Petrogenesis of alkaline and subalkaline lavas from southeastern Russia

Citation
Petrogenesis of alkaline and subalkaline lavas from southeastern Russia

Material Information

Title:
Petrogenesis of alkaline and subalkaline lavas from southeastern Russia
Creator:
Norrell, Suzanne E.
Place of Publication:
Tampa, Florida
Publisher:
University of South Florida
Publication Date:
Language:
English
Physical Description:
viii, 141 leaves : col. ill. ; 29 cm.

Subjects

Subjects / Keywords:
Alkalic igneous rocks -- Russia ( lcsh )
Subduction zones ( lcsh )
Dissertations, Academic -- Geology -- Masters -- USF ( FTS )

Notes

General Note:
Thesis (M.S.)--University of South Florida, 1998. Includes bibliographical references (leaves 43-44).

Record Information

Source Institution:
University of South Florida
Holding Location:
Universtity of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
025965284 ( ALEPH )
41883958 ( OCLC )
F51-00139 ( USFLDC DOI )
f51.139 ( USFLDC Handle )

Postcard Information

Format:
Book

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

PETROGENESIS OF ALKALINE AND SUBALKALINE LAVAS FROM SOUTHEASTERN RUSSIA by SUZANNE E. NORRELL A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Geology University of South Florida December 1998 Major Professor: Jeffrey Ryan, Ph.D

PAGE 2

Graduate School University of South Florida Tampa, Florida CERTIFICATE OF APPROVAL Master's Thesis This is to certify that the Master' s Thesis of SUZANNE E. NORRELL with a major in Geology has been approved by the Examining Committee on August 17,1998 as satisfactory for the thesis requirement for the Master of Science degree Examining Committee: p < c Member: M;fc Defatri;' Ph.D Member: Thomas J\fbfr, Ph.D."""

PAGE 3

ACKNOWLEDGMENTS Many thanks to all of the people who made this project possible: Pavel Kepezhinskas from USF and Vladimir Prikhodko and Anatoly Romashkin from the Institute of Tectonics and Geophysics, Khabarovsk, Russia for providing the samples from Russia and thanks also to Pavel and Dr. Marc Defant (USF) for financial support for most of the project; Dr. Kenneth Collerson at the University of Queensland, Brisbane, Australia for sample analysis; Dr. Micheal Bersch and the University of Alabama, Tuscaloosa, School of Mines and Energy Development for the use of their microprobe facilities and good trade practices (CD's for probe time what a deal); Dr. Thomas Juster (USF) for sitting in on a week's notice; and special thanks to Dr. Jeffre y Ryan for seeing this project through to the end, as well as financial support for the last 5 years, and giving me th e opportunity to obtain valuable (paid) experience with a plethora of analytical equipment and especially for not "holding m y hand" when it wasn't absolutely necessar y Most of all thanks to Mom and Blu e for hanging in there and having faith in me, even when 2 years turned into 6. Dad, this one's for you. I know you'd be proud.

PAGE 4

TABLE OF CONTENTS LIST OF TABLES ............. ................. ....... .... ............ .................................................. iii LIST OF FIGURES ....................................................................................................... v ABSTRACT ... ....... . ........ ... .... ...... .. ......... ............... ................ .. ............ ...... ..... ... ..... .. vi INTRODUCTION ......... .... ............. ....................... .......... ....... ............ ........... ...... ..... ... .. 1 REGIONAL SETTING AND SAMPLING .................. .................................. ........... 3 METHODS ........ ........... ...................... ...... ........... .............. .. ........... ............................... 9 GEOCHEMICAL RESULTS Petrology, Mineralogy and Mineral Chemistry ........................ ...... ................ 11 Mica ............................... ............ . ........... ............................................................ 14 Pyroxene ...................... ....... .............. ...... ........ .... . ........ ....... . . . . . ... .... . .... ..... 18 Amphibole ......................................................................................................... 22 Feldspar ........................................... ................. ...... ........ . ........................... ..... 23 Spinel .................................................................................................................. 24 Olivine .......................................................... ............................... ....................... 26 Ilmenite ........... ........... ......................................................... .............................. 26 Bulk Chemistry ...... .. .. . ... .. .. .... .... .. ... ... .. .. ...... .... .. ...... .. ...... .. ... .. . .... .... .. . . ... .. . .. 27 Major Elements ............ ............................................................ ,.................. ...... 27 Trace Elements ................... . ..................................... ....... ............... .......... ..... 30 Rare Earth Elements ........................................................................................ 32 Lead Isotopes .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. 34 DISCUSSION ... ............... ........ .... ........ ......... ... ...... ... ... ....... .......... ..... ... .... ....... ........ .... 35 Trace Element and Isotopic Constraints .... .......... ................ ............................. 37 A Role for Subduction? ...................................................................... .... .............. 41

PAGE 5

CONCLUSION . . ...................... ........ .... . ......... ................... .......... ..... ....... ................ 42 REFERENCES ..... ......... ....... ..... . ....... ............ ........ ............ ............ ....... ................ . : 43 APPENDICES ........................................... . ...... . .... ........ . ........... .... .... ...................... 45 APPENDIX A. PETROGRAPHIC DESCRIPTIONS .. ........................ ..... . ...... 46 APPENDIX B PHOTOMICROGRAPHS AND BACK SCA TIER IMAGES .... ....... .... ......... ........ .... ..... ........ ... 56 APPENDIX C. ANALYTICAL STATISTICS ........ .... .............. ........ ............. 102 APPENDIX D. MINERAL D ATA ...... ... ...... ..................... .................... . .... .... 105 APPENDIX E BULK CHEMISTRY AND C IPW NORMS . .... .......... . .... 129 11

PAGE 6

LIST OF TABLES Table 1. Rock Classification .......... ...... .... .... .......... ...... ............... ...... ................. 12 Table 2. Mineralogy .................. ....... . ...... .............. ......... .............. .............. ........ 13 Table 3. Analytical Statistics ..................................... ............ . .......................... .. 103 Table 4. Mica compositions ............... ...... . ................................ ..... ............ ... .. 106 Table 5. Pyroxene compositions ........................................ ....... ...... ......... ......... 110 Table 6. Amphibole compositions ... .......... ..... ............. ............... .......... ......... ... 116 Table 7. Feldspar compositions ............... ...... .... ............................... ................. 118 Table 8. Spinel compositions ................ ........................ ....... .... ...... ........ .... .... 120 Table 9. Olivine compositions ......... ..................... ............ ....... ................ ........ 123 Table 10. Ilmenite compositions ................................ .... ............ . ...................... 125 Table 11. Chloritized mica compositions ......... ........ ...... ................................ 126 Table 12. Sphene compositions ..... ... ....................... ... ...... ... .......... ...... ..... ....... 127 Table 13. Rutile compositions ......................................... ............... . . ..... .... ....... 127 Tab l e 14. Chlorite compositions ........ .............. ... ... ... ............... .......... ... ............... 128 Table 15. Serpentine composition ............... ..... ... ..... ..... .... ......... ....... ................ 128 Table 16. :N!ajor element data (wt % ) ...... .................. ..... ...... .... ...... ...... ...... .... 130 111

PAGE 7

Tabl e 17. C IPW normative mine ral s ..... .... . . . . .... ..... .............. ... ..... . ....... ..... 1 33 Tabl e 18 Trace element data (ppm) . ..... ..................... ............ ....... .... ..... ....... ... 135 Tabl e 19 Rare earth element data (ppm) . ........ ........... . ............ ....... .......... .... 139 Ta bl e 20. L ead i so tope s ......... . .... ......... . ......... ...... ... ..................................... .... ... 1 4 1 i v

PAGE 8

LIST OF FIGURES Figure 1. Regional Tectonics of Southeastern Russia ....................................... 4 Figure 2. Geologic map of extreme Southeastern Russia ................................ 5 Figure 3. Mica: Ti02 vs FeO (wt%) .................................................... ................. 15 Figure 4. Ti02 vs FeO (wt % ) zoning trends in Badjal micas ................... ...... 15 Figure 5. Mica: AI203 vs Ti02 (wt % ) ................................................................ 16 Figure 6. Al203 vs Ti02 (wt % ) zoning trends in Badjal micas ................... 16 Figure 7. Mica: Al203 (wt%) vs mg # ................................................................ 17 Figure 8. Pyroxene: Ti02 vs FeO (wt%) ............................................................. 18 Figure 9. Pyroxene: Ti02 vs AI203 (wt%) ........................................................ 20 Figure 10. Ti02 vs AI203 (wt%) zoning trend s in South Sikhote Alin pyroxene s. .......................................................... 20 Figur e 11. Pyroxene: Na20 vs AI203 (wt % ) ....................................................... 21 Figure 12. Na20 vs Al203 (wt % ) zoning trends in South Sikhote Alin pyroxenes ................ ......... ...... ..... ....... .......... ...... 21 Figure 13. Amphibole: CaO/Na20 vs Al203/Ti02 (wt%) .............. ................ 22 Figure 14. Feldspar: An-Ab-Or ................ ............................................. ...... ........... 23 Figur e 15. Spinel: Al203 vs Cr203 (wt%) ........................................................... 24 Figure 16. Spinel: FeO vs Ti02 (wt % ) ................................................................. 25 v

PAGE 9

Figure 17. Harker Diagrams ... ..... ............................................ ...... .............. . ..... . 28 Figure 18. Li/Yb vs D y /Yb .... .............................................. ... .... . .... ... ..... ....... ....... 31 Figure 19. Sr vs Ba (ppm ) .... ............ ........ ............. ..... ..... . . . ............... ......... ......... 31 Figure 20. C hondrite n ormalized REE trends ............................... .......... . ......... 33 Figure 21. C h ondrite normalized m ul ti-element comparison ..... ... .......... .... 33 Figure 22 Lead isotopes .. ......... ..... .... .... ..... .. .... ..... ..... ........... ... . .... . . .............. .. ... 34 Figure 23. FeO vs MgO (wt% ) ....... .... ..... .................... .............. ..... ....................... 37 Figure 24. Ti02 vs MgO (wt % ) ..... ......... ... . .... ........ ...... .............. .............. . ...... .... 38 Figure 25. A1203 vs MgO (wt% ) .... ..... ........... ........................... ........... ....... ........ 38 Figure 26. A l203 vs T i02 (wt % ) . ........ ..... . ...... ......... ........ ...... ......... ....... .......... 39 Figure 27. Elemental comparison of a l kaline and arc related r ocks with r epresentative Russian samples ....... . ............ . ....... ..... 40 vi

PAGE 10

PETROGENESIS OF ALKALINE AND SUBALKALINE LAVAS FROM SOUTHEASTERN RUSSIA by SUZANNE E. NORRELL An Abstract Of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Geology University of South Florida December 1998 Major Professor: Jeffrey Ryan vii

PAGE 11

Alkaline magmatic centers are common across southeastern Russia. These centers range in age from Jurassic to Cretaceous, and are intruded into a variety of crustal rock types. Active subduction is recorded in this region back to the Precambrian, which suggests a possible connection between the alkaline magmatism and processes associated with subduction. Also, placer diamonds are found in association with these alkaline centers, suggesting petrogenetic affinities to kimberlites and lamproites. The rocks are generally porphyritic, and a number are essentially magmatic breccias with abundant crustal xenoliths. Many of these rocks show compositional trends indicative of magma differentiation and/or crust-magma mixing proceses and many of the more magnesian samples are heavily altered, possibly by cognate COz-HzO fluids. Lead isotopes indicate that many of the Russian alkaline lavas are consistent with the mixing of a kimberlitelike source and crustal materials with high 206/204Pb Elevated 207 /204fb and high volatile contents are the only good geochemical evidence linking alkaline magmatism in Russia with subduction-related processes, as LILE and HFSE systematics in these lavas are consistent with alkaline rocks globally. Abstract Approved: (M@OI'Ifu'ofessor: Jeffrey Ryan, Ph.D ProfeJsbr, Department of Geology Date Approved: "'Z I Lt/ cr i Vlll

PAGE 12

INTRODUCTION The origins of alkaline rocks have long been the subject of debate. Alkaline rocks are found in oceanic and continental intraplate settings, as well as in subduction zones, and are commonly associated with a variety of subalkaline igneous rocks. Early research on alkaline rocks was fueled by their economic potential as sources of diamonds and rare metals. Recent studies have focused on explaining their unusual chemical signatures, in particular, their characteristic high concentrations of large ion lithophile (LILE) and high field strength elements (HFSE), and because they often host mantle and crustal xenoliths. As the chemical signatures of alkaline rocks suggest they are derived from enriched mantle sources, we must address the question of how mantle enrichment occurs Hawkesworth et al. (1984) s uggests 2 enrichment processes: (1) fluid-mediated metasomatism that change s the mantle's mineralogy, chemistry and i s otopic ratios and (2) low degrees of partial melting which fractionate certain elements and elevate LILE concentrations. The proximity of subduction zones can add further complications in the form of H20 and C02 as well as sediments from the downgoing slab. Both meta somatic and melting processes help to create the chemical fingerprint of alkaline magmas in varying degrees For instance, isotopic evidence sugges ts the incorporation of species derived from subducted marine sediments in most potassic alkaline melts and eve n in carbonatites (Nelson et al., 1986 ; Nelson, 1992). Also, Barker (1987) suggested that alkaline magmatism in Texas is linked to subduction of the Farallon plate and kimberlites in South 1

PAGE 13

Africa have been linked to low-angle subduction (Helmstaedt & Gurney, 1984) On the other hand, in Hawaii volcanism generally begins and ends with alkaline magmatism (Clague, 1987), which suggests that these alkaline magmas are generated by low degree melting. Both alkaline and arc-derived magmas have high volatile contents (F, Cl, H20, C02) and are tyically associated with explosive eruptions. However, in terms of trace elements, alkaline rocks are most similar to ocean island basalts (OIB). Like arc lavas, alkaline rocks are typically high in LILE's (K, Ba Rb, Sr, Cs), but they are far richer in HFSE's (Ti, Nb, Ta, Zr). Arc-related alkaline lavas and back arc basin basalts (BABB) are both commonly enriched in HFSE's and are found in close association with typically HFSE -depleted arc rocks, suggesting heterogeneous mantle source regions. My research focuses on the petrologically diverse alkaline and subalkaline rock associations from southeastern Russia. Episodes of subduction dating back to the Proterozoic raises the possibility that many of the alkaline rocks in this region can provide geochemical evidence of subduction-related processes contributing to alkaline magmatism. The individual suites potentially reflect a broad cross-section of mantle compositions from cratonic to subductionrelated. Also, diamonds have been found in stream deposits in most of these areas, raising the possibility of kimberlite and lamproite associations. Mineral and bulk chemistry (particularly trace elements) as well as Pb isotopes are used to identify evolutionary trends and to discern any chemical signatures indicative of kimberlite/ lamproite affinities and/ or subductionrelated processes. The Russian alkaline rock chemistry and mineralogy is compared to the kimberlite and lamproite data from (1986; 1991), lamprophyre data from Rock (1987) as well as alkaline rock data from other sources for classification purposes. 2

PAGE 14

REGIONAL SETTING AND SAMPLING Southeastern Russia is a complex terrane of crystalline massifs and cratonic blocks sutured together by mobile belts and magmatic arcs, all of which grow younger toward the Pacific Ocean. The mobile belts and arcs range in age from Proterozoic (Stanovoy), Paleozoic to Early Mesozoic (:tvlongol-Okhotsk), Cretaceous to Early Tertiary (Okhotsk-Chukotsky), to Late Tertiary (Sikhote Alin), and are bounded by the Quaternary subduction zone of the Kurile-Kamchatka arc (figure 1) It is thought that the crystalline massifs represent disintegrated blocks of the North China craton (Natal'in, 1993) which were sutured together, forming most of Eastern Russia. This area may provide evidence relating subduction processes to the genesis of alkaline rocks because several episodes of active subduction predate the various alkaline suites. Thus, they have the potential for originating from subduction-modified mantle. Samples were collected from a variety of tectonic settings and emplacement styles and generally range in age from Jurassic to Cretaceous. The samples are from the Sikhote Alin magmatic arc (Anui and Sikhote Alin samples), the Siberian craton (Ingili), the Philip pluton in Kamchatka and the mobile belts surrounding the Buriensky and Khankai cratons (Badjal, Khankai and North Korea). Emplacement styles include volcanic pipes and dikes and sills. The country rock surrounding most of these locations consists of metasedimentary and basaltic sequences (quartz ite, shale, schist and various basaltic rocks). Figure 2 shows the complex geology of the region and where diamonds or indicator minerals were found. 3

PAGE 15

Figure 1. Reginnal Tectonics of Southea8tem Ru$Sia; area indicated by box shown in detail in 2. I r Okhotsk Sibcrlnn craton Bureinsky craton craton Sea of Okhotsk (J 0 D o 0 /Jo tP t::J Sample Localities 1 Philip pluton, 2 Anui, 3 NE S i khote Alin, 4 C. Sikhote Alin 5 S Si.khote Alin, 6 Khankai, 7 N 8 Bad j al, 9 Ingili

PAGE 16

Figure 2. Geologic map of extreme Southeastern Russia Geology of Southeastern Russia ...... ,... f::.'

PAGE 17

Legend c:J1 IIIJ 3 r """l 5 6 l =lfi118 r .=;.vj 9 r-::-'110 l r<;N"I12 L..___j .. 1 5 c=J]16 lliiiJ1 7 .. 1 8 111]19 liiiJ20 -22 r: : < 123 24 !m:M25 CJ27 .. 28 -29 .. 30 -31 -32IIJI33 11138 .. 39 Anu i C S i k hote Ali n o S .Sikho t e Alin NE Sikhot e Al i n 6 Badjal K han kai o N.Korea <.n

PAGE 18

Figure: 2 (cont'd): Color Legend: Geologic map of extreme Southeastern Russia (Scale: 1:2,500,000) 1-18: Convergent margin complexes: 1-9: volcanic and plutonic belts (magmatic arcs): 1Carboniferous-Permian Western Sikhote Alin magmatic belt 2-Late Paleozoic Tyrmo-Bureinsky magmatic belt 3-Triassic-Jurassic(?) Stanovoy plutonic belt 4-TriassicJurassic Udsky magmatic belt 5Cretaceous Khingan-Okhotsk magmatic belt 6Albian Alchansky volcanic belt 7-Cretaceous Okhotsk-Chukotsky magmatic belt 8 Late Cretaceous-Paleogene Okhotsk-Chukotsky magmatic belt 9 Aptian-Albian Samrginsky volcanic belt 10: Triassic-Jurassic fore arc sedimentary complexes circled numbers: (3) Unja-Bomsky (4) Toromsky 11-17: Accretionary complexes: 11Paleozoic and Mesozoic with well-developed imbricated thrust sheet structure circled numbers: (5) Galamsky (6) Ulbansky 12Paleozoic and Mesozo i c with an unidentified internal structure 13Jurassic: circled numbers: (7) Samarkinsky (8) Olginsky 14-17: Early Cretaceous complexes of the Khingan-Okhotsk active convergent margin: 14Khabarovsky melange 15-Amursky accretionary prism 16Kisilevsky-:tvlanominsky complex 17pre-Barremian Taukhinsky complex 18: South Aldan system of Jurassic back-arc sedimentary basins 19-26: Collision margin complexes: 19-23: lvfarine and continental sedimentary complexes (fore-arc troughs structural depressions): 19Silurian -Devonian 20Triassic 6

PAGE 19

Figure: 2 (cont'd): Legend: 21Jurassic-Early Cretaceous (undeformed to weakly deformed): circled numbers: (9) Udsko-Zeisky trough (10) Ushumunsky depression 22Jurassic-Early Cretaceous strongly deformed 23Early Cretaceous 24-26: Magmatic complexes (volcanic-plutonic belts, intrusive complexes): 24Devonian 25Early Cretaceous Umlekansky-Ogodzhinsky volcanic-plutonic belt 26Early Cretaceous Khungariysky, Sandinsky, Tatibinsky granitic complexes 27-28: Rift-related rock complexes: 27Cenozoic extensional depressions 28Neogene-Quaternary alkaline basaltic and tholeiitic volcanic rocks 29-32: Passive continental margins and shelf complexes: 29Late Proterozoic-Early Paleozoic 30Middle Paleozoic 31Late Paleozoic-Triassic 32Triassic-Jurassic and Jurassic-Early Cretaceous 33: Early Cretaceous pull-apart basins 34: Accreted terranes : circled numbers: (11) Badjal (12) Norsko-Sukhotinsky (13) Spassky (14) Laolin-Grodekovsky 35: Mesozoic suture zones: 1-Mongol-Okhotsky 2 -Amursky 36: Early Precambrian metamorphic basement of the Siberian craton 37-38: Cratonic blocks (metamorphic complexes): 37metasedimentary complexes 38metaophioli tes : circled numbers: (15) Anuy structural dome (16) Khorsky wedge (17) Sergeevsky ophiolite complex 7

PAGE 20

Figure: 2 (cont'd): Legend: (18) Gonzhinsky block (19) Mamynsky block (20) Turansky block (21) Malokhingansky block (22) Okrainsky block 39: Early Paleozoic and Precambrian(?) intrusive complexes of cratonic blocks 40: Sedimentary basins of unknown origin: circled numbers: (23) Sredneamursky (24) Amur-Zeisky 41: Inferred suture zones: circled numbers: (25) Garsky (26) Kabarginsky (27) Spassky 42: Regional faults (lineaments): circled numbers: (28) Central Sikhote Alin dextral strike-slip fault Note: small black numbers and symbols represent different diamond "indicator" minerals found in local streams and/ or rocks 8

PAGE 21

METHODS Samples for major and trace element analysis by DCP were prepared via flux fusion in a 1:4 ratio with lithium metaborate (LiB02) flux. All samples were oxidized at 900-1000 C for 15-20 minutes before fusing to determine loss on ignition (LOI) and to improve digestion. Fusion temperatures were maintained at 1100-1115 Celsius to prevent sticking. The fusion beads were dissolved in 50 mL of a 2 N HN03, 10 ppm Germanium (Ge) solution (added as an internal standard). A 2.5 mL aliquot of this solution was diluted to a total volume of 50 mL in a 2 N HN03, 1000 ppm Li (added as a peak enhanc er), 10 ppm Ge solution for major element analysis. Calibration was done using 5 USGS reference materials with each sample set. One reference sample was prepared and run as an unknown in order to calculate analytical precision and accuracy (see Appendix C). The reference materials used for calibration included: BHV0-1, UB-N, BIR-1, AGV-1, QL0-1, STM-1. Other whole-rock chemistry was collected at the University of Queensland by Dr. Kenneth Collerson and by X-Ray Assay Laboratories (XRAL). Analytical procedures forB, Be and Li were based on the methods outlined in Ryan & Langmuir (1987, 1988, 1993) and Bebout et al. (1993) Samples for Beryllium (Be) and Lithium (Li) analysis were digested via a 4:1 mixture of HF:HCl04 and deionized water (DI-H20). After dissolution, the samples were evaporated to drive off HF and then resuspended in 10 mL of DI -H20, 3 mL of ultrapure HN03, 3 mL of trace metal HCl and 15 drops of ultrapure HCl04. Samples were dried completely before final dilution in 20 mL of 2 N ultrapure HN03 and DI-H20 to a final volume of 50 mL. Solution analysis 9

PAGE 22

was by direct current plasma emission spectrometry (DCP-ES), using standard additions techniques. The wavelengths used for Be and Li analysis were 313 112 nm and 670.700 nm, respectively. Analytical uncertainties are+/-5 % for both Be and Li. Samples for Boron (B) analysis were flux fused in platinum (Pt) crucibles in a 1:4 ratio with sodium carbonate (Na2CD3) flux. The samples were gradually heated to a maximum temperature of 1025 Cover a 2 hour period, cooled to room temperature and then placed in Savillex jars in 80 mL of DI H20 (which had been run through anion exchange to remove borate) to dissolve the fusion cakes. After extraction from the crucibles, the samples were centrifuged to separate insolubles and rinsed thoroughly. Supernates were decanted into the Savillex jars, evaporated until dry and neutralized with 20 mL of DI-H20 and 5 mL of ultrapure HN03. The samples were then allowed to stand to permit precipitation of silica. The silica was separated by centrifuging and rinsed 3 times using 5-10 mL of DI-H20 and HN03. Sample solutions were diluted to a final volume of 50 mL in polymethylpentene (PMP) volumetric flasks. The solutions were then filtered into plastic bottles for DCP analysis by standard additions. The wavelength used forB analysis was 249.773 nm. Analytical uncertainties are +I-10 % for B. Nlineral data was collected via polished thin sections using the JEOL JXA8600 Superprobe with vVDS and EDS capabilities at the School of Mines and Energy Development (SOMED), University of Alabama at Tuscaloosa. The accelerating voltage was typically 15 kV and the beam diameter was <5 microns. Count times were as long as 20 seconds for the less abundant elements such as Ni, Cr and F. Data were compiled and reduced using dQuant for Windows YVDS analysis program produced by Geller Industries. 10

PAGE 23

GEOCHEMICAL RESULTS Petrology, Mineralogy and Mineral Chemistry 11 The Russian samples represent a variety of igneous textures and rock types (table 1). Badjal samples have porphyritic and phaneritic textures (calc alkaline lamprophyres and peridotites, respectively) as well as several brecciated samples. The brecciated rocks from Badjal contain abundant crustal xenoliths (up to 50% mass in Badjal samples) including schists, slates, limestones and quartzites, and a variety of basalts. The pyroxenite from Philip pluton is the only other phaneritic rock. Most of the other samples have porphyritic textures and are typically alkali basalts, alkaline lamprophyres as well as phlogopite-amphibole and olivine-pyroxene cumulates. Appendices B and C contain detailed petrographic descriptions and photographs of both thin sections and hand samples as well as back scatter images. Mineralogically, the rocks from all Russian localities consist of some combination of pyroxene, mica, amphibole, feldspar and olivine with accessory spinel, ilmenite, sphene, apatite and zircon (table 2). Calcite, serpentine and chlorite are also abundant as veins, as pseudomorphs (after olivine, amphibole and mica) and as products of secondary alteration. Compositionally, the primary minerals vary both within and between localities and within samples; for instance, samples from South Sikhote Alin contain 3 generations of pyroxene, some of which are zoned. In many cases, it was difficult to determine if minerals were xenocrysts or primary phases. To put constraints on mineral compositions, the mineral data is compared to that of kimberlites, lamproites and ultramafic lamprophyres (UtviL) (data

PAGE 24

12 from Mitchell, 1986; 1991; 1995). I chose these rock types because they contain minerals with varying compositions (within samples) representing several generations or origins These mineralogical variations record temperature and/ or pressure regimes experienced during magma evolution This compari son will help to determine if crystallization trends in our rocks are similar to those in kimberlites, lamproites or UML. Table 1. Rock Classification Anui P-140's olivine cumulates (serpentinized) AP-1 pyroxene cumulate Badjal P-170' s homblende-phlogopite peridotites LDN 20-18 andesite All Others calc-alkaline lamprophyres/lamprophyre breccias S. Sikhote Alin P-15 & P-55 alkali basalts P-9 & P-45 amphibole-phlogopite dike cumulates C Sikhote Alin 4-130 's alkaline lamprophyres NE Sikhote Alin 4-100 s alkaline lamprophyres Khankai A-5 alkali basalt All Others basaltic plagioclase cumulates Ingili 558 7 phlogopite carbonatite All Others alkali basalts Philip pluton F-1 amphibole-phlogo pite pyroxenite N. Korea All olivine cumulates (serpentinized)

PAGE 25

Table 2. Mineralogy Sample# Badjal P 1 7 1 X 1 DN-134e DN-164 DN-144 DN-118 DN-120 LDN 20-18 LD N-23 3-105 3-108 3-113 3-121 3-122 Ingili 5098 5109 5351 55 87 S.Sikhote Alin P-9 P-15 P-45 P-55 C.Sikhote Alin 4 135 4 136 Anui P-141 P-144 P-145 P-147 AP1 NE Sikhote Alin 4-103 Khankai A 13 V-4-7 Philip pluton F 1 ab=abundant e=common Amph Pyx ab a b c ac ab c c c c ab c ab ab ab ab ab ab ab c ac ab ab ab c ac c ab ab ac=accessory r =r are 13 Oliv Phlog Bio Feld Spinel llmen ab ab ac ac ab m ac ac c ac ab m ac ac c ac c ac c ab ac ac a b a b ac c rims ac c rim s ac c rims ac c rims ac c rims ac ab ab ac c ab ac ab a b c ac ac ac ac c ac c ac ac r r ab ab ab a b ab ab ab ab m ac r ab ac ab ac c ac ac m=matnx on l y

PAGE 26

Mica: Mica is abundant in most of the samples. It is present as phenocrysts, xenocrysts and as a primary phase. Most of the Badjal micas are thought to be xenocrysts or at least early crystallizing phases (except the peridotite micas). Chemically, the mica has a range in AI, Ti, Fe and Mg contents but is predominantl y phlogopite. Biotite only occurs as thin rims around phlogopi t e (3105, 3-108) and as matrix grains (AP-1). 14 Figure 3 shows that overall, the samples trend toward increasing Fe with biotite from Badjal and Anui having the highest overall Fe contents. Badjal peridotite micas have the lowes t Fe and Ti contents The Russian micas have higher Fe contents than kimberlite, lamproite or UML mica but have similar Ti contents. Zoning in Badjal micas show two different trends (figure 4): (1) rapidly increasing Ti and nearly constant Fe (DN-120) and (2) rapidly increas ing Fe and nearl y constan t Ti toward the rim (3-105, 3-108, X-1). Composi tionally, micas in 3-105 and 3 108 are phlogopite cores with biotite rims. Micas in the Badjal breccias (DN-118, DN134E, DN-144) have slightly lower Fe and Ti contents than the porphyritic sampl es (DN-120, DN-164, X-1). The micas show decreasing Ti and AI contents (figure 5). Among the Russian samples, Ingili micas have the lowest Al contents while Bad j al micas have the highest. Badjal micas reach higher Al/Ti ratios than kimberlite, lamproite and UN1L mica and seem to form an extension of the kimberlite field. The peridoti t e micas have t he lowest Ti contents and show a range of A l contents within a sample. Zoning in Badjal micas show two trends (figure 6): (1) decreasing Ti and Al (3-105, 3-108) and (2) increasing Ti with decreasing Al (DN-120). Micas from DN120 show dramatic Ti enridunents from core to rim and follow their own trend. Most of the other Badjal micas evolve from high Al/Ti toward lower r a tios.

PAGE 27

7 Fi 6 /}. 5 Anui aD 6. Badjal 4 0 lamprophyres Ti02 OD Badja l b r eccias 6. Badja l per idotite Ti02 3 ite & D S.Sikhote A lin fl. lngili 2 .& Philip pluton 1 0 0 5 10 15 20 FeO Figure 4. Ti02 vs FeO (wt%) zoning trends in 6 5 Badal micas. core 5.5 4.5 Badjal lamprophyre Badjal b r eccias 3.5+--....----..,....-or-----,.-...,--...----,.-....... ----1 8 10 12 14 16 18 FeO 15

PAGE 28

20 Fi ure 5 Mica: Al 203 vs TiOZ (wt%) D Al203 1 5 0 2 4 TiOZ 6 8 Anui b. Badj al lamprop h yres Badja l breccias b. Badjal peridotite D S.Sikhote Alin b. lngili .A Philip pluton Figure 6. Al203 vs TiOZ (wt%) zo n ing trends 18_ 5 i n Bad"al micas. 17.5 Al203 16.5 15.5 c ore ____. r i m A b. Badjal l amprophyre Badjal breccias 3.5 4.5 5.5 6 5 TiOZ 16

PAGE 29

17 Phlogopite in the Russian rocks shows a range in AI contents over a relatively narrow range in mg # (figure 7). from the Badjal peridotites are similar to kimberlite and UML micas in terms of their high mg #'sandAl contents; however, most of the Russian micas have relatively lower mg #'s. Ingili micas approach lamproite mica compositions, which have lower AI contents Zoning in Badjal micas all show similar trends with decreasing mg #'sand decreasing Al contents toward the rim. This plot also distin guishes phlogopite and biotite, based on their Fe/Mg ratios. The biotite compositions from Badjal are rims around phlogopite cores while the biotites from South Sikhote Alin are late crystallizing matrix grains. 6 ll. An u i 1 5 ll. D. Badja l a lamprophyres Badjal breccias Al203 6. Badjal peridotite 0 S.Sikhote A lin 6. lngili 10 A Philip pluton 45 55 65 75 85 95 mg #

PAGE 30

Pyroxene: Pyroxene is present in almost all of the samples. It occurs as macrocrysts, xenocrysts and as a primary phase. Compositionally, the pyroxenes range from aegirine to diopside, and have variable AI, Ti, Fe, Cr and Na contents. Orthopyroxene occurs only as altered xenocrysts and in xenoliths with olivine. Pyroxenes exhibit compositional zoning and seive textures and some show signs of resorption and exsolution. Compositional variability in pyroxenes within a sample is common. F ure 8. Pyroxene: Ti02 vs FeO (wt%) 6 I 0 0 B 5 0 Anui 0 1::::,. Badjal 0 lamprophyres 4 CJ CJ Badjal breccias .P-0 D C Sikhote Alin CJ 0 S.Sikhote Alin Ti02 3 NE Sikhote Alin o Bo 1::::,. lngili o!O Khankai 2 Philip pluton CJ 0 0 2 4 6 8 10 12 FeO 18 Overall, Russian pyroxene trends show increases in Ti at constant to slightly increasing Fe (figure 8). Pyroxenes from Central and South Sikhote Alin have the highest Ti contents, while Ingili pyroxenes have the lowest. The Russian pyroxenes have generally higher Ti and lower Fe contents than kimberlite, UML or lamproite pyroxenes though there is overlap between

PAGE 31

19 Russian and lamproite data at low Ti contents Matrix pyroxenes from Ingili show lower Fe and higher Ti contents than phenocry s tal pyroxenes. Zoning in Badjal and South Sikhote Alin pyroxenes also show increases in Ti and Fe toward the rim. Pyroxenes from South Sikhote Alin fall into 3 groups: (1) low Ti and relatively high Fe, (2) moderate Ti and relatively low Fe and (3) high Ti and relatively low Fe. Figure 9 shows that all of the Rus sian pyroxe nes have increasing Ti and AI contents. Pyroxenes from Philip pluton, Ingili and the xenocrysts from South Sik.hote Alin have the lowest Ti and AI, while pyroxenes from Central and South Sikhote Alin have the highest Ti and Al. The Russian pyroxenes reach much higher Ti and AI contents than kimberlite, lamproite or UML pyroxe nes and split into 2 groups, mainly due to higher Ti contents. Matrix pyroxenes from the Ingili samples have higher Ti contents than associated pyroxene phenocrysts. Zoning in pyroxenes from Badjal and South Sikhote Alin show increasing Ti with constant to increasing AI contents toward the nm. Overall the Russian pyroxenes trend toward decreasing N a and constant or decreasing AI (figure 11). Ingili and South Sikhote Alin p yroxenes reach the highest Na contents among the Russian sample s. The Ingili p yroxe nes res emble thos e from kimberlites and UML's, w hile the other Rus sian pyroxenes have trends similar to tho se in larnpr oi te s but r eac h much higher values Zoning in Badjal pyroxenes show con s tant Na with constant to increasing AI toward the rim. South Sikhote Alin pyroxenes have hvo trends (figure 12): (1) slightly decreasin g Na with inae a sing AI and (2) decreasing Na with constant Al toward the rim.

PAGE 32

6 Fi ure 9. 5 4 Kimberlite, UML & Lamproite Pyx 2 < OIEJ 0 0 A 0 0 2 4 6 8 10 12 Al203 ) Anui Badjal lamprophyres Badjal breccias C.Sikhote Alin o S.Sikhote Alin NE Sikhote Alin fl. lngili Khankai A Philip pluton Figure 1 0. TiOZ vs Al203 (wt%) zoning trends 6 in South Sikhote Alin roxenes. core 5 4 TiOZ 3 2 0 2 4 6 Al203 8 10 12 20

PAGE 33

Na20 N a20 __ 1_1_. __ 1.5 [I]Kimbe ite & UML yx 0 6 1.0 6 0 D. 6 D. f) D. 0 0 oO 0 0 B 0 Cb 0 eo 0.5 0 D. A 2 4 6 8 10 12 Al203 Anui Badjal lamproph y re s Badjal breccias C.Si khote A l i n S.Sikhote Alin NE Sikh ote Alin lngili Khankai Phil ip pluton Figure 1 2 Na20 vs A l203 (wt%) zoning trend s 1 .so in South A lin roxenes. c ore )llr rr m 1 .25 1.00 0.75 0 .50 0 2 0 2 4 6 A l 203 8 10 12 21

PAGE 34

22 Amphibole: Amphibole occurs as phenocrysts, xenocrysts matrix and thin rims on pyroxenes It is predominantl:y titanian, calcic amphibole (kaersutite), although hornblende occurs in the Badjal peridotite s Composi tionally, amphiboles show wide variations in Ti, AI, Na, Mg and Fe content s Amphibole is often pseudomorphically replaced by chlorite and commonly contains Ti-magnetite and ilmenites with very high Ti contents. Figure 13 is a classification diagram used by Rock (1987) to discriminate among sodic and calcic amphiboles The Russian amphiboles are predom inantly kaersutites Hornblende plot s near the hastingsite field due to larger difference s in AI and Ti contents. Amphiboles in lamproites and UML are predominantly K-richterite s and kaer s utite s re s pectively, while kimberlite s do not contain primary amphibole Ca0/Na2 0 Figure 1 3. Amphibole : Ca0/ Na20 vs 1 OO AI203 /Ti02 .1 Hastings 1:::. Badjal lamproph y res 1:::. Badjal peridotite ......... D S.Sikhote Alin MagnesioRiebeckite NE Sikhote A lin Khankai A Philip pluton .01 .1 1 10 100 AI203 / Ti02

PAGE 35

23 Feldspar: Feldspar occurs as xenocrysts, phenocry s ts and matrix and is typically very altered Alteration resulted the albitization of the original feldspar or its replacement by calcite Some samples contain fresh K feldspar rims around plagioclase cores (Badjal), while others have altered feldspar cores with relatively fresh plagioclase rims (Khankai). In several samples concentric zoning is evident even in heavily altered grains. Figure 14 shows that most of the feldspar is plagioclase (generally >Anso). K-feldspar is only present as rims and xenocrysts. Concentric zoning in phenocrys t s from the Badjal andesite trends toward less calcic plagioclase (Ans7-An7o) F i gure 14. Feldspar: A nA b-Or (mol%) Or !). Badjal lamprophyres Badjal breccias 0 S .Sikhote A lin Khankai A Phi lip pluton core to rim

PAGE 36

24 Spinel: Spinel is very abundant in some samples and rare in others Spinel commonly forms thin rims around serpentinized olivines, fresh and chloritized amphiboles and xenoliths, and has a wide range in AI, Ti, Cr, Mg and Fe contents. It is commonly zoned with magnetite rims surrounding Cr rich cores (particularly in the Anui samples). Figure 15 shows that the Cr-and Al-rich spinels scatter across the kimberlite field and reach AI/ Cr ratios similar to kimberlite spinels. The spinels with high A I I Cr ratios are typically found associated with phlogopite in the Badjal samples and pyroxenes and olivines in other samples. The Al rich spinel from South Sikhote Alin is a symplectite in an OPX xenocryst and is the result of retrograde reactions. Fi ure 1 5. Spinel: Al203 vs Cr203 (wt%) 20 Anui 1:::. Badja l 15 lamprop h yres A l203 Badjal breccias C.Sikhote Alin 10 0 S.Sikhote Alin NE Sikhote Alin 1:::. lngil i 5 Cr203

PAGE 37

25 Figure 16 shows that spinels have 3 different trends in Fe and Ti : (1) increasing Fe and Ti (Anui Sikhote Alin), (2) increasing Fe and decreasing Ti (Badjal Ingili), and (3) increasing Fe and constant Ti (Badjal). South Sikhote Alin spinels trend toward high Ti, while spinels from Central and Northeast Sikhote Alin have consistently low Ti contents Badjal spinels show a wide range in Fe contents and a fairly restricted range inTi contents The Russian spinels look similar to larnproite spinels, which also reach high Fe contents Kimberlite spinels generally have lower Fe contents than the Russian or lamproite spinels, although the Ti-magnetites from South Sikhote Alin samples are compositionally similar those in kimberlites. 100 Fi ure 1 6. Spinel: FeO vs Ti02 (wt%) 80 0 60 Anui D. Badjal FeO lamprophyres Badjal breccias 40 C.Sikhote Alin 0 S Sikhote Alin NE Sikhote Alin 20 D. lngili 0 Ma net te Ti-ma 0 10 20 30 Ti02

PAGE 38

26 Olivine: Olivine is found only in a few samples: the Badjal peridotites, 2 samples from South Sikhote Alin and the Anui samples. Olivine is present both as xenocrysts and phenocrysts (based on kink banding and euhedral crystals, respectively), in xenoliths and is pseudomorphically replaced by serpentine in the Anui samples. Olivine shows wide variations in Fe and Mg contents in the South Sikhote Alin samples where it reaches the highest mg #'s (63-90). Olivine from the Badjal peridotites have slightly lower mg # 's 80) and are compositionally consistent throughout the rock. Ilmenite: Ilmenite is abundant in many samples and has variable Fe Ti and Mg contents. Commonly, it is the only oxide present and is often associated with amphibole and mica Ingili ilmenite s have a range of compositions within a sample and grade into Ti magnetites. The Rus sian ilm e nites generally have lower Mg contents than ilmenites from kimberlites. High Ti contents (u p to 71 wt% ) in grains f r o m LDN 20-18 may represent another mineral which is synonymous with ilmenite b u t contains more Ti (crichtonite).

PAGE 39

27 Bulk Chemistry Major Elements: Table 16 lists the major element data. Many of the Russian samples are extensively altered and some contain abundant crustal xenoliths, which affects their bulk chemical compositions. Alkali elements in particular can be dramatically redistributed by alteration. In some samples, feldspars are calcitized in others they are albitized. Also, Ingili samples have been completely leached of K due to the replacement of phlogopite by chlorite. Thus, typical alkaline classifications based on alkali elements are unreliable without mineralogical data. We instead look for patterns in the context of sample mineralogy and degree of alteration combined with bulk chemistry. Table 17 presents the CIPW normative compositions which demonstrates their Si02-undersaturated, alkaline character. Figure 17 plots elemental abundances versus Si02 contents. These diagrams are useful in distinguishing evolutionary trends in suites of related rocks. Aluminum, Na and K generally increase with increasing Si02 while Ti, Mg, Fe and Ca decrease with increasing Si02. These trends may be indica tive of low-pressure magma evolution involving crystal accumulation and/ or fractionation processes. However, samples from Badjal show trends that may reflect crust/ magma mixtures (particularly in the brecciated rocks). The high AI contents in many of the Badjal samples may reflect plagioclase accumulation in some rocks and high H20-vapor pressures in other rocks. The Ingili samples, several of which are heavily altered, have high Ti, Fe and Ca (>50 wt% ) contents due to the abundance of calcite, and the accumulation of Fe-Ti oxides, ilmenite and rutile. The olivine cumulates from N. Korea and Anui are the most magnesian rocks due to the accumulation of magnesian-olivine. The high Fe contents in the olivine cumulates may be the result of abundant magnetite.

PAGE 40

25 Fiaure 1 7. Harker Diaarams 20 1 5 6. 6. 6 8 6 A l 2o3 0 i:!J.A 0 ... 6. 6 ... .f 4 TiOz 1 0 5 0 50 6. A 6. 6]6. 0 f> 6. o<6 6. 0 .... c. 0 0 2 ... 0 --6. 0 20 40 r o 30 MgO 20 10 0 6. 30 0 0 0 ... 40 t\ ..... 50 SiOz A 60 70 30 .pf u 8 0 0 0 0 40 ... 0 A ... 6 8 50 60 SiOz 1 s 10 s 70 e Anui ; 8 Badjal lamprophyres ; Badjal breccias; A Badjal peridotite; C.Sikhote Alin; 0 S.Sikhote Alin; NE Sikhote Alin; A lngili; Khankai; A Philip pluton; 0 N.Korea ; SCB & LK 1 5-4; ,::: Badjal andesit e Fe2o3 N 00

PAGE 41

29 0 IJ) 0 N O....N ('0 z 0 L/) 0 L/) 0 L/) (Y) N 0 N ci ci 0 1"-
PAGE 42

30 Trace Elements: Table 18 lists the trace element data. Typical of alkaline rocks our Russ ian samples are strongly LILE enriched and most are HFSE enriched. Li is an abundant trace e lement in these lavas and can be used in combination with REE's to distinguish residual phases during melting and the effects of garnet and amphibole fractionation (figure 18). The data suggest that garnet and possibly amphibole were important residual minerals in different localities. Ber y llium contents are very high (up to 8.5 ppm in Ingili) and may reflect the effects of low degree partial melting of a source that was not greatly affected by crustal contamination or alteration. Strontium versus Ba contents show several trends (figure 19). Ingili samples show rapidly increasing Sr with almost no increase in Ba, which may be due to modal calcite in the rock. Other samples, in particular Badjal, cluster near Sr /Ba=1, possibly due to Sr, in the absence of feldspar, behaving more as an incompatible element similar to Ba. Mean Nb/Ta (17), Th/U (4) and Z r/Hf (40) ratios in our rocks are similar to those in kimberlites, alkali basalts and lamprophyres. However, the Anui and North Korean cumulates and the Badjal peridotites have Nb/Ta=3 (lower in the peridotites), Th/U=1 and Zr I Hf= 1, which is well below the values for the other samples. Ingili samples have the highest Nb, Ta, Zr, Th, U, Hf and Ti contents whil e the Badjal peridotites have the lowest. High Ti and Nb contents in the Ingili samples may r ela te to included rutil e xenocrysts entrained in the melt and abundant Ti-rich oxides.

PAGE 43

Li/Yb Figure 18. Li/Yb vs Dy/Yb can distinguish the 80 6. 6. Anui 6. 6. Badjal breccias 6. Badjal peridotite 60 amphibole 6. C.Sikhote Alin fractionation 6. D S.Sikhote Alin NE Sikhote Alin 40 6. 6. 6. lngili garnet Khankai fractionation Philip pluton 20 o N.Korea 0 0 1 2 3 4 5 6 Dy/Yb 31

PAGE 44

32 Rare Earth Elements: All of our samples have REE patterns typical of alkaline rocks with strong enrichments in LREE's and depletions in HREE's relative to chondrite (figure 20) Within localities, samples show virtually identical REE patterns. Between localities, however, the samples show differences in the relative abundances of REE 's. Samples from Ingili and North Korea have the highest La/Yb ratios (steep e r trends) and their REE patterns cross cut other arrays The North Korean samples have similar LREE abundances compared to the other sample localities but are much lower in HREE's, suggesting somewhat greater proportions of residual garnet. Ingili samples have both the highest LREE contents and lower HREE values than all except the North Korean samples, indicating both a chemically and mineralogically distinct source. REE patterns for all other samples are parallel and is probably an effect of similar crystal accumulation and/ or differentiati o n processes. Patterns steepen in the less evolved rocks. The lowe r trend exhibited by the Khankai sample is the result of plagioclase accumulation and the lack of a positive Eu anomaly suggests an oxidized magma. Figure 21 is a spidergram normali ze d to chondrite u sing the element order of Sun & McDonough, 1989. Ingili Anui and South Sikhote Alin (P-9) show depletions in LILE's (K, Sr, Rb Ba) as well as small d e pletion s in Zr and Hf. The low K in the Ingili sample may be the result of alteration. South (P-55) and Central Sikhote Alin have very smooth trends typical of alkaline rocks (except for one small d epletion in Sr). The Khankai pl ag i o cla serich basalt shows large depletions in Nb and Ta and smaller d eple tion s in Z r and e nrich ments in LILE's Abundant crustal materia l in many of the se samples may explain much of th e variability in the LIL and HFSE's.

PAGE 45

sample Chondrite 100 10 20. Chondrite normalized REE trends oooo6-----o--- A --o-La Ce P r Nd S m Eu Gd Tb Dy Ho E r Yb Lu 33 Anui Badjal breccias C.Sikhote Alin S.Sikhote Alin NE Sikhote Alin lngili Khankai N Korea 1oooo Fi ure 21 Chondrite normalized mult-element comparison. Anui C.Sikhote Alin ---o---S.Sikhote Alin 1000 100 sample Chondrite 10 lngili Khankai CsRbBaThU NbTaK LaCePrSrP NdZrH1SrrEuTiDyY HoYblu

PAGE 46

34 Lead Lead isotope data for our samples span a limited range in 206/204pb and 207 /204pb values (figure 22) . The Ingili and Khankai samples have slightly different trends than most of the other samples and suggests a source with higher 207 /204Pb. Most of the samples are consistent with a 2 stage Pb evolution history This suggests they are derived from a Pb reservoir which has fractionated only once since the Earth's initial differentiation Most of the samples indicate mixing between a source with kimberlitic ratios and a material with high 206/204pb ratios (sediments?). The North Korean samples plot near the Geochron and below MORB and may represent a primordial Pb source, or the end of a secondary trend at lower 207Pb. Only the alkali basalts from South Sikhote Alin are similar to kimberlites and may reflect deeper, relatively uncontaminated sources 207 Pb 204 Pb 15 1 5. 1 5 15.3 15.2 Fig u re 22. Lead isotopes : Fields for W. Australian lamproites and S. African kimberlites S. African Kimberlites Group 2 Pacif i c Sediments /::,. 0 /::,. A 0 15. 5 16.5 17. 5 18.5 206 Pb 204 Pb 19.5 20.5 21. 5 Anui Badjal peridotite C.Sikhote Alin S Sikhote Alin lngil i Khankai Philip pluton N Korea

PAGE 47

35 DISCUSSION The Russian alkaline suites represent a variety of rocks from hornblende rich peridotites and olivine cumulates to alkali basalts and lamprophyres (table 1). Most of the olivine cumulates (N. Korea and many of the Anui samples), however, are completely serpentinized which makes their exact classification difficult. The Badjal rocks are the most evolved, based on high Si02 contents and low mg #'s (typically 30-50). These samples show trends most consistent with magma differentiation (evident in both bulk chemistry and mineralogy) and low-pressure crystallization (figure 23) as well as mixing with crustal materials. Khankai samples, on the other hand, exhibit trends typical of plagioclase accumulation, the effects of which are evident in their REE patterns (figure 20). The lack of a positive Eu anomaly in these rocks may suggest an oxidized magma. The Ingili rocks follow trends different from the other Russian suites, and are the only magmas erupted through an ancient craton (Siberian craton). Increases in Fe203 and Ti02 at relatively constant MgO suggests the Ingili rocks are accumulating Fe-and Ti-rich phases such as rutile, ilmenite and Ti-magnetite (figure 23). Overall, both the mineral and chemical data indicate that none of the samples are kimberlites and lamproites according to Mitchell's definitions (for instance, kaersutite and hornblende in the Russian rocks instead of Krichterites and higher 206/204pb ratios than either kimberlites or lamproites). While the mineral chemistry in the Badjal samples show evolutionary trends, the micas are compositionally (high Al contents) and texturally

PAGE 48

36 (kinked and deformed grains) similar to the xenocrystic phlogopites in kimberlites. This suggests that the Badjal magmas, like kimberlites, are sampling a phlogopite-rich mantle region (phlogopite peridotite?). However, core to rim variation in these micas trends toward biotite. This trend is similar to that observed in micas from minettes (Mitchell, 1986) and may reflect low-pressure crystallization. Decreasing Fe and Mg contents in many of the samples are due to the early crystallization and fractionation of Mg-rich olivine and pyroxene. South Sikhote Alin pyroxenes record compositional variations (aegirine core and augite rims). Some of the pyroxenes in the Russian samples are high in Al203, similar in composition to clinopyroxenes from garnet lherzolite xenoliths found in kimberlites and alkali basalts However, many of these pyroxenes have core compositions with much higher Ti than those from garnet lherzolites. The high A1 in the pyroxenes may simply reflect the Si02-undersaturated nature of the magma (olivine + hypersthene or olivine + nepheline normative) The suppression of feldspar crystallization results in AI excess, so greater than normal amounts of Al enter both tetrahedral and octahedral sites in pyroxene structures. However, in the South Sikhote Alin pyroxenes AI is entering only tetrahedral sites, substituting for Si. The zoning trends of the other elements in the pyroxenes are typical of crystallization in an evolving magma (increasing Fe and Ti with decreasing Mg). Thus, the Russian magmas are more consistent with shallower sources s imilar to alkali basalts Evidence in several suites for magma chamber evolution at comparatively shallow depths argues strongly against a rapid, explosive crustal emplacement mechanism. However, the brecciated nature and the presence of mantle-derived xenoliths in some of the rocks is con-

PAGE 49

37 sistent with rapid uplift. No diamonds were found in direct association with the sample suites, a circumstance consistent with the chemistry of the rocks, as shallow-level differentiation processes would oxidize diamond to form graphite. If diamond-bearing lithologies do occur in this region of southeastern Russia, the chemical character of our rocks suggest that kimberlite-type magmas are the more likely source. 20 Fi ure 23. FeO vs M o (wt%) 15 10 6. Accumulation of Fe-Ti oxides magma evolution/mixing 0 l:lo olivine / pyx accumulat ion 0 0 0 0 Anui Badjal lamprophyres Badjal breccias Badjal peridotite l i Badjal andesite C Sikhote Alin 0 S Sikhote Alin NE Sikhote Alin lngili Khankai A Philip pluton o N.Korea SCB & LK 1 5-4 0 10 20 30 40 so MgO Trace Element and Isotopic Constraints The trace element and isotopic results for the Russian alkaline suites are consistent with a heterogeneous mantle source. Rare earth elements show 3 trends: (1) steep patterns with high La/Yb ratios for the North Korea and Ingili samples, (2) moderately sloped patterns with intermediate La/Yb ratios for Anui, Badjal, Khankai and Sikhote A1in samples and (3) low slope La/Yb patterns for Khankai (basaltic feldspar cumulates) Examining spidergrams

PAGE 50

Figure 24. Ti02 vs MgO (wt%); see figure 23 1 0 for leqend Ti02 A l203 Accumulation of Fe-Ti oxides 86" 6-4-2 6 6 ... 6 0 L:. magma o yolutio n / mixing JtC' olivine / pyx accumulation 0 0 In --I --0 10 20 30 40 so MgO Figure 25. Al203 vs MgO (wt%); see figure 25 23 for le end. 20 15 magma evolution / mixing 10 0 elJ. 0 5 ,ft. t. olivine /pyx accumulation 0 o Oo Accumulation of FeTi oxides 0 10 20 30 40 so MgO 38

PAGE 51

Al203 Figure 26. Al203 vs Ti02 (wt%); see figure 25 23 for le end. 20 magma ::\ evolution/mixing 15 10 0 0 A I 6. 5 {So/_ 6. !J(' o-olivine/pyx 6. >6. 6. Accumulation of Fe-Ti oxides 0 2 4 6 8 10 Ti02 for representative samples from these suites in figure 24, we see that the Khankai sample shows HFSE depletions, more typical of arc-related rocks, while the other patterns are more typical of alkaline rocks in general. Low HREE's and Yin all of these rocks suggests residual garnet in the source region and depths of at least 60 km. Most primitive alkali basalts indicate sources between 60 and 100 km deep and pressures between 2 and 3 GPa (Philpotts, 1990). 39 Lead isotopes for Sikhote Alin, Anui and Badjal are consistent with mixing between a primitive Pb source and crustal material with high a 206/204pb ratio. The TngiH samples show higher 207 /204rb, possibly related to Pb inputs from the Siberian craton. The North Korean suite is distinct from all the other Russian rocks and may represent either a primordial Pb source or the end of a secondary trend with lower 207 /204pb ratios. Most of the Russian data are inconsistent with Pb isotope signatures of lamproites or

PAGE 52

kimberlites, except the alkali basalts from South Sikhote Alin. The lower 206/204pb ratios in kimberlites and the South Sikhote Alin alkali basalts 40 indicates a deeper, relatively uncontaminated sources The linear trends of the Russian data could represent mixing between a mantle source with kimberlite-like Pb isotopic signatures and crustal components The simple trends of the Russian samples suggest that alteration and hydrothermal activity have had at most a minor effect on the Pb isotope system 100 sample MORB 10 Rb Ba Th Nb T a K S r P Zr Hf Sm Ti Y Yb A alkaline basalt A calc-alkaline arc basalt A arc s hoshonit e

PAGE 53

41 A Role for Subduction? The proximity of Russian alkaline volcanic fields to the active Kurile Kamchatka-Japan subduction zones has prompted speculation as to what role, if any, subduction processes may play in the genesis of these lavas (Tatsumi, 1995; Kepezhinskas, 1994). However, it is difficult to assess the involvement of subduction-related processes in most of these rocks. Aside from Khankai, the REE trends of these rocks are typical of alkaline rocks in general and do not have the characteristic HFSE depletions seen in lavas associated with subduction. In the case of Khankai, the effects of feldspar accumulation certainly play a role in lowering HFSE abundances, as is the case with the REE's. Lead isotope results do not reach anomalously high values of 206/204pb, but do suggest mixing between mantle sources and crustal components, similar to arc-related rocks. Only proximity, high volatile contents (as evidenced by amphiboles, micas and carbonate minerals in our suites) and mixing trends shown by Pb isotopes are suggestive of a subduction connection for the Russian lavas. Our data offers no new geochemical evidence to support a connection between subduction and alkaline magmatism, but does not preclude it. Detailed studies of phenocryst trace element chemistry and Nd isotope results may shed more light on the effect of subduction on Russian alkaline magmatism.

PAGE 54

42 CONCLUSION The Russian alkaline lavas examined are very different from lamproites both chemically and mineralogically. However, the data suggests that some of the Russian alkaline magmas, particularly the Badjal breccias, may result from evolution and mixing processes on an originally kimberlitic melt. In particular, Pb isotopes indicate mixing between a source with isotopic ratios similar to those of kimberlite magmas and a source with relatively high 206/204pb ratios (sediments?). It is unlikely that our alkaline lavas are the source of the diamonds found in this region; however, the geochemical signatures in these rocks suggest that associated kimberlite magmas are possible. Rare earth element patterns indicate residual garnet in the source and suggests source depths of at least 60 km. Based on our results, the only links between the alkaline magmatism in Russia and the ongoing subduction to the east is their high volatile contents and Pb isotopic ratios No clear chemical "fingerprints" of subduction-related inputs are evident in our samples.

PAGE 55

REFERENCES Barker, D.S. (1987): Tertiary alkaline magmatism in Trans-Pecos Texas. In Fitton & Upton (eds) Alkaline Igneous Rocks, Geol. Soc. London Spec. Publ. 30, 415-432. Bebout, G.E J .G. Ryan and W P Leeman (1993): B-Be systematics in subduction-related metamorphic rocks: characterization of the subducted component. Geochim. Cosmochim. Acta. 57, 2227-2237. Clague, D.A. (1987) : Hawaiian alkaline volcanism. In Fitton & Upton (eds) Alkaline Igneous Rocks, Geol. Soc. London Spec. Publ. 30, 227-252. Hart, S.R. (1988): Heterogeneous mantle domains: signatures, genesis and mixing chronologies. EPSL, 90, 273-296. Hawkesworth, C.J. N.vV. Rogers, P.W.C. Van Calsteren and M.A. Menzies (1984): Mantle Enrichment Processes. Nature, 311, 331-335. Helmstaedt, H and J,J. Gurney (1984) : Kimberlites of southern Africa-Are they related to subduction processes Proc. Third Int. Kimberlite Con. Vol. 1. Kimberlites and Related Rocks. Developments in Petrology llA, Elsevier New York, N.Y. Kepezhinskas, P., M Defant, A. Baikov and Alexey Osipen.ko (1994): Diamonds in subduction zones: evidence from the Kamchatka arc SUBCON 222-224. Mitchelt R.H. (1986) : Kimberlites: Mineralogy Geochemistry, and Petrology. Plenum Press, New York, N.Y Mitchell, R.H (1991) : Petrology of Lamproites. Plenum Press, New York, N.Y Mitchell, R.H. (1995) : Kimberlites Orangites a11d Related Rocks. Plenum Press, New York, N.Y. Natal'in, B. (1993): History and modes of Iv!esozoic accretion in Southeastern Russia. Tlze Island Arc 2, 15-34. 43

PAGE 56

Nelson, D.R., M.T. McCulloch and S. Su Sun (1986): The origins of ultrapotassi c rocks as inferred from Sr, Nd and Pb isotopes Geochim. Cosmochim. Acta 50, 231-245. Nelson, D.R. (1992): Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos 28, 40 3 -420 Pearce, J.A (1982): Trace element characteri s tics of lavas from destructive plate boundaries. In Andesites: orogenic andesites and related rocks, (R.S. Thorpe, ed). 525 -548 Philpotts, A.R. (1990): Principles of Igneous and Metamorphic Petrology. Prentice Hall, Englewood, NJ, 461. Rock, N.M.S. (1987): The nature and origin of lamprophyres: An overview. In Fitton & Upton (eds) Alkaline Igneous Rocks Geol. Soc. London Spec. Publ 30, 191-226. Rogers, N.W., C.J. Hawkesworth, D.P. Mattey and R.S. Harmon (1987): Sediment subduction and the source of potassium in orogenic leucitit es. Geology, 15, 451-453 Ryan, J.G. and C.H. Langmuir (1987): The syste matics of lithium abundances in young volcanic rocks. Geochim. Cosmochim Acta. 51, 1 727-1741. Ryan, J.G. and C.H. Langmuir (1988): Beryllium systematics in young volcanic rocks: implications for lOBe: Geochim. Cos mochim. Acta. 52, 237-244. R yan, J .G. and C.H. Lan gmuir (1993): The sys tematic s of boron abundances in young volcanic rocks: Geochim. Cosmochim. Acta. 57 1489 1498 Sun S-s. and W.F. McDonou g h (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and proces ses. In A.D. Saunders and M.J. Norry (eds) Magmatism in the ocean basins, Geol. Soc. London Spec. Publ. 42 315 -345. Tatsumi, Y. and S. Eggins (1995): Subduction Zone Magmatism. Blackwell Science, Cambridge, MA. 44

PAGE 57

45 APPENDICES

PAGE 58

APPENDIX A PETROGRAPHIC DESCRIPTIONS 46

PAGE 59

Appendix A. Petrographic Descriptions Badjal Cumulates 47 P 171 & P-172: These are phaneritic, cumulate dike rocks They consist of anhedral, high mg# olivine, euhedral to subhedral hornblende, and subhedral, high mg# phlogopite. Ilmenit e also occurs as small, highly spherical g rains while magnetite and Fe-Ni oxides fill in voids between grains. Chlorite is also present. (Appendix B: plates 1, 2, 71, 72) Breccia s 3-105, 3-108, 3-110, 3-113, 3-121, 3-122: These samples are breccias as indicat ed by their clastic nature in the photographs. Oasts are predominantly quartzites, schists, shales, arkoses and basaltic material They range in size from a few millimeter s up to 10 mm across. All of the rocks contain laths of high Ti-phlogopite cores with high Ti-biotite rims ranging in s i ze from matrix grains mm long up to 2 mm long. Most of the mica, especially the larger grains, show sig n s of deformatio n such as bent grains and undulose extinction. The matrix in many samples consists of sand s i ze particles of fe l sic material, much of whic h has been alter e d, in a dark cryptocrystalline matrix Many of the oxides are spinel s with C r-rich cores and magnetite rims and range in size from matrix grains up t o mm across. The feldspar analysis given for 3108 is from the lath-like feldspars seen in the basaltic clasts shown in Appendix B plates 19 and 88. Small crystals of sphene are also present in these basaltic clasts. (Appendix B: plates 1 9-22, 87, 88) DN-144 & DN-134E: These samples are agai n clastic in nature but they also contain euhedral-subhedral pyroxene and deformed mica grains. Th e pyroxenes range in size from matrix laths up to grains 0.625 mm across. Pyroxene anal ysis # 14 8 is from one of the bas altic clasts and shows higher

PAGE 60

48 Appendix A. (cont'd) Fe contents than the phenocrysts. The micas have high Ti and AI contents and are very rounded. Oxides are typically magnetite. Chlorite is also abundant as an alteration product. The matrix is similar to the previously described clastic samples. (Appendix B: plates 7-9, 69, 70) DN-118 & LDN-23: These samples also contain felsic clasts (quartzites, schists, shales, etc.) but contain more basaltic clasts and a wider variety of them. These basaltic clasts have a variety of textures from felty and variolitic to porphyritic. The amphibole analysis for LDN-23 came from large grains found in one of the basaltic clasts. These samples again contain mica of various sizes and all show signs of deformation. The matrix is similar to the samples previously described. (Appendix B: plates 10, 68) Porphyritic textures X-1 & DN-164: These two samples consist of rounded, high AI and Ti phlogopite as large as 1.625 mm long but generally mm long. The mica has high F contents relative to other samples. The pyroxenes are heavily altered, lath-shaped grains mm long ranging up to 0 95 mm long Amphiboles have a wide range in size and shape from euhedral grains 1 mm across to lath-shaped grains up to 3 mm long. Euhedral-subhedral ilmenite typically occurs inside the amphibole and mica. Euhedral-subhedral Cr-spinels occur in both samples but reach higher Mg contents in X-1. Small fragments of felsic material are present and typically have reation rims. The matrix consists of microcrystalline feldspar laths and oxides. (Appendix B : plates 3-6) DN-120: This sample consists of large subhedral-anhedral, slightly altered K-feldspar grains up to 5 rnrn acro ss. Many grains are zoned with plagioclase cores and K-feldspar rims (App. B: plates 11, 13, 73). Euhedral-subhedral

PAGE 61

49 Appendix A. (cont'd) amphibole ....... o.s mm across is present but completely chloritized. Micas are generally lath-shaped with rounded edges and show signs of deformation. The mica ranges in size from 0.25 mm up to 1.5 mm long and has high Ti, AI and F contents. Euhedral-subhedral sphene is abundant and ranges in size from 0.375 mm up to 1 mm across. Euhedral-subhedral apatite is also present and ranges from 0.125 mm up to 1 mm across. Oxides are euhedral-subhedral ilmenite, Ti-magnetite and magnetite up to 0.625 mm across The matrix consists predominantly of microcrystalline feldspar and fragments of the larger grains, oxides and minor chlorite Several euhedral-subhedral zircons are also present, the largest one being 0.25 mm long. (Appendix B: plates 11-16, 67, 73) LDN 20-18: This sample is composed of concentrically zoned, glomero crysts and single, euhedral-subhedral crystals of plagioclase (An 70 to An 87) generally ....... 1 mm across in a felsic microcrystalline matrix. Completely chloritized grains ""0.75 mm across of what appears to have been amphibole are abundant throughout the sample. Ilmenite occurs both in the matrix and within the chloritized grains and has variable Ti contents. (Appendix B : plates 17, 18) Ingili 5098: This sample consists of deformed, lath-shaped micas with chloritized interiors and phlogopite rims. The mica has a wide range in size from small fragments i n the matrix up to grains 2.125 mm long Oxides are euhedral subhedral, atoll-like ilm e nites ""0.125 mm across and surround what appears to be matrix material. Ilmenite also forms rims around rutile/ calcite clasts identical to the those in 5587 The matrix is pre dominantly calcite, oxides and fragments of mica (Appendix B: plate 23, 74)

PAGE 62

50 Appendix A (cont'd) 5109 : The pyroxenes in this sample have a large range in size, shape and composition. Most of the pyroxenes are low inTi and AI and are euhedralsubhedral grains up to 0.875 mm across. Euhedral-subhedral feldspars are completely altered and are mm long. Concentric zoning is still evident in many of these feldspars. Oxides are euhedral-subhedral Ti-magnetite generally <0 125 mm across. Mica is restricted to the matrix which also consists of calcite, lath-shaped pyroxenes and oxides. (Appendix B: plates 24-26) 5351: The only large grains in this sample which have not been completely altered are mica laths rnrn long. Matrix micas and pyroxenes are heavily altered. Oxides are small, euhedral-anhedral Ti-magnetite and are less abundant relative to other samples from Ingili. (Appendix B: plate 27) 5587: Thjs s ample consists of large, very deformed chloritized micas up to 8.5 mm long. Xenoliths consisting of laths of rutile in calcite surrounded by rims of Ti-magnetite are abundant and average mm across but are as large as 2 mm across (App. B: plates 28, 29, 75) Oxides are euhedral-anhedral Ti-magnetite with some containing abundant Cr203. The matrix consists of calcite mixed with a reddish/brown material thought to be hematite. It is probably an alteration product of the Ti-magnetite. (Appendix B: plates 28-30, 75) South Sikhote Alin P-9: This sample consists of subhedral and lath-like grains of amphibole and mica. The amphibole ranges from 0.4 mm up to 8 mm. One large amphibole (30 rnrn long) is present and is identical in composition to the subhedral grains found throughout the sample while the mica ranges from 0.6 mm to 5 rnrn long. The mica is fairly deformed, has thin light brown

PAGE 63

51 Appendix A. (cont'd) rims in plane polarized light and has a wide range in size (0.5 mm up to 5 mm long) Subhedral-anhedral ilmenites are abundant and range in size from 0.25 mm up to 0.75 mm across. The matrix is calcite, amphibole, mica and oxides. A heavily altered xenolith of orthopyroxene ..... 30 mm long contains several Cr-spinel symplectites and is bordered by a corona and a thin reaction rim of Cr-spinel, ilmenite and mica (Appendix B: plates 31-36, 76) P-45: This sample contains euhedral-subhedral amphibole but is predomi nantly lath-shaped amphibole up to 2 mm long. Mica is also abundant and laths are as large as 4 mm long. Most of the micas show signs of deformation and have thin light brown rims in plane polarized light. The matrix consists predominantly of calcite, oxides and fragments of amphibole and mica. Oxides are ilmenites typically <0.1 mm across. Large (5-10 mm long), angular xenoliths of felsic material are scattered throughout the sample and have thin reaction rims. (Appendix B: plates 37, 38) P-15 : This sample consists of pyroxenes ranging in size from matrix laths up to euhedral-anhedral grains 15 mm long. Some of the pyroxenes in this sample show zoning toward higher Ti and AI contents near the rim (App. B : plate 40). Iron-rich olivine is restricted to smalt subhedral-anhedral grains typically <0.3 mm across. A 1 mm long xenolith of plagioclase and olivine contained the highest mg# olivine in this sample (olivine analysis #101). The matrix consists of minor olivine pyroxene laths, Ti-magnetite and rare feldspar (Appendix B : plates 39-41, 77) P-55: This sample consists of euhedral-anhedral olivine and pyroxene. The olivine ranges in size from matrix grains to large, anhedral grains 3 mm across. Several of the larger olivines show kink banding and/ or undulose extinction One large xenolith (10 mm across) contains olivine crystals 3-4

PAGE 64

52 Appendix A. (cont'd) mm across which appear to be recrystallizing into smaller, sugary grains mm across Another xenolith (2.5 mm long) contains small, Fe-rich, sugarytextured olivines surrounded by diopside (App. B : plate 78). Pyroxene is also abundant. The pyroxenes range from matrix laths to euhedral-anhedral grains up to 1 mm across. Many of the pyroxenes have a seive-texture with small inclusions of Ti-magnetite (App. B: plates 42, 43) Oxides are small, (<0.125 mm across) Ti-magnetites with varying arnotmts of AI, Cr and Mg. The matrix consists of olivine, lath-shaped pyroxe ne, Ti-magnetite and rare feldspar. (Appendix B : plates 42-44 & 78-80) Central Sikhote Alin 4-133,4-134, 4-135, 4-136: All of these samples consist of basaltic clasts up to 8 mm across, surrounded by veins of chlorite and calcite. The basaltic clasts consist of euhedral-subhedral pyroxenes up to 1.75 mm long as well as smaller laths in a cryptocrystalline matrix. Many of the clasts have rims indicating reaction between the basaltic clasts and the chlorite and calcite Oxides are not very abundant. Rare euhedral-anhedral Cr-spinels up to 0.125 mm across are present both inside of pyroxenes and in the matrix. These samples have voids (probably gas cavities) which have since filled with calcite, zeolites and chlorite (App. B: plate 46). The stretched appearance indicates that the caviti es were deformed by movement of the lava and are not the result of dissolution of previous ly exi s ting minerals (Appendix B : plates 45-48, 81) Northeast Sikhote Alin 4-103, 4-106, 4-108: These samples consist of basaltic clasts similar to those in the Central Sikhote Alin samples surrounded by veins of calcite and chlorite The pyroxenes are rounded and euhe dral-subhedral grains ranging

PAGE 65

53 Appendix A. (cont'd) in size from matrix laths up to grains 0.875 mm long. Many of the larger lath like pyroxenes define an orientation in the basaltic clasts (App. B: plate SO). Thick rims are present around many of the clasts indicating reaction with the calcite and chlorite. Like Central Sikhote Alin, the pyroxenes are not restricted to the basaltic clasts but also occur scattered about in the calcite and chlorite veins. All of the pyroxenes have similar compositions Euhedral-subhedral Cr-spinels with high Mg contents are present and typically <0.15 mm across. Clasts of felsic material have embayments indicative of resorption (App. B: plate 52). Voids like those in the Central Sikhote Alin samples, are filled with calcite, zeolites and chlorite. (Appendix B: plates 49-52, 82) Anui P-141, P-144, P-145, P-147: These samples are predominantly composed of euhedral-subhedral olivine crystals up to 2 mm long that have been completely pseudomorphed by serpentine. Serpentine also occurs as spherical growths generally 0.25 mm to 0.375 mm across but are as large as 1.25 mm across (probably infilling spherical gas cavities). Nearly all of the serpentinized olivines are surrounded by oxide rims while the spherical serpentines are not (App. B: plate 55). Also present are euhedral-anhedral pyroxenes. The pyroxenes are as large as 7 mm long but are generally 0.5 mm to 3 mm long. Much of the matrix consists of small lath-lik e pyroxenes, oxides and serpentine P 145 does not contain any large pyroxenes and only a few areas contain any matrix pyroxene. All of the pyroxenes are low AI and Ti diopsides and most contain moderate amounts of Cr203. Oxides are generally euhedral-subhedral Cr-spinels with magnetite rims and have a wide range in size from matrix grains and rims surrounding the serpentinized olivine to grains 1.75 mm across. (Appendix B: plates 53-58, 83)

PAGE 66

54 Appendix A. (cont'd) AP-1: This sample consists of large (up to 2 mm across), euhedralsubhedral pyroxene in a matrix of lath-shaped pyroxene, badly altered mica and oxides. Most of the pyroxenes are zoned with increasing Ti and AI toward the rims. Several badly altered micas up to 1 mm long are present. The less altered, matrix-size mica is biotite Euhedral-anhedral Ti-magnetite with variable Ti, Al, Cr and Mg contents is abundant. It is found both inside the pyroxenes and in the matrix. The oxides inside the pyroxenes have higher Ti contents and Mg contents than the matrix grains (Appendix B: plates 59, 60, 84, 85) Khankai A-13: This sample contains heavily altered feldspar grains with relatively fresh plagioclase (An 61-An 94) rims. The cores may be K-feldspar which has been almost completely altered The fe ldspar s are as large as 2 mm across Plagioclase, as well as quartz fill in voids between grains Euhedral-subhedral amphibole is abundant and ranges from 0.25 mm to 1 mm long. Chlorite occurs probably as an alteration product of the amphibole Sphene is also present and is associated with the amphibole. Euhedral-subhedral ilmenite is present and generally <0.1 mm across. (Appendix B : plates 61, 62, 86) V-4-7: This sample is composed of relatively fresh plagioclase (An40An66) rims surrounding heavily altered cores similar to A-13. Zoning is still evident in many of the feldspars (App B: plate 64). The largest grains are 0.25 mm across. Pyroxene occurs as altered and fragment e d, euhedral-subhedral grains generally <0 .75 mm long. Fragments are scattered throughout the sample. Amphibole is restricted to the matrix Ilmenites are generally < 0.125 mm across Calcite occurs as an alteration product. (Appendix B: plates 63, 64)

PAGE 67

Appendix A. (cont'd) Philip pluton 55 F-1: This is a phaneritic cumulate consisting of pyroxene, amphibole, mica and late crystallizing plagioclase (An 43-An 74). The oxides are mainly rounded magnetites but late crystallizing Fe-Ni oxides are also present. Magnetite is found both inside and outside of the early crystallizing minerals while the Fe-Ni oxides fill voids between the minerals. (Appendix B: plates 65, 66)

PAGE 68

APPENDIX B PHOTOMICROGRAPHS AND BACK SCATTER IMAGES 56

PAGE 69

Appendix B. Photomicrographs and Back Scatter Images Plate 1: P-171 : FNo= Fe-Ni oxide; ol=olivine; am=amphibole; r.rrr...,., te (Field of view: 5 nun, XPL) Plate 2: P-171: am= amphibole; ph= phlogopite; ol = olivine 57

PAGE 70

Appendix B. (cont'd) Plate 3: X-1: fe=feldspar; ph=phlogopite; am=amphibole; 58 .-.v--.-.'Crt"nvOr1tO il=ilmenite; (FOV: 5 mm, XPL)

PAGE 71

AppendixB. (cont'd) 59 5: DN-164: ph=phlogopite ; px=pyroxene (FOV: 6: DN-164: am= amphibole ; ph=phlogopite (FOV:

PAGE 72

Appendix B. (cont'd) Plate 7: DN-144 : ph=phlogopite ; px = pyroxene (FOV : 60 Smm, Plate 8: DN-144 : px=pyroxene (FOV: 5 mm, XPL)

PAGE 73

.Appendix B. (cont'd) Piate 9: DN-144: px = pyroxene; ph= phlogopite (FOV: 61 Srnm,XPL)

PAGE 74

Appendix B. (cont'd) 62 Plate 11: DN-120: fe=feldspar (FOV: 5 mm, XPL) < .;. I .At fe Plate 12: DN-120 : chl am=chloritized amphibole (FOV : Smm, PPL) . . ; ..,. .. . . /., ;. ... >$!:'. -: ; . ,.r ..

PAGE 75

Appendix B. (cont'd) Plate 13: DN-120: fe= Plate 14: DN-120: chl am=chloritized amphibole; ph= phlogopite; fe=fel (FOV: 5 mm, XPL) I I I .:. ( 'I I .. 63 . . ..... . ... ...

PAGE 76

1Appendix B. (cont'd) I Plate 15: DN-120 : sph=sphene; sp=spinel; il=ilmenite; fe= feldspar (FOV: 5 mm, XPL) I 64

PAGE 77

Appendix B. (cont'd) 65 Plate 17: LDN 20-18: il=ilmenite; Plate 18: LDN 20 -18: chl am=chloritized amphibole; fe=feldspar; il=ilm enite

PAGE 78

Appendix B. (cont'd) Plate 19: 3-108: sp= spinel (FOV: 5 mm, XPL) Plate 20: 3-108: Shows clastic nature of these samples. (FOV: 5 mm, XPL) 66

PAGE 79

Appendix B. (cont'd) Plate 21: 3-108: bi rim=biotite rims; ph core=phlogopite cores; (FOV: 5 mm, XPL) Plate 22: 3-113 : ph=phlogopite; ca=calcite; sp=spinel (FOV: 2 mm, XPL) 67

PAGE 80

Appendix B. (cont'd) Plate 23: 5098: chl=chloritized cores; ph rim= phlogopite rims; ca=calcite ; il=ilmenite (FOV: 5 mm, XPL) Plate 24: 5109: px=pyroxene; fe=feldspar; sp=spinel (FOV: 5 mm, XPL) 68

PAGE 81

Appendix B. (cont'd) Plate 25: 5109: Plate 26: 5109: px=pyroxene; ph=phlogopite; sp=spinel (FOV: 2 mm,. XPL) 69

PAGE 82

,Appendix B. (cont' d) Plate 27: 5351: ph=phlogopite; ca=calcite (FOV: 5 mm, XPL) Plate 28: 5587: chl mica = chloritized mica; ca = calcite; ru= rutile; w (FOV: 5 mm, PPL) 70

PAGE 83

Appendix B. (cont'd) 71 Plate 29: 5587: ca = calcite ; ru=rutile; sp= spinel (FOV: 2 mm, PPL) . - . Plate 30: 5587: chl mica = chloritiz e d mica; ca=calcit e; sp=spinel (FOV:5mm,

PAGE 84

Appendix B .
PAGE 85

Appendix B. (cont'd) 73 Plate 33: P-9:

PAGE 86

Appendix B. 7 4 Plate 35: P-9: px=pyroxene ; ph= phlogopite; am=amphibole; ca=calcite; il=ilmenite; (FOV: 5 mm, XPL)

PAGE 87

AppendixB. {cont'd) 75 Plate 37: P-45: Plate 38: P-45: ph=phlogopite; am=amphibole; il=ilmenite (FOV: 5

PAGE 88

Appendix B. (cont'd) 76 ol=olivine (FOV : 5 mm, XPL)

PAGE 89

Appendix B . (cont'd) Plate 41: P-15: px= pyroxene ; ol = olivine ; sp=spinel (FOV: 2 mm, 77 ol = olivine (FOV: 5 mm, XPL)

PAGE 90

Appendix B. (cont'd) Plate 43: P-55: ""'"-""'' Plate 44: P-55: px=pyroxene; ol=olivine; sp=spinel (FOV: 2 mm, 78

PAGE 91

.Appendix B. (cont'd) I 79 Plate 45: 4 135: px=pyroxene; chl=chlorite; sp=s pinel (FOV: 5mm, Plate 46: 4-135 : chl = chlorite (FOV: 5 mm, PPL) ;,

PAGE 92

Appendix B. (cont' d) Plate 48: 4-136: px=pyroxene; chl=chlorite; ca=calcite (FOV: Smm,XPL) , I 80

PAGE 93

Appendix B. {cont' d) 81 Plate 49: 4 103 : ..,...,_..,.,.n-,nvc"'

PAGE 94

Appendix B .
PAGE 95

Appendix B .
PAGE 96

Appendix B. (cont'd) Plate 55: P-145: serp ol = serpentinized olivine; serp=serpentine; sp=spinel (FOV: 5 mm, PPL) 84 ..

PAGE 97

Appendix B. (cont'd) Plate 57: P-147: Plate 58: P-147: serp ol=serpentinized olivine ; serp=serpentine; .... ..,_ .......... ,.,...,,,.,,.."" (FOV : 5 nun, XPL) 85

PAGE 98

Appendix B. (cont'd) Plate 59: AP-1: .. ,,..,. Plate 60: AP-1: px= pyroxene; bi= biotite; sp=spinel (FOV : 2 mm, XPL) 86

PAGE 99

Appendix B. 87 Plate 61: A-13: fe= feldspar; am= amphibole; il=ilmenite (FOV: 5

PAGE 100

Appendix B. (cont'd) . Plate 63: V -4-7 : px= pyroxene; ca=calcite ; sp= spinel (FOV: 5 mm, XPL) Plate 64: V -4-7: fe = feldspar; am= amphibole; ca = calcite (FOV : 5 mm,XPL) 88

PAGE 101

Appendix B. (cont'd) Plate 65: F-1: fe = feldspar; Plate 66: F-1: ph=phlogopite; am= amphibole; FNo=Fe-Ni oxide (FOV : 5 mrn, XPL) 89

PAGE 102

Appendix B. (cont'd) Plate 67: DN-120 : Hand sample showing abundant feldspar xenocrysts. The larger pink crystals are K-feldspar. (Scale: pencil = 14.5 em long) Plate 68: LDN-23 : Hand showing abundant felsic and basaltic xenoliths (Scale: pencil=l4.5 em long) 90

PAGE 103

Appendix B. (cont'd) Plate 69: DN-128: Hand sample with abundant xenoliths of shale and basalt. Note large, rounded clast on left side. (Scale : pencil=14.5 em long) Plate 70: DN-162 : Hand sample showing both felsic and basaltic xenoliths. (Scale: pencil = 14.5 em long) 91

PAGE 104

Appendix B (cont'd) 92 Plate 72: P 171: Back scatter image (100x).

PAGE 105

Appendix B. (cont'd) 93 Plate 73: DN-120: Back scatter image (120x). Plate 74: 5098: Back scatter image (70x)

PAGE 106

Appendix B. (cont'd) 94 Plate 75: 5587 : Back scatter image (110x). Plate 76: P-9: Back scatter image (40x)

PAGE 107

Appendix B. (cont'd) 95 Plate 77: P-15: Back scatter image (300x) Plate 78: P -55: Back scatter image (65x)

PAGE 108

Appendix B. (cont'd) 96 Plate 79: P-55: Back scatter image ( 3 50x) Plate 80: P-55: Back scatter image (350x)

PAGE 109

AppendixB. (cont'd) 97 Plate 81: 4-136: Back scatter image (85x). Plate 82: 4-103: Back scatter image (250x)

PAGE 110

Appendix B. (cont'd) 98 Plate 83: P 147: Back scatter image (250x). Plate 84: AP-1: Back scatter

PAGE 111

Appendix B. (cont' d) 99 Plate 85: AP -1: Back scatter image (200x). Plate 86: A-13: Back scatter image (40x)

PAGE 112

Appendix B. (cont'd) Plate 87: 3-108: Back scatter image (40x). 0 0

PAGE 113

Appendix B. (cont'd) Plate 88: 3-108: Back scatter image (150x). ....... 0 .......

PAGE 114

APPENDIXC ANALYTICAL STATISTICS 102

PAGE 115

APPENDIX C Table 3 Analytical Statistics AGV-1 STD USGS QL0-1 avg DEV value avg SiOZ 60.44 0.20 58.79 65.41 Al203 17 66 0.21 17 14 16 27 FeO 6 66 0 .33 6 76 4 23 MgO 1.42 0 07 1 .53 0.9 3 MnO 0 .089 0.003 0.092 0 .084 CaO 4.78 0.13 4 94 3 07 NaZO 4.46 0 .01 4 26 4.28 K20 3.08 0.06 2 .91 3 7 0 TiOZ 1.06 0 0 3 1 05 0 .60 PZOS 0.45 0 .07 0.49 0 26 Sr 680 5 662 336 Ba 1231 13 1226 1 3 98 Zn 92 9 88 57 Cu 62 4 60 31 Ni 23 21 16 10 v 109 30 121 52 Cr 11 14 10 9 -------Note: avg=average of 4 separate analyses STD USGS DEV value 0.74 65.55 0.19 1 6 .18 0.23 4.35 0 07 1.00 0.008 0.093 0 13 3 17 0.16 4 20 0 13 3 60 0 02 0 62 0 02 0 25 7 336 12 1370 6 61 4 29 14 6 13 54 6 3 STM-1 STD avg DEV 59.31 0.72 1 8 65 0 1 1 5 03 0 25 0 08 0 .01 0.200 0 002 1.03 0 06 8.43 0.49 4 35 0 02 0 12 0.01 0.10 0 06 689 15 564 5 11 USGS value 59 64 18 39 5.22 0.10 0.220 1.09 8 94 4 28 0 14 0.16 700 560 I I I : 1--' 0 C;J

PAGE 116

APPENDIX C (cont'd) Table 3. Analytical Statistics (cont'd) BIR-1 STD USGS BHV0-1 avg DEV value avg Si02 49.08 0.65 47.77 51.12 Al203 15.59 0.17 15.35 13.82 FeO 11. 66 0.42 11.26 12.35 MgO 9.60 0.63 9.68 7 06 MnO 0 172 0 006 0 .171 0.167 CaO 13.33 0 .18 13 24 11.34 Na20 1.93 0 .11 1 75 2.40 K20 0 03 0 03 0.027 0.54 Ti02 0 95 0.02 0 96 2 .71 P205 0 07 0 03 0 046 0.32 Sr 119 2 108 419 Ba 13 4 8 136 Zn 99 71 114 Cu 126 126 136 Ni 248 166 165 v 328 313 320 Cr 396 382 280 Note: avg=average of 4 separate analyses vol. corr.=volatile corrected values STD USGS UB-N DEV value avg 0.93 49.94 45.37 0 37 13.80 3.02 0.52 12.23 9.56 0 54 7.23 39.22 0.005 0.168 0 142 0.16 11.40 1.26 0 15 2 26 0 16 0 02 0 52 0.01 0 00 2 .71 0 .10 0.05 0 .27 0 06 9 403 8 4 139 29 14 105 124 1 136 35 9 121 2221 8 317 119 11 289 2544 STD DEV 0.80 0.13 0.20 0 63 0.007 0.09 0 .01 0 .01 0 .01 0 05 1 2 4 57 65 Vol. Corr. USGS values 45.08 3.32 9.53 40. 25 0 137 1.37 0.11 0.02 0 13 0 05 10 30 85 28 2000 75 2300 I-> 0

PAGE 117

APPENDIXD :NliNERAL DATA 105

PAGE 118

APPENDIX D Table 4. M ic a c ompositions Lo cati on : B a djal Sample# P 1 7 1 P-1 7 1 P-1 7 1 P-171 P-1 7 1 P-1 7 1 X-1 X-1 X-1 X-1 3-1 OS 31 OS 3108 3108 3108 Miner a l # 1 5 18 20 1 5 1 157 1 62 38 39 43 4 5 33 34 52 53 55 Si02 43 .00 40.56 4 1.5 4 44.40 42.93 42 34 37 85 37.88 37 .81 37. 1 1 36. 35 35 .00 37 02 36. 6 1 35.76 Ti02 0 .71 0 65 0 67 0.67 0.82 0.93 5.80 5.64 5 .00 5.5 4 5 .30 4 .80 4.76 5.2 1 4.9 1 A l203 1 5.27 14.50 14 17 1 4.68 1 5 79 1 6.56 16. 1 2 16 1 6 16.44 16 83 16 .94 1 5 .90 15 .33 14 .92 1 4 78 Cr203 0.1 1 0.09 0.09 0 .06 0 1 0 0.06 0.03 0.0 1 0 .07 0 29 0 85 0 52 0. 1 2 0. 1 2 0 1 2 FeO 5. 1 0 4 77 4 98 4 .92 5 39 5.43 1 1 34 1 3.27 1 1. 0 4 11. 69 8 .89 1 7.57 9.88 9.45 1 4 .67 M n O 0 05 0.01 0 04 0 .00 0.00 0 .00 0.11 0. 1 2 0.10 0.08 0 0 2 0. 1 6 0 .09 0.05 0. 1 4 MgO 23.42 24.66 24.78 25.20 22.98 24.04 1 6.68 1 5 .6 9 16 20 1 6 73 17 .98 1 1 96 1 8. 5 2 18.25 1 3 .91 CaO 0.00 0.00 0.00 0 .00 0 .00 0.00 0 0 0 0.00 0 .00 0.00 0.00 0 .00 0 .00 0.00 0.00 Na20 0 22 0.53 0.39 0 28 0.29 0. 1 9 0 24 0.44 0 .20 0.4 1 0.3 1 0 1 1 0.23 0 28 0. 1 9 K20 5.50 8.77 8 .86 7.45 5.95 7.55 6.38 8 5 1 6 .20 7.76 8 .60 9 56 8 88 8.95 9.73 F 0.00 0 .00 0 .00 0 05 0.04 0 1 0 0 59 0.43 0.31 0 36 0 23 0 1 3 0.23 0 .20 0. 1 8 C l 0 .00 0 .00 0 0 1 0 .01 0 05 0 .04 0 03 0 .04 0 0 1 0 03 T o tal 93 38 9 4 .54 95.52 97.68 94. 28 97 1 7 94.94 98.00 93 26 96. 68 95 38 95.68 94.97 93 95 9 4. 32 N umber of ions on the bas i s o f 22 oxygen s Si 6.02 5.77 5 8 4 6.0 1 5.98 5 79 5.45 5.4 1 5.53 5 32 5 26 5.3 1 5.4 1 5.41 5.43 AI 2.52 2.43 2.35 2 .34 2.59 2 67 2 74 2.72 2.83 2 85 2.89 2 84 2.64 2 60 2.64 FeZ 0 .60 0.57 0 59 0 56 0.63 0.62 1 .37 1. 59 1. 35 1 .40 1 08 2 .23 1 .21 1 1 7 1.86 Mg 4 89 5 23 5 .20 5.08 4.77 4 .90 3 5 8 3.3 4 3.53 3.58 3 .88 2 70 4. 03 4 .02 3.1 5 N a 0.06 0. 1 5 0.11 0 .07 0.08 0.05 0 07 0. 1 2 0 .06 0.11 0 .09 0.03 0.07 0 0 8 0.06 K 0.98 1 59 1 .59 1 29 1.06 1.32 1.17 1 55 1.16 1.4 2 1.59 1. 85 1. 65 1. 69 1.8 8 T i 0.08 0 07 0 07 0 .07 0.09 0. 1 0 0 63 0 6 1 0.55 0.60 0.5 8 0 55 0 52 0. 5 8 0.56 M n 0.0 1 0.00 0.00 0 .00 0 .00 0.00 0.0 1 0 0 1 0 .01 0.01 0 .00 0.02 0 0 1 0 0 1 0.02 F 0 .00 0.00 0 .00 0 .02 0.02 0.05 0 27 0 19 0 .14 0.16 0 .11 0.07 0.11 0.09 0 09 C l 0 .00 0 .00 0 .00 0.00 0.0 1 0 0 1 0.0 1 0.0 1 0 .00 0 .01 Cr 0 0 1 0 0 1 0.0 1 0 .01 0 0 1 0 0 1 0 .00 0 .00 0 0 1 0.03 0 1 0 0.06 0.01 0.0 1 0 02 mg# 89 1 1 90.21 89.87 90. 1 3 88.37 88. 75 72 39 67. 8 2 72.34 7 1 .84 78 2 9 54 82 76.97 77.49 62 .83 1-' 0 T ota l Cat 15 16 15 .81 15 .76 1 5.44 1 5 22 1 5.49 1 5 3 1 1 5 .56 15 .18 1 5.49 1 5. 56 15 67 1 5 66 15 .64 1 5 .70 0\

PAGE 119

APPENDIX D. (cont'd) Table 4. Mica compositions (cont'd) Location: Badjal Sample# DN-118 DN-118 DN-118 DN-118 DN-118 DN-118 DN-118 DN-118 DN-1 20 DN-120 DN-120 DN-120 DN-120 Mineral# 126 127 128 129 135 137 138 139 100 1 01 102 108 109 Si02 39.1 0 38 12 38 34 37.92 36.96 37.81 38.34 38.89 38.16 37.22 37.65 37.81 37.85 Ti02 4.58 4.42 4.44 4.23 4.11 4.70 4 52 4.70 5.98 5.00 6.37 6.19 6.13 Al203 17 .29 17.3 7 17.96 17.67 17.14 17.64 17.61 18 10 16.88 17.58 16.66 16.13 15.89 Cr203 0 14 0 .20 0 10 0.15 0.14 0 .11 0 18 0 .21 0 72 0.07 0 28 0.32 0.17 FeO 9.20 8.72 8.50 8.77 11.79 8 .80 9 13 8.62 8.71 9.48 1 0.11 9.71 10.54 MnO 0.03 0.04 0.00 0.06 0.15 0.02 0.00 0.06 0.00 0.06 0.06 0.07 0.07 MgO 19.00 17 .92 18 95 18.83 17.28 17.77 18 83 19.29 18 26 18.05 17.77 18.26 17.16 CaO 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0.00 Na20 0.17 0.15 0.34 0 18 0.20 0.18 0 18 0.32 0.25 0.50 0.37 0.44 0.53 K20 7.63 7.66 7.76 8.99 7.82 6.69 9 .07 7.61 8.95 8.81 8.80 8.05 8.57 F 0.31 0 14 0.12 0.26 0.55 0.08 0 .2 2 0 15 0 22 1.90 1 14 1.71 2.57 Cl 0.04 0.05 0.02 0 06 0.04 0 04 0 05 0.05 0.03 0 02 0.03 0.02 0.04 Total 97.36 94.72 96.48 96.99 95.94 93.79 98 .02 97 93 98 .06 97.87 98.75 97.97 98.43 Number of ions on the basis of 22 oxygens Si 5.46 5.48 5.40 5.37 5.34 5.46 5.38 5.40 5.35 5.21 5.26 5.28 5 28 AI 2.85 2.94 2.98 2.95 2.92 3.00 2.91 2.96 2.79 2.90 2.74 2 66 2.61 FeZ 1.08 1.05 1.00 1.04 1.42 1.06 1.07 1.00 1.02 1.11 1.18 1 13 1.23 Mg 3.96 3.84 3.98 3.97 3.72 3.82 3.94 3.99 3.82 3.77 3 .70 3 .80 3.57 Na 0.05 0.04 0.09 0.05 0.06 0.05 0.05 0.09 0 .07 0.14 0.10 0.12 0.14 K 1.36 1.40 1.40 1.62 1.44 1 .23 1.62 1 35 1 .60 1.57 1 57 1.44 1.53 Ti 0.48 0.48 0.47 0.45 0.45 0.51 0.48 0.49 0.63 0.53 0 67 0.65 0 .64 Mn 0.00 0 .00 0.00 0.01 0.02 0 .00 0.00 0.01 0 .0 0 0.01 0 .01 0.01 0.01 F 0.14 0.06 0.05 0.12 0.25 0 .04 0.10 0.06 0.10 0.84 0.51 0.75 1. 13 C l 0.01 0.01 0.01 0.02 0.01 0 .01 0.01 0.01 0.01 0.01 0.01 0.00 0 .0 1 Cr 0.02 0.02 0.01 0.02 0.02 0 .01 0.02 0.02 0.08 0.01 0.03 0.04 0.02 mg # 78.64 78.56 79.90 79.29 72.32 78.26 78.62 79.96 78.89 77.24 75.81 77.02 74.37 0 Total Cat 15.40 15.33 15.40 15.60 15 .6 3 1 5.19 15.57 15 .3 8 15.47 16 .0 8 15 .77 15 .88 16.17 "'-l

PAGE 120

APPENDI X D (cont'd) Tabl e 4 M ica co m posi t io n s (cont'd) L ocatio n : Badjal Sample# DN-120 DN-1 34E DN1 34E DN-1 34E DN-144 DN-144 ON-144 DN1 64 ON-1 64 ON1 64 DN-164 DN1 64 DN-1 64 DN-1 64 Mineral# 110 202 203 205 140 141 1 49 175 178 181 183 186 187 192 Si02 38.04 39.66 37.90 37.50 38 .96 37.96 38.55 37.24 37 .77 37.49 36.88 37.01 37 69 37 .31 Ti02 4.26 4.74 3.88 4.57 4.64 4.77 4.48 4.97 5.53 5 29 5.53 5.15 5.44 5 22 Al203 16 .85 18 13 17 .38 1 7.60 18 1 3 17 .92 18.10 16.56 16.59 17.09 16.66 16.42 1 6.86 17.10 Cr203 0.08 0.26 0. 1 8 0. 14 0 23 0 16 0 17 0.14 0.00 0.26 0.18 0.26 0 .08 0.12 FeO 9.87 8.67 8.86 9.46 8.94 8.67 8.70 11.41 11. 84 11.90 11.39 1 2.01 12.17 1 1 .5 1 MnO 0.18 0.06 0.06 0.00 0 03 0.00 0 .07 0.08 0.06 0.09 0.00 0 07 0.10 0.09 MgO 18 67 1 9. 14 18.4 2 18.66 1 8.63 18.84 18.79 17.05 15 .62 16.70 16.68 16.74 16.64 16 .65 CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0.00 0.00 0.00 Na20 0.36 0 29 0.15 0.31 0.15 0.35 0.14 0.46 0.22 0 24 0.40 0 34 0 24 0.44 K20 8.56 7.65 8.07 8.46 8.56 8 29 9.23 8.40 4.63 8.56 8.30 8.75 8.11 8.37 F 2.70 0.33 0 .4 6 0 55 0.18 0.40 0.30 0.49 0 34 0.38 0.46 0.32 0.32 0.50 Cl 0.07 0.05 0.06 0.02 0.08 0.04 0.07 0.04 0.04 0.02 0.02 0 03 0.00 0 .06 Total 98.48 98.8 4 95.21 97.04 98.44 97.22 98.46 96.61 92.49 97.86 96.30 96.96 97 52 97 15 Number of ions on the basis of 22 oxygens S i 5.27 5.44 5.43 5.31 5.41 5.33 5.37 5.35 5 53 5 33 5 32 5 34 5.37 5 33 AI 2.75 2.93 2.93 2.94 2.97 2.97 2 .97 2.81 2.87 2.87 2.83 2.79 2.83 2 88 F e2 1 14 1 .00 1.06 1.12 1 .04 1 .02 1 .01 1 .37 1.45 1.42 1.37 1.4 5 1.45 1 38 Mg 3.86 3 9 1 3.93 3.94 3.86 3.95 3 .90 3 65 3.41 3.54 3 59 3 .60 3.53 3.55 Na 0.10 0 08 0.04 0.09 0.04 0.10 0 .04 0.13 0.06 0.07 0 .11 0 10 0 07 0.12 K 1.51 1.34 1.48 1 .53 1 .52 1.49 1 64 1 .54 0.87 1 55 1 53 1 .61 1.47 1.53 Ti 0.44 0.49 0.42 0.49 0.48 0 .50 0.47 0 54 0 .61 0.57 0.60 0.56 0.58 0.56 Mn 0.02 0.01 0.01 0.00 0.00 0.00 0 .01 0 .01 0.01 0 0 1 0 .00 0 0 1 0.01 0.01 F 1.19 0.14 0.21 0.25 0.08 0.18 0 13 0 22 0.16 0.17 0.21 0.15 0.15 0.22 Cl 0 02 0.01 0 .02 0.01 0.02 0.01 0 02 0.01 0.01 0.01 0.01 0.01 0 .00 0.02 Cr 0.01 0.03 0 02 0.02 0.03 0.02 0.02 0 02 0 .00 0.03 0.02 0.03 0 .01 0.01 mg# 77. 1 3 79.74 78.75 77.8 6 78.79 79.48 79 38 72.7 1 70. 16 71.44 72 .30 71.30 70.91 72.06 ........ 0 Total Cat 16.31 15.38 15 55 1 5.67 15.44 15.55 15.58 1 5.65 14.97 15.55 15.58 15.63 15.47 15.61 00

PAGE 121

APPENDIX D (cont'd) Table 4 Mic a c omposit i ons (cont'd) L ocation : l ngili Sout h Sikhote Al in Samp le# 5098 5098 5098 P -9 P 9 P-9 M inera l # 2 1 24 26 41 42 43 Si02 38.23 38 .85 36.52 37 .99 36.72 37.15 Ti02 2. 1 3 2.44 1. 69 4.04 3.40 3.9 4 Al203 1 2.03 1 2.07 1 2.53 1 5.58 1 3 83 1 4 55 Cr203 0.00 0.09 0.37 0.27 0.02 0.04 FeO 7.2 1 9 1 9 9.82 10.60 1 0.95 8.73 M n O 0.04 0.04 0.04 0 .05 0 25 0 1 0 MgO 25.13 22.64 24.58 18.30 19.72 20. 34 CaO 0.00 0.00 0 .00 0 .00 0 .00 0 .00 Na20 0.20 0. 1 7 0. 1 4 0 .70 0 38 0.42 K20 5.36 5.22 4.08 8.9 1 7.47 8 0 1 F 0.79 0 97 0 83 0.14 0.04 0 .06 Cl Tota l 90.79 9 1 .27 90.24 96.52 92.76 93.32 Number of ions on th e basis of 22 oxyge n s Si 5.63 5.72 5.46 5.47 5.50 5.47 A I 2.09 2. 1 0 2.2 1 2 65 2.44 2.53 FeZ 0 .89 1. 1 3 1.23 1.28 1.37 1.08 Mg 5 52 4 .97 5 .4 8 3 .9 3 4.40 4.47 Na 0 .06 0 .05 0.04 0.20 0. 1 1 0.12 K 1 .0 1 0.98 0.78 1.64 1.43 1.51 Ti 0.24 0.27 0.19 0.44 0.3 8 0.4 4 M n 0 0 1 0.01 0.01 0.01 0.03 0.01 F 0.37 0.45 0 39 0.06 0 .02 0 03 C l C r 0 .00 0 .01 0.04 0.03 0.00 0.01 mg # 86.14 8 1 .45 81.69 7 5 .48 76.25 80.60 T otal Cat 15 .81 15 .69 1 5 83 1 5 .70 15 68 1 5. 65 Anu i P 9 P -9 P -9 AP-1 45 46 47 48 36.50 36.52 37.57 34.35 3.42 4.8 1 6.33 3 .50 1 2 .4 8 1 5 27 16.04 14 77 0 .06 0 .31 0.09 0.05 1 1 .65 1 0 7 1 9.47 1 9.68 0 25 0.06 0.02 0.34 1 8. 7 3 1 9.16 17 .88 1 2 .81 0.00 0.00 0.00 0 .00 0 59 0.3 1 0.42 0.22 8 .10 7.05 8 6 1 6 1 1 0.20 0 .00 0. 1 2 0 1 4 9 1 .90 94.20 96.51 91.9 1 5 57 5.36 5.37 5 39 2 24 2.64 2.70 2.73 1 .49 1 3 1 1 1 3 2.58 4. 26 4 19 3.81 2.99 0.18 0 .09 0. 1 2 0.07 1 .58 1.32 1 57 1.22 0 39 0 53 0.68 0.41 0 .03 0.01 0.00 0.05 0 .10 0.00 0 .06 0.07 0.01 0 .04 0.01 0 0 1 74. 13 76. 13 7 7 .09 53.71 1 5.84 15 .48 15 .46 1 5 .51 A P 1 49 32 58 6.37 14 .27 0.08 1 9.4 1 0 33 1 0 .3 0 0.00 0 22 8.66 0. 1 1 9 2. 29 5.20 2.68 2.59 2.45 0 .07 1.76 0.77 0 05 0.0 6 0 .01 4 8.6 1 1 5 .63 Philip pluton F-1 F-1 1 1 3 39 .61 40. 1 5 4.50 3.47 1 5.54 1 5.8 1 0.45 0.24 8 3 1 7.59 0 02 0 .00 1 8 .94 1 9.69 0.00 0.00 0.46 0.38 8. 1 0 8. 1 7 0 .28 0 19 96.08 95 .61 5 6 1 5 69 2.60 2.64 0.99 0.90 4.00 4 1 6 0.13 0. 1 0 1 .46 1 .48 0 .48 0.37 0 .00 0.00 0. 1 2 0.08 0 .0 5 0 .03 80.25 82.22 1 5.44 15.44 1--' 0 \()

PAGE 122

APPENDIX D (cont'd ) Table 5. Pyro xene compos i t i ons Locat ion: Badjal lng ili X-1 X 1 X-1 X-1 DN-1 34E DN-144 DN-144 DN-144 DN-144 1 5 1 09-2 5 1 09-2 5 1 09-2 5 1 09-2 5 1 09-2 37 4 1 42 44 204 142 144 145 14: 0.50 48 85 50. 69 49 82 45 .63 4 8 15 49.70 43.50 49." Ti02 1.2 5 1.68 1 .07 1 .26 2 .89 1.1 7 1. 26 4.02 1.24 1 .78 0.40 A l 203 4 22 5 83 4 1 8 4.67 5.78 5.1 8 6. 1 2 9.95 5 1 1 1.33 0.52 3 .26 0 68 0.7 1 Cr203 0 .02 0.03 0 .01 0 08 0 .02 0.01 0.08 0 .00 0.07 0.05 0 1 1 0.0 5 0.03 0.05 Fe203 2. 26 2 .60 2 2 1 2.08 6 .50 4 .93 2.64 4.46 1 57 4.22 3.43 3.09 3 36 3 .03 FeO 6 26 6.68 6 35 5 25 1 .84 2.68 4 .70 4 1 5 1 0 59 1.69 3 7 5 7 .50 5 28 3.99 MnO 0 24 0 1 5 0 18 0 19 0.14 0. 1 7 0.12 0.07 0 36 0 1 3 0 1 6 0 1 8 0 1 6 0 1 6 MgO 13.76 1 2.12 1 2 .98 1 3. 54 1 3.46 1 4 58 1 4 .30 11.60 13.30 15 35 15.48 1 2. 7 7 14 22 15 38 CaO 2 1 .53 21.77 2 2 .03 2 1 .92 2 3 .3 3 20 82 20.90 22 .50 18 .00 2 3. 58 21.92 20. 53 21. 1 2 2 1.47 Na20 0 6 2 0 77 0.78 0 64 0 2 8 0 .66 0.75 0.41 0.42 0 35 0.73 0.68 1 .07 0 .90 K20 0 .00 0 .00 0 0 2 0 .03 0 0 1 0.02 0.00 0 .00 0 05 0 .02 0 02 0 .01 0 .01 0 03 T o tal 100.66 1 00.49 100.49 99.4 7 99.86 98.36 100. 57 100.67 99 .80 98.26 98.92 98. 27 98. 55 98.80 o x ygens 1 .86 1 .82 1.88 1 86 1 .7 1 1 8 1 1 82 1.62 1 .85 1 87 1.96 1 .90 1.97 1.96 0 18 0.26 0.18 0.2 1 0 .26 0 23 0.26 0.44 0 .23 0 .06 0.02 0.15 0.03 0 03 Fe3 0.06 0.07 0.06 0.06 0 18 0 14 0 07 0.13 0.04 0 1 2 0. 1 0 0 .09 0 .10 0.09 FeZ 0 19 0 2 1 0 2 0 0.16 0.06 0 .08 0 .14 0. 1 3 0 33 0 05 0. 1 2 0 24 0. 1 7 0 1 2 Mg 0 .76 0.67 0 .72 0 75 0 75 0 82 0 .78 0 6 4 0 75 0.86 0 .86 0 7 2 0 .80 0. 8 6 Ca 0 85 0 87 0 87 0 .88 0 94 0 8 4 0 8 2 0 .90 0.73 0 9 5 0 8 8 0 .84 0 85 0 .86 Na 0.05 0.06 0 .06 0 .05 0 02 0.05 0 .05 0 03 0 03 0 0 3 0 05 0 .05 0 0 8 0.07 K 0.00 0 .00 0.00 0 .00 0.00 0.00 0.00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0.00 T i 0 04 0.05 0.03 0 .04 0.08 0 03 0 .04 0. 1 1 0.04 0 .05 0 0 1 0.01 0 0 1 0 0 1 M n 0.0 1 0 .01 0 0 1 0 0 1 0 .00 0 0 1 0 .00 0 .00 0 0 1 0 .00 0.01 0 .01 0 .01 0 0 1 C r 0 .00 0.00 0.00 0 .00 0.00 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0 .00 mg # 79.67 76.39 78.48 82.13 92. 89 90. 67 83 27 69 12 94.20 88.05 75 23 8 2 .77 T otal Cat 4 .00 4 .00 4.00 4 .00 4 .00 4.00 4 .00 4 0 0 4 .00 4.00 4 .00 4 .00 ,_.. 10.72 11. 89 11.00 9 14 3 .29 4 .84 8 24 7 .74 1 8.47 2 84 6 .30 1 3.25 9 1 5 6.77 ,_.. 0 4 7. 26 49 65 4 8 .91 48 86 53 .64 48.20 47.01 5 3 72 40.20 50 98 47.26 4 6.50 4 6 .91 46. 6 9

PAGE 123

A PPENDIX D. (c ont'd) Table 5. Pyro xene c o mp o sitions (cont'd) Locati on: South Sikhote Alin Sample# P-1 5 P-1 5 P-1 5 P-1 5 P-1 5 P-1 5 P-1 5 P-1 5 P 1 5 P-1 5 P-1 5 P-1 5 P-1 5 P-1 5 P-1 5 P 1 5 63 66 67 69 72 73 75 79 80 92 93 95 97 98 103 Si02 51.27 43 20 48 .7 8 41.86 46.50 41.76 43 86 40.19 51.47 46.14 45.15 45.87 45.81 43.74 45.15 45.01 Ti02 1.12 4.04 0.63 4.65 2 .06 5.08 2.52 5.04 0.23 2.43 2 35 3 58 2.50 3.46 2.65 2.64 Al203 1 .65 8.44 3.91 9.25 6.08 10.18 9 1 8 9.58 0.06 8.49 8.65 6.45 7.06 9.66 9.53 9.43 Cr203 0.21 0 .0 7 0 03 0.02 0 26 0.27 0 02 0.00 0.02 0.03 0 06 0.04 0 12 0.09 0.06 0 .11 Fe203 2.49 5 .88 5 03 5 39 4 .60 4.70 6 .31 6.44 4.28 4.43 4 83 2.60 4 35 4 10 4 58 4 04 FeO 4.88 1.28 6.11 2.27 1 .21 2.81 1.41 1.90 3.78 4.33 3.23 4 55 2.26 3.07 3.09 3 .61 MnO 0.19 0.14 0.21 0.16 0.05 0.13 0.07 0.17 0 22 0 17 0.12 0.14 0.09 0 .11 0.11 0 10 MgO 14.9212.35 12.7010.93 14.1411.42 12 .1310.48 14 .2711.41 11. 93 12.5713.2912.23 12.48 12 18 CaO 21.90 22.57 1 9.95 22.64 21.94 22.36 20.99 22.63 23.81 20.65 20.58 22.14 22 64 21.11 20 58 20.45 Na20 0 56 0.62 0.94 0.70 0 .62 0.55 1.02 0 .61 0.36 1.29 1.10 0.55 0.43 0.72 0.96 0 98 K20 0 .00 0.01 0 .0 1 0.02 0 .00 0.00 0.00 0.00 0.05 0.02 0.01 0 .01 0.00 0 .0 2 0.03 0 .01 Total 99.19 98.61 98.29 97 .88 97.47 99.25 97.50 97.05 98.55 99.40 98 .00 98.50 98.54 98.31 99 22 98 57 Number of 1ons on the basis of 6 oxygens Si 1.91 1 64 1.86 1.61 1 .7 6 1 58 1.67 1.56 1.95 1.73 1.7 1 1.74 1.73 1 65 1 69 1.69 AI 0.07 0.38 0.18 0.42 0.27 0.45 0.41 0.44 0.00 0.38 0.39 0.29 0.31 0.43 0.42 0.42 Fe3 0 07 0.17 0 14 0 16 0.13 0 13 0.18 0 19 0.12 0.13 0.14 0.07 0.12 0 12 0.13 0.11 Fe2 0. 1 5 0 04 0. 1 9 0.07 0 .04 0.09 0.05 0.06 0. 1 2 0.14 0. 1 0 0.14 0.07 0. 1 0 0 1 0 0.11 Mg 0 83 0 .70 0.72 0.63 0.80 0.64 0.69 0.61 0.80 0 64 0.67 0.71 0.75 0 69 0.70 0.68 Ca 0.88 0 92 0.81 0 93 0 .89 0 .91 0 .86 0.94 0.96 0 83 0 84 0.90 0 .91 0 .86 0.82 0.82 Na 0.04 0 05 0 07 0.05 0.05 0.04 0.08 0.05 0.03 0 09 0.08 0 04 0 03 0.05 0.07 0.07 K 0.00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0.00 Ti 0.03 0.12 0.02 0.13 0.06 0.14 0.07 0 15 0.01 0 07 0.07 0.10 0.07 0 10 0 07 0.08 Mn 0 .01 0 .01 0.01 0 .01 0 .0 0 0.00 0 .00 0 .0 1 0.01 0 .01 0 .00 0.01 0.00 0 .00 0.00 0.00 Cr 0.01 0 .00 0.00 0.00 0 .01 0 .01 0.00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0 .00 0 .0 0 mg# 84.49 94.49 78 .76 89 57 95.42 87.89 93 .90 90.76 87 07 82.44 86. 83 83 .11 91.30 87 65 87.81 85.74 Total Cat 4.00 4.00 4 .00 4.00 4 .00 4.00 4 .00 4 .00 4 .00 4 .00 4.00 4 .0 0 4.00 4 .00 4.00 4 .00 En 38.39 39.29 37.68 39.78 43 .03 ........ Fs 8 20 2.46 11. 24 4.47 2.22 5.42 2.82 3.84 6.33 8.48 6 34 8.23 4 .11 5.92 5 98 7 .01 ........ ........ Wo 47.13 55.38 47 07 57.14 51. 55 55 .2 9 53 8 7 58.48 51.08 51.74 51.84 51.27 52 78 52.09 51.00 50 85

PAGE 124

APPENDIX D. (cont'd) Table 5. Pyroxene compositions (cont'd) Location : South Sikhote Alin Sample# P-15 P-15 P-15 P-15 P-15 P-15 P-1 5 P15 P-55 P-55 P-55 P-55 P-55 P-55 P-55 P-55 104 1 OS 106 107 108 109 110 1 1 2 127 128 1 3, 132 133 135 136 138 Si02 44.46 41.11 40.57 44.97 44 .9 1 45.10 44.25 46.06 43.62 45.42 46.40 41.21 46 .30 52.29 45 07 44.30 Ti02 2.82 5.20 5.84 2 .60 2.53 2 .86 4 .00 2.36 4.19 3 69 2.48 5.59 2.27 0 .21 2.25 3.66 Al203 9.47 10.00 11.04 9 1 1 8 12 9 26 8.57 8.72 7.73 6 16 7 26 9.57 8.82 0.01 9 09 6 .21 Cr203 0 05 0.07 0 08 0 02 0.34 0 28 0 07 0.03 0.39 0.04 0 .82 0.03 0 28 0.14 0 1 1 0 .10 Fe203 4 .01 5 27 3.00 4.87 4.46 4.08 3.10 4.26 4 .21 4.07 3.29 5.29 3.93 2.06 4 99 4 .83 FeO 4 1 1 2.77 5.40 4 77 2.09 3 .29 3 .61 4 .36 2 76 3 68 2.51 2 69 3.38 9.02 2.80 2.94 MnO 0 .13 0.10 0.14 0 18 0.12 0 .13 0 12 0.17 0.09 0 15 0 07 0 15 0.12 0.45 0.12 0.13 MgO 1 1.52 10. 97 9.75 10.12 12.91 12.28 12.07 11.47 12.36 12 35 13 .50 10.98 12 59 14.74 12 36 12 55 CaO 20 24 22.54 22.00 20.45 21.46 20.60 22.39 20.47 22.52 22.75 21.63 22.41 20 26 18 93 20. 33 22.51 Na20 1.07 0 52 0 57 1.48 0 .70 1 03 0.55 1.29 0.45 0 57 0 72 0.65 1 .16 0.57 1 .04 0.40 K20 0 .01 0 .04 0.01 0.01 0 .00 0 .01 0.00 0.00 0.04 0.00 0.01 0.05 0.04 0.03 0 02 0.05 Total 97.89 98.59 98.38 98.59 97.63 98 .91 98 7 4 99 20 98.36 98.88 98.69 98.62 99 15 98.44 98 18 97.67 Number of ions on the basis of 6 oxygens Si 1.69 1.57 1 56 1 .71 1 .7 0 1.69 1 67 1 .73 1.66 1 .72 1 74 1 57 1 73 1 98 1 .70 1.70 AI 0.42 0.45 0.50 0.41 0.36 0.41 0.38 0.39 0.35 0.28 0 32 0.43 0.39 0.00 0.40 0.28 Fe3 0 12 0.15 0.09 0 14 0.13 0.12 0.09 0.12 0 12 0.12 0.09 0 15 0.1 1 0.06 0 14 0.14 FeZ 0 13 0 09 0.17 0.15 0 07 0 .10 0 .11 0 14 0.09 0 12 0 08 0 09 0 1 1 0 29 0.09 0.09 Mg 0 65 0.62 0.56 0.57 0 .73 0 69 0.68 0.64 0 .70 0.70 0.75 0 63 0 .70 0.83 0.70 0 72 Ca 0 .82 0 92 0 .91 0.83 0.87 0.83 0.91 0.82 0 92 0 92 0.87 0.92 0 .81 0.77 0.82 0.93 Na 0 08 0.04 0 04 0 1 1 0.05 0 08 0.04 0.09 0.03 0.04 0.05 0.05 0.08 0.04 0 08 0 03 K 0.00 0.00 0 .00 0 00 0.00 0.00 0.00 0.00 0.00 0 .00 0.00 0.00 0 .00 0.00 0.00 0 .00 Ti 0.08 0 .15 0 .17 0 07 0 07 0 08 0 .11 0.07 0.12 0 .1 1 0.07 0 16 0 .06 0.01 0.06 0 1 1 Mn 0.00 0.00 0 .00 0.01 0.00 0 .00 0 .00 0 .01 0.00 0 .01 0 .00 0 .01 0 .00 0 .01 0 .00 0 .00 Cr 0 .00 0.00 0.00 0.00 0 .01 0.01 0.00 0.00 0.01 0 .00 0 02 0.00 0 .01 0 .00 0.00 0 .00 mg# 83.32 87 .61 76.31 79 09 91.69 86. 94 85.64 82.41 88.87 85.69 90.56 87.91 86.90 74.44 88.71 88.39 Total Cat 4 .00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4 .00 4.00 4 .00 En 40 60 38 20 34.1 1 36 .81 43.76 42.45 39 99 40 06 41.07 40.15 44 33 38.40 43.34 44.13 43.30 41. 32 ....... F s 8 13 5.40 10. 59 9.73 3 97 6 38 6.70 8 55 5.15 6.70 4 62 5 28 6 53 15 .15 5.51 5.43 ....... N Wo 51.27 56.40 55.31 53.46 52.28 51. 18 53.31 51.39 53.78 53 15 51.05 56.32 50.13 40.73 51.19 53.2 6

PAGE 125

APPENDIX D. (cont'd) Table 5. Pyroxene compositions (cont'd) Location : Central Sikhote Alin Anui Sample# 4-135 4-135 4-135 4-135 4-135 4-135 4-135 4-136 4 136 4-136 4 136 4-136 I P -141 P-14 1 P-141 P-141 170 1 71 172 1 73 1 7:if 176 177 19 20 21 2 50.54 42.05 49 32 50.51 46.54 49 .50 49.12 51. 20 43.20 50.60 52.90 Ti02 0.93 5.36 1.55 1.1 3 2.85 1.69 1.66 1.48 4.97 1.39 0.96 2.25 1.07 1 .18 1 19 1 07 Al203 2.03 8.16 2.84 2.17 5 .58 2 .87 3.58 3 52 9.72 3.26 1 76 3.72 1 68 1.89 2 .02 1 73 Cr203 0.95 0 08 0.61 0.52 0.57 0.37 0.24 0 .50 0 .16 0.99 0.71 0.40 0.81 0 69 0.38 0 66 Fe203 3.09 5.03 2 89 3.02 3.86 3.14 3.94 0.38 3.68 2.45 0.00 1.42 0.09 0 .50 1.04 0.39 FeO 0.93 3.94 2.66 1.77 3.06 3.37 2.26 5 02 5.74 2.80 0.00 6.20 4.02 3.86 3 89 3.78 MnO 0.04 0.10 0.09 0.10 0.09 0 15 0 07 0 .06 0 .20 0 06 0.13 0.13 0 07 0.10 0 07 0 10 MgO 16.34 1 1.57 15.51 16.07 13.72 15.57 15.09 14.80 11.20 15.70 1 6.40 14.90 15.75 16. 03 15.82 16.03 CaO 23.47 22.14 2 2 63 23 .20 22 55 22.25 23.11 23.30 21. 90 23.10 22 .30 21.40 22.94 23 02 22 95 23.44 Na20 0.24 0.44 0.21 0.24 0.36 0.20 0.30 0 26 0.46 0.27 0 .19 0.20 0.28 0.27 0.30 0 .31 K20 0.00 0.00 0 .01 0.01 0.02 0.00 0.00 0 .01 0 .01 0.02 0 .01 0 03 0.01 0.00 0 .02 0 .00 98.76 99.19 99 .10 99.36 100. 53 101 .24 100. 63 95 36 1 00.26 98 53 99.58 99.49 1 00.16 oxygens 1.88 1 .6 1 1.85 1 .88 1.75 1 85 1 .83 1 88 1.61 1.85 1.94 1 .84 1 93 1.92 1.91 1 93 0.09 0.37 0.13 0.10 0.25 0.13 0 16 0.15 0.43 0.14 0.08 0.16 0.07 0.08 0 09 0 .08 Fe3 0.09 0.14 0.08 0 09 0.11 0 .0 9 0 .11 0.01 0.10 0.07 0.00 0.04 0.00 0.01 0.03 0.01 Fe2 0.03 0.13 0 08 0 .06 0 .10 0.11 0.07 0.15 0.18 0.09 0.14 0.19 0 .13 0 12 0 12 0 12 Mg 0.91 0 66 0.87 0.89 0.77 0.87 0.84 0.81 0.62 0.86 0.90 0.82 0.88 0.88 0.87 0 .88 Ca 0.94 0 .91 0 9 1 0.93 0.91 0.89 0.92 0.92 0 .88 0.91 0.88 0.85 0.92 0.91 0.91 0.92 Na 0.02 0 03 0.02 0.02 0 03 0 .02 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.02 K 0.00 0 .00 0 .00 0.00 0 .00 0 .00 0.00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0.00 0.00 0 .00 Ti 0 03 0 .15 0 04 0.03 0 .08 0 05 0.05 0.04 0.14 0 .04 0 03 0.06 0.03 0.03 0 03 0 03 Mn 0 .00 0 00 0 .00 0.00 0.00 0.01 0.00 0 .00 0 .01 0 .00 0.00 0.00 0 .00 0.00 0.00 0.00 Cr 0.03 0.00 0.02 0 02 0.02 0.01 0.01 0.02 0.01 0 03 0.02 0.01 0 02 0.02 0.01 0.02 mg# 96.91 83 97 91. 23 94.17 88.89 89.18 92.27 84.01 77 68 90.91 86.30 81. 07 87.47 88.09 87.87 88.33 Total Cat 4.00 4.00 4.00 4.00 4.00 4 .00 4.00 4 .00 4.00 4.00 3.99 4 .00 4.00 4.00 4.00 4.00 J6 :if5.81 """ 1 55 7.44 4.48 2.95 5.42 5.65 3 .84 8.20 10. 67 4 64 7.43 1 o .31 I 6 54 6.24 6.33 6 05 """ 50.01 53 59 48.89 49.42 51.22 47.81 50.39 48 73 52.19 49 .01 45 75 45 56 47.80 47.62 47 .81 48.14 (JJ

PAGE 126

APPENDIX D (cont'd) Table 5. Pyroxene c o mp o siti ons (c ont'd) Location: Anui Sample# P-141 P-14 7 P14 7 P-14 7 P-147 P-147 P-147 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 AP-1 fiilmeral1/. 22 186 188 190 195 196 2ll 1 39 go 1ll1 1llll 1ll5 1ll6 1ll7 1ll8 Si02 51.87 49 69 50.08 48.55 51.75 50.88 49 .72 47 .60 49. 14 50.01 47. 75 49.72 49 .84 47 24 48 .70 50.03 50.07 Ti02 1.43 1 33 1.45 1.95 1.29 1 59 1.68 2.83 1.66 1 55 3.27 1.59 1 .64 2.73 2.48 1 52 1.56 Al203 2.25 2.06 2.09 3.05 1.99 1 93 2 .56 4.52 2.93 3.04 4.07 2.94 3 09 3 64 4.24 3.18 2.95 Cr203 0.34 0 6 1 0.60 0.71 0 .61 0 25 0 .51 0.04 0.24 0.35 0.09 0.40 0.47 0.04 0 23 0.34 0.28 Fe203 0 22 3 .70 3.41 4 1 0 1.75 3.35 4.46 3.67 3 69 3.24 3.51 4 03 3.15 4.87 2 .86 3 02 2 38 FeO 5.01 1.03 1.57 1 .36 2.84 1.94 0.41 3.32 1.45 2.02 2 72 1.44 2.10 1 28 2 69 2.40 3 .15 MnO 0 12 0 .11 0.07 0 .09 0.06 0 12 0 08 0 18 0 .10 0 08 0 .10 0.13 0.08 0.10 0 .08 0 1 1 0 09 MgO 15 .2 9 15.73 15.87 15 33 16.30 16.17 16 .07 13 .30 1 5.05 15 .50 14.35 15 53 1 5.40 1 4 55 14.60 15 19 1 5 .2 8 CaO 23.16 23.40 23 33 22.88 23 25 23.5 4 23 76 23.40 23.64 23 12 2 3 .6 1 23.22 22.70 23.74 23.44 23.14 22 62 Na20 0.27 0.30 0 29 0.35 0.28 0 26 0 .30 0.45 0.34 0 39 0.28 0.39 0.50 0.24 0.35 0.41 0.39 K20 0 .00 0.02 0.01 0.03 0.00 0 00 0.00 0.06 0 .01 0 02 0 03 0 02 0 .02 0.04 0.00 0.01 0.00 Total 99.96 97 .99 98.77 98.40 100.13 100. 03 99 55 99. 37 98.25 99.31 99 78 99.41 98 98 98.47 99.66 99.35 98 78 Number of 1ons on the bas1s of 6 oxygens Si 1.91 1 .87 1 .87 1 .82 1.90 1.87 1 .84 1.79 1 85 1 .85 1 78 1 .84 1 .85 1.78 1.81 1.86 1.87 AI 0 10 0 .09 0 .09 0 14 0.09 0.08 0 .11 0.20 0 13 0.13 0 18 0 13 0.14 0. 1 6 0.19 0 14 0 13 Fe3 0 .01 0.11 0.10 0.12 0.05 0 09 0 12 0.10 0.10 0.09 0.10 0 .11 0.09 0.14 0 08 0.08 0 07 FeZ 0.16 0.03 0.05 0.04 0 09 0 06 0 .01 0.10 0 05 0.06 0.09 0 05 0 07 0 .04 0.08 0.07 0.10 Mg 0 .84 0.88 0 8 8 0.8 6 0 89 0.89 0.89 0 .74 0.84 0.86 0.80 0.86 0 .85 0.82 0 .81 0 .84 0 85 Ca 0 92 0 .9 4 0.93 0 92 0.91 0 93 0.94 0 94 0.95 0.92 0 94 0.92 0 .91 0 .96 0 93 0.92 0 .90 Na 0 02 0.02 0 02 0 03 0.02 0 02 0 02 0 03 0.02 0.03 0.02 0.03 0.04 0 02 0 03 0 03 0 03 K 0 .00 0 .00 0 00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 0 .00 0.00 0.00 0.00 0 .00 0 .00 0.00 0 .00 Ti 0 04 0.04 0 04 0.06 0 04 0 .04 0 05 0.08 0.05 0.04 0.09 0.04 0.05 0 08 0 07 0.04 0 04 Mn 0.00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 0 .01 0.00 0.00 0.00 0 .00 0.00 0 .00 0 .00 0 .00 0 .00 Cr 0.01 0 02 0 02 0.02 0 02 0.01 0 02 0.00 0 .01 0 .01 0 .00 0 .01 0.01 0 .00 0.01 0.01 0 .01 mg# 84.47 96.47 94 74 95 27 91.09 93 69 98 60 87 .71 94 .88 93 .20 90.40 95.05 92 .90 95 .30 90.63 91.87 89 64 Total Cat 4.00 4 00 4 .00 4 .00 4.00 4.00 4.00 4 .0 0 4 .00 4 .00 4.00 4.00 4.00 4.00 4 .00 4.00 4.00 En 4ll.OO 47.49 ll7 35 47 12 47.10 47 .31 ll8 15 ll1.59 45.81 46.62 43.69 ll7 .02 46 82 45.01 44 .30 45 .80 ll5 88 Fs 8 .09 1.74 2.63 2 34 4.61 3 19 0 68 5 83 2.47 3.40 4 64 2.45 3.58 2.22 4.58 4 05 5.30 Wo 47.90 50.77 50. 02 50.54 48.29 49.50 51.17 52.59 51. 72 49 98 51.67 50.53 49.60 52 7 8 51. 12 50.15 48 82

PAGE 127

APPENDIX D (cont'd) Table 5 Pyroxene compositions (cont'd) L o cation : Northeast Sikhote Alin Khankai Philip Sample# 4-1 03 4-103 4-103 4-103 4-1 03 4-103 4-1 03 4-1 03 4-103 4-1 03 4-1 03 4-103 4-103 4-1031 V-4-7 V -4-7 I F-1 1ral 'fl. 3 5 8 9 158 159 160 161 162 1 64'1 165 167 47.43 50.06 49.38 46. 29 48 .17 43.89 46.95 T i02 2.47 1.49 1.10 2.62 2.99 2 55 1.41 1.45 2 .78 1.93 3.59 2 .66 1.72 Al203 5 53 2 88 2.10 5.25 5.64 4 32 2.30 2.57 5 .76 3.79 6.42 4.79 2 82 6.80 3 .06 5.41 0.44 Cr203 1.04 0 15 0 63 0.43 0.59 0 .2 6 0 .3 4 0.62 0 18 0.69 0 .14 0.34 0.46 0.12 0.14 0 .5 9 0 .01 Fe203 4.55 0.68 0.40 2.79 2 76 3.64 2.54 3.33 3 98 3.59 5 16 3.85 2.76 2.88 0.45 0.69 0.90 FeO 2.15 5.19 4 .02 3.53 4.02 3.03 3.19 2.51 3.56 2 54 2.65 3.22 3 03 5.05 5.23 4.95 0 .00 MnO 0 .12 0.12 0 09 0.14 0.06 0 .08 0.13 0 12 0.13 0 12 0 13 0 09 0 09 0 15 0 .19 0.10 0 08 MgO 14 25 15 .31 15 84 14.19 13.43 14.46 15 77 15 .90 13 53 14.92 12.64 13.95 15.73 12 18 15 .60 14 97 17 68 CaO 22.37 22.23 23.3 0 22 37 22.30 22.19 22 .31 22.09 22 .00 22.59 22.11 22.54 22.20 21.80 22.40 21.78 24 99 Na20 0.38 0 .21 0 22 0.32 0.35 0.34 0 23 0 23 0 38 0 .24 0.45 0.32 0.22 0.46 0 23 0 25 0 36 K20 0.03 0 .03 0 .00 0.00 0 .00 0.04 0 .01 0.00 0 03 0 .00 0 .00 0.00 0 .00 0 .01 0.01 0.00 0 .00 Total 99.67 99.13 99.74 99.12 98 59 98.35 98.29 98.20 98.63 98 59 97.17 98 .7 1 98.46 97.99 1 00.14 99.80 98.06 oxygens 1.74 1.89 1 92 1.78 1.76 1.79 1.88 1.85 1.75 1 .81 1 69 1.77 1.85 1.72 1.92 1.85 1.97 0.24 0 13 0 09 0.23 0 25 0.19 0 .10 0 .11 0.26 0 17 0.29 0.21 0.13 0.31 0 13 0.24 0 02 Fe3 0 13 0 .02 0.01 0.08 0.08 0.10 0.07 0.09 0 .11 0 10 0.15 0 .11 0 08 0.08 0 .01 0.0 2 0 03 FeZ 0.07 0.16 0.12 0.11 0 13 0 .10 0 .10 0 08 0. 1 1 0 .08 0.09 0.10 0.10 0 16 0.16 0.15 0 .00 Mg 0.79 0 85 0 87 0 79 0.76 0.81 0 88 0 89 0 76 0 84 0 .7 3 0.78 0 88 0.69 0 85 0.82 0.97 Ca 0.89 0.89 0.92 0.90 0.90 0.90 0.90 0.89 0.89 0 .91 0.91 0.91 0.89 0 89 0.88 0.86 0 99 Na 0 03 0 02 0.02 0 02 0.03 0.03 0.02 0.02 0 03 0 02 0.03 0 02 0.02 0.03 0.02 0.02 0.03 K 0 .00 0.00 0 .00 0.00 0.00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0.00 0.00 0 .00 0 .00 0.00 0 .00 Ti 0.07 0.04 0 03 0 07 0.09 0.07 0.04 0 .04 0.08 0 06 0.10 0 .08 0 05 0 .10 0 02 0.02 0 .00 Mn 0 .00 0.00 0.00 0.00 0.00 0 .00 0.00 0 .0 0 0.00 0 .00 0 .0 0 0 .00 0.00 0.01 0 .0 1 0.00 0.00 Cr 0.03 0.00 0 .02 0 .01 0 02 0.01 0.01 0 02 0 .01 0.02 0.00 0 .01 0 .01 0 .00 0 .00 0 02 0.00 mg# 92 .21 84 02 87 54 87.7 5 85.63 89.4 7 89.82 91. 88 87.14 91. 28 89.48 88.55 90.25 81.13 84 .18 84 .35 Total Cat 4 00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4 .00 4 .00 4.00 4 .00 4.00 4 .00 3.82 8 .51 6.47 6.14 7.11 s.3o s 32 4.24 6.37 4 37 4.95 s.6s s.o9 9 23 I 8.47 50 99 46 .72 48.06 49 86 50 54 49 6 7 47.73 47 85 50.45 49.83 52.94 50.70 47. 79 51.07 46.49 8. v; 46 39

PAGE 128

A PPEN D I X D. (c ont'd) Tab l e 6. Amp h ibo l e c o mposi t ions Location: Badjal Sample# P-171 P-171 P-171 P-171 X-1 X-1 X-1 DN-164 DN-164 DN-164 DN-164 LDN-23 LDN-23 Mineral# 16 17 158 163 32 33 35 173 174 180 188 199 200 Si02 53.93 53.59 52.13 54.23 41.23 39.60 39.07 38.30 38.00 41.40 40.52 40.08 39.00 Ti02 0.23 0.31 0.35 0.36 4.12 4.32 3.95 3.81 2.93 4.09 4.16 4.92 4 26 Al203 3.49 4.96 7.36 5.01 12.52 13.43 14.27 14.19 13.53 12.47 11.78 13.45 14.80 Cr203 0.07 0.08 0 12 0 08 0.01 0.00 0.02 0.01 0.00 0.10 0.05 0.04 0.00 FeO 4.14 4.25 4.89 4.58 12.95 13.61 14.82 17.37 19 .00 11.81 12.63 13 .65 10.16 MnO 0 12 0.13 0 13 0.13 0.19 0.19 0.22 0.31 0.70 0.14 0.16 0.35 0. 1 7 MgO 21. 69 20. 83 20.27 21.36 12.40 11.70 10.67 9.23 8.12 13.10 12 .10 12.08 14.52 CaO 12.14 12 26 12.43 12.38 11.41 11.20 11.26 1 1.36 10.80 11. 52 11.1 5 11.43 11.57 Na20 0.74 0 95 1.16 0 .99 2.19 2.21 2.23 2.04 2.11 2.19 1.58 2.75 2.47 K20 0 15 0 14 0.22 0 13 1.84 1.75 1.88 1.88 2.07 1.82 2.00 1.10 1.14 F 0 .00 0.00 0.00 0.00 0.19 0.15 0.16 0.14 0 13 0.08 0 33 0.19 Cl 0 .00 0 .00 0.03 0.04 0.05 0.08 0.11 0.06 0 .04 0.10 0 .00 Total 96.70 97.50 99.05 99.27 99.01 98.13 98.53 98.67 97.26 98.77 96.21 100.11 98.20 Number of 1ons on the basis of 23 oxygens Si 7 .56 7.45 7.18 7.42 6.07 5.92 5.85 5.81 5.91 6.08 6.14 5.86 5.73 AI 0 58 0 .81 1.20 0.81 2.17 2 37 2.52 2.54 2.48 2 .16 2.10 2 32 2.56 FeZ 0.49 0.49 0.56 0.52 1.60 1.70 1.86 2.20 2.47 1.45 1 .60 1.67 1.25 Mg 4.53 4.32 4 16 4 .36 2.72 2.61 2 38 2 .09 1 .88 2.87 2.73 2.63 3 18 Ca 1.82 1.83 1.84 1.82 1.80 1.79 1 .81 1.85 1.8 0 1.81 1.81 1.79 1.82 Na 0.20 0.26 0.31 0.26 0.63 0.64 0.65 0.60 0.64 0.62 0.47 0 78 0.70 K 0.03 0 03 0 .04 0.02 0.35 0.33 0 .36 0.36 0.41 0.34 0 39 0.21 0.21 Ti 0.02 0.03 0.04 0 .04 0.46 0.49 0.45 0.44 0.34 0.45 0.47 0.54 0.47 Mn 0.02 0.02 0 .02 0.02 0.02 0.02 0.03 0.04 0.09 0.02 0.02 0 .04 0.02 F 0.00 0.00 0.00 0.00 0.09 0.07 0 .08 0.07 0.06 0 04 0.15 0 09 Cl 0.00 0.00 0 .01 0.01 0 .01 0.02 0.03 0.01 0.01 0.03 0.00 Cr 0 .01 0.01 0.01 0 .01 0.00 0.00 0 .00 0.00 0.00 0.01 0.01 0.01 0.00 mg# 90.33 89.73 88.08 89.26 63.06 60.51 56.21 48. 65 43.24 66.41 63.07 61.20 71.81 0\ Total Cat 15.24 15.24 15.35 1 5.28 1 5 92 1 5.94 1 5.99 16.02 16.03 15.90 15 78 16.02 16.03

PAGE 129

APPENDIX D (cont'd) Table 6 Amphibole compositions (cont'd) Location : S.Sikhote Alin Sample# P-9 P-9 P-9 P-9 P-9 Mineral# 1 14 1 1 6 1 21 123 19 7 Si02 4 1 .70 39 .90 41.40 40.40 41.79 Ti02 2 .86 3.65 3.13 3.05 2.84 A l203 10 .77 1 2.78 1 0.66 12.63 12.41 Cr203 0 09 0.05 0.01 0 05 0.00 FeO 7.89 10.20 7.94 13.40 14 .29 MnO 0 22 0 .09 0 .21 0 1 3 0.15 MgO 16.80 14.40 16 .60 12 .70 1 2.48 CaO 1 1 .80 10.30 11.60 10.50 10.60 Na20 2.67 2.40 3 27 2.45 2 .5 3 K20 1.03 1 79 0 .83 2.01 1 .81 F 0 1 1 Cl 0.02 Total 95.83 95.56 95.65 97.32 98.98 Number o t 1ons on the ba s1s o t oxygens Si 6.21 6 .0 2 6.18 6.08 6.18 AI 1.8 9 2.27 1.88 2.24 2.16 Fe2 0.98 1.29 0 99 1.69 1.77 Mg 3.73 3 24 3.69 2.85 2 75 Ca 1 .88 1 .66 1.86 1.69 1 68 Na 0.77 0.70 0.95 0.71 0 73 K 0.20 0.34 0.16 0.39 0.34 T i 0.32 0.41 0.35 0.35 0.32 Mn 0.03 0.01 0.03 0.02 0.02 F 0.05 Cl 0.01 Cr 0.01 0.01 0 .00 0 .01 0 .00 mg # 79.15 71.56 78 .84 62 .82 60.89 Total Cat 16.01 15.95 16.08 16 .01 15 .99 NESA Khankai P-9 4-103 A-13 A-13 198 163 29 31 42.97 42.03 39.90 40.17 3.02 2.83 3.55 2.47 1 1 .6 1 9.73 12 84 12.72 0.00 0.00 0.03 0.00 8.61 12 .82 16 79 20.59 0.16 0.14 0.22 0 33 16.72 12.75 10.50 8 .80 12 .00 14.99 10. 92 9 .00 2.95 0 .34 2.43 2.08 1.00 1 33 0.45 0.46 0.08 0 14 0.14 0 .01 0.04 0 .05 99.10 96.96 97. 75 96.73 6.19 6.34 6.02 6 19 1.97 1.73 2 28 2 .31 1 04 1.62 2.12 2.65 3.59 2.87 2.36 2.02 1.85 2 .4 2 1.77 1.49 0.82 0.10 0.71 0.62 0.18 0.26 0.09 0 .09 0.33 0 32 0.40 0.29 0.02 0.02 0.03 0.04 0 .04 0.07 0 07 0 .00 0.01 0.01 0 .00 0 .00 0.00 0.00 77.59 63 .94 52.71 43.24 16 03 15 .66 15.87 15.77 A-13 A-13 32 181 40.46 40.30 3.32 3.34 12.94 1 1 73 0.05 0.00 16.86 18 .80 0.20 0 .30 10. 74 9 .30 11.04 10.80 2.40 2.32 0 50 0.44 0 16 0.03 98.62 97.33 6 .05 6.17 2.28 2. 12 2.1 1 2.41 2 39 2.12 1.77 1 77 0 .70 0.69 0.09 0 .09 0 37 0 38 0 03 0 .04 0.08 0.01 0.01 0.00 53 1 7 46.86 15 .88 15.78 Philip pluton F-1 F-1 12 13 44.84 41.74 2.72 1 32 1 1 83 15 .23 0.34 0.02 7.59 1 1 .45 0. 1 0 0.18 15 .63 1 4.34 1 1.1 3 1 1 .04 1 .70 2.01 0 .98 0 19 0 .06 0 .00 0.01 96.89 97.54 6.48 6.10 2.02 2.62 0.92 1.40 3.37 3 12 1 .72 1.73 0.48 0.57 0 18 0.04 0 .30 0.15 0 .01 0.02 0.03 0.00 0 .00 0.04 0.00 78.59 69.07 15 .54 1 5.75 'l

PAGE 130

APPENDIX D ( c o nt'd) Tabl e 7. Feldsp a r compos iti ons Loc a t ion: Badjal Sample# X-1 3 108 DN-120 DN-120 DN-120 DN-120 DN-120 DN-120 DN-164 DN-164 LDN20-18 LDN20-18 Mineral# 40 37 92 93 95 97 98 99 171 172 1 1 1 1 1 3 Si02 60.43 69.11 62.63 66 .00 66.16 73 32 64 .87 67 60 68.32 68.96 49.48 45 .86 Al203 27.27 22.05 25.06 20.03 20.38 21.04 20.56 21.16 18 38 17. 04 32.76 35.73 FeO 0.72 0.49 0 27 0.18 0. 1 9 0.08 0. 1 6 0.20 1 .63 3.74 0.34 0.34 MnO 0.00 0.02 0.0 1 0 .00 0.00 0 03 0.00 0 .00 0.00 0.04 0 0 1 0.03 MgO 0.06 0.04 0.02 0 0 1 0.00 0 .00 0.00 0 .00 0.00 0.09 0.09 0.02 CaO 7.20 0.5 1 4.18 0.43 0.47 0.31 0.3 1 0 .36 0.00 0 .00 14.25 17.77 Na20 3.47 8 .11 6. 1 2 3.68 2 99 3.65 4.20 3.41 2.45 0.30 2.87 1.40 K20 0 62 0.31 1.44 8.57 9.19 0.05 10.34 7 .98 7.74 9.75 0.1 1 0.02 Tota l 100.00 100. 66 99 74 98.98 99.42 98.52 1 00.46 1 00.65 98.58 100.00 99.90 101.18 Number o f ions on the basis o f 8 oxygens Si 2.66 2.97 2.77 2.98 2.98 3.12 2.93 2.98 3.07 3.10 2.26 2 09 AI 1.42 1.12 1.30 1.07 1 08 1.06 1 09 1 .10 0.97 0.90 1.76 1.92 FeZ 0.03 0.02 0 0 1 0.01 0.01 0.00 0 .01 0 .01 0.06 0.14 0 .01 0.01 Mg 0.00 0.00 0.00 0 .00 0.00 0 .00 0.00 0.00 0.00 0.01 0.01 0.00 Ca 0 .34 0.02 0.20 0.02 0.02 0.01 0.02 0.02 0.00 0.00 0.70 0.87 Na 0.30 0.68 0 52 0.32 0.26 0.30 0.37 0.29 0.21 0.03 0.25 0.12 K 0.04 0.02 0.08 0.49 0.53 0.00 0.60 0.45 0.44 0 .56 0 0 1 0.00 Mn 0.00 0.00 0.00 0.00 0.00 0 00 0.00 0 .00 0 00 0.00 0.00 0 .00 T ota l Cat 4 .79 4 .82 4 .89 4 .89 4. 88 4 .50 5 .01 4.8 4 4.77 4 74 4.99 5.01 Ab 44.17 94.35 65.26 38 .51 32. 16 94.60 37.58 38.49 32.49 4.45 26.53 1 2.46 An 50.64 3.28 24.63 2.49 2.79 4.50 1.53 2.25 0 .00 0.00 72.80 87.42 Or 5.19 2.37 10. 10 59.01 65.04 0 .90 60 88 59 27 67 52 95.55 0.67 0.12 00

PAGE 131

APPENDIX D (cont'd) T a b l e 7 F e l dspar compositions (con t 'd ) L ocation : Badj al SSA Khank a i Sample# LDN20-18 LDN 201 8 P-1 5 P 15 A-1 3 A-13 A 1 3 A-1 3 V-4-7 V-4-7 M i nera l # 1 14 1 17 68 1 1 1 45 47 48 180 53 54 55 Si02 50. 1 5 49. 04 56 39 53 30 45.91 50.85 4 6 60 45 1 3 57.50 59.33 58.54 A l203 32.32 33.54 27.85 30. 64 28.44 30. 75 33.90 28. 8 2 28.99 28.42 28.75 FeO 0.46 0.37 0 38 0.45 3.55 0.43 0.34 3.42 0 60 0.54 0.47 MnO 0 0 1 0 .01 0 .00 0.0 1 0.06 0 02 0.02 0 05 0.00 0.0 1 0.00 MgO 0 03 0 .04 0 .04 0 20 1 .76 0 .06 0 09 1 5 4 0.04 0.03 0 .02 CaO 1 4.02 15.47 8.37 9 .9 0 19.45 1 2 69 1 5.7 4 1 9.30 8 76 8 33 7.46 Na20 3.13 2.58 4.53 4 .86 0.44 4 33 2.45 1.4 7 3.94 2.17 5.79 K20 0.14 0.07 0 73 0.46 0.32 0.15 0.09 0.2 1 0.28 0.20 0.36 Total 100.30 101. 1 5 98.47 100 02 100 00 99.37 99.34 1 00.00 100.1 7 99.03 1 01 .45 N u mber of ions on the basis of 8 oxygens Si 2 .2 8 2 22 2.5 6 2.40 2.17 2 33 2 .1 6 2.14 2.55 2 63 2 57 A I 1 .7 3 1.79 1.49 1.63 1 58 1 66 1 85 1 .61 1 52 1 .48 1.49 FeZ 0.02 0.01 0 0 1 0.02 0. 1 4 0.02 0 0 1 0.14 0.02 0 .02 0.02 Mg 0.00 0.00 0 .00 0.0 1 0.12 0.00 0 0 1 0 .11 0.00 0.00 0.00 Ca 0.68 0.75 0.41 0.4 8 0 99 0 62 0 78 0 98 0.42 0.40 0 35 Na 0 28 0 23 0.40 0.43 0.04 0.39 0.22 0.14 0.34 0.19 0.49 K 0.0 1 0 .00 0 .04 0 03 0 02 0.0 1 0 .01 0.01 0.02 0.01 0.02 Mn 0.00 0.00 0. 0 0 0 .00 0.00 0.00 0.00 0 .00 0.00 0 .00 0 .00 T otal Cat 5.00 5.00 4.91 5 .00 5.07 5 03 5 03 5 .13 4.87 4 73 4 .94 Ab 28.53 23 09 47 .01 45 .71 3.86 37 85 21.8 6 1 1 98 43.95 31.43 57 05 An 70.63 76.50 4 8 .00 5 1 .45 94.29 61.29 77 6 1 8 6 9 0 54.00 66.67 40.62 Or 0 .84 0.41_____ 4 99 2.85 1.85 0.86 0.53 1.13 2.06 1 .91 2.33 ---SSA-South Sikhot e Aim Phili p pluton F-1 F-1 4 5 57.70 50.90 24.11 32. 1 0 0.00 0 .00 0 07 0.00 0 .01 0.0 1 1 0.90 12.1 1 6 64 3.82 0.08 0.12 1 00.00 9 9.06 2.6 1 2.32 1 .29 1 .73 0.00 0 .00 0.00 0.00 0.53 0 5 9 0 .58 0.34 0.0 1 0.0 1 0 .00 0.00 5 03 4.99 52.22 36. 07 47 37 63. 1 9 0.4 1 0 75 F-1 7 50.63 3 1 .91 0.00 0. 1 1 0 0 1 1 1.20 1 .58 0 .84 99 12 2 .30 1.71 0 .00 0.00 0 55 0 14 0.05 0 .00 4 .85 1 8 .99 7 4.37 6.64 F-1 1 6 57.8 1 27.56 0.09 0.00 0 0 1 8.25 5 .96 0 .10 99.80 2.58 1 .45 0.00 0.00 0.40 0 52 0 0 1 0.00 4.95 56. 3 1 43 07 0.62 \()

PAGE 132

APPENDIX D. (cont'd) Table 8. Spinel compositions Location: Badjal Sample# P-171 X-1 X-1 X-1 3-1 08 3-108 DN-118 DN-120 DN120 DN-1 20 DN-120 DN-120 DN-164 DN-164 DN-164 Mineral# 164 46 47 48 52 53 136 94 96 104 106 107 185 189 190 Si02 0.02 0 05 0.04 0.69 0.05 0.07 0.05 0 07 0 07 0.12 0 06 0 02 0 05 0 .00 0 .00 Ti02 0 03 2 10 2 39 7.36 3 .71 3 .94 8 93 4 13 7 63 5.83 7 18 6 88 4.18 5 .30 5 05 Al203 0.00 14.53 14 80 4 16 18.49 0.68 0 .00 1.17 2.46 0.49 0.61 0 58 8.19 10.39 9.53 Cr203 0 .00 39.43 41. 84 15.27 29.40 12.69 0 05 0 06 0.00 0 .00 0.00 0 .00 26.60 27 28 24 32 FeO 49. 93 35.64 33 64 64.29 34.70 81 .97 90.85 94 .11 88.73 93.18 90.15 91.58 57.30 53.12 52 99 MnO 0 .00 0.80 0 93 0 56 0 24 0 56 0 03 0.44 1.01 0.26 1.97 0.84 1.25 0 78 0 64 MgO 0.00 6 26 6.20 0.04 10.93 0.04 0.04 0.00 0.04 0 .00 0.03 0.05 0.15 2 98 2 77 ZnO 0.24 3 33 1.73 0 39 CaO 0 .00 0 .00 0.03 0.00 0 .01 0.05 0.03 0 02 0.01 0.06 0 .00 0.02 0 .04 0 .01 0 .00 NiO 50.02 0 09 0.13 0.10 0.18 0.00 0.02 0 .00 0.05 0 06 0.00 0 03 0.06 0.12 0 09 V203 0.26 0.65 0.46 0.50 Total 100.00 99. 14 100.00 95 .80 97 .7 1 100.00 100.00 100 .00 100.00 100.00 100 .00 100.00 99.55 99.99 95.78 Number of ions on the basis of 32 oxygens Si 0 .01 0 .01 0.01 0.21 0 .01 0.02 0.01 0.02 0 02 0.04 0.02 0 .01 0 .01 0 .00 0 .00 AI 0.00 4 57 4.62 1.47 5 59 0.23 0.00 0.40 0.83 0.17 0.21 0 .20 2.74 3.36 3 22 Fe3 12 22 2 .25 1 65 7.18 2.99 11.11 12.07 13.77 11. 85 13.24 12.65 12.81 5.47 4 53 5 08 Fe2 0 .00 5.70 5.80 8.95 4.46 8 .71 9.92 8 .80 9.39 9 .20 9 08 9.26 8.15 7.66 7.65 Mg 0 .00 2.49 2.45 0 .02 4.18 0 02 0 02 0 .00 0 02 0.00 0 .01 0.02 0 06 1 22 1.19 Ca 0 .00 0 .00 0.01 0.00 0.00 0.02 0.01 0.01 0 .00 0.02 0 .00 0.01 0.01 0.00 0 .00 Ti 0.01 0.42 0.48 1.66 0 .72 0.86 1.94 0 .89 1 64 1.26 1 56 1.49 0.89 1.09 1.09 Mn 0.00 0 18 0 .21 0 14 0 05 0 14 0 .01 0 .11 0 24 0 06 0.48 0 .21 0 .30 0 18 0.16 Cr 0.00 8.31 8 76 3.62 5 .96 2.90 0 .01 0 .01 0 00 0.00 0 .00 0 .00 5 98 5 .92 5.52 Ni 11.77 0 02 0 03 0.02 0 .04 0.00 0 .01 0.00 0.01 0.01 0 .00 0.01 0 .01 0.03 0.02 Zn 0 .05 0 74 0 36 0.08 Total Cat 24.00 24 .00 24.00 24.00 24.00 24.00 24.00 24.00 24 .00 24 .00 24.00 24.00 24.00 24.00 24.00 *Fe-Ni sulfides N 0

PAGE 133

APPENDIX D. (cont'd ) Table 8. Spi nel compos i t i ons (cont 'd ) Loc ation: lngi l i Samp le# 5109-2 51092 5109-2 5587 5587 5587 Mineral # 20 21 22 23 24 29 Si02 0. 1 9 0.29 0 .20 0.24 1.24 0.59 Ti02 14.6 1 8.58 16. 1 9 18 .04 1 1 .30 14.4 0 Al203 2.27 1. 1 9 2.46 1.92 0.68 0. 8 4 Cr203 5.09 0 .25 0.32 14.74 1 .6 0 0 .51 FeO 76.57 87.00 73.42 64.24 84.24 81.91 MnO 0.25 0.53 0.94 0.15 0.13 0.23 MgO 0.47 1.99 5 67 0.29 0.32 0.46 ZnO CaO 0.41 0 .09 0.70 0.12 0.38 0.92 NiO 0.13 0.09 0.09 0 27 0.10 0.14 V203 Tota l 99.99 100.01 99.99 1 00.01 99.99 100.00 Number of ions on the basis of 32 oxygens Si 0.06 0 08 0.06 0.07 0.36 0. 1 7 A I 0. 77 0.40 0.80 0 .66 0.23 0.29 Fe3 7.64 1 1 73 8 30 3 .90 9 .80 9.02 Fe2 1 0.80 8.90 8.64 11.76 1 0.49 10.72 Mg 0.20 0 .84 2.33 0.13 0. 1 4 0.20 Ca 0.13 0.03 0.21 0.04 0.12 0.28 Ti 3.16 1.83 3.36 3.95 2.45 3.12 Mn 0.06 0 13 0 22 0.04 0.03 0.06 Cr 1 1 6 0.06 0.07 3.40 0 36 0. 1 2 Ni 0.03 0.02 0.02 0 .06 0.02 0 03 Zn Total Cat 24.00 24.00 24 .00 24 .00 24.00 24.00 --------South Sikhote Ali n P-9 P-15 P-15 P-15 P 55 P 55 P-55 35 30 70 71 36 37 38 0.01 0.84 0.07 0.09 0. 1 7 0. 1 6 0. 1 4 0.00 21.96 23.76 26.85 23.01 20.82 21.75 24.64 5.58 4.40 0.96 2 62 2.94 2.78 41.68 0 .84 0.42 0.21 0.36 2 .98 1.57 19.09 61.17 63 16 68.84 67.49 64.83 67.70 0 27 0.79 0.75 0.99 0.77 0.79 0 .80 13.12 5.36 4 15 1.69 5 16 4.69 4.94 0.00 0.06 0.53 0.22 0.37 0.28 0 1 5 0.11 0.08 0 .0 7 0.00 0.0 1 0 13 0. 1 4 0.20 1.57 98.95 97.14 96.93 100.01 99.99 97.50 99.99 0 .00 0.24 0.02 0.03 0 05 0.05 0.04 7. 1 2 1 .86 1.49 0 33 0.86 0.99 0.92 0 .80 4.16 4.08 3 .88 5 3 1 5.27 5.53 3 12 10 28 11.14 12 78 10.43 10. 26 10.28 4 .80 2.26 1 .78 0.73 2 15 2.00 2.06 0.02 0.16 0.07 0.12 0.08 0.05 0.03 0.00 4 66 5 15 5.85 4.83 4.49 4.57 0.06 0.19 0.18 0.24 0. 1 8 0.19 0.19 8.08 0 19 0 10 0.05 0 .08 0 68 0.35 0.02 0.02 0.00 0.00 0 03 0.03 0 05 0.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 C .Sik hote Ali n 41 3 5 4 1 3 5 41 3 5 48 49 so 0.06 0.06 0.07 6.29 6.1 6 3.11 9.80 10.41 10.20 31.00 32.15 45 .26 40.80 38 .70 28.30 0 .38 0.28 0.33 9 65 10.20 10.90 0.02 0.02 0.02 0 27 0.24 0.17 98.27 98.22 98.36 0.02 0.02 0.02 3.08 3.26 3.19 3.82 3.50 2.06 5.29 5 09 4.22 3 .84 4 .04 4.31 0 .01 0.01 0.01 1.26 1.23 0.62 0.09 0 .06 0.07 6 .54 6.75 9.48 0.06 0.05 0.04 24.00 24.00 24 .00 N

PAGE 134

APPENDIX D (cont'd) Table 8. Spinel compositions (cont'd) Location : C Sikhote Alin Anui NE Sikhote Alin Philip Sample# 4-1 3 6 41 3 6 4-1 3 6 P1 4 1 P1 4 7 P14 7 AP-1 AP-1 AP-1 AP-1 AP-1 4-1 03 4-1 03 4-1 03 F-1 Mineral# 39 40 41 17 57 59 42 43 44 45 46 7 12 19 11 Si02 0.17 0.13 0.13 0.04 0.03 0.03 0.36 0.17 0.19 0.47 0.20 0 02 0.10 0.13 0.34 Ti02 4 26 3.09 3.52 4.22 6.60 3.16 17.79 12.67 9.77 18.23 13.3 5 4 37 1.89 13.58 0.07 Al203 12.24 8 .82 8 .8 4 7.70 6.76 7 .91 3.20 5.33 5 .8 6 2.39 4.82 9 06 14.44 14.76 0.26 Cr203 34.32 42.43 40.17 41.62 35.27 43.90 0 .3 1 11.95 1 5. 14 8.61 8.08 37 92 45.70 45.68 0.44 FeO 36.75 31.60 34.31 32.71 39.03 3 1 05 71.30 66.94 62.71 58.84 70.64 34.6 4 25.05 10.86 44.78 MnO 0.46 0.37 0.41 0.32 0.27 0.28 0.76 2 27 2.36 7.12 2 12 0 22 0 27 0.89 0.11 MgO 11.45 10.15 9.69 10.65 10.06 10. 69 5.63 0.39 0.42 0.45 0.47 10. 92 12 33 12.31 0.17 ZnO 0.07 0.06 0 .13 CaO 0 .11 0.06 0.08 0 .00 0.00 0.01 0.50 0 13 0 09 0 27 0 19 0 .00 0 .04 0 05 0 .2 0 NiO 0 26 0.14 0 23 0.18 0.24 0.19 0.15 0.14 0.16 0.15 0.14 0 19 0 .17 0.42 53.64 V203 0.36 0.46 1.19 Total 100 02 96.79 97 38 97.51 98 26 97.22 100.00 99.99 96.69 96.53 100.01 97.40 99 99 98.81 100.00 Number of ions on the basis of 3 2 oxygens Si 0 .04 0.04 0.04 0.01 0 .01 0.01 0 .10 0.05 0.06 0.14 0.06 0.01 0.03 0.03 0 .10 AI 3.71 2.82 2.82 2.45 2.15 2.52 1 .04 1.79 2.03 0.84 1 .62 2.86 4.33 4 29 0.09 Fe3 3 59 2 74 3.09 2 93 3.63 2.79 7.32 5.98 6.03 4.62 6.72 3.34 1 .72 0.00 10.93 FeZ 4.30 4.43 4.68 4.46 5.19 4.23 9.11 9.98 9.38 10.12 10. 1 2 4.42 3.61 2.24 0.00 Mg 4 38 4.11 3.9 1 4 29 4 05 4.31 2 .31 0.17 0.18 0.20 0.20 4.36 4.67 4.53 0.07 Ca 0.03 0.02 0.02 0.00 0.00 0.00 0.15 0.04 0.03 0.09 0.06 0 .00 0 .0 1 0.01 0.06 T i 0.82 0.63 0.72 0.86 1 34 0 64 3.69 2.72 2.16 4.11 2 .86 0 .88 0.36 2.52 0.02 Mn 0 .10 0.09 0.09 0.07 0 06 0.06 0.18 0 55 0.59 1.81 0 .51 0.05 0 .06 0.19 0.03 Cr 6.97 9.10 8 59 8.88 7 53 9.39 0.07 2.69 3.52 2.04 1 .82 8 03 9.19 8.92 0 .10 Ni 0.05 0 03 0.05 0 .04 0.05 0.04 0.03 0.03 0 .04 0 04 0.03 0 .0 4 0 04 0.08 12 60 Zn 0.01 0 .01 0.02 Total Cat 24.00 24.00 24 .00 24 .00 24.00 24.00 24.00 24 .00 24.00 24.00 24.00 24.00 24.00 22.84 24.00 t-> *Fe-Ni sulfide 1:'3

PAGE 135

APPENDIX D (cont'd) Table 9. Olivine compositions Location : Badjal Sample# P-171 P-171 P-171 P-171 P-171 P -171 P-171 P-171 Mineral# 19 20 21 22 23 150 159 167 Si02 38 97 39.55 39 33 38.94 39 57 39 66 39.45 39.56 T i02 0.00 0 03 0 .02 0.01 0 .00 0.00 0.00 0.02 Cr203 0 03 0.05 0.00 0 03 0 .04 0 .00 0 .00 0.00 FeO 18.71 19.41 19.04 18.54 19.1 1 18.93 18.77 18.89 MnO 0 33 0 33 0.40 0 34 0 34 0 39 0.37 0.34 MgO 41. 98 42 24 42.22 42.43 42 05 42 55 42.36 42.30 CaO 0 .01 0.01 0.01 0.00 0.00 0 .00 0.00 0.04 NiO 0 .00 0 00 0.00 0.00 0.00 0 07 0.00 0 05 Total 100. 04 101. 63 101 .02 1 00 29 101 1 1 1 01 .60 1 00.96 101 .20 Number of ions on the basis of 4 oxygens S i 1.00 1.00 1.00 0 99 1.00 1 .00 1.00 1.00 Fe2 0.40 0.41 0 .40 0.40 0.40 0.40 0.40 0.40 Mg 1 .60 1.59 1.5 9 1 .61 1.59 1 60 1 60 1 .59 Ca 0.00 0.00 0.00 0 .00 0.00 0.00 0 .00 0.00 Ti 0.00 0 00 0 .00 0 .00 0 .00 0 00 0.00 0.00 Mn 0 .01 0.01 0 .01 0 .01 0.01 0.01 0 .01 0.01 Cr 0 .00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0.00 Ni 0.00 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0 .00 mg # 80.00 7 9 .51 79 .81 80.31 79 69 80.03 80. 09 79 97 Tota l Cat 3.00 3.00 3.00 3 .01 3.00 3.00 3 .00 3.00 South Sikhote Alin P-1 5 P-1 5 P-1 5 P-1 5 P-55 26 65 96 1 01 32 38.47 36 .01 38.69 40.02 39.72 0 05 0.00 0.01 0 .06 0.03 0 .07 0.00 0.02 0.07 0.05 22 74 31.29 18.10 13 20 14.69 0.47 0 62 0 23 0.17 0.22 38. 28 29 76 4 2 .70 46. 20 44.78 0.43 0.3 2 0 20 0.29 0 22 0.00 0.00 0 00 1 00.51 98. 03 1 00.00 1 00.00 99.71 1.00 1.00 0 99 1.00 1.00 0.49 0 73 0 39 0.28 0.31 1.48 1.24 1 63 1 72 1.68 0.01 0 .01 0 .01 0 .01 0.01 0.00 0 .00 0 .00 0 .00 0.00 0.01 0.02 0 .01 0.00 0.01 0 .00 0 .00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 75 .01 62 .90 80.79 86. 19 84.46 3 .00 3 .00 3.01 3.00 3 .00 P-55 P-55 33 34 40.92 41. 08 0.01 0.02 0 06 0.04 10. 65 9.81 0.17 0 12 48.18 48.38 0.22 0 18 0.12 0.12 100.34 99 .76 1.00 1.01 0 22 0.20 1.76 1 77 0 .01 0.01 0 00 0 .00 0 .00 0 .00 0.00 0 .00 0.00 0 .00 88 97 89 79 3 .00 2 99 ...... N VJ

PAGE 136

APPENDIX D. (cont'd) Table 9 Olivine compositi ons (cont'd) Location : South Sikhote Alin Sample# P-55 P-55 P-55 P-55 P 55 P-55 P 55 Mineral# 36 37 38 41 42 44 125 Si02 40.73 40.77 36.97 36.33 39 57 39.07 39.02 T i02 0.00 0.00 0.05 0.07 0.00 0.02 0.04 Cr203 0.04 0.04 0.06 0.09 0 .10 0.01 0.05 FeO 10.14 9.52 28.19 35.10 12.11 18.12 16.40 MnO 0 19 0 .11 0.58 0.73 0.15 0.22 0.29 MgO 48.75 49 58 33 68 2?.93 47.07 42.24 43 90 CaO 0.15 0.17 0.36 0.28 0.19 0.2 1 0 26 NiO 0.14 0.14 0.00 0.00 0 13 0.00 Total 100.14 100.33 99 .88 100.52 99.32 99.89 1 00.00 Number of ions on the bas i s of 4 oxygens Si 1.00 1.00 0.99 1.00 0.99 1.00 0 99 Fe2 0 .21 0.19 0.63 0.81 0.25 0.39 0 .3 5 Mg 1.78 1.80 1.35 1 15 1 .75 1.61 1.66 Ca 0.00 0 .00 0.01 0.01 0.01 0.01 0 .01 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 Mn 0.00 0.00 0.01 0.02 0.00 0 .01 0.01 Cr 0 .00 0 .00 0.00 0 .00 0.00 0.00 0.00 Ni 0.00 0.00 0.00 0.00 0.00 0.00 mg # 89.55 90.28 68.05 58.65 87.39 80.60 82.67 Total Cat 3.00 3 .00 3.00 2.99 3.01 3.00 3.01 ,_. N

PAGE 137

APPENDIX D (cont'd) Table 1 0. lmenite compositions Location: Badjal lngili SSA Khankai Sample# P-171 P-171 P-171 X-1 DN-120 DN-164 LDN20-18 LDN20-18 LDN20-18 LDN20-18 5098 5098 P 9 A-13 Mineral# 15 156 168 34 84 182 118 119 120 121 18 19 32 56 Si02 0.09 0.02 0 .00 0 25 0.02 0 .06 0 .06 0.06 0.01 0.12 0 29 0.11 0 24 0 .04 Ti02 51.37 53 78 54 26 35.67 47.69 41.89 38.14 71.01 62.56 55.81 47.43 54 26 52.58 48 .91 Al203 0.09 0.01 0.00 0. 1 3 0.00 0.19 0.10 0.01 0 04 0.05 0.23 0.14 0.12 0 03 Cr203 0 18 0.00 0 .00 0 22 0.38 0.17 0 04 0.05 0 02 0.04 0.40 0.17 0 23 0 03 FeO 41. 03 40. 1 6 38 02 57 .90 51.65 55 85 60.45 25.72 37.09 43 66 44 97 41.47 41. 26 46.09 MnO 0.97 1 88 3 .25 1.41 0 22 1 75 1.13 0.14 0 23 0 .21 0.47 0.69 4.37 3 38 MgO 3.85 1 30 2.98 0.10 0.00 0 .08 0 02 0.02 0 .00 0.00 5 99 2.98 0.45 0.09 CaO 0.03 0.02 0.02 0.17 0 05 0 .00 0 06 0.00 0 .06 0.08 0 16 0.13 0.06 0.16 NiO 0.09 0 .00 0.00 0.01 0.00 0 .00 0.00 0.00 0 .00 0 .04 0.07 0.05 0 03 0 .01 Total 97 69 97 18 98.53 98.18 100.00 99.99 99 99 97.01 100.00 100 .01 1 00.00 1 00.00 99.35 98 74 Number of ions on the bas i s of 3 oxygens Si 0 .00 0 .00 0.00 0.01 0 .00 0.00 0.00 0.00 0 .00 0.00 0.01 0.00 0.01 0 .00 AI 0 .00 0.00 0.00 0.00 0 .00 0 .01 0 .00 0.00 0 .00 0 .00 0 .01 0.00 0 .00 0 .00 Fe3 0 .06 0 .00 0.00 0 58 0 19 0.42 0.57 0.00 0.00 0 .00 0 27 0 00 0.00 0 .13 Fe2 0.80 0 85 0 79 0.65 0 .90 0.75 0.69 0.50 0 .74 0 .90 0 63 0.85 0 87 0 86 Mg 0 14 0.05 0 .11 0.00 0 .00 0.00 0 .00 0.00 0 .00 0 .00 0.21 0.11 0.02 0.00 Ca 0 00 0 .00 0 .00 0.01 0 .00 0.00 0.00 0.00 0 .00 0 .00 0.00 0 .00 0.00 0.00 Ti 0 97 1 03 1.02 0 68 0 .90 0.79 0 7 1 1.25 1 13 1 .04 0.85 1.00 1.00 0 94 Mn 0.02 0 04 0 07 0 03 0 .01 0 04 0 02 0.00 0.01 0 .00 0 .01 0 .01 0.09 0.07 Cr 0.00 0.00 0 .00 0 .00 0.01 0 .00 0 .00 0 .00 0 .00 0 .00 0 .01 0 .00 0 .01 0 .00 N i 0 .00 0 .00 0.00 0 .00 0.00 0.00 0 .00 0.00 0 .00 0 .00 0.00 0.00 0 .00 0 .00 T otal Cat 2 .00 1 97 1 99 2 .00 2 .00 2.00 2 .00 1.75 1 87 1.96 2.00 1.99 1.99 2 .00 ----SSA-South S i khote Aim .....

PAGE 138

APPENDIX D. (cont'd) Table 11. Chloritized mica compositions Location: lngili S ample# 5098 5098 5098 5098 5098 5098 5587 5587 5587 5587 5587 5587 5587 5587 Mineral# 22 2 3 25 27 2 8 29 30 31 32 34 35 36 37 38 S i02 34.13 34 65 35.44 3 6 10 35.06 35 14 31. 63 32 10 3 2 19 32.48 32 55 32.43 33 34 32.42 Ti02 0.51 0 .86 0.75 0 55 1.42 1.22 2 07 2 34 2.47 2 32 1 78 2.35 2 .50 1.99 Al203 12 69 1 2. 50 12.40 12 58 12 15 12 74 15 72 15 88 14 7 2 14 03 14 54 15.48 13 75 15 78 Cr203 0.04 0 10 0.00 0.00 0.04 0 .01 0 28 0.28 0 09 0 15 0.33 0 18 0 24 0 09 FeO 7 52 8 36 8.61 7 68 8.97 9.42 11.46 7 19 8.61 8 10 16.02 7 65 13 .01 6.42 MnO 0 .01 0 02 0 .01 0 04 0 .01 0.02 0 02 0 .01 0.03 0 03 0 03 0 05 0 .00 0 02 MgO 29.45 28 65 28.30 28.65 27 67 27.30 25.61 27 83 2 6 12 24.51 21.2 5 27 07 21. 97 28 .01 CaO 0 .00 0.00 0.00 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0.00 0.00 Na20 0 .04 0 .00 0 .00 0 .00 0 .02 0.02 0 12 0 23 0 12 0 .06 0.03 0 03 0 03 0 .04 K20 0 65 0 64 0 64 0.97 0.82 1 04 0 12 0 09 0.39 0.67 1.18 0 29 1.52 0 05 F 0.97 0.84 0 .81 1.04 0 65 0.91 0 52 0.58 0 59 0.47 0 62 0 62 0 63 0.45 Total 85 .60 86.27 86. 62 87 17 86.54 87.43 87 33 86.28 85 08 82 63 88.07 85 88 86 73 85 08 Number of ions on the basis of 22 oxygens Si 5 23 5 28 5 38 5.41 5 35 5.32 4 .86 4 88 5.00 5 18 5 09 4 .96 5 .21 4 .96 AI 2 29 2 25 2.22 2 22 2.19 2 27 2 85 2 84 2.69 2.64 2 68 2 .79 2 54 2 85 Fe2 0.96 1 0 7 1 09 0 .96 1.15 1 19 1.47 0.91 1 12 1.08 2 09 0 98 1 .70 0 82 Mg 6 72 6 .51 6.40 6.41 6 .30 6 16 5 86 6 .30 6.05 5 83 4.95 6 17 5 12 6 39 Na 0 .01 0.00 0 .00 0.00 0.01 0 0 1 0 04 0 07 0 04 0 02 0 .01 0.01 0 .01 0.01 K 0.13 0 13 0 12 0.19 0 16 0.20 0.02 0 02 0.08 0.14 0.24 0 .06 0.30 0.01 Ti 0 .06 0.10 0 09 0 06 0 16 0.14 0 24 0 27 0 29 0 28 0 .21 0 27 0 29 0.23 Mn 0.00 0 .00 0.00 0.01 0.00 0.00 0 00 0 .00 0.00 0 00 0 .00 0 .01 0 .00 0 .00 F 0.47 0.41 0.39 0.49 0 32 0.44 0.25 0 28 0 .2 9 0 24 0 .31 0.30 0 .31 0 22 Cr 0 .01 0.01 0.00 0.00 0 .01 0.00 0 03 0 03 0 .01 0 02 0 .04 0 .02 0.03 0.01 mg# 87.47 85.93 85.4 2 86. 93 84 .61 83.78 79. 93 87 34 84.39 84 .36 7 0 28 86.32 75 06 88 .61 I-' Total Cat 15 87 15.76 15 69 15.75 15.63 15 73 15 62 15 60 15.56 15.41 15.62 15.55 15 52 15.50 N 0\

PAGE 139

APPE ND I X D. { cont' d ) Table 12. Sphene compos i t ions Loca t ion: Badjal Khankai Sample# 3-1 08 DN-1 20 DN-1 20 A -13 A 13 A-13 A-1 3 Mineral# 51 83 87 54 55 182 185 Si02 30. 92 30.50 31.04 29.76 30. 60 29.60 29 83 T i02 29 76 36.80 37 28 36.42 35.16 35.97 36.76 Al203 5.18 1.69 1.53 1 58 1.96 1 .64 1 67 Cr203 0.03 0.00 0.00 0.00 0.02 0 .00 0.00 FeO 2.39 2.47 1 53 1.52 2.03 1.54 1.72 MnO 0.01 0 .19 0.24 0.03 0.02 0 .04 0.01 MgO 0.87 0 02 0.03 0.07 0.49 0.10 0.41 CaO 26 76 28.27 28.32 28.13 27.62 27.83 27.84 Total 95 .91 99 95 99.97 97 53 97.91 96 72 98.25 Number of ions on the basis of 20 oxygens Si 4.19 4 02 4.07 4 .00 4 09 4.01 3 98 T i 3.03 3.64 3 67 3.69 3.54 3 67 3 .69 A I 0.83 0 .2 6 0 2 4 0 25 0.3 1 0.26 0 26 C r 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 Fe2 0.27 0.27 0.17 0 17 0 23 0.17 0. 1 9 Mn 0.00 0.02 0.03 0.00 0 00 0.01 0.00 Mg 0.18 0.00 0 .01 0.02 0.10 0.02 0.0 8 Ca 3 88 3.99 3 97 4.06 3.96 4.04 3.98 Total Cat 12.37 12 .21 1 2.15 12 19 1 2.22 12 19 12.20 Table 1 3 Rutile composit ions Location : lngili S ample# 5587 5587 55 8 7 5587 Mineral # 25 26 27 33 S i02 0.09 0.06 0.45 0 .00 Ti02 93.27 98 93 95.93 96.80 Al203 0.08 0. 1 9 0.26 0 .00 Cr203 3 05 0.17 0. 1 2 1.07 FeO 0 00 0 09 0.79 0 .86 MnO 0.03 0 03 0 05 0 .04 MgO 0.22 0 .20 0.23 0 .2 0 CaO 0.26 0 33 2 .15 0.45 Total 97.01 100 100 99.47 Number of ion s on the basis of 2 oxygens Ti 0.97 0.99 0.97 0.98 A I 0.00 0 .0 0 0. 00 0 .00 Fe2 0.00 0.00 0.01 0.0 1 Mg 0.00 0 .00 0 .00 0.00 Cr 0.03 0 .00 0 .00 0 .01 S i 0.00 0 00 0.0 1 0.00 Mn 0.00 0.00 0 .00 0 .00 Ca 0.00 0.00 0 03 0.01 Total Cat 1.01 1.01 1 02 1.01 ...... N '-1

PAGE 140

APPENDIX 0. (cont'd) Table 14. Chlorite composit ions Location: Badjal Sample P-171 P-171 ON-120 LDN20-18 Pt# 19 161 90 11 5 Si02 31.04 32.18 27.85 28.21 Ti02 0 .06 0.10 0.19 0.00 Al203 18.11 19.27 18.17 18.63 Cr203 0.02 0 03 0.00 0.04 FeO 5.21 5.92 22.98 24.97 MnO 0.00 0.05 0.72 0 .65 MgO 31.56 31.73 17.50 1 6.13 CaO 0.00 0 03 0.42 0.38 Na20 0.00 0.02 0.01 0.03 K20 0.02 0.02 0.08 0.03 Total 86.02 89.35 87.92 89.07 Number of ions on the basis of 28 oxygens Si 5.97 5.97 5.80 5.84 AI 4.10 4 .21 4.46 4 .54 Fe2 0.84 0.92 4.00 4.32 Mg 9.05 8.77 5.43 4.98 Ca 0.00 0.01 0.09 0.08 Na 0.00 0.01 0.00 0.01 K 0.00 0.01 0.02 0.01 Ti 0.01 0.02 0.03 0.00 Mn 0 .0 0 0.01 0 13 0.11 Cr 0 .00 0.00 0.00 0.01 mg# 91. 52 90. 53 57.58 53 .52 Total Cat 19 97 19.92 19.96 19.90 -----NESA-Northeast Sikhote A i m Anui NESA Khankai AP-1 4-103 A-13 25 51 30 39 .71 29.27 25.5 1 0.00 0.28 0.05 14.35 13.67 21.56 0.01 0.00 0 10 16 .36 22.70 27.98 0.18 0.29 0.42 14.46 14.14 13.97 0.99 0.22 0.26 0.07 0.07 0.00 0.84 2.14 0 .03 86.97 82.79 89.87 7.84 6.55 5.32 3.34 3 .61 5 .30 2.70 4.25 4.88 4.26 4 .72 4 .35 0.21 0 .05 0.06 0.03 0.03 0.00 0.21 0 .61 0.01 0.00 0.05 0.01 0.03 0.06 0.07 0.00 0 .00 0.02 61.17 52.62 47.09 18.61 19 .92 20.02 Table 15. Serpentine compositions Location : Anui Label P-141 P-141 P-147 P-147 Pt# 13 14 48 so Si02 42.57 42.17 41.85 42 .86 Ti02 0.06 0.06 0.06 0.06 Al203 1.72 1. 71 2.33 2.20 Cr203 0.00 0.00 0.00 0.03 FeO 3 .99 4.10 4.82 5.17 MnO 0 05 0.00 0.05 0.08 MgO 37.64 37.26 34.52 29.83 CaO 0. 16 0.19 0.19 0.44 NiO 0.04 0.01 0.19 0.36 Tota l 86.22 85.51 84.01 81.04 Number of ions on the basis of 28 oxygens Si 8.06 8 .05 8.15 8.61 AI 0.38 0.39 0 54 0.52 Fe2 0 63 0.66 0.79 0.87 Mg 10.62 10.61 10.02 8.94 Ca 0.03 0.04 0.04 0.10 Ti 0.01 0.01 0.01 0.01 Mn 0.01 0.00 0.01 0.01 Cr 0.00 0.00 0.00 0.01 Ni 0 .01 0.00 0.03 0.06 mg # 94.39 94.19 92.74 91.14 Total Cat 19.74 19 .75 1 9 58 19 12 1-' N 00

PAGE 141

129 APPENDIXE BULK CHEMISTRY AND CIPW NORMS

PAGE 142

APPENIDX E. Table 16. Major element data (wt%) Sample Si02 Al203 Fe203 MgO Badjal P 171 42.02 4.49 14. 63 31.45 P-172 45.46 5.17 13.15 30.51 -------X-1 51. 89 13.95 10.28 4 .84 ,. ___ -----3-110 54.30 14.51 9.13 4.04 3-105 50 .90 7 7 90 70. 50 6.48 3 -108 57. 80 7 7.60 9.57 5.68 3-113 42 .90 7 7.20 13.50 8.47 3-121 43.30 11. 40 13.70 8 68 3-122 39.50 10 .70 12.80 7.30 DN-134e 54.24 12.50 10.60 7.44 DN-164 54 .34 14.79 9.03 3 57 DN1 44 53 29 12 .02 11.18 7 69 DN-118 61.38 13.25 8 65 5 .36 DN-120 60.64 16.86 5 35 1 .39 LON 20-18 58 .35 18.58 9 .06 2 .24 LDN-23 47.94 11. 72 13.74 7 .69 lngili 5027 34.36 6.76 17.83 9 .01 5098 47. 95 4 .01 13. 64 8.11 51092 39.45 4 85 18. 79 11.87 5286 41.49 6 28 11. 96 1 5 .11 5351/3 38 32 8 .61 18. 66 14.7 6 5587 10.96 5 94 14.83 8 29 MnO CaO Na20 K20 0.210 2.91 0.43 1 99 0.201 3 23 0.39 2 .37 0 .188 7 15 3.38 4 .37 0.175 5 .74 3.49 4 .90 0.230 6 02 2 .98 2. 78 0 780 5.92 2 86 3 62 0.190 7.56 2 21 3.77 0 .220 7.12 2.74 2 34 0.220 9 .86 2 .67 2 33 0 .211 6.84 2 97 2 .82 0 181 7 52 4 .39 3.58 0 .267 7 .26 3 .18 2.48 0 .155 4 .09 3 .11 2.15 0.161 3 .34 4 .96 4 .34 0.142 7 .03 3.02 0.39 0.231 10.84 2.98 1 .86 0 253 22.89 0.37 0.97 0 .154 21.64 0.15 0 .89 0.180 18.39 0 .73 1 22 0 .192 18.90 0.41 2.48 0 .175 12 83 0.49 1.14 0 .118 51.46 0 .12 0.37 Ti02 P205 0.34 0 115 0.34 0 221 2.38 2.22 0 726 2 .56 0 540 2.32 0.430 2 .98 0.570 3 .11 0.550 2 .91 0.510 2.42 0.459 2.12 0.705 2 55 0 555 1 .61 0 239 0 .96 0 233 0.84 0.181 2.84 0 .637 7.13 0 .960 4 12 0.920 5 .21 0 .880 4.07 0.610 6.10 0 .992 8.10 0.687 Total 98.59 101.05 98 43 99 22 94.29 93.98 93 .35 93 16 88.20 100.50 100. 23 100.47 99 .98 98.24 99 .83 100.48 100.54 101 58 101 .57 101 50 102.08 100.87 LOI% 1 .28 1.69 4 73 3.43 5.95 5 .20 6 60 6.75 72.00 2.26 4 .90 3 .36 5 .34 3 .40 2.36 3.63 17.45 15 .37 8.12 15. 26 12.98 29 .47 ....... w 0

PAGE 143

A PPENIDX E (c o nt' d ) Ta ble 1 6. Major element data ( w t%) (co nt'd) Sam ple Si02 Al203 Fe2 0 3 MgO South Sikhote-A i i n P-9 38.90 7.43 1 5 .2 0 2 1 .36 P-1 0 43.47 4.92 1 4 .01 32.27 P -15 45.14 13.55 1 1 .9 1 1 0 .30 P -45 55.82 10.77 10.09 9.36 P 55 44.1 1 9 .68 12. 43 1 7 .37 Centr a l Sikhote-Aii n 4-1 3 3 44.97 1 0.69 14.81 1 0 .96 4-134 45 .35 9.74 14. 63 12.76 4-135 44.46 10.49 14.89 11. 58 4-136 42.64 9.45 15 35 10. 54 N o rth east Sikhote-Aii n 4-1 0 3 41.30 9 99 14 .90 10.00 4 1 0 6 38.90 7.70 15.00 15. 60 4-108 38. 10 7.42 14.60 15.80 A n u i P-141 42.42 4.63 1 5 .85 30.93 P 144 41.97 2.58 16.03 33. 63 P-145 42.42 2.90 15.72 36. 4 1 AP1 41.86 8.44 1 5.47 13.25 Khank a i C r aton A-5 42 .82 7.47 14. 33 14.21 A-1 3 51.01 21.34 8 .43 3 96 v -4-7 51 1 9 1 7.1 0 10.48 7.52 ------------MnO CaO Na20 K 2 0 0 .317 11.60 1.30 1.22 0 1 8 6 4.76 0 15 0 .10 0 1 8 1 9.91 3 24 2.25 0 .200 6.20 4.31 0.83 0 187 10.04 3 19 1 .07 0.189 9.79 1 66 2.08 0 .199 10. 65 1.56 1.72 0 .184 11.77 1.70 1.91 0 .203 15.89 1.43 1 .74 0 .200 11.30 1 65 1.59 0 170 8.28 0 .16 0 .85 0 170 8. 98 0 .15 0.40 0 .249 3.49 0 .07 0 .01 0.199 4 05 0.06 0.01 0.201 0.74 0.02 0 .09 0.210 14.88 0.49 0.45 0 .210 16.99 0.49 0 .39 0 .139 7.82 4 .12 1 .89 0 .171 8.75 1.73 1.67 Ti02 P205 Total 3.00 1.778 102. 1 0 0 .80 0.199 100.87 3 28 0.843 100.60 1.46 0 .624 99.66 2 .81 0 .999 101 .89 4.06 0.7 6 4 99.98 3 .82 0.644 101.07 3 .88 0 695 101 .56 3 .86 0.666 101 .76 3 86 0 .640 95.43 3 02 0.430 90.11 2.98 0.420 89.02 2 54 0.503 100.69 1 55 0 .317 100.40 1 .68 0.376 100. 55 4 .60 0.929 100. 58 4 .18 0 .953 102.03 1 .01 0.273 99. 99 1.17 0.286 100.07 LOI% 7.96 8.29 1.50 6.64 2.o8 1 I I 3 .74 3.28 4 .31 5 73 4.70 i 9.85 I 11.00 11. 68 11.17 12.26 6 58 5.41 4 .2 1 10.12 J--0 (JJ J--0

PAGE 144

APPENIDX E (cont'd) Table 16. Major element data (wt%) (cont'd) Sample Si02 Al203 Fe203 MgO MnO North Korea N-3-2 42.73 2 15 10. 50 43 25 0 116 N 5 45 37 1 14 9.09 43.04 0 113 N-13 44 88 0.65 8 26 44 .85 0 075 N0-3-2 37 19 1 .71 9.42 39.49 0 088 Philip Pluton Kamchatka F-1 53. 39 8 .01 10.94 17.93 0 170 San Carlos basanite SCB 45.45 15.44 12.90 8 67 0.182 Alkaline basalt, Loihi LK 15-4 46 70 14.85 12 .82 5.48 0 .170 Note : Data in italics by XRAL; all other data by DCP at USF LOI=Loss on Ignition cao Na20 K20 Ti02 0 07 0.04 0 .01 0.02 0 07 0 .01 0 03 0 .01 0 .11 0 .01 0 .22 0.01 9.63 0.04 0 .0 5 1.31 5.63 1.35 0.94 1.11 7 .25 4.20 2.72 2.60 10.10 3.95 1.51 3.79 P205 Total 0 080 98.96 0.087 98 96 0 .081 99 .15 1 324 100 26 0.031 99.49 0 .761 100.17 0.625 100.00 LOI% 13.00 13.15 13 .10 18 .31 1.10 1 38 1 .25 ....... (JJ N

PAGE 145

APPENDIX E. Table 17. CIPW normative minerals Sample# Q or ab an c lc P171 11.8 1.3 4.4 ---. ---------P-172 14.0 3.3 5.4 ---------------X 1 25.8 25.4 10.0 -----r---ON-1 34e 0.6 16.7 25.1 12 .5 --.. --------------ON-164 21.2 34.1 10.1 ---------------------ON-144 14.7 26.9 1 1 2 ------ON-1 18 15.2 12 7 26.3 15 9 ON-1 20 4.7 25.7 42.0 10. 9 20-18 16.1 2.3 25.6 33.7 0.8 LON-23 11. 0 18 3 13. 1 3-105 2.31 13.83 26.99 13.56 0 .88 22.99 25.98 8.73 3-1 10 29.43 29.95 9.62 -----r-3-1 13 24.17 6.21 10.33 15.07 18.22 3-121 3-122 15.84 2.89 9.96 5027 13.9 4.5 ----5098 2.3 5 3 1 3 7.6 5109 6.4 5 7 5286 8.0 11.5 5351 17.9 5.3 --5587----14.6 --P-9 10. 8 5.7 -P 1 0 0.6 1.3 12 5 P-1 5 13 3 8 9 15.8 P-45 0.7 4.9 36. 5 7.6 P 55 f---6.3 6.3 8.9 *COS-Calcium orthosilicate ne di wo hy ol 1.3 7.4 68.1 ----------7 3 6 7 60.1 ------1.7 16.7 10.8 1 5.1 22.5 -----i-----------1.7 18.7 6.7 --------------17.2 19 0 2.7 -----------f--2.4 22. 0 3.5 7 .9 17.2 3.7 30.0 14.3 11. 97 23.17 16.21 17.93 11.99 5 37 6.28 --7.64 21.53 20.42 3 79 17 .64 22.38 12 5 34.75 14.23 1.7 19.7 19 3 67.4 4.6 3.4 40. 2 20.5 1 9 31. 2 23.8 2 3 28. 9 28.4 0.6 6.0 18.6 44.0 7.8 18.7 54 8 10.1 22. 5 1 9.1 15.5 27.9 11.2 27.5 31.1 mt il 2.1 0 7 ----1 .9 0 7 --1.5 4.5 1 5 4.6 -----1.3 4.0 1.6 4.8 1 3 3.1 0.8 1.8 1 3 1.6 2 .0 5.4 1.62 5.2 1.49 4 73 1.35 4 29 2.13 6 13 2.16 6.42 2.13 6.34 2.6 13.5 2 0 7.8 2.7 9.9 1.7 7 7 2.7 1 1.6 2.2 15.4 2 2 5.7 2 0 1.5 1.7 6 2 1.5 2.8 1.8 5 3 ap 0 3 -0.5 --1.9 1 1 -1.6 -----1.3 0.6 0.5 0.4 1.5 1 .34 1 .07 1.71 1.44 1 39 1.37 2.2 2.1 2.0 1.4 2 3 1.6 4.1 0.5 2 0 1.4 2.3 wus -----46.4 COS* -______ .. I i 21.4 9.2 13.2 1 1 73. 1 3.7 ....... VJ VJ

PAGE 146

APPENDIX E. (cont'd) Table 17. CIPW normative minerals (cont'd) Sample# Q or ab an c lc 4-133 12.29 14.05 1 5.58 4-134 10.16 12.19 14 .5 4 135 11.29 5 98 15.35 4-136 14.23 8 .06 P-141 0.1 0.6 12 3 P-144 0.1 0 5 6 7 P-145 0.5 0.2 1.2 2.3 AP-1 2 7 4.2 19.5 4-103 9 99 6.33 16 13 4-106 5.67 1.52 20.04 4 108 2.72 1.44 20.96 A-5 0.2 17.0 1.6 A-13 11.2 32 2 34 2 V-4-7 1.3 9.9 14 .6 34.0 N -3-2 0.1 0 3 2 1 N-5 0 2 0.1 1 .2 N 13 1.3 0 1 0.0 0.4 N0-3 2 4 .3 F-1 0.1 5.6 11.4 13 0 SCB 16.1 12 .0 15.3 LK 1 5-4 8 9 20.8 18.3 *COS-Cal cium orthosilicate ne di wo hy ol 22.7 1 0.35 22.03 0.55 27.57 23.92 4 56 31.2 20.71 6.55 42.86 15. 24 1.4 30.9 45.7 9.0 18.7 58.0 34.3 5 4 .3 39.9 0 .2 20.6 4.59 31.75 1 9 55 18 .63 20.34 23.79 21.5 19.48 23.93 2.3 49.1 18.3 1.4 2.4 14 1 6.2 28.8 23 8 70.1 35.3 60.1 27.0 68 .3 0.2 76 .2 11.8 52.9 12.7 12.9 21.5 6.8 22.8 10 .6 mt il 2.15 7 .71 2.12 7.26 2.16 7.37 2.22 7.33 2 3 4 8 2.3 2.9 2 .3 3 2 2.3 8.7 2 .2 9 7.79 2.45 6.46 2.4 1 6.46 2.1 7.9 1 2 1.9 1.5 2 2 1.5 0.0 1.3 0 0 1.2 0.0 1.4 2.5 1.6 2. 1 1.9 4 9 1.9 7.2 ap wus 1 77 1.49 1.61 1.54 1.2 0.7 0 9 2 2 1.58 1 .11 1 .11 2.2 0.6 0.7 0.2 0.2 0.2 3. 1 0.8 0.1 1.8 1. 5 COS* 2 35 j I I 10.8 1-' VJ

PAGE 147

APPENDIX E. Table 18. Trace element data (ppm) Sample B Be Li Sr Ba Zn Cu Ni Co* V* Cr Sc* Ga* Rb* Y* Zr* Nb* Cs* Badjal P-171 11.48 0.68 26 36 27 32 107 182 882 112 1S2 266 19 6 96 6 s 1 18 P-172 7 23 0 67 36 .70 42 21 103 160 896 99 1S6 281 19 6 85 7 5 1 17 -------------------X-1 1392 1294 --_ .. _________ -3-110 6.29 2 .61 38 34 1386 1394 103 47 1 OS 20 236 199 11 787 14 142 79 3-105 8 62 2.3S S7.45 80 39 130 33 184 281 70 59 9 120 59 3-108 14.34 2 43 S2.55 79 40 131 31 767 202 9 115 8 703 47 3-113 S.2S 2.19 70.25 73 38 66 34 252 58 6 156 8 138 56 3 -121 5 12 1.97 69.89 92 52 98 40 196 105 9 71 7 48 56 3-122 3 .61 1 87 81. 08 72 40 104 38 216 110 14 49 8 88 55 . ----------DN-134e 6 38 1.93 38.91 587 868 128 59 181 314 160 25 ON-164 5.39 2 .7 7 33.50 1 51 7 1 344 1 06 40 95 262 141 14 DN-144 3.62 1 89 60.42 492 736 113 66 231 291 198 15 DN-118 19. 64 1 .82 52 76 330 493 97 54 92 204 87 14 ON-120 5.22 3 79 32.16 965 961 90 8 534 37 9 9 LON 20-18 7 .70 1 .51 53.41 251 205 110 46 47 116 36 24 LDN-23 4.74 2.13 26.61 735 669 153 112 126 358 99 31 lngili 5027 S 28 S .20 148 .7 9 1169 279 284 381 188 67 360 421 62 17 37 42 661 202 1 5098 14.49 4.81 141. 73 1103 35S 95 11 5 281 31 316 344 46 14 60 27 725 214 11. 5109-2 6.42 6.43 64 24 1388 622 171 235 416 100 338 703 so 1 5 37 26 498 175 0 S286 5 66 4.23 108 .71 427 658 121 107 155 45 333 160 so 14 76 18 500 116 1 53S1/3 13 97 8.47 133.4S 1033 1197 163 261 392 70 408 53S so 17 38 26 S26 204 1 5587 7.88 2 .60 77.11 S33 188 346 111 606 29 457 14S9 109 9 13 6 81 103 0 -------------

PAGE 148

APPENDIX E (cont'd) Table 18. Trace element data (ppm) (cont'd) Sample B Be Li Sr Ba Zn Cu South Ski khote Aiin P 9 8 69 2 .73 57 88 1408 747 1 31 266 P-1 0 1 10 0 .51 15.43 39 18 106 1 4 3 P-15 1.14 2.79 14.99 869 546 88 72 P-45 3 78 14.91 84 78 3433 261 104 41 P 55 2 05 2 26 53. 29 792 375 104 81 Central Sikhote-Aiin 4-133 9 80 2.48 35.53 369 423 106 153 4-134 7.7 1 1 .82 32.31 355 336 125 140 4-135 1 1 99 2 .4 5 34 .60 398 559 1 12 149 4-136 4 75 2.39 24 79 443 507 126 130 Northeast Sikhote-Aiin 4-103 8.37 2 50 2 8 18 87 373 717 97 4-106 4 34 1 68 71. 29 201 95 69 46 4 -108 5 74 1.46 64 96 2 93 90 66 125 Anui P 141 32.89 1 37 33. 54 111 1 10 113 93 P-144 21. 68 0.99 11.01 216 101 114 so P-145 67.83 0 92 27 08 102 217 117 59 AP1 2 36 2 75 8 .75 550 456 181 160 Khankai Craton A-5 5 83 2.42 8 .95 473 400 135 137 A-13 15 .35 0 98 42.26 644 494 88 27 V-4 7 24 69 1.4 7 294 54 730 525 120 24 -Ni Co* V* Cr Sc* Ga* Rb* 596 77 313 704 42 17 32 1 14 2 12 224 2260 36 28 19 163 53 294 279 35 22 63 242 37 316 216 18 18 10 451 60 348 697 47 18 131 243 61 4 48 486 42 21 84 257 60 405 433 39 21 7 7 251 61 454 475 47 21 77 287 54 393 541 42 19 67 133 35 151 75 3 75 357 48 784 538 8 56 338 49 188 54 7 8 29 1264 10 303 1471 34 26 16 1 220 11 205 2041 22 27 17 1320 10 252 2650 26 26 17 488 529 894 76 22 24 496 38 475 1040 40 23 65 146 64 16 20 67 79 23 252 349 34 581 Y* Zr* 58 390 1 2 24 23 276 38 295 22 268 22 245 22 238 22 244 15 187 27 232 29 233 26 205 11 22 11 22 11 21 30 358 28 209 20 80 13 50 Nb* Cs* 71 7 14 10 i 75 2 161 4 70 2 66 2 3 63 2 1 66 22 62 24 55 44 42 13 9 14 9 13 9 124 0 77 5 5 6 ....... w 0\

PAGE 149

APPENDIX E (cont'd) Table 1 8. Trace element data (ppm) (cont'd) Sample B Be Li Sr Ba Zn North Korea N-3-2 75 25 1 .27 3 12 81 N-5 106 2 80 2 10 77 N-1 3 10. 19 1.19 4 6 73 N0-3-2 78. 80 1 35 2 86 228 13 1 51 Philip Pluton Kamchatka F-1 3.87 0.79 15 33 125 272 141 San Carlos basanite SCB 2.37 2.93 10. 10 928 407 127 Alkaline basalt, Loihi LK 1 S-4 3.47 2.25 8.85 794 399 104 Note : Data in italics by XRAL; by ICP-MS at U Queensland All other data by DCP at USF Cu 48 27 18 81 57 46 83 Ni Co* V* Cr Sc* Ga* Rb* 476 12 128 2950 17 30 19 924 13 112 3035 18 30 19 967 12 89 2062 15 29 1 9 1220 81 245 1015 47 4 1 1316 235 1309 36 22 18 245 189 193 25 82 419 93 31 Y* 12 12 12 9 19 Zr* Nb* Cs* 24 14 10 24 14 10 23 14 10 122 117 0 42 10 6 I ....... w -....:]

PAGE 150

APPENDIX E (cont'd) Table 18. Trace elements (ppm) (cont'd) Sample Hf* Ta* Bi* Th* U* Badjal P-171 0.19 0.08 0 .29 0 .20 0.09 P-172 0 22 0 .05 0 .39 0 .27 0 .34 --.. -----------3-110 5.00 13.50 3.30 3-113 7.00 9 .90 2.40 3-1 OS 5 .00 9 .90 2 .70 3-108 5 .00 10 70 2.70 3-121 5 .00 8 .90 2.20 3-122 5 .00 7 .80 1 .90 11ng111 5027 19.33 12.04 0.20 15 .69 3 .79 5098 18.54 11.97 0 .14 17.42 5.46 5109-2 14.47 12.03 0.13 18.16 4.25 5286 12.76 6 .87 0 .41 7.65 2 .08 5351/3 14. 57 10.83 0 .09 15. 15 5 .7 8 5587 2 .18 6 .39 0 02 2.43 1.48 !)outn P-9 7.41 3 .91 0 .04 20.84 4 .29 P-1 0 20.64 5 .96 9 .89 8 02 7 .86 P -15 6 .61 4 .64 0 .04 4 97 1 .65 P -45 6.69 3.98 0 .20 24.2 3 9.40 P-55 6 59 4 .37 0 .20 4 .38 1.40 Central Sikhote-Aiin 4 -133 6 .54 3 92 0 02 5 03 1 .36 4-134 6 19 3 .66 0 03 4 .84 1 .23 4-135 6 .33 3.86 0 .02 4.75 1.39 4 -136 5.13 3.93 0 .07 2 .81 1.20 Sample Hf* Ta* Bi* Th* U* Anui P-141 19.37 5.61 8 .95 7.33 7.14 P-144 20.47 5 .97 9 55 7.75 7 52 P-145 20.11 5.67 9 .31 7.49 7.27 ------AP-1 8.62 6 .99 0.07 11.65 3 .33 Northeast Sikhote Alin 4-103 10 .00 5 .90 7 .50 Khankai Craton A 5 5 .00 9.30 2.40 A-13 2.17 0.35 0 .00 1.45 0 .54 North Korea N-3-2 20.37 5 .98 10. 02 7.95 7 .82 N-5 20. 76 5 .94 9.45 7 .44 7.45 N-13 20.59 6 .09 9 .66 7 .70 7 .54 N0-3 2 2.98 7 .32 0 .04 9.84 2.49 Philip Pluton, Kamchatka I F-1 11.12 3 .20 4 99 4 .19 3 .97 Note: Data in italics by XRAL: by ICP-MS at U .Q. ...... CJ.J 00

PAGE 151

APPENDIX E Table 19. Rare earth element data (ppm) Sa m p l e La Ce Pr N d Sm Eu Gd Badjal P 171 1 .31 3 .76 0 .60 2 .68 0.48 0 2 1 0 95 P-172 1 .94 5 .06 0 .81 3 .60 0 73 0.30 1.20 -.. ------------3 1 1 0 85.10 174 1 9 .60 74.40 15.80 3.90 11.7 0 3-113 59.20 120 13.70 55.60 12.60 3.26 9 .50 31 OS 56 70 119 13. 70 53 10 12.20 3 .36 9.40 3-108 46.40 100 11.70 47.80 71.00 2 79 8 .90 3 121 60.70 127 14.60 57. 10 73.00 3.46 9.70 3-1 22 50.20 703 17.90 48.40 10.90 2 92 8.40 l ngili 5027 213.12 447.94 60.60 212 62 30.74 7 .68 24.44 5098 114. 73 236.70 29 63 100.50 17. 95 4 96 15.00 5 1092 192 57 421.54 54. 58 185 55 25. 66 6 33 19.86 52 8 6 89.07 191.03 25 .14 87.10 12. 69 3 26 10.61 5351/3 162.89 330.75 41. 67 139. 35 19.20 4.72 1 5 93 5587 18.18 36.44 6 .10 23 .70 4.47 1 1 7 3.54 So u t h S i khote-A iin P -9 148.01 3 1 1 93 41.94 157.53 28 46 8.41 25.00 P-1 0 8 6 1 8.62 7 55 37.81 45 .88 12.59 3 7 .33 P-15 43.47 89.06 11 .61 43 .69 8 .7 0 2 .80 8 .10 P -45 94. 92 170.50 2 0 63 70. 95 1 2 .33 3.72 10.96 P 55 40.81 85 .34 1 1 .41 43 72 8 83 2.73 7 95 Tb Dy Ho Er Yb Lu 0.15 0 86 0.22 0 .66 0.64 0.10 0 .19 1.06 0 25 0 .74 0 .71 0.11 1.40 7 .50 1 25 3.40 2 70 0.34 1.10 5.90 0 .99 2.40 1.80 0 .24 7 .20 6 .30 1.07 2.90 2.20 0.31 1 10 6 .20 1 0 7 2 .90 2.40 0.32 1.30 6 70 1.07 2.90 2 .20 0 .2 9 1.00 5 60 0.94 2.40 1.90 0.2 7 2.47 10. 85 1 .74 4.54 2 .49 0 .31 1 .60 7 .14 1.15 2.93 1 .7 6 0 .2 1 1.88 7.58 1.18 3. 1 6 1.65 0 .21 1 .07 4.74 0.78 2. 1 5 1 .35 0 .18 1.59 7.16 1.17 3 .19 1.8 1 0 23 1 0 .38 1.51 0.26 0 .66 0 .36 0 .04 2.88 13.98 2.30 5 79 3.34 0 43 5.7 6 23.96 5.97 16.87 16.24 5 73 1.00 5 .18 0.92 2 42 1.78 0 .2 5 1.37 7.40 1 .37 4.25 6 .89 1 .2 5 1 .00 5.11 0 .88 2.26 1.58 0. 22 -....... (J.J \!)

PAGE 152

APPENDIX E. (cont'd) Table 19. Rare earth element data (ppm) (cont'd) Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Central Sikhote-Aiin 4133 47. 02 101 .20 13 57 5 0 .95 9 42 2.92 8 .84 1.06 5 .27 0.93 2.44 1.69 0.23 4134 45.28 97 1 1 1 2 .95 48.82 8.90 2.7 5 8.41 1.01 5.01 0 8 8 2.37 1.62 0 22 4135 49.28 104.02 13 62 50.90 9 .27 2.84 8 72 1.02 5 .07 0.91 2.38 1 .68 0 23 4-136 29.34 59.62 9 03 34.88 6.41 1 .99 6 .09 0 73 3 .64 0 .66 1 .70 1.18 0 .16. Northeast Sikhote-Aiin 4 1 0 3 54 60 7 76. 00 73. 70 55 .90 73.00 3 62 70 .00 7 .30 6.80 1 7 2 2.80 2 .00 0 .2 6 Anui P 1 41 7.5 1 7.90 6 .88 34.63 41.78 11.48 33 .87 5 .20 22.03 5.45 1 6 .09 1 5 03 5.34 P-1 4 4 7 .80 7 92 7 .14 36.77 44.65 12.38 35.98 5 .60 23.32 5. 7 5 16.80 16.16 5.69 P-145 7 6 7 8 .00 7 .12 35.68 42.44 11.97 34. 59 5.31 22 .81 5 62 16.65 1 5 65 5 .33 AP-1 102. 25 198.49 25.67 91.78 16.17 4 .74 14. 22 1 .62 7.72 1 25 3 .07 1.84 0.24 Khankai Craton 0 23 1 A-5 75.50 154 .00 18 70 76.40 7 7 10 4.42 72. 90 7.50 7 .30 1.12 2.70 1.80 I A 1 3 13 .51 29.31 4 1 1 16.31 3.46 1 26 3 .87 0 56 3.50 0 74 2.18 2 .05 0.31 V-4-7 8.40 North K o rea N-3-2 8 55 8 .51 7 72 38.73 45.77 12 .65 37. 76 5 .77 24.13 5.84 17.01 16. 1 2 5 72 N-5 8 .61 8.74 7 .76 39.48 45.10 1 2 .60 37.45 5 77 23 86 5 92 17.24 1 5 .90 5.63 I N -13 8.43 8 55 7 56 38.69 45.24 12.70 38. 02 5 .74 23 .76 5 93 17.26 16.24 5 69 1 N0 -3 2 59 .81 150. 93 20.46 70.67 9 .90 2 .58 7 .34 0 73 2 .86 0.43 1 .12 0 55 0 .07. Philip Pluton Kamchatk a F-1 7 15 19 .21 5 65 27. 55 24 .97 6 58 21.51 3 25 14. 12 3.40 9 .84 9 .15 3.01 Note : Data in italics by XRAL; all other REE data by ICP-MS at U Queensland ,...... 0

PAGE 153

141 APPENDIX E Tabl e 20. Lead isotopes Sample 206/204 207/204 208/204 207/206 208/206 Badjal P-17 1 18. 2671 15.5430 38.3812 0 .8509 2 1011 P -172 18.3288 1 5 .5535 38.4138 0 .8486 2.0959 lngili 5027 20.021 1 15.7525 40.4018 0.7838 5098 20.3902 15.7154 39.8838 0 .7707 1 .9560 5109-2 20.1980 15.6922 39.7369 0 .7769 1 .9674 5286 19. 8961 15.6843 40.0050 0 .7883 2.0107 5351/3 23.9434 15.9529 42.4695 0 .6663 1.7738 5587 19.1239 15.6594 39.2858 0 .8188 2 .0543 South Sikhote-Aiin P-9 20.5632 15 6361 41.3624 0 .7604 2 .0115 P-1 0 19.7518 15 .6238 39.9325 0 .7910 2 .0217 P-15 17.8751 15 .5234 37.9627 0 .8684 2.1237 P-45 20.7408 15 .6424 40.2682 0.7542 1.9416 P-55 18.0042 15 .5387 38.0702 0 8631 2.1145 Central Sikhote-Aiin 4 -133 19.8242 15 .6184 39.8465 0 7881 2 0 100 4-134 19. 8761 15.6298 40.0591 0 .7864 2 0 154 4-135 19.9810 15 .6380 40.0707 0 .7826 2.0054 4 -136 19.4373 15 .6283 39.4402 0 .8040 2 0291 Anui P-141 21.4507 15 .6630 41.5472 0 .7303 1.9370 P-144 20.1183 15.6247 40.5008 0 .7766 2 .0132 P-145 19.8110 15.6113 39.7595 0.7880 2.0069 AP-1 20.4367 15. 6411 40.5055 0 .7654 1 .9820 Khankai Craton A-13 18.6495 15.6157 38.2895 0 .8373 2.0531 North Korea N 5 17.6056 15 3641 37.1982 0 .872 3 2 .1120 N-1 3 17.8765 15 .3163 37.3560 0 .8563 2 .0865 N0-3 2 24.1374 15 9761 52 .6248 0.6619 2.1802 Philip Pluton, Kamchatka F-1 18.3116 15.5352 38.2899 0 .8484 2 .0910 Note : Analys1s by ICP-MS at U Queensland


printinsert_linkshareget_appmore_horiz

Download Options

close
No images are available for this item.
Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.