 1 1 , 1 5 0 l 25 ... Pl __ -"Iii __ Q I I I I I I I I I I I I I 1 I i I I I I I 50 l n Pl-- Q I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I :: t d. , , 1 , , , , n A lu.. , , , , , M N N N N N N N N N N N N N N N N N 0 t t 0 0 0 j j j j j 0 0 0 U U a a 5 5 5 5 = = -r d N N M -v v v Sit e Numbe r I C h arlo tt e H a rb o r I R efe r e n ce I I Se w age I I Th erma l II Hi g h To xii U nkn o wnll M e djum Tox I I L o w T ox Figure 44. Relative abundances of dominant foraminiferal g e nera for Hillsborough Bay and Charlotte Harbor.

PAGE 151

UJ VI 410 FLEXIBLE CLUSTER ANAYLSIS (BETA= -0.25) HILLSBOROUGH BAY AND CHARLOTTE HARBOR 400 390 380 l 1 "Y' IV\ 220 210' 200 190 180 -l 170 I-Ll > 160 I-Ll 150 -l 140 I-Ll 130 E-120 (/) :::> 110 -l1oo u 90 80 70 60 50 40 30 20 10 0 Stres s -----www ,J:ll. s ITE # Charlotte Harbor Nutrient-loading Figure 45. Q-mode cluster analysis for Hillsborough Bay and Charlotte Harbor sites indicated three groups : stress group, Charlotte Harbor group, and nutrient-loading group

PAGE 152

The first group included th e impacted or s tr essed sites. This grou p cont ains the Tox 3 site (2A); tw o Tox 2 sites ( I B a nd 4A); t h e mangrove s ite near P alm River (3 1 ); tw o thermal s ites (T 1 a nd T2); a nd one sewage site (S2). Thi s group was only fo u nd in H illsborou g h Bay. The second group contained Charlotte Harb o r s ites CHan d CH 13. H i llsbor o u g h Bay si tes were n o t r epresent e d in thi s g r o up. The third g r o up contained sewage sites (6 B and S l ), reference s ite s ( 1 8, 9A, a nd l l C ), low thermal s tre ss site (37 ) two Tox l site (8B and 3C) in Hi llsborou gh Bay, as wel l as the mang rove s it e in Charlott e H a rbor (C H 14 ). R-mode R mode c luster an a l ys i s id e ntifi e d two assemblages: near-normal marine and estu arine (Figure 46). The nea r -normal marine assemblage con s i s t of two s ubgroups: n o nstressed (Milimnmina, T ext u laria, Fursenkoina Orbulina Gaudryina. Quinquelocu/ina. Bige n erina, Tr och mnmin a) and s tressed ( Trilowlina an d B ri-;.alina). The estuarine assemblage con s i s t of three subgroups: sandy sedime nt taxa (Eiphidiwn. No n ion a nd Ammobacu/ites), heterogen ous sedime nt taxa (Haynesi n a) a nd s tress -to l e rant taxa (Ammonia and G e nu s B ). Absolute Abundance Absolute abundance for t o t al a nd live assemblages were determined. Total Assemblage A s n o t e d i n "Meth o d s", 2g of sediment we r e ex ami n e d for e ach s i te Whe r e foraminifera were ab und a nt. approx imat e l y ISO spec im e n s ( #/g wa s calculated by the amount of sediment sort ed adjus t ed by the percentage o f sand ) were pic ked and 1 36

PAGE 153

-\.;.) -..) 12 11 10 9 8 v ;.> 7 .3 1-< 6 CJ} ;:I 5 0 4 3 2 1 0 --I I I 1 Hillsbourgh Bay and Charlotte Harbor Cluster Analysis R-mode Near-Normal Marine --. ---I ---Estuarine ---fl --------CJ} ;:I 0 _. Q.) s:: s:: Q.) Q.) s b.() -0"0 1-< Q.) Q.) ::r:: s f$' F '-$' !? v ;,_-$' N-v" v .f' "'v v" Genus '\: oc; oc;
PAGE 154

identified. Where forami nif era were s carce the e ntire 2g sa mple wa s picked. The numb er of for a minifera picked from eac h s ample and the numb e r of foraminif era p e r gram for the Charlotte H arbo r and Hill s b o r ough Ba y s ite s are s h ow n in App e ndix I ( T able 23 ) Th e sa mple s g r ouped into thr ee categories. Foraminifera were uncommon (<50 t es t /g) a t severa l o f the impact sites (S2 [ sew a ge ] ; T I T2 [th e rmal] ; 2A, 1 B and 4A [Tox 3 a nd T ox 2]; and 3 1 [ unknown ] ) in Hill sbo r ough Bay. Foraminifer a w ere common but not abundant (50-200 test s/g) at the Charlotte Harbor sites and at s ite 37. F o raminifer a w ere abund ant (> 2 x I 0 2 tests/g) at the r e maind e r of the Hill s b oro ugh Bay s i tes ( Fi g ur e 43). Live Assemblage Li ve f ora minifera were primarily important to the tot a l count a t Ch a rlotte H arbor s it es (CH and C H 1 3) and site 37, where tota l f oraminifera were common but n o t abunda nt. Sites 9A, T2, and 31 wer e the only oth er sites w h ere live indi v idual s we r e more tha n 10% of t ota l asse mbl age ( Figur e 43 & Appendix I ( T able 23)). Number Of Genera Th e number of genera was det e rmin ed from th e t o t a l assemblage. Th e fewes t foraminifera l genera (2 t o 4) were found at the Tox 3 and T ox 2 sit es (2A, 4A and 1B) and the hig h the rm a l s i te ( T I ) (Fi g ur e 4 3 & Appendix 1 (Tab l e 23)). At o ther sites, the numb e r o f genera ran ged from 4 to 9 (Fig ur e 43 & Appendix 1 ( Tabl e 23)). Spearman R ank Corre lati ons Sp ea rman Rank C o rr e lati o n compared e nvironm enta l variables and ge n e ra ( Tabl e 1 5). These co rr e lati o n s h a d 0.5 s ignific a nce at 0.268, 0.0 I at 0.349 and 0.00 I at 0.4 39. 138

PAGE 155

Table 15. Spearman Rank Correlation comparing genera and environmental variables for Hillsborough Bay and Charlotte Harbor Genus Genus A GB Am N E H T Br Bi Ga Tr F Q Or M GB 0.069 Am 0.151 -0.328* N 0.375** -0.039 0 036 E 0.415** -0.488*** 0.448*** 0 .361 ** H 0.279* -0 028 0.215 0.075 0.426** T 0 017 -0.379** 0 398** 0.255 0 5 16*** 0 .187 Br 0.200 -0.120 0.186 0.155 0 120 0.183 0.254 Bi 0 114 0 099 0 296* -0.022 0.027 0.120 0 1 56 -0.008 ..... Ga 0.035 -0.23 7 0 223 0.166 0.243 -0 .203 0.304 0 140 -0.063 w \0 Tr -0.132 0.163 0.239 -0.182 -0 .197 0.157 -0.190 0.101 -0.123 -0.075 F 0.022 0 124 0 040 0.241 -0.143 0.207 -0 095 0.345** -0.044 -0.027 0 340* Q -0. 169 -0. 104 0.053 0.078 -0 102 -0 293* 0.066 -0 134 0.153 -0.055 0 120 -0 039 Or 0 212 0 110 -0 170 0.055 0 009 0.083 -0.095 -0 065 -0. 044 -0 027 -0 053 -0.019 -0. 039 M -0.23 7 0 075 0 .125 -0 .221 0 046 0 .041 -0.135 -0.093 -0 063 -0 .038 0 527*** -0.027 0.305* 0 027 Tx -0 .123 0.084 0.112 -0.155 -0 .143 -0.142 -0.095 -0 065 -0 044 -0.027 0.400** -0.019 0 476*** -0 019 0 687*** Significance = 0.5 ** =0.01 *** = 0 .001 A =Ammonia GB =Genus B Am= Ammobaculites N =No nion E = Elphidium H = Haynes ina T = Tri/ ocu /ina Br = Brizalina Bi =Bigeneri n a Ga = Gaudryina Tr = Trochammina F = Fursenkoina Q = Quinqueloculina Or= Orbulina M = Miliammina Tx =Textu laria Continued on n ext .page

PAGE 156

...... +:>. 0 Table 15. (Continued) En vir Genus Var A GB Am N E H T Br Bi Ga Tr F Q Sd % 0 064 -0.423** 0 491 *** 0 3 77 ** 0 378** -0 008 0 613*** 0.245 0 .111 0.246 -0.161 -0.031 0.209 Dept 0 135 0.160 -0.491 *** -0.097 -0.089 -0 .099 -0.270* -0 217 -0.032 0.019 -0.465*** -0 172 0 .22 5 Temp 0.203 0.161 0.045 0.326* 0 .054 -0 .096 0 287* 0.165 -0.078 0.077 0.038 0.013 0.216 Sal 0 257 0.116 -0.278* 0.0 1 6 -0.258 -0.4 8 1 *** -0.104 0 037 0.023 -0.039 -0.405** -0. 121 0.041 pH -0 285* -0.241 0.020 -0 170 -0.061 -0.164 -0.111 -0.231 -0 058 0 .049 0.025 -0.096 -0 007 # fm/g 0 915*** 0.203 0 .17 8 0.432** 0.388** 0 .338** -0.024 0 155 0 .146 0 .009 -0 .016 0 084 0 136 % Live 0 1 25 -0.434** 0.544*** 0.296* 0.585*** 0.245 0 698*** 0.216 0.152 0 .261 -0 .069 -0.040 -0.080 #Gen 0 314* -0.235 0 555*** 0.452** 0 572*** 0.463*** 0 594*** 0.458*** 0 220 0.185 0 1 87 0 .201 0.275* SL -0.651 *** 0.076 -0.584*** -0.356** -0 556*** -0 435** -0.172 -0.204 -0 195 -0. 120 -0 .2 36 -0 084 -0.173 Sig nifi ca nce = 0.5 ** = 0.01 *** = 0.001 A =Ammon i a Ga = Gaudryina GB =Genus B Am= Ammobaculites Tr = Trochammina F = Fursenkoina N =Non ion E = E lphidium H = Hay nesina T = Trilo c ulin a Br = Brizalin a Q = Quinqueloculina Or= Orbulina M = Miliammina Tx =Textularia Or M -0.128 -0.101 0.146 -0.3 22* -0.080 0.019 0.067 -0.231 0.014 0 234 0.207 -0.145 -0.085 0.082 0 040 0.185 -0 084 -0. 1 20 Bi =Bigenerina Sd % =Sand% Dept= W ate r depth # fm/g =#of foraminiferids per gram Sal = Sa l inity # G e n =Number of genera SL =Stress l eve l ( I -low, 2-int ermedia te, 3-high ) Continued on next page Tx -0.066 -0 226 0.013 -0. 162 0 164 -0 075 -0 .040 0 130 -0 .084

PAGE 157

T a ble 15. (Con ti nu ed) En vir Envir Yar Yar S d '!'c Dept T .:mp o /oo pH # f m/g 7r live II Gcn D e pt T e m p -0 .4 1 1 ** S al O .IOH 0 .225 p H 0 .0 55 0.25 7 -0 058 -O.OSI II f m/g 0 .046 0 149 0 1 42 0 260 %live 0.572 ** -0 .:11 0 0 .:11 2 0 1 04 0.000 0.06S # Gt:n 0.):-I(J+U 0.47:'u 0 .218 0 .262 0 .17H 0.:11 0 0.6:17 *** SL 0 21R 0 269* 0 .020 o 2 : n 0 .2:16 -O.:lSS** 0 .65:1*** Signiftcam: e = 0.5 = 0 .01 u = 0.00 1 Sci% =Sand% D e pt = Water tkpth II fm/ g =II of f oraminife rids per g rarn Sal= Salinity II Gen =Number of gen e r a S L = S tress level 1 I l o w. 2 -intcnm:diatc. :1hi g h )

PAGE 158

Muddy sedi men t s wer e p osi ti ve l y correl a ted t o wate r depth and to Genus B Sandy sed i m e nt s were posi t ivel y corr e l ated to temper at ure, %of Jive fo r ami n ifera per gram, numbe r o f gen e r a, E lphidiu m Nonion, Ammobaculi t es, a n d T riloculina. Water dep th was posit i v e l y corr e late d to s tress l e v el. Ammo n i a Ammo ba c u li te s No n io n El p hidi u m a n d H a yn.es in a w e r e n egat i v e l y corr e l at e d t o s tress level. Trilo c u lina a n d Nonio n wer e posit ive l y corre l at e d t o te mp e r ature. A mmobaculi t es, Tril ocu/ i na, Trochammina, and M i li ammina wer e negat ive l y corr e l ate d to water de pth. Ammobaculites Trochammina, and H aynes in a wer e negativel y corre l ated t o sali n ity. A mmonia was negat ively corr e l ated to pH. A mmonia T ests Deform ities, size a nd I nd ex of P re e r va ti o n were exam i n e d for Ammo nia t es t s. D efo rmiti e s T h e percent o f d efo rmiti es in Am mo ni a was as v a r iabl e a mong replicates as between si t es (Fi gure 43 & Appen d i x I (Tab l e 25)). S i:e A n alysis Sandy si tes h ad predomi nate l y l arge r Ammonia test s ( F igure 43 & App e n d i x 1 ( T able 23)). Muddy si t es, man grove si t es, a n d the rm a l st ressed sites had gener ally s m alle r A mm o ni a t es t s ( Fi g u r e 43 & A p pe n d i x 1 ( T able 23)). I n dex of P re s e r vat i o n I n dex of Preser vat i o n had no obse r vab le tends a m o n g s i tes. H owever. some of the stress a n d mangrove s ites h ad t h e h i g h est pe r cen t age o f poorly p r ese r ved Ammonia tests (Fi gure 43 & Append ix 1 (Tab l e 23)). 142

PAGE 159

Discussion Th ere are lim i tati o n s whe n u sing foraminifera to ascerta i n d i ffer ent types of a n thropogenic effec ts. I t i s difficult to dis tin guish natural v er sus anthropoge nic effects on fora miniferal a ssemb lages. Multipl e causes can r esu l t in the same eff ect t o for a minifera for instance def ormities can be ca u sed by l ow oxyge n high o r l ow sa l inities, and tox ic effec t s of c h e micals. The inter-replic a t e variabil i t y can be high co mpared to int e r -site variab ility for some measures (App e n dix l ( Table 25 )). E n v ironm ental R e l atio n s h ips Environmental parameter s mus t be co n s ider e d in a nthr opogenic s tudie s o n foraminiferal asse mbl ages. Mos t of Hills borough Bay and Charl o tte H ar bor s ite s h a d s imilar e n viro nm en t a l param e ters, except f o r sediment texture. Salinities at the tim e o f collect i o n were s imilar although there may h ave been lon gt erm diff ere nc es in salinities amo n g sites. A m ajo r co nside r at i on is that m a n g r ove swamps sit es (31 and C H14 ) h ave l ess wave influence than open water s ite s Shallow n ea r s h o r e sediments in Hill s boroug h Bay are mai n l y f i ne sa nds ( T aylor et al.. l 970; D oy l e e t a!., 1989 ; Sc h oe llh a nner 1991 ). Sedi m ent s a t mos t sites w i t h water depths < 5.6 m we r e fine sands. Deep e r par t s o f Hill sborough Bay are c haract erized by mud -s i ze d se diment s ( Tayl o r et a!., 1970; Doyl e e t a!., 1 989: B r oo k s eta!.. 199 l: Scho e llh amer 1991 ). S ediments at si t es w i th wat er depth s > 7.2 m we r e mud s W a t e r depth was po s i t ively co rrelat ed to sed ime n t toxicity. S ite 2A (at the end of Ybo r C h anne l ) was the deepes t ( l 8.3 m ) of all the sites and had the hig h es t t ox i c ity. This high t o xicity ma y have b ee n due t o a nearby s hip yard where painting i s common Sites 4A and 1 B we r e in s h elte r ed channe l s w ith low n ow r a t es, which may expla i n the 143

PAGE 160

high mud content in the sediments ( < 7 % sand ). These s ites were in urb an areas near river mouths which may explain the medium toxicity of the sedime nts. The sediments in Charlotte Harbor were cons idered more pri s tine than Hill sborough Bay sediments. Sediments at these sites were mostl y broken oyster fragments and sands. Oyster fragments may provide foraminifera w i th shelter and attachment s ites. Mangrove swamp s ite s CH 14 (Charlotte Harbor) and 31 (Hillsborough Bay ) had s ubstantial mud and detritus in th e sediments Faunal Analysi s Q-mode clus ter analysis indicated three groups: a s tressed group, a nutrient -loading group and the Charlotte Harbor group. The stressed group was composed of s ites with intermedia te to high stress (toxicity and thermal). Site s S2 (sewage) and 3 1 (classification unknown) were also include in this group. Site S2 may have been dredged since numerous fossil f o raminifera were observed. Fossil foraminifera from Miocene and Pliocene rocks were previ o u s ly found in Hillsborough Bay by Walton (1964). Site 31 was located at the mouth of the Palm Riv e r and Palm Ri ver flow s though an urban area with man y point and n o n-point sources. According to the Tampa Bay Regional Planning Council ( 1999 ), more than 60% of Palm Ri ve r does n ot s upport a "healthy" benthic community and trace metal contaminant s are pervasive (25 % of th e river' s sediments were considered to be degraded). The nutrient-loading group included Hillsborough Bay s ite s originally classified as sewage, low stress ( t oxicity a nd thermal ), reference and the mangrove s ite from Charl otte Harb or. Hillsbo r o ugh Bay has been impacted by nutrient loading si n ce the 1800 's (Taylor et al., 1 970; Lewis et al., 1985; Moo n, 1985; Garrity et al 1985; Steidinger and 144

PAGE 161

Gardiners 1985; Lewi s and Estevez, 1988; B o ler et al., 1991 ; J o hansson, 1991; TNEP, unpublished). Mos t mangrove swamps are high in detritus (Murray, 1973). The other Charlotte Harb o r s ites were con s id e red low impact s i te s Foraminiferal assemblages from these s ite s clus tered separately from those of H illsborough B ay s it es. Stress Group Ammonia overwh e lmin g ly dominated the foraminiferal assembl age s at most impac ted s ite s. G e nu s B was also ab und a nt. The numbers o f ge n e r a were low a t these sites. Heavy metals and high thermal pollution has been known t o reduce the di ve r si t y in the foraminiferal assemblages (Al ve, 1991 ; Yanko et a l., 1994 ; A l ve, 19 9 5 ). The increase in heavy metal pollution h as bee n known not to favo r one or two genera at the expense of th e rest but rather heavy metal s seem to adversely affec t the whole assemblage ( Al ve, 1991 ). The thermally stressed si te s had temperatures above 35C. The optimal t empe r ature rang e rep orted for Ammonia i s fr o m 20C to 30C ( Tabl e 7 ), bu t they can tolerate 13C and 34C ( Brad s haw, 1961; Phleger and Bradshaw, 1966; Re s ig 1974; G o ldstein a nd Moodley, 1993). Because therm a l s it e T2 (36C) was c h aracterized b y an abundance of Tril oc ulin a, this genus p ositivel y correlated to temperature. Tril oculina a r e common in tropical s hallow-water areas ( B a ndy e t al., 1965; Brasie r 1975a; B rasier, 1975b ; Haynes, 1981 ; Lid z and R ose, 1989 ; Cockey, 1994 ; Yanko e t al., 1994; C luve r and B uzas, 1995 ). No genus was positively corre late d to stress. The opportu nis t ic genera tend t o dominate, but total a bundances were l ow. Site S2 exhi bited an incre ase in other genera which cou l d be reflecti n g dredging act ivities. Extreme mixing of sed im ents h ave been known to mask th e new foraminiferal assemblages wi th o ld foraminiferal asse mbl ages ( L oose, 19 70; Akpati, 1975). 1 45

PAGE 162

Site 3 I had an increase in agglutinate genera (Ammobacul ites Trochammina Miliammina and Textularia). The site was at th e mouth of Palm River and probably received more fre shwate r input than other sites. Ammobaculites and Trochammina were negatively correl ated to sal init y. Agglutinate genera dominate in hyposal ine marshes and mangrove swamps, at least in part because of dissolution of Caco3 in the sedime nt s (Murray, 1971; Murray, 1973; Re sig 1974 ; Akpati, 1975; Brasier 1975a; Scott, 1976 ; Buzas, 1 989; Scott and Leckie, I 990; Boltovskoy et al., 1991; Jennings and Nelson, 1992; Alve, 1995). Generally low CaC03 has been assoc i a ted with low salinit y (Boltovsky et al., 1991 ) Agglutinate gen e ra tend t o dominate in low sal inities because they d o not secrete calcareous tests an d are more resistant in low pH sediments (N ichols and Norton, 1969 ; Scott and Medioli, 1978; Goldstein, 1 988; Buzas 1989; HallockMull e r and Willi ams, 2000). The stress group had low foraminiferal densities (<50 te st/g) a nd few foramini fera were alive. Foraminifera tend to be scarce or absent in sedimen t s w ith high concentrations of heavy metal s (Ellison et al., 1 986; A l ve, 1991 ; Alve 1995; Yanko et a!., 1998). Similarly, high tempera ture s in power p l ant plume areas have been known to cau se impoverished habitat s w ith low foraminiferal densities (Yank o et al.. 1994; Alve, 1 995). Nutrient-loading Group Ammonia made up 65 % to 97 % of the foraminifera l assembl ages for thi s group. Foraminiferal assemblages were s imi lar at all sites, probably reflecting high nutri e nt loading in Hillsborough Bay for 100 year s (Garr ity et al., 1985; J ohansson, 199 1 ; TNEP, unpublished). A lso, the mangrove s ite from Charlotte Harbor cont a ined a large quantity 146

PAGE 163

o f detritus in the sedime nt s. Murray ( 1973) reported that Ammo nia was d ominant i n mang ro ve swamps in Flori da. General ly high o rganic l oading below toxic level s promo tes large populati o n s o f a few s pecies (Bandy e t al., 1965 ; Ellison e t al., 1 986; Schafer e t al., 1995 ) and a decrease in d i versity (Sch a fer e t al., 1 995). The gen e r a that s urvive t a k e a dvantage of th e abund a nce of foo d o rgani s m s s uch as ph y topl a nkt o n a nd bacteria (Sc h a fer 1 973). Oppo rtunisti c genera t e nd to dominate u nd e r sever e a nthropogenic stress and Ammo nia i s ofte n commo n in s tressed h ab itat s (Se i glie, 1973; Akpati 1975; Alve and N ag y, 198 6; A l ve, I 995; Schafer e t al., 1995; H alloc k -Muller a nd Willi a m s, 19 98). The nutri e nt-loading group h a d intermediat e to hi g h f o r a miniferal d e n s ities (72 t o 5,700 test s/g). Hillsborough Bay has his t o rically received large amounts of tre at e d and untreat e d sewage a nd urb a n run o ff (Tay l o r e t al., 1970; Lewi s e t al., 19 85 B o l e r e t al.. 1991 ; TNE P unpubli s hed). G e n e r a ll y th e p e rcent age of live foraminifera in th e asse mblages wer e low at muddy s ites (0% t o 2 % ) a nd hi g h e r a t s a n dy s ites (1 '7o t o T h e tot a l numbers of fo r aminifera wer e relati ve l y hi g h in areas around th e world w ith hi g h nu t ri ent concentr atio n s from sewage river s mangroves. a nd fine sedime nt s (Sai d 19 5 1 ; Phleger 1 956: Todd a n d Low. 1 961 ; Ban dy e t al. 19 65: Sei gl i e. 1968: N i c h o l s a nd o rt o n 1969; Sc hn itker 1 9 71: Sch afer 1973; Asseez e t at.. I 974 ; Bras i er. 1975a: Bras i e r I 975b; Scott, 1976; Phleger a nd L a n kfo r d 1978 ; Bates a nd S p e ncer 1979; Scott e t al. 1980; Schafer 19 82: Schafer an d S mith 1 983; E llison c t al.. 1 986: Yanko e t a !.. 1994 ; Sch a fer c t al., 1 995 ) Foraminife r al abunda nces typically in c rease ,, i th in c r e a sed "foo d supp l y ( mi c roorgani s m s detrit u s and in o rgan ic particles) tPhkger 1960: L e e e t al. 1966; Murray 1 973 ; Culver, 198 7 ; Goldstein a n d Moodl cy. 1 993: A h e, 1995 ). a nd 147

PAGE 164

reduced pre dati o n and competition ( m etazo n s are m o re sensi t i ve to hypoxia t h an foraminife r a) (Boltovskoy, 1 966; Boltovskoy eta!., 1991 ; Yank o e t a!., 1994; A l ve, 1995 ; S chafer et al., 1995 ) Hi g h nutrient e n vironme nt s gener ally are h y poxia (low oxyge n ) (Akpati, 1975; Haq and B oersma, 1978 ; Al ve, 1 995). B ac teria, small d iatoms, and microphytoflagellates Jess than 15 um wer e a s ignific ant component o f t h e benthic sediment s in Hill sboro u g h B ay (Steidinger and Gardiner, 1985; Doyle et al., 1 989). Walto n ( 1964) f o und th e l arges t popul atio n s of foraminifera in Hillsborough B ay. Char/ol!e Harbor Group Ammonia composed 35% to 50% of t h e foraminifera l assemblages in Charlotte Harbor group. Ammobac ulites, Elphidiwn, Ha y nesina Tri /ocu lina a nd Nonion wer e also common. B a ndy ( 195 6) r e port e d Ammo nia Elphidium and occasional Quinqu eloculi n a in th e inner harbor o f Char l o tte H arbor. The o ut e r h a rb o r a n d outer bay areas have considerabl e diver s it y, with th e a pp e aranc e of m a n y mili o lids (Bandy, 1956). Charlott e Harbor g r oup h a d int ermedia te foramini fe ra l d e n s it ies (52 to 160 te sUg). Percentages o f Jive f o ramin ifera at these s ite s we r e r elat ivel y hig h (11 % to 4 1 %). Areas o n the Californ i a s h e l f tha t received low anthropogenic input h ad r o ughl y 40 foraminifer a l test s p e r gram ( B a ndy eta!., 1 965). Gene ric A ssoc iati o ns G e n e ra in Hillsborou g h B ay a nd Charl o tt e Harbor clustered int o a near-n orma l marine assemblage a n d a n estuarin e as se m b l age. The near-normal marin e asse mbl age diffe red fro m th e n e ar-normal ma rin e assembl age in C h ap te r 2 b y th e p resence of M i /iammina, Fu rsenkoina Gaudryina and Trilowlina, whil e No i o n ella, B uliminel/a, 148

PAGE 165

R osa/ i na a nd L o bulat a were absent. T he estuar i n e assem b l age h a d th e same gen e r a as th e estuarin e assemblage in Chapte r 2. The near-n o rmal marine asse mbl age consi s t s of two su b g r o ups: n o n-str ess a nd stress. The stress-t o l e r a t e taxa a r e Tri/oculina a n d Bri za/ina. Both gen e ra can t o l e r ate s tressful condition s ( Poag, 1 98 1 ; Culver a n d Buzas, 1995 ; Y a nk o eta!., 1994). The estu ari n e assemblage c o n s i s t s of thre e subgro u ps: sandy sedime nt (Elphid i um, Nmzion, and Ammmobacu lite s), heterogen o u s sedime nt ( H aynesina) a nd stress (Ammo nia and Genus B ). E lphidium Nonion, a nd Ammmob ac ulites w e r e positi ve l y corre l a ted with sandy sedime n t while Hay n es ina hav e n o sediment preference in Hill s b orough Bay o r Charlo tt e H a rb or. Ammo nia an d Genus B dominate in stressful conditi o n s i n H ills b o rou g h Bay or Charl o tt e H a rb or. Ammonia w hich was th e domin a nt for a miniferal genu s in Hil l sborough B ay tole r ates s tr essfu l con dit i o n s a n d i s o n e of th e d o mi nant gen e r a in estu aries world w id e ( Ronai 1 955; Phleger 1960 ; Albani, 1 968 ; Sei glie 1968 ; Murray, 1 973; D etma r 1 974; Sch afer, 1 982 ; A! b a n i eta!., 1 984; Lidz a nd Rose, 1 989; Almogi-Labin eta!., 1992 ; G o ldstein and Moodl ey, 199 3 ; Y a nk o eta!., 1994 ; A lve. 1 995; Culver a n d Buzas, 1 995 ; Ges lin e t a!. 1998). M o r p h o logical V aria ti o n s O f Ammonia Test s M orpho logi cal variat i o n s of foraminife r a l test s h ave been proposed as potential i ndicator s o f s tr ess (B o ltovskoy, 1 99 1 ; Alve, 1 995; Y a nk o e t a l.. 1 998: H allock 2 000). The p e rcent of deformed Ammonia test s we r e as varia bl e among replicates a s between s it es. Deformed foraminifera h ave bee n report e d fr o m extre m e l y re s tri c ted n atura l e nvironments rapidl y c h a n gi n g e n viron m ents nutriti o n ally poor e n v ir onme nt s. and anthropogenic polluted e n vi r onment s (Cooper 1 96 1 ; Resi g, 1 974; Akpa ti 1 975 ; H aq a nd 1 49

PAGE 166

Boersma 1978 ; B o lt ovskoy et al., 1991; Alve 199 1 ; Y anko e t al., 1994 ; Alve, 1995 ; Geslin et al., 1998 ; Yanko et al., 1998). Larger Ammonia tes t s were found in sa ndy se diments, while s maller Ammo nia t es t s were found in muddy se diment s and thermals tre ss s ite s in Hill sbo r oug h Bay. Lar ge r foraminifera l t es t sizes have been found in turbu lent conditio n s ( R o nai 1 955; T o dd and Low 1961; L oose, 1970 ; Murray 1973; Murra y e t al., 1 982 ; Murr ay, 1983) and unp o lluted environmen t s ( T odd and L o w 1 961; Seiglie, 1 968; Bo1tovs k oy e t al., 1 99 1). M o dest winds and d r edging activities in Hill s b o rough B ay constantly sus p end and redepo s it sand ( D oyle e t al., 1989). Sandy sed im ents are generally cons id e r ed l ess t oxic than mud s in Hill s b o r o ugh Bay (Doyle et al., 1989; S c h oe llh amer, 1991 ). Sites in the the rm a l plume of Big B end P owe r Plant ge nerall y had s maller f o raminifera than other sand-dominated s it es. The plume zone (38C) of the p ower plant at Smitht ow n Bay. ew Y ork had man y f o raminiferal individu als tha t appeare d t o have b ee n juveniles o r s tunt e d adult s ( Schaf e r 1 973). High t e mp e rature s h ave been rep orte d t o s tunt Ammo nia ( Br adshaw 1 96 1 ; S c hafer 1 973). S mall er and p oorly pre se rved Ammonia tests o f Hill s b o r o ugh Bay and C h arlotte Harb o r wer e ge n e rall y found in mud s and man g r ove s wamp s Fin e-g r ained sed i ments are m o r e efficient at accumulatin g all types of p o llut ants becaus e clay m i neral s have excess c h arges a ssoc i a t ed with the ir latti ce ( Elli so n 1 98 4 ; D oyle, 1 985; D oy l e e t al., 1989: Schoe llham er, 1 99 1 ). F o raminif e r a l t es t s in mud s (To dd and Low. 1961) and h eavy metal s ar eas ( Yank o e t al.. 1 994 ; A l ve, 1995: Yank o et al., 1998) were s m alle r t h an n o rmal. Bolot ovs k oy e t al. ( 1 991) r eporte d d w arfed foraminifer a in l ow d i sso lv e d oxyge n Or ga n i c-ric h sedimen t s so m e time s have low oxyge n con diti o n s ( Akpa ti. 150

PAGE 167

1 975; Haq and B oe rsma, 1978). Ammonia t ests from Ven ez uela mangrove sw amp s were smaller where the organ i c matter was high (Seiglie, 1 968). Organic acids generated by car b o n d i oxide and orga nic d ecay can etc h and corrode dead calca r eo u s foraminifera ( Murray 1971; Murray, 1973; Re s i g, 1974; Akpati 1975; Brasier 1975a ; S cott, 1 976; Scott and Leckie 1 990; Jennings and Nel so n 1992). The dominance of small individuals could indicat e s tre ssful conditions (Ellision and Peck, 1 983; Loubere et al., 1988) or physical sorting of the sediment s ( T odd and Low 1961; Lo ose, 1970; Mur r y 1973 ) Dis tingui sh ing b etwee n natural and anthr o p ogenic effects of morpho l ogica l variati o n s on Ammonia tests i s difficu lt. Conclusio n s Several measures were u sed to determ ine the effects of different types o f anthropogenic inputs on foraminiferal assemblage s in Hill sboro ugh Bay and Charlotte Harb o r The s ite s clustered into three groups: s tre ss, nutrient-loading and Charlotte H arbor. The relativ e abundance of Ammonia va ried with st r essors. Amm o nia was l east dominant in the Charlotte H a rbor group and most dominant in the nutrient l oad in g group Foraminiferal densities were lowest in the s tre ss group and the highe s t in nutrient-l oa din g g r oup. Ammonia t est s i ze and preservation see m to b e relat ed to sed iment type while tes t deformities and ab undance of live forami n ifera had no observab l e trends Wat e r depth was positively correlated with muddy se diment s and s tr ess. No genera were posit i vely correlated to s tr ess. Genera in Hillsb oro ugh Bay and Char l otte Harb o r clustered int o a nea r-n o rmal marin e assemblage and an estuarine assemblage. The n ea r-n ormal marine assemb l age was 1 5 1

PAGE 168

composed o f tw o s ubgroup s based o n stress. The estuarine assemblage was compos ed o f three s ubgr o up s based o n s tre ss and sed iment type. 152

PAGE 169

CHAPTER FIVE FORAMINIFERA AS ENVIRONMENTAL INDICATORS IN TAMPA BAY CONCLUSIONS Summary Of Re sea rch Am111onia i s t h e dominant gen us fou nd in Tampa B ay. Foramini fera of Tampa Bay cluster into five assemblages, Ammonia i s a major contributor to all five assemblages. Factors that seem t o control foraminiferal d i stribution include sediment type, salinity, presence of anthropogenic contaminants, depth, rate of current flow and vegetation. Sediment core s were u sed t o investigate c h a ng es in Hillsborough Bay foraminiferal assemblages from the pre-industrial to the post-industrial peri ods. Most cores depicted changes which seem to be related to the increase of anthropogenic input s into Hillsborough Bay over the l as t 100 years. Several co res had planktonic foraminifera in their upper secti ons. These foraminifera were most likely i nt roduced from the open ocean by ballasted sh ip s pumping bilge water into Hill sborough Bay. Several cores had faunal s hi fts in the upper 50 e m I n some cores, th e p ercentages o f deformities in Ammonia test s a lso in creased in the upp e r 30 em. Foramini fe ra l densities, s ize and Index of Preservation for A1111110nia were difficult to interpret and gave mixed results. Targeted sampling was used to determine th e effects of different type s of anthropogenic input s o n foram inif eral assemblages in Hillsborough Bay a nd Charlo tt e H a rbor. The samples clustered into three groups: stress, nutrient-loading. and Charlott e H arbor. The relative abundance of AIIIIIIOnia was least dominant in the Charlotte H a rbor 153

PAGE 170

g r oup and most dominant in the nutri entl oading g r oup. The s tr ess group had the l owes t foraminiferal densities, w hile nutri e nt-l oa ding g r oup h a d the hig he st. Assessment of defo rmiti es and I ndex of Preseveration for Ammonia t ests gave variable result s, as did abundance of live foraminifera. General Conclusions l) Ammonia i s the dominant genus found in Tampa Bay 2) Most foraminifera in Tampa Bay and Hillsborough Bay can b e grouped int o a n ear-normal marine assemb l age o r a n estuarine assemblage. 3) Sediment textu r e i s a key environmenta l parameter f or Tampa Bay foraminifera. 4) Muddy sedime n ts are s tr o n g l y correlated w i t h d epth and se diment t oxic ity. 5) Foraminiferal asse m b l ages we r e affec t ed by a nthr opogenic input s and s tr ess. 6) T h e up per 50 em in undis turbed cores depi c ted cha n ges in foram ini fera l assemb l ages from pr eindustrial to th e indu strial period. 7) M odern foraminif eral assemb l ages from C h arlo tt e H arbor were s imil ar in t axo n o mic makeup and d ivers ity to assemblages f r om Hill s borough Bay pri o r to ant hr opogenic influences. 8) Foraminifera l a bund ances wer e lowe s t a t seve r e l y s tre sse d sites, hi g h es t in hig h nutrient sites, and intermediate in the l eas t impa c t ed sites, including C h arlotte H a rbor. 9) Planktonic foraminifera were his t or i ca l bioma rker s were m os t lik e l y introduced b y balla sted ships (bi l ge water). Future Research Eve n thmwh foraminifera ca n be excellent bioindicator s in marine env ir o nm ents, b f ur ther research could subs tantially impr ove their util i ty. Mor e r esea rch i s needed in the 154

PAGE 171

biology and ecology o f foraminife r a at f a mil y, ge nu s, and species level s How do speci f i c e nvironme nt a l factors influence key foraminiferal taxa? Wha t e n v ir onme nt a l factors influence s pecies, genu s and family di s tribution and abunda nce? Can bioindicators of Tampa Bay be used in other tempe r ate and tropica l estuaries? M odern foram iniferal distribution s i n r e l at i ve l y pristin e environments can be used to int e rp ret past foraminiferal assembla ges in core s from impac ted a r eas. This may be beneficial w h e n baseline d ata for pristi n e condi t i ons are m i ss ing in anthropogenically impacted areas. Stud yi ng the e ffect s of anthropogenic inputs o n foraminifera could contribute to model s of how anthropogenic input s a ff ec t foraminifera. Such in forma tion could be used to predict the effects of anthropogenic inpu ts int o pristine h abi t ats. Biological monitoring progr ams with the addit i o n of foraminifera could be set up in Tampa Bay a nd other estuaries. Foraminifera could be used as early-warnin g detection of d e t e riorati o n of an envi r onment o r m ay be ab l e to measure the degree of restoration of a n a r ea. Foraminifera may have the utility to indicate if a n e n v ir onment can suppo rt life when oth e r o rgani s m s have not r e turned to a n a rea undergoi n g restorat i o n This would be useful for lawmakers an d managers o f ecosystems to pr e di c t i f laws or programs were effective i n pr o t ecti n g or restoring damaged habitat s. The source of pl a nkt o nic foramini fera i n urb a n shallow-water estuaries i s lik e l y fro m ship bilge wat er. If planktonic foramini fera are fou nd in sediments w here th ey a r e n ormally absent then these foraminifera can be used as biomarkers w h e n st udying the hi s tory of anthropogenic im pact o n estuar i es. In this stud y faunal s hifts relative abundance, total abu nd ance, a nd deformities wer e useful in detecting changes. Understanding th e natural a n d a nthropogenic c h a nges that !55

PAGE 172

affect these measures needs t o be investigated further. The hig h d e n s ities of foraminifera at some sampl e s ites i n Tampa Bay m ay be the result of transportation effects o r an increase in fo o d s upplies. Experiments could be designed t o di s tin g ui s h b e tween these factors. The mi x in g of sedimen t s in cores also n eeds t o be co n si dered because littl e in format i o n can be retrieved from disturbed cores. Planktonic o r displaced fo r aminifera can serve as biomarke r s gaugin g t h e amo un t of mi x ing in a cor e. On th e otherhand, s p oi l areas containing foraminifera th a t are not normally present in local assemblages may be useful in tracing the sediment patterns in a s y s tem. This may b e useful in predicting the redi s tribution o f spoil sediments, w hich m ay contain contaminants. L ife cycle and g rowth stu dies s hould be done o n foraminifera th a t can tolerate anthropogenic conditi o n s. Why are some f o raminifera more sen s itive to anthropogenic contaminants w hil e oth e r s can t o lerat e and sometimes thrive in har s h conditions? What mec hanisms are the se foraminifera usin g for survival ? Diffe r e nt t ypes of anthropogenic and natura l age nt s can cause deformities Are the s e age nt s affec tin g the geneti c m ate rial in formini fe r a? Can deformitie s p ass to th e nex t ge nerati o n ? Deformed foraminife r a can be placed in clean e n v ironment s to see if the n ex t generati o n produces deformed o r n orma l tests. What levels of anthropogenic inputs can cause defo rmitie s a nd are th e r e different deformities i n di ffe r e nt a n thropogenic co n ce ntr ations? Do other e n vironmental facto rs, such as tempe ratur e, s alinity and other a nthropogenic contaminan ts i ncrease the toxi ci ty o f cer ta in a nthrop ogen i c inputs? What are f o raminife ral responses t o acu t e st r ess a nd ch r o nic s tress? Are th e r e differences between ac ut e and c h ron i c s tr ess and do foraminifera respond t o different 156

PAGE 173

levels of s tress? A challe nge for biologi s t s i s to separate the natural effects and anthropogenic stress. More research s h o uld b e done in this area before causes can accurately be applied to foram i niferal fa un a l c h a n ges. Simplifying taxonomic identificati o n for the non ex pert in cre a ses th e chance for bi o logical monitoring programs to be adopted by ecosystem managers. The n eed for cost-effecti ve a nd r e l atively accurate bi o logic a l monitoring meth o d s makes foraminifera attractive for thi s type of research. Dealin g wi th s tati s tical problems in ecological foraminiferal research s hould continue so new s tati stical te sts can be a pplied to the data. F oraminifera may also be u se ful in defining changes due to increa sed warming o n a g l o bal scale. With in c rea sed t empe rature s, temperate and topical specimens may colonize hi g h latitude estuaries or di s tributi o n patterns may change within estuaries. Spec ie s th a t prefer hi g h t e mperatu res may increase in dominance i n estuaries where they may not h ave been dominant. Huma n s have th e power to change their environments, and h aving reliable bioindicators may help to in sure man age ment of coas tal environments without losing the b e n e fit s. 157

PAGE 174

REFERENCES Ak e r s, W H., 1971, Estuarin e f o r a miniferal a ss ociation s of the B e aufort area, N o rth C ar o lina Tulane Studies in G eo l ogy and P a l eo ntology v 18, no 3 p 1 4 7 -165. Akp ati, B. N., 1975 F o r a minif e r a l dis tributi o n and environm e ntal varia ble s in eas tern Lon g I s land Sound N e w Y ork, J o urn a l o f F o raminiferal Resear c h v. 5 n o 2 p 1 2 7-144 Albani, A. D., 1968 R ece nt forami n if erida from P o rt H acking, N ew S o uth W a l es, Co ntribu t i o n s from the Cu shma n F o und atio n f o r Foraminif e r a l R esearc h v. 1 9, p art 3, p 85-119. Alb ani, A D., and B arbero, R. S., 1 98 2 A f o raminiferal fauna from the la goo n o f V e nic e, Italy Journ a l o f F o r a minifer a l Rese arch, v. I 2 no. 3 p 234-241. Alb a ni, A. D., Fave ro, V and B a rber o, S., 1 9 84 Benth onic for a minifer a a s indi ca t o r s o f int e rtid a l e n vironments, G eoM arine L ette r s v. 4 p 4347. Alejo, 1., Au stin, W.E .N., Fr a n ces, G., and Vill as, F., 1999 Prelimin a r y investigatio n s of the recent f o r a min i f e r a o f B aio n a B ay, N. W. S p ain J ourna l o f C oas t a l R es e ar ch, v. 15,110. 2, p 413 427. A l ler, R C., I 98 2 C a r bo n a t e d i ssol u tion i n n ears h o r e t errige n o u s m uds: t h e r o l e of p h ysica l and b io l og i ca l r eworking, J o urnal o f G eo l ogy, v 9 0, no. I. p 79-95. Alm og i-L a bin A., Pereli sGr ossov i cz, L. and Roa b M., 1 9 92 Living Amm o ni a f r o m a h y p e r sa lin e inland p oo l D ead S ea ar ea, I srae l J o urnal o f F o raminif e r a l R esea r c h v 22, n o. 3, p. 257-26 6 Alve E 1 991, Benthi c for a minif e r a in sediment c or es r efle ctin g h e avy m e t a l p o lluti o n in S orfjord, We s t ern Nor way, J ournal of F o r a minif e r a l R es e a r ch. v. 2 1 no. I p.119. Alve, E., 1 9 95 Benthi c for amin i f e r a l res p o n ses t o es tua rine po lluti o n : a r ev i ew, J o urnal of F o r a minif e r a l R esea r c h v. 25, no. 3, p. 1902 03. Alve, E ., and Nagy, J., 1986, Est u arine f o raminiferal dis tributi o n in S a ndebutkt a a br a n c h of the O s l o F jord, J ourna l o f F o rminif e r a l R esea r ch, v. 1 6, p. 26 L-284. 158

PAGE 175

Asseez, L. 0., Fayose, E A., an d Omatsola, M. E. 1974, Ecology o f the Ogun River Estuary, Nigeria, Palaeogeography, Palaeoclimatology P a l aeoeco logy, v 16, p. 243-260. Atkinson K. 1969, The association of liv in g fo raminifera w ith algae from the littor a l zone, South Cardigan B ay, W a l es, J o urnal of Natural Hi s tory, v. 3, p. 517-542. Bandy, 0 L. 1956 Ecology of fo raminifera i n Nor theastern Gulf o f M ex ico Geological Survey Profe ss i o n a l P ape r 274-G Un i te d S t ates Government Printing O ff ic e, Was hin g ton p. 179-204. Bandy, 0. L. In gle, J. C. Jr. a nd Resi g, J. M. I 965, Foraminiferal trend s, Hyperio n Outfall, California, Limno l ogy and Oceanography, v. 10 p. 314-332. Bates, J. M., and Spencer R S., 1 979, Modification of fo r aminiferal trends b y the Chesapeake-Elizabeth sewage o ut fall, Virginia Beach Virgin i a, J o urn a l of Foraminiferal Research v. 9, no. 2 p 125-140 Bernhard, J. M., 1 988, Postmortem vita l sta inin g in benthic foraminifera: duration and impo rtance in population and distributional s tudi es, Journal of Foraminiferal Resear c h, v. 1 8, n o. 2, p. 143-146. Boler, R.N., Molloy, R C., an d L es n ett, E. M. 1991, Surface water-quality monitoring by th e environmental protection commi ss i on of Hillsborough County, In T rea t, S. F. and Clark, P A. e d s., P roceed in gs, Tampa B ay A rea Scientific In forma t io n Symposium 2, 199 1 February 27M a r c h 1 Tampa, Florida p. 111 -136. Boltovskoy, E. 1966 Depth at w hich foram inifer a can surv ive in sediments Contributions from the C u shma n Foundation fo r Foraminife r a l Research, v. 1 7, no. 2, p. 43-45. B o l tovskoy, E. and L e n a, H. 1971 The Foraminifera (exce pt family allogromiidae) which dwell in fre s hwater J o urn a l of Foraminiferal Resear c h v. 1 n o 2, p. 7 1 -7 6. B o ltovskoy, E., and Totah V. I. 1 992, Preserv ation ind ex and preservation pote ntial of some f oraminife r al s p ecies, J o urnal of F orami n ifera l Resear c h v. 22, n o. 3 p. 267-273. B o ltovskoy, E., Scott, D. B., an d Medi oli, F. S ., 1 991, M o rphological v ariation s o f benthic fo raminiferal test s in re sponse to c h a nges in ecological parameters: a rev 1ew, Journal of Peleont ology, v. 65, n o. 2, p. 175-1 85. Bradshaw, J. S. 1961 L a borator y experiment s on t h e Eco logy o f fo ramini fera, Contribu tions fro m the Cushman Foundati o n for Foraminiferal Resear c h v. 12 n o 3, p. 67-10 6. 159

PAGE 176

Brasier, M.D., 1975a, Ecology of recent sed iment-dw e lling and phytal foraminifera from the lagoon s B arbuda, West Indie s, J ou rnal of F o raminiferal Research, v. 5 no. 1, p. 42-62. Bras ier M. D., 1975b, The ecology and distribution of recent foraminifera from the reefs an d shoals around Barbuda, West Indie s, Journal of Foraminiferal Research, v. 5, n o 3, p 193-2 10. Brewster-Wingard C. L. an d I shma n, S. E., 1999 Hi storica l trends in salinit y and substrate in Central Forida B ay : a pale oeco logical rec o n s truction u s ing modern analogue data, Estuaries, v. 22, no. 2B, p. 369-383 Brooks, G. R. and Doyle, L. J., 1991 Di s tribution of sediments and sedime ntary contaminants in Tampa Bay, In Trea t S. F. and Clark, P. A., eds., P roceed ing s, Tampa Bay Area Scientific Information Symposium 2, 1991 February 27-March 1 Tampa, Fl o rid a, p. 399-413. Brook s, G. R., and Doyle, L. J ., 1992 A characterization of Tampa Bay Sediments Phase III d i s tributi o n o f sed im e nt s and sediment a ry contaminants, Tec hnic a l R e p or1 to th e Southwes t Fl o rida Wate r Management Di s trict, 64 p. Brooks, G. R. Dix, T. L. and Doy l e, L. J., 1993 Groundwater/surface water intera c tion s in Tampa B ay and implication s for nutrient flux es, Prepare d for T ampa Bay National Estuar y Prog ram St. Peters burg Fl o rida, 44 p. Brooks, G R. Doyle, L. J., Joha n sson, R. Squires, A., Zsoldos, H D. and Byrne, R H. 1991, Di s tributi o n patterns and accumulation rates of fine-grained sediments in upp e r Tampa Bay, Fl o rida, Transac tion s-Gulf Coast Association of Geological Societies, Y olXLI, p. 60-71. Buzas, M.A., 1974 Vertical di s tribu t ion of Ammobaculites in Rhode River, Mary land J o urnal of Foraminiferal Research v. 14, no. 3, p. 144147. Buzas, M A., 1989, The effect of quartz versus calcareous sand on the densitie s o f living fo r aminifera, Mi c ropaleont o log y, v 35, n o. 2, p. 135-141. Buzas, M.A., 199 3, Colonization r ate of foraminifera in the Indian Ri ver, Florida, Journal of Foraminife ral Re sea r c h v. 23, no. 3, p. 156 161. B as M A and Severrn K 1 993, Foraminifer a l den s itie s and por e water c hemi stry LIZ' ., ., in the Indian River, Florida, Smithso nian Contributions to the Marines Science s, no. 36, p. J -38. 1 60

PAGE 177

Bu zas, M. A., Collin s L. S., Ric h ardson, S. L., and Severin, K P., 1989 Experiments on pred at io n substrate preference, and co l oniza tion of benthic f o raminifera at the s helfbreak off the Ft. Pie rce Inl e t Florida, Journal of Foraminifer a l Re s earch, v. 19, no. 2 p. 146-152. Cockey, E. M., 1994, Decad ai-Scale Changes in B ent hic Foraminiferal A sse mbl ages in R e ef-Tract Sediments o ff K ey L argo, Flor ida Th es i s of University of South Flor ida 79 p. Cockey, E. M., Halloc k P., a nd Lidz B. H., 1996 D eca dal -sca le c hange s in benthic foraminiferal assemblages off Key L a r go, F l orida, Coral R ee f s, v. 15, p 237-248. C oo per W. C., 1961 Int erti d a l for aminifera of the California and Oreg on coast Contributions from th e Cushman F o undation for Foraminiferal R esearc h v 12, part 2, p. 47-63. Cott ey, T. L. and H a llo c k P 198 8 Te s t s urfa ce degradation in Archa ias angulatus, Journ a l of Foraminifer a l Re se arch, v. 18, no. 3 p 1 87 202. C o vington, J. W ., 1 985, Tamp a Bay His tory: 1 513-1843 In Trea t S. F., Simon J. L. Le w i s III, R R., and Whitman Jr. R L. eds., Pr oceed ings, T ampa B ay Area Scientific Information Sympo s ium 1982 May Tampa F lor ida, p 505 -5 11. Culver, S. J., 1987 F ora minif era, in Lipps J. H., Fossil Prokaryote s and Pr otis t s Note s f or a Short Course Univer sity of Tennes se e Dept of Geo log ica l Sciences, Studi es in G eo lo gy 1 8 Ed. Broadh ead T W p 1692 1 2. Culve r S. J. and Bu zas, M.A., 1995 The effect s of ant h ropogen ic habit a t dis turban ce h a bitat de s truction a nd Globa l warming o n s hallo w marine benthic f o raminif e ra, J o urnal o f Foraminif e ral Re sea r c h v. 2 5 no. 3 p. 204-211. D a u er, D M 1993 Bio l ogica l criteria, e nvir o nm e ntal h ea lth and estua rin e acrob e nthi c c o mmunity s tructure, Marine P o lluti o n Bulletin, v. 26, p. 249 -257. D a uer D. M., and Ald e n III R. W., 1995, L ong-te rm tr e nd s in the macrobentho s a nd wate r quality of the Lower Chesapeake Bay ( 1985 1991 ), Marine Pollution Bull e tin. v. 30, no. 12, p. 84 0 -85 0 Deben ay, J. P., 1 990 R ece nt foraminif e ra l asse m b la ges and their dis tributi o n re l ative to e n v ir on mental stress in the par a lic e nvir o nment s of We s t Africa (C ope Timiri s t o Ebrie L agoon), J o urnal of F oraminiferal R esea rch v. 20, no. 3 p 267-282 161

PAGE 178

Derr e nbacker, J. A. Jr., and Lewi s III R. R., 1985, Live bott o m co mmunitie s of Tampa Bay In Treat, S F., Simon, J. L. Lewi s III R. R., and Whitman Jr. R. L. ed s., Proce ed ings T ampa Bay Are a Scientific Inf or m a tion Symposium, 1982 May Tampa, Florida, p. 38 5392. Detmar, S., 197 4, Ecotypic va ria t ion in Amm onia beccarii (Linne'), Journal of Foraminiferal Re se arch v. 14, no. 4 p. 217-223. D ooris, P. M., and Door i s, G M 1985, Surface flows to Tampa Ba y : quantity and quality aspec t s, In Treat, S F., Sim o n J L. Lewi s III R. R., and Whitman Jr. R. L. e ds., Pr ocee din gs, Tampa Ba y Area Scientific Information Sympo s ium 19 82 May T a mpa, Florid a p 88-106. Doyle, L. J., 1985 A s hort s ummar y of the geo l ogy of Tampa Ba y In Treat S F., Simon J. L. Lewi s III R R., and Whitm a n Jr. R. L. e d s., Pr oce eding s T a mp a Ba y Area S c ientifi c Information Symposium 1982 May, T am pa Flo rid a p. 27-32. Doyle L. J., Br oo k s, G. R., Fanning, K. A. VanVleet E. S., Byrne R. H., a nd Blake N. J., 1989 A c haract erizatio n of Tampa Bay se diment s pha s e II s tudy plan Th e Cent e r for Nea r s h o r e Marine Science Univ ersity o f S o uth Florida T ec hnical Report to the South w e s t Flo rida W ater Man age men t District, 67 p Elliott, M., 199 4 The ana l ysis of macrob e nthic co mmunit y d a ta, Marine Pollution Bulletin v. 28, no. 2 p 62-64. Elliso n R. L., 1 984, F o raminifera and m e iofauna on an intertidal mudflat Cornwall, England: populations; r es pira t i o n and seco ndar y production; a nd energy budget, Hydr o biolo g ia v. 109 p 1 3 1-148. Elli son, R L. and Nichols, M M 1 970, E s tua r ine foraminif e ra from the Rappahannock Riv er Vir g inia, Con tributi o n s from the Cushman F o und atio n for Foraminiferal R ese arch v. 2 I p a rt 1, p. l -17. Ellison R L. and Peck G. E., 1983 F o r am inif eral recolon i za t ion on the continental s h elf, Journal of F or aminifera l Re searc h v. 1 3, no. 4, p. 23 1 241. Elli son, R. L. Br oo me, R., and O g ilive, R., 1986 For a minif e ral Re s pon se to tra ce m e t a l co ntamin ation in Pat a p sco Riv e r and Baltimore Harb or Mar y l and, Marin e P o lluti o n Bulle tin, v 1 7, n o 9, p. 419-423. Est evez, E. D., and Mosu ra, L. 1 985, Emergent vege t atio n I n Tre a t S. F., Sim o n J. L. Le w i s III, R. R., and Whitman Jr. R L. eds., Pr ocee dings, Tampa Bay Ar ea Scientific Inf ormation S y mpo s ium 1982 May, Tampa, F l o rida, p. 248-278. 162

PAGE 179

Fanning, K. A., and Bell, L. M., 1985 N utri en t s in Tampa Bay, In Treat, S. F., Simon, J. L. L e wi s Ill, R. R ., and Whitman, Jr. R. L., eds., Proceeding s, Tampa Bay Area Scientifi c Info rm ation Symposium, 1982 M ay, Tampa, Florida, p. 109 129. Fehring, W. K. 1 985, Hi story and d eve l op ment of the p o rt of T ampa, In Treat, S. F., Simon, J. L. Lewi s III R R. and Whi tm a n, Jr. R. L., eds., Proceedin gs, Tampa Bay Area S c ientifi c Info rm atio n Sympos ium 1982 May, T ampa, Florida, p 5 1 2-524. Fernald, E. A., Patton, D J., and Purdum, E. D 1 984, W a ter R esources Atlas of Florida, Florid a State Univers ity 291 p. Ferrar o S P. a nd C o l e, F. A., 1 990, Taxo nomic le ve l and sample size s uffi c ient for assessi n g pollution impact s on th e Southern C alifo rnia Bight macrobenthos, Marine Eco log y Progress S eries, v. 67, p. 251-262. Fl o rid a Department of Natura l Reso uce s, 1 993, Boat er's Guid e to Tampa Bay, d es ign e d and p roduced by McSha n e a n d Moore A ssoc iate s, Tampa, Florida, Illu s trations by Russ Kramer. Fre nk e l H., 1974, Obs ervation s on some s hallow bent h onic foraminife ra in the Gulf of Elat I s rael I s r ael J ournal of Earth Scien ces, v. 23 p. 6 3-67. Galpe rin B., Blumberg, A. F. a nd W e i s ber g R. H 1991 A timed e p e ndent three-dimens i o n a l m odel of c ir cula tion in Tampa Bay In Treat S. F. and Clark, P. A eds., Proceedings Tampa Bay Area S c i entific Informati o n S ymposium 2, 19 91 February 27-March 1 Tampa, Florid a, p. 77 97. G a rrit y, R. D. McCann, N., a n d Murdoch, J., 1 985, A re v iew of the environmenta l impact s of municipal ser v i ces in T ampa, In Treat S. F., Simon, J. L. Lewis Ill, R. R., a nd Whitman, Jr R. L. e d s., Pro c eeding s, T ampa B ay Area S c i e ntific In f o rm a tion Symposium 1 982 May Tampa, Fl or ida p 526-550. G es lin E., Debe nay, J. P a nd Lesourd, M 1998, Abnormal wall texture s and te s t deformation in Ammonia ( H aya lin e Foramife r), J o urnal o f F oraminiferal Re s e a rch v. 28, n o 2 ,p. 148-156. Giovan elli, R. F., and Murdoc h J., 1 985 Urban sto rmwat e r runo ff in th e Tampa Bay area, In Treat, S. F. Simon, J. L. L ew i s Ill, R. R and Whitman, Jr. R L., eds., Proceedings, Tampa B ay A rea Scientific In fo rm ation S ymposium, 1982 M ay, Tampa Florida, p. 568-593. Goldstein, S T. 1988, Fo ram inife r a o f relict salt m a r s h deposit s, St. Catherines I s land Georgia: taph o n o mic implications, Palaio s, v 3, p. 327-334. 1 63

PAGE 180

G o ld s tein S T. a nd Moodl ey, L., 1993, Gametogenesi s a nd th e life cycl e of the foraminifer Ammonia h ecca rii (Linn e') Forma tepida (Cushman) J o urnal of Foraminiferal Resear c h v. 23 no 4 p. 213-220. Goodell, H G., a nd Gorsline, D S., 1961 A sedimentologic s tudy o f Tampa B ay, F l o rida, Report of th e I nt e rn a ti o n a l Geol o g ical Con gress XXI part XXIII, p. 75-88. H a ld M a n d Steinsund, P I., 1992 Di st ribution of surface sediment benthi c foraminifera in the Southwestern B a rent s Sea, J o urn a l of Foraminife r a l Resear c h v. 22,n o .4,p. 347-362. H a l l egraeff, G. M., Bolch C. J Bryan J., and K oreb in B 1990, Spore s in s hip' s bal l ast water: a danger t o aquacu l t ure, In Edna Graneli ed., Toxic Marine Phy t o pl ankton, E lsevier Science Publi s hin g Co., In c. p 475-4 80. Hallock, P. 2000, Larger foraminifers as i ndicators of coral-reef vi ta l ity In Martin, R e d ., Environmental Micropale o ntology, P lenum Press-Topics in Geobi o logy, p. 1 2 1 150 H a l lock-Muller, P. an d Willi ams D ., 2000 B e nthi c Foraminifera, In Effects o f the disposal of seawater des a lin a ti o n discharges on near s h o r e b e nth i c communities, Southwest Florida W ater Management Di s tri c t, Uni v e r sity o f Sou th Florida, Draf t p.l07117 Haynes, Jr. 198 1 Foraminifera, H a l s ted P ress book, J o hn W i l ey a nd S o n New York, 433 p. Haq, B U. a nd B oe r sma, A. 1978, Intro duc ti o n to Marine Mi c r o paleontology, Elsevi e r North H ollan d In c., New York 376 p. Hayward B W. Grenfe ll, H. Cairn s G., and Smith A., 1996 Env ironm e nt a l contro l s on benthi c f oraminife r a l and thecamoeb i a n as s oc i atio n s in a New Zeal and tidal in l e t J o urn a l of Foraminiferal R esearc h v. 26, no 2, p. 150 1 71. Hedley, R. H. and Adams, C. G. 1976, Foramini fe r a, Academic Press New York 265 p. H o ffman W E Durako. M J a n d Lewis, R. R., 1985 H a bit a t re s t o r a ti o n in Tampa Bay, In Treat, S. F. Simon, J L. Lewis III R. R a nd Whitman, Jr. R L., eds. Proceedings. Tampa Bay A rea Scientifi c Informati o n Symposium, 1982 M ay T ampa, Florida, p. 636-657. Hooper K 19 75 Foraminiferal ecol ogy and associated sediment s of the lower St. Lawrenc e Estu a r y J o urn a l of foramin i feral R esearc h v. 5 n o. 3, p. 2 18-238. 1 6 4

PAGE 181

In ternatio n a l Sailing Supply, Chart# 22 Tampa Bay portion s fro m N.O.A.A. Chart #11414 Ed. #30 Reg N.O. 397-22. J e nnings, A. E., a nd N e lson A. R., 1992 F o raminiferal assemblage zones in Oregon tidal marshes-relation to m a r s h flo ral zo n es a nd sea level, Journal o f Foraminiferal Research v. 22, n o. 1 p. 1 3 -29. J o hansson J 0 R. 1 99 1 Long-term trend s of nitrogen loading, water quality and biological indicator s in Hill s borough Bay, Florida, In Treat, S. F. an d Clark, P. A. eds., Proceedings, Tampa B ay Area Sci e ntific Informati o n Symposium 2 1991 February 27-March I Tampa, Florida, p. 157-176. Lankford, R. R. and Phleger F., 1973, F oram inifera from the nearshore turbulent zone, Western North America, Journ a l of F o r aminifera l R esearch, v. 3 no. 3, p. I 01-132. Lee, J. J., McEnery M., Pierce S., Fre dud e nthal H. D. and Muller, W. A ., 1966, Trace r experiments in feeding littoral foraminifera, Journal of Protozology, v. 13, no. 4 p. 659-670. L e wis, R. R., a nd Esteve z, E. D. 198 8, The eco logy of T ampa B ay, Florida: a n e s tuarin e pr o file Bi o logical Report 85(7.18), 132 p. Lewi s R. R. Durako, M. J., M offle r M.D., a nd Phillips R. C. 19 85, Seagrass meadows of Tampa Bay : a review In Treat S F. Simo n J. L. Lewi s III R R. and Whitman Jr. R. L., eds., Proceeding s, Tampa Bay Area Scientific Info rmation Sympos ium 198 2 M ay, Tampa, Florida p. 210-246. L e wi s, R. R ., and Whitman R. L. Jr., 1985, A new geographic description of th e boundaries and s ubdi v i s i o n s of Tampa Bay In Treat S F. Simon, J L., Lewis III R R., and Whitma n Jr. R. L. eds., Proce e ding s, T a mp a Bay Area Scientifi c Informati o n Symposium, 198 2 May, Tampa, Florid a, p. 10-18. Lidz, B. H., and Rose, P.R., 1989, Di agnos tic foraminiferal assemblages of Florida B ay a nd adjacent s h allow wa t e rs: a compari so n Bull et in of Marine Science, v. 44, n o. 1 p. 399-418. Loeblic h, A. R Jr. an d Tappan, H., 1964, Sarcodina Chi e lfl y Thecamoebians and Foraminifera, In : Moo r e R. C., Treaties o n Invertebr a te P a leontology, University of K a n s a s Press, Lauranse, KS v 2, 900 p Loebli c h, A. R Jr. an d Tappan, H., 1988, Fora miniferal Genera a nd Their Class ification Vol 1 Y a n s trand Reinhold Company, New York 931 p. L oose, T. L. 1 97 0 Turbul e nt transport of b e nth o nic for aminife r a, Contributions fr o m the Cushman Foundation f or Foraminiferal R ese arch v. 21, n o. 4 p. 164-166. 165

PAGE 182

Long, E. R., Wolfe, D. A., Carr, R S., Scott, K J ., Thursby, G. M ., Windom, H L., Lee, R., Calder, F. D. Sloane, G.M. an d Seal, T., I 994, Magnitude and extent of sediment tox i city in Tampa Bay, N.O.A.A. Technical Memorandum, NOS ORCA 78, 84 p. Loubere, P., Banonis, G. and Jackie!, R., 1988, Globocassidulina subglobosa ( B a ndy): e n v ir o nmental contr o l of species ab und ance and specimen test size, Journal of Foraminiferal R esearch, v. 1 8, n o. 1, p. 6-15. Ludwi g, J. A., and Reynolds J F ., 1988 Statistical Ecology, J o hn Wiley and Sons, New Y o rk 337 p. McRae, G., Camp, D. K Lyon s, W G., and Di x T. L. 1 998, R e lating benthic infaunal community structure to environmental variables in est uar ies u s in g n o nmetri c multidime n s ional scal in g and si milarity analys i s, Environmental Monitoring and Assessment v. 51, p. 233-246. Miller, D. N. Jr., 1953 Ecological study of th e foram i nifera of Mason Inl et, Nor th Carolin a, Contributi o n s from the Cushman Foundation for Foraminiferal Research, v 4 part 2 p. 41-63. Moon, R. E. 1985 Point sou rce discharge in Tampa Bay area, I n Treat. S. F. S imon, J L. Lewis Ill, R. R. and Whitman, Jr. R. L. eds. Proceedings, Tampa Bay Area Scientific In for m atio n Sympos ium 1982 May, Tampa, Florida, p 551-562. Murphy, C., and Port, B. Oct I 7, 1993, Danger on the Bay, St. Petersburg Times, p. lA and 8A Murray, J. W., 1971 Liv in g Foraminiferi ds o f tidal mashes: a review, J ournal of Foraminiferal R esearch, v. 1 no. 4 p. 153-161. Murray, J. W., 1973 Di st ribution and Ecology of Living Benthic Foraminiferids, Heinemann Educational Books Ltd. London, 274 p. Murray, J W. 1983 Population dynamics of benth i c foraminifera: re s ults f rom th e Exe Estuary, England, J ournal of Foraminiferal Resear ch, v. 1 3, no. I p. 1-12. Murray, J. W. S turr ock, S., and Weston, J. 1982 Suspended load transport of foraminiferal test s in a t ide-and wave-swept sea, Journal of Foraminiferal R esearch, v. 1 2, no. 1 p. 5165. Nichols, M., and Norton W., 1969 Foraminiferal pop u lations in a coastal plain est uary Palaeogeography Palaeoclimatology Palaeoecology v. 6, p. 1972 1 3. 166

PAGE 183

Odum, E. P., 1985, Trends expected in s tr essed ecosys t ems, BioScience, v. 35, no. 7, p. 419-422. Otvos E. G. Jr., 1 978, Calcareous b enth ic foraminiferal fauna in a very l ow salinity setti n g, L ake Pontchartain, Louisiana, Journal of Foraminiferal Research, v. 8, no. 3, p. 262-269. Ozarko, D. L. Patterson R. T., and William s H. F. L., 1997, Marsh foramin ifer a from Nanaimo, Briti sh Co lumbi a (Canada): implication s of infauna1 habitat and taphonomic biasing, J o urnal of Foraminiferal Research, v. 27 no. 1, p. 51-68. Overton, W. S., and Stehman, S. Y., J 996, Desirable design characterist ics for long-term monitoring of ecological variables, Environmental and Ecological Statist i c, v. 3, p. 349-361. Patton, G. L., 1 982, A study of the meiofauna of thr ee shallow water habit ats in Cockroach Bay, Florida: with special emphasis on recent foraminifera, Thesis Uni versity of South Florida, 49 p. Phl eger F. B., 1 956 Significance of living foraminiferal population s along the centra l Texas coast Contributio n s from the Cushman Foundat i on for Fo r aminifera l Re search v. 7, part 4, p. 106-123. Phleger, F. B., 1960, Ecology and Distribution of Recent Foraminifera, John s H opkin s Press, Baltimore Md 297 p. Phleger, F B., and Brad s haw J. S., 1966, Sedimentary environment s in a marine marsh Science v. 154 p. 1551-1553. Phleger F. B and Lankf ord, R. R., 1 978, Fo r amini fer a and ec o logical processes in the Alvarado La goon area, Mexico, J o urn a l of Foraminiferal Research, v. 8, n o 2, p. 127-131. Poag C. W., J 981 Eco l ogic Atlas of Benthic Foraminifera of the Gulf of Mexico Hutchinson Ross Publishing Company (Mar ine Science Int ernational) Woods Hole Mass. U.S. Geological Sur v ey 174 p. Re s i g, J. M., 1974, Recent foraminifera from a landlocked Hawaiian Lake, Journal of Foraminifera l Research. v. 4 no. 2, p. 69-76. Ronai, P. H.. 1955, Bracki sh-wa t er foraminif era of the New York Bight, Contribution s from the Cushman Foundation for Foraminifera l Research v. 6, par t 4, p. 1 381 49. Said R., 1951. Foraminifera of Narraganse tt Bay Contribution s from Cu s hman Foundation for Foraminiferal Research. v. 2. part 3, p. 7586. 167

PAGE 184

Schafer, C. T. 1973 Distribution of foraminifera near pollution sources in Chaleur Bay, Water, Air, and Soil Pollution v. 2 p. 219-233. Schafer, C. T., 198 2 Foramini fer al c o l onization of a n off s hore dump site in Chaleur B ay, New Brunswick, Canada, Journal of Foraminiferal Researc h v. 12, no. 4 p. 3 17-326. Scha f e r, C. T., a nd Smith, J. N. 1983, Riv e r discharge, s edimentati o n, and b enthic environmental variations in Miramichi Inner Bay New Bruns wi c k, Canadian Journal of Earth Scie nce, v. 20, p. 388 3 98. S chafe r C. T. Winte r s, G. V., Scott, D. B. P oc klingt on, P. Cole, F. E. and Honig, C., 1995 Survey o f living foraminifera and polycha e te populat i ons at some Canadian aquaculture s ite s : pote nti a l f or impact m app ing and monitoring Journ a l of Fora miniferal Resear c h, v. 25, no. 3, p. 236-259. Schoellhamer, D. H., 1 991, Size classification of b e d sediment and sel ec tion of re s uspension m o nitorin g s it es in upper T ampa B ay, Fl o rida, U. S. Geologic a l Survey, Wate r-Re sources In vestigation s Report 914070, p. 123. S c hrod e r C. J., Scott, B. and M e dioli F. S. J 987, Can smaller b e nthic foraminifera be ignored in paleo e n v ironmental analyse s?, J o urnal o f Foraminifera l Research, v. 17, no. 2, p 101 105 S c hnitk er, D., 1971, Di s tributi o n of foraminifera on the North C a rolina continental s helf, Tulane Studies in Geo logy and P a leontol ogy, v 8, no. 4, p 169-21 3. S cott, D. B. 1976 Bracki sh-water f oraminife ra from south e rn C alifo rnia and d esc ription of P olys ac c ammina ip o h ali n a N. Gen ., N. Sp., Journal o f Foraminiferal Research, v. 6, no. 4, p 3 12-321. Sco t t, D. B. Mudie, P. J., and Brad s h aw, J. S. 19 76, B e nth o nic f oraminifera of thre e southern California Lagoons: ecology and r ecent s tr at igraphy J o urnal of Foraminiferal Researc h v. 6, no. 1, p 59-75. Sco tt D B ., Schafe r C. T., and Medioli, F. S. 1980 Easte rn C a nadi a n est uarine foraminifera : a framework for co mparison J o urnal of Foraminiferal Res e arc h v. 10, n o 3. p. 205-234. Scott D. B., Scha fer, C. T. H o nig C., and Younger, D C., 1995 Temporal variation s of benthic f oraminife r a l assemblages under or near a qu ac ulture o p e rations: d ocume ntati o n o f impact his t o ry J o urn a l of F o r a miniferal Resear c h v 25, no. 3, p. 224-235. 168

PAGE 185

Scott, D. K. and Leckie, R. M., 1990, FonJ.minif'l.!n.d /.OI1uti o n Sal t Mars h (Falmouth Massachusetts), Journal o f F u rwnin if'(;ral ftg:llgan; I L o/. l,(J, n o 3, p. 248-266. Scott D. S., and Medioli, F. S., 1 9 78 Verti cal zo nation.., o f lllm' .">ll U'Y accu rate indic a tor s of former seal evels, N a lUrc, v. 272, r Sen Gupta B. K., 1999, Systematic s of mod e rn foraminifc n t In Uurw .. fj, Modern Foraminiferia, Kluwer Press, Amst e r dam, p .. 7 36 Seiglie G. A., 1 968, F o raminiferal ao, rJf [!;, c o ntent in sediments and of pollut e d The Ge ologis t s Bulletin, v 5 2, no. II, p 22 3 1 2 241. Seigli e G A. 1973, P y ritization in liv ing Res e a r ch, v 3 no I, p 1-6. SeHrin. K. P., and Ers kian M.G., 19S I, L abo r a tory m o Y e menl of Quinqu e lo c ulina imp res w lhnmglhl Res.e;:u ch v 11, n o 2, p 133 136. Sheppard C .. 1995, Th e s hi ft in g ">yndmrru:.. . \\ .. j{!)l_ n o. 1 2. p 766777. Summon J L.. and \1a.h a d ev an. S K., I L \ bstr a ct}, In Treat, S F .. Simon J L Ht ;alin'llli . ,U,r_ Jl .. Proceeding<;. Tamp a Bay Are a Scicminac Florn ( h p. 384 K A.. G ardi ner W F :4\,ti!:\\ fiiTll S F. J L, m R.. ft . IL... ... !Prrto\tcctdlung\ .. Bay Arc21 .. . Ato,lfiitdla. p U7 I l a HnruiJll
PAGE 186

T odd, R. and Low, D., 1961 Nearshore foram i nifera of Martha's Vineyard I s land, Massachusett s, Contri butions from the Cushman Foundation f o r Foramini fera l Research, v 1 2 par t 1 p. 5 21. TNEP Unpublis hed, Unk nown Water an d Sediment QualityP o in t Sources, pts r c -io.91 2, p. 1-28. U.S. Fish and Wildlife S e r v i ce, and M i nera l Management Service, 1983, Florida Ecological A t las, St. P e t e r sburg, Map A 19 a nd B 1 9, MM84-0008, FWS/OBS-82/47. V an Vleet, E. S., 1 985 Hydroc arbon s in Tampa Bay: a review, In Treat, S. F. Simon, J L., Lewis III, R R and Whitman, Jr. R L. eds ., Proceedin g s, Tampa Bay Area Scientific Information Sympos iu m 1982 May, Tampa, Florida, p 130-146. Wal ke r D. A. Linton A. E., and S c h a f e r, C. T. 1 974, Sudan Black B: a superior stain to Rose Be ngal for d i sti nguishi ng living from n on-l i ving fo raminife ra, J o urnal of Foramini feral Research v. 4 n o. 4 p. 205-215. W a lton, W. R ., 1952, Techniques for recognit i o n of l iving f oraminifera, Contributions fr o m th e Cushman F o undati o n for For aminiferal Resear c h v. 3 p 56-60. W a lton, W R 1964, Ecol ogy of benthic forminife r a in the Tampa-Sarasota Bay area, F lorida, In Miller, R. L., ed. P ap e r in Marine Geology, Shepard Commemorative V o lume. Mac millian New York p. 429-454. W a ltkin s, J. G., 1961 Foraminife r al ecology a r o u nd the Orange Coun ty Calforni a ocean sewer o ut fa ll Micropaleonto logy, v. 7 p 1 99-206. Weisbe r g, R H. and Williams, R. G. 1991 I nitial findings on the c ir c ulat ion o f Tampa Bay, In T reat, S. F. a nd Clark, P A. eds., Proceed i ng s, Tampa B ay Area Scienti f i c Information Sympos iu m 2 1991 Febru ary 27-March I Tampa, F l orida, p. 4966. Williams, H F. L., 1 995. F o raminiferal r ecord of r e c e nt e n vironmental change: Mad I s land Lake, T exas, Journal o f Foraminife r a l Research, v 25, n o. 2 p. 167-179. Wilson J. G 1994, The ro l e of bioin dicato r s in estuarin e manage m e nt E s tuari es, v 1 7. n o. l A. p 94101. W olfe, S. H. and Drew, R D., 1990, An ecological c h aracte rization of the T ampa Bay watersh e d Biol og ical Report 90(20), 334 p. Woo ten, G. R 1985. Meteor o logy o f T ampa Bay In Tre at S F. S i m o n, J. L. Lewis III, R R ., a nd W hi tman. Jr. R L. eds P roceed i n gs, T ampa Bay Area Scientific Informatio n S ymposium. 1 98 2 v l a y. Tampa, Fl orida, p. 19-26. 170

PAGE 187

Yanko, V., Kr o nfeld J., a nd Flexer A., 1994, Response of benthic foraminifera to various pollution sources: implication s for pollution monitoring, J o urnal of Foraminiferal Resear c h, v 24, no. 1, p. 1 -17. Yanko, V., Ahmad, M., and K am in s ki, M. 1998 Morphological deformities of benthic foraminiferal test s in response t o pollution by heavy metals: implication s for pollution monitoring, Journal of Foraminiferal Researc h, v. 28, no. 3, p. 177-200. Yanko, V., Arnold, A. J., and Parker, W. C., 1999, Effect s of marine pollution on benthic fo r aminifera, In Sen Gupta, B. ed. Modern Foraminiferia, Kluwer Pre ss, Amsterdam, p. 2 17-2 35. Zarbock, H ., Jani cki, A., Wade, D., H e imbu c h D., and Wil s on H., 1994, Estimates of total nitrogen total phosphoru s and total s u s pended sol id s l oad in gs to Tampa Bay, Florida, Technical Publication #04-94 of the Tampa Bay National Estuary Program, 376 p. 171

PAGE 188

APPENDICES 1 72

PAGE 189

Appe n dix 1 Tables Table 16. Ge n era of foraminife r a (percent) in 75 samples from Tampa Bay used in the cluster ana l ysis Sample Ge n us # A E H GB Am T Q N L I 24.7 56.7 16.7 2.0 0 0 0 0 0 2 35.3 15.3 2.7 3.3 42.7 0 7 0 0 0 3 34.0 13.3 42.7 1.3 0.7 0 1.3 4.7 0.7 4 21.8 39.1 4.3 0 0 0 4.3 0 0 5 92.0 0.7 2.0 0 0.7 2.0 0 0 0 6 1 4.7 0.7 80.7 1.3 0.7 0 .7 0 1.3 0 7 6.0 11.3 65 3 15.3 1.3 0.7 0 0 0 8* 17.8 24.7 4. 1 4.7 8.2 0 1 2.3 1.4 2. 1 9 1 6.0 18.0 5.3 7.3 26.7 0 0 6.0 0.7 10 53.3 32.0 4.0 0 1.3 2.0 1.3 6.0 0 II 55.3 6.7 0.7 2.7 30.0 0 0 2.0 0.7 12* 20.7 48.0 10.7 5.3 4.7 3.3 0 0.7 0 13 29.3 6.0 35.3 1.3 18.7 0.7 5.3 0 0 14* 70.0 9.3 2.7 u 10.7 0 4.0 0.7 0 1 5 41.3 1.3 46.7 1.3 0 0.7 0 5.3 2.0 16 70.0 0.7 5.3 2.7 21.3 0 0 0 0 17 75.3 2.7 6.7 8.0 5.3 0 0.7 0 0 1 8 88.7 6.0 0 .7 0 2.7 0 0 1.3 0 19 6 .7 3.3 0.7 8.0 26.7 0 2.0 18.0 0 20 12. 0 13.3 1.3 6.7 41.3 3.3 0 1.3 0 2 1 .n.J 6.0 18.0 1.3 0 0 0 30.0 0 7 22 52.0 4.7 2.0 0.7 39.3 1.3 0 0 0 23 40.7 11.3 6.7 4.0 33.3 2.0 0 0 0 24 73.3 6.7 16.7 0 u 0 0 2.0 0 25 14.0 10.7 10.7 10.0 40.0 2.0 2.0 6.7 0 26 26.7 24.0 4.0 3.3 18.7 -1.7 1.3 5.3 0 27 36.0 4.0 16.7 -1.3 22.3 9.3 0 4.7 0 28 94.7 1.3 0.7 0 2.7 0 0 0.7 0 29* 6.7 10.7 () 1.3 56.7 0 0 u 0 30 50.7 6.7 I 0.0 2.0 28.7 0 0 1.3 0 3 1 98.0 () 0 0 2 0 0 0 0 0 32 56.0 1.3 14.0 5.3 6.0 0 0.7 5.3 0 33 81.3 2.0 0 6.0 3.3 0 0 6.7 0 34* 48.7 1 4.7 0.7 u 17.3 1.3 0 0 0 35* 60.7 8.0 0 0 10.7 0 0 14.0 0 36 :n.3 10.0 0 0.7 2 4 .0 5.3 21.3 0 0 ?.7 66.7 2.0 2.0 1.3 11.3 12.7 1.3 0 0.7 ?.8* 0.7 0 0 0 98.0 0 0 0 0 39 -10.0 0 40.0 :..3 0 0 0 1-1.7 0.7 40 69.3 3.3 0.7 0 0.7 6.0 0 1 9.3 0 A = Ammonia E = Elphidiu11r H = Hay nesina GB =Genus B Am = Allunobacu/ites T = Tri/ocu/ina Q = Quinq u eloculina N = Nonion L = Lobatula =Th e sa m p l es tha t conta i n r are genera tha t we r e not used in the cluster ana l ysis, sec appe n dix I (Table 17). Continued on next page 173

PAGE 190

Appendix 1 ( Continued ) Table 16. ( Continued ) Sample G enus # A E H GB Am T Q N L 41 75 .0 0 0 0 0 0 0 0 0 42 8.7 6. 7 0.7 0.7 51.3 0.7 0 0 0 43* 42.7 12.7 6.7 0.7 1 0.7 16.0 0.7 0.7 0 44 14.4 45.6 1.1 1.1 24.4 0 2.2 0 0 45 61.3 6.0 10.0 1.3 0 1.3 0 1 8.7 () 46 29.7 1 8.5 0 0 0 0 51.9 0 0 47 26.7 20.0 30.0 0 0.7 10.0 0.7 1 0.7 0 48* 32.0 4.0 56.7 0.7 0 0 3.3 0 0 49 12.7 4.0 72.0 0 0.7 2.7 2.0 4.7 0 50 54.7 0 11.3 0.7 26.7 0 0 1.3 0 5 1 68. 0 :u 0 0.7 22.0 2.7 0 1.3 0.7 52* 56.0 () 0 0 0 0 34.0 0.7 7.3 53 81.3 5.3 0 1.3 2.0 2 7 0 5.3 1.3 54 78.7 5.3 1.3 1.3 1.3 1.3 0 5.3 0.7 55* 32.7 1.3 0.7 0 0 2.0 38.0 4. 7 5.3 56* 1.3 u () 0 0 4.7 16.7 0 64.0 57 10.0 0.7 0 0 0 4.7 2.7 0 44.7 58 1 2 7 8.0 0 0 0 0.7 0 0 20.7 59 96.0 0 .7 0 1.3 0 0.7 0 0 0 60 75.3 8.7 1.3 0 0.7 1.0 2.0 4.0 0.7 61* :n.3 2.0 () 0 0 0 4.7 0.7 3-l.O 62 70.7 0 1 7.3 3.3 0.7 0 1.3 3.3 0 63 14.3 9.0 26.5 1 2.9 24.2 0 0.8 0 0.8 64 44.0 1 0.0 34.0 2.7 6.7 0 0 0.7 0 65 7-l.4 0 0 0 4.7 0 .7 0 1 2 7 0 66 96.0 0 0 0 2.7 0.7 0 0 0 67 26.0 0.7 0 0 60.0 0 0 0 0 68 6.0 0 0 0 79.3 0 0 0 0 69 20. 0 2 7 0 IJ 0 5.3 0.7 30.7 1.3 70 67.3 0 0 0 0 2 .0 0 4.0 0 7 1 59.3 8 .0 2.7 0 0 6.0 1 6.7 4.7 0.7 72 1 6 0 0 0 0 0 0 9.3 0 62 7 73* 32 0 5.3 -l7.3 -l.O 4.0 0 0 3.3 0 74 66.7 5.3 1.3 0 9.3 0 0 7 4.7 0 75* 0 0 0 0 67.4 0 0 0 6.3 A =Ammonia E = Elphidiw n H = Hav n esi n a GB =Genus B Am = Ammobaculites T = Triloculina Q = Quinquel oc ulina N = Nonion L = L oba tula ::: =The sa m ples that con tain rare genera t h at were n o t used in the clu ste r a nal ys is see appe ndix I ( Tabl e 17). Contiunl.!d on n ex t page 174

PAGE 191

Appendix 1 ( C ontinu e d) T a bl e 16. ( Continued) Sample Genu s # Tr R Na Or Bi Tx Br Bl I 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0.7 0 7 0 0 0 0 0 0 4 0 0 30.4 () 0 () 0 0 5 0 0 () 2.7 0 0 0 0 6 0 0 () 0 0 0 0 0 7 0 0 () 0 0 0 0 0 8 0 7 0.7 0 () 1 .4 4 8 0 0 9 1 3.3 4.0 0 0 7 2.0 0 0 0 1 0 0 0 0 0 0 0 0 0 II 0 0 0 1.3 0.7 0 0 0 1 2* 2.0 2. 0 0 0.7 0 0 0 0 13 2.0 0 0 0.7 0 0.7 0 0 1 4* 0 0 0 0 0 .7 0 0 0 1 5 0 0 0 0.7 0 0 0 .7 0 1 6 0 0 0 0 0 0 0 0 17 1.3 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0. 7 0 1 9 0 2.7 0 7 0 31.3 0 0 0 2 0 0 0 0 0 2 0 .7 0 0 0 2 1 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 23 0 2.0 0 () 0 () 0 0 24 0 0 0 () 0 0 0 0 25 0 0 0 0 2.7 1.3 0 0 26 2 7 0 0 0 8. 0 0.7 0. 7 0 27 0 0 0 2.7 0 0 0 0 2 8 0 0 0 0 0 0 0 0 2 9* 3 3 () () () 1 9.3 0 0 0 30 0 0 0 0.7 0 0 0 0 3 1 () 0 0 0 0 0 0 0 32 0 1.3 0 0 0 0 1.3 8.7 33 0 0 0 0 7 0 0 0 0 3 4 0 14.0 0 0 7 0 0.7 0 0 35* 2.7 0 .7 0 0. 7 0 .7 0 0 0 36 0 0 0 0 1.3 0 0 0 37 0 0 0 0 0 0 2 0 0 38'; 0 0 0 0 0. 7 0 0 0 3 9 0 0 0 0.7 0 0 0 7 0 4 0 0 0 0.7 0 0 0 0 0 Tr = Tro c h a mmina R = R o sa/in a N a = Nonio nella Or= Orb ulina ( Planktonic f o raminiferid) Bi =Bige n e rin a T x =Te xtularia Br = Bri za lina 81 = Buliminella = The s ampl es tha t c o ntain rare g e n e ra tha t wer e n o t u s ed in the clu s t e r anal ys i s see app endix 1 ( T a ble 17) Continue d o n nex t page 175

PAGE 192

Appendix 1 (Con tinued ) Table 16. (Continued ) Sample Genus # Tr R Na Or Bi Tx Br B1 41 () 0 0 25.0 0 0 0 0 42 () 0 0 () 31.3 0 0 0 43* 4.0 4.7 0 0 0 0 0 0 44 0 0 0 0 I 1.1 0 0 0 45 () 0 0 0 0 0 1.3 0 46 0 0 0 0 0 0 0 0 47 1.3 0 0 0 0 0 0 0 48*0 0 0 .7 0 0 0 0 0 1.3 49 0 0 0 0 0 0 0.7 0 50 2.7 0 0 0 0.7 0 2.0 0 51* 0 0 0 0 0 0 0 0 52* 1.3 0 0 0 0 0 0 0 53 () 0 0 0 0 0 0 .7 0 54 0.7 0 0 0 0 0 3.3 0 55* 2.0 4. 7 2.0 0. 7 0 0 0 2.7 56* 2.0 2. 0 0 0 0 0 0 0 57 0 37.3 0 0 () 0 0 0 58 5.3 30.7 0 0 0 0 0.7 0 59 0.7 0.7 0 0 0 0 0 0 60 0 7 0.2 () 0 0 0 0.7 0 61* 10.0 8.0 0 0 0 2 .0 0.7 0 62 0 0 0 2 .0 0 0 1.3 0 63 0 .8 9.8 0 0 0.8 0 0 0 64 0 1.3 0 0 7 0 0 0 0 6 5 1.3 2.0 3.3 0 () 0 0.7 () 66 () () 0 0 0.7 0 0 0 67 4.0 0 0 0 8.0 1.3 0 0 6 8 0 0 0 0 1 4.7 0 0 0 69 () 8 7 24.0 0.7 0 0 0.7 4.0 70 12.7 10.7 0 0 0 2.7 0.7 0 71 2 .0 0 0 0 0 0 0 () 72 3.3 6.7 0 0.7 0 1.3 0 0 73* 0 0 0.7 2.7 0 0 0 0 74 0 1.3 0 0 0 7.3 3.3 0 75';' 5.3 4 2 0 0 14.7 0 0 0 Tr = Trochmnmina R =Rosa/ina Na = N o nionella Or= Orbulina (Planktonic for am inif e rid ) Bi = Big e nerina Tx =Textular ia Br = Briz.alina Bl = Buliminella =The samples that contain rare genera that were n o t u se d in the cluster analy s i s, see appendix I (Tab l e 17). 176

PAGE 193

Appendix 1 ( C ontinue d ) Table 17. The sam p les t hat c o ntain rare g enera fr o m the 75 T ampa Bay samples. The s e g e n e r a were n o t u sed in th e clus ter a nalysi s Sampl e # Di 8 2.1 12 0 14 0 21 0 29 0 3 4 0 35 0 38 0 4 3 0 48 0 51 0 52 0 54 0 55 0 56 0 5 8 0 61 0 73 0 74 0 75 0 Di = Di.sco rhi.s Mi = Mili ammina P o = P ro teonin a Sp 0.7 0 0 0 0 0 0 0 0 0 0 0.7 0 0.7 0.8 0 0 0 0 0 Co ntinu e d o n next pag e G e nu s Ca Mi Fu 13.7 0 0 0 2 0 0 0 0.7 0 0 0 0.7 0 0 0 0 7 0 0 0 0.7 0 0 0 0 0 0 0 0.7 0 0 0 0.7 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 Sp = Sp i r i llin a Fu = F urs e n k i o na A o = Ano m a /ina 177 Sa 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Po A o Pn 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 1.3 0 0 0 7 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.1 0 C a = Ca ss idulin a Sa= Spiroplect ammina Pn = Planulina

PAGE 194

Appendix 1 (Co ntinued) Table 17. (Continued) Sample Genu s # Pia Cn My Arc 8 0 0 0 0 12 0 0 0 0 14 0 0 0 0 21 0 0 0 0 29 0 0 0 0 34 0 0 0 0 35 0 0 0 0 38 0 0 0 0 43 0 0 0 0 48 0.7 0 0 0 51 0 0 0 0 52 0 0 0 0 54 0 0 0 0 55 0 2.0 0.7 0 56 0 0 0 0 58 0 0 0 2.7 61 0 0 0 0 73 0 0 0 0 74 0 0 0 0 75 0 0 0 0 Pia = Planktoni c for aminifera Cn = Cancris Arc = Arc haia s Ga = Gaudr y in a P s = P s eudotribculin a 178 Ps Pg Ga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0.7 0 0 0 1.1 My = M yc hostomina Pg = P se udo g landulina

PAGE 195

Appendi x I (Co ntinu ed) Table 1 8. Enviro nm e ntal data and foram inif eral abundance (tota l numb e r per g ram of se diment) at each site samp l ed. S ite s a r e gro uped by cha r acteristic f o ra minifer a l assem bla ges Site Sand Mean Sa l i nity Depth Habitat # Total# # % phi oloo m Ant h ro o f f o r a m Con tam per g r a m L obat ula Assemblage 56 82 1 1 32 18.3 SHIP 5 4 1 57 93 2.2 26 7.9 S HIP 3 1.3E+02 58 93 1.9 23 10.7 S HIP 4 4 1 6 1 94 2.0 25 4 6 S HIP <=2 53 72 96 2.1 29 2.4 HRD 3 48 Ammo!Jaculi t es Assemb l age 9 9 2 3.4 21 0.9 SG 3 46 19 92 2.9 25 0.9 SG 4 9.3 2 0 94 3.0 20 2.4 SG <=2 43 25 92 2.9 20 1.5 OB <=2 7 1 29 95 3.5 20 0.3 SG 3 14 38 27 6.8 20 1.2 OB <=2 3.7E+02 42 90 :u 20 0.6 SG <=2 74 63 84 3.7 2 1 3.1 C HSG <=2 9 1 67 95 3.7 20 0.2 SG 4 13 68 92 :..7 2 1 0.2 SG 3 53 75 87 7>.4 20 0 6 OMG <=2 57 Hayn e sim 1 A 111111011 ia A sse m blagc 3 69 4.5 25 1.8 LOR <=2 l.OE+0 2 6 10 6.8 26 1.5 DC <=2 1 .4E+02 7 31 5 6 24 1.5 DC 7 1.5 1 3 82 3.9 20 2.4 DC <=2 1 .2E+02 1 5 5 7.4 24 4.6 DC 6 44 39 1 2 6.7 27 3.1 DC 3 76 47 55 6.0 26 '!>.I DC 8 1.0E +02 48 1 9 5 9 26 1.8 DC 5 9.5 49 63 4.8 26 3.7 DC :. 7.4E+03 64 22 7.2 2 1 3.1 D C <=2 72 73 3 0 5.8 22 1.8 D C 4 64 # Anth r o CotHam= Number o f anthropogenic conta minant s Forums = forami nif era S HIP = Shi p ca nal HRD = H a r d b ollo m LOR = L ee s i de of oys t e r ree f DC = Dead end ca nal SG = Sea grass C HSG = C h anne l s n ex t t o se ag r ass OMG = Open a reas next to mangrove 08 = Open barren areas Cont i nued o n n ext page 179

PAGE 196

Appendix 1 ( C o ntinued ) Tabl e 18. ( C o ntinued ) Sit e Sa n d M ean Sal init y Depth H a bitat # T ota l # # % phi o/oo m Anthro o f for a m Co n tam per gra m Ammonia-Eiphidiu m A s sc m blagc 86 3.3 27 2.4 OSG 3 6.8E+02 2 95 2.9 20 1.8 OSG <=2 42 4 95 3.6 24 3.5 D C 3 1.2 8 93 2.8 28 0.9 SG <=2 8.8 10 96 3.1 17 1.8 OB 4 4.0E+02 II 83 3.8 2 1 1.8 OSG <=2 1 2E+02 1 2 68 4.3 20 1.8 CHSG <=2 1.7E+02 2 1 8 7.1 26 4 6 OSG <=2 3.9E+03 22 72 4.4 20 2.1 OMG <=2 1 .3E+02 23 89 3.3 22 3.1 OMG 3 1.9E+02 26 97 2.7 28 0 3 SG <=2 8.3 27 96 2.8 12 2.7 CHB 4 1.1 E+02 30 43 5.4 17 1.5 MG <=2 5.0E+02 34 76 4.3 1 4 7.6 CHMG 5 3.5E+02 36 94 3.0 1 8 1.2 MG 4 80 43 74 4.2 20 0.9 MG <=2 -t6 44 90 3.8 20 1.2 S G <=2 85 46 94 3.2 24 3.1 0 8 <=2 1.3 5 0 30 6 0 2 0 2.4 SG <=2 9.5E+02 52 92 2 8 28 0.3 SG 3 3 1 55 9 1 3.0 31 13.7 SHI P <=2 1 .7E+02 69 27 6.2 28 13.7 CHSG <=2 1.9E+02 # Anthro Co n t a m = Numbe r o f anthropogenic contaminants F orams = f o raminif e r a S HIP = Ship can a l HRD = H ard bottom LOR = Lee s i de of oys t er reef DC = Dt:ad e n d canal SG = Seagr ass CHSG = Channds next to seag r ass OMG =Open a r eas t o mangrove O B =Open barre n areas Continued on next page 180

PAGE 197

Appendix 1 (Co ntin ued) T able 18. ( Continued ) Site Sa n d Mean Salin ity D epth Hab i t at # Total# # % phi oloo m Anthro of for am Con tam pe r gram Ammonia A sse mblage 5 7 5.6 20 4.4 OB < = 2 I. IE+02 14 74 4.2 1 9 2.4 OSG 3 6.2E+02 16 14 7.5 20 3.4 08 < = 2 79 1 7 1 4 6.6 20 2.4 08 <=2 26 I R 25 5.6 19 3.6 08 < = 2 3.9E+03 24 42 5.6 1 3 1.8 08 5 8.2 E +02 28 41 5 I 24 9 .8 08 6 3 I E +02 31 2 7.9 1 3 1.5 CH8 5 30 32 68 4.5 23 3.1 0 8 <=2 3.0E+ 02 : n 27 6.3 13 3. 1 08 6 3.2E+02 35 30 6.6 17 8.2 08 <=2 45 7>7 92 :..7 20 I .5 08 3 1.3E+ 02 40 96 2.8 17 1.2 08 3 16 41 91 3.5 20 0.6 08 <=2 0.18 45 50 3.7 21 1 2.2 OSG <=2 2.4E+02 5 1 75 4.1 1 5 7 .0 08 <=2 1.6E+02 53 86 3.4 24 8.5 08 <=2 3 2E+02 54 7 3 3.0 22 12.2 CH8 <=2 7.8E+02 59 25 6.5 19 I 1.6 08 <=2 3.1E+02 60 90 3.3 2 1 4 0 08 4 6.2E+02 62 7 7.5 25 2 .4 08 5 1.7E+ 02 65 92 3 1 22 2 .4 08 3 1 .3 E +02 66 93 2.3 1 7 0 .2 08 < = 2 8.0 E+ 02 70 96 2.7 3 1 2.4 CH8 3 2.0E+02 71 96 3.5 28 4.6 C HSG < = 2 1.2E+02 74 80 4. 1 2 1 5 .5 08 < = 2 1.2E+02 # Anthro Con t am = N umb e r of anthropogenic contam in an t s F orams =fo raminif e ra S HIP = S hip canal HRD = Hard botto m LOR = Lee s ide o f oyster reef DC = Dead end canal SG = Scag r ass C HSG = Channel s n ex t to seagrass OMG =Open areas next t o mangrove O B = Open barren a r eas 181

PAGE 198

Appe ndi x I (Continued) Tables 19. Descr iption of H illsborou g h Bay sediment cores (Brooks e t al., 199 1 ) Core # 3-7 3-13 3-22 3-30 5-1 5 10 -8 10-20 13-6 Surfi c i a l Unit (em) 0 to 95 0 to 250 0 to 190 0 t o 230 0 to 230 Not Determined 0 t o 2 10 0 t o 200 L ocation Northeast centr a l Hillsborough Bay West centra l Hill s b o r o u g h B ay S o uth centr a l Hillsborou gh Ba y n o rth core 3-30 South centr a l Hill sboro u g h B ay Southeast portio n of H illsborough B ay Northeas t H illsborough Northern p a rt of west Cen t ra l H ill s borough Ba y Mouth o f H illsbor o u g h Ri ver 182 Sediment Description Sand-dominated, mud peak a t 60cm, over 75 % of the upper meter consists of f in e to very fine-g rained sand Mud-dominated, mean grain size (6 to 8 phi ) peak at 180 e m (9 phi ) Mud-dominated (5.6 to 8.6 phi ), dec reased (5.6 to 7.5 phi ) f rom 40cm to o f the surface, 40 em represen t recent al ter a tion in sediment a t ion patt e rn s Mud-domina t ed, mean grai n (4.6 and 8.3 phi) a n d th e san d-size frac tion ra n ges (3% and 62% s howin g a genera l in c rease u p core) Mud-dominated from 160c m to s urface grain size decl ines from 3.4 phi (ver y f ine-gr ained sand ) to 7.9 phi (fine -grain ed silt), sand decreases (83% to 14%) Dre d ge s p oil based upon t he large amount o f sand a n d l a rge shel l fra g m ents Muddominated s h ell layer 68cm, there appeared to b e little variation i n all p a rameters in th e su rfi c i a l u n i t mean g r ain s ize 5.4 to 8.6 phi; the mud s ize g reater 50% of sed iment Muddomin ated, mean g r ai n size (6.5 and 9.4 phi ) a lmost e n ti r e l y of s i l t a n d clays i zed m ateria l

PAGE 199

...... 00 UJ Appendix 1 (Continued) Table 20. The total number of foraminifera counted and relative abundance (%) for each genus for the Hillsbrough Bay sediment cores Core Depth em Core 3-7 0 5 10 IS 20 25 30 35 40 45 50 60 70 80 90 100 Total # Foram ISO ISO ISO ISO ISO 153 ISO ISO lSI ISO ISO 149 149 lSI ISO ISO Amm % 82 7 86 0 78.7 70 7 72 0 75. 2 46.0 82.7 76.2 83 3 63.3 87.2 83.9 86.7 84 0 90.0 UGB % 2 0 0.7 2 0 4.0 2.0 0 0 0.7 2.0 3.3 4 0 9.3 5.3 7 4 4.6 2.7 4.0 Non % 0 0 2 7 3.3 6.0 4 0 2.0 1.3 4 7 4 6 7 3 6.0 4 7 2 0 5 2 5 3 1.3 Elp % 0 7 0.0 2.0 0.0 0 0 0.0 0.7 0.7 0.7 2.7 1.3 1.3 2.0 5 2 5 3 1.3 Hay % 0.0 0.0 0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 Amb % 14 7 10.7 11.3 16.7 1 6.7 13.1 5 3 5 3 2.0 2 0 1.3 0.0 2.7 1.3 2.7 0 0 Qui % 0.0 0 0 1.3 2.0 2.0 0 7 0.7 0.0 0.7 0.0 0.0 0.7 1.3 0.7 0.7 0.7 Ros % 0 0 0.0 0 0 0 0 0.0 0.0 0.7 0 0 0.0 0 0 0.0 0.0 0.0 0 0 0 0 0.0 Big % 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 Bri % 0 0 0.0 0 0 0 0 0 0 0 7 0.7 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 Orb % 0 0 0.0 0 0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 Cib % 0 0 0.0 0 0 0.0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0 0 Cas % 0.0 0 0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0 0 0.0 0 0 0.0 0.0 Cyc % 0 0 0.0 0 0 0.0 0.0 0 0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Uvi % 0.0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0.0 0 0 0 0 Total# of Foram =To t al number of foraminifera counted in the sa mpl e Amm =Ammonia UGB = Unknown Genus B Non= Non i o n Elp = E lphidiwn Amb = Ammoba c u l ites Qui = Quinquelo c ulina Ros =Rosa/ina Big= Bigenerina Bri = Brizalina Orb= Orbulina (P lankt onic) Cas = Cassidulina Cyc = Cyclogyra Uvi = Uvigerina Fos = Fossil Elp hidium Pia= Planktonic foraminifera Continued on n ex t pag e Fos % 0 0 0.0 0.0 0.0 0.7 0.0 0.0 1.3 2.0 0.0 0.7 0.0 0.7 0.7 1.3 2.0 Pia % 0.0 0.0 0.7 0.7 2.7 8.5 35.3 3 3 9 3 0 7 1 8.0 0 7 0.0 0.7 0 0 0.0 Hay = Haynesina Cib = Cibicides

PAGE 200

....... 00 Appendix 1 (Continued) Table 20. (Continued) Core Depth em Tot al # Foram Core 3-13 0 10 20 30 40 50 60 70 80 90 100 150 150 150 150 150 150 150 1 5 1 150 150 148 Core 3-22 0 10 20 30 40 50 60 70 80 90 100 150 150 150 151 150 150 152 150 150 150 150 Amm % 61.3 75.3 58 7 73.3 69 3 87.3 86.0 84. 7 91.3 92 0 89. 1 87. 3 84.7 96.0 90.2 88 0 8 7.3 82.2 79.3 88.7 94.7 92.0 UGB % 3.3 0.0 1.3 0.0 2.7 0.7 4.0 8.7 4.7 5.2 2.7 3.3 2 0 0 0 N on % 2 7 1.3 3.3 6 7 28 7 0 0 2 7 4 6 1.3 6.0 0.0 1.3 0.0 0.0 4.0 0.0 7.3 6 5 10. 7 6 0 0.7 3.3 Elp % 0 7 0 0 0 0 0 0 0 0 0 0 2 0 4 0 1.3 0.0 0.0 2.0 2.0 0 0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0 0 Hay % 0 0 0 0 0 0 2.0 0.0 0 7 0.0 0 0 0 7 0 0 1.4 6.0 10.6 3.3 1.9 3.3 0.7 4.6 7 3 2 0 2.7 4.7 Amb % 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0 0 Qui % 0 0 0.0 0 0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0.0 0.0 Ros % 0 0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0 0 0.7 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 Big % 0.0 0 0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0 0 Bri % 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0.0 0.0 Orb % 1.3 0.0 0 0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 Cib % 0 0 0 0 0 7 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 Cas % 0 0 0 0 0.0 0.0 0 0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 Cyc % 0.0 0.0 0 0 0.0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0.0 0.0 0 0 0.0 Uvi % 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 Total# of Foram =Total number of foraminifera counted in the sa mple Amm =Ammonia UGB =Unknown Genus B Non= N onion Elp = Elphidium Amb = A mm obacu l ites Qui= Quinquelo c ulina Ro s =Rosa/ina Big= Bigenerina Bri = Bri za lina Orb= Orbulina (Pla nktoni c) Cas= Cassidulina Cyc = Cyclogyra Uvi = Uvigerina Fos =Fossil Elphidium Pia= Planktonic f oramini fera Continued on next page Fos % 0 0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0 0 0.0 0.0 0 0 0.0 Pia % 34 0 20 7 37.3 1 8.0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 Hay = Haynesina Cib = Cibicides

PAGE 201

Appendix 1 (Continued) Table 20. (Continued) Core T ota l Amrn UGB Non E lp Hay Amb Qui Ros Big Bri Orb Cib Cas Cyc Uvi Fos Pia Depth # em Foram % % % % % % % % % % % % % % % % % Core 10-8 0 No samp l e avai l ab l e 10 No sample s vailab l e 20 ISO 72 7 0 0 14. 7 9 3 0 0 0 0 0 7 0 0 0 0 0.0 0 0 0 0 0.7 0.0 0 0 0 0 2 0 30 90 60 0 1.1 14.4 3.3 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0.0 20 0 40 ISO 87.3 0 0 3.3 5.3 2 7 0 7 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0 0 50 ISO 78.7 0 7 10.0 4 0 2.0 4.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0 7 60 ISO 68.7 0 0 10.7 5 3 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 15. 3 70 ISO 76 7 0 0 10.7 6.0 1.3 0 0 0.0 0.0 0.0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 5.3 80 ISO 82 7 1.3 7 3 6.7 0.7 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0.0 1.3 90 ISO 74 0 0 7 15.3 7.3 0 0 2.0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0 7 100 118 69.5 0 0 17. 8 1 0 2 0.8 1.7 0.0 0 0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 ...._. 110 3 8 28 9 0 0 39 5 1 8.4 0 0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 2 6 0.0 2 .6 0 0 7 .9 00 VI Core 1 0-20 0 ISO 80 0 4.0 0.0 0 0 4 0 0.0 0.0 0 0 0.0 0.0 0 0 0 0 0 0 0.0 0.0 0.0 12. 0 10 l S I 82. 1 7 9 0 0 0 0 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 6 6 20 ISO 92.0 6 0 0.0 0 0 2.0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0.0 0 0 30 lSI 94 0 3 9 0.0 0 0 2.0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0.0 0.0 0 0 0 0 0 0 40 ISO 94 7 4.7 0.0 0 0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50 ISO 97 3 2 0 0 0 0 0 0 7 0.0 0 0 0 0 0 0 0 .0 0 0 0.0 0 0 0.0 0 0 0.0 0.0 60 ISO 89.3 2 7 1.3 5.3 0 7 0 0 0.0 0 0 0 0 0 0 0.0 0.0 0 0 0 0 0 0 0.7 0 0 70 ISO 92 0 0 0 2 0 2.7 3 3 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 ISO 86 6 3.3 9 3 0 0 0 7 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 90 lSI 87.4 4 6 5.2 0 7 2.0 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0 0 0.0 0 0 100 ISO 87. 3 2 7 5 3 2 0 2 7 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 Tot al# of Foram =Total numb e r of foraminifera counted in the s amp l e Amm =Ammonia UGB = Unknown Genu s B N o n = N o n i o n Elp = Elphidium Hay = H aynesina Amb = Amm o ba c ulite s Qui = Quinque l oc ulina Ros = R osa /ina Big = Bigenerina Bri = Brizalina Orb= Orbulina (Planktonic) Cib = Cibicides Ca s = Cassidulina Cyc = Cyc/ogyra Uvi = Uvi ge rina Fos = Fossil Elphidium Pia= Plank tonic foraminifera Continued on next page

PAGE 202

,__ 00 0\ Appendix 1 (Continued) Table 20. (Continued) Core Depth e m Total # Foram Core 3 -30 0 10 20 30 40 so 60 70 80 90 100 ISO ISO lSI ISO ISO 149 ISO ISO ISO lSI lSI Core S-IS 0 10 20 30 40 so 60 70 80 90 100 ISO ISO ISO ISO ISO 89 ISO lSI ISO Amm % 98.0 9 1.3 91.3 87.3 82. 7 77 .9 86.0 80.0 76 0 72.2 60.3 94. 0 89 3 94.0 94.7 80.0 S8.4 71.3 64.2 69.3 UGB % 1.3 8 0 7 3 3 3 6.0 7 3 7 3 3 3 2 0 2.6 2 0 4 0 6.7 2 0 S 4 IS. 3 23.6 4 7 14.6 4 7 No n % 0.0 0.0 0.0 S.3 3 3 2.7 2.7 6.7 16.0 2S. 2 31.8 2 0 2.0 2.0 0.0 2.0 3.4 1.3 0.0 8.0 E lp % 0 7 0.7 0 0 2.0 3.3 9.3 1.3 2 7 3.3 0.0 2 .6 0.0 2 0 2.0 0 0 0.7 0 0 0 0 0 0 0 7 H ay % 0.0 0.0 2 0 1.3 2.7 3.4 2 7 7.3 2.7 0.0 3.3 0 0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0 0 Amb % 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 2 0 14.7 IS. 3 20.S 17.3 Qui % 0.0 0.0 0.0 0.0 0 0 00 0 0 0.0 0.0 0.0 0.0 Ros % 0.0 0 0 0 0 0 0 0 0 0 7 0.0 0 0 0 0 0 0 0.0 Big % 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 No sa mpl e avai l able No sa mpl e avai l ab l e 0 0 0.0 0.0 0 0 0 0 0 0 0.0 0.0 0.0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 7 0 0 0 0 0 0 0 0 0 7 0.0 0 0 Bri % 0.0 0.0 0.0 0.7 2.0 0.7 0 0 0.0 0.0 0.0 0 0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0 0 0 0 Orb % 0 0 0.0 0.0 0 0 0 0 0 0 0.0 0.0 0 0 0 0 0 0 Cib % 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 .0 0.0 0 0 0.0 Cas % 0 0 0.0 0.0 0 0 0.0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0.0 0.0 0.0 Cyc % 0.0 0.0 0.0 0 0 0.0 0 0 0 0 0.0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 Uvi % 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total# of Foram =Total number of foraminifera counted in the samp l e Amm =Ammo ni a UGB =Unknown Genu s B Non = N o n ion Elp = Elphidium Amb = Ammoba c ulit e s Qui = Quinqueloculina Ro s =Rosa/ina Big= Big e n erina Bri = Brizalina Orb = Orbulina (Plank tonic) Cas= Cassidulina Cyc = Cyclog yra Uvi = Uvigerina Fos = Fossil Elphidium Pia= Plankt o nic foraminifera Continued on next page Fos % 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 Pia % 0 .0 0.0 0.0 0.0 0 0 0 0 0 0 0.0 0.0 0 0 0.0 0.0 0.0 0 0 0 0 0 0 0.0 0.0 0 0 0.0 Hay = Hay n esi n a Cib = Cibi cides

PAGE 203

........ 00 -.....] Appendix 1 (Continued) Table 20. (Continued) Core Depth em Total # Foram Core 136 0 10 20 30 40 50 60 70 80 90 1 00 110 1 20 140 1 60 1 80 200 220 240 260 280 ISO 93 19 44 78 ISO 141 36 95 34 42 44 17 11 19 6 7 26 9 34 5 Amm % 18.0 20.4 68.4 52 3 79 5 88.7 76 5 55 5 38.9 17. 6 28.6 UGB % 0.7 6.5 10.5 36.4 15.4 10 7 1 9.9 44.4 56.8 79.4 69 0 15. 9 79.4 17. 6 82.4 36 4 63 6 26 3 73 7 0 0 50 0 100 .0 0.0 65.4 0 0 22.2 0 0 58 8 0.0 60 0 0 0 Non % 0 0 0 0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.4 II. I 0 0 0 0 Elp % 0.0 0 0 0.0 2.3 0.0 0 0 3.5 0.0 4.4 2 .9 2.3 4 5 0 .0 0 0 0 0 50.0 0 0 7.6 55.5 20.6 0.0 Hay % 0 7 0 0 5.3 2 3 3.8 0 7 0 0 0 0 0 0 0.0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 11.8 0 0 Amb % 0 .0 0.0 0.0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0.0 Qui % 0 0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 Ro s % 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 Big % 0 0 0 0 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 Bri % 0.0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 .9 0 0 Orb % 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 Cib % 0 7 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 Cas % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 Cyc % 0.0 0 0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Uvi % 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T otal# of Foram =Total numb e r of foraminifera counted in the s ample Amm =Ammo nia UGB =Unknown Genu s B Non =Non i o n Elp = E l phidium Amb = Ammoba c u/it es Qui = Quinquel oc ulina R os =Rosa/ina Big= Bi ge nerina Bri = Bri za lin a Orb= Orbulina (P l a nktoni c ) Ca s = Cassidulina Cyc = Cyclogyra Uvi = U v i ge rin a Fo s =Fossil Elphidium Pia= Plan k toni c foraminifera Fos % 0.0 0 0 0 0 0.0 0.0 0 0 0 0 0 0 0.0 0.0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 11.5 11.1 0.0 40. 0 Pia % 80.0 73 1 16.8 6.8 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H ay = Hay n esina Cib = Cibicides

PAGE 204

Appendix 1 (Continued) Table 21. The percent sand, number foraminifera per gram, and number of genera for Hillsborough Bay sediment cores Core Sand Total # Sand Total # Sand Total # depth % foraminif e ra genera % foraminifera g e nera % foraminifera genera (em) per gram per gram p e r gram Core 3-13 Core 3-22 Core 3-30 u 34 3 .9E+U3 3 26 2 9E+03 4 55 2 9E+03 3 10 29 1 3E+03 3 20 7.0E+03 4 60 3 2E+03 3 20 27 2 9E+03 3 21 4.3E+03 3 58 9 6E+03 3 30 33 4.1E+0 3 3 19 9.6E+03 4 35 5 8E+03 6 40 18 3.0E+03 3 33 8 1E+03 3 14 2 5E+03 6 50 19 7.5E+03 3 38 9 1E+03 4 9 2 5E+03 7 60 36 7 6E+03 4 28 4 8E+03 5 17 4 1E+0 3 5 70 28 5 3E+03 4 26 4 6E+03 4 14 l.2E+03 5 80 24 5 0E+03 5 16 6 8E+03 4 11 7 8E+03 5 ....... 90 25 3 0E+03 4 13 3 3E+03 4 14 4 8E+03 3 00 00 100 33 2 7E+0 3 3 12 4 7E+03 3 I 1 4 9E+03 5 Core 5-15 Core 10-8 Core 10-20 0 No sample av a ilable No sample av a ilable 44 5.1E+03 3 lO No sample available No sample available 36 2 0E+03 3 20 16 4.0E+02 3 83 1.7E+02 5 38 2.4E+03 3 30 21 5.2E+02 4 88 45 5 36 l.IE+04 3 40 19 4 2E+02 4 92 2 5E+02 6 31 1 6E+03 3 50 33 4.5E+02 2 90 1 2E+02 6 38 5.0E+03 3 60 57 2 7E+02 5 86 1 3E+02 3 70 3 9E+03 6 70 68 44 4 8 7 2 9E+02 4 74 4 6E+03 4 80 61 1.3E+02 5 86 3 9E+02 5 17 2 8E+03 4 90 68 1 7E+02 4 81 1 2E+02 5 19 1 3E+03 5 100 82 4.9E+02 5 78 59 5 23 4 6E+03 5 110 81 19 5 Continued on next page

PAGE 205

Appendix 1 (Continued) Table 21. (Continued) Core Sand Total # Sand Total # depth % foraminifera genera % foraminifera genera (em) per gram per g r am Core 3-13 Core 3-30 0 94 3.7E+02 4 23 2.3E+02 4 5 93 2 .3E+02 4 10 95 1.4E+02 7 19 63 2 15 94 1.8E+02 5 20 95 1.4E+02 6 II 10 3 25 95 77 5 30 94 1 6E+02 9 6 22 4 35 92 1.7E+02 6 ...... 40 87 1 .7E+02 7 3 39 3 00 \0 45 90 1.9E+02 5 50 88 1 6E+02 6 6 2 9E+02 3 60 89 1.8E+02 5 5 71 3 70 83 1.6E+02 7 3 18 2 80 86 2.1E+02 6 2 48 3 90 87 1.5E+02 7 4 17 3 100 85 1 6E+02 6 I 21 3 110 7 22 3 120 6 9 2 140 9 6 2 160 3 10 2 180 5 3 2 200 8 4 I 220 81 13 4 240 86 5 4 260 80 17 5 280 83 3 2

PAGE 206

Appendix I (Continu ed) Table 22. The number of Ammonia, percent of deformed Ammonia the percent of Ammonia with Index of Preservation> II and the percent of Ammonia > 0.2 mm for each cor e from Hillsbour g h Bay C o re #of Deformities IP >II > 0.2 llllll Level Amm o ni a % % % (em ) 111 core CORE :1-13 0 92 5.4 16.3 28.3 1 0 113 15.9 15. 0 33.7 20 88 19. 3 11.4 15.9 30 110 11.8 14.5 19.1 40 104 13.5 42.5 6.7 50 131 9.9 28.2 12.2 60 129 7.0 32.6 18.6 70 128 5.5 17.2 28.9 80 137 6.6 18.2 30. 0 90 138 4.3 25.4 29.0 100 132 1.5 15.1 24 2 CORE 3-22 0 131 3.8 16.8 38.2 1 0 127 6.3 13.4 22.0 20 144 5 6 14.6 25 .7 30 136 14.7 14.0 35.3 40 132 2.3 13.6 11.4 50 131 9.2 1 3 0 19.1 60 125 0.8 9.6 20.8 70 119 0.8 7.6 32 .7 80 133 2.3 9.8 17.3 90 142 0.7 8.5 19.7 100 138 1.4 9.4 19.5 CORE 3-30 0 147 4. 1 29.9 9 5 10 1 37 5.8 35 8 10 .9 20 137 2 2 31.4 19.7 30 131 1.5 26.7 19.8 40 124 2.4 26.6 9.7 50 116 1.7 18. 1 12.9 60 129 0.0 1 7 1 17.8 70 120 0.0 23.3 7.5 80 1 1 4 1.8 14.9 3.5 90 109 1.8 29.4 26. 6 100 9 1 0.0 34. 1 7.7 Continued on next page 190

PAGE 207

Appendi x l ( C o ntinu ed) T a b l e 22. (Cont i nu e d ) Core #of D e f ormi t ies IP >II > 0 2 Illlll L eve l Ammonia % % % (em) In co r e CORE 51 5 20 14 I 18.4 15.6 24.8 30 134 I 1.9 1 3.4 I 3.4 40 141 1 7 7 12.1 1 6.3 50 142 9.9 6 3 23. 2 60 120 4.2 14.2 I 1 7 70 52 1.9 23. 1 2 1.2 80 1 07 2.8 28.9 8.4 90 97 2.1 1 8.5 1 9 6 100 1 04 1.0 21.2 27.9 CORE 1 0 R 20 1 09 1.8 16. 5 73.4 30 54 5.6 12.9 55.6 40 131 2 .3 9.2 58.7 50 I 18 1.7 1 6.1 44.9 60 10.3 0.0 23 .3 54.4 70 I 1 5 1.7 21.7 36 5 80 1 24 0 0 1 4 5 23.4 90 Ill 0.0 1 5.3 58.6 100 82 1.2 1 4.6 41.5 110 I I 0 0 1 8 2 27.3 CORE 1 0 -2 0 0 1 20 0.0 9.2 24.2 10 1 24 0.0 1 9.4 1 6.9 20 138 4 3 30.4 1.3.0 30 142 4.2 25.4 1 0.7 4 0 1 42 2.1 25.4 28.2 5 0 1 46 2.0 31.5 1 2.3 60 1.34 2 9 9.7 57.5 7 0 1:18 2.1 15.9 60.1 8 0 130 0.0 16.2 .32 .3 90 1.32 0.0 11.4 31.1 100 1 3 1 2.3 13.0 42.7 Continued o n n e x t pag<:: 1 9 1

PAGE 208

Appendi x 1 (Continu ed) Tabl e 22. (Co ntinued) Core #of Deformiti es IP >II > 0.2 mm L evel Ammonia o/c 9'c 'k (em) m core CORE 3 -7 0 124 31.5 4.8 63.7 5 129 27.1 7.8 71.3 1 0 118 36.4 5.1 66. 1 15 106 33.0 3.8 71.7 20 lO S 1 9.4 7.4 73. 1 25 115 28 7 9.6 65.2 30 69 36.2 5.7 65.2 35 124 1 6.9 8.9 64.5 40 115 11.3 18.3 45.8 45 125 1 0.4 6.4 45.6 50 95 9.5 5.3 3 6.8 60 130 12.3 19.2 33.8 70 125 1 4.4 12.8 31.2 80 131 14.5 16.0 24.4 90 126 20. 6 11.9 46.0 100 135 17.0 14.8 37.0 CORE 1 3-6 0 27 51.9 0 .0 0.0 10 1 9 5.3 10. 5 1 0.5 20 1 3 0.0 15.4 2 3.1 30 23 0.0 1 7.4 39. 1 40 6 2 0.0 4 0.3 6.5 50 1 33 0.0 21.8 1 5.8 60 1 08 0. 0 21.3 9 2 70 20 0 .0 20.0 5.0 80 '37 0 0 18.9 5.4 90 6 0.0 50. 0 0.0 100 1 2 8 .3 8 3 25 .0 110 7 0.0 0 0 14.3 120 3 33.3 33.3 0.0 140 4 0.0 25 .0 0.0 160 5 0.0 0.0 0 0 180 0 0.0 0.0 0 0 200 7 0.0 14.3 42.9 220 17 0.0 11. 8 29.4 240 2 0.0 50.0 0.0 260 20 0 .0 5.0 25.0 280 3 0 0 33 .3 0.0 1 92

PAGE 209

Appendix 1 (Continued) Table 23. Input type, number of genera, number of foraminiferal counted, number of foraminifera per gram, number and percent of live foraminifera, percent Ammonia for (deformities,> 0.2 mm and > II Index of Pr eservation) for Hillsborough Bay a nd Charlotte Harbor samples Sample Input Sand % # Foram Foram Liv e Live Ammonia # Type Genera Counted #/g #/g % % Deform % >0. 2mm % > II (IP) CH-I None 94 5 140 69 1 8 25 6.9 83.3 5.6 CH-2 Non e 91 7 ISO 1.6E+02 53 33 4 2 76.4 9.7 CH-3 None 96 8 ISO 75 22 29 1.4 48.6 2.9 CH\3-1 None 92 7 108 54 17 32 7.9 47.4 7 9 CHI3-2 None 95 7 lOS 52 2 1 41 4.8 45.2 9.5 CHI3-3 None 92 7 112 56 6 II 3.9 37 3 21.6 CHI4-l None 50 5 152 1.9E+02 0 0 0 0 0 0 97.0 CHI4-2 None 75 5 ISO 1.9E +02 0 0 0 0 0 0 96.0 CHI4-3 None 78 8 ISO 3 .2 E+02 6 2 2 0 0 0 74 5 9A-l None 94 7 ISO 3 0E+02 39 13 3 5 64.3 8 7 ...... 9A-2 None 95 7 ISO 2.7E+02 55 20 5 2 60.9 6 9 \0 \.>.) 9A-3 None 91 8 lSI 4 9E+02 117 24 2 5 46.7 4 1 IIC-1 None 68 5 ISO 1 .4E+03 46 3 6.2 46 5 4 7 IIC-2 N o ne 75 4 154 7 .6E +02 19 3 2.0 36.7 2.7 IIC-3 None 91 4 ISO 8 5E+02 63 7 5.1 52.9 2 5 18-1 None 26 5 ISO 5.0E+03 33 I 7 1 5.4 25.0 18-2 None 19 4 lSI 5.7E+03 0 0 3.2 4.9 37.4 18-3 None II 4 ISO 3.1E+03 20 I 4.3 3.4 22.2 6Bl Sewage 46 5 153 1.4E+03 0 0 3 0 1 3.6 11.4 6B-2 Sewage 40 4 1 53 1.3E+03 0 0 1.5 6 9 25.4 6B-3 Sewage 39 6 ISO 1 6E+03 II I 2.3 10.8 11.5 Sl-1 Sewage 84 7 ISO 7 6E+02 25 3 5.6 25 9 9 7 Sl-2 Sewage 79 7 149 5 7E+02 23 4 3.9 19.7 10 2 Sl-3 Sewage 86 9 ISO 3.3E+02 29 9 5 7 34 4 8.2 S2l Sewage 96 8 58 29 I 2 23. 1 23.1 26 9 S2-2 Sewage 98 6 18 9 I II 0.0 71.4 42.9 S2-3 Sewage 97 5 24 12 2 13 9.1 36.4 1 8 2 Foram =Foraminifera Live= liv e Foraminifera Deform = Deformities IP = Index of Preservation Continued on next page

PAGE 210

Appendix 1 (Continued) Table 23 (Continued) Sample Input Sand % # Foram Foram Live Live Ammonia # Typ e Genera Counted #/g #/g % % Deform %>0.2mm %>II (IP) TIl Thermal 98 2 27 13 0 0 0 .0 12. 0 84.0 Tl-2 Thermal 94 4 30 IS 0 0 0 .0 0.0 100.0 Tl-3 Thermal 94 3 31 IS 0 0 0 .0 0.0 3 0.8 T2-l Thermal 93 6 IS IS 5 0 0.0 66.7 0.0 T2-2 Therm a l 92 5 45 22 3 13 0.0 0 0 68.8 T2-3 Thermal 98 6 70 35 7 19 8 6 11.4 2.9 37-1 Thermal 95 7 ISO 92 47 51 28. 1 47.7 7 0 37-2 Thermal 92 5 ISO 72 19 26 9.7 41.7 13.6 37-3 Therm a l 92 7 ISO 1.1 E+02 33 30 5.6 41.3 8.7 2A-l Tox 3 14 3 9 4 0 0 0 .0 75. 0 0.0 2A-2 Tox 3 13 4 II 5 0 0 0.0 33.3 00 ..... 2A-3 Tox 3 8 2 6 3 I 17 20 .0 0 0 0 0 \0 31-1 Unknown 74 7 53 26 I 2 7 1 7.1 50.0 31-2 Unknown 71 7 38 19 5 24 0.0 0.0 33.3 3 1-3 Unknown 58 5 42 21 2 7 0.0 7.8 76.9 18-1 T ox 2 I 3 1 6 8 0 0 0.0 0.0 72.3 18-2 Tox 2 2 3 21 10 0 0 0 .0 0.0 54.5 18-3 T ox 2 2 3 1 7 8 0 0 0 0 0.0 70 0 4A-1 Tox 2 4 2 40 20 0 0 0.0 7 1 64.3 4A-2 Tox 2 4 2 43 2 1 0 0 31.8 9.1 4.5 4A-3 Tox 2 6 2 47 23 I 2 6.7 20.0 20.0 88-1 Tox I 8 7 4 ISO 2.4E+02 2 I 11.1 42.2 0.0 88-2 Tox I 75 5 149 4 1E+02 5 I 5.6 36.4 7.5 88-3 Tox I 79 5 ISO 2.7E+02 9 3 6.9 34.9 9.3 3C-I Tox I 92 6 ISO 5.0E+02 30 6 4.0 49 7 2.4 3C-2 Tox I 9 1 6 ISO 4 7E+02 16 3 15.3 46.6 6.8 3C-3 Tox I 88 7 ISO 6.2E+02 42 7 13.3 31.9 15.0 Tox =Toxicity (Level= I l owest, 2 intermediate 3 -highest) Foram = Foraminif era Live= Live foraminifera Deform= Deformities IP = I ndex of Preservation

PAGE 211

...... \0 Vl Appendix 1 (Continued) Table 24. Percent for each genus for Hillsborough Bay and Charlotte Harbor sites Site Total# Amm # Form % CH-I 140 S0 3 CH-2 ISO 48 0 CH-3 ISO 46 7 CHI3-I 10 8 3S.2 CH\3-2 lOS CHI3-3 112 CH\4-1 IS2 CH\4-2 ISO CH\4-3 ISO 9A-l ISO 9A-2 ISO 9A-3 ISO IIC-1 IS O IIC-2 154 IIC-3 ISO 18-1 ISO 18-2 151 1 8-3 ISO 68-1 153 68-2 68-3 Sl1 Sl-2 Sl-3 S2-l S2-2 S2-3 153 ISO ISO 149 ISO 58 18 24 40.0 45.5 66.4 68.0 65.3 76.7 76.7 80.7 86 0 97.4 78 0 74 7 81.5 7 8 0 86.3 84.9 86. 7 82.7 85. 2 81.3 44.8 38.9 45.8 UGB % 0 0 0 7 2 7 0.9 1.9 4.5 2.0 8.0 9 3 3.3 0 0 5 3 0 0 0.0 0.0 14. 7 13.9 17.3 IO. S 11.1 8 7 4 7 2 7 0 7 3.4 0.0 4 1 Amb % 11.9 10. 7 16.7 31.5 45 7 33 0 29 .6 20.7 3.3 12. 0 8.0 5 9 9.3 1.3 16.0 0 0 0 0 0 0 0 0 0.0 0.0 5 3 3 3 S 3 27 6 27.7 33 3 Non % 0 0 0 0 3.3 6 5 1.9 1.8 0 0 0 0 8.7 0 0 1.3 2.0 0.7 0.6 1.3 7.3 3.3 3.3 0 7 2.0 1.3 2.0 2 0 0 7 12. 1 I 1.1 12. 5 Elp % 14.7 23 3 18.0 13. 0 4.8 8.0 0.0 0.0 0.0 0.7 3 3 0.7 2 7 0.6 4 7 1.3 0.0 0.0 1.3 2.0 0.7 0.7 2.0 2 0 5.2 II. I 0 0 Hay % 13. 3 11.3 5.3 2.8 0.0 5.4 0.0 1.3 7.3 3.3 00 0 0 1.3 0.0 0.0 2.0 1.3 1.3 1.3 0.0 2.0 3.3 4.0 8.0 1.7 0.0 0.0 Tri % 9 .8 S.3 6 0 10. 2 1.9 1.8 0.0 0.0 0.0 2 7 9 3 2.6 0.0 0.0 0 0 0.0 0.0 0 0 0 0 0.0 0 0 0.0 0 7 0 7 3.4 5.5 0.0 Bri % 0 0 0 7 0 0 0 0 0.0 0 0 0 7 0.0 4 0 1.3 0.7 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 1.3 0 0 0 7 1.7 0 0 0 0 Big % 0 0 0 0 1.3 0.0 0.0 0 0 0 0 0 0 0.0 0.0 0 .0 0.7 0 0 0.0 0 0 0 0 0.0 0.0 0 0 0.0 0 0 0 0 0 0 0 7 0 0 0.0 0 0 Gau % 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0.0 0 0 0 7 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 Tro % 0.0 0.0 0 0 0 0 0 0 0 0 1.3 2 0 1.3 0.0 0.0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0 0 0 0 0.0 0 0 Fur % 0.0 0.0 0.0 0 0 0 0 0 0 0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Qui % 0.0 0.0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0 0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 S S 4.2 Orb % 0 0 0.0 0.0 0 0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 7 0.0 0 0 0 0 0.0 0.0 0 0 Mil % 0 0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 Te x % 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 Amm =Ammo nia Big= Bigenerin a UGB = U nknown Genus B Amb = Ammoba c ulites Non =Non i on Elp = Elphidium Hay= Haynes ina Tri = Tril oc ulin a Bri = Bri z alitw Gau = Gaudryina Tro = Tr oc hammina Fur= Fursenkoina Qui = Quinquelo c ulina Orb= Orbulina (P l a nktonic ) Mil = Miliammina Tex =Te xtularia Continued on next page

PAGE 212

,__ \0 0\ Appendix 1 (Contin ued ) T able 24 (Continued) Site # TI-l Tl-2 Tl3 T2-l T2-2 T2-3 37-1 37-2 37 3 2A-I 2A-2 2A-3 311 31-2 31-3 IB1 IB-2 IB3 4A-I 4A-2 4A-3 8BI 8B-2 8B-3 3C-I 3C-2 3C-3 Total# Amm Form % 27 92.6 30 70.0 3 1 41.9 I S 45 70 ISO ISO ISO 9 II 6 53 38 42 16 21 17 40 43 47 ISO 149 ISO ISO ISO ISO 19.4 71.1 50.0 85.3 71.0 84.0 44.4 54.5 83.3 26.4 15. 8 31.0 73.3 52.4 58.8 35.0 51.2 31.9 60.0 71.8 57.3 82.8 78.7 75.3 UGB % 7.4 23.3 51.6 16. 1 11.1 17.1 2.7 2.1 4.7 22 2 27.3 0 0 20.8 15.8 33.3 20.0 38 1 35.3 65 0 48 8 68.1 10. 0 11.4 14. 0 2.0 2.7 4.0 Amb % 0 0 3.3 0 0 35.5 4.4 5 7 6 0 24 1 5 3 0 0 9.1 0 0 30 2 28 .9 1 6 7 0 0 0 0 0 0 0 0 0 0 0 0 28.0 15.4 24. 0 6 6 6 0 8.7 Non % 0 0 3.3 6 5 3.2 2.2 12 9 0 7 2. 1 1.3 0.0 0 0 16.7 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.3 1.3 2.0 Elp % 00 0 0 0.0 3.2 0.0 0 0 0.7 0.7 2.7 0.0 0.0 0.0 0.0 5 3 0 0 0.0 0.0 5.9 0.0 0 0 0.0 0.0 0 7 0 0 2.0 3.3 4.7 H ay % 0.0 0.0 0 0 0.0 0 0 0 0 2 7 0.0 0 7 33.3 9 1 0 0 0.0 21.1 9 5 6 7 9.5 0.0 0.0 0.0 0.0 0 0 1.3 3.3 3.3 8.0 4 0 Tri % 0.0 0.0 0 0 22.60 II. I 12.9 2.0 0 0 0.0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0.0 0.0 0 0 0 7 Bri % 0.0 0.0 0 0 0 0 0 0 1.4 0 0 0.0 1.3 0 .0 0 0 0 0 0.0 0 0 0.0 0 0 0 0 0.0 0.0 0 0 0 0 0 0 0 0 0.0 0.0 0 0 0 0 Big % 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0 0 0.0 0 0 0 0 0 0.0 2.0 0.0 1.3 0.0 0 .0 0 .0 Gau % 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0 0 0.0 0.0 0 0 0 .0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 .0 0.0 0.0 0 0 0.0 Tro % 0.0 0.0 0 0 0.0 0.0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 15. 1 5 3 9.5 0.0 0.0 0 0 0 0 0.0 0.0 0 0 0 0 0 0 0.0 0 0 0 7 Fur % 0.0 0.0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 Qui % 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 1.9 0.0 0 0 0 0 0.0 0.0 0 0 0.0 0.0 0.0 0 0 0 0 0.0 0.0 0.0 Orb % 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 0 0 0 0 Mil % 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0 0 0 0 0.0 0.0 0 0 3 8 7 9 0 0 0 0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 Tex % 0.0 0.0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 1.9 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 0 0 0 0 Amm =Ammonia UGB =Unknown Genus B Amb = A mm obac ulires Non= N o nion Elp = Elphidium Hay= Haynes ina Tri = Tril oc ulina Bri = Brizalin a Big= Bi ge nerina Gau = Gaudryina Tro = Tro c h a mmina Fur= Furse n k o ina Qui = Quinqueloculina Orb= Orbulina ( Planktoni c) Mi l = Mi/iammina Tex =Tex tulari a

PAGE 213

,_.. \0 -..) Appendix 1 (Continued) Table 25. The maximum difference of inter-replicate variability (!Rep-A vgl) compared with the inter-site variability (total avg difference of IAvgAvgl from site to site) for each measure Sites CH CH13 CH14 9A 11C 1 8 68 SI S2 Tl T2 37 2A 3 1 18 4A 88 3C Amm 2.0 5 3 1.3 2.4 10.3 3.4 1.1 1.8 7.7 27.3 27.4 9 1 22 6 8.6 11.8 11. 8 8 2 3.9 22.6 11.1 G8 2.4 2 1 4.4 2.9 0 0 2.0 1.4 2.0 1.6 24.2 3.6 1.5 16 5 10 0 11.1 11.8 2 2 1.1 15.2 11.1 Amb 3.6 9 0 14 6 3.4 7 6 0 0 0 0 1.3 3.8 2.2 20.3 12.3 6. 1 8.6 0.0 0 0 7.2 1.6 1 2. 1 16 7 Non 2 2 3 1 5.8 1.1 1.4 2.7 0.7 0.9 3.5 3.3 6 7 0 7 11.1 0.0 0 0 0 0 0.0 1.1 2.8 38.9 Elp 4.6 4.4 0 0 1.7 2 1 0.9 1.5 0 9 4 2 0.0 2.1 1.3 0.0 3.5 3.9 0 0 0 5 1.4 3.8 22.2 Measures Hay Tri Sd% # Genera Maximum Difference IAvg-Repl 4.7 2 7 4.4 2.2 0.9 0 5 1.1 2 9 1.1 0.0 0.0 1.6 19. 2 10.9 5.4 0 0 1.8 2 9 4.3 2.8 5 6 0 0 4.5 0 0 0.0 0.0 0.5 2.3 0.0 7 1 1.3 0.0 0.0 0 0 0.0 0.0 0.5 2 7 2 0 17.3 2.3 13. 0 7 7 4.3 4 .0 1.0 2 7 3 7 2.0 3.7 8.3 0 7 1.3 6 7 2.3 Int er-s it e Variability 1.7 0 0 2.0 1.4 0.7 0.7 1.0 1.0 1.7 1.0 0.7 1.3 1.0 1.3 0.0 0 0 1.0 0.7 3.3 37 2 2.1 :ill.!Lg Total 59 2 87 143 397 1500 167 227 II II 19 4 I 2 103 90 831 Precent of Maximum Diff > Inters it e Variability 27.8 16 7 0 0 0 0 5.6 Liv e 22 9 4 47 24 18 7 3 I 0 2 14 I 2 0 4 13 20 16.7 Live % 4.0 17.0 1.3 6.0 2.7 0.7 0.7 3 0 4.0 0.0 8.7 15.3 11.3 13.0 0 0 1.3 4.0 13.0 12.3 27.8 Def 2 8 2.4 1.3 1.4 2.4 2.2 0 8 1.2 12.4 0 0 5.7 13. 6 13.3 6.7 0.0 19.0 3.2 6.9 4 9 38.9 Ammonia >0.2mm 20 8 6.0 0.0 10 6 8.7 1.2 3.5 7 7 27.8 8.0 40.7 4 1 38.9 5.0 0 0 7.9 4.4 10.8 24.7 1 6.7 >II 3.6 8.6 14.7 2.5 1.4 9 2 9.3 1.2 13.6 40.8 44.9 3.8 0.0 23.5 11.1 34. 7 5.6 6.9 28.3 16. 7 Amm =Ammo nia G8 =Genu s 8 Amb = Ammobaculit es Non= Non ion Elp = Elphidium H ay = H ay n es ina Tri = Trilo c ulina Sd% =Sand % Def = Deformities

PAGE 214

ABOUT THE AUTHOR Thomas Linn Dix received a Bachelor's Degree in Marine Biology from Texas A&M University at Galveston in 1987 and Master's D egree in Biology from University of West Florida in 1991. H e e nt e red the Ph.D. program at University of South Florida (St. Petersburg campus) in 1991. While in th e Ph. D. program at the University of South Florida, Mr. Dix held tw o part-time jobs, one at the coun se lin g & career center on campu s and the o ther with the Florida Marine Resear c h In s titut e. While at the Florida Marine Research In sti tute h e identified vario u s mollusk, polychaeta, nemertia, hemicordata, sipuncula, urocordata, ec hin o derms, and crustacean. H e has also co-authored five publications and two abstrac ts.