1991: Sixth International symposium on vulcanospeleology: Hilo, Hawaii August 1991

Citation
1991: Sixth International symposium on vulcanospeleology: Hilo, Hawaii August 1991

Material Information

Title:
1991: Sixth International symposium on vulcanospeleology: Hilo, Hawaii August 1991
Series Title:
International Symposium on Vulcanospeleology
Creator:
International Symposium on Vulcanospeleology
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
A-3 Rift Cave (Japan) ( 34.07389, 139.5175 )
Aden Crater Fumarole (Lincoln County, New Mexico, United States) ( 32.069541, -107.058066 )
Água de Pau (Azores, Portugal) ( 37.71527778, -25.53 )
Algar da Batalha (Azores, Portugal) ( -25.53, -25.63821893 )
Algar da Furna Abrigo (Azores, Portugal) ( 38.47702249, -28.43185442 )
Algar da Merda (Azores, Portugal) ( 37.81993563, -25.48660345 )
Algar das Bocas do Fogo (Azores, Portugal) ( 38.67729154, -28.16913769 )
Algar do Alto do Morais (Azores, Portugal) ( 38.4833989, -28.42624829 )
Algar do Cabeço da Negra (Azores, Portugal) ( 38.44380238, -28.49421841 )
Algar do Capitão (Azores, Portugal) ( 38.53080902, -28.45471703 )
Algar do Carvão (Azores, Portugal) ( 38.72618964, -27.21741016 )
Algar do Funil (Azores, Portugal) ( 38.73873163, -27.25426776 )
Algar do Lanchão (Azores, Portugal) ( 38.53877407, -28.46635085 )
Algar do Mistério (Azores, Portugal) ( 38.7368905, -27.27151996 )
Algar do Montoso (Azores, Portugal) ( 38.65459898, -28.09292036 )
Algar do Negro (Azores, Portugal) ( 38.73598666, -27.27266711 )
Algar do Pico das Dez (Azores, Portugal) ( 38.71146058, -27.34618499 )
Algar do Pico Gaspar (Azores, Portugal) ( 38.73328853, -27.2703558 )
Algar do Pico Queimado (Azores, Portugal) ( 37.78458288, -25.54183197 )
Algar do Tambor (Azores, Portugal) ( 38.5299366, -28.45240507 )
Algo do Pico da Maria Pires (Azores, Portugal) ( 38.67479357, -28.14840537 )
Algo do Pico dos Suspiros I (Azores, Portugal) ( 38.65551073, -28.09178498 )
Algo do Pico dos Suspiros II (Azores, Portugal) ( 38.65551073, -28.09178498 )
Angleworm-Lost Pinnacle Cave (United States) ( 41.713889, -121.508333 )
Ape Cave (Washington, United States) ( 46.113318, -122.214031 )
Arch Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Ash Crawl Cave (Hawaii, United States) ( 19.295595, -155.306956 )
Atkinson's Cave (Queensland, Australia) ( -18.201111, 144.596111 )
B-5 Rift Cave (Japan) ( 34.07389, 139.5175 )
B-9 Rift Cave (Japan) ( 34.07222, 139.5153 )
Barker's Cave (McBride Province, Queensland, Australia) ( -18.201111, 144.596111 )
Batalha (Azores, Portugal) ( 37.79083333, -25.64027778 )
Bayliss Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Beinahola (Iceland) ( 64.833333, -20.416667 )
BergÆ¥órshellir (Iceland) ( 64.833333, -20.416667 )
Big Cave (Skamania County, Washington, United States) ( 46.202412, -121.490895 )
Bilemot Kul (Cheju Island, South Korea) ( 33.40028, 126.4022 )
Bishop's Cave (Hawaii, United States) ( 19.295595, -155.306956 )
Boy Scout Cave (Idaho, United States) ( 43.46167, -113.56271 )
Branch Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Brewers Cave (Cibola County, New Mexico, United States) ( 34.859, -108.021 )
Burial Tube Shelter (Hawaii, United States) ( 19.295595, -155.306956 )
Calabash Cave (Hawaii, United States) ( 19.295595, -155.306956 )
Caldwell Ice Cave (United States) ( 41.713889, -121.508333 )
Carvão (Azores, Portugal) ( 37.73722222, -25.68083333 )
Cat Cave (California, United States) ( 34.746389, -116.375 )
Catacombs Lava Tube Cave (California, United States) ( 41.713889, -121.508333 )
Cave of La Curva (Canary Islands, Spain) ( 27.692731, -17.9718539 )
Cave of Linke (Canary Islands, Spain) ( 27.6638378, -17.9730976 )
Cave of Mocan (Canary Islands, Spain) ( 27.7163723, -18.0049312 )
Cave of Tacoron (Canary Islands, Spain) ( 27.6693831, -18.0087096 )
Caves of San Andres (Canary Islands, Spain) ( 27.7597283, -17.9604904 )
Cedar Canyon Cave (Utah) ( 37.616667, -112.833333 )
Charcoal Cave System (Hawaii, United States) ( 19.295595, -155.306956 )
Cheese Cave (Klickitat County, Washington, United States) ( 45.8667, -120.7667 )
Classic Cave (Cibola County, New Mexico, United States) ( 34.859, -108.021 )
Craig Cave (United States) ( 41.713889, -121.508333 )
Cueva de Don Justo (Canary Islands, Spain) ( 27.75, -18 )
Cueva de Elena (Galapagos Islands, Ecuador) ( -0.619, -90.338 )
Cueva de Kastdalen (Galapagos Islands, Ecuador) ( -0.619, -90.338 )
Cueva de la Miconia (Galapagos Islands, Ecuador) ( -0.619, -90.338 )
Cueva del Cascajo (Galapagos Islands, Ecuador) ( -0.619, -90.338 )
Cueva Honda de la Fajanita (Canary Islands, Spain) ( 28.8167, -17.7833 )
Darcy Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Dave I Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Dave II Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Dead Horse Cave (Skamania County, Washington, United States) ( 46.202412, -121.490895 )
Dingbat Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Dockchon Cave (Cheju Island, South Korea) ( 33.52389, 126.7717 )
Dunmall Arch (Queensland, Australia) ( -18.201111, 144.596111 )
Dynamited Cave (Skamania County, Washington, United States) ( 45.995556, -121.520556 )
Earthquake Cave System (Hawaii, United States) ( 19.295595, -155.306956 )
Eigou No. 1 Rift Cave (Japan) ( 33.15194, 139.7564 )
Eigou No. 2 Rift Cave (Japan) ( 33.15167, 139.7561 )
Eigou No. 3 Rift Cave (Japan) ( 33.15139, 139.7558 )
Enforcado (Azores, Portugal) ( 37.81361111, -25.69333333 )
Eptesicus (Queensland, Australia) ( -18.201111, 144.596111 )
Escadinhas (Azores, Portugal) ( 37.8175, -25.48333333 )
Esqueleto (Azores, Portugal) ( 37.78972222, -25.50805556 )
Ewamin Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Expedition I (Queensland, Australia) ( -18.201111, 144.596111 )
Expedition II (Queensland, Australia) ( -18.201111, 144.596111 )
Eyvindarhola (Iceland) ( 64.833333, -20.416667 )
Feteiras (Azores, Portugal) ( 37.80166667, -25.7975 )
Flat Ceiling (Queensland, Australia) ( -18.201111, 144.596111 )
Forna D'Água (Azores, Portugal) ( 38.70823074, -27.17940169 )
Forna de St. Maria (Azores, Portugal) ( 38.71453536, -27.1817179 )
Forna do Cabrito (Azores, Portugal) ( 38.71183186, -27.18171105 )
Fortune (Queensland, Australia) ( -18.201111, 144.596111 )
Frances Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Franshellir (Iceland) ( 64.833333, -20.416667 )
Fun Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Furna D'Água (Azores, Portugal) ( 38.54171944, -28.44690512 )
Furna da Laje (Azores, Portugal) ( 38.55817535, -28.427725 )
Furna da Maria Encantada (Azores, Portugal) ( 39.03046938, -27.97969135 )
Furna da Miragaia (Azores, Portugal) ( 38.53335428, -28.46738806 )
Furna das Anelares (Azores, Portugal) ( 38.53141614, -28.74038293 )
Furna das Casas (Azores, Portugal) ( 38.55481697, -28.48044784 )
Furna das Pombas (Azores, Portugal) ( 38.64628385, -28.11462667 )
Furna do Carregador (Azores, Portugal) ( 38.51527863, -28.47160883 )
Furna do Enxofre (Azores, Portugal) ( 39.0234342, -27.95880099 )
Furna do Frei Matias (Azores, Portugal) ( 38.48672116, -28.44924405 )
Furna do Henrique Maciel (Azores, Portugal) ( 38.52399054, -28.34675148 )
Furna do Poio (Azores, Portugal) ( 38.62626558, -27.93051289 )
Furna do Pombal (Azores, Portugal) ( 38.63477659, -28.09261928 )
Furna do Tancaim (Azores, Portugal) ( 38.5281063, -28.4546626 )
Furna dos Anjos (Azores, Portugal) ( 37.00321056, -25.15681879 )
Furna dos Caldeirões (Azores, Portugal) ( 38.53967498, -28.46636914 )
Furna dos Montanheiros (Azores, Portugal) ( 38.48893218, -28.33921922 )
Furna Manuel José Lima (Azores, Portugal) ( 38.54220882, -28.40675608 )
Furna Nova I (Azores, Portugal) ( 38.53095098, -28.44324775 )
Furna Nova II (Azores, Portugal) ( 38.5318519, -28.44326575 )
Furna Ruim (Azores, Portugal) ( 38.58430457, -28.75887945 )
Galeria Queimada (Azores, Portugal) ( 38.67949372, -27.09310512 )
Glove Cave (California, United States) ( 34.746389, -116.375 )
Golymata Peshtera (Bulgaria) ( 41.601111, 24.574167 )
Gonaiesl Cave (Cheju Island, South Korea) ( 33.52389, 126.7717 )
Graham Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Greeley (Queensland, Australia) ( -18.201111, 144.596111 )
Gruta da Achada (Azores, Portugal) ( 38.73080051, -27.15069598 )
Gruta da Barca (Azores, Portugal) ( 38.54080388, -28.51917089 )
Gruta da Beira (Azores, Portugal) ( 38.69676321, -28.20395125 )
Gruta da Canada da Giesta (Azores, Portugal) ( 37.78624029, -25.60425733 )
Gruta da Canada das Furnas (Azores, Portugal) ( 39.03134121, -27.98316931 )
Gruta da Capucha (Azores, Portugal) ( 38.54611018, -28.45617276 )
Gruta da Granja (Azores, Portugal) ( 38.67701251, -28.19672285 )
Gruta da Lomba do Gato (Azores, Portugal) ( 38.67621693, -28.18636359 )
Gruta da Madre de Deus (Azores, Portugal) ( 38.68221465, -27.06781506 )
Gruta da Quinta-Irene (Azores, Portugal) ( 37.82807375, -25.48870968 )
Gruta da Rua do Carvão (Azores, Portugal) ( 37.74028632, -25.68342921 )
Gruta da Rua do Paim (Azores, Portugal) ( 37.74570548, -25.68446819 )
Gruta das Agulhas (Azores, Portugal) ( 38.64524026, -27.10340283 )
Gruta das Arribanas (Azores, Portugal) ( 37.82055819, -25.68882125 )
Gruta das Escadinhas (Azores, Portugal) ( 37.81813364, -25.48664025 )
Gruta das Feiticeiras (Azores, Portugal) ( 38.71605109, -27.31630073 )
Gruta das Mercés (Azores, Portugal) ( 38.65330121, -27.14938424 )
Gruta das Torres (Azores, Portugal) ( 38.49404686, -28.51130856 )
Gruta de Santo António (Azores, Portugal) ( 38.68401424, -27.07241571 )
Gruta del Palmito (Bustamante, Nuevo Leon, Mexico) ( 26.5333, -100.5 )
Gruta do Bom Jesus (Azores, Portugal) ( 39.0733595, -28.02189985 )
Gruta do Cabeço do Canto (Azores, Portugal) ( 38.59969464, -28.8132236 )
Gruta do Caldeira (Azores, Portugal) ( 38.76755852, -27.25897435 )
Gruta do Camelo (Azores, Portugal) ( 38.71273303, -27.18171334 )
Gruta do Capitão-Mor (Azores, Portugal) ( 38.52431684, -28.31807952 )
Gruta do Chocolate (Azores, Portugal) ( 38.7792911, -27.25095793 )
Gruta do Coelho (Azores, Portugal) ( 38.73869548, -27.27037618 )
Gruta do Galeão I (Azores, Portugal) ( 38.42925922, -28.43205617 )
Gruta do Galeão II (Azores, Portugal) ( 38.42564148, -28.43313027 )
Gruta do Leão (Azores, Portugal) ( 38.67798386, -28.18984152 )
Gruta do Natal (Azores, Portugal) ( 38.73779962, -27.26807161 )
Gruta do Parque do Capelo (Azores, Portugal) ( 38.58854832, -28.77620437 )
Gruta do Pau Velho (Azores, Portugal) ( 38.76486517, -27.25436049 )
Gruta do Romeiro (Azores, Portugal) ( 36.98148122, -25.0382584 )
Gruta do Soldão (Azores, Portugal) ( 38.41372714, -28.29545088 )
Gruta do Zé Grande (Azores, Portugal) ( 38.65059472, -27.15167702 )
Gruta dos Arcos (Azores, Portugal) ( 38.55669244, -28.40130023 )
Gruta dos Balcóes (Azores, Portugal) ( 38.76306286, -27.25435409 )
Gruta dos Esqueletos (Azores, Portugal) ( 38.54590876, -28.39879597 )
Gumburdek (Bulgaria) ( 41.601111, 24.574167 )
Hallmundarhellir (Iceland) ( 64.833333, -20.416667 )
Hanson Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Harbour Bridge (Queensland, Australia) ( -18.201111, 144.596111 )
Hayes Refuge Tube Shelter (Hawaii) ( 19.6996, -155.99 )
Helens Hidden Hide-Away (Lincoln County, Idaho, United States) ( 43.158333, -114.291667 )
Hilina Pali Lava Tube (Hawaii, United States) ( 19.295595, -155.306956 )
Hopeless Cave (Washington, United States) ( 46.1912, -122.1944 )
Hot Hole Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Hvassi (Iceland) ( 64.833333, -20.416667 )
Hwankeum Cave (Cheju Island, South Korea) ( 33.36472, 126.2606 )
Hyopjae Cave (Cheju Island, South Korea) ( 33.38306, 126.2439 )
Ice Fissure Crater Cave (Japan) ( 35.360628, 138.727365 )
Ice Rink Cave (Skamania County, Washington, United States) ( 46.202412, -121.490895 )
Immemerru Cave (Cheju Island, South Korea) ( 33.52389, 126.7717 )
Inner Dome Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Jorong Cave (Cheju Island, South Korea) ( 33.36472, 126.2606 )
Jug Cave (Klickitat County, Washington, United States) ( 45.8667, -120.7667 )
Junction Cave (Cibola County, New Mexico, United States) ( 34.859, -108.021 )
Kaenaegi Cave (Cheju Island, South Korea) ( 33.53833, 126.7494 )
Kaleto I (Bulgaria) ( 41.601111, 24.574167 )
Kalmanshellir (Iceland) ( 64.833333, -20.416667 )
Komitake Rift Caves No. 1 (Japan) ( 35.360628, 138.727365 )
Komitake Rift Caves No. 2 (Japan) ( 35.360628, 138.727365 )
Komitake Rift Caves No. 3 (Japan) ( 35.360628, 138.727365 )
Komori Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Labyrinth Lava Tube Cave (California, United States) ( 41.713889, -121.508333 )
Large Chokit Cave (Cheju Island, South Korea) ( 33.36472, 126.2606 )
Lava Brook Cave (California, United States) ( 41.713889, -121.508333 )
Ledge Cave (Hawaii, United States) ( 19.295595, -155.306956 )
Little People's Cave (Washington, United States) ( 46.1912, -122.1944 )
Lost World Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Lower Falls Creek Cave (Skamania County, Washington, United States) ( 46.202412, -121.490895 )
Lower Secret Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Malama Cave (Hawaii, United States)
Malkata Peshtera (Bulgaria) ( 41.601111, 24.574167 )
Mammoth Crater (United States) ( 41.713889, -121.508333 )
Matthew Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Merril Ice Cave (Siskiyou County, California, United States) ( 41.713889, -121.508333 )
Metate Cave (Lincoln County, New Mexico, United States) ( 34.25, -105.25 )
Midden Cave (Lincoln County, New Mexico, United States) ( 34.25, -105.25 )
Mikoshi Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Misplaced Arch (Queensland, Australia) ( -18.201111, 144.596111 )
Moth Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Nasty Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Navajo Ice Cave
New Cave (Skamania County, Washington, United States) ( 46.202412, -121.490895 )
Ollier Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Opera House Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Peter Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Peterson Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Picnic I Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Picnic II Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Pico da Cruz (Azores, Portugal) ( 37.785, -25.62277778 )
Pico Queimado (Azores, Portugal) ( 37.78555556, -25.54583333 )
Pinwill's Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Pit of Guinea (Canary Islands, Spain) ( 27.7724865, -17.9963315 )
Pit of Las Palomas (Canary Islands, Spain) ( 27.73958, -18.0572732 )
Pit of Pico La Mata (Canary Islands, Spain) ( 27.7132049, -17.9845724 )
Pocknamoo Cave (Cheju Island, South Korea) ( 33.5282, 126.7701 )
Pocknamoo Mit Cave (Cheju Island, South Korea) ( 33.5282, 126.7701 )
Prilepnata Peshtera (Bulgaria) ( 41.601111, 24.574167 )
QQ Cave (California, United States) ( 34.746389, -116.375 )
Raleigh I Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Raleigh II Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Riberirinha (Azores, Portugal) ( 37.82055556, -25.48444444 )
Rjupnahellir (Iceland) ( 64.833333, -20.416667 )
Road Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Roja Cave (Canary Islands, Spain) ( 27.6696247, -17.9975711 )
SaKul Cave (Cheju Island, South Korea) ( 33.5282, 126.7701 )
San Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Sand Cave (Washington, United States) ( 46.1912, -122.1944 )
Sandi Cave (Iceland) ( 64.833333, -20.416667 )
Sanhyong Cave (Cheju Island, South Korea) ( 33.36472, 126.2606 )
Sarah Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Short Little Arch (Queensland, Australia) ( -18.201111, 144.596111 )
Sima de la Piramide (Galapagos Islands, Ecuador)
Sima del Pozo de los Gemelos (Galapagos Islands, Ecuador) ( -0.619, -90.338 )
Simas de Cerro Grande (Galapagos Islands, Ecuador) ( -0.5, -91.066667 )
Simas de las Torres (Galapagos Islands, Ecuador) ( -0.5, -91.066667 )
Skull Cave (Idaho, United States) ( 41.713889, -121.508333 )
Songdang Cave (Cheju Island, South Korea) ( 33.43944, 126.7586 )
Speaking Tube (Queensland, Australia) ( -18.201111, 144.596111 )
SPJ Cave (California, United States) ( 34.746389, -116.375 )
St. Pauls Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Stefanshellir Cave (Iceland) ( 64.833333, -20.416667 )
Stephenson Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Stevens Cave (Queensland, Australia) ( -18.201111, 144.596111 )
SU-03 (Iceland) ( 63.303, -20.605 )
Sunset Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Surtshellir Cave (Iceland) ( 64.833333, -20.416667 )
Taylor Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Temple of Doom (Queensland, Australia) ( -18.201111, 144.596111 )
Thanks Cave (Klickitat County, Washington, United States) ( 45.8667, -120.7667 )
The Bowers (Idaho, United States) ( 41.713889, -121.508333 )
The Crater Pit (Canary Islands, Spain) ( 27.6647611, -17.9721095 )
Thunderbolt Cave (Idaho, United States) ( 41.713889, -121.508333 )
Tom Tom Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Topal Kadirovata Doupka (Bulgaria) ( 41.601111, 24.574167 )
Traves' Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Tween Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Upper Secret Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Valentine Cave (California, United States) ( 41.713889, -121.508333 )
Viðgelmir (Iceland) ( 64.750283, -20.8017 )
Waiahukini Lava Tube (Hawaii, United States) ( 19.1, -155.6 )
Wallabys Hideaway (Queensland, Australia) ( -18.201111, 144.596111 )
West Castle Cave (United States) ( 41.713889, -121.508333 )
Wind Tunnel (Queensland, Australia) ( -18.201111, 144.596111 )
Windy Creek Cave (Skagit County, Washington, United States) ( 48.777343, -121.813201 )
Wishing Well Cave (Queensland, Australia) ( -18.201111, 144.596111 )
Woodsey Owl Cave (California, United States) ( 34.746389, -116.375 )
Yooktigie Cave (Cheju Island, South Korea) ( 33.52667, 126.6242 )
þríhnúkagígur (Iceland) ( 54, 24.7 )
Genre:
Conference Proceeding
serial ( sobekcm )
Coordinates:
34.07389 x 139.5175
32.069541 x -107.058066
37.71527778 x -25.53
-25.53 x -25.63821893
38.47702249 x -28.43185442
37.81993563 x -25.48660345
38.67729154 x -28.16913769
38.4833989 x -28.42624829
38.44380238 x -28.49421841
38.53080902 x -28.45471703
38.72618964 x -27.21741016
38.73873163 x -27.25426776
38.53877407 x -28.46635085
38.7368905 x -27.27151996
38.65459898 x -28.09292036
38.73598666 x -27.27266711
38.71146058 x -27.34618499
38.73328853 x -27.2703558
37.78458288 x -25.54183197
38.5299366 x -28.45240507
38.67479357 x -28.14840537
38.65551073 x -28.09178498
41.713889 x -121.508333
46.113318 x -122.214031
-18.201111 x 144.596111
19.295595 x -155.306956
34.07222 x 139.5153
37.79083333 x -25.64027778
64.833333 x -20.416667
46.202412 x -121.490895
33.40028 x 126.4022
43.46167 x -113.56271
34.859 x -108.021
37.73722222 x -25.68083333
34.746389 x -116.375
27.692731 x -17.9718539
27.6638378 x -17.9730976
27.7163723 x -18.0049312
27.6693831 x -18.0087096
27.7597283 x -17.9604904
37.616667 x -112.833333
45.8667 x -120.7667
27.75 x -18
-0.619 x -90.338
28.8167 x -17.7833
33.52389 x 126.7717
45.995556 x -121.520556
33.15194 x 139.7564
33.15167 x 139.7561
33.15139 x 139.7558
37.81361111 x -25.69333333
37.8175 x -25.48333333
37.78972222 x -25.50805556
37.80166667 x -25.7975
38.70823074 x -27.17940169
38.71453536 x -27.1817179
38.71183186 x -27.18171105
38.54171944 x -28.44690512
38.55817535 x -28.427725
39.03046938 x -27.97969135
38.53335428 x -28.46738806
38.53141614 x -28.74038293
38.55481697 x -28.48044784
38.64628385 x -28.11462667
38.51527863 x -28.47160883
39.0234342 x -27.95880099
38.48672116 x -28.44924405
38.52399054 x -28.34675148
38.62626558 x -27.93051289
38.63477659 x -28.09261928
38.5281063 x -28.4546626
37.00321056 x -25.15681879
38.53967498 x -28.46636914
38.48893218 x -28.33921922
38.54220882 x -28.40675608
38.53095098 x -28.44324775
38.5318519 x -28.44326575
38.58430457 x -28.75887945
38.67949372 x -27.09310512
41.601111 x 24.574167
38.73080051 x -27.15069598
38.54080388 x -28.51917089
38.69676321 x -28.20395125
37.78624029 x -25.60425733
39.03134121 x -27.98316931
38.54611018 x -28.45617276
38.67701251 x -28.19672285
38.67621693 x -28.18636359
38.68221465 x -27.06781506
37.82807375 x -25.48870968
37.74028632 x -25.68342921
37.74570548 x -25.68446819
38.64524026 x -27.10340283
37.82055819 x -25.68882125
37.81813364 x -25.48664025
38.71605109 x -27.31630073
38.65330121 x -27.14938424
38.49404686 x -28.51130856
38.68401424 x -27.07241571
26.5333 x -100.5
39.0733595 x -28.02189985
38.59969464 x -28.8132236
38.76755852 x -27.25897435
38.71273303 x -27.18171334
38.52431684 x -28.31807952
38.7792911 x -27.25095793
38.73869548 x -27.27037618
38.42925922 x -28.43205617
38.42564148 x -28.43313027
38.67798386 x -28.18984152
38.73779962 x -27.26807161
38.58854832 x -28.77620437
38.76486517 x -27.25436049
36.98148122 x -25.0382584
38.41372714 x -28.29545088
38.65059472 x -27.15167702
38.55669244 x -28.40130023
38.76306286 x -27.25435409
38.54590876 x -28.39879597
19.6996 x -155.99
43.158333 x -114.291667
46.1912 x -122.1944
33.36472 x 126.2606
33.38306 x 126.2439
35.360628 x 138.727365
33.53833 x 126.7494
34.25 x -105.25
37.785 x -25.62277778
37.78555556 x -25.54583333
27.7724865 x -17.9963315
27.73958 x -18.0572732
27.7132049 x -17.9845724
33.5282 x 126.7701
37.82055556 x -25.48444444
27.6696247 x -17.9975711
-0.5 x -91.066667
33.43944 x 126.7586
63.303 x -20.605
27.6647611 x -17.9721095
64.750283 x -20.8017
19.1 x -155.6
48.777343 x -121.813201
33.52667 x 126.6242
54 x 24.7

Notes

General Note:
Organizers: William R. Halliday et al. Publication: 6th International Symposium on Vulcanospeleology Edited by G. Thomas Rea, ISBN 1-879-961-02-4, 286 pages, softbound National Speleological Society, Huntsville, 1992 Contents: Forward / William R. Halliday. Vulcanospeleology of Hawaii: Hawaiian use of lava tube caves and shelters / Yosihiko H. Sinoto -- Recently discovered Hawaiian religious and burial caves / Michael La Plante -- Native Hawaiian water collection systems in lava tubes (caves) and fault cracks / James F. Martin -- Lava tube systems of the Hilina Pali area, Ka'u district, Hawaii / Stephan Kempe and Christhild Ketz-Kempe -- Lava features of Olaa Cave, Hawaii / Dave Bunnell and Bill Liebman --Impact of Richter 6.1 Temblor Upon Malama Cave, Puna District, Hawaii, Hawaii: An Insider's View / Marlin Spike Werner and Caroline Werner -- Underground Observations During the Pu'u 0's Earthquake, 4:06 P.M., August 8, 1990 / Stephan Kempe and Christhild Ketz-Kempe -- Caves of Southern Kauai Darrel Tanaka -- Lava Tubes at Mauna Ulu, Kilauea Volcano, 1972-1974 / Donald W. Peterson and Robin T. Holcomb. Vulcanospeleology of the Mainland USA: Historical Misunderstandings About Lava Tube Systems and Lava Tube Caves of Lava Beds National Monument, California / Charles V. Larson -- Geology and Mineralogy of Lava Tube Caves in Medicine Lake Volcano, California / Bruce W. Rogers and Patricia H. Rice -- Lava Caving Areas in New Mexico Michael Goar and Cyndi Mosch -- General Geology and Development of Lava Tubes In New Mexico's EI Malpais National Monument / Bruce W. Rogers -- Lava Tubes of Pisgah, Southern California / Russell Harter -- Lava pseudokarsts of Mount St. Helens: the first decade after the 1980 eruptions / William R. Halliday and Marcia L. Halliday -- Recent discovery of secondary mineral deposits in an Idaho lava tube / David W. Kesner -- Lava tube systems of Lava Beds National Monument / Charles V. Larson. Vulcanospeleology of the World: Lava Caves in the Hallmundarhraun Lava Flow, Western Iceland / Bjorn Hoarsson and Sigurour S. Jonsson -- Preliminary Speleological Investigations in Surtsey / Bjorn Hoarsson and Sigurour S. Jonsson -- The Undara Lava Tube System, North Queensland, Australia: Updated Data and Notes on Mode of Formation and Possible Lunar Analogue / Anne Atkinson -- Caves and Pits from the Azores With Some Comments on Their Geological Origin, Distribution, and Fauna / P.A.V. Borges, A. Silva, and F. Pereira -- Lava Caves of Sao Miguel Island, Azores / Joao C. Nunes and Teofilo Braga -- Graciosa Caldera Lava Lake and Associated Lava Caves, Graciosa Island, Azores / J.L.Gaspar, G.Queiroz, and V.H.Forjaz -- Vulcanospeleological Pseudokarst in Micronesia: an Overview / Bruce W. Rogers 1-- Caves In Cheju Island, Korea / Shi Hwan Hong -- Mineralogy of Bilemot-Kul Cave in Cheju Island, Korea / Naruhiko Kashima, Takanori Ogawa, Shi Hwan Hong, and Moowoong Choi -- Volcanic Caves in Bulgaria / B. Kolev and Y. Shopov -- The State of Speleological Investigation of Volcanic Voids in the USSR / V.N. Andraichuk -- The Fajanita Cave (La Palma, Canary Islands): A Volcanic Cavity Originated by Partial Draining of a Dike / J. Sergio Socorro and J. L. Martin -- Volcanic caves in El Hierro Island, Canary Islands, Spain / J.J. Hernandez, A.L. Medina, and 1. Izquierdo, Prilinukargigur / Arni B. Stefanson -- Contribution to the Vulcanospeleology of the Galapagos Islands / J.J. Hernandez, 1. Izquierdo, and P. Oromi. Theoretical, Biological, Conservation, and Management Topics: Lava Tubes in the Solar System / Ronald Greeley -- Nomenclature of Lava Tube Features / Charles V. Larson -- The Rift Caves in Japan / Takanori Ogawa -- Floor Modifications in Small Lava Tubes / Luurt Nieuwenhuis -- Formation Mechanism of Cave Systems Based on the Joining of Unit Caves / Takashi Ohsako -- Lava Tube Formation: A Cave Diver's Perspective / Dennis W. Williams -- Inventory, Evaluation, and Management of Publicly Owned Caves in the Western United States and the Impact of the Federal Cave Resources Protection Act /Jim Nieland -- Accurate Survey of a Hawaii Island Lava Tube for the Purpose of Conservation and Management / Darrel Tanaka and Fred Stone -- Diplura of Lava Tube Caves / Lynn M. Ferguson -- Behavioral Divergence in Populations of the Cave-Adapted Planthopper Species Oliarus Polyphemus on the Island of Hawaii / Hannelore Hoch --Anchialine Lava Tubes and Their Biota / Dennis W. Williams.
Restriction:
Open Access - Permission by Publisher
General Note:
See Extended description for more information.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
K26-00099 ( USFLDC DOI )
k26.99 ( USFLDC Handle )
12142 ( karstportal - original NodeID )

USFLDC Membership

Aggregations:
Added automatically
Karst Information Portal

Postcard Information

Format:
serial

Downloads

This item has the following downloads:


Full Text
Description
Organizers: William R.
Halliday et al. Publication: 6th International Symposium on
Vulcanospeleology Edited by G. Thomas Rea, ISBN 1-879-961-02-4,
286 pages, softbound National Speleological Society,
Huntsville, 1992 Contents: Forward / William R. Halliday.
Vulcanospeleology of Hawaii: Hawaiian use of lava tube
caves and shelters / Yosihiko H. Sinoto --
Recently discovered Hawaiian religious and burial caves /
Michael La Plante --
Native Hawaiian water collection systems in lava tubes
(caves) and fault cracks / James F. Martin --
Lava tube systems of the Hilina Pali area, Ka'u district,
Hawaii / Stephan Kempe and Christhild Ketz-Kempe --
Lava features of Olaa Cave, Hawaii / Dave Bunnell and
Bill Liebman --Impact of Richter 6.1 Temblor Upon Malama Cave,
Puna District, Hawaii, Hawaii: An Insider's View / Marlin Spike
Werner and Caroline Werner --
Underground Observations During the Pu'u 0's Earthquake,
4:06 P.M., August 8, 1990 / Stephan Kempe and Christhild
Ketz-Kempe --
Caves of Southern Kauai Darrel Tanaka --
Lava Tubes at Mauna Ulu, Kilauea Volcano, 1972-1974 /
Donald W. Peterson and Robin T. Holcomb.
Vulcanospeleology of the Mainland USA: Historical
Misunderstandings About Lava Tube Systems and Lava Tube Caves
of Lava Beds National Monument, California / Charles V. Larson
--
Geology and Mineralogy of Lava Tube Caves in Medicine
Lake Volcano, California / Bruce W. Rogers and Patricia H. Rice
--
Lava Caving Areas in New Mexico Michael Goar and Cyndi
Mosch --
General Geology and Development of Lava Tubes In New
Mexico's EI Malpais National Monument / Bruce W. Rogers --
Lava Tubes of Pisgah, Southern California / Russell
Harter --
Lava pseudokarsts of Mount St. Helens: the first decade
after the 1980 eruptions / William R. Halliday and Marcia L.
Halliday --
Recent discovery of secondary mineral deposits in an
Idaho lava tube / David W. Kesner --
Lava tube systems of Lava Beds National Monument /
Charles V. Larson.
Vulcanospeleology of the World: Lava Caves in the
Hallmundarhraun Lava Flow, Western Iceland / Bjorn Hoarsson and
Sigurour S. Jonsson --
Preliminary Speleological Investigations in Surtsey /
Bjorn Hoarsson and Sigurour S. Jonsson --
The Undara Lava Tube System, North Queensland, Australia:
Updated Data and Notes on Mode of Formation and Possible Lunar
Analogue / Anne Atkinson --
Caves and Pits from the Azores With Some Comments on
Their Geological Origin, Distribution, and Fauna / P.A.V.
Borges, A. Silva, and F. Pereira --
Lava Caves of Sao Miguel Island, Azores / Joao C. Nunes
and Teofilo Braga --
Graciosa Caldera Lava Lake and Associated Lava Caves,
Graciosa Island, Azores / J.L.Gaspar, G.Queiroz, and V.H.Forjaz
--
Vulcanospeleological Pseudokarst in Micronesia: an
Overview / Bruce W. Rogers 1--
Caves In Cheju Island, Korea / Shi Hwan Hong --
Mineralogy of Bilemot-Kul Cave in Cheju Island, Korea /
Naruhiko Kashima, Takanori Ogawa, Shi Hwan Hong, and Moowoong
Choi --
Volcanic Caves in Bulgaria / B. Kolev and Y. Shopov --
The State of Speleological Investigation of Volcanic
Voids in the USSR / V.N. Andraichuk --
The Fajanita Cave (La Palma, Canary Islands): A Volcanic
Cavity Originated by Partial Draining of a Dike / J. Sergio
Socorro and J. L. Martin --
Volcanic caves in El Hierro Island, Canary Islands, Spain
/ J.J. Hernandez, A.L. Medina, and 1. Izquierdo,
Prilinukargigur / Arni B. Stefanson --
Contribution to the Vulcanospeleology of the Galapagos
Islands / J.J. Hernandez, 1. Izquierdo, and P. Oromi.
Theoretical, Biological, Conservation, and Management
Topics: Lava Tubes in the Solar System / Ronald Greeley --
Nomenclature of Lava Tube Features / Charles V. Larson --
The Rift Caves in Japan / Takanori Ogawa --
Floor Modifications in Small Lava Tubes / Luurt
Nieuwenhuis --
Formation Mechanism of Cave Systems Based on the Joining
of Unit Caves / Takashi Ohsako --
Lava Tube Formation: A Cave Diver's Perspective / Dennis
W. Williams --
Inventory, Evaluation, and Management of Publicly Owned
Caves in the Western United States and the Impact of the
Federal Cave Resources Protection Act /Jim Nieland --
Accurate Survey of a Hawaii Island Lava Tube for the
Purpose of Conservation and Management / Darrel Tanaka and Fred
Stone --
Diplura of Lava Tube Caves / Lynn M. Ferguson --
Behavioral Divergence in Populations of the Cave-Adapted
Planthopper Species Oliarus Polyphemus on the Island of Hawaii
/ Hannelore Hoch --Anchialine Lava Tubes and Their Biota /
Dennis W. Williams.



PAGE 2

6thInternationalSymposiumonVulcanospeleologyHilo, Hawaii August1991Symposium Chairman WilliamR.Halliday Co-sponsors National Speleological Society Western Speleological Survey Bernice Pauahi Bishop Museum Lyman Museum University of Hawaii-Hilo Branch Hawaii Volcanoes National Park Session Chairmen James NielandG.ThomasReaFred Stone John Holsinger Proceedings EditorG.ThomasReaProduced by the NSS Special Publications Committee David McClurg, Chairman Layout and Design byG.ThomasReaNational Speleological Society 2813 Cave Avenue Huntsville, Alabama 35810-4431 USA

PAGE 3

6thInternational Symposium on VulcanospeleologyPublished by National Speleological Society, Inc. 2813 Cave Avenue Huntsville, Alabama 35810-4431USALibrary of Congress Catalog CardNo.92-63229 ISBN 1-879-961-02-4 Cover photograph byH.J.L.Lamont, Associate of the Australian Institute of Professional Photographers, Associate of the Royal Photographic Society (London), James Cook University of North Queensland:Barkers Cave, Undara Lava Tube System, North Queensland, Australia,50meters from its entrance.Printedinthe United States of America Copyright 1992, National Speleological Society,Inc.Allrights reserved. No part of this work may be reproduced or transmittedinany form or by any means, electronic or mechanical, including photocopying, recording, or any data storage or retrieval system without the express written permission of the National Speleological Society, Inc. Individual papers are the property of the authors.

PAGE 4

Table of ContentsForewardWilliamR.HallidayivVulcanospeleologyofHawaiiHawaiianUseofLavaTubeCavesandSheltersYosihikoH.Sinoto...............RecentlyDiscoveredHawaiianReligiousandBurialCavesMichaelLaPlante.. 3. 7NativeHawaiianWaterCollectionSystemsinLavaTubes(Caves)andFaultCracksJamesF.Martin..........LavaTubeSystemsoftheHilinaPaliArea,Ka'uDistrict,HawaiiStephanKempeandChristhildKetz-Kempe.LavaFeaturesofOlaaCave,HawaiiDaveBunnellandBillLiebman..ImpactofRichter6.1TemblorUponMalamaCave,PunaDistrict,Hawaii,Hawaii:AnInsider'sViewMarlinSpikeWernerandCarolineWerner.UndergroundObservationsDuringthePu'u0'0Earthquake,4:06P.M.,August8, 1990StephanKempeandChristhildKetz-Kempe. 1015262729CavesofSouthernKauaiDarrelTanaka....LavaTubesatMaunaUlu,KilaueaVolcano, 1972-1974DonaldW.PetersonandRobin T.Holcomb...............................35 38VulcanospeleologyoftheMainlandUSAHistoricalMisunderstandingsAboutLavaTubeSystemsandLavaTubeCavesofLavaBedsNationalMonument,CaliforniaCharlesV.Larson. GeologyandMineralogyofLavaTubeCavesinMedicineLakeVolcano,CaliforniaBruceW.RogersandPatriciaH.Rice .LavaCavingAreasinNewMexicoMichaelGoal'andCyndi Mosch .GeneralGeologyandDevelopmentofLavaTubesInNewMexico'sEIMalpaisNationalMonumentBruceW.Rogers................... 41

PAGE 5

6thInternationalSymposiumonVulcanospeleologyLavaTubesofPisgah,SouthernCalifornia RussellHarter........................63LavaPseudokarstsofMountStHelens:TheFirstDecadeAfterthe1980EruptionsWilliamR.HallidayandMarciaL. Halliday 65RecentDiscoveryofSecondaryMineralDepositsinanIdahoLavaTubeDavidW.Kesner75LavaTubeSystemsofLavaBedsNationalMonumentCharlesV.Larson............................................. 79VulcanospeleologyoftheWorldLava CavesintheHallmundarhraunLavaFlow,WesternIceland Bjorn Hr6arssonand Siguri'lur S.J6nsson85PreliminarySpeleologicalInvestigationsinSurtsey Siguri'lur S.J6nssonand Bjorn Hr6arsson.....................89TheUndaraLavaTubeSystem,NorthQueensland, Australia:UpdatedDataandNotesonModeofFormationandPossibleLunarAnalogueAnneAtkinson95CavesandPitsfromtheAzores WithSomeCommentsonTheirGeological Origin, Distribution,andFaunaP.A.V. Borges,A.Silva,andF.Pereira121LavaCavesof Sao Miguel Island, Azores Joao C.NunesandTe6filoBraga..........152 GraciosaCalderaLavaLakeandAssociatedLavaCaves, Graciosa Island, Azores J.L. Gaspar, G. Queiroz,andV.H. Forjaz ...............................161 VulcanospeleologicalPseudokarstin Micronesia:anOverviewBruceW.Rogers 163 CavesInCheju Island, Korea Shi HwanHong...... ........................168 MineralogyofBilemot-Kul Cave in Cheju Island, KoreaNaruhikoKashima,TakanoriOgawa, ShiHwanHong,andMoowoong Choi 170 Volcanic CavesinBulgariaB.KolevandY.Shopov .......171TheStateofSpeleologicalInvestigationofVolcanic VoidsintheUSSRV.N.Andraichuk176TheFajanitaCave (LaPalma,CanaryIslands): A Volcanic Cavity Originated byPartialDrainingofa DikeJ.Sergio SocorroandJ.L.Martin177ii

PAGE 6

ContentsVolcanic CavesinElHierroIsland,CanaryIslands,SpainJ.J.Hernandez,A.L. Medina,and1.Izquierdo 185 l>rilinukargigur Arni B.Stefanson....................197ContributiontotheVulcanospeleologyoftheGalapagosIslandsJ.J.Hernandez,1.Izquierdo,andP.Oromi204Theoretical,Biological,Conservation,andManagementTopicsLavaTubesintheSolarSystemRonaldGreeley ........NomenclatureofLavaTubeFeaturesCharlesV.Larson.TheRiftCavesinJapanTakanoriOgawa......................................223 231 249FloorModificationsinSmallLavaTubesLuurtNieuwenhuis. 259FormationMechanismofCaveSystemsBased ontheJoiningofUnitCavesTakashiOhsako262LavaTubeFormation:A CaveDiver'sPerspectiveDennisW.Williams Inventory,Evaluation,andManagementofPublicly Owned CavesintheWesternUnitedStatesandtheImpactoftheFederalCave ResourcesProtectionActJimNieland.272. 273AccurateSurveyofaHawaiiIslandLavaTube forthePurposeofConservationandManagementDarrelTanakaandFredStone..................................... 280DipluraofLavaTubeCavesLynnM.Ferguson....Behavioral Divergence in PopulationsoftheCave-AdaptedPlanthopperSpeciesOliarusPolyphemusontheIslandofHawaiiHanneloreHoch. 281.......285 AnchialineLavaTubesandTheirBiotaDennisW.Williams 286iii

PAGE 7

ForewordHeldattheHilo Seaside Hotel, Hilo, Hawaii,inAugust 1991,the6thInternationalSymposium on Vulcanospeleologywasco-sponsored bytheNational Speleological Society,theWesternSpeleo logical Survey,theBishopandLymanMuseums,theUniversityofHawaii-Hilo Branch,andHawaii VolcanoesNationalPark.A capacity crowdofabout60attendedthesessions,includingtheMayorofHawaiiCountyandinvitedguestsfromtheU.S. GeologicalSurvey'sHawaiianVolcano ObservatoryandfromHaleakalaNationalPark.ParticipantsattendedfromAustralia,Iceland, Germany,Japan,Korea,theNetherlands,Portugal, Spain,andtheUnitedStates.PrincipalhostorganizationwastheHawaii Speleological SurveyoftheNationalSpeleological Society.Manyparametersoflava tube cavesandothervolcanic cavities differ widely indifferentgeo graphic settings.Theformalandinformal discus sionsduringthis seriesofinternationalsymposiabringtogetherinvestigatorsonthecuttingedgeofthis rapidlyadvancingfield,withagreatdealofobviousinterdisciplinarycross-fertilization.Butslownessofpublicationhaslimitedtheireffective ness. Weareall indebted toTomRea, Executive Vice-PresidentandmemberoftheSpecial Publica tionsCommitteeoftheNationalSpeleological So ciety, forthespeedwithwhichhehaseditedandproducedthisvolume.Itsorganizationdiffers slightly fromthatofthesessions.Thetextoftheopening keynoteaddressonLavaTubesoftheSolar System,byRon Greeley, is found inthesection on "Theoretical, Biological, Conservation,andManagementTopics"insteadofatthebegin ning.Paperspresentedduringthemini-sessionofeaTthquake observationsappearinthesection on"VulcanospeleologyofHawaii."BecauseRomania'sCalinFabianwas unable toattendanddidnotsubmita paper,theplannedmini-session on lavatuberemnantsinancientbasaltswas can celled,andYavor Shopov'spaperwas moved intothesession on "VulcanospeleologyoftheWorld." This new topic receivedotherspecial consideration including Bruce Rogers'mention.of a spacious,iv8.2-million-year-old lavatubecave on Tol Island, Micronesia, (page 164) plus visits tothreelavatubecavesinbasalttwo millionyearsoldduringtheOahupre-symposium field excursion. This volumecontainsthefirst vigorousattemptatstandardizationofvulcanospeleological termi nology; CharlieLarson'spaperissuretodrawargument.Receivingmuchmoreattentionthaninpastsymposiaareopenvertical volcanic conduits, consideredinseveralpapersandoneposterexhibit. Obvious problems intranslationshouldnotbe al lowed tohinderdueconsiderationofOhsako'sthe oreticalpaperon vulcanospeleogenesis (page 262) which should becorrelatedwiththeexplicatorypaperby Nieuwenhuis (page 259). Anyone whohasfeltthe-impactofcylindrical tidal boresofwaterperiodicallyemergingfrom "blue holes" intheBahamasformingsurface"boils"upto onemeterhighcanpostulatethepossible existenceofsimilarboresoflavawithin uncongealed beds.Theques tionofcavitation, however,remainsunresolved. And theseareonly a fewofthewide-ranging, often controversial, topics considered in this proceedings. Specialthanksandacknowledgementareappropriateformanywho assistedinthesuccessofthis symposium:thesessionchairmen(Jim Nie land,TomRea,FredStone,andJohnHolsinger), field excursion leadersandspeakers(Kevin Kelly, Oahu;JimMartinandTomWright,HawaiiVolca noesNationalParkandU.s.Geological Survey Hawaii Volcano Observatory;MarlinSpike Wer ner,Puna;andDarrelTanaka,Kauai),luncheonspeakerFrankHowarth,U.S. Geological Surveyspeakers(Tom Wright,ChristinaHelicker,andTariMoulds), MayorLorraineInouye,registrarsLynn ScullyandMarcia Halliday,andmanystaffpeople fromtheBishop MuseumandLymanMu seum, notablyAnitaManning, Leon Bruno,andPaulDahlquist. To allofyouandalltheotherswho worked sohardtomakethissymposiumsuch a success,alohaandmahalo!WilliamRHalliday SymposiumChairman

PAGE 8

1

PAGE 9

6thInternationalSymposiumonVulcanospeleology2

PAGE 10

Hawaiian Use of Lava Tube Caves and SheltersYosihikoH.Sinoto BishopMuseumAbstractDuetothegeologicalnatureoftheHawaiianIslands,therearemanylavatubesfoundthroughouttheislands.Someofthecollapsedlavatubes provided ideal places forpenllanentortemporarysheltersfortheancientHawaiians.Thelargerandlonger lava tubes were utilizedasplacesofrefuge in timeofwar. Women, children,andelders hid there.Theentrancestothecaves were concealed by well constructed stone walls leaving a verynarrowpassage in which only one person couldenterata time.Inthese caves theyhadplatfonnsfor sleepingandcooking areas.Exceptfor refuge caves,otherhabitationareasareoftenfound inandnearthefrontportionsoftheopening.Thesearecalled shelters. Sincetheseshelterswerenaturallywellprotectedfromtherainandwinds,theplace was occupied contin uouslyorperiodicallyovertime. Sincethelayersofsoilandartifactsarewell preserved, byanalysingsuchstratigraphythearchaeologistcandeterminethesequenceofeventsthattook place. Thispaperpresentsseveralofthetypicalyetsignificantlyimportantarchaeo logicalsheltersilesandrefuge cavesontheIslandsofOahuandHawaii.IntroductionBecauseofthevolcanic originsoftheHawaiian Islands,therearemanylava tubes found throughouttheislands. Ancient Hawaiians utilized lava tubesorcollapsed lava tubes formanyfunctions, especially aspenllanentortemporalY habitation sites.Thetenuscavesandshelters have been used inHawaiianarchaeologicalliteratureratherloosely withoutanyclear distinction.Inthispaperonlythetermshelterwill be used.Thereappearstobetwo major typesofsuch features in the Hawaiian Islands.1.LavatubeshelterA.ShorttubeB.Longtube1.Withvertical openings 2.Withhorizontal openings II.OverhangshelterLavaTubeShelterTherearelongandshortlavatubeswhichhavebeen utilized for dwelling, burial, refuge,andreligious functions. Sinceitis difficult todeterminewhatis a longorshorttube, Isetupcriteriabasedontheutilized zoneofthetubes,notthephysicallengthoftubes.Theshorttubesareinmostcaseshabitationsites.Longtubes,someofwhichareseveral miles long,are3usually refuge shelters. Also, a long tube may have severalseparatehabitationareaswithseparateopenings.Theopeningsoflavatubescanbe classified intothetwo following types:1.Vertical openings.Thebreaksareusually fromthetopoftubes.Inmanycases,morethanoneentranceispresent.2.Horizontalopenings.Therearetwo typesofhorizontal openings. a.Somelava tubes werefannedhigherthanthesurroundinggroundsurfaceandhaveopenings onthesides.b.Tubeopenings on cliffs usuallyhaveanoverhangattheopeningwhich provides shelter.OverhangShelterNo tubesareassociated withoverhangshelters. Suchsheltersareusuallyfonnedby erosion onthebaseofa clifforbluff.TheUseofLavaTubeSheltersHabitationThecollapsed tubes provided ideal places forpermanentortemporaryhabitation.Theoverhangshelterswerenaturallywell protected fromtheelementsandsuitablefor habitation.The

PAGE 11

6thInternationalSymposiumonVulcanospeleologydepositionofculturallayersonthefloorsoftubesandsheltersaredeeperandbetterpreserved comparedwiththoseofopensites. Byanalyzingsuchstratigraphyandassociatedartifacts,archaeolo gistscandeterminethesequenceofeventsthattook place.BurialsandReligiousFunctionsTubeshelterswereoftenusedasburialplacesandthelargertubes were continuously used evenintotheproto historic time.TheseburialtubesweremaintainedbyeitherlineagegroupsorcOlllinunities,andtheburialtubeentranceswerewell concealed.Unfortunately,someofthoseburialshavebeenviolated bypothuntersforyearsandareaccessible to any one today.RefugePlacesThelargerandlonger lava tubes were used as places of refuge in times of war. Women, children,andelders hid there. The entrances tothetubes were well constructed by stone walls leaving a verynarrowpassage in which only one person couldenterata time.Thusitwas effectively protected against enemy attack.Inthese tubes thereareplat forms for sleeping, cooking,andotheractivities.Table1NumberofLavaTubeandOverhangSheltersintheHawaiianIslands(1991)*NumberofsitesFunctions** Habit. Burial RefuQ"e Hawaii482 1334414 Maui 116 33 13 1Lanai18 14 4-Kahoolawe 54--Molokai 39288 1Oahu8423 35 2Kauai27 16 13-Total 771 251 117 18*AfterBishopMuseum'ssitedatabase.**Functionsdeterminedfor 386 sites.TheCurrentRecordOfthecirca 11,000siterecordsintheBishop Museum, 771sitesarelistedascavesandshelters.Unfortunatelythereis nocleardistinction betweentubesheltersandoverhangshelters. Table 1 showsthattherearemanyunclassified sites,butitmaystill be possible to classifymanyofthosesitesifwe gothroughthesite4records carefully.Anotherconcern isthatwe knowthereareexamplesoflavatubesheltersthatwereoriginally used forhabitationandafterabandonmentbecame burial places. Suchsitesarenotcurrentlyspecified inthedatabase.ThenumberoftubesandsheltersontheIslandofHawaii is 482comparedwith116onMaui,84on Oahu,and27onKauai.Althoughdependentonthesizeoftheislandandits geomorphoiogy,thenumberofrecorded lavatubeandoverhangsheltersmostlikelyrelatestothenumberofarchaeo logical surveys conductedoneachoftheislands.HawaiiIslandExamplesSincetheconference is being held ontheIsland of Hawaii, I would like to show examplesofthetypical sites inthedifferent categories found on this island.LavaTubeShelterWaiahukini Site,#50-HaB21-6 (H8), locatedatWaiahukininearSouthPoint,inKa'uDistrict.Thisis oneofthemostimportantsitesintheHawaiianIslands. Fishhooksandotherartifactsfromthestratifieddeposit (Figure1)providedanexcellent typological sequence whicheventuallyled to establishing aHawaiianfishhook typologyandchronology (Emory, Bonk,andSinoto, 1959).Thesiteis a smallfisherman'stubeshelterap proximately 67metersfromthefootofPali-o kulani cliffandabout200metersinland fromtheshore.Thetubeshelteris anaturalchamberfor habitation.Entranceson two sideshavebeen pro vided bynaturalbreaksintheceilingofthelava tube.Thechamberhasa floor spacethatis 6.7 by 8.3metersandis dimly lit bythetwo openings.Thetubecontinueswestwardfromthemainliving spacebuttheareawasnotutilized for habitationexcept possibly for storage.Threeculturallayers in a totaldepthof68 centimetersyieldednearly1,200 fishhooksofmanytypes.Thetype distributionofthehooks demonstrateda significant chronological sequence forcertaintypesofhooks. Thismadeitpossible to place fishhooks fromothersitesin meaningfulorderandrelationships (Emoryetal.i.b.)The subsequent excavations ofothertube shelter sites in Waiahukini also showed very similar fishhook typological sequences (Sinoto and Kelly, 1970).LavaTubeShelterHilinaPali Site,#50-HaB2-1, also listedas#50-HV-383, is located in Kalapala,Ka'uDistrict.Thetube-shelteris ori-

PAGE 12

SinotoFigure 1CulturaldepositsinWaiahukinilava tube shelter (HA-B21-6), Ka'u,HawaiiIsland. Scaleininches (BishopMuseumphoto).entednorthtosouthanda collapsed sectionofroofpermitsaccess fromthesurroundingplain intoboththenorthandsouthportionsofthetube.Thesouth section, extending 145 meters fromthecollapse, shows little evidenceofuse. Thenorthsection containsabundantpetro glyphs for a distance of about 17metersfromthecollapsed area. Thecollapsedareais roughly circularandabout 9.6 metersindiameter with amaximumdepth of 2.7 meters.Thetube-shelter has about 550 petroglyph unitsandhasa platform with fire places.Thesignificanceofthesiteisthatthepetro glyphs onthetubewalls (Figure 2) were buriedbyculturaldeposits. Usually, petroglyphs have been found on open lava fieldsandithasbeen difficult to establish a chronologicalsequenceofpetroglyph forms.TheHilinaPalitubeshelteristhefirstsiteto provide clues for a typological sequenceofHawaiianpetroglyphs.Itis hypothesizedthatinillustratinganthropomorphicformstherewasa stylepreferencechangefromlineartotriangularfiguresaroundA.D.1600 (Cleghorn, 1980).BurialTubeShelterForty-four burial tubesheltersontheIslandofHawaiiarelistedintheBishopMuseumdatabase. I will describe oneofnineburialtubesheltersreportedfromKalahuipua'a,Anaeho'omalu,andLalamilo intheDistrictofSouthKohala (Kirch, 1979).Site#50Ha-E2-56is a large,apparentlycommunal, burial5tubesheltercontaining30 individualswiththreeseparateentrances.Buri als were only foundinthelargecentralchamber.Itmeasuresabout20 by 15meters,withaceilingheightoftwo tothreemeters.Theburialsaremostly found alongthenortheastwall, except for acentralplatformonwhichthescatteredcraniaandinfracranialmaterialsof13 individuals were located.Oneexam pleofanextended burial lies in a canoe hull segment.Therearetwomore canoe burials alongthenortheastandsouthwestwalls.Afterthesurveyalltheburialtubesheltersintheareawere sealed off topreventanydisturbance.RefugeTubeShelterThereare14refuge tubeshelterslisted ontheBig Island. Iwilldescribe oneofthemhere:HayesTubeShelter#50-HaC19-1(H5l),located in South Kona District. In 1957 Dr.KennethP.EmoryandIsketchmapped Figure 2Petroglyphs on thewallofHilinaPali lava tube shelter (HA-B2-1), Ka'u,HawaiiIsland(BishopMuseumphoto).

PAGE 13

6thInternationalSymposiumonVulcanospeleologyFigure3-Partofbone fishhook cache found in refuge tube shelterknownas Hayes Cave (HA-C19-1),SouthKona,HawaiiIsland(after Emory, Bonk,andSinoto,1959,Plate4).thetubeshelterwiththehelpofvolunteers.Themaintubehasanarrowpassageatthewalledentranceandisatleast150meterslong.Therearemultiplebranchtubes,twolevels belowandoneabovethemaintube.Oneupperandonelowertubeareeachabout70meterslong.Thetubesaverage2.5to3.5meterswideand1.5 to 3metershigh.Chambersaresixtoeightmeterswidewiththeceilingstwotosixmetershigh. Usually,artifactsfoundintherefugetubesheltersaremuchbetterinqualitythanthose found fromordinarysitessiucerefugees probably took withthemtheirprized possessions.Thereissomeevidenceoftheactivitiesthattook placeintheserefuge shelters, suchasfishhookandornamentmaking.Inthisshelterwefoundamostremarkablefishhookcache(Figure3).Theywereburiedunderabouttencentimetersoffinedustinasmallarea,andeveryscoopofmyhandsbroughtupseveral6completehooks.Therewere19unbrokenone-piecehooksand38two-piecehookshanksandpoints.Oneoftheone-piecehooksmadefromahumanpelvis istodatethelargestone-piecebonehookfromanarchaeologicalsiteintheHawaiianIslands.Therewerealsofineornamentssuchaspendants,bracelets,andgamestonesfoundinthetubesandchambersofthesite.Therewerealsosleepingplatformsandfire places.Insidethetubeitisverydarkandthecandlenut(kukui)shellsscatteredthroughoutindicatesthatHawaiiansusedthemfor alightsource. Archaeological evidence indicatesthatlavatubesandoverhangsheltersprovidedshelterfor Hawaiiansfromtheprehistoric totheearly historic periods. Although housesandothersurfacestructureswerealso commonlyconstructedandused,lavatubesandoverhangshelterswereconvenientnaturalfeaturesthatwerefully utilized byHawaiians.ReferencesCleghorn,PaulL.(1980):TheHilinaPali PetroglyphCave,HawaiiIsland: A Report on PreliminaryArchaeologicalInvestigations.Report80-1,DepartmentofAnthropology,BishopMuseum,Honolulu.Emory,KennethP., WilliamJ.Bonk,andYosihiko H. Sino to (1959):HawaiianArchaeology: Fish hooks.BishopMuseumSpecialPublication47, Honolulu.____(1969):WaiahukiniShelter,SiteH8,Ka'u, Hawaii.Pacific AnthropologicalRecordsNos 6,7,8,and9.DepartmentofAnthropology, BishopMuseum,Honolulu. Kirch,Patrick,V.(1979):Marine Exploitation in Prehistoric Hawaii.PacificAnthropologicalRecordsNo29,DepartmentofAnthropology,BishopMuseum,Honolulu. Sinoto, YosihikoH.andMarionKelly (1970):ArchaeologicalandHistorical SurveyofPakiniNuiandPakini-IkiCostal sites,Waiahukini,Kailiki'i,andHawea, Ka'u, Hawaii.Report70 11,DepartmentofAnthropology,BishopMuseum,Honolulu.

PAGE 14

Recently Discovered Hawaiian Religious and Burial CavesMichaelLaPlantePOBox1037, Keeau,Hawaii96749AbstractThisis abriefreportto accompany diagrams, maps,andoverhead projections toillustratetheancientHawaiianuseoftheupperlandsinthePunaandWao Kele 0PunaareasoftheBig Island. Thisareahasbeenextensively exploredinrecentyearsbymeandby others,butthefindingshavenotbeen publisheduntilnow. I willpresenta personal,in-depthreportconcerningthefindingsoftheexplorationofthesereligiousandburial caves.Thisisprimarilya photographicpresentationofanextensive cavesystemwhichrunsfor milesunderthePunaforestreserve.Thetropicalrainforesthereisoneofthemostbeautifulintheworldandis aunique eXaIllple ofthediversefaunaandbiological microsystemsthatexist in Hawaii.Thelushfoliageandthickohia forestsmakefinding caves difficultandsometimessurprising.Thispaperfocuses on one ofmanycaves locatedinthis area.Thisparticularcave has fascinatedandinspired me. Ihavespenthundredsofhours exploringitsmanystonefortifications, crawl spaces,andmilesofwinding passage. I wasamazedto find detailed rock work, seashells approximately eight miles fromtheseashore, torches,undergroundaltars,burial chambers,andhumanremainsinexten sive sectionsofthis lowland forest cave.Thecave'sbedrockisprimarilypahoehoelava,withintrusionsofredaa.ItispartofamassiveflowthatsweptnortheastfromthesoutheastriftofKilaueavolcano. My findingsindicatethatnearbyareasinthehigherelevationswereusedforcropproductiontobalancethefoodneedsofthecoastalpeople. Iamconvincedthatthesepeopleworkedtheland,andthatthiscavewasusedfor religiouspurposesaswellasa refugesite.Massiveamountsofrockworkintheformoffortifiedentrances,heiaus,altars,hiddenartificialcrawlspaces,andlargequantitiesofseashellsallreflectasizeableworkforceandaculturedsociety.ItisclearthattheHawaiiansusedanddevelopedthisareaasanintegralpartofthatsociety. I firmly believethatthiscavesystemshould beprotectedandpreserved. To accomplish this I havenominateditfornationalhistoric preservation.7 As seen fromtheair,thetopography ofWao KeleoPunaforest reserve is oneofdensejunglesur rounded by fieldsoforchidsandwild grasses. Recentintrusionsaredrillingrigsusedforexploratory drilling intheGeothermal Subzone.Onefeatureofthisjungleis asunkenareawith a well-laidsetofstonestepsleading down to a completely rock-filledroundarea(Figure1).Thissinkis divided directionally, withstonewalkwaysleadingundergroundthroughfortifiedcrawlFigure1-Stone steps leading into the firstsink(PhotobyBradLewisand Tom Seal).

PAGE 15

6thInternationalSymposiumonVulcanospeleologyspaces. Well-fittedstonewalls leadundergroundto a seriesofsmallerstonewalls, dividing undergroundchambersinto possible living areas.Fartheruphillaremanyopihi shellsstrewnaboutthefloor,theremainsofmanyfires,andmanydifferentbonesandteethofvarious animals. Alsoseenarestacksoftorches liningbothsidesofthecave. Careful inspectionrevealsteethwith holes drilledthroughtheshank,used for jewelry.Fourhundredmeterswestisanundergroundaltarfourmetersindiameter.Onthisaltarareapounderandstonebowlaswellasadditional sea shells.Inthecenterofthealtaris ameter-longpit.Thealtarisconstructedofredcinderandis situatedinthecenterofthelava tube.Fartheruphillthecaveislarger,witha highvaultedceilingcoveredwithstalactitesandmanypatchesofgold, silver,andcrimsonfungus-likematerial.Highona ledgeinthislargechamberis acrawlspacethatleadsto achamberwhereatorchfourmeterslongliesburned,probably for religiouspurposes.Ihavefoundskeletalremainslyingatopsuchburnttorchesinotherpartsofthiscave. Stillfartheruphill is alargerock rubbed with seashellsuntilwhite.Fourgiantcowry shellssiton this rock. Holes were drilledintheseshells for fishing.Thisfishingtechniqueis still used today intheharvestingofoctopus.Onekilometeruphillisthefirst hidden crawl space.TheHawaiianswho builtthesefortificationsknewwhattheywereabout.Itsentranceis well concealed by rubblefromcave collapsesinthearea.Fromthecavethecrawlway is invisible; this was Figure2-Firstfortified entrance (photo byBradLewisand Tom Seal).8Figure3-Opihi shellsandrockplatformunderthree skylights (photo byBradLewisandTomSeal). accomplished inpartbyusinga ledgethatrunsupthesideofthetube.Therocksarefittedoneach sideofthepassageway sothatonlyonepersonatatimecanfitintothisnarrowspace.Travelmustbe single filethroughthis passagewaythatis approx imately 50meterslong.Allloose rubblehasbeen cleared to allowaneasierpassage. Coldairflowing downhill leadstheway uphill. At eachopeningoutofthelavatubethesinkareasarefortified (Figure 2).Inthefourthoftheseareasarethreenaturalskylightsthatilluminateanotherstoneplatformsuchasa heiaumighthave (figure 3).Theplatformareais divided directionally, sim ilar tothatfirst described. Thischamberisthemostmakaiburial location in this cave.Theskeletalremainsofasmallchildareon a ledgeadjacenttotheplatformarea.Underwhatappearsto be rubble isanadultburialchamber.Thereareskeletonsoffour adults,onemuchlargerthantheothers.Fartherbackin thisareaisanotherhiddencrawlspace.Thesameconstructiontechniqueswere

PAGE 16

usedandgreatcarewastakento concealandcamouflagetheentrance.Thefeaturesofthiscavesystemarestillbeingdiscovered.Furtherstudieswill givebetterunderstandingofthepeople who didsuchanimmenseamountofworkinfortifyingandusingthiscavesysteminthePunaforestreserve.ThecaverunsthroughaGeothermalSubzoneand9LaPlantemaybeharmedbyfurtherunregulatedgeothermalexploration. I like tothankPeleDefenseFund,PaliKapuDedman,Dr.EmitAluli, CREADA,BradLewis,TomSeal,theNationalSpeleological Soci ety,SunnySealLaPlante,andRyanandJacobLaPlante.And a specialmahaloto allofthegood people whoworktopreservetheseendangeredrainforests, caves,andtheHawaiianway oflife.

PAGE 17

Native Hawaiian Water Collection SystemsinLava Tubes (Caves) and Fault CracksPuna-Ka'uDistricts,HawaiiJamesF.Martin, Hawaii VolcanoesNationalPark,NationalPark Seroice, U.S. Departmentofthe InteriorAbstractThecoastalplainsofthePunaandKa'uDistrictsoftheIslandofHawaiiareacontradictiontothepopularviewthattheIslandofHawaii is a lush tropicalrainforestora vegetated landscape withabundantwatersources. This sectionoftheislandlies intherainshadowofMaunaLoaandKilauea Volcanoesandreceives lessthan30 inchesofannualprecipitation. Whenraindoes come,itis intheformofsuddendownpours, givingresidentsofthearealittletimeto collectandconservewater.Duetotheporousnatureoftherock,thereisnostandingsurfacewater.Inspiteoftheseharshclimatic conditions, archaeological evidence indicatesthatanextensiveagriculturecomplex existednotonlyalongthecoast,butintothemostremotepartsofwhatis calledtheKa'uDesert.Passingthroughtheseagriculturalareasarehistoricandpre-historictrailsystems. These trailsystemsapparently played a significan tsupportingrole for exchangebetweentheahupua'a (classiclanddivisionsofHawaii)andthegeopolitical districts.Thequestionarisesasto how couldvastagricultural complexesandheavy foottravelover milesofaridlandexistwithoutdependablewatersources? While planting-pitsandmoundsweredesigned tomakethemostefficient useofavailablewaterandconservemoisture(Carter, 1990:9), people involved inplantingalso needed potablewaterfor survival. Most publicationsandresearchpapersdealingwiththeearlypopulationsofthisareamakeonly oblique reference tospringsandwells whichthepopulations depended upon.TheFederalCave ResourceProtectionAct (1988)hasservedastheimpetusfortheNationalParkService to look closeratthelava tubes, caves,andfaultcrackswithinHawaiiVolcanoesNationalPark.Pastvisitors totheseundergroundareasfoundlargevolumesofstandingwaterin fault cracks,andabundantdripareaswithinthelava tubes.Recentobservers notedthatinmostcases, wherethecracksandcaves were located inthearid sectionsofthepark,therehasbeen extensive modificationorutilizationofthesewatersourcesbytheearlyHawaiiansandothers.Thevarietyofwesterncontainersused for collection indicatesthatthesewatersources were usedduringhistoric times. William Ellis describedsimilarwatersourcesinhisnarrativeofhistriparoundtheisland in 1823 (Ellis, 1979). Thisreportis directedatdocumentingrecentobservationsandstimulatingfurtherresearchintoearlyHawaiianwatercollection systems.Italso explorestheimplicationsthatpowerandpolitical influenceofearly chiefs inthearidportionsofHawaiicould have been linked tothecontrolofthewaterresources.10

PAGE 18

HistoricalPerspectiveTheareathatnowencompassesHawaiiVolcanoesNationalParkwas dividedintotwomajorgeopolitical districts,Ka'uandPuna.Thedistrictdivisionsextendedfromthecoast,nearApuapoint,towardtheuplandsandtheareaofKilauea caldera.Withinthesemajorlanddivisionstherewerenumeroussmallerdivisionsorahupua'a.Ahupua'awereestablishedto utilize resources fromtheseatothemountains.Thisconceptoflanduse provided villageswitha varietyofresourcesnecessaryfor survival.Theahupua'awasattimesdividedintosmallerdivisions,butstillkeepinginmindtheconceptofseatomountainresourceutilization(Handy;Pukui,1976:4).Travelbetweenthelanddivisions was aregularoccurrence.Prehistoricfoottrailswereusedthroughtheearly 1900s.Foottravelgave way to horses, mules,anddonkeys,resultinginwell de velopedtrailsystemswhich crossedthroughdifferentdistrictsaroundtheisland.Itis difficult to visualizetheextentofNativeHawaiianoccupationoftheKa'ucoastline in precontactdays.Theabundantarchaeological featuresandpre-historicvillagesitesindicatecontinuoususe.Duringhis visit, William EllisnotedthattheKealakomo villagearea,theremainsofwhicharelocatedjustwestoftheChainofCratersRoad,was"populous,thoughdesolate looking." Whilehedidnotrecordexactnumbersofvillagers,heestimatedthat500individualsattendedreligious servicespresentedbythemissionariesinthevillage (Ellis, 1979:188-189). William ElliswasveryawareofthelackofavailablewateralongthemaintrailsystemsinanareafromSouthKonatoKalapana.Henotedthatthefirstspringin 100 miles wasencounterednearwhatis nowPahala.Hemadea pointofdescribing his guides'searchfor a cave located intheKa'udesertwhere"clearwater, filteredthroughtherocks, fell into calabashes placedthereto receiveit"(Ellis, 1979:170). Ellis continued to record howwaterwasprocuredandits quality until he passedthevillageofKealakomo (Ellis, 1979:188-189).Watercontinued to be a concern, even intorecenttimes.Inoral interviews withthekapuna(elders)oftheKalapanavillage area, reference ismadetothelackofwaterandtheneed to procure it from sources inthemountains(Langlas, 1990). Historical recordsandresearch indicatethatwaterwasa major concern. Observations weremadeinvillagesitesinKa'uthatwells locatednear11Martintheocean provided barely potablewater(Kelly, 1969:24).TheKa'uHawaiiansplaced a high valueontheability to locate potable water.Theknowl edgeandskill needed tocarryoutthistaskwasapparentlyso specializedthatitwas assigned tocertainkahuna(experts in a specific practice) (Kelly, 1969:26).Thewells, caves,andcrackswhichhavewaterinthemseldom have trails to them. Occasionally theyhavefortifiedentranceswith living spaces inthepassages beyondthewalls. This suggeststhatwaterwas a controlled resourceandits locationwasnotofferedasgeneral knowledge.CurrentObservationsTherearevery few documented references onNativeHawaiianwatersources inthenationalparkarea. A few detailed descriptions were found inthereportsofarchaeological surveysofthecoastalareaofthepark. These descriptions noted brackishwaterwellsatvillagesitesandanim pressivecrackthatwas located,priortothe1989 lava flows,northoftheWaha'ulaHeiau.Thiscrackcontaineda small lakeofwaterapproximately12meterslongandthreemeterswideandbetween twoandsevenmetersdeep. Ala'orwaterwornstoneshad been placedatthewater'sedge (Carter, 1990:3).Onelarge cave, located intheHilina Paliareaofthepark,is commonly referred toasCalabash Cave.Intheearly 1920sparkvisitorsoremployees found several wooden bowlsorcalabashes used forwatercollection. Located in thissameareaistheonlyothercave where detailed documentationofwatercollectionhasbeen made. Cleghorn andCox(1976), in the processofdescribingtheHilina Pali Petroglyph Cave, gave a clear descriptionof50 gourd remains, a wooden bucket,anda wire bail. They recognizedthesignificanceofthissiteas awatercollectionareathatwas utilized into historic times. CleghornandCoxalso conducted a smallstudytodetenninetheproductivityofcollectingwaterfrom drip locations in caves. They foundthatthey could collect over 630 milliliters ofwatera day from four drip locations. (CleghornandCox, 1976).In1990,duringfield trips in designed to famil iarize a select groupofNationalParkService managerstothediverse resources inparkcaves,theextentofwatercollection activity inthecavesoftheparkbecame evident.Particularattentionwas given to pointoutsubtle archaeological features whichanuntrainedpersonmaymiss. While specif-

PAGE 19

6thInternationalSymposiumonVulcanospeleologyically looking formanmadefeaturesinthecave, subtleringsofrock werenotedalongcave pas sages. Carefulexaminationalso disclosedremainsofgourdswithintherockrings,aswellasanoccasional shellstopper.Theseringswere cradles forwatercollectioncontainerssimilarto those described by CleghornandCox (1976),andwere readily foundinmanypassages.Oncethestaffbecame sensitizedtothisactivity,watercollectionareaswerefoundinvirtually every cave they enteredinthearidsectionsofthepark.Thesignificanceofwatercollectionincaves becamemoreevidentasparkemployeesstartedto explorethe'Ainahou cave system,currentlythelongest lavatubesystemknowninthepark.Segmentsofthiscavesystemarebelieved toextendfromthecoasttothesummitcaldera. Overeightkilometersofthesesegnlentshavebeen verified. Aportionofthecave located belowthePoli-o-Keawe Pali was described inthe1960sbyaNativeHawaiianemployeeofthepark(Hauanio, 1965-1969).Hespokeoffinding a cave with a walled passageanda small lowentrancetunnelbuiltthroughits base.Hedidnotenterthecave.In1964, Colin D.Smart,whilecarryingoutanextensive archaeological survey forthenationalpark, described thissamefortifiedentrance.Hisbriefsurfacesurveyofthepassagebeyondthefortifiedentrancedocumentedrowsofrock, delineatingworkandliving spaces,andassortedculturalitemslying onthesurface(Smart,1965). His report, however,makesnomentionofwatercol lection sites. SeveralNationalParkService employees visited thissamesectionofthe'Ainahou cavein1990afterreceiving areportofavastamountofcharcoalandotherculturalfeaturesfrom visitors whohadre cently visitedthecave.Duringthis initialtripandsubsequentvisits, employeestraversedoverthreekilometersofcavepassagethathadbeen intensely usedthroughoutits length forwatercollection activities.Thissegmentofthe'Ainahou cave, described byHauanioandSmart,hasbeen calledthePuna-Ka'uWaterCave.Itsentranceis a double collapsed skylightintothepassage.Theareaoftheskylightcontainsa varietyofpetroglyphsandplatformstructures.Theupslope sectionofthepassage is blocked by aconstructedwall, which initially had a singletunnelopeningnearitscenterbase. Thisopeningwasaboutonemeterhigh framedbyaone-meterlong capstone.Theoriginalentrancepassageenterstheinteriorofthecave between twoconstructedplatformsthatmustbecrawledFigure1-TheauthorholdingaLargeopihi shell used by nativeHawaiiansas adrinkingcupatanaturalwater catchment basinin'AinahouRanchCave,HawaiiVolcanoesNationalPark, Hawaii. (photo byWilliamR.Halliday)12

PAGE 20

through,producinga highly defensiveentrance.Beyondthewall,thenext30metersofpassagecontainaseriesoflow rockalignmentsdividingworkorlivingareasoneach side,withacenterrocklinedtrailcontainingabundantcharcoalandmidden.Thisfirstsegmentendsatanotherconstructedwallover10 feet highthatblocks a second floorchamber.Atthebaseofthewall, asmallpitconnectsto alowersectionofthecave.Forapproximatelythenext1.5kilometers,thecaveis aconsistenttunneloftwotothreemeterswideandonetothreemetershigh.Atmanypointsalongthefloorofthispassage,wherewaterisdripping,constructedrockringswerefoundthathadbeenusedasacradlefor agourdorcalabash.Inmanycasesthedecayedremainsofthegourdcould beseen,aswellasseveralshellstoppers(Hiroa,1964:57,fig. a).Inonearea,waterhadcollectedinasmalldepressionintherockfloor.Attheedgeofthewater,alargeopihi(limpet)shellwasfoundwithadrilledholeatitsedge.Thissuggeststhatsomesortofa fibercordmayhavebeenattachedtotheshellsimilartothoseshellswhicharenotedinHiroa'sArtsandCraftsofHawaii(Hiroa,1964:22, fig. 8).ThisandotheroccurrencesoflargeopihishellsassociatedwithnaturalwaterpocketsindicatesthatstandingwatersourceswereusedbyHawaiianson-sitewhile inthecavepassages.Charcoalandtorchfragmentswithburntendswerealso foundnearmostofthewatercollection points.Inareaswhereoccasionalrunningwaterhadenteredthepassage,largeamountsofcharcoalseveralinches deephadbeen deposited.Theabundanceofcharcoalsuggestsfrequentandcontinuous useofthiscave passage.Mterabout one kilometer, the passage passesunderanotherskylight. Thisentranceareahasnu merous petroglyphsandhistoric Hawaiiannamescarvedincalligraphic type script.Theskylight was modified byenlargementandwith the constructionofstone steps.Thecave continues beyond this sky light with frequentwatercollection points.Intherough breakdownareasofthis segment, constructedstonepathswere noted. Thissegmentfinally ends in a small collapsed skylight ashortdistance fromthefaceofthePoli-o-Keawe Pali.The'Ainahousystemcontinuesfromtheupperfaceoftheescarpment in several longsegmentstothe1,000meterlevelofKilauea.Throughoutitslength,itcontinuesto followthePuna-Ka'udistrictboundary.Intheseuppersegments,thewater13Martincollection activity becomes less frequent.Theex ception is onesegnlentthatisenteredthroughalargecollapsedskylightcontainingrockalignmentsandabundantti plants, both associated with livingareas.Thesegmentabovethislivingareacontainsstonetrailsandwatercollection devicesrangingfrom gourd collectioncontainersthroughfive galloncanswiththetopscutoff, coffee cans,andremainsofwood barrels.Theabundanceandvarietyofwatercollection devicesinthisareasuggeststhatthiswas amajorwatersource wellintotheearly 1900s whencattleranchingoccurredintheareathatis nowthenationalpark.These observationsofwatercollection activities inthelower sectionsofthe'Ainahou cavesystemsuggestthatitprovidedKeauhou,oneofthelargestahupua'aontheIslandofHawaii, with dependablewaterfor its populations inthearidcostal area.AsHandyandPukui (1976) noted, theahupua'asystemofland use provided the Hawaiians a methodofdividing controlofanareaorisland while still providing the basic needsofsubsistence for each group. Potable water, like fish and woodland prod ucts, was also a necessary resource for survival. This suggeststhatin arid sectionsofthe island, the popu lation and politicalstrengthofanabupua'acouldbe strongly influenced by controlofa dependable water source such as the 'Ainahou cave.TheNativeHawaiianwatercollection features inthe'Ainahou cavesystemrepresentjustoneofnumerousculturally significant activities whichhavebeen associated withthecave.Thepassages alsocontainhearths,petroglyphs,andlivingareaswhichhavenotyetbeen examined.Theabundanceoftheculturalfeatures found inthiscave,aswellasthenumerousbiologicalandgeological features, indicatesthatthecavesystemsinthenationalparkmaybeuntappedsourcesofknowledgeofthebio logical, geological,andhistoricpastofHawaii.ItisimperativethatastheNationalParkService pro ceeds to identify, map,andinventorythesedelicate resources,extremecarebetakenby all to preservethese"timecapsules"oftheislandofHawaiianditspeople.ReferencesCarter,LauraA.andGaryF.Somers(1990):HereTodayLavaTomorrow:ArchaeologicalWorkinHawaiiVolcanoesNationalPark.1987-1989.Honolulu:PacificAreaOffice, NationalParkService.

PAGE 21

6thInternationalSymposiumonVulcanospeleologyCleghorn,PaulL.andDavidW.Cox (1976):PhaseI ArchaeologicalSurveyoflIilinaPaliPetroglyph CaveandAssociated Sites, Hawaii: Ms on file.HawaiiVolcanoesNationalPark.Ellis, William (1979):JournalofWilliamEllis.Rutland,VernlOnt.:CharlesE.TuttleCompany.Handy,E.S. CraighillandMaryKawenaPukui(1976):ThePolynesianFamilySysteminKa'uHawaii.Rutland,Vermont.:CharlesE.TuttleCompany. Hiroa,TeRangi(1964):ArtsandCraftsofHawaii.Bernice P. BishopMuseumSpecial Publication#45 Honolulu: BishopMuseumPress.14Kelly, Marion (1969): Historical BackgroundoftheSouthPointArea,Ka'u,Hawaii.PacificAnthropological Records,#6. Honolulu:DepartmentofAnthropology, Bernice P. Bishop Museum. Langlas, CharlesandKupunaet al.(1990)ThePeopleofKalapana, 1823-1950: AReportoftheKalapanaOral History Report.Smart,Colin D. (1965):TheArchaeologicalResourcesofHawaiiVolcanoesNationalPark:PartI, An Archaeological SurveyofPartsofHawaiiVolcanoesNationalPark.Ms. on file.HawaiiVolcanoesNationalPark.

PAGE 22

Lava Tube Systems of the Hilina Pali Area, Ka'u District, HawaiiStephanKempeInstitutefor BiogeochemistryandMarine Chemistry UniversityofHamburg,Bundesstr.55,Hamburg13,Fed. Rep. GermanyChristhildKetz-KempeBarmbekerRing52b, D-2054 Geesthacht, Fed. Rep.GermanyHawaiiSpeleologicalSurveyAbstractTwolavatubesystemshavebeeninvestigatedinlavasoftheKilaueavolcanointheHilinaPaliarea,Ka'uDesert,IslandofHawaii.ThelongeroneistheCharcoalCaveSystem,composedoffour caves,withatotalmappedlengthofover1,500meters.Itisthecentralfeedingtubeofa clearlyoutlinedflow lobe probablybelongingtotheKalueflowgroup(500-750yrBP).TheEarthquakeCaveSystemis acanyonliketube,mappedfor338meters,runningperpendiculartothepali.Itprobably belongs tothelavasoftheKipukaNeneflowgroup(1,000-1,500yrBP).Itisnotassociatedwitha flow lobeandmusthaveattaineditslargedepth(sixmeters)by erosionintotheunderlyingstrata.Thisconclusion issubstantiatedbythefactthata soillayeris exposedinthewallsofthecave.Bothcavesystemsweremodifiednotonly byextensivebreakdown,butalso byaeolianandfluvialashdepositswhichfillcaveentrancesandwhich clogpassages.IntroductionLavatubecavesareacommonphenomenonwithinthepahoehoelavasoftheMaunaLoaandKilaueavolcanoesontheIslandofHawaii.Theworld-widelongestmappedtubesystem,KazumuraCave(e.g., Wood, 1980), is developedinlavaswhichflowedfromtheKilaueasummitcalderaeastwards,350to550yearsago.Manyothercavesareknowntorangers,residents,speleolo gists, geologists, biologists,andarchaeologists,butapartfromcavedescriptionsinthespeleologicalliteraturelittlehasbeendonetostudytheirgeologyandspeleogenesissystematically.ThispaperdealswiththetubesoftheHilinaPaliarealocatedwithintheHawaiiVolcanoesNationalPark.TheareaissituatedinthecenteroftheKa'uDesertQuadrangleofthe7.5minuteseriesU.S. GeologicalSurveytopographicmap(circa1918'Nand15519'W).Theareais calledKipukaKeanaBihopa, i.e.thevegetationisland(kipuka)ofBish 0ps(afamilyname)Cave(keana).Itisnotquiteclearwhetherthetermkeanadesignatesoneofthecavesystemsdescribedlater(CharcoalCaveSys-15tern?)oracavesystemasyetundiscoveredoroneofthelargebreakoutscarsalongthepali (wherethetennKeanaBihopaappearsagaininsmallprintonthetopographicmap).ThemostimportantsurfacefeaturesofthestudyareaaregiveninFigure1.Theyarebasedoncoloraerialphotographstaken1988andweremadeavailable totheauthorsbyJamesF.Martin,chiefrangeroftheHawaiiVolcanoesNationalPark.Itshouldbenotedthataccess tothedescribedcavesisregulatedinordertoprotectthemandtheymaybeenteredonly with a validcavingpermitfromtheNationalParkService.GeologicalSettingoftheHilinaPaliAreaTheHilinaPaliisanescarpmentwhich is aseriesofwest-southwesttoeast-northeaststriking,nearlyvertical, highangleslipfaultssouthoftheKilaueacaldera.TheyarereachedbytheHilinaPaliroadoftheHawaiiVolcanoesNationalParkwhichendsatashelterat700metersabovesealevel overlookingthefaults(Figure1,Patendof

PAGE 23

6thInternationalSymposiumonVulcanospeleologySKETCH MAPHILINAPAllAREAbasedonaerialphotograph1076 2-7 3.10.88Figure1-Sketch map oftheRilinaPali areagivingflow lobe boundaries according to aerial photographsandlava tubes according toownsurveys. Abbreviations: P=pullouts, D=dunesofKeanakakoi ash, T=tumulus,KMA=EntranceofKeanaMonwkuAhi(Charcoal Cave),CC=Entranceof Calahash Cave,LC=EntranceofLedge Cave,ACC=EntranceofAshCrawl Cave,number1-5:aeolianashplugssustainingkipukas, UEC=Upper Earthquake Cave,EC= Cave,LEC=LowerEarthquakeCave.havebeen deposited be forethemajormovementsofthefaultsoccurred. Radiocarbondatingshowsthattheashwasdepositedbetween11,000and25,000 years ,.:iBeforePresent(yrBP). 1.<.,0 Ontop oftheash, thinmembersoftheHolocenePunaBasalt series weredeposited.Thesemembersareseparated by soil and/or ash layers, 4,800,3,500and1,130(Uwekahunaash)yearsold (Rubinet al.,1987;Easton, 1987) The latestashis coveringthesurface intheHilinaPaliareapar tiallyandbelongs tothehistoric1790A.D.asheruptionofKilauea(Keanakakoi member).Thisseeminglysimplestratigraphybecomescomplicatedassoonasone tries to assigndatestocertainlava flowsatthesurface.InthepaperofHolcomb (Figure 12.5D),theKipukaNeneflowsandthesurfaceofthelavaattheendoftheHilinaPaliroadaregroupedintodifferenttimeslices (i.e. 1,000 to 1,500yrBPversus 1,500 to 10,000yrBP, respectively).FurthermoreHolcombputstheUwekahunaashintothelattertimesliceeventhoughthe14Cdate(W3827, collectorJ.Lockwood; Rubinetal.,1987)suggestanageofonly1,130yearsascorrectly citedinEaston'sFigure11.14. Wethereforereinterpretedthestratigraphyusingthepublished14CdatesandsuggestthattheKipukaNeneflows (dated withsampleW5135 to1,150years, collector N.G. Banks; Rubinetal.,1987)andthesurfacearoundtheendoftheHilina Pali road belong tothesamegroupofflows roughly 1,100// .....:>..,3/ /'o / .::00., \\//I /! ol.L. o c o L:.ill II,, ,,scale 1:14625 o I'".'";"to.. __.it ...... -4::._--"" KauOeser \ira :'a'0:: road). Alongthepali (the fault)theseawardblockhassubsided severalhundredmeters(maximum550meters)exposingtheoldest accessible rocksoftheKilauea volcano edifice. Table 1 showsthelocal idealizedstratigraphyasderived fromthepublica tionsofRubinet al.,1987, Holcomb, 1987andEaston,1987.Thelower sequenceofcaldera basalts(Hilina Basalt, 100metersthick) is capped bythePahalaash(ninemetersthick) whichmust16

PAGE 24

yearsold(notwithstandingthefact,thatolderstrataoutcropatthebrinkofthepali). TothenorthoftheHilinaPalishelteralargelobe(termedEastKeanaBihopaFlow inFigure1)transgressestheolderflows. HolcombgroupsthislobewiththeKalueflows whichseparatetheHilinaPaliandtheKipukaNeneareas.TheKalue flow isnotwell datedandHolcomb suggestsanageof500 to 750 years. TothewestoftheHilina Palishelteranotherlobe extendsalmost tothebrinkofthePali (termed WestKeanaBihopa Flow inFigure1).Holcomb groupsitwiththe250-350yearsold Observatory Flows. How ever, Holcomb overlooks two14Cdateswhichmayindicatethatthis lobe is older, i.e.thesamples W 5152 = 66070yrBPandW4402 = 70070yrBP(collector N.C. Banks; Rubin et ai., 1987, Figure 10. 5).ThedescriptionofsiteW4402, (325meterswestoftheHilina Pali shelter) suggeststhatitmayhave been collected fromundertheeasternrimoftheWestKeanaBihopa Flow (Figure1).TheWestKeanaBihopa Flow could therefore be alsooftheageoftheKalue flow group, i.e. 700yearsold.TheappearanceoftheeastandwestKeanaBihopa Flowsontheaerial photographs israthersimilar in color,surfacestructureandwith regard to the thin rimofvegetation (which probablytapsthewaterreservoir provided bytheheat-cracked lavabeneaththe flow rims). They could therefore very well beofthesameage.DescriptionofTubeSystemsWithintheareathreetubesystemsexist, twoofwhichareaccessibleandhavebeenmappedinKempe&Ketz-Kempedetail.ThesearethecaveswithintheEastKeanaBihopa Flow collectively called Charcoal Cave SystemandtheEarthquakeCaveSystemeastoftheHillnaPallshelter(Figure 1). AthirdsystemexistswestoftheWestKeanaBihopa Flow.Ontheaerialphotographwe noticed abreakdownhole (puka)shortlynorthoftheKa'uDesertTrail(RainPuka,Figure1). S.WernerandS.KempeexploreditJuly13, 1991,butfoundthattheunderlyingtubecannotbeentered.Thetubemustberatherdeeplyseatedandis buried inbreakdownbothupslopeanddownslope.Ontheaerialphotographsnootherpukaswerenoticed which could give access tothistube. Also inthecenteroftheWestKeanaBihopa Flow lobe noentranceswerenotedontheaerialphotographsandnoneareknownfromsurfaceexcursions even thoughthislobe potentially containsatubesystem.Table2comparesthespeleologicaldataofthetwosystemsmapped.TheCharcoalSystemisthelongerofthetwo,butitsgradientis lessthanthatoftheEarthquakeSystem.TheCharcoalSystemsfollowsthecenteroftheEastKeanaBihopa Flowthroughoutmostofthelengthofthelobe (Figure 1).Fourcavesandatleastfive ash-plugged break down holes(marked1 to 5 inFigure1)belong tothesystem.Thepresumedvertical sectionofthesystemis given inFigure2.Theash-pluggedpukaskeepwaterintheirthickashdeposits which there forecarryisolatedstandsofohiatreesandarevisibleassmallkipukasontheaerialphotographs. Atleasttwodunesandtheonly largetumulusonthelobe alsocarryisolatedstandsoftreessothatYearsBPMemberThickness(m) 1790 A.D.KeanakakoiAshoto>2 700 Kalue Flowsoto 8 (includingKeanaBihopa Lobe) 1,100KipukaNeneFlows 2(IncludingEarthquakeTubeSystem)1130UwekahunaAsh 0.23500PunaBasalt23500Soil 0.1 to 0.34800PunaBasalt54800Ash on TopofSoil 1.510700PunaBasalt4 11 000-25 000PahalaAsh 9 Table1:Stratigraphy O(tll Hilina Pali area (revised according to Holcomb,1987andEaston, 1987).17

PAGE 25

6thInternationalSymposiumonVulcanospeleology2740 feet261.0 Charcoal10005002540OmFigure2-Longitudinalprofile through the Charcoal Cave SystemintheEastKeana Bihopa Flow lobe indicating entrances,mainpassagesandashdeposits. Elevationofsurfaceisaccording to topo map, sheet Ka 'u Desert. Depthandsizeofcaves are schematic only.treesassucharenotaninfallible signofburiedtubes.TheEastKeanaBihopa Flow is superimposed upslope byanotherflow lobe which ischaracterizedbymanylargepressureridges (tumuli). Shortly below, weencounterthefirst evidenceoftheEastKeanaBihopaFlowtubesystem,anashfilledbreakdownhole(No.5,Figure1).Itis accessibleundergroundinAsh Crawl Cave (Figure 3).ThetotalmappedlengthofAsh Crawl Cave is 117meters,witha horizontal extensionof100 meters.Itisenteredthroughtheupslope openingofanelongated shallowbreakdownfeature.Thecrawl onashleads to apassagewhichturnsback(The Delta)andendsin a fluvialashplug. Upslopetheash-floored passageencountersbreakdownbeforethepassage opens up tostandingheight(Dining Hall),theendofwhich is formed bytheashcone CharcoalEarthquakeParameterCaveSystemCave System horizontal extension (m)>1300>400mapped(m)1500338 elevation (feet)2740to 2 5402300to 2200vertical extension (m) 60 33I gradient V22(2.6)V12(4.7)ageofflow (yearsvrBP) 700(?)1 100(?)totalnumberofcaves 4 3 CharcoalC.UpperECCalabashC.EC LedgeC.Lower EC Ash CrawlC.systembraided tributarY single canvon archaeologicalremainsstonesettingsnonecharcoaldestructionaeolianashplugs, fluvialashplug, fluvialashplugs, breakdown, breakdown ponds durin!! floodsTable2:Comparisonofspeleological data fol' the two tube systems mapped.18

PAGE 26

Kempe&Ketz-KempeFigure3-MapofAshCrawl Cave,EastKeana Bihopa Flow,HilinaPali, Ka'uDistrict,IslandofHawaii.M=lava stalagmites,S=lava stalactites.explored andmapped12.7.1991S.KempeJW.HallidayLedge Room. No charcoal was found in Ash Crawl Cave. However,recentfluvialashlayers may have coveredanyremainsofprehistoric visitors.ThetubesintheupperpartoftheEastKeanaBihopaFlowareallnearthesurface,theroofisnotmorethanoneortwometersthick,thesizeofthepassagesismoderate,widerthanhighandoftentrapezoidorrectangularin cross-section.Severalpassagesappeartohavedevelopedparallel toeachother.3c....'... 2Cave c::=: 78 16CRAWLCAVEDiningHallASH25m10mBlockHouseProfiles1:200aPlan1:500oofplug5.Thecavemustcontinueupslope beyondtheobstruction.Plug4isencounterednorthoftheentrancebreakdownholeillustratingthatapassage(markedbyplug4andtheentrancesinkhole)paralleltoAshCrawlCavemustexist.ItcontinuesdownslopeasLedgeCave(Figure4)fromthesouthernendoftheelongatedentrancesinkhole.LedgeCavecanbefollowedfor171metersdownslopeandhasatotallengthof185 me ters.Theentranceis alow,widecrawlonDuviallydepositedash,thenonehastosquirmthroughbreakdown be foreawalkingsizetubeisencountered.Thepahoehoefloorbecomesvisibleunderashallowashcoverandledgesaccompanythesides.InLedgeRoom,thetubesplits.Themainpassageisblockedbyafluvialashplug,thesidepassage,aslightlyelevatedolderoverflow,isfreeofash.Thepassagedecreasesinsizeandcontainspahoehoe flow fea tures,raftedblocksandmagnificentlava formations.Thesestalagmitesandstalactitesshowthathotgasflowedthroughthetubeandcouldhavecausedpartialmeltingattheceilingofthetube,probablywhilethemainpassagestillconductedlava(flowingatalevelbelowtheledges).Thesidetubeendsinloosebreakdown,butanairdraftindicatesthatthecavecontinues.BitsofcharcoalshowthatPolynesianexplorershavevisitedthiscaveasfarasCandleCity.Torcheshavebeencleanedonablockin19

PAGE 27

6thInternationalSymposiumonVulcanospeleologyFigure4-MapofLedge Cave,EastKeanaBilwpaFlow,HilinaPali, Ka'uDistrict, IslandofHawaii. M=lava stalagmites, S=lava stalactites,C=charcoal.CAVEandash-freeloop,stonesettingswerefoundwhich were used to holddripwatercollectingcalabashes. A few piled-upstonesservedas step pingstonesuptheledge.Intheceiling a very nar rownear-surfacetubeisintersected,anastybellycrawlinterconnectingwiththeCharcoalCave(KeanaMomokuAhO proper.Thecavesystemhasbeenmapped(1978) bytheauthorsandwasdescribedindetail al ready.Themap pub lishedheredoeshoweverincludetheL-series pas sagebelowJunctionHallmappedDecember9, 1988, byS.KempeandG.Landmann.TheentranceholeoftheKeanaMomokuAhi isplantedwith ti (a Poly nesianplantwithlargeleaveswhichspreadsonly byplanting),shadedby a few ohiatreesandoffersthemostspectacularentrancesettinginthearea.Downslopeitgives access tothesamelargetubeasinCalabashCave. Upslope however,thefluvialashis pondedbehindthebreakdownpilecloggingthemainpassage completely.Thebreakdownoccurredata placewherethreetubesmet,(i)thelargetrunkpassage, now filled with ash, (ii)thebellycrawlconnectingfromCalabashCaveand(iii) asmalltributaryupslope tube.Thistubecanbe followed formorethan250metersupslope beforeitendsin breakdown.InSandHall asmallashconeentersthroughaninconspicuous hole,showingthatthistuberunsnearthesurface.ItmaybethesametubeasencounteredintheCandle Citypassagein Ledge Cave,butactualproofforthishypothesiscannotbe offered. BelowRoom --6LEDGE fi::iJj 18 19 -.-//" charcoal25m10m LedgeandmappedS.Kempe)W.Halliday ",", C.Ketz-Kempe.S.Werner11explored12.7.199118.7.1991Profiles1:200Plan1:500o oentraneeThenextfewhundredmetersofthetubesystemcannotbefollowedunderground,butthe ash pluggedtwinbreakdownholes 2and3 showthatthecavecontinueswith a wide passage.Thenextash-pluggedbreakdownhole (No.1)downslopehaspartlybeenerodedandprovides access toCalabashCave,thebeginningoftheCharcoal CaveSystem(KempeandKetz-Kempe, 1979).Herewe encounterahugepassagewhich,after80meters,is clogged by fluvialash(Figure6).Onanelevated20

PAGE 28

Kempe&Ketz-KempeFigure5-Mapof Earthquahe Cave Tube System,Hilini Pali, Ka'u District, Hawaii. Enrronce 21'22 24 / "32r...../25 ) I tosurfacechannelca.690mOa.s.! mop;>cd. 5 Krmpr, B.f1otlldoy.S 1371991UPPER EARTHOUAKE CAVEOm 11141M!(. Orr,Aug 8 ".1990.... og5.37302010 eSi?.n',on<:a@4 /. /,0'17 ,h.1I 5'v0.....l.,....I.. rJ iI.dgu '. 2 ;-0 air draft \\\\\\\\ \\\ \oirdraft CiO'-..l.II .10'10pillar(P.I.',10e) 45 \\ 46a\-:45Ptle'sPouagr(. 86m) 'b 'lavaIntrusion -;-,. oecautoupper1.'11.1 ':"._43'fuRlpouoge bloded .:lair drolrlmopped: S.l
PAGE 29

6thInternationalSymposiumonVulcanospeleology,I 8lo 5TUVW00 G) x N o'Tc o \. P 5u Figure6-MapoftheKeanaMomokuAhi(Charcoal)-Calabash Cave System,EastKeanaBihopaFlow,HilinaPali,Ka'uDistrict,IslandofHawaii. Comparedwiththe map publishedby Kempe & Ketz-Kempedown. Downslopethetube is also closed bybreakdown,butanother,largerbreakdownhole,circa200meterssouthwestoftheHilinaPalishelter,gives accesstothesametubesystem. UpslopetheEarthquakeCaveextendsfor 228meters,endinga few dozenmetersbelowUpperEarthquakeCave.Thepassages is mostlyhigher(up to sixmeters)thanwidewitha canyonlikeappearanceandameanderingcourse.Thecave ischaracterizedby intensivebreakdownfrom ceilingandwalls,theoriginalfloor isonlyrarelyseen.Evidenceofwashed-inplantmaterialandcharcoal showsthatthecave floodsmoreorless completelyduringrainstorms,servingasapseudokarstdrain.Downslope,theLowerEarthquakeCavecanbe followed for64 metersbeforethecanyon is clogged by a deep fluvialashplug, Beyond,thetubeis discontinuedandthelavaenteredintoanopentrenchbeforeitplunged overthepali severalhundredmetersdown.Anextendeddescriptionofthecave is foundinourpaper, this volume.SpeleologicalConclusionsThetwo cavesystemarequitedifferent.TheCharcoalSystemfeatures parallel tubes up tothreeinthesection between Calabash CaveandKeanaMomoku Ahi whiletheEarthquakeSystemconsistsofonly one tube.TheCharcoalSystemis clearly associated with a large flow lobeandappearsto diminish in sizetowardstheendofthelobe.Theflow lobehasaheightofthreeto fivemetersabovethesurroundingterrainandshows convex isohypses onthetopographical map.Inshort,theCharcoal System isata positionwhereone would expect a tube.Incontrast,theEarthquaketubeisnotassociatedwithanyrecognizable flow lobeandappearsto have servedasa fast lavatransportroutetowardthepaliwithoutmuch local lava buildup.Infact,eventodayastreamgully follows roughlyitscourse,underscoringnicelythemissingbuildup which should have deflectedanystreamcourse tothesideofthetube position. Atthepali, no lavastrataarevisible with athicknesscomparabletothedepthoftheEarthquakeCave.Onecanonly concludethattheEarthquaketubemusthavecutdownwardintotheolderPunaBasaltsinorderto obtaintheclearly canyonlikecharacter.Thereisfurtherevidenceofthis hypothesis inthecave. Wherethevertically layered wall lining fell away, onecanclearly see thick horizon tallystratifiedlava22

PAGE 30

Kempe&Ketz-Kempe Th. EndDome of Dorkneu sEC 1a AN IJunellan HallIV Holl01Slolagmilu ""lo; .. "" ., 102!c ..Ao Oxbow KEANAMOMOKUAHI-CALABASHCAVESYSTEMHawaii/Kilauea-HilinaPalimappedAugust10.15.17.22.1978:StephenKempeandChristhildKetz-KempeL-SeriesmappedDecember9.1988S.KempeandG.landmannSCALEo ;!we !we!weIweIweeeew/l.ee"J........, 100m 9,pQ0=:::::=:::..<:::::>0= '011 1213,.16 SCALEofProfilesofLSeries L.ee1 40m (1979)thismapincludes the lowermost L-series.Notethatthe cross-sectionsofthe L-series are plottedinadifferentscalethanthe other cross-sections.A)CHARCOALCAVEKipukaNenelavaUwekahunaash PunalavasoilPunalava Nenelavacross-sectionASnearentrancecross-sectionatstation B)EARTHQUAKECAVEo10m KipukaoFigure7-Conceptual modelsofthe stratigraphic situationofthe canyonlihe sectionsofthe two cave systemsillustratingthedowncuttingofthelava flow into older rochs. beds, astructureunlikewhatone would expect in a tube which was formedbylevee buildupandroofing.Infact,inLowerEarthquakeCaveanoxidized clayey soil layer is exposed between horizontallavabeds. Clearlysucha layercannotbeanintegralpartofapahoehoeflow.Theexistenceofthissoillayeralso showsthatthetubewasnotastreambedcanyonwhich wasjustincidentally oc cupied bythelavaandroofed over.Ina water course,thesoftmaterialoftheformersoil wouldhavebeenremovedbylateralerosion.Inadowncuttinglava flow,materialnothotenough to beremeltedcannotbe easily eroded, in factitcould bemoredifficult to erode awetsoilthermallythansolid lava.Figure7B shows howtheobserved soilmayfitintothelocalstratigraphyandhowfarthetubeprobablycutdownintoolderstrata.Clearlymoredatinghasto be done before boththeageoftheEarthquakeCave flowandthelocalstratigraphycanbe resolved.Theoutcropsinthecaves may, however, provide a place to look forsuitable14C samples. Withthisdiscussion in mind, let us considerthetrunkpassageoftheCharcoal System once more. AttheKeanaMomoku Ahientrancetheroofhasathicknessoffour to sixmetersandthepassage a23

PAGE 31

6thInternationalSymposiumonVulcanospeleologydepthofsix to seven meters. This is clearlymorethantheapparenttopographic thicknessoftheflow lobe.Onemustthereforeconcludethatthis canyonlikepassagewas alsocutdown into olderstrata.Alongthewalls horizontal shelvesprotrude,suggestingexposuresofolder lava layers.Figure7Ashowshowthecross-sectionoftheKeanaMomokuAhicould beinterpretedgeologically.Thequestionremains,ifthedowncuttingoccured only locally (where forexamplethepreexistingsurfacegradientincreased,comparetheincreaseingradientataboutthepositionoftheCalabash Cave inFigure2),orifthetubedeveloped a voluminous"trunktype"passagethroughout.Ifthiswerethecase,thenthenear-surfaceandnarrowupslopebranchesoftheCharcoalSystem(i.e., Ash Crawl CaveandLedge Cave)cannotbe identical withtheCharcoaltrunk.Ratheranothertubemustbeas sumednotaccessibleordeeply buried by ash extendingupslopeofash plugs 2and3.Thetwo cavesystemshaveanotherinterestingfeature:theirashplugs. Principally two kinds exist (Figure 8), plugs caused by aeolian depositionandplugs caused by fluvial deposition.Theaeolian plug is probably quickly deposited. Wind blowingoverabreakdownpit deposits itsdustload easilyintothis"sedimenttrap"becauseturbulencewouldnotbe high enough tocarryanyfluvialash plugaealianash plugFigure8-Schemeof the two differentkindsofashplugsencounteredinthe Charcoal System.24particleoutofthepitagain.Thedustisdrivenoverthelipofthepit, progressively building asteepcone untiltheothersideofthepitis reachedandfurtherdeposition stops.Suchsteepashslopescanbe seen intheDiningHallofAsh Crawl Cave,inSandHalloftheKeanaMomoku AhiandintheentrancesinkoftheCalabash Cave. Aeolian plugscanonly occurifenough looseashis availablesuchasafterthe1790eruptionproducingtheKeanakakoiash.Theashplugsthereforeserveastimemarkers.Onlythosebreakdownholes which were open before 1790, could be closed bytheKeanakakoiash. Consideringtheamountofasha vailableaftertheerup tion,onemustconcludethatallpitsolderthan1790wereprobably filled while thosebreakdownholes open todaymustbeyoungerthan200years(i.e.theKeanaMomoku Ahientrance,theAsh Crawl CaveandLedge CaveentranceandboththeEarthquakeCaveentrances).Anexception istheentranceto Calabash Cavewherefluvial erosionoftheaeolianashplughasreopenedtheentranceto this cave. FluvialashplugsappearinAsh Crawl Cave, Ledge Cave, Calabash Cave,KeanaMomoku AhiandLowerEarthquakeCave. They needwaterasatransportmedium. Fluviallytransportedashtendsto form horizontal deposits which in placesmayreachtheceilingofthecavesealingit. Sincerunningwateris scarce intheHilinaPaliareaavailable only once every severalyearsduringrainstormsfluvialashplugs need a longertimeto develop.Thefluvial plugs weseetodaythereforemustbeyoungerthan200 years.Forarchaeolo giststhispossibility todatedeposits opens upaninterestingperspective: couldthenow closedtrunksectionofCharcoal Cave above plug 2and3containuntouchedprehistoricremains?AcknowledgementsWethankJimMartin(Hawaii VolcanoesNationalPark)formakingthisstudypossible.Hegrantedtheresearchpermitsandprovided us withthenewestaerial photographs. We alsothankBill Halliday, Spike Werner,andGi.interLandmannfortheirenthusiastichelp inmappingthevarious caves. We evenmoreappreciatedthegood companyandthefriendship which SisandBill Halli day, CarolandSpike Werner,andMarthaandJackLockwood gaveduringourvariousstaysonHawaii.MarthaandJackLockwoodfurthermorehosted us severaltimesandintroduced us totheVolcano Village community.WithoutJack'sen-

PAGE 32

couragementandvolcanological advicethepresentpaperwouldnothavebeenwritten.ReferencesEaston,M.(1987):StratigraphyofKilauea Vol cano, In: "VolcanisminHawaii,"U.S. Geol. Surv.ProfPap. 1350(1):243-260.Holcomb, R.T. (1987):EruptivehistoryandlongtermbehaviorofKilaueaVolcano, In: "VolcanisminHawaii,"U.S. Geol. Surv.ProfPap.1350(1): 213-242.25Kempe&Ketz-KempeKempe, S.andCh.Ketz-Kempe(1979):FireandIce Atop Hawaii,Nat. Speleol. Soc.News37(8): 185-188. Rubin,M.,L.K. GargulinskiandJ.P.McGeehin (1987):Hawaiianradiocarbondates. In: "VolcanisminHawaii",U.S. Geol. Surv.ProfPap. 1350(1):213-242.Wood,C.(1980): CavesontheHawaiianVolcanoes,Caving Intern. Mag.,6/7: 4-11.

PAGE 33

Lava Features of Olaa Cave, HawaiiDaveBunnell320BrookDrive,BoulderCreek,California95006BillLiebmanPOBox645,Alhambra,California 91803AbstractOlaaCave liesina prehistoric flowthateminatedfrom Kiluea lki.Upto four levelsofdevelopmenthave been noted,and6.07 kilometers have been surveyedinthelower level.Totalverticalextentis 221meters.Prominentfeaturesofthecave includenumerouslava falls up to 15metersinheight, lava lakes, a threemeter-highlavastalagmite,andinvasion bynewerlavaflows. 100010lO)Oxoo.('0)w:oItm t tllH _I, S8. BOB RICHARDS26

PAGE 34

Werner&WernerImpact of Richter6.1Temblor Upon Malama Cave, Puna District, Hawaii, Hawaii:AnInsider's ViewMarlinSpikeWerner Caroline WernerHawaiiSpeleological Survey, 15-2680 Opelu Street, Pahoa,Hawaii96778AbstractInJune1989,theauthorwas50feetintoMalamaCavewhentheearthquakestruck.ThecaveislocatedintheeasternriftofKilaueaVolcano, azoneofmultiplecrustalfracturesandlavaresurgences.MalamaCaveis aconcatenationofhollowspatterconeswithseveralskylightsopeningthroughtheirmouths.Thispaperdescribestheeventswhichtookplaceduringthe15-secondseismicoccurrence.OnJune25, 1989,at17:00,MalamaCavewasenteredbyMarlinSpikeWernerandthreecompanions,SadanandSingh; his wife, Angie;and10-year-old son, SaIniI'.MalamaCaveis located inthenortheastriftzone,notfarfromtherecentlyclosedPilotGeothermalPlantinthePunaDistrictoftheIslandofHawaii.Theentrancetothecave isatthemarginofMalamaAvenue.Thesurroundingterrainisoneofcomplexpseudokarst,clinkers,andtangledovergrowthofclimbingfern,ohia,andha'u.Thesubject cave appeal'S to be aconcatenationofhol lowspattercones,eachbell-like in cross section.Thedeepesthumanpenetrationis probably limitedto150 feet.Theinvestigatol'S pickedtheirway carefullydownthesteeptalustoa floorofpahoehoe, approximately40feetbelowtheentrancethresholdand12metersfurtherin.Oneofthespatterconesaf forded askylightatits apex,another15metersfurtherdownpassage.Wernerhadplaced a propanelampatthefloorandwasofferingMrs. Singhassistancewhenthecircumstancesoftheexplorationwerealteredbyseveralswift-movingevents. About 15 feetinfromtheentrance,SadanandSinghwasbringinguptherear.Mrs. Singhwasabout 2fs down-slope,andSamirwasstandingbythevideo-cameraandthepropanelampatthebottom.Mrs.CarolineWernerandKalpanaSingh occupiedthefrontseatoftheWernercar,theSingh'srentedcarparkedjustahead.Thesunwasshining,andseveralbirdswererestingonthewiresofthetelephonelinethatpassed sevenmetersoverhead.27WernerwasreachingouttoofferMrs.Singhahandwhenthefloor no -thewholesetting,peo ple, floor, walls,containedair movedupward,forward,downward,backward,upward,forward,downward,backward,upward...Themotionappearedtobeinalignmentwiththeaxisofthecave.Theairseemedtohuffandpuff.Anirregularboulderweighing300poundsormoreseemedtoriseslowly fromthetalus,tiltdown slope,andflop. Mrs.Singhwassayingsomethingabout"HolyJesus,MotherMary,"whenWernertookherhandandsaid,"It'salright,"-anadmittedlie.Fromtheentrance,Sadanandcalled,"Samir,run,"andtheboy'svelocity inpassingwasapproximately1.5meterspersecond.Wernerlookedupwardatwallsandceiling.Previousrockfallsattestedtothesheddingofsecondaryaccretions-hintsofrockfallstocome.Asinuouscurtainofdustrainedfromanarrowcrackwhichranfromtheentrancetotheskylight.Theboulderlanguidlyrose,teeteredforward,andfloppedagain.Wernerstoodwithonefootup-slopesothathisstancewasalignedwiththeaxisofthecave.Witheachdisplacementofthefloorhiscenterofgravitywasshiftedup,left,down,right,up,left...WasMalamaslippingintothesea?TheoccupantsoftheWernercarwatchedinhorrorastheSingh'srentedautomobilebeganto pitch from side to side,thetelephonepoles whippingbackandforth,theirwireswhistlingover head.Thebirdsemittedsomethingunquotable. Mrs.Wernertried to openhercardoor only to have

PAGE 35

6thInternationalSymposiumonVulcanospeleologyCeilingheightsareinfeetEntranceNNTrueMaggeneralslopeoScale20meters50MAlAMACAVE,HAWAIICompassandtopesurveyJune15,1989(uncorrected,nobacksights)W.R.HollidayJ.MartinM.S.Werner " graffitiitthrownbackather.Kalpanashouted, "Daddy!" Meanwhiletheslothful boulderinthecave heaved onemoretime,teetered,andflopped onitsface torestatWerner'sfeet.Themagnitudeofthetemblorwas R=6.1.Theepicenterwas19'Nx 155 'W,andthehypocenterwasat9.4 kilometers(datasupplied byHawaiiVolcanoes Observatory stafO.Thedistance fromtheepicentertothecave is approximately 3.17 kilometers. Althoughtheangleofincidenceatwhichthetemblorencounteredthecavewasabout90, lackofdataastosensesandrangesofoscilla torydisplacementandplanesofacceleration places limitsonourevaluationoftheeventsexperienced.28InConclusionTheparticipantsdiscussedtheabove events.Samirsuggestedthatthedurationofthequakewasthreeminutes.TheseismologistattheHawaiiVol canoes Observatory saidthedurationwassubjective,andanybody'sguess.Angiesuggested,"maybefourminutes."Bycountingtheseconds, one-one-thousand-two...thegroupconcludedthattheexperiencehadadurationofapproximately14 seeminglyinterminableseconds.Riskingthepos sibilityofanaftershock,Wernerreturnedtothecave toretrievehis video-cameraandpropanelamp-withoutincident.

PAGE 36

Underground Observations During the Pu'u0'0Earthquake, 4:06P.M.,August 8, 1990StephanKempeInstitutefor BiogeochemistryandMarine Chem-istry UniversityofHamburg, Bundesstr.55,Hamburg13,Fed. Rep.GermanyChristhildKetz-Kempe)BarmbekerRing52b, D-2054 Geesthacht, Fed. Rep.GermanyHawaiiSpeleologicalSurveyAbstractOnAugust8, 1990,at4.06P.M.,weexperiencedanearthquakeofamplitudemagnitude4.7in alavatubeoftheHilinaPaliarea,Kilauea,Ka'uDistrict,Hawaii.Theepicenterwas25kilometersawayfromthecave.Atthemomentofthequake,Christhildwassittingonrocks,clearlyfeelingthemmovingunderneathher,whileStephanstooduprighthavingtheperceptionasifasubwaytrainwereapproachingupthetube.PossiblyChristhildfeltfaintvibrationsoftheprecursorshocksaswell.Norockwasheardfallingfromtheroof,eventhoughthecave,latercalledEarthquakeCave, islitteredbybreakdownblocksthroughout.Figure1-SiteofEarthquakeCaveinrelationtothePu'u0'0EarthquakeofAugust8,1990.DescriptionofEarthquakeCaveWhilemappingalavatubecave,latercalledEarthquakeCave,theauthorsexperiencedanearthquakeonAugust8,1990(Figure1).EarthquakeCaveispartofatubesystemwithatotalmappedlengthof338meters(Figure2)locatedattheendoftheHilinaPaliroadinHawaiiVolcanoesNationalPark,Ka'uDistrict.Thetubeisaccessiblethroughtwobreakdownholes.Themainentranceis a 16meter-longand9-meterwideholeinterruptingthecave.Itislocatednearthebrinkofthepali,justcirca200meterssouthwestoftheHilinaPalishelter.ItwasshowntousbyDr.John(Jack)/o10Lockwood, geologistattheHawaiiVolcanoObservatoryandthecavewasfirstenteredbyJackand20km",ttft,HypocenterAugust8th,1990.16Magnitude5.3729

PAGE 37

6thInternationalSymposiumonVulcanospeleologyFigure2-MapofEarthquakeCave Tube System,HiliniPali,Ka'u District, Hawaii.MarthaLockwoodandtheauthorsonJuly20, 1990.Theotherentranceissituatedupslopeinthebedofanoccasionalstreamandis 2.1 x 1.8meterswide,openingupintothetubebelow.ItwasindicatedtousbyJames(Jim)Martin,chiefrangeroftheNationalPark.ThisentrancewasenteredJuly13, 1991 byW.Halliday, M.S. Werner,andS. Kempebuthasobviously been visited before (piled upstonesbelowtheentrance).ThisupperentranceleadsintoUpperEarthquakeCave,anisolated pieceofthetube,just38meterslong.Itis blocked bybreakdownatitsupperandlower ends.Attheceiling a lowsurfacetubewithanairdraftis accessible onthewestsideofthetube.Thepresenceofpiecesofwood,matsofdried grass,andbitsofcharcoalshowthatthetubefloods occasionally up totheceiling.Themainentranceis roughly280metersaway,distanceandbearingbetweenthetwo holes wereestimatedfromaerialphotographskindlymadeavailablebyJ.Martin.FromthemainentranceboththeEarthquakeCaveproperandtheLowerEarthquakeCaveareaccessible.TheEarthquakeCavestartsdown asteepbreakdownconeandleads into a slightly winding, six-meter-high canyon-like pas sage.Thefloor is covered with ceilingorwallbreakdownthroughoutalmostallofthetube.Oftenolder lava bedsandoxidized soilareexposed behindthecollapsed wall linings.Thetotallength is228me ters.Thetuberises roughly 10metersabovetheentrance.Atstation12,thetube splitsintotwo levels,thelowerofwhichendsaftera fewmeters.Theupperlevel is closedbya boulder chokeatstation44.Therea hole intheceiling which offers access to anarrowsurfacetube which isconstrictedbycolumnarintrusionsoflava (Pele's Toe on map). Airdraftindicates connection to cavitiesfurtherFigure3-SeismometertracesofthePu'u0'0EarthquakeofAugust8th, 1990 (courtesy,USGeo logical Survey,HawaiiVolcano Observatory). Note the sharp onsetofearthquake (left)at16.06hoursand38.08 seconds.Stationsare arranged accordingto increasing travelingtime(top to bottom).StationcodesstandforSTCSteamCracks,KAEKaena Point,MPRMakaopuhi,WHAWahaula,KLCKalaluaCone,PAUPauahi,allwithintheE.riftzone.Realamplitudeofsignalis too large tobeshownandis suppressedinthe plots.StationHVOOBISTCis givenwitheastern(E),northern (N)andvertical(V)componentsofmovementswhile formostother stations only the vertical componentofmovementis plotted. ....(J 23\3123 /,'''' .-ILm 24 .. /i;'tJl3 to surface channelca. 690mO a.s.1mopped: B.Halllday.S W.,,,.r 13.7.1991UPPEREARTHOUAKECAVE "" r10Om 20Si?4/ .hell ./.. Ll airdraft\\,\ \\,',,,\oirdraft pillar (Pel.', 10_1 45 \\ 46a--r:.15Pele's(. 8.6m) 4b lava Intrusion-;4 ace ... '0upper level'::.\.43trunkpouogebladed.......,', (airdraft) !ee4IwwI 30B.8.1990 mopped: S.Kmp,.S. HollKloy.13.7. 1991PlanEARTHOUAKECAVELOWEREARTHOUAKECAVE mapp.d:SJ(tmpe.C.K.h -Kempe Profiles.....""'""""'-4"""...""'" I 20 16 12 840m30

PAGE 38

(,.) .....EVENT *350994, USINGSETUP;KLEIN -DELAYMODEL1LATITUDELONGITUDEDEPTHORIGIN HYPOCENTER; 1920.41-1556.85-9.23 KM 36.1916068AUG199019.34021-155.11417STATISTICS: RMS ERLATERLON ERZ ERTGAPDMINNPH MCA I::::::::::: : : : ::::::::1:1::: : :::J 5" SETNETDEVSERIES...1HVOOBI19JUL90:1021SETNETDEVSITECOMPEAKDISTAINAZMONSET ARRIVALTIME TOBS-TCAL -DLY cRES 1HVOOBISTCE7093RVOOBISTC1RVOOBI \oIHA 11HVOOBIPAU?C"cz?E I S

PAGE 39

6thInternationalSymposiumonVulcanospeleologyFigure4-Sketchofthesituationinthe caveduringthe earthquake event.Scde10m.InCaveearthquakeas5.37 (Figure3), afigurewhichlaterwas,accordingto Dr.PaulOkubo, seismologistfromtheHawaiiVolcanoObservatory,corrected to 4.9.The Ha waii Tribune Herald(reporterJ.Witty, August9,1990) relatedthatthePa cificTsunamiWarningCenter scaledthequakeasM=4.3andthattheNa tionalEarthquakeInfor mation Center, Colorado, registered it as 4.7 magni tude. The final correctedamplitudemagnitude(MA)was4.7(pers. comm.J.Nakata,HawaiiVolcanoObservatory).Thehypocentel'wasatadepthof9.14 kilometers.Ataroundthisdepththevolcanic edificerestsonthesedimentsofthePacific plate. Manyearthquakesoccurbetween5and14 kilometersofdepthindudingthe4.48A.M.November 29, 1975(M=7.2)Kalapanaearthquake(19.1'N/ 155.4'W, depth 5 kilometers) (Tillinget al.,1976). Theyarecaused by a slipofthenortheast-sideofKilauea towardstheocean on northeast-striking low-anglethrustfaults (Kleinet al.,1987) (slip during the Kalapana earth quake was eightmetersseaward). Becauseofits positionanddepth, thePu'u0'0earthquakewas seismic in origin,notdirectly related to volcanic activitybutmostprobably causedbytheongoing loading ofthePu'u0'0areawith fresh lava. When the quake hit, wewereatmapping station9,120 meters from the entrance. Christhild wassittingon the station point to rest, whileStephanstood facing her, afewmetersaway ontheopposite side ofthetubetakingnotes (Figure 4). While waiting forStephanto finish, Christhild listened tothequiet tubeandhad thestrangefeelingofhearingdistantvoices. She commented on thisandStephanreas suredherthatnobody could possibly be inthecave except them. She kept on inquiringandsuggestedshemight have felt vibrations from acaron a nearby road. Such a possibility was also rejected, sincetheHilina Pali Road ends before reaching the cave area.Wewere still talking about Christhild's faint percep tions whentheearthquakehit. Christhild felttherocks moving uncomfortablyagainsteachotherun-ProfileEarthquakeEarthquakeHawaii, 8.8.1990 --1N LedgeViewPlan iDirectionof earthquake waveTheEarthquakeuphill.Plentyofcharcoal,partlyin pockets high uponthewalls, is foundinthecave.Thischarcoal issimilartotheplantremainsinUpperEarthquakeCave,witnesstoanoccasional floodingofthetube.Infact,itmayderive from a fire which destroyedthetreesintheKipukaBihopaareaintheearly 1980s.TheLowerEarthquakeCavestartsalsoasa six-meter-deepcanyonandendsin a fluvialashplugafter64meters.Asmallhole connects tothesurface.Thishole probablyservesasadrainofthecaveatflood conditions. Below,thetubeterminatesandconnects toanopenchannelwhich stee ply dipsoverthebrinkofthepali. Geologically this is auniqueexampleofa lavatubeconnectingto a channel.Bothtubeandchannelappearto becutdownintoolder lava bedsandmusthavetransportedlavaoveranextendederuptionperiod.Theearthquakewas experienced whilemappingthecentralpartofthetube system. We enteredthecaveat2:55andleftitat5:23P.M.Thetremoroccurredat4:06P.M.and its epicenter wasjustsouthofthePu'u0'0vent ontheEast-RiftofKilauea, Hawaii,(l9.20'N/ 155.77'W),i.e.circa25kilometerseastofthecave (Figure1).The shock wavemusthave hitthetube, whichrunsroughly north south,atarightangle (Figure 2). InitiallytheHawaii Volcano Observatory registeredthemagnitudeofthe32

PAGE 40

derneathher.Stephan,stillstanding,felt mostlytheairrushingthroughthetubehavingtheaudibleimpressionasifasubwaytrainwouldapproach.Possiblytheairinthetubewascompressed momentarily,producingashockwavesimilartotheonefeltwhenatrainmoves in atunnel.Theeventpassedina fewsecondsleavingus perplexed.TheanxietywhichhadbeentriggeredbyChristhild'sfirstremarks,rosesharplyandwelistenedintensively, frozen toourplaces, for rockfall.Thanksto Pele, we didnotheara singlestonefalling.Aftera while we discussedwhatto do,anddecidedthatthechancesofa secondandevenlargerquakewould be very lowandcontinuedmappingofthecaveuntilalmostto its end. Wecannotbe absolutelysureifthevibrations whichChristhildtook for voicesorcarnoisewereindeedsomeearthquakeprecursorsorifshewasjustdistractedby windrushingthroughthetube.Becauseofthecoincidencewiththequakewethinkitis possiblethatshein fact feltprecursorstothemainshock. Thesetremorswere, however,rathersmall,aswe could seenextday ontheseismogramsoftheHawaiiVolcano Observatory.Itwas also quiteinterestingthatStephan,standing, didnotfeelthemovementofthefloorasintensivelyasChristhild.Thesamedifference intheperceptionofanearthquakewas noticed a few days before.OnAugust1,we witnessed aM=4.7quakewhile visiting Dr. WilliamandSis Halliday intheirapartment,9thfloor, Hilo Lagoon. While BillandStephanweresittingonthesofa feeling theearthquakeintensively, ChristhildandSiswerestandinganddidnotperceivetheshockatalL.Justthetablelamprocking showedthemthataquakehad occurred.WhenwereachedtheparkinglotaftertheearthquakeinthecaveattheHilinaPali shelter, weheardafaintalarmandwerespeculatingiftherewasa fire nearby. A fewminuteslater(5:45P.M.)though,JimMartin,togetherwithhis son, pulledintotheparkinglotandwasvery relieved toseeus.Hetoldthathehadbeensittinginthecarwhenthequakehit,andthathehadnotfeltanything.TheparkheadquartershadinformedhimbyradioaboutanM=5.3 event.Headquartersalso toldhimthattouristsreportedsmokeintheHilinaPaliarea.Aparkhelicopterflewalongthepalibutcouldnotseeanyfire.JimMartinthereforethoughtthatsomethingmighthavecollapsedatthepaliand won-ied aboutus,knowingthatwehadsigned up tomapatubeinthearea.Heimmediatelyleft fortheHilinaPalilookout whichhereachedanhourandahalfafterthequake.33Kempe&Ketz-KempeConclusionsThemostinterestingobservationofthiseventwasthatthecaveroofapparentlyisstableenoughtowithstandtremorsofuptomagnitude5 easily.ThisisevenmoreastonishingbecausethefloorofEarthquakeCaveislitteredwithbreakdownblocksthroughoutitsentirelength,indicatingthattheroofisrelativelyunstablealready.OneisthereforetemptedtoconcludethatmostofthebreakdownweseeinHawaiiancavesmustbecorrelatedtoa fewverystrongquakes.Geologicallyspeaking,quakesof7.0magnitudestilloccurfrequentlyonHawaii.ThetwolasteventsweretheSouthPointearthquakeof1868(circaM=7.5)andtheKalapanaearthquakeof1975 (M=7.2)(MacdonaldandAbbott, 1970; Kleinet ai.,1987,respectively).ThissuggeststhatquakesofM=7maybeexpectedatfrequenciesoftwopercentury.Speleogeneticallyonlytheseearthquakesseemtobe effective.Itis,however,alsopossible,thatevenlargerandrarereventsareneededtodislodgelargebreakdowninthelavatubesofHawaii.Onecaveathastobemadethough.Itis conceiv ablethatallorpartsofthebreakdownareduetoothercauses.IncaseoftheEarthquakeCavethefloodingofthecaveduringtorrentialstormscould besucha cause.Thelava is fullofgasbubbles, whichinpartmaybe water-filledduringthepondingofwaterinthecave bythetalusconeatthemainentrance.Whenthewaterdrainstheserocks will beheavierthanusualandmightthereforecollapseintothecave.Inotherareas,theloadingofthehumusandrockcomposingthecaveroofwithrainwater,theincreasingloadofagrowingforest,thepressureofrootsorthelossofsuchpressurecould also be forces whichmayaccountforbreakdown.Wewerenotthefirst cavel'S towitnessanearthquakein a lava tube. Wood (1980)mentionsthattheyfelt aquakeinKazamuraCaveinandDr. Marlin SpikeWernerwastheinvoluntarywitnessofascaryM=6.1eventinMalamaCave recently.Thereaderisreferredto hisaccountinthisvolume.AcknowledgementsWe wholeheartedlythankJimMartinfromHawaii VolcanoesNationalPark.Itwasluckythathisthoughtfulnessandcarewasnotneeded inthisinstancebutpotentially we couldhavebeen in need

PAGE 41

6thInternationalSymposiumonVulcanospeleologyofhelp desperately. We alsothankCarolBrianandJenniferNakatafor helping ustoobtaintheHawaii VolcanoObservatoryseismometerdatafortheAugust8, 1990earthquake.ReferencesKlein, F.W.,RY.Koyanagi, J.S.Nakata,andW.RTanigawa(1987):TheseismicityofKilauea'smagmasystem.-In:"VolcanisminHawaii", U.S.Geol.Surv.ProfPap. 1350(2): 1019-1185.34Macdonald G.A.andA.T. Abbot (1970): VolcanoesintheSea,TheGeologyofHawaii,TheUniver sityPressofHawaii, Honolulu, 441 pp. Tilling,RI.,RY.Koyanagi, P.W. Lipman,J.P.Lockwood,J.G.Moore,andD.A.Swanson(1976):EarthquakeandRelatedCatastrophicEvents,IslandofHawaii,November29,1975:apreliminaryreport,Geol. Surv. Cir. 740:33pp. Wood,C.(1980): Caves ontheHawaiianVolca noes,CavingIntemationalMag.,6/7: 4-11.

PAGE 42

Caves of Southern KauaiDarrelTanakaGraduate student, Geography Department UniversityofHawaii, Honolulu, HawaiiCavesinsouthernKauaiareworthyofprotection forthefollowing reasons:(1)remainingsourcesofhumanhabitationrecords, (2)uniquebiological resources, (3) geological resources, (4) burials,and(5) aesthetics.Humaninterferencehasalreadyresultedinthelossofmanysurfacearchaeological sitesinthearea.Growthinhumanpopulation will lead topressuresto convertarablelandintomoreprofitable enterprises. As thehumanpopulationshiftsandgrows, a depletioninthequalityofnaturalfeaturesonthelandscapemayoccur. Miningofvolcaniccinderhasled totheflatteningofvolcanic conesthatpreviouslyhadshown atimesequenceinisland geology. MiningofunconsolidatedandlithifiedsanddunesdisturbedmayHawaiianburialsanda recordofgeologyatwork today.Therearefew caves on KauaiIsland. Sea cavesarepresentandreflecttherecordoftheocean'schangeinsealevel. Lave tubesarepresentandaresubject tourbanencroachment.Limestone cavesarepresentattheunconformity between beach rockandunderlying alluvium.Theunsoiled caves worthyofprotectionareinthesoutheastregionoftheisland.WaimeaCanyonVolcanicSeriesKauaiIslandis a single shield volcanothatrises 17,000 feet abovetheseaflooranda little morethan5,000 feet abovesealevel.Theactivityoftheshield building Waimea Canyon Volcanic Serieshasa potassium-argonestimateofbeginning 5.7andending3.8 millionyearsago (McDougall, 1964). These lavas have normalremnantmagne tism (MacdonaldandAbbott, 1979)Theaaandpahoehoe lava flowsoftheWaimea Canyon Volca nic Seriesaretholeiitic basalt, alkalic olivine basalt,andhawaiite.Earlylavasgenerally havelargerphenocrystsofolivinethanthose foundinthepost-erosional flows.Onthesoutheastpartoftheisland,neartheca ve area, istheHaupurangeofmountains.Thisbasaltpondedcalderais ontheflankoftheKauai shield volcano.Itseruptiveepisode probably coincided withthatofthecollapseanddevelopmentofthesummitcaldera.ThelavassurroundingtheHaupucalderaslope away fromthecenteroftheisland.HoaryHead,thehighest pointoftheHaupucal dera,marksthetopofthecalderafilling lavasthatremainin relief withtheerosionofthelessdensesurroundinglavas.35Post-erosionalKoloaVolcanicSeriesLargeamountsofsediments, depositedasero sional unconformities,markthepassageoftimebetween volcanic series on Kauai. Nearly two mil lionyearsofquiescence passed beforetheKoloa Volcanic Seriesmarkedthebeginningofrenewed post-erosional activityabout1.5 millionyearsago. These lavas, which coveredabouttheeasternhalfoftheeroded island, include nepheline basalt, al kalic olivine basalt, basanite,andmelilite nephe linite. These lavas generallyhadadarkermatrixthantherocksoftheWaimea Canyon Volcanic Series.Fe+2is blue black,Fe+3is red (rust).Thedifference in colormaybedueonly totheamountofoxidation (i.e. age). Somelaterpost-erosional Koloa Volcanic Series lavas have reversedremnantmagnetism.This seriesmarkedtheendofpost-ero sional volcanic activity onKauaiover100,000yearsago.Theepisodesofvolcanic activity withintheKoloa Volcanic Seriesarebelieved to be sporadicduetothelargenumbersoferosional unconformit ies found between successive volcanic layering.Fortyventsareidentified fromtheKoloa Volcanic Series.Theorientationoftheventsisnorth-northeasttosouth-southwestacrosstheisland. Mostoftheeruptivefissuresaresmallcinder-and-spatterconesandStrombolian-typecindercones.LavaTubesinSoutheasternKauaiBecauseofthehigh valueofland,manyremaininglava tubes insouthernKauaiarefacingurbaneffects.Somelavatubeentranceshavebeen

PAGE 43

6thInternationalSymposiumonVulcanospeleologyplugged (Kikuchi, 1963)inthefollowing ways: (1) filling withsugarcaneresidue, rocks,anddebrisduringfieldoperations,(2)intentionalfilling by cowboys toprotecttheherd,and(3)use forsewagedisposal by localresidents.Asteadyflowofapplicationsforre-zoningfromagriculturaltoresortusagehasled tootherim plications.Increasedhousingconstructioncoincidingwithresortdevelopmentprobably willresultindeteriorationofcaveentrances.Presently,manycaveentrancesarelocatedwithdifficultyindensebrushandareprotectedbytheirremoteness.Caveswereused forhumanburials.Skeletalremainsarefoundneartheendofanopentraverseofalavatubeonthemarginbetweenpasturelandandaplannedresidentialcommunity.Duetothehighatmosphericwatervaporcontent,muchofthehumanbonehasdeteriorated.Fivemolarswerepresent.Extensivedisturbancebyartifacthuntersis evident. Holesduginthesoilintheentranceareaofthecaveappeartohavedestroyed apartofthearchaeological recordhereandatothercavesitesintheregion (Kikuchi, 1963). Twootherlavatubes, onfonnerpastureland,arenaturalhazardsattheKiahunaGolf Course. Evidenceofrecenttampering,probablyduringgolfcoursedevelopment, isespeciallynoticeablearoundthecaveentranceareas.A signatoneentrancesays,"Thiscave, in whichtheendangeredno-eyed big-eyedhuntingspider(Adelocosa anops)resides, issetasideforitsprotection."PopulationsofSpelaeorchistia koloanaandanoccasionalAdelocosa anopsarenotedmorethanonce byworkerssuchasHowarthandStoneandmorerecentlybyHolsingerandFerguson.SoutheasternKarstTopographyInthelatePleistocene,earthydepositsaccumulatedalongthesoutheasternshorelineofKauaiduringahigherstandofthesea.Thesesmallpiecesofweatheredrockdeposited bygravityformedanalluviumsedimentarybase.Thesedimentaryde posit is amixtureofstream-laidsand,gravel,andsilt.Thesefragmentsoforganicandinorganicweatheredproductsgottransportedtotheplaceofdepositionduringthelong periodsofinactivityoftheKoloa Volcanic Series. Hydrochloric acid con firmedthepresenceofcarbonatesin theseweatheredproducts.Afterthat,sanddeposits blew inlandbyentrainmentduringa lowerstandofthesea.Thisresultedintheformationofeolian dunes.Evaporatingrain36water,passingthroughthepermeabledunesand,deposited moleculesofthecrystallinecompoundCaC03 (CalciumCarbonate).Wind blown oceansprayprobablyresultedin depositsofNaCI (SodiumChlorideorcommonsalt),MgCl'6H20(MagnesiumChloride,whitecrystalsthatcanabsorbatmosphericwatervaporuntiltheyarecompletely dissolved),MgS04(MagnesiumSulphate,colorless crystals), CaS (CalciumSulphate,awhitecrystal linesalt,insolubleinwater),andKCl(PotassiumChloride, colorlesscrystalsthataresoluble inwater)(Godman, 1981).Thisdunesandeventuallyformed a wellcemented,cross-bedded, eolianite.Theselithifiedsanddeposits lieatoptheolder alluvium.Theolderalluvium,actingasa poorlypermeablesolute,maybetransported.Unknownishowlargea rolerainwater,percolatingthroughtheoverbur den,hasplayed inthealluviumtransportationprocess.Inthespacebetweentheolderalluvium belowandthelithifiedsanddeposits above, small caves have formed. AttheGroveFarmQuarryinMaha'ulepu,holesonthesurfaceshow evidenceofcavesbrokenintoduringminingactivities. Historical recordsoftheMaha'ulepuarearecordthepresenceofacommunityoffarming, fishing,andgrazingactivities. Due totheextensivealterationofthelandscapebythesugarplantation,muchofthesurfacearchaeologyisgone.Someremainingsurfacefeaturesare:0)ditchesandflumesoftheawaiirrigationsystem,(2)wallsandC-shelters,(3)houseplatformspaved withiiiili,(4)petroglyph rock boulderandbeach rockterraces,and(5) heiaus.ReferencesBousfield, E.L.andF.G.Howarth(976):TheCav ernicolousFaunaofHawaiianLavaTubes.Pacific Insects.Vol 17,No1.DepartmentofEntomology, Bernice P. BishopMuseum,Honolulu, Hawaii.DepartmentofBusinessandEconomic Development,1989,TheStateofHawaiiDataBook 1989, AStatisticalAbstract, Honolulu, Hawaii, 651 pp.Easton,R.M.andM.G.Easton(1987):HighwayGeologyoftheHawaiianIslands-Hawaii,Maui, Ohau, Kauai,andMolokai,EastonEnterprises,Brampton,Ontario,Canada,158 pp.

PAGE 44

Godman,Arthur(1981):LongmanIllustratedScienceDictionary all fieldsofscientific language explainedandillustrated.LongmanGroup Lim ited, Essex, England. Greeley, Ronald (1987):TheroleoflavatubesinHawaiianVolcanoes.Chapter59inDecker,RobertW,ThomasL.Wright,andPeterH.Stauffer(eds), VolcanisminHawaii,U.S. Geo!. Surv. Prof.Paper1350. 1589-1602.'Han,Tonietal.(1986):MoeKaua Ho'oilo, HawaiianMortuary PracticesatKeopu, Kona, Hawaii.DepartmentofAnthropology, Bernice P. Bishop Museum. Hinds,NormanE.A. (1930)TheGeologyofKauaiandNiihau, Bernice P. Bishop Museum, Bull. 71, Honolulu, Hawaii, 103 ppandplates.Howarth,F.G. (1980)TheEcologyofHawaiianLavaTubes.InWilson, R.C.andJ.L.Smith(oos) ProceedingsoftheNationalCave Management Symposia.Howarth,F.G.andF.D. Stone (1982):TheConser vationofHawaii'sCave Resources.InSmith, C.W. (Ed)The4thConferenceofNaturalSci ences, Hawaii Volcanoes NationalPark,June2-4, 1982. Kikuchi, W.K. (1963): Archaeological SurveyandExcavations on theIslandofKauai,KonaDis-37TanakatrictHawaiianIslands.Sponsoredby UniversityofHawaiiCommitteeforthePreservationandStudyofHawaiianLanguage,Art,andCulture.Kirch P.V. (1985): Feathered GodsandFishhooks:AnIntroduction toHawaiianArchaeologyandPrehistory, UniversityofHawaiiPress. Macdonald, G.A., D.A. Davis,andD.C. Cox (1960): GeologyandGround-Water ResourcesoftheIslandofKauai, Hawaii, Hawaii DivisionofHydrography, Bull. 13, Hawaii, 212 pp. Macdonald,G.A.andAT.Abbott (1979): Volcanoes in the&a-The GeologyofHawaii, University Press of Hawaii, Honolulu, Hawaii. 441 pp.Parker,Sybil P.(00)(1989): McGraw-Hill DictionaryofScientificandTechnicalTermsFourth Edition, McGraw-Hill BookCo.Sterns,H.T.(1985): Geologyofthe StateofHawaii, Pacific Books, Palo Alto, Calif. 335 pp. Sugden, Andrew (ed)Trendsin EcologyandEvo lution,HawaiianEvolutionary Biology.Wentworth,C.K.andG.A. Macdonald (1953):Structuresandfornlsofbasaltic rocks in Ha waii. U.S. Geol. Surv.Bull.994: 98.

PAGE 45

Lava Tubes at Mauna Ulu, Kilauea Volcano, 1972-1974*DonaldW.Peterson U.S.G.S., Menlo Park, California 94025RobinT. Holcomb U.S.G.S., UniversityofWashington, Seattle,Washington98195ExtensivesystemsoflavatubesformedseveraltimesduringtheeruptionofMaunaVlufrom1969to1974,andthegeneraloriginandbehaviorofthetubesthrough1971weredescribedinpreviouspapersbyvariousauthors.Tubesthatdevelopedfrom1972to1974confirmedtheearlierobservationsandprovidedfurtherinsightsintothedevelopmentoflavatubesandtheirroleandsignificanceinthegrowthofbasalticshieldvolcanoes.LavatubesatMaunaVludeveloped byatleastfourdifferentprocesses:(1)accretionofflat, rootedcrustsacrossstreamswithin confinedchannels; (2) accretionofoverflowsandspatterto le vees, whichbuiltarchedroofs acrossstreams;(3)jammingtogetherandfusingofplatesoffloating crust;and(4) progressive extensionofpahoehoe lobes bymoltendistributariesbeneatha solidifiedcrust.Bythesevarious processes,tubescandevelopindifferentpartsoflava flowsundera varietyofflow regimes.Tubescanthereforebecome ubiqui touswithinpahoehoe flowsanddistributealargefractionofthelavadelivered tothesurfaceduringasustainederuption.Tubestransportlavaefficiently. Once formed,theroofsoftubesinsulatethestreamswithin, allowingthelava toretainits fluidity for a longertimethanifexposed directly toambientairtemperature.Thisenablestheflowstotravelforgreaterdistancesandspreadoverwider areas.EventhoughsupplyratesweremoderateatMaunaVlu, generallyaboutoneto five cubicmeterspersecond,theprincipaltubesconducted lavaasfarasthecoast(13 kilometersdistant)whereitfed ex tensive pahoehoe fields onthecoastal flatsand38addednewlandtotheisland.Thelargestandmostefficienttubesdevelopedduringperiodsofsustainedextrusionwhennewlavawasbeing suppliedatnearlyconstantrates.Becauseoftheirubiquityandefficiency, lavatubesexertsignificant control upontheshapesofshield volcanoes. Traditionallythelowaspectratio(height/diameter)ofshield volcanoeshasbeenattributedchiefly tothefluidityofbasaltic lava. How ever, fluidityaloneisnotanadequatecontrol becauseitdependssostronglyonthetemperatureofthelava,andwhenlava is exposed totheairitstemperature,andthereby its fluidity, declines rap idly.Lavatubes provide ameansofinsulatingthelava, therebypreservingitsfluidity, while they alsoserveasconduitsthatallow lava to travel forgreatdistancesacrossthesurface.Theprocess enables basaltic volcanoes toattaindiametersthatarevery large relative totheirheights.AtMaunaVlu,duringtheepisodeswhensurfaceoverflowswerebriefandfewtubesformed, atendencywasnoticed fortheanglesofslope (and therebytheaspectratio)ofthela va shields growingaroundtheventsto increase appreciably.Incontrast,duringsustainedepisodes whenmanytubes developedandmuchofthenew lavatraveledthroughthemfor longer distances,theslope anglesoftheshieldstendedto increase only slightly.Thehighly variablecharacteroftheeruptiveactivitypreventedtherelationsamongthevolumesofsur face flow versustubeflowandtheresultingrateofchangeoftheslope angle from being rigorously documented. However,futureeruptionsatbasaltic shield volcanoesmayprovideopportunitiestotesttheserelations. *a poster exhibit

PAGE 46

Vulcanospeleology of the Mainland USA39

PAGE 47

6thInternationalSymposiumonVulcanospeleology40

PAGE 48

Historical Misunderstandings About Lava Tube Systems and Lava Tube Caves of Lava Beds National Monument, California.CharlesV.LarsonWestern SpeleologicalSurvey13318NE12th Avenue, Vancouver, Washington 98685AbstractUntilquiterecentlytherelationship between caves, lava tubes,lavatubesystems,andtube-fed lava flowsofLavaBedsNationalMonument,California,hasbeenpoorly understood.Howthiscould be inanageofvulcanospeleologicalenlightenmentisendemicandperpetuatedbythemonument'sgeographic, demo graphic,andpolitical isolation.Theonlymonument-widegeologicstudywhichaddressedthefundamentalrelationshipoflava tubes to lavaflows-anda fewotherbriefbutvaluable geologic appraisals, wereneverpublishedandthereforescaped reconciliation withcontemporaryunderstandingoflava tubes. As a consequence, local misconceptions flourished bydefaultuntil recently,whentheFederalCave ResourceProtectionAct requiredthatcaves be delimited.LavaBedsNationalMonumentLavaBedsNationalMonumentliesonthenorthernslopeofthehugeMedicineLakeVolcano, a shield volcanoofenormousbulk.Themonumentisroughlyrectangularinshape,enclosing72squaremiles,atanelevationofabout5,200 feetatthesouthendand4,100 feetattheold shorelineofTuleLakewhich formsthenorthernboundary. Virtuallytheentiremonumentis covered with volcanic rock,ofwhichabouttwo-thirds isBasaltofMammothCrater,a late-Pleistocene basaltic lava.Fromseveraldifferentvents,butprincipallyMammothCrater,itwasdistributedby lavatubesystems,leavingnumerousflows withterrace-like bordersrangingup to 30 feet high,separatedby valley-like depressions in between. Mostofthecavesareinthisbasalt.Nearlyalloftheindividual cavesarelava tube cavesthataresegmentsofseveral extensive lavatubesystems.Thecavesrangeinlengthfrom a fewyardstothelongest,CatacombsCave,withabout6,900 feetofsurveyed passage.Somearecomplexhorizontally,havingmanyinterconnectedbranches.Othersarevertically complex,havingseverallevels.Depthsrangefromsurfacetubes to 150 feet belowthesurfaceinthelower levelsofsomeofthemastertubes.Thelavatubesystemsareextensively collapsed,butmanyofthesegments-theindividualcaves-41have suffered little collapseandexhibitanabundanceofflow features,suchaslava flowstoneandthemanyformsthatresultfrom it. Benches, lin ings, stalactites, ribbed walls, shelves, lava falls,andall kindsofflow linesareabundant. As a rule, speleothems (secondary mineralization)aresel dom well developed in lava tubes,andLavaBeds is no exception. Ice, technically a speleothem, is plen tiful in caveshavinga suitable shape.MonumentisIsolatedLavaBedsNationalMonumentprobablyenclosestheheaviestconcentrationoflava tubesandlavatubecaves inthecontinentalU.S.* However, despitethepresenceofso much tube-fed lava so close to home,theMonumenthasescapedtheintensescrutinythatvulcanospeleologistshavede voted tootherareas.Therearesomeobvious rea sons for this,andsomeobscure reasons. First,themonumentis isolated geographicallyanddemographically.Itis 60 miles fromthenearestcity,KlamathFalls, which isnotlargeenough tosupportacavingorganization.Itisabout50 miles fromthenearestinterstatehighway and, until recently, visitingthereentaileddriving on *TheremaybeheavierconcentrationsatCratersoftheMoon NationalMonumentandelsewhere inIdaho-timewill tell.

PAGE 49

6thInternationalSymposiumonVulcanospeleologysomegravel roads.Itis300and350milesfromlargepopulationcenters,PortlandandSanFrancisco respectively.Thereareno accommodationsintheparkexcept asmallcampground;fewaccommodationsintheusualsensenearerthanKlamathFalls, 60 miles tothenorth;andnoserviceswhatsoeverwithin25milesofparkheadquarters.Theweatheris reliablyunpredictableand,ataneleva tionof4,500 feet,oftenvery cold inthewinterandspring.Foritsownreasons,andperhapsbecause oflocal pressure,theParkServicehasnotseenfit to expandfacilitiestoaccommodatemoreovernightvisitors.Inshort,therearemoreattractiveplaceswherelavatubesmaybestudied; for example, allaroundotherflanksoftheMedicineLakeVolcano,MountSt.HelensNationalVolcanicMonument,andnearTroutLake, Washington.LeftOutofVulcanospeleologyLavaBeds missedoutontherapid expansionofvulcanospeleologythatbeganinthemid1960s.Theyhavea fine library for use byresearchersandauthors,butuntilrecentlyitcontainedlittleaboutlava tubes,perse.In1936,andoccasionallythereafter,respectablestudiesofthelavatubesandsystemsinthemonumentwerecompleted. These works, whichareinthemonumentlibrary, would havecontributedgreatlyto early vulcanospeleo logy,butweredistributedonly internally,andneverpublished(Fisher,1934; Glaeser, 1936;Hatheway,1969; LewisandAnderson, 1936;andPeck, 1976). As a consequence,thetheoriesandtennstheycontainedwereneverreconciled withtheobservationsofothers.Oneofthese[LewisandAndersoncontainedbyfarthelargestblockoftermsanddescriptions for lavatubefeaturesup tothattime.Formostpart,they were based solely on local observationsandconclusions. Predictably, theycontainedfundamentalmisunderstandingsandembodiedmuchlocal convention.Forexample,thetenn"chimney"was applied to hornitos as wellasspattercones,cinderconesbecame"buttes,"andthesenameshangon to this day.Untilre cently, becausetherewas little elsetoreferto, local conventiondominatedby default.]Failureto recognizethefundamentalrelation shipbetweenlavatubesandtheemplacementoflavamanymiles from its sourcehamperedunderstandingoflavatubesatLavaBeds formanyyears.Lavatubesweresomethingthatoccurred in lava flowswhenthetop,andlaterthesides,hardened.42Thevital roleoflavatubesinspreadinglava so thinly,overgreatareas, was virtually ignored.Evenasrecentlyas1990,ina long-awaited U.S. GeologicalSurveypublication(Walters,1990)thereis littleenlightenmentbeyond:"Lavatubestypically formintheinteriorofthicklava flows."Lavatubeswereseenasplaceswherethelavadrainedaway,butneverastheplacewhereitcamefrom, afarmoreimportantdistinction. A few re searchers,uptosnuffvulcanospeleologically, haveexaminedandwrittenaboutspecificlavatubesandsystemsinthemonumentduringthepasttwo decades.Theonlycomprehensive,monumentwidestudyofthelavatubesystemswhichenumeratesonlyselected,developedcaves-wascompleted by LewisandAnderson in 1936.HowManyCaves?No onecansay, with reasonablecertainty,howmanyindividual cavesthereareintheMonument.Manysurveys have been initiated,butnonehavebeencompleted.Over400 cavenamesappearintheliterature,probably200ofthosehavebeenlocatedandexplored tosomeextent,butonlyabout75havebeen described well enough to be positively identified.In1934,Fisherwrotethat293 caveshadbeen discovered,about130hadbeen explored,andabout50hadbeennamedanddeveloped tosomeextent.Thenumber293becamelegendary,appearingin writingsthrough1985.Someaccountsroundedthenumberoffto300caves,andindeed, a 1934mapbore 303 individual cave symbols.In1936, Glaeser (1936)documentedabout130 additional caves,butclearlysomeoftheseoverlapthelegendary293.SegmentationThenumbersabovearenotespecially meaning ful, however, because until 1990 nosystematicprotocol for distinguishing individual caves was neededoracknowledged.Whetheronewill be em ployedremainsto be seen. As a result,manydis tortionsofreality thrive.Forexample, in 1928theentirecave loop section (about five milesworthoffrequentlysegmentedlava tubes)oftheHeadquartersSystemwasincluded inLabyrinthCave. Bythemid-1980s,LabyrinthCave had deflated to amoreplausible, respectably competitive,butoddly pre cise lengthof15,666 feet.(Presumablythislengthvaried a little with seasonaltemperature.)Apply ingtheruleofsegmentationrecommendedbythe

PAGE 50

InternationalUnionofSpeleology (UIS) thatcol lapses widerthantheyaredeep,segmenta lavatube-LabyrinthCave actuallyhasabout3,800 feetofpassage. However,itstruenatureis stillnotcompletely resolved.Along its courseareseveral relativelysmallopeningsintheroof,thataresky lights byanyknowndefinition. Twoofthese openingshavestairwaysandaredesignatedentrances nottoLabyrinthCave buttoThun-derbolt CaveandLavaBrook Cave. .StewartPeck(1976), while asummeremployeeatthemonument,completed asurveyofcaves intheCave Looparea.HewasquiteawarethattheLabyrinthBranchwasextensively segmented,andlisted atotallengthof12,845 feet,ofwhich henotedthat1,310 feet was collapse trench.Healso (correctly) notedthatthelongesttube"...notintersectedorbrokenby a collapse..." was proba blyCatacombsCave,at6,562 feet. Catacombshassincebeeninflatedto 7,475.00 feet (decimal added)andre-surveyed (byoneofthemostrespected cave surveyorsinthenorthwest)to 6,900 feet.EventhoughPeck'sarticlewaspublished,andis inthemonumentlibrary (Peck, 1976), aprominent1990 publicationaboutsomeLavaBeds cavesassertsthatGolden Dome, Labyrinth, Hopkins Chocolate...andBlueGrottocaves [are] "several intercon nectedbutseparatelynamedcaves." (Watersetal.,1990)Infact,theabove cavesareallseparatedfromeachotherbyoneormoresegmentingcol lapses.Forexample,thenearestpoints between GoldenDomeandBlue Grottoareseparatedby four collapses twoofwhicharetwoormoretimes longerthantheyaredeep -andtwoothershortcaves.ThecavesnamedabovearesegmentsoftheLabyrinthBranch(oftheHeadquartersSystem)butarenotinterconnectedinanyreal sense.In1990 followingpassageoftheFederalCaveResourcesProtectionAct,implementationofacavemanagementplan,andinitiationofa caveinventoryconductedbytheCaveResearchFoundation-ithasbecomenecessaryto bemorespecificaboutwhichcavesarewhich.ThemanagementatLavaBedshasneverdeliberatelyignoredorrejectedincreasingknowledgeoflavatubes.Themonumenthasspecificneedsininterpretation,andthereneverhasbeenaneedtoaccommodateotherthanthetypical visitor, who couldhardlycarelessaboutthingslikesegmentation.Underlyingthedeterminationofindividual lava tube caves,ofcourse, isthematterofsegnlenta tion. Indifference toithascontributedmoreto43LarsonmisunderstandingofLavaBeds cavesthananyotherfactor.Theonly consensusregardingitthatexists (the UIS principle), holdsthatifa collapsesink'slargestdimensionmeasuredhorizontally ex ceeds its depth,thetube is segnlented,resultingin multiple caves. This resolution is so simple, how ever,thatitis vulnerable to artifices employed to join cavestogetherfor competitive purposes. I likeitfor its simplicityandbecauseitprovides somethingtangible to measure. Interestingly, initiativesaimedatbroadeningthis consensusareseldom acknowledged,perhapsbecause to do so would acknowledge its existence. I look forward tothetimewhentheneed for a principleofsegmentationis acknowledgedanddiscoursemaybeginaboutspecifics.AndThen...BridgesAlmost asfrustratingasthelackofconsensusaboutsegmentationisthepervasive designationofsegmentsoflava tubesas"naturalbridges." Brid gesatLava Bedsrangewidely in width.Thelongest isthe350-foot-IongsegmentoftheHeadquartersLava Tube System designatedHeppeBridge.(ItwasnamedbyJ.D.Howard,anearly explorer who disdained caveswithoutanareaoftotal darkness.)Thesmallestis probablythe"partialbridge"(whateverthatis) described inWaters(1990). AtLavaBeds, bridgesaremanagedascaves,buttherecently adopted cavemanagmentplanfurthercomplicatesthedistinction withthefollowing ob fuscatory provision: "A bridge isanynaturally oc curringgeologic featurethatspansa spaceandwhosespanis widerthanlong." Very little understanding oftherelationship of tube-fed lava flows, lavatube systems, lava tubes,andlava tube caves is reflectedinliterature about Lava Beds. Even someofthe most recent works inferthatlava tubesarethere because ofthelavaflow,when exactly the oppositeistrue. "System" has been ap pliedtoindividual caves, to groups of caves,butonly occasionally to entire systems. Even today, many who collectdatahave no clear idea ofwhata systemis.Nearly 100 "systems" have been named. Many of these namesaresimilar, to be sure,butthereareonly about nine alignments insidethemonumentthatarearguably lava tube systems. Some "systems" have been judgedandnamed on the basis of observations of a single segment, withoutapparentreferencetothesource ofla va or its destination. Atthesametime, individual segments of systemsareseldom recog nized aspartsof the whole.

PAGE 51

6thInternationalSymposiumonVulcanospeleologyNaming,re-naming,andre-identifying caves,withoutreferencetoorregardfortheliterature,hascreateddifficulty.Forexample:(1)thetwo level cave now knownasMerrill Cave was knownatvarioustimesasBearFootIce,BearPawIce,BearpawIce, Ice Cave,LittleBearPaw,LowerMerrill,andMerrillIce Cave.BearpawCave, nearby,wasknownatdifferingtimesasBearFoot,BearPaw, BigBearPaw,andUpperMerrill. (2) A short, two-levelsegmentoftheHeadquartersSystemmastertube,knownappropriatelyasCompoundBridge since 1917,wasrecentlyre-namedNaturalBridge,despitetheexistenceofseveral dozen"NaturalBridges"inthemonument.(3) Recently, ashort,deepsegmentofthesamemastertube,shownonForestService,ParkService,andpopularmapsandinseveral piecesofliterature,asDuffy's Wellasfarbackas1918, wasarbitrarily.renamedOld Still Well (Sowerset al., 1990).NaturalBridge Cave, afeatureoftheCave Loop tour, is a two-levelsegmentofthemastertubeoftheHeadquartersSystemwithover 300 feetofpassage.ItwasoriginallynamedCompoundBridge byJ.D.Howardin1917. Despitethepres enceofthenamepaintedinlargeyellowlettersontheedgeofa large pieceoffloorcrustjustinsidetheupperentrance,andrepeatedconfirmationintheliterature,including"Theoriginofgeographi cal, geological,andhistoricalfeaturenamesinLavaBedsNationalMonument"(1965),nottomentionasuper-abundanceof"naturalbridges" inthemonumentalready, a fewyearsagoitwasrenamedNaturalBridge. Atleastfive cavenumberingsystemshavebeen employedasameansofidentifyingLavaBeds caves,thefirstin1936. A second seriesofnumbersappearedin1959, twomorein1989,andthelatestin1990.Fortunately,noneofthenumberingsystemshaveanythingincommon. Otherwisetheremightbe a lotmoremisunderstandingaboutLavaBeds cavesthantherealreadyis.44ReferencesFisher, D. (1934):ReportontheLava Beds Na tionalMonument.UnpublishedmsinLavaBedsNationalMonumentLibrary. Glaeser,W.(1936): Geological ReconnaissanceofLavaBeds. Unpublished ms,88pp, in Lava BedsNationalMonumentLibrary.Hatheway,A.W. (1969):LavatubesofLavaBedsNationalMonument,ModocandSiskiyou coun ties, California.UnpublishedMap#6,LavaBedsNationalMonumentmapfile. Knox,RG.andRT.Gale (1959):Thelandofburntoutfires:LavaBedsNationalMonument.BulletinoftheNSS21(part2):55-66 Larson, C.V.andJ.Larson(1989):LavaBedsCaves.Vancouver, Washington: ABC Publish ing,56pp. Lewis,J'v.andS.J. Anderson (1936):LavaBedsNationalMonument:Outlineofgeology.Unpublished ms. inLavaBedsNationalMonumentLibrary. Peck, S.B. (1976):MappingthecavesoftheHeadquartersLavaFlow,LavaBedsNationalMonument,California. In: William R Halliday (Ed),ProceedingsoftheInternationalSymposiumon Vulcanospeleologyandits ExtraterrestrialApplications,pp20-25. Seattle:WesternSpeleolog ical Survey. Sowers,J.,et al.(1990):Cavemanagementplanandenvironmentalassessment,LavaBedsNa tionalMonument.U.S. Dept.ofInterior,NationalParkService, 62 pp,plusappendices, limited distribution. Waters, A.C.,et al.(1990):Selected cavesandlava tube systemsinandnearLavaBedsNationalMonument, California.U.S. Geological Survey Bulletin 1673, 102ppplus maps.

PAGE 52

Geology and Mineralogy of Lava Tube CavesinMedicine Lake Volcano, CaliforniaBruceW.Rogers Cave Research FoundationandU.S. Geological Survey 37899 Los Arboles Drive, Fremont, California 94536-6635 PatriciaH.Rice Cave Research FoundationandU.S. Geological Surveylava fields which change composition alongtheirlength.Ina zone on boththenorthernandsouthernflanksatapproximately 1,370metersin elevationaremanycinderandcomposite cones from which long, tube-bearing lava flowsemanate.A wealthofvolcanic featuresofspecialinterestto speleologistsandcaversarepresentin these areas. Manyofthetubesystems'roofs failed shortlyaftertheirdrain ing.Theresulting landformscanbe divided intothreetypesofcollapse features: long, sharp-edged20kmMedicineLakeVolcano is a large shield volcanothatliesinthenortheastcornerofCalifornia,justsouthoftheCalifornia-Oregonborder.ThisPleistocenetoHolocene volcano is locatedinthesoutheasternportionoftheCascade Geomorphic Province.Thevolcanohasdevelopedasa large shield over33kilometersindiameterwhichattainsanelevationof2,417meters.Thenorthslopeofthemountainis covered with bunch grassesandsageatthelower elevationsadjacentto highly alkaline Tule Lake.Furtherup slope a mixedsageandpinyon-juniper woodland ispresentwhile a pon derosa pine forest coverstheupperthirdofthevolcano.Thesouthernslopesofthemountainarecloakedinmixed pon derosaandhardwood for est.Exceptfor Medicine Lake, acalderalake,andshort-livedephemeralstreams,thevolcanolackspernlanentsurfacewater.Theeruptiverocksrangeincomposi tion frombasaltto rhyolite.Moremaficflowsandbreccia comprisethebulkofthevolcanowithathincoveringofmoresi licic pumice, ash,andob sidian flows.Thebasaltic lavashavecomposition allychangedthroughouttheireruptivehistory-41'suchthattheearliest If lava ismoresilicic (ap proximately 53%Si02)andthelatestmoremafic(approximately47%Figure1-The locationofMedicineLakeVolcano. (FiguremodifiedfromJ.SiO 2).ThisresultsinDonnelly-Nolan, 1987)45

PAGE 53

6thInternationalSymposiumonVulcanospeleologyFigure3-Ofthe three typesofcollapse trenches present on MedicineLakevolcano, sharp-edged trenches aremostcommon. -"';':.....""" Figure2 TheprofileofMedicineLakevolcano as seen from themarginofTuleLakelocatedatthe north baseofthe volcano. Notice themanysmaller cinder cones on themainshieldofthe volcano. These cinder conesmarkthe 1,370-meter-highzoneofcave-bearing basaltic lava flows.MtShastais visibleinthe upperrightbackground.Sharp CoUaJ)H COlLAPSETRENCHES Sag AJluvialedDepressionFigure4-ScottFeestandingatthe entrancetoSkullCave provides scale to the sizeofa typical sharp-edged collapse trenchinLavaBeds National Monument.Thistrench leads into bothSkullCave, adeepicecave with very large (lS-meter diameter) passages and sub-fossil animal and Native Anlrican bonesaswell as into Inclined Cavem, a smaller (lO-meter diameter) passagesicecave.collapsetrenches;shallow sagged, partially col lapsed,partlysqueezed down tube-cum-trenches;andalluviatedtrenches.Thesharp-edgedtrencheshavecleanwallsandpartiallypreservecave passageprofilesunderoverhangingtrenchedgesandinreentrants.Theshallowsaggedtrencheshavenotundergonechaotic collapsebuthaveplastically sagged,eitherclosingorleaving very low passages. Alluviatedtrenchesareuncommon. Thesefeatureshavehadtheirfloors thinly veneeredwithsedimentsandsubsequentlyvegetated.Thesetrenchesappeartobeeithersharp-edgedorsaggedinorigin.Spatterconesorrootlessvents(hornitos)arepresentalongtheaxesofportionsofthetubesystems.Thesehornitosrangeupto20metersindiameterand10metershighand,insomecases, allow access tootherwisesealed cavesegments.Duringtheeruptionsofthepast11,000 years,thepre-existing soilandbasaltswerecoveredwithvolcanicdebris.Channelscutintothisdebriswerequickly linedandextendedupwardsasoverflowinglavasbuiltuptheedgesofthechannels. Some erosion downwardintothelavadeepenedthechannelsandtubes.Succeedingoverflowsbuiltupthechanneluntilitfinally roofed over. As themainflows ceased,minorlobes congealed, leaving flat floorsandthinlinings. Col lapseinthetubes, soil formationatthegroundsurface,andminorspeleothem deposition werethefinal modifications tothesurvivingtubes. Approximately 18%ofthesetubesarepreservedasaccessible caves.Theslopealongthelengthofmanvofthesecaves commonlyaveragesthreede greesalthoughsuddendropsoverthecontrolling underlol:ng topographyarepresent.Over300cavesareknownfrom these flows.Thecavesrangefromshortgrottosundertenmeterslong to braidedsystemsnearlysevenkilometerslong.Passage46

PAGE 54

Rogers&RiceFigure5-BigBertha'sChimney,namedafter pioneer settlerBerthaHeppe, leads into ashortsegmentoflava tubeatthe vent throughwhichthe Valentine Cave andesiticbasaltflow erupted.Thesourcesofthesemineralsarevaried.Thesilicatesappeartohavebeenleachedfromtheunstablepumiceandglassy ashes.Thecalcite, gypsum,barite,andunnamedsaltshavedrawntheircarbonateandsul fate fromthewind-blowndustderivedfromthelargelycarbonatelakemargins.Theoxideandhydroxideminerals(ex clusiveofice) have been derived byweatheringoftherelativelydeepersoilsoftheupper,well-wateredandvegetatedslopesofthevolcano. Ice ispresentaspermanentdepositsinatleast20cavesandappearsasseasonaldecorationsin agreatnumberofcaves.Thereis a rough zonation, controlled by elevation,ofthesecondarymineral ization inthelavatubes.Thiszonationappearsto followtheavailabilityofgroundwater,soil compo sition,andvegetationpatterns.Ontheflanksofthevolcanotheless mobile oxide, hydroxide,andmiscellaneous"minerals"form inthecaveshigheronthevolcanowheresoilsarewell developedand ( Figure6-Charmaine Legg relaxes in a O.6-nteter-high crawl inMammothCave.Note tlte near-aa textured cauliflower lava floorand sharlzs tooth lava st.alactite ceiling, bothofwhichmaketravel into these partsof the cave unpleasant.sizesrangefrom0.25-meterhighcrawlways ameterwideto"dirigiblepassages"upto25metersindiameter.Verticalpitsupto20metersdeeparecommonwherepassageseitherstopedtheirway tothesurfaceorcollapsebetweenoverlying levels occurred. Whilebreakdownis pervasive,smalltolargeareasoforiginalpahoehoefloors with differingsurfacetexturesarefound innearlyevery cave. Wallandroofdecorationsoflavaglazeareverycommoneveninthesmallestofsurfacetubes. However, inmanyofthemoderate-to large-sizedcaves,consecutivecol lapseoftheliningshaveremovedmostofthetube'soriginalglaze.Hardenedcascadesandlava fallsarecommoninthecavesasarefrozenlavalakesandpools.Raftedblocksoflavaandlavaballsencasedinthepahoehoe floorarescatteredalongthelengthofmanytubes.Fourteenminerals,mineraloids,androcksidentifiedbyx-raydiffractionarefoundasspeleothemsinthetubes.47

PAGE 55

6thInternationalSymposiumonVulcanospeleologyFigure7-Ascanningelectron microscopephotographofanwonmilkfoundinCatwalkCave. Thegranularbackgroundis fine-gra'ined calcite,calciumcarbonate; the squaretabularcrystals in the foreground aregypsum,hydrouscalcium sulfate;andthebladedcrystalsatthe top are barite,bariumsulphate. Scalebaratlower left is20microns 0.000,000,020meter-long.groundwaterabundant.Themoremobile silicate,carbonate,andsulfatemineralsarefoundfurtherdownslopeinareasofthinnersoilsandlessgroundwater.Iceandbasaltspeleothemsarefoundthroughouttheelevationalrangeofthecavesstudied.Themineralsfound inclued: cOlnmon, ice H2O especially seasonallv goethiteFeO(OH)rareIPyroluciteMn02rareromane-+2+4BaMnMn8 chite 016(OH)4rareIgypsumCaS04H20UnC01111110nbariteBaS04rarecalciteCaC03verycommonunnamedNa2S03H20rareunnamedNa.S04.C03'nH20rarecristobaliteSi02verycommonsilhydrite3Si02H20rareamorphousmoderatelysilica SiOC0111nl0nbasaltandandesitic ubiquitousbasalt48Figure8-IcestalactitesinCrystal Ice CaveinLavaBedsNationalMonumentare comprisedof0.3-meter-long stacksof2-centimeter-diameter hexagonal ice plates.Manyotherunusualice speleothems are presentinthisice cave.Insome locations very finelypowderedgypsumisfoundon the surfaceoficestalagmitesandfloors.Thepowderhasbeen literal':) squeezedoutofthe mineral-charged waters asthewater froze.MineralGrouosFoundasSoeleothemsStalactitesSoathitesFlowstoneCrustsCoralloids MoonmilkC03S04Si0202N03Thismanuscriptbenefitedgreatlyfrom discussionsandreviewsfromJulieDonnelly-Nolan,AaronWaters,andEdwardHelleyofU.S. GeologicalSurvey;GaryHathawayandCharisseSydoriakoftheNationalParkService;andMikeSimsoftheCaveResearchFoundation,for which wearegrateful.ReferencesAnderson, C.A. (1941): VolcanoesoftheMedicineLakeHighlands,California, Univ. Calif. Publ., Bull. Dept. Geo!. Sci., v 25, no7,pp347-422.Baer,R.L. (1973):PetrologyofQuaternaryLavasandGeomorphologyofLavaTubes,SouthFlankofMedicineLakeHighlands,California, MS Thesis,UnivofNewMexico, 120 pp.

PAGE 56

Rogers&RiceFigure9-Typical eight-meter-diameter passage in Gelsies Grotto, an over-700-meter-long tube. Note extensive collapsemaskingoriginal floorandlargeamountsofcalciteandcristobalite speleothems on the walls.Inanotherportionofthiscave one can see where a later lava stream coursing through the cave heated, deformed,andfinally eroded down nearly1.5 into the solid basalt floorofthe cave.Donnellyolan, J.M. (1987): MedicineLakeVolcanoandLavaBedsNationalMonument,California,GeolSoc Am CentennialFieldGuide-Cordilleran Section,pp289-294. Donnellyolan, J.M.,andD.E. Champion (1987): GeologicmapofLavaBedsationalMonument,northernCalifornia, U.S. Geol SurveyMap11804, scale 1:24,000. Donnelly-olan,J.M.,D.E. Champion, C.D. Miller,andD.A.Trimble(1989 : ImplicationofPost 11,000 VolcanismAtMedicineLakeVolcano,orthemCalifornia Cascade Range, In: WorkshopXLIV,Geological, Geophysical,andTec tonicSettingoftheCascade Range, U.S. GeolSurveyOpen-fileReport89-178,pp556-580.49Greeley,R.(1987 :TheRoleofLava Tubes inHawaiianVolcanos, In:VolcanismInHawaii,U.S. Gool SurveyProfPap1350, pp 1589-1602. Rogers,B.W.1990): MineralogyofLavaTubeCaves in MedicineLakeVolcano, California (abs') atl. Speleo.Soc.ConventionatYreka, California,Programwith Abstracts, p33.Waters, A.C. (1981): CaptainJacksStronghold(Thegeologiceventsthatcreatedanaturalfor tress), U.S. Geol Survey Circular83,pp 151 61. Waters, A.C., J .M. Donnelly-Nolan,andB. W. Rogers1990): Selected CavesandLava TubeSys temsInandearLavaBedsational i{onument, California, U.S. GeolSurveyBull1673, 102 pp.

PAGE 57

Lava Caving AreasinNew MexicoMichael Goal' 14635NorthHighway85,LasCruces,NewMexico 88005 Cyndi Mosch3918Mesa VerdeNE,Albuquerque,NewMexico 87110The complex geological history of New Mexico includes anumberofepisodes of active volcanic eruptionandlava flow, some particularly recent. Thishasleft throughoutthestateanumberofsignif icant lava fields called malpais (Spanish for bad lands). Someofthese malpaisareasarenoted foranabundanceoflava tubes whileotherareashave geo logical, mineralogical, biological,andpaleontological featuresthatmakethemworthyofstudy.AlthoughtherearemanylavaflowareasthroughoutNewMexico,threemalpaisareasareofspecialinterest.EI MalpaisnearGrants,theValleyofFiresnearCarrizozo,andtheAdenCratel'areanearLasCruces (Figure1)have significant vulcanospeleological resources whilebeingaccessi ble tothegeneralpublicandpopular withthelocal caving community.Itisourintentionto providejustenoughinformationabouttheseareastospurinteresttowardsfurtherstudyofthevul canospeleological resources inthisregionoftheUnitedStates. r--t-__I-+-_-L_- ,50mil.,NorthAft.rR.naulr11970)Figure1-Selected lava caving areas inNewMexico.50EIMalpaisRecently designated anationalmonument,theEI Malpais flow (170squaremiles)containsthemostextensivelavatubesystemsinthestate.EI MalpaisNationalMonumentis locatedinCibola County,southwestofGrants,NewMexico (Figure 2).Themonumentrangesin elevation from 6,500 feet0,980meters)tothe8,372-foot (2,552-meter)summitofCerroBandera,ontheContinentalDi vide.Thepredominantvegetation onthemalpais includes sage,juniper,pinon,andponderosa pines,withstandsofaspenalongtheflowmargins.Becauseofthehigh elevation,year-roundice is foundinover100ofthelava cavesandcrev.ices,perhapsmoreherethaninanyotherlava flowareainthecountry.Nearlya dozenmajorlava flowswithinthemonumenthavebeenorderedchronologicallybyTo51Jahns Bandera EIC Id 0".ron D.;', Mountain 0 4milesAfre'Horhewoy11971'Figure2-TheElMalpaisLavaFlow.

PAGE 58

Goar&MoschSUUNTO & TAPE SURVEYBYJeffBauknechtMikeGoarLornaGreenwayCibolaCounty.NewMexicoElevation7,450FtNAVAJOICECAVE(LAVATUBE)Edgeofupper :.7rance sinkSYMBOLS _'0 Breakdown ::: SlitFloor::::PahoehoeLava......Aa Lava o IcePond.',IceStalaQmites .,,<, IceCascade.Siooe ,./ FloorLevelChange.....'CeilingLevelChange... EntranceSinkBoundary7IISCALEMeters'71Feetv2S Oraftedby Mike Goar 19B9Figure3-MapofNavajoIce Cave,Hatheway(1971) according tostratigraphicposi tionandsurfacecharacteristics.Theoldest flow isTertiaryandoriginatesfromtheCelTo EncielTo cone. LaughlinandWest (1976)approximateanageof188,000yearstoanearly flowatthebaseofBanderaCrater,butitis nowthoughtthatthemainflows fromBanderaCratermaybeasrecentas10,000yearsbeforepresent(Laughlinet at.,1982).TheMcCartysflowmaybeasrecentas400 to 1,000yearsbeforepresent(Maxwell, 1986).Ofthemanylavafeaturesinthemonument,especiallystrikingarecollapsestructures,spattercones,andtreemolds.ClassicexampIesofpahoehoe, aa,andblocky flows frequently occur adjacent to each other.EIMalpais lava tubes featurecolorfullybandedwallsandceilings, lava,andothersecondary speleothems includingspectacularice formations. Ceiling skylightsarecommon; par allel tubesaresometimesinterconnectedby win dows forming "braids";tubesmaybe "stacked,"intersectingatdifferent levels. Floor subsidence insometubeshasleft elevated shelves, "curbs," or "sidewalks," alongthepassage walls. Only a few oftheflows withintheEI Malpais NationalMonumentOCCUlTedunderconditions fa vorable for lava tube development.Themostprominentofthese,theBanderaCraterFlow, produced a tube system whichcanbe traced for over 16 miles (Hatheway, 1970). A surveybyKentCarlton in1988revealednearly20%ofthesystemun collapsed. The lava cavesoftheBanderatubesystemcanbe quite large (50 feet to 70 feet in cross section) and containabundantyearround ice. Navajo, Brewers,andClassic caves were recently sur veyed intheBanderasystem. Ice formations in Navajo Ice Cave (Figure 3) include frozen ponds, ice needles (up tothreecentimeterslong),andlarge (four to sevencentimetersindiameter) hexagonal crystals. Lavastrawscanbe observed inthecaveaswellasthick charcoal51

PAGE 59

6thInternationalSymposiumonVulcanospeleologyBREWERS CAVE(LAVATUBE)Clbolacounty-NewMexicoElevation7,480FeetSCALEFeet .FiR ... ters SYMBOLS. AIlava flocrt. Lavastalagmites Slope...Collapse bOUndary .....Icelllng) -:J,.'.J Bre.kdown .......... GvpsumcrustsIGypsum tlalrRunning profileSEEntnnceCollapseSUUNTO 8t TAPESURVEYBY:Jail EatonMikeCan0."8 loganVictor POlyakJoe ScottJohn Stephenson Lin Spillers v Drafted by: Mike Gaar (f) 1989Figure4-MapofBrewers Cave.SkylightEnf,.nce LoAcoLengtn3,163Feet SULI"tO.,dTlpeSUrvey by membfnOftrItNltlonll5<>01._1Sode
PAGE 60

floor deposits.Thinlavablisters,someforminghoneycombs,occuronthewallsinthebackofthecave. Associatedwiththeseblistersarelavacoral loids,somefully developedintolava popcorn.Insomeareas,thesamematerialcomposingthecor alloids occurs intheformofthin(0.5-centimeter) crusts. Brewers Cave (Figure 4) is representativeoftheimpressive sizethatisattainedbymanyofthetubes in theBanderasystem. Two collapse entrances,one10 feet indiameterandtheotherover 50 feet in diameter, dramatically lightthenorthernendofthetube whichhasa 50by 70foot cross section.Unusualsecondary mineral depositsarefoundinBrewers Cave. A coarsely crystalline snow-like mineral onthefloorofa side passageiseasily soluble in water,bitterto taste,andyeteffervesces with hydroeWoric acid. Atransparentwhite efflorescence with hairs up to onecentimeterlong covers a 0.5-meterby0.5-meterareaofwallandfloorinone location.Fromsite observations,itisthoughtthatitmaybe mirabiliteorepsomite.Batswere observed in the cave duringourvisitandwe noted severalbatskeletonsanddecomposing bodies on the floor.ElsewhereinBrewersCave, moist,whitepastymoonmilk depositsoccuron, between,andunderpiecesofflooraainassociationwithdepositsofbatguano.Furthermoistmoonmilk deposits, up to 1.5centimeterthick,occuron a4.5-meterbyI-meterGoar&Moschareaofwall associatedwithcarbonatepopcornandfrost work.Thetextureofthismoonmilk is cotton like tocottagecheese-like with a pearly tosatinlike luster. Likethefloor deposits,itis white exceptwhereithasbeenstainedlocally to colorful huesofblue, red,andorange.Hundredsofwaterdroplets glisten from speleothemsandrocksurfacesatthis locality.Anotherlarge lava tube, Classic Cave (Figure 5),hasa walk-inentranceas wellasa skylight midway totheback.Nearthesetwoentrancesthecavehasmoss, lichen, fern,andplantcommunities.Parallelpassages in thistubeareconnectedintwo places bysmallertunnels. Anoutstandingexampieofinterconnectingpas sageways can be also found in Braided Cave which ispartoftheHoya de Cibola flowfurthertothesouth. This appropriatelynamedlavatubeisoneofthelongest inthenationalmonumentandiscurrentlybeing surveyed. Braided Cave is noted foritsbeautifulmineralstainedwalls,bandedwith"ribs"ofcolor.Italsocontainsa profusionoflava formations, including lava helictites. Secondary speleothemsofunidentified mineralogy occur fromthetips of,orascrustsover,someofthelava formations. TotheeastoftheBanderaflow is the El Calderon flow.Oneofthelava tubes inthisflow,JunctionCave (Figure 6), dips more steeply (7)thanis .'2.0 ProJecteo profileat 900"0JUNCTIONCAVE(LAVATUBE)CibolaCounty-NewMexicosurvey diltum elevation2.219m(7.280Ft) survey lengtn581m(1.907H)Verticalextent 31 m{107 HI SurveyLengtn S7S m(1.880HISuuntoandtapesurveyon10-89.5-90Survey partlcloants:JeffMike Goar,Dave Gose, Marcia Nicholu.JohnStephenson. uuc:rs 01020 40 Fut 020 &060 80100120Figure6-MapofJunctionCave.53

PAGE 61

6thInternationalSymposiumonVulcanospeleology5milesAlterRenault(19701Figure7-TheCarrizozoLavaFlow. typicalofmostofthelavatubesinthemonumentandistheonly lava tube intheareaknown to have occasionally been flooded bywater.Aremnantwaterlinecanbeseenalongthewallsmidwaybackinthetube. Here,thebreakdown floor dips 100 feet belowtheentrancelevel to aterminationinamudfloored room.TheshallowereasternendofJunetionCaveistheroostfor asummercolonyofbats.Thereis also a colonyofthousandsofMexicanFreetailbatsinBatCave,anotherlavatubeoftheElCalderon flow, which liestotheeastofJunctionCave.CarrizozoMalpaisTheCarrizozo lava flow coversanareaof127squaremilesofwesternLincoln County,justwestofCarrizozo,NewMexico (Figure 7).The flow lies onthenorthernendoftheTularosaBasinin atransitionzonebetweentheupperChihuahuanDesertanddrynortherngrasslandsatanelevationof.5,250 feet.Partofthe flow is included intheValleyofFiresStatePark.TheCarrizozolava flow originatedfromtwomajorsources,BrokenBackCraterandLittleBlackPeak.Theolder flow, fromBrokenBackCrater,isoverlainbythemuchmorerecentflow fromLittleBlackPeak.TheLittleBlackPeakflow, whichextendstothesouthfor adistanceof44miles,occurred1,500to2,000yearsago(Weber, 1979).Itwastheresultofthemostrecentofanumberofexplosiveepisodeswhichinterruptedperiodsoffluidlavaeruption.TheLittleBlackPeakcinderconeis85feethighwith'.. UTTlCIi....(1(.peAKeASALT CEDAR CANYONCAVE........_'.""U,..OIXl(.o.A(AQII7I1'O -------------.."-Dctrlft"''''lUl"-lQ....,lC'lO'.....urrr:6'(3a.u.o.ll..0""""oUHO$lto.ItY.l0000,J(.----Figure8-Ma.pofCedar Ca.nyon Cave.54

PAGE 62

Goar&MoschLINCOLNCOUNTY,N.M.Bureau ofLandManagementMIDDENCAVEBlack Peak Basalt Flows entran=\ spring rodent midden h, overlying gypsumsilt ..,.@ breakdown block i.!:. silt e ceiling height(Ill / ledge SUNTO & TAPESURVEYJan. 28,1989J.Eaton V Polyak S.5tadelmanKWalkerS.WalkerW.WalkerFigure9-MapofMiddenCave.aninteriorcrater32 feet in depth. Weberestimatedthatthereisapproximatelyone cubic mile ofoliv inebasaltcontainedinthetotalvolumeoftheflow.TheCarrizozolavaflow coversthePermianYesoandSanAndresFormations,which have been contorted by solution collapseandfolding,andvaryinthickness up to 160 feet (Weber, 1979).Atthemarginsoftheflowthereareseveral known caves: Cedar Canyon(Figure8), Crocketts,andMilrace Caves, which followthecontactbetweenthePermianformationsandthebasalt.Thecaves dip steeply,attainingdepthsgreaterthaninothercavesknownelsewhere intheYesoandSanAndres formations. Milrace Cave isoneofthedeepest010meters)gypsumcaves intheworld. The Carrizozo lava flow has excellent examplesofpressure ridgesandanumberofdeep collapse struc tures. The ropy lava corrugations, some of whicharebraided,areprominentover muchoftheflow surface. Althoughtheflow hasnotbeen fully explored for lava tubes, several inthevicinityofLittle BlackPeakhave been foundandsurveyed, including Midden Cave (Figure9)andMetateCave (Figure 10). These cavesOCcurin the Little BlackPeakflow unit. The Car rizozo lava tubes discoveredthusfararefewerandsmallerthanthose intheElMalpais flow.55AdenCraterTheAden lava field is located insouthwesternDonaAna County,about23 milessouthwestofLasCruces, New Mexico (Figure 11).Theflow coversabout25squaremilesofhighChihuahuanDesertatanelevation of 4,300 feet0,310meters). A portion oftheflow ispartof a Wilderness Study Area being managed bytheBureauofLand Man agement, whiletheremainderis leased public land.Thesourceoftheflow is AdenCrater,a 50-foot high basaltic shield volcano,situatedinthenorth westernpartoftheflow.Thevolcano isestimatedto be 100,000yearsold (Burnsom, 1991)andonce held a lake of lava, whichlaterwithdrew downtheprimaryventto leave anumberofcollapse pits inthecenter, someasdeepas100 feet (Hoffer, 1975). Tension cracksandpressure ridgesarecommon withinthecraterandanumberofsmall lava tubes a few feetindiametercanbe foundbeneaththepressureridges (McMillan, 1991).FeaturesoftheAden lava flow include explosivecraterswithrimsthreetotenmetershigh,andsmall lava tubes 0.3 to 0.6metersindiameterwhichareas longas100meters(Hoffer, 1975). Horseshoe shaped lava ridges called"herraduras,"

PAGE 63

6thInternationalSymposiumonVulcanospeleologyLEGEND loalFLOOR5:'1'() SiLl .:uST 9REMMetate RoomMETATECAVELITTLEaLACKPEAKBASALTFLO' .... SWest Entnnces/?.to,;:/ '...' ; Figure10-MapofMetate Cave.MeasuredbyGoarand Nauser. 1991 \) lalCruce .. KilbourneHoi. ."" 'te""I, I" """.1G"...." J 0"'>0-:"B
PAGE 64

which occurwherecracksintheuppercrustoftheflowareperpendiculartotheflow direction, havebeenidentified byHofferatAdenCrater.TheAden flowsarehighly vesicular olivinebasaltsin layers 0.5 to 5metersthick (Hoffer, 1975).OneinterestingfeatureofAdenCrateris a 37meterdeep fumarole (Figure 12) located ontheeastrim.Usedtoday by local cavers for practicing single rope technique,itwasthesiteofthediscov eryofalatePleistocenegroundsloth(Nothrother ium shastense)in 1928 (SimonsandAlexander, 1964).Theexceptionally well preserved slothwasunearthedfrombeneathbatguanodepositsatthebottomofthefumarole. Muchofthesofttissuesandhairtakenfromthespecimenwasdesiccatedbutstillintact.Thegroundsloth wasdatedat11,000yearsbeforepresent.SummaryEventhoughtherearemanymalpaisareasin New Mexico,theEI Malpais, ValleyofFires,andAdenCraterareaspossessawealthofvul canospeleological resources for researchers, cav ers'andthegeneral public.Inaddition to being sourcesofscientificinterest,theseareasarerich in scenicbeautyandareeasily accessible to visitors,makingthemamarvelousliving laboratory in which tostudymanyofthenaturalprocesses which haveshapedthesouthwesternUnitedStates.ReferencesBurnsom,R.(1991): "DiscovertheWorld ofVolca nosatAdenLavaFlow."LasCrucesSunNews,March 1991. Hatheway,AW.andAK.Herring(1970):BanderaLavaTubesofNewMexicoandLunarIm plications. UniversityofArizona Communica tionsoftheLunarandPlanetaryLibrary,Vol8, pp 299-327. Hatheway,AW.(1971):LavaTubesandCollapse Depressions.PhDdissertation,GraduateCol lege,UniversityofArizona, p 194.57Goar&MoschHorfer,J.(1975):"ANoteontheVolcanicFeaturesoftheAdenCraterArea,SouthcentralNew Mexico."New Mexico Geological Society Guide book,26thField Conference, pp 131-134. Laughlin,AW.andF.G. West (1976):TheZuni Mountains, New Mexico,asaPotentialDryHotGeothermalEnergySite.U.s.EnergyResearchandDevelopment Administration, Los Alamos Scientific Lab, InformalReportU-6197-MS, pp 13. Maxwell, C.H. (1976): Geologic MapofEI MalpaisLavaFieldandSurroundingAreas, Cibola County, New Mexico. U.S. Geological Survey, MiscellaneousInvestiga tion Series 1-1595. McMillan, N. (1991):Personalcommunication,June7,NewMexicoStateUniversity,Las Cruces, New Mexico. Renault,J.(1970): Major-Element Variations inthePotrillo, Carrizozo,andMcCartys Basalt Fields, New Mexico.StateBureauofMinesandMineral Resources Circular 113. Simons, E.L.andH.L.Alexander (1964): "Age oftheShastaGround Sloth from AdenCrater," American Antiquity,Vol29,No.3,pp 390-391. U.S.DepartmentoftheInterior,NationalParkService (1990):GeneralManagementPlan,EnvironmentalAssessmentWildernessSuitabilitvStudy,EI MalpaisNationalMonument,NewMexico. Weber, R., (1964): "GeologyoftheCarrizozo Quad rangle, New Mexico,"NewMexico Geological Society Guidebook,15th Field Conference. pp 100-109. Weber, R. (1979): "ValleyofFires,"New Mexico Geology,May pp 27-28.

PAGE 65

General Geology and Developmentof Lava TubesInNew Mexico'sEIMalpais National MonumentBruceW.Rogers Cave ResearchFoundationandU.S. GeologicalSurvey37899LosArboles Drive, Fremont, California94536-6635Figurei-Mapshowingthe locationofElMalpaisNationalMonumentinNewMexico. Diagonal lines are Park Service areas,shadedareas are BureauofLandManagementwilderness,andthe cross hatched area is Forest Service wilderness. Large circles mark someofthemajorcave areas. -NATIONALAREA BOUNOAA't oWllOERUC,ssAREASUI!i1IDWILOERNESSroTUOV"nEA CAVESN1compositionalongtheirlength.ScatteredthroughoutsomeofthelavaunitsarebothdeepcrustalolivineandpyroxeneandpartlymeltedMesozoicquartz-richsedimentaryrock xenoliths.Theoldestandyoungestflowscontainingtheknown caveshavebeendatedat1.3 to0.75millionyearsold by potassium-argonmethodsand1,000 to400yearsold by archaeological methods.TheEI MalpaisareaofNewMexico is oneofthenewestNationalParkServiceunits.Itis locatedinthenorthwestpartofthestatenearthe toWn ofGrantsatanelevationofapproximately2200me ters.TheEI Malpais, (Spanishmeaning"badcountry")isahigh,lightlyforestedgrasslandsurroundedwith typicalsouthwestmesatopogra phy. Amixofopenjuniper-ponderosapinewoodlandcoversthebareto thinly soil coveredlavaareaswhereasabunchgrass-sage-rabbitbushvegetationmantlesthedeepersoil covered areas. A three-agency cooperativeagreementhasresultedinU.S.ForestServicewildernessandBureauofLandManagementspecialmanagementareassurroundingtheParkServicemonumentcore.DeformedpreCambrianmetasedimentaryrocksandflat-lyingMesozoicsedimentaryrocks underliethemonument.AseriesofPliocene-toHoloceneagelava fields overlietheolder rocks.Thebasalticlavashave composition allychangedthroughouttheireruptivehistorysuchthattheolder basanitesandalkali-olivinebasaltsrangebetween45to48%Si <2 whiletheyoungerolivinebasa-nites,basalts,andmugearitesrangefrolll approximately 46 to 51%Si02.Thishasresultedinlava flows whichchange58

PAGE 66

RogersFigure 2 TheareaoftheElMalpais is a 2,000-meter-high ponderosapineforestwithlarge open areasofsage brush.Thetumulusshownhere is over40meters longand7metershighandprobably overlies a lava tubethathasnonaturalentranceatpresent.INTERPRETIVE GEOLOGIC SECTIONElMalpais Nat. Mon.Figure3-Thisinterpretive geologiccolumnofthe rockunitsexposedinthe areaoftheElMalpais. Bedrock unitsdating front thepreCambrianonupthrough the last 600 yearsofthe Holocene are present.Numbers in boxes are the approximate agesofthe lava flowunitsinMa.TheRendija,ElCalder6n,TwinCraters, Hoya de Cibola, Bandera,andMcCartys flows containmajorlava tube systems in theMonument.59Inthemajorcavearea,fiveapproximatelykilometer-diametervolcanoeswithSpanishnamessuchasEl Calderon(TheCaldron)andLaTetra(TheTeapot) have disgorged lava flowscontainingtubesinvaryingstatesofpreservation.Manyofthetubesystems'roofs failedshortlyaftertheirdraining.Theresultinglandformscanbe divided intothreetypesofcollapse features: long,sharp-edgedcollapse trenches; shallow sagged,partiallycol lapsed,partlysqueezed down tube-cum-trenches;andalluviatedtrenches.Thesharp-edgedtrencheshave clean wallsandpartiallypreservecavepassageprofilesunderoverhangingtrenchedgesandinreentrants.Theshallow saggedtrencheshaveFigure4-InXenolith Cave, fragmentsofbleachedand partly fused DalwtaSandstonehave been ripped from the bedrocksurroundingthe volcano's throatandtransported upwards. (MrBillis approximatelysix centimeters long)

PAGE 67

6thInternationalSymposiumonVulcanospeleologyFigure 5-PatRiceofthe U.S. Geological Surveyina typical nine-m.eter-diwneter passageinJunctionCave, oneofthenwrepopularcavesinthe Monum.ent.Pluggingofthe lowerendofthe cave by breakdownandin-washedsilthas led topondingofflood watersandsubsequenthighwater "bath tub rings" along the cave walls. Note the largeamountofceiling breakdown presentonthe floorandthe extensive calcite Cl1J.sts liningthe upper passage wallsandceilings above the bath tub ring.notundergonechaotic collapsebuthaveplastically sagged,eitherclosingorleaving very low passages. Alluviatedtrenchesarescarcebuthave been thinly veneered withsedimentsandsubsequently vege tated.Thesetrenchescanbeeithersharp-edgedorsaggedinorigin.Oneofthemaincave forming flows,theBanderaCraterflow, is 45 kilometers longandcontains28 kilometersofidentifiable tube,mostofwhich is collapsedorsagged trench. Thisandtheothermajorflowscontaindozensofcavesrangingfrom 50-meter-longnaturalbridges to 3,400-meter-long cavesandover-one-kilometer long systems.Tubesizes generallyarelarge withmanycaveshaving8-meter-wideand12-meter high passagesbutseveralofthecavescontainpassagesupto 15metersindiameter. As is com mon withotherlava tubeterrains,mostofthecaves haveareasofextensiveroofandwall lining collapse. As a result, asubstantialportionofthecaves have fewprimarywallandfloorsurfacesFigure6-Gypsumusuallyformscrustsinlave tubesoftheElMalpais,butatOePunaBeachinFourWindowsCaveithasbuiltupO.3-meter-highbanksthathavebeensubsequentlyeroded bydrippingwatertoformrillenkarren.60

PAGE 68

RogersFigure7-Atthe backofBraidedCave,MrBillinspects a four-centimeter-high seam ofmirabilite(hydroussodiumsulphate) angelhairwhich forms each spring.Assummerdries the cave, themineraldisintegratesandfalls to the floor as powder,onlytoberedeposited as angelhairthe following spring. intact.Wherethetubeinteriorsareintact,thepahoehoe wallsandfloorsshowa varietyoffeaturesandtextures,Raftedblocksarepresentin severalofthecaves. Manyofthecavesarebraided or dendritic inpattern;however,unitarytubesarepresent.Tenmineralsandrockshavebeen identifiedbyx-raydiffractionasspeleothemsintheMonument'scaves.Theseinclude: conllnon, Ice H2O especially seasonallvIgypsumCaS04'2H20very common epsomiteMgS04,7H20uncommonmirabilite Na2S04H20rarethenarditeNa2S04rarecalciteCaC03verycommontronaNa3H(C03)2'2HzOrareburkeiteNa6(S04)2(C03)rarecristobaliteSi02uncommonbasaltubiquitousThesourcesofthemineralsis varied.Thegypsum,epsomite,mirabilite,thenardite,calcite, trona,andburkeiteappearto havedrawntheircarbonateandsulfatefrom wind-blowndustde-61rived fromweatheringoftheMesozoic sedimentaryrocks.Thecristobaliteappearsto have been leached fromtheunstable pumiceandglassy ash. Ice ispresentaspermanentdepositsinatleastfour cavesandappearsasseasonal decorations in agreatnumberofotherca yes. Speleothems inEIMalnais NationalMonumentBubblesCoralloids Crusts CrystalsFlowstoneHelictitesMoonmilkStalactites Stala2"mites C03/C03S04Si02S0402Chartofspeleothemsandtheirmineralcomposi tionsinthe lava tubesofEI MalpaisNationalMonument. Native Americans utilizedthecaves quite exten sively, leaving culturalremainsinmanycaves. Spaniards, Mexicans,andgringosapparentlydid

PAGE 69

6thInternationalSymposiumonVulcanospeleologyFigure8-Cottonballsofmirabiliteandthenardite (anhydroussodiumsulphate) on the floorofBraidedCave. (Microbus is five centimeters long.)notmakegreatuseofthelava tubes except U.S. Army troopsquarryingice fromBanderaIce Cave,thusleftlittle recordoftheirpassing inthecaves.ThismanuscriptbenefitedgreatlyfromdiscussionswithandreviewsfromKenMabery, CindyOtt-Jones,andJohnMorlockoftheNationalParkService;EdwardHelleyandJulieDonnellyoftheU.S. GeologicalSurvey;andT.M.DukeMcMullenoftheSandiaGrotto,NationalSpeleological Society.ReferencesBaldridge, W.S., F.V.Perry,andM.Shafiqullah (1987):LateCenozoic volcanismofthesoutheasternColoradoPlateau:1.Volcanic geologyoftheLucero area,NewMexico, Geol. Soc.Am.Bull.vol 99,pp463-470. Carden, J.R.,andA.W.Laughlin (1974):Petrochemical Variations withintheMcCartysBasalt62Flow, Valencia County, New Mexico, Geol. Soc.Am.Bull.,vol 85, pp 1479-1484. Mabery,K.(1990): personal communication. Maxwell, C.H. (1986): Geologic MapofEI MalpaisLavaFieldandSurroundingAreas,Cibola County,NewMexico, U.S.Geol. Survey Map 1-1595, scale 1:62,500. Rogers, B.W. (1990): General GeologyandDevelopmentofLavaTubes in New Mexico'sEIMal paisNationalMonument:ConfirmingEpsomiteintheField byTasteTesting, Nat!. Speleo. Soc. ConventionatYreka, California,Programwith Abstracts, p 29. Rogers, B.W. (1990):TheEarthShook,TheSkyBurned,andAllTheBunnyRabbitsRanAwayPart13:FourWindows Cave, Cave Research OrganizationofSouthAfricaBulletin,in press.

PAGE 70

Lava Tubes of Pisgah, Southern CaliforniaRussellHarter 10815 Galvin Street, Culver City, California 90230AbstractPisgahis abasalticcinderconeandlavaflow locatedabout175 milesnortheastofLos Angeles,inthecentralMojave Desert. Morethan200lavatube cavesarepresentofwhichabout30aremorethan100 feetinlength,andthelongest(SPJCave) isabout1,300 feet. Manyofthecaves consistentirelyofcrawl ways.Thelavaflowsaregeologicallyyoung(probablylatePleistocene)andarewell preservedduetothedryclimate(lessthanfive inchesofprecipitationperyear), which allows onlysparsevegetation.Nearlyallofthelavatubesareeithersemi-trenches(leveedchannels)orsurfacetubes.Thelongestofthecaves include Glove, QQ/Cat,B,CI0,C12,Cl3N,RC3, Finis,012,030,RussellStewart,A,Owll,Owl 2, Owl3,andWoodsey Owl; allofwhich also have relatively largepassagesize. Someoftheprimarylava featuresofthecaves include remelt,drippendantstalactites, linings, rafted breakdown,breakdownjams,dip-layered stalactites, tuberoofcrustalplates, hornitos, a lavatubeformed in aa, multilevel passagesnotsuperposed, layered lava, blowout pockets,spatter,pillars, columns,andwell preserved detailsofroof crusts. My ownstudiesatPisgahhave included exploration,surfacesurveying, cave surveying, photography, caveweathermagnetismin lava, lava cave morphology,micro-stratigraphy,andcavevisitationaswellasstudyoftheformationoflavatubecaves.IntroductionPisgahlava field is located intheMojaveDesertofSouthernCalifornia.Thelava flow is probably oflatePleistocene age,andthesurfaceis well preservedduetothelowrainfall-lessthanfive inchesperyear. Abasalticcinderconeandlava flowarepresent,andpahoehoe flows covermuchofthearea.Surfacefeaturesinclude a dribletspireaboutthreefeet tall.Therearemanycaves,suchas"A" Cave. Al thoughthepassagesize is comfortably large,thewhole cave is onlyabout100 feet in length.Pisgahis a fine place for family outings.ThemainentrancetoSPJCave is a picturesque spot.SPJisthelongest caveatPisgahatabout1,500 feet. Mostofthe cavepassagesatPisgaharesmall,andcrawl waysinSPJCavearecommon. ManyofthecavesareveryshortsuchasNotEitherCave, which is about40feet in length. New discoveriesareoftenmade,suchasWoodsey Owl Cave,dugopen a few years ago. Woodsey Owl is a single-passage cave about 450 feetinlength. Oneoftheminorexplora-63tion challenges was a high leadinWoodsey Owl Cave.It was eventually free-climbed,butdidn'tgomorethana few feet. C 13NorthCavehasa portionoflarge walking passage, including a nice lining curb. Nearby,anupperlevel overflow extends totheside.SurfaceTubesandTubeRoofsThelava tubesthataremostabundantaresur face tubes. Mostoftheca veentrancesarecollapsed portionsoftheroof. Manyofthesurfacetubes havetheoriginal detailsoftheroof well preserved, some even have the delicateupstreamedgeoftheroof preserved. With muchoftheroof collapsed,itis possible to see relationships like asmallertube fedasanoverflow from a larger tube.Therearenumerous examplesofsurfacetubejunctionpools, someofwhich have collapsed, ex posingtheseveral small tubesthatwere fed fromthepool. Some small surface tubes have been bur ied bylaterlava.Theentranceto QM, a caveabout35 feet long, wasalmostcompletely buriedbyan

PAGE 71

6thInternationalSymposiumonVulcanospeleologyaaflow.Iftheareawascoveredwithforestitmightnotevenbepossible to recognizethattheaaandpahoehoearedifferentflows.Roofcrustdetailsthatarewell exposedatPisgahincludemanyexamplesofincomplete separationofthecrustfrommoltenlava below.TheroofcrustofKB, anaturalbridgeabout40feet long,hasa massive lower phase,withrubbleontop.Itappearstobesimilartotheunderridingoflobesdescribed by Baldwin inthe1880 to 1881HawaiianlavaflowthatformedKaumanaCave.Oneofthewell preservedfeaturesis acastofropy pahoehoe.InStation8 Cave, anaturalbridgeabout100 feet long,thecastsurfaceatthetop istheundersideofoverlying lava.Thelayerinthemiddle istheinitial roofstratumwithremelton its underside.Thebottomlayer is a ceiling liningwithremeltontheunderside.CavesAmapofPisgahshowsthatthecavesarelocatedeastofthecindercone, withinabout1lf2miles.Threetubeflows -C,Q,andOwl-containmostofthecavesthataremorethanabout100 feet inlength-therestareless. Glove Cavehasthree entrancesthatarenearthe middleofthecave. The caveisabout 1,100 feet long, muchofwhich is walking passage, soitisvery populartovisit. Glove Cavehasgood examplesofremelt stalactites,asdo manyofthe lava tube cavesatPisgah.Thereisalso astandof dip-layered stalactitesthatseem to have grown largerbycollecting succes sive thin frothy layers of lava. Blowout pocketsarecommonatPisgah. The surfaceofa shelf in Glove Cave has remeltedandsagged.Ithas also collected some lava drips from remelt stalactites above.Justto the leftofthesameremelted shelf, lava welled up64througha liningpartitionandsubsided again. MuchofthedownhillpartofGlove Cave is walking passage with adustfloor.Inraretimesofheavy rain,waterflows onthefloor leaving adrystreambed.Themiddle portionofGlove Cavehadtheroof fallinwhilethetubewas still hot.Thelava found its waythroughthelowerhalfofthebreakdown,andnowthepassableroutethroughthecave in volves doublingbackandclamberingoverbreakdown. QQ/Cat Cave is asegmentofthemaintubeoftheQ flow.Ithasa freedropof20 to43feetattheentrances.CatCave was firstenteredabout12yearsago,anda connection to QQ Cave waslatermadeby diggingouthardlava fromthefloorofa crawlway.CatCavehascotton-like depositsofthenardite(sodium sulfate) onthefloorthathavenotyetbeentrampledbycareless visitors.Someofthethenarditemakesmassesoflong needle-like crystals.AttheupperendofCatCavethereis abreakdownjamthatwaswelded in place by molten lava. Asmallcascade flowed betweensomeofthebreakdownblocks.Ina closer viewofthebreakdownjam,blue-greypartsarethelava infilling,andbrownrock with shinyspotsisthebreakdown.CatCave also includessometightcrawls.TheSouthernCaliforniaGrottomaintainsaregisterin QQ/Cat Cave tomonitortraffic. Glove Cave alsohasa register,wherewe collect two tothreehundrednamesperyear. Visitation is now two tothreetimeswhatit wastenyearsago.ThePisgahlava field is visitedoftenbecauseitis easily accessible to people from alloverSouthernCalifornia.Landownershipofthecaves isaboutevenly dividedbetweentheBureauofLandManagementandrailroad land.Southofthecaveareaisthe29PalmsMarineCorps base.

PAGE 72

Lava Pseudokarsts of Mount St Helens: The First Decade After the 1980 EruptionsWilliamR.Halliday6530Cornwall Court, Nashville, Tennessee37205MarciaL.HallidayHawaiiSpeleological SurveyHawaiiGrottooftheNationalSpeleological Society308AaronCourt, Sterling, Virginia22170AbstractThepseudokarstoftheCaveBasaltLavaFlowofMountStHelensunderwentonlyminimaldirectimpactfromthe1980eruptionsofthatvolcano.Howeverthecavesandotherpseudokarsticformsunderwenta wide varietyofimpactsdependingolltheirlocationandexposuretorunoffofvaryingloadandvelocity. Anentirenewpseudokarstdeveloped inashcloud depositsandavalanchedebris onthenorthsideofthemountain.Itcontinuestoundergorapidevolution.IntroductionOnMay 18, 1980, depositionofavalanchedebrisandashcloudmaterialcreateda rapidly evolving,sharplylocalized volcanicpseudokarstinthevalleynorthofMountStHelens,Washington.Asmallquantityofdirectedblastmaterialalso is exposed onthesurfaceofthisstudyarea.AlsobeginningonMay 18, 1980, complex erup tionalandperieruptionaleventscausedmajorsurfaceandsubsurfacechangesinthenorthern(upslope)partofthevolcanicpseudokarstoftheCaveBasaltLavaFlow,asdefined by GreeleyandHyde (1972), onthesouthsideofthemountain.Thewriters initiated systematic observations ontheCave Basa!t Lava Flow onJune22,1980,andintheSpirit LakePseudokarston October9,1982, including ground, subsurface,andaerial studies.Astherapidityofchange decreased in both areas,thefrequencyofstudies decreased to onceperyeartowardtheendofthefirst decade. Beginning July 1980, someofthese observations were reported in numer ous publica tionsofthe Na tiona! Speleological Societyandits CascadeandOregon Grottos,theWestern Speleological Survey,andthe proceedingsofMountStHelens symposiaofEasternWashington Univer sity. We nowsummarizeand analyzethefindings ofthefirst decade following the 1980 eruptions.PartI:CaveBasaltLavaFlowPseudokarstMostofthemajorchangesobserved onandintheCaveBasaltLavaFlowpseudokarstweretheresultofperieruptionalmudflowsandotherflood deposits,nottephrafallorearthquakes.Tephrafall fromthe1980eruptionsmeasuredseveralcentimetersattheupperendofthislava flow (about fivekilometerssouthofthe1980craterrim) (Figure1),two tothreecentimetersatthemainentranceofApeCave(about8.5kilometersfromthecrater),andmuchlessfarthersouth.AdditionaltephraaccumulationsfromOctober1980erup-65tionswerenotmeasuredbecauseofadministrativerestrictionson accessbutarebelieved tohavebeencomparativelysmall.Tephrafallwasvertical,withlittleeddyingordrifting(Halliday, 1981, p 4). Only inthecaseofverticalorsteeplyslopingcaveentrancesdidmorethantrivialquantitiesoftephraenteranycave.Someinvertebratefaunawasaffectedbysurfaceaccumulationsoftephra(Crawford,1980)butthecavesotherwisewerenotsignificantlyimpactedbytheeruptionsperse.

PAGE 73

6thInternationalSymposiumonVulcanospeleologyFigure1-U.S. Forest Service roadandpathatthemainentranceofApeCaveinJune1980showingtan, powdery-appearing tephra on thegroundandvegetation. Figure2-Drip cavitiesinthe unconsolidated gray tephra tongue inApeCave. Note the different appearanceofdrip cavitiesinpartiallyconsolidated pre-1980 flood deposits in the background.cadeofstudy.Underground,itwasseenbestin Ape Cave inthelatesummerandautumnof1980(Figure2). SmallamountsenteredApeCave fromthemainentrance(andprobably alsothroughtheuppertwoentranceswhichcouldnotbestudiedunderadministrativerestrictions).Italsoenteredthroughtwo small ceilingcracksdownslope fromthemainentrance.Alltheseweretheresultoflocalrunoffcausedby light rain.Similarmateriallaterenteredthepartoftheca ve crossedbytheHopeless Cave Mudflowthroughseveraldrippoints,resultingin very small mudpondsinfloor depressions. AlltheseentryroutesfortanmudenteringApe Cave sealed spontaneously within a few weeks. -Ontheotherhand, pluvialreworkingoftephraandadmixturewith pre-1980materialscaused a successionofchangesintheareaaboveandbelow thegroundsurface.Somewereminor,short-livedphenomena.Otherswereextensiveandcontinuedto evolvethroughoutthefirst decadeofstudy.Inthesummerof1980lightrainsresultedinearlyseparationofatanpowderytephracomponentwhichreadilyformedsmalllocalmudtongues,ponds,andflows aboveandbelowthegroundsurface(Halliday,1981,p 4).Evenwhenextensivelymixedwithpre-1980materialsonfloodplains(see below), in favorable locations thistancomponentformedsmallbutdistinctivemudpondsandtongues onthe sur facethroughoutthis de-66

PAGE 74

Halliday&HallidayFigure3-AerialviewoftheGremlinCaveMudflowin1986.Theupper entranceofGremlinCave isinthe clearcutinthe lower leftpartofthephoto.Thelower entranceisattheedgeofthemudflowbelow the centerofthe photo.Road81cutsdiagonally cu:ross the upper leftofthephotoandthemainRoad81Mudlfowcuts cu:ross theroadinupperrightcenter.OnJune22, 1980, the entrance sink of Hopeless Cavewashalf-fulloftanmudandtonguesofsimilarmaterial(togetherwith small pebblesofpumice) were photographed enteringnon-spelean swallets about 200 meters northeastofHopeless Cave.Inaddition, they carried small quantities of sand.Alsoonthatdatea wide,thinmudflowconsistingpri marily oftanmudwasobserved covering about 100 metersofForest Service Road 81 (formerly Road 818) ontheeast edgeofthelavaflow,aboutsixkilome ters from the new crater. Inthislocalitynumeroussmallbouldersandsomepre-1980materialderivedfromlocalheadwarderosionwasincorporated in it. Sim-ilarmaterialwasobservedintwo convergent, newly-eroded gulliesaboutonekilometerfartherupslope.DownslopefromRoad81,onesmalltongueofthismudflowwasfoundenteringLittlePeoples Cave. About250metersupslope fromthemainentranceofApe Cave, inthedrainageaxisoftheupperpartofthis lava flow, amudflow pondedbyanotherForestService roadappearedto be composedalmostentirelyofthetantephracomponent.Administrativerestrictions (Halliday, 1981) precluded investigationofthedrystreamcourse betweentheRoad 81 Mudflowandthis mudpond. OnAugust23, 1980, alargermudflow with a differentappearancewasfound inandaroundthe lower entranceofGremlin Cave. Thiswaspartofa mudflow complex crossing Road 81aboutonehalfofakilometereastofthewesternedgeofthelava flowandaboutonekilometernorthwestoftheRoad 81 Mudflow,aboutseven kilometers fromthecrater(Figure 3).Itappearedto arise independentlyoftheRoad81Mudflow,andwasnamedtheGremlin Cave Mudflow.Incontrastwiththetanmudflows cited above,theGremlin Cave Mudflow was grayincolorandgenerallywassandyto grav ellyinconsistency.InGremlin Caveitformed athinslurrywithsomegravellyelements(Halliday, 1981,P6,and1986,Fig4).Someofitprobably was pre-1980 material.OnAugust 23, 1980,thetan-coloredmudflatonandalongside Road 81 intheeasternpartofthelava flow was found partially coveredbya pondofwelded tuff.Itsmaximum thickness was a few centimeters.Partofit had a reddishtintsuggesting incorporationofa pre-1980materialnotobserved elsewhereatany time. Weldedtuffalso was found liningtheprincipal gully alongtheeastboundaryofthelava flow one kilometer upflow fromthepond (Figure 4).Hereitlackedanyred tint.Alltheabovephenomenawere destroyedorheavily modifiedbyseveral days' heavy rainatthe beginningofNovember 1980.Thegully which had been lined by weldedtuffwas enlargedbya factorofmorethanten,andalltraceoftheweldedtufflining was destroyed. A seriesofnew, nearly paral lel gullies incised Road81inmostofits course acrossthelava flow. A sloping flood plain incised by dendritic gullies was depositedatopandon both sidesoftheroad. Locally, trees were debarked morethantwometersabovethesurfaceof this new plain.Neartheroad, bouldersasmuchasonemeterindiameterwere left wedged between trees morethanameterabovethenew ground surface.67

PAGE 75

6thInternationalSymposiumonVulcanospeleologyFigure4-Ashallowstreamgullyalongthe eastsideofthe upperpartofthe CaveBasaltLavaFlowinAugust1980showingtheweldedtufflining. As aresultofthis heavy rainfall,thegeneralcolorofthecountrysidechangeddramatically(Halliday, 1981, p 6).Priortotheheavy rain,thegeneralcolor was a uniform tan, includingthevegetation, to whichtephraclungtenaciously.Thetextureofthegroundsurfacewas powdery.Aftertherain,thenaturalcolorofthevegetation returnedexcept for mossandlowgroundcover which were still covered.Thegroundsurfacevaried from light todarkgray,dependingon howmuchfinegrainedgraytephrahadbeen leached.Inareaslacking major flood deposits,thetextureofthegroundsurfacechangedfrom powdery to gravelly. As farsouthasthenarrowsofthelava flownearthelowerendofApe Cave,thelandscape becamedominatedbynewflood plainsortonguesofflash flood deposits. Hopeless Caveandtheadjacentflat wereburiedina wide flood plain two tothreemetersthick. Locally, thiswastermedtheHopeless Cave Mudflow.Haditscrestbeena few centimetershigher,partofitwould haveoverrunaForestServiceroadnearHopeless CaveandenteredApe Cave (Halliday, 1981, p 6). To a lesser degree,theGremlin Cave Mudflow also took onthecharacteristicsofa sloping flood plain.Thecaveslurrymentionedabove was re placed bysandyto gravelly inwash.Thisnew inwashtemporarilyblockedthelowerentrancecrawlway.SimilarmaterialenteredLittle Peoples Cave from a new tongueoftheRoad 81 Mudflow. Since early November 1980thegeomorphic his toryofthispseudokarsthasbeenthereworkingofthe1980materialsplus additionofmuchad di tional pre-1980material washed intotheareabysubsequentrains.Inandupslopefromthepseudokarst,runoffis very rapid becauseoftheslick,baresurfaceresultingfromtephrafallandpluvial deposits. Vegeta tion isreturninglocally,butmuchofthesurfacestill is easily degradedbycomparatively low veloc ityrunoff.Depositioncontinuestopredominateasfardownslope(south)asthenarrowsofthelava bedatthelower endofApe Cave. However,someerosionbylow-loadstreamflowhasbeen noted both aboveandbelow ground, with continuingfrequentreworkingofdeposits.Tonguesof coarse-orfine-grained floodplainmaterialhave been observedenlargingandlengtheningatdifferenttimesandatdifferentrates.Severalsuchtongues now cross Road 81eastoftheGremlinCave Mudflow. With comparatively light rainfall, small tonguesandpondsoftanandgray fine grainedmaterialstill leachoutofthestreamde positsbutcharacteristicallyarequicklyoverrunbycoarse-grainedmaterial.Following installationofa protectivebarriernearthelowerentranceofGremlin Cave, its lowerentrancecrawlway reopened spontaneously. A suc cessionofvery smallterracesreachingtheceilingofanothercrawl wayabout100metersdownslope suggeststhatitalso became pluggedandreopened spontaneously.Inthelowerentrancearea,degra dationhasbeenpredominantsince 1983or1984. On one visit when severalcentimetersofsnowremainedonthesurface,anactivesnowmeltstreamwasobserved erodingsandystreamdepos its inthecave. Unconsolidated gray mudappearedbriefly in Ape Cave, much liketheinitialslurryin Gremlin Cave.Asthe main Road81Mudflow increased in bulk, one of its tongues entered the vetticallower entrance of Sand Cave then buried it and backfilled nearly all68

PAGE 76

Halliday&HallidayFigure5-Mudflow tongue whichinvadedthe upper entranceofSandCaveshowingthe canyon incised by later low-load high-velocity water.Behindthe caver isbackfillingfrom the lower entrance. Originallythiswaswalkingpassage, now filled.theupslopesectionofthecave. Asmallertongueofthesamemudflowenteredtheupperentranceofthecaveseveralmonthslater.Itdeposited a sandy tongue about onemeterhigh and several metel'Slong. Subsequently this sandy tongue has under gone several small episodesofminor erooion by low load local runoff
PAGE 77

6thInternationalSymposiumonVulcanospeleologyFigure6-AerialveiwofSpiritLakePseudokarst lookingsouthtaken in 1983.BrownwaterSink(left)andGreenwaterSink(right) arenearthe center. Two conical "craters" are to therightofGreenwaterSink.Threesmallsinksare presentwoveandleftofBrownwaterSink.Attherightedgeofthephotoare twoshallowclosed depressionspartiallycutoffby the edgeofthe photo.Thelower (northern) one is heavilymodifiedby construction workontheSpiritLakeDrainageTunnelseen extending across the lowerpartofthe photo. IceSinkis near therightedge, below the center.Otherclosed depressions exist in the extensive post-eruptional surfacesofthis drainage basin,butarescatteredandmuch smallerthanthose described below.Itistheassemblage of largeandsmall closed depressionsandotherpseudokarstic phenomena in this sharply circumscribedareathatmerits its iden tification as a specific geomorphic unit.Recentpublicationofdetailed geologicalandhydrologicalstudiesofthisarea(Glickenet al.,1989)hasgreatly clarifiedunderstandingofitsorigin,nature,andfeatures.Butthefieldstudiesinthat1989reportterminatedin October 1984.Thetopographyofthisareahascontinued to evolve rapidlyandextensively.Someofthemaps, descrip tions,andinterpretationsinthe1989reportarein needofupdating.When we first observeditin 1982,thesurfaceofthispseudokarstconsistedofa gently rolling pockmarkedslopeoffinegrained May 18, 1980,ashcloud deposits from which rose hills consistingofshatteredfragmentsandblocksoftheoldnorthflankofMountStHelens. Some showedsurpris-ingly littlecontortionofpre-eruptionstratigraphy.Someminordi rected blast depositsarepresentnearthenorthedgeofthepseudokarstareaandsomeminorre workedundifferentiatedpyroclasticsnearitssouthedge,butneitherhasanypartinthefindingsandprocessesdescribedhere.Allitspseudokarsticfeaturesareinoneormoreoftheunitsofthedebris-avalanchedepositsofMay18,1980,ortheashclouddepositswhich immediatelyfollowed,orboth. Geologicaltenninology inthisreportisthatofGlickenetal.(1989).Inthistopographywefoundcloseddepressionsofseveraltypesandsizes,sinkingephemeralstreams,cen-tripetaldrainage,karren,verticalshafts,naturalbridges,and(later) onehorizontalcaveabout15meterslong. Glickenetal.(1989)notedthatitsridgeswereashighas230feetandthecloseddepressionsasdeepas150feet.The larg esttypeofcloseddepressionherecharacteristicallyhasdifferentcomponentsoftheMay18, 1980,depositsindifferentsegmentsofitswalls.Thesehavetheappearanceofirregularlyroundedsinkswithwide,flatbottoms.Theslopeandrapidityoferosionofeachpartofthewallsoftheselargesinksisdeterminedbythetypeof1980materialpresentatthatlocation. Blockyareasofthedarkcolored"andesite-and-basaltunit"oftheavalancheproduced comparatively steep, fairlyerosion-resistantslopes. Lesssteepandlessresistantslopesareseen wherethewall is a less blocky portionofthisunitorthegrayer"older-daciteunit."Thetanashcloud deposit formseithergentleornear-vertical slopes. Whileitis highly vulnerable to pluvial erosion,itcharacteristically forms short-lived verticalorsteepfracturefaces.Thelargestclosed depression (alongthe70

PAGE 78

Halliday&HallidayFigure7-SameviewasFigure6takenin1985.Water is presentinBrownwaterandGreenwaterSinksandinoneofthe threesinksto the southeastbutthey arestillseparate.Alsoa shallowpondis presentinthe large, shallow southwestern sink. IceSinkis largerandshallower.northeastedgeofthepseudokarst)hasonly a low ridgeofashcloudmaterialformingmostofitsnorthernrim.Itmaybebreachedwithina fewyearsby headwardero sionofabranchoftheephemeralstreamcourse whichformsthenorthmarginofthepseudokarst.Fivemajorsinksof this typehavebeen iden tifiedinthestudyarea.Theirfloorsareaggrading rapidly,andarecomposedprimarilyofreworkedashcloud de posits (Figure 6). About twometersaggradedintheeasternmostone("BroWllwaterSink")be tween October 1982andsummer1983.InOctober 1982,thefloorofthesecond large sink fromtheeast("GreenwaterSink") was sim ilarinnature.Inthesummerof1983itwasquitedifferent,withacrustseveralcentimetersthick overlying quicksand.Insomeareasitundulatedalarmingly underfoot.Priorto 1984 smallpartsofthesetwosinksandanothernearthesouthwestcornerofthepseudokarstcontainedshallowseasonalponds. Since 1984thepondshavebeenpermanentand, in the caseofBrownwaterSinkandGreenwaterSink,theponds have occupiedtheentiresinkfloor (Fig ure 7).Itisnotknownwhethertheirsurfaces allrepresentthesamewatertable.Thesmallestex ampleofthis typeofsink,about200meterswestsouthwestofGreenwaterSink, hasneverbeen observed with a pond.Thelargeshallowsinkatthenorthwestcornerofthepseudokarstwas badly disturbed byconstructionactivitiesbuthasbegun to show shallowinternalsinksatitseasternend which vary in locationandsize fromyearto year.HereitisseparatedfromGreenwaterSinkonlybya low divideofashcloud deposits whichappearslikely to be a very short-lived feature.Priorto ponding,thefloorsofBrownwaterSinkandGreenwaterSinkshowednumerousshort livedpseudokarsticphenomenaincluding isolated vertical pipes up to 3metersdeepand1.5metersindiameter(Figure 8). At times, multiple stTand linesofpumice pebblesandlargeinternalsinkswere present.InOctober 1982anablation pocketmorethantwometersindiameterwas observed inthesoutheastwallofBrownwaterSink(Figure 9).Fewerandsmallerexamples of vertical pipesandstrandswere noted inthelarge shallowsinkatthesouthwestcornerofthestudyarea.InGreenwaterSink,innersinksseenin1983appearedto betheresultofimpactofa single blocky rock slide ontotheplasticcrust(Figure 10) (Halliday, 1986).Inthese flatbottomed sinks, the locationsofvertical pipesandinternalsinksdiffered fromyearto year.Thefeeder gulliesofthesinkswere stableinpositionbutnotin size, widening markedly fromyeartoyear(predominantly inashcloud deposits).Feedergully depths consistently decreased due to rapid degradationofashcloud surfaces plus aggradationoffloorsofthe gulliesandsinks.Theirwalls tended to remainsteepto verticaldueto block slumping. Rapid head ward erosionofthegullies was characteristic. U.S. CorpsofEngineersper sonnelattemptedtohalthead ward erosionofa large gullyatthenortheastmarginof BrownwaterSinkbybulldozing large rocks into it. This pro-71

PAGE 79

6thInternationalSymposiumonVulcanospeleologyFigure9-Intemalsink in BrownwaterSinkin1982.This was not present in1983.Figure 8-Lookingdowna verticalpipeinthe floorofBrownwaterSinkin1983.Seenmorethana meter below the surface isanelectrical cablethatwasonthe sU/1ace oneyearearlier.ducednosignificantchangeintherateofheadwarderosion.In1982threeshallowsinkswerenotedinashclouddepositsinthesoutheastsectionofthepseudokarst(Halliday,1986,Fig5).In1990,notraceofanycloseddepressionremainedinthisarea.ThesinkswerereplacedbydendriticbranchesofafeedergullyofBrownwaterSink.Thefirststageinthissmallareaofcen.tripetaldrainageswasheadwarderosionbysmallgulliesinthewallofthelowestofthesethreesinks.Thisbreachedthelowerwallsoftheuppertwosinkssothattheybrieflydrainedtothelowerexample.ThenheadwarderosionbythefeedergullyofBrownwa-terSinkintegratedthisentiresub-areaintothedrainageofBrownwaterSink.Quitedifferentinappearancefromthetypeofcloseddepressionjustdiscussedarefoursteepwalled conical"craters."Eachisentirelywalledwithblockyavalanchedebris(partofthemarginofsomeiscomposedofashcloud deposits). Allofthese"craters"aresmallerthanthesmallestofthe"sinks."Theyareradiallysymmetricalandare15to100meterswideatthesurface.Thelargest(a fewdozenmeterswestofGreenwaterSink)hasasmallflatofsandatthebottom.Theyhavetheappearanceof"phreatic-explosionpits"(Lipmanetal.,1981, p509andPlate1)butnoapronsorotheraccumulationsofejectacouldbe foundatopashclouddepositsontheirrims(also,apronsappeartobeabsentinthesupposedexamplesdepictedinFigure288ofthatreference).WeconcurwithGlickenet al.(1989)thatthemechanismofformationofboththe"sinks"and"craters"is"problematical."Theconical"craters"maybesteamventsonagrandscale.Thelargeflat-bottomedsinksappeartohavebeenformedby acombinationofconstructionalprocesses(emplacementofridgesofdebris-avalanchedeposits),differentialcompactionoflooselypackeddebris-avalanchedeposits,andablationoftransportedglacierfragments.Ephemeralpost-eruptionlarge-scaleablationlikethatatnearbyPumicePondcannotberuledout.72

PAGE 80

Halliday&HallidayFigure11-Badlandspseudokarstinashcloud depositsnorthofBrownwaterSinkshowingalignedshaftsandgullies. Figure10-Collapse featuresonthe floorofGreenwaterSinkin1983showinganimpactsinkfrom blocky avalancheandapondinthe largest internalsink(upper left).buttheirwallsandfloors were mostly underlying debris-a valanche deposi ts. A specific typeofverticalshaftwas entirely limited to thickashcloud deposits comlllonlyoccurringindendriticorlinear groups. Originally we includedthemwiththetypeofverticalpipefound inthefloorsofthelargeflat-bottomedsinks. Now we considerthemto be a typeofpipetypicalof"badlandspseudokarst"andhaveobservedsimilarexam ples inSouthDakota, AJ.. izona,andNevada.IntheSpiritLakePseudokarsttheyarefound onashcloud flatsandslopesofgentletomoderategradient(Figure 11). Almost invariably a gullyorsinkwallisnearbyandrougWy parallel totheiralignment(Halliday,1986,Fig11).TheseshaftsoccuralongtheAblationsinksinthisstudyareacharacteristicallywereextremelyephemeralfeatures. Onlyone("IceSink")verifiedexamplewaspresentformorethanoneyear. IceSinkisaninnersinkinthewesternslopeofthelargecloseddepressiononthenorthwestmarginofthestudyarea.ItwasnotpresentinOctober1982andopenedinearlysummer1983.AnicewallwasphotographedinJuly1983 (Glickenet al.,1989,Fig8)butwas coveredbyslumpedhillsidematerial20to30centimetersthickinAugust1983 (Halliday, 1986,Fig9).Sincethenithasincreasedin widthbutitsdepthhasdecreased.Thedepthoffill overlyinganyresidualice isnotknown. Muchsmallercollapse typeablationsinkswereobserved especially inthelow hillsouthwestofIceSinkin 1982and1983.Withoutexceptionthesewereinashcloud deposits73

PAGE 81

6thInternationalSymposiumonVulcanospeleologycourseofdeep,narrowgulliesthathavebecome roofed by blockslumpingfollowed by pluvial ero sion.Theirmaximumwidth isabouttwometersandmaximumdepthisaboutfivemeters.Ephemerallocalrunoffenlargesthebottomsofthesegullies, sooncausingblock slumping, collapseofslumped blocks, widening,anddevelopmentofparallelcrackswhichrepeattheprocess.Headwarderosion occursashigh-velocitywaterenterstheupperendofeachcrack. FollowingtheconceptsofParker(1963)andParkerandJenna(1967) we considerthisto bestresscrackpiping. We foundonecave 15meterslongextendingfromthebottomofonesuchshaftto a gully.Itpersistedfor twoyearsdespite wideningoftheshaftandgully. Alittle"flowstone"ofashcloud particleswaspresent.Becauseofthefriablenatureoftheirwalls, only a fewofthese pits couldbedescended safely exceptwhererecenterosionhadopened a sloping ingress. Allwereobserved to have verticaloroverhangingwallsofhomogeneousashcloudmaterial.Inevery casetracesofacentralceilingcrackwere found intheceilingofgrottosornaturalbridgesatoneorbothendsoftheshaft.With rainfall,theseshaftsenlargeandcoalesce, re-establishing gullies. Especially stable examplesarelocated in flatsnorthofBrownwaterSinkandonthenorthwestwalloftheshallow closed depres sionnearthesouthwestcornerofthestudyarea.Thesurfaceofbothareasisundergoingrapid deg radation, however. Probably both willdisappearwithinthenextfew years.Similarshaftsaredevel oping inashcloud depositsonthesouthsideofColdwater Ridgenorthofthestudyarea.Perhapsduetominorcase-hardening, some hor izontal pipe orifices inthesidesoflargegullies have been observed to bemorestablethanthegullies themselvesorthevertical pipes up-slope from them.Atthesoutheastcornerofthestudyarea, ashortnaturalbridgewasopen (or temporarily closed byslumpingandstreamwash)fro1111982through1990. Meanwhilethegully behind it widenedfro111amerecracktomorethantwometersandthecliff face receded several meters.74ThelandscapeoftheSpiritLakePseudokarstcontinuestoevolveandfollow-upstudiesareplannedfor 1995and2000.ReferencesCrawford,RL.(1980): BiologicalObservationsontheCaveBasaltLavaFlow,MountStHelens, Washington, 22June1980.Washington Speleo logical SurveyBulletin12(Western SpeleologicalSurvey Serial#60). Glicken,Harry,William Meyer,andMarthaSabol. (1989): GeologyandGround-waterHydrologyoftheSpiritLakeBlockage,MountStHelens, Washington,withImplicationsForLakeRetention.UB.GeologicalSurveyBulletin 1789. Greeley, RonaldandJackH. Hyde. (1972):LavaTubesoftheCave Basalt.Ceol. Soc.ofAm.Bulletin,vol83, pp 2397-2418. Halliday,W.R(1981):MountStHelens,N.S.S.News,vol 39, pp 3-6.Halliday,W.R.(1986):CavesandOtherPseudokarsticFeaturesofMountStHelens. In: S.A.C. Keller,Editor,MountStHelens: Five Years Later,EasternWashingtonUniversityPress, 1986, pp 134-142. Lipman,PeterW.andDonal R Mullineaux, edi tors, (1981):The1980EruptionsofMountStHelens, Washington.U.S. Ceoi.SurveyProfPaper 1250.Parker,GaraldG.(1963): Piping, a GeomorphicAgentinLandformDevelopmentoftheDrylands.Intern. Assn.ofSci. Hydrol. Publ. no.65,pp103-113.Parker,G.G.andE.A.Jenna(967):StructuralFailureofWestern U.S.HighwaysCaused by Piping.WaterResourcesDiv.,U.S. Geol. Survey.Preparedforpresentationatthe46thAnnualMeetingoftheHighway Research Board.

PAGE 82

Recent Discovery of Secondary Mineral Depositsinan Idaho Lava TubeDavidW.Kesner,12567West DeMeyer Street, Boise, Idaho 83704AbstractSecondarymineraldepositsofgypsum, mirabilite,thenardite,andcristobalitehavelong beenknownand,in fact,arequitecommon inthelava tubesofsouthwesternIdaho.Untilrecently, calciumcarbonatedeposits were only found in a fewtubesin verysmallamountsandwerethoughtto bequiterare.Therecent"rediscovery"ofHelensHiddenHide-Awaylavatubehassignificantlychangedthisthinking.Thedeposits inthislavatubearenotonlyquiteextensivebutextremelyvaried instructure.Asthisis a veryrecentdiscovery, only basicpreliminaryworkwill bepresentedinthispaper.Itis hoped this willstimulateinterestforfurtherandmoreintensivestudyofthelava tubesofsouthwesternIdaho.IntroductionAlargenumberoflavatubes insouthwesternIdahocontainsomeextremelyimpressive secondarymineraldeposits. Gypsumandmirabilitecanbefoundcoatingentirelavafonnationsandinsomecasesentirerooms.Thenarditeandcristoba litecanalso be foundthroughoutIdaho'slava tubes,althoughinsmallerindividualconcentrations. To alesserdegree, iron-andcopper-based depositshavebeen found.Onrareoccasions,andinverysmallquantities,calciumcarbonatedepositshavebeen found.TherecentexplorationofHelensHiddenHide-Awayhasuncoveredanextensivedepositofcalciumcarbonate,neverbeforethoughtpossibleinanIdaholavatube.Notonly isthereanimpressiveamountofdeposition,buttheindividualstructuralvariationscould rivalsomelimestonecaves. SincethestudyofHelens Hidden Hide-Away began, severalotherlava tubes have been discoveredthatmayalso contain large calcium carbonate depos its.Asthework on Helens Hidden Hide-Away hasnotbeen completedandthe workontheothertubeshasnotyetbegun, thispaperwill deal with Helens Hidden Hide-Awayasa tluly unique find. Only very workhasbeen completedonHelensHiddenHide-Awayasthereisnota large, knowledgeable,interestedscientificbasetodrawupon.Itis hopedthatthispaperwillstir75interestinthetrulyuniquelavatubesofsouthwesternIdaho.BackgroundThebackgroundofHelensHiddenHide-Awayhasbeenhardto uncoverandis based mostly on verbalinfonnationgatheredfrom locals.Thefirst knownaccountofthecave'sexplorationcameintheearly 1930s when Helen Lee's, (for whomthecave is named),futurehusbandtookherto this cave ontheirfirst date. Whiletheywere inthecave they found some bonesandalertedtheuniversity in Pocatello, Idaho. Theysentthebones tothemuseumtherewherethey were identifiedaspre historic bear. Ateamwassentdown for preliminarystudies. (Confirmation hasnotbeenmadeandfurtherinformation is pending.)ThenextaccountcamelessthanayearagowhenJimWoods fromtheHerritMuseuminTwinFalls, Idaho,madea fewtripsintothecave,presumablyto also look forarchaeologicalorpaleontologicalartifacts.(Againconfirmationhasnotbeenmadeandfurtherinformationis pending.) Thesearetheonly known visitations tothecave.Itcanbe assumed, though,thattherehaveproba bly beenmanyunrecorded visitsbylocals. Thisassumptionis verified bythesignsleftbehindoftincankerosenelanternsanda barbed wireandwood ladder.

PAGE 83

6thInternationalSymposiumonVulcanospeleologyGeologyandHydrologyHelensHiddenHide-Away is located intheCentralSnakeRiverPlainnextto,butnotin,theShoshone Ice Cave Flow. This flow isoneoftheyoungestandleastalteredflows inthearea.ItstartsatBlackButteCraterandflows generally southeasterly,coveringalmost210squarekilometers.ItwasoriginallythoughtthatHelensHiddenHide-Awaywasinthisflowbutsubsequentresearchhasshownitto befromamucholderfloworiginatinginashieldvolcanojusttotheeast.TheagedifferenceisquiteobviouswhencomparingthebarelavaoftheBlackButteCraterSurveyedLenglh1347.9feet1414.7meterslTelalVertical 84 feel(25.8 meter!l HELENSHIDDENHIDE-AWAYLincolnCounty,Idaho114'30"43'301991Brunton Compass FiberglassTopeAbneyLevelDrawnJul13,1991Surveyedby:GemStateGrelleMagicValleyGrelleJan27,1990&Jun9,Scale0102550IIMeiers02550100 B II e FeelHeight.anddepthsin meter!@ NA76

PAGE 84

Flow tothesoil coveredareaaroundHelensHiddenHide-Away.LessthansixtykilometerstothenortheastistheLostRiverRange.Thesemountainsarepredominantlydolomiteandlimestoneandprobablyaccountfor apercentageofthesoilmake-upinthearea.Lessthan400meterstothenorthofthecaverunstheRichfield Canal.Itis araisedearthenstructureandproneto a fairamountofleakage.ThiscanaltakesitswaterfromtheBig Wood Riverandisthemajorsourceofirrigationwaterfortheentirearea.TheBig Wood RiveroriginatesintheLostRiverRangeandhasapparentlychangeditscoursemanytimesintheareaaroundthecave.Oneofthepresumedold courses, which is nowanintermittentrun-off,actuallyrunsoverthecave.CaveMorphologyHelensHiddenHide-Away is alavatubethattrendsin asouthwesterlydirection for approximately450meters.Totalverticaldepthis 25.8meters.Theverticaldepthisattainedfrom a 2.9meterverticaldropattheentrance,a5.5-meterverticaldrop25metersin,anda 4.3-anda 3.0meterslopingdropabouthalfway in.Passagewidthsaveragetwo tothreemetersandpassageheightsfrom 4.5tolessthan0.5meterswiththemajorityunder1.5meters.ThefirsthalfofthecaveistypicalforthemajorityofIdaholavatubes:dryanddustywiththefloorcoveredinsmall"klinker"breakdown.A fewshortareashavesandyfloors. Abouthalftothree-quartersoftheway inthetubestartsexhibitingcavernousweatheringfeaturesnotseeninotherIdaholavatubes.Thesesculptedfeatureslook alotlikeheavywatererosioninlimestoneandsandstone.Atabout375metersthe cavetheformationsstartappearing. At first they look oldanddriedandarescatteredaroundthewallsandceiling.Itis inthelast 25 to 30metersofthecavethattheformations completelytakeoverandcovertheentire ceiling, walls,andmostofthefloor.Heretheformationsareactively growing withwaterconstantly dripping ev erywhere.Themajority of the formationsarea cor alloidalstructure,butdraperies, rimstone, flowstone, conulites,anddrip cupscanall be found.Thecaveappearstoendinbreakdownintheformationroom,buthasnotbeen fully exploredduetothetightquartersandfragilenatureoftheformations.77KesnerMineralAnalysisMethodsFieldtestingwasdoneusingdilutehydrochloric acid.Laboratorytestingwasdoneusingenergy dispersive x-ray spectroscopy,scanningelectron microscopy, cross section analysis,andatomicab sorption spectrophotometry.AnalysisAll analysiswasdone on formations found onthefloor,assumedto be fromnaturalbreakage. Fieldtestsshowedfizzingwhendilutehydro chloric acid was applied totheformations.Thisledtotheassumptionthattheywerecalciumcarbonate.Energydispersive x-ray spectroscopy, (EDX),wasdone onthreestructurallydifferentsamples: a drapery, a coralloid,andaroundknob.Thedraperyshowed amakeupof58.53% calcium, 38.35% silica, 1.78% magnesium,and1.33% chlorine.Thecoralloid showed amake-upof65.56% calciumand34.44% silica.Theroundknob showed amake-upof66.59% calcium, 28.95% silica,and4.46% magnesium.ThesepercentagesarenottheactualamountofeachelementpresentasEDX reports percentages based on totalelementsdetectedandEDXcanonlydetecttheelementssodiumthroughuranium.Cross section analysis was done todetermineifthestructureswere helictites.Theanalysis showed concentric growth rings with nocentralcapillarycanalverifying theyarecoralloidalformationsformed from seepingorsplashingwater.Scanningelectron microscopy wasdoneto ana lyze crystalstructure.This wasnotsuccessfulasthepreparationrequired desiccatingthesamplewhich destroyedthesurfacestructure.AsampleofwaterwastakenfromtheRichfield Canal directly abovethecave.Directaspirationatomicabsorptionspectrophotometrywas done for five elements.Theresultswere calcium 36.0 ppm,magnesium7.5 ppm, iron 0.01 ppm, sodium 5.7 ppm,andcopper <0.01 ppm.ConclusionsPreliminaryanalysis showstheseformations to beatleastpartlycalciumcarbonate.Itisnotknown ifthesilicacontentis bound withthecal ciumoris simply interdispersed.Thedataseemsto indicatethatelementalmake-upmayplay somepartinthedifferentstructuralformations.

PAGE 85

6thInternationalSymposiumonVulcanospeleologyThe source for calciumandmagnesiumismost likely from the dust deposited from theLostRiver Range. Asthisdustiscovering a vast majority of Idaho's southwest desert,andother lavatubesdo not havetheseformations, thewatersource from the BigWoodRiverandthe Richfield Canalmustplayamajor roleindissolvingandredepositing the minerals. As researchandtestingprogressesonHelensHidden Hide-AwayandexplorationandtestingbeginsonotherIdaholavatubeswe hopethatmoreaccurateandconclusivetheoriescanbemadeaboutIdaho's"limestonelavatubes."AcknowledgementsFirstandforemost I would like tothankGordonandGloria Sorenson.Theyaretheownersofthecaveandhaveprovided free access tothecavethroughoutthestudyproject. Withouttheircooperationandsupportthispaperwouldnothave been possible. I would like tothankHelenLee for whomthecave isnamed.Sheistheonewho first showedmewherethecavewasandprovidedmewiththebackground information. I would like tothankthemembersoftheGemStateGrottoandMagic ValleyGrottowho pro videdassistancein exploring, mapping,anddatagathering.78I would liketothankBarryPharaohattheIdahoStateHealthLaboratoryfor hisatomicabsorptionanalysisoftheRichfieldCanalwater.And lastly, IamextremelygratefultoJimRiggatBoiseStateUniversityfor his analysisworkwiththeenergydispersivex-rayspectroscopyandscanningelectron microscopy.ReferencesGreeley,Ronald(1982):TheStyLeofBasaLticVoLcanicsintheEastern Snahe RiverPLainofIdaho,IdahoBureauofMinesBulletin#26,pp407-421. Hill, CarolA.andPaoloForti(1986):Cave MineraLsofthe WorLd.Larson,Charles(1990):Personalcommunication. Lee,Helen(1990, 1991):Personalcommunication. Maley,Terry(1987):ExploringIdahoGeology.Sorenson, GordonandGloria (1990, 1991):Personalcommunication.

PAGE 86

Lava Tube Systems of Lava Beds National MonumentCharlesV.Larson Western Speleological Survey 13318NE12thAvenue, Vancouver, Washington 98685AbstractNinemajorlavatubesystemshavetheirorigin in,orpassthrough,LavaBedsNationalMonument.SixofthetenareinthePleistoceneBasaltofMammothCrater,twoareinyoungerbasalts,andoneis inanapparentlycontemporaneousbasalt.Somepartsoffourofthesystems,thosewithpopularcaves,havebeenstudiedatsomelength.Thenatureoftheotherfive isnotwellknownbecausetheyareremote,notservedbyroadsortrails,inareasthatarevegetatedbymountainmahogany,andextremelydifficult totraverse.Onlythreemonument-widestudiesofthemonument'slavatubesystemsexist,andtheyarecursoryatbest.OverallAssessmentsOnlythreeoverallassessmentsoflavatubesystemsinsideLavaBedsnationalMonumentexist.TheyareLewisandAnderson (1936),Hatheway(1969),andDonnelly-Nolan (1987).Nolan'sgeo logicmapclearly showsmostofthesystems, identifyingthemaseitherlavatubesorlavatubecaves. Allthree,whilenotdetailed, roughlyagreeonthenumberofsystems,aboutnine. LewisandAndersonshowabout12or13 possible systems,butitisimportanttonotethattheirstudywas completedbeforehigh-resolutionaerialphotographswereavailable. SixofthetensystemsareinthePleistoceneBasaltofMammothCrater,one intheHoloceneBasalticAndesiteofValentineCave, one inthePleistoceneBasaltofCaldwell Ice Caves,andoneinthePleistoceneBasaltoftheCastles.Thelargely tube-fedMammothCraterBasalt, which covers roughlytwo-thirdsofthemonument,androughlyanequalareaoutsideit,waseruptedfrom a seriesofventsalonga now-buriedsouthernextensionoftheGillemFault.Itshould be no surprise,therefore,thatmostofcaves insidethemonumentaresegmentsoflavatubesystemsformed within it.TheMammothCrater"distributioncenter,"anareabounded byBearpawButteonthenorth,HippoButteontheeast,MammothCrateronthesouth,andtheCallahanLavaFlow onthewest, is complex.Waters(1990)contendsthatthisareawasalargelava lake,andthatthelavatubesys-79terns assigned to ModocCrater,BearpawButte,andBatButtehadtheirsource inthislake. Al thoughthistheory isatodds withthatofDonnelly Nolanandothers,theexistenceofsuch a lakeshouldnotbedismissed.TheBatButteandBearpawButtesystemscould bebranchesoftheModocCratersystem, which could have originated inthelava lake (above). However,itismorelikely they originatedattheirrespectiveventsalongtheGillem faultsouthofFleenerChimneys.Inaddition totheninesystemsdescribed here,thereareseveralminoralignmentsoftwoorthreecaves each.Theirvolumeandlocation indicatethattheyareprobablybranchesofthemajor systems,butsincethebasaltofMammothCratereruptedfrom severaldifferentvents,thepossibilitythatthey could besystemsintheirownrightcannotbe discounted. Detailed belowaretheninemajorsystems.Theaverageslopelengthisbasedonthetraverselength. A comparisonofthemaplengthandtra verselengthprovides a very roughapproximationofeachsystem'ssinuosity.1.ModocCraterSystemPleistoceneBasaltofMammothCrater.Map length: 41,400 feet, 7.8 miles.Traverselength: 56,500 feet, 10.7 miles. Average slope: 0.92 degrees. Traceable fromtheeastsideofBearpawButtetoFernCavenearthesouthshoreofoldTuleLake,

PAGE 87

6thInternationalSymposiumonVulcanospeleologytheModocCraterSystemisthelongest inthemonument.Itis extensivelysegmentedandmanyofitssegmentsweredeveloped fortouristsduringthe1920sand1930s. Only fiveoftheindividual cavesarepresentlymaintainedfortouristuse. About15othersareabandonedasdeveloped sites,andabouttwo-thirdsofthosearewithina wildernessareasetasideinthe1970s.Thesystemischaracterizedby amature,multilevelmastertuberangingto120feetbelowthesurface,mostofwhichisnowcollapsed.Thoughtherearenoknownbranchesofsignificance,itis likelythatsomeexistinthefive-milediameterdeltaatthedistalendofthesystem.ThemastertubeliesalongsidetheolderSchonchinButtelavaflow foraboutsix miles. Mostoftheopensegmentsdisplayconsiderableerosiondownintounconsolidatedpre-flowstrata.ErosionisespeciallyobviousinthelowerlevelofSkullCave.Severalsegmentsareglacieres,mostnotableofwhichareMerrill,Skull,andFrozenRivercaves.JustsouthwestofSchonchinButtethereis arareexampleofaneruptionthatrosethroughthepathofanolderlavatube. AboutonemilenortheastofBearpawButte,thesystem'smastertubeimpingedagainstSchonchinButte,thenveeredsharplyeastward.Justup-tubefromthisbend, perchedatopthelavatubelike amonstroushor nito,standsoneofthe"Castles."TheCastlesaretwoprominentspatterventsonthesouthwestflankofSchonchinButte-twoofnumerousothervents, mostly tothenorth,thaterupteda high-aluminabasaltthroughtheMammothCraterBasalt(Nolan).Thereis a cave,consistingofa complex open verticalconduit,thatisenteredthroughthisspattervent(WestCastleCave),thathasbeenmistakenfor a la va tube.ItisnotpartoftheModocCraterSystem,andwhateffecttheyounger'eruptionhadonremainingcavernouspartsofthemastertube,ifany, isnotknown. The ModocCraterSystemandvarioussectionsofitarealsoknownas:BearFootRift,BearpawButteSystem,Bearpaw-Merrill-Skulllineofbreakdowns,Bearpaw-Skulllavatubesystem,Bearpaw-Skull-Fossilsystem,Bearpaw-Skulllineofbreakdowns,Bearpaw-Skulllineoflavatubes,Bearpaw-SkullSystem,BearpawTubes,CaveLoop-Post OfficeDistributaryTube, Heppe-ModocLavaTube,Heppe-ModocLavaTubeSystem,Heppe-MOdocSystem,MammothBearpawcol lapsetrench,MammothBearpawlava-tubedrainagesystem,MerrillIce-SkullCavelavatube,80Merrill-Skull System, Merrill-SkullTrench,Mer rill-SkullTrenchSystem, MerrillTrench,ModocCraterTube, ModocLavaTube, Modoc System,andSkullCaveRift.2.HeadquartersSystemPleistocene,BasaltofMammothCrater.Map length: 26,600 feet, 5.04 miles.Traverselength:34,300feet, 6.5 miles(mastertubeonly). Average slope: 1.78 degrees(mastertubeonly, firstquarterofa mile is steep). (The abovedataarebasedontheassumptionthatCraigCave is asegmentofthesystem.)TraceablefromthenorthsideofMammothCraterto(possibly)CraigCave,thesystemischaracterizedby amaturemastertubeandprominentdendriticdevelopmentina mile-long sectionofoverflowsknownastheCaveLooparea.Uncollapsedsegmentsofthemultilevelmastertuberangeto 150 feet belowthesurfaceand,liketheModocCraterSystem,partoftheextraordinarydepthresultedfrom erosion into unconsolidated pre-flow surfaces.Therearethreemajorbranchesin Cave Looparea,andpossibly amajorbranchabouthalfa mile fromthesourceatMammothCrater.AnglewormLostPinnacleCaveandTheBowers (Cave), locatedaboutmidwaybetweentheIndianWellcampgroundandSkull Cave,appeartobesegmentsofyetanotherbranchofthissystem.TheHeadquartersSystemandvarioussectionsofitarealsoknownas: Big Rift,BlueGrottoSystem,CatacombsLavaTubeSystem,CatacombsRift,CatacombsSystem,CaveLoop-LabyrinthSystem, Cave LoopLavaRift, Cave Loop LineofLavaTubes,CaveLoop-Post OfficeTrench,Cave Loop-Post OfficeDistributaryTube, Cave Loop RoadLavaTubeSystem,CaveLoop-Sentinel System,Cave Loop System, Cave Loop toPostOffice SeriesofCaves,CraigSystem,HeadquartersFlow,HeadquartersFlow System,HeadquartersLavaFlow, Heppe-Cave LoopRoad-PostOffice-CraigSystem,Heppe-CatacombsFlow, Heppe-MOdoc System,HeppeRift-"threebridgesintheHeppeRift,"HeppeSystem,IndianWell-Doc Yock System,LabyrinthCave System,LabyrinthCaves System,LabyrinthCaveSystemTrench,LabyrinthLava-TubeSystem,LabyrinthSystem,LavatubesystemoftheCave Looparea,MammothCraterHeadquartersSystem,MammothCrater-Heppe

PAGE 88

Trench,MammothCraterLavaTube,MammothCrater-PostOfficeCavelineofbreakdowns,MammothCraterSystem,MammothCraterTube,MammothCraterTubeI,MammothCaveLavaFlow,Mammoth-HeppeSystem,MammothHeppe-NaturalBridgeLava-TubeCaveSystem,Mammoth-Sentinel-LabyrinthSystem,ParadiseAlleys-CatacombsLava-TubeSystem,ParadiseAl leys-OvisSystem,PostOfficeTrench,andPostOfficeSystem.3.Tickner-ValentineSystemHoloceneBasalticAndesiteofValentineCave.Maplength:17,200feet,3.26miles.Traverselength:18,480feet,3.5miles.Averageslope:2.23degrees.ThesystemandvarioussectionsofitarealsoknownasTickner-BerthasSystem,TicknerCaveTube,ValentineCaveLavaFlow,ValentineCaveTube,ValentineChannel,ValentineDistributary,ValentineFlow,ValentineSystem,ValentineTrench,andWestValentineDistributaryTrench.ThesystemformedintheBasalticAndesiteofValentineCave,branchedtoflowaroundbothsidesofCaldwellButte,butdoesnotincludeCaldwell Caves.TraceablefromTicknerandBerthasCupboardCaves,aboutaquarterofa milesouth(out side)ofthemonumentandaboutonemileeastofMammothCrater,aroundthenorthwestsideofCaldwellButtetoValentineCavewheretheflowspreadsnorthandeast.TicknerandBerthasCupboardCaves,orpartsofthem,appeartobepartoftheventstructure-orrifttubes.ThereareseverallavatubesegmentsbeyondValentine,butnonecanbepositivelyascribedtothissystem.4.BearpawButteSystemPleistocene,BasaltofMammothCrater.Maplength:7,400feet, 1.4 miles.Traverselength:11,800feet, 2.1miles(includesbothbranches).Averageslope: 1.7degrees.TraceablefromthenorthflankofBearpawButtenorth-northeast,forabout1.36 miles,whereitisburiedbytheyoungerBasaltoftheCastles,thesystembranchesaboutonemile fromBearpawButte.BalconyandBoulevardcavesaresegmentsoftheleft,ornorthwestbranch.Therelativelysmallcrosssectionofthelattercavessuggeststhatthissystemdidnotcontinuefarbeyondthepointwhereitiscoverd byBasaltoftheCastles.81LarsonThesystemis alsoknownas:Balcony-BoulevardSystem,BearpawButteTube,BearpawSystem,CastleBasaltSystem,EastBatButteTrench,[System]NorthofBearpawButte.5.CaldwellSystemPleistoceneBasaltofCaldwell Ice Caves.Maplength:5,500feet, 1.04 miles.Traverselength:6,300feet, 1.2 miles.Averageslope: 2.9 degrees.TheBasaltofCaldwell IceCavescannotbe distinguishedfromtheBasaltofMammothCraterbyhandspecimenorremnantpaleomagnetism,butdifferschemically.Thelavatubesystemistraceablefromaboutaquarterofamileoutsidethemonument,southofCaldwellButte,northeastabout1.2 milestothemainmonumentroad,whereitisburiedbytheBasaltofValentineCave. Althoughrelativelyvoluminousatthepointofburial,itshostflow doesnotreappearfrombeneaththeBasaltofValentineCavewithinthemonument,suggestingthatitcouldnotextendmuchmorethana mile. AlsoknownasCaldwell IceCavesSystem,Cald wells Rift, CaldwellTrench,andIceCavesTube6.BatButteSystemPleistoceneBasaltofMammothCrater.Maplength:15,300feet,2.9miles.Traverselength:18,700feet,3.5miles.Averageslope: 1.78degrees.ThissystemistraceablefromtheventareaaroundandonthenorthsideofBatButtetoaboutonemilepastBlackCraterwhereitswesternsideisoverlainbyHolocenebasaltoftheDevilsHomesteadflow. A half-mile-longsectionofthesystemsouthofFleenerChimne ::> ismarkedonlybysomeextraordinarytumuli.ThedistalpartofthesystemhastheappearanceofbeingmucholderthanothersintheMammothCraterBasalt.Thissystemis alsoknownasBatButteSystem,FleenerSystem,Fleener Trench, and"RiftorthofEearFoot,"andissometimesconfusedwiththeFleenerTrenchamajorchannelthatdeveloped intheyoungerDevilsHomesteadlavaflow,adjacenttoFleenerChimneys.7.MammothCraterIIPleistoceneBasaltofammothCrater.Maplength:1.5 nilles.

PAGE 89

6thInternationalSymposiumonVulcanospeleologyTraverselength: 9,500 feet,1.8miles. Average slope: 1.2 degrees.FirstidentifiedandnamedbyHatheway(1969),thissystem beginsnearthepitcratersonthenorthflankofMammothCraterandtrendsnorthwestbetweenBearpawButteandEagleNestButte.Therearenonamedcaves in this system.8.UpPerIceSystemPleistoceneBasaltofMammothCrater. Map length: 4,500 feet, 0.8 miles.Traverselength: 5,300 feet, 1.0 miles. Average slope:1.3degrees. Traceable foronemile, fromthewestflankofMammothCratertosouthsideofEagleNestButte(Cinder Cone) whereitis buriedbytheCallahan Flow,thisalignmentis mostly collapsetrenchandthe onlynamedcave isUpperIce Cave.9.HardinButteSystemPleistoceneBasaltoftheCastles. Map length: approximately 0.5 miles.Traverselength: approximately 0.5 miles. Average slope: Unknown.TheHardinButtesystemapparentlyformed inBasaltoftheCastles,SouthofHardinButte, inanareawheretheCastlesBasaltintermittentlycoverstheandesiteofSchonchin Butte. Very little is knownaboutthis system.Itwas first identified byHathewayin1969.Donnely(1987)found only surface tubes in this flow.Thepossibilityofa northernextensionofthissystemis raised inthenotesofJ.D.Howard,anearly cave explorer:"Thereare82ninenaturalbridgesnortheastof'SandButte,'"nowknownasHardinButte.ReferencesDonnelly-Nolan, J.M.andDuaneE.Champion(1987): GeologicmapofLavaBedsNationalMonument, Northern California.U.S.GeologicalSurvey, Misc.InvestigationSeries,Map11804.Hatheway,A.W.(1969):LavatubesofLavaBedsNationalMonument,ModocandSiskiyou coun ties, California.UnpublishedMap#6,LavaBedsNationalMonumentmapfile. Knutson, R.S.(1974):Longest cavesoftheFarWest.California Caver 24(3):9-10.Larson, C.V.andJ.Larson(1989):LavaBedsCaves.Vancouver, Washington: ABC Publish ing, 56 pp. Lewis, J.V.andS.J. Anderson(1936):LavaBedsNationalMonument:Outlineofgeology. Un published ms. inLavaBedsNationalMonumentLibrary. Peck, S.B.(1976):Mapping the cavesofthe HeadquartersLava Flow, Lava Beds National Monument,California.InProceedingsoftheInternationalSymposiumon Vulcanospeleologyandits Extraterrestrial Applications,ed. WilliamR.Halliday, pp 20-25. Seattle: Western Speleolog ical Survey.

PAGE 90

83Vulcanospeleology of the World

PAGE 91

6thInternationalSymposiumonVulcanospeleology84

PAGE 92

Lava Cavesinthe Hallmundarhraun Lava Flow, Western Iceland Bjorn Hr6arssonSigur6urS. J6nsson Icelandic Speleological Society, PO Box342, 121Reykjavk, IcelandAbstractHallmundarhraunislocatedinthe Borgarfjor6ur regioninwesternIceland.Theflow isofHoloceneage.Tephrochronologicalstudiesand14Cdatingssuggestthattheabsoluteageoftheflow couldbeabout1,050years,thusitflowedinhistoricaltimes,intheearlytenthcentury.Theflow coversanareaofapproximately200squarekilometers.Thevolumeoftheflowhasbeenestimatedtobetwotothreecubickilometers.Thisparticularflow isuniqueandoutstandingamongIcelandic flowsduetotheenormityofspeleologicalphenomena.FouroutoffiveIcelandiclavacavesexceedingonekilometerinlengthareintheHallmundarhraunlavaflow.Thetotalnumberofcavesandcavernsis 12.Insomeofthecavesarchaeologicalremainsaretobefound,mostlycattleandsheepbonefragments,cairns,fences,andpilesofrock.Littleisknownabouttheseremains.BriefOutlineoftheGeologyofIcelandIcelandispredominantlyofvolcanic origin.Theexposedvolcanicpileismostlybasalt(80to85%)oftholeiiticcomposition.AltogetherTertiaryrockscoverabout50,000squarekilometersoraboutonehalfofthetotalareaoflceland.Radiometricdatingsuggeststhattheoldestexposedrocksare12to16millionyearsold.FewindicationsofspeleologicalformationshavebeennotedintheTertiarylavapile.Walker(1959)mentionsaroughlycircularsectionofinfilledlavatube6.5to8.0metersindiameter.ThePlio-PleistoceneandupperPleistoceneareascoverabout40,000squarekilometersoccupyingbroadanddistinctivezonesbetweenthe Ter tiaryareaandtheneovolcaniczones.TheboundarybetweenTertiaryandPlio-PleistoceneissomewhatarbitrarilyfixedatthebaseoftheMammothmagneticpolarityevent(3.1 millionyearsago)whenthefirstwidespreadtillitesappearinthestrata.TheUpperPleistoceneformation com prisesrocksformedduringtheBrunhesmagneticepochwhichbegan0.7millionyearsago,excludingthePostglacialwhichisreferredtoasrocksformed13,000to10,000yearsago-until874ADwhenthefirstsettlerscametoIceland-youngerformationsarethus"historical."85Postglacialvolcanismcontinuedalongthesamepatternasduringformerinterglacialperiodsandthecompositionofvolcanics issimilartothoseformedintheTertiary,Plio-Pleistocene,andUpperPleistocene.Totallavaproductionin post glacialtimeisestimatedtobe400to500cubickilometersandthelavascoverabout12,000squarekilometersorabout10%ofthesurfaceofIceland.VolcanicActivityinHistoricalTimeVolcanicactivityinIcelandinhistoricaltimehasproducedlargequantitiesoflavasandis adirectcontinuationoftheprehistoricpostglacialactivityandis confined toalmostthesameareas,i.e.withintheneovolcanic zones.Nearlyeverytypeofvolcano found onthefaceofourglobe isrepresentedinIceland,andthediversityofvolcanicphenomenaismuchgreaterthantobeexpectedonanoceanicisland.Thenumberofknownvolcaniceventsisabout250forthelast1,100years,butthetotalnumberofindividual flowshasneverbeenestimated,asthevolumeofeachrangesfrom lessthan0.1 cubickilometersto12cubickilometersintheSkaftareldar(Laki)eruptionin 1783.Thatparticularflow isthegreatestsinglelavafloweruptedontheearthinthelast1,000years.

PAGE 93

6thInternationalSymposium on VulcanospeleologyHallmundarhraunHallmundarhraunisthelargest lava flow in the Borgarfjore5ur areain western Iceland, originating fromcratersjustoff the flanks oftheLangjokull glacier. Theareaoftheflow is about 200squarekilometersandthevolumehasbeen estimated to be about two tothreecubic kilometers. Two cra tersarevisiblejustoff the edge oftheLangjokull glacierbutothersanda possible eruptive fissure could be covered bythead vancing ice oftheglacier. A14CdatingofpeatfrombeneaththeHallmundarhraunlava flow was published by Saemundsson (1966), givingtheage 1,190100 years before present. Recent reinvestigations oftheage ofthelava flow were publishedbyJ6hannesson (1989) using tephrochronological methods.Thelava flow over liesthe"Settlementlayer" formedaround900AD.Itisbelivedthattheeruption forming Hallmundarhraunoccurredduringthefirst decades ofthetenthcentury.86Thedistance fromthedistalmarginofflow tothecratersis about 50 kilometers.Nearthecraterstheflow isabout600metersabovesealevel,thesurface being extremely rough, nearly voidofanyvegetation,andsandy.Largeoutwashplains existneartheEiriksjokull glacier.Furtherdownslopethesurface type changes fornl fromanaalava tomorepahoehoe-like lava.Numerous col lapsed tumuli,shrinkagecracks,pressure rIdges, andothercoolingandcontractingphenomenaarepresent.TheLavaCavesofHallmundarhraunAltogether12lavacavesareknownintheHallmundarhraunlava flow,thusearningthelavaflow a special recognitionamongIcelandic flows.Offive lava caves exceeding onekilometer in total lengthcurrentlyknown in Iceland, fourareinHallmundarhraun.ThreeofthelargestcavesofHallmundarhraunhave been surveyed,andtheremainingones have only been explored tosomeextent. Following is ashortdescriptionoflava caves knowninHallmundarhraun.1.SurtshellirStefanshellir CaveSystemThetotal lengthofthissystemisabout3,500 meters.Itcomprises twolavatubesseparatedby a collapse pit. Althoughthelava tubes have been given twoseperatenames,itis belivedthatthey constitute one major system.Thecave drops 18metersin its whole length.Maximumwidthofthepassage is 27 meters,themainpassagehasanaverage heightofeightmetersandthemaximumheight istenmeters. Ceiling thickness varies from ninemetersto zerometerswithtenareasofcom plete ceiling collapse providingtheentrancestothesystem (McKain, 1989). Surtshellir isthedown-flow segment, with 1,970metersofpassage.Thecave's ceiling is extensively collapsed,butoriginal floorcanbeseeninlargepartsofthecaveandflowstructuresarewell preserved onthecave's walls.Inone sideofthepassage archaeologicalremainsconsistingofstonebenches, fire places,andbonefragmentsoccur. These have suggestedthetheorythatinhabitantslived inthecave becauseofsuitabletemperatureshortlyaftertheeruption,contraryto a famous Icelandic legend where outlaws had supposingly builtandoccupiedthecaveasearlyasthetenth

PAGE 94

century.Surtshellirhasbeenknown to locals for a long time,thefirstmentionsofthecaveareintheold Icelandic Sagas.Stefanahellir,theup-flowsegmentofthesystem,wasrediscovered intheearly 1950sandneartheentrancewas asmallcairn.Thecave comprises amazeofpassagesandthecave'sceiling isnotcollapsed toanyextent,asitis in Surtshellir.Thetotallengthofpassages isabout1,520 meters.Theup-flowbeginningofthesystemis a lava seal,theceilingdroppingrapidly tomeetthelastlava level.Theroof rises rapidlyandforms a passage 7metershighand13meterswide.Themainpassage continuesrelativelylinearforabout300 meters,thenitassumesitsmaze-likepattern.Thesurfaceofthefloorandwallschangesfrom being glazed to more scoriaceous. Lessthan35metersseparatethesouthterminusofStefanshellirandthenorthterminusofSurtshellir.2.KalmanshellirThecaveclosesttothecraterareaisKalmanshellir.Ithasnotbeen surveyedbutby viewingaerialphotographsitcanbeestimatedthatthecave isseveralkilometers long.Thecave is extensively collapsedandtheinternalsurface is highly scoriaceous.Thecavehasnumerousentrancesthroughceiling collapses, is partially filledwithaeoliansand,andisternlinatedby ice.Insomepartsofthecave athinsheetoflavahasdividedthecaveintotwo levels.3. VH:5gelmir is 33 kilometerssouthwestofthe cra ters.Thecave isthemostvoluminous lava cave in Iceland.Thevolumehasbeenestimatedtobe148,000 cubic meters.Thetotal lengthofthecave is 1,585meters,averageheight 9.2 meters, maximumheight15.8meters,averagewidth 10.2 metersandmaximumwidth 16.5 meters. Vi13gelmir was surveyed bytheSheptonMallet Caving Club fromBritain,in 1972. Sincethenthecavehasnotbeen visiteddueto a frozen siphon 35metersfromtheentrance.Theconditionofthesiphon,whetheritis frozenornot,dependsuponthemeanannualtemperatureinthecave.Thelevelofthefrozenwaterinthesiphon rose tothepresentlevel inthe1960s,havingbeen dryandpassable from 1930through1960.InOctober 1991, localfarmersfin ishedthepreviouslyattemptedopeningofthecave bytheIcelandic Speleological Society. Inside tem-87Hr6arsson&J6nssonFigure2-The entrance to Viogelmir. (photo S.S. J6nsson)peratureof2.70Celsius had meltedtheice tongue towardtheclosedentranceofthe cave.TheIce landic Spelelogical Society installed agateon the cave toprotectthedelicate lava formations inside.4.HallmundarhellirHallmundarhelliris a few kilometerssouthofKalmanshellir.Thetotal length isnotlessthan300 meters,butthecavehasnotbeen surveyed.Theentrancetothecave isalmostfilled with aeolian sand.Inone side passagethereis evidenceofhumaninhabitation: pilesofrocks, a fire place,andbone fragments.5.HvassiThis is a small cave close to Hallmundarhellir.Thetotal length isabout200 meters.Thecavehasnotbeen surveyed.6.RjupnahellirA cave passage leads from a huge roof collapse only fewhundredmetersfromtheedgeofthelava flownearthemountain Sy13ra-Sau13afell. This cave

PAGE 95

6thInternationalSymposiumonVulcanospeleologyisextensively collapsedandthetotallength isnotknown,butundoubtedly exceeds 200 meters.7.SandiAlessthan100-meter-IongcaveintheHallmundarhellirvicinity,Sandipossibly belongs tothesamelavatubesystemasHallmundarhellir. A connection possibly exists.8.Bergp6rshellirThis is atumulusclose to Vi6gelmir. Thediameterisabout25metersandtherearetwoshortside passages.9.SkeggjaholaSkeggjaholais asmalltumuluscavenear Vil5gelmir. Ithasbeen known since ahumanskel eton was found inthecave inthe19308.10,11,12Franshellir,Eyvindarhola,BeinaholaThesearesmalltumuluscavesnearReykjavatn Lake.Thecavesareall small, with adiameteroflessthan20meters.Inallthecaves, archaeological88remainshavebeen foundandthecaveshavetherefore been noted.AcknowledgementsWewanttothankDr.HaukurJ6hannessonattheIcelandicMuseumofNaturalHistoryfor revisingthemanuscript.ReferencesHr6arsson,B.(1990):Hraunhellar a Islandi. Mal og menning, Reykjavik 1990, 174p.J6hannesson,H.(1989):AldurHallmundarhraunsi Borgarfirl5i. Fjolrit Natturufrre6i stofnunar9,12p.McKain,K,(1989):TheSurtshellir-StefanshellirLavaTubeSystemofWest-CentralIceland.York Grotto Newsletter,Vol. 25,1-4,3-24.Saemundsson,K.(1966):ZweineueC14DatierungenislandischerVulkanausbruche,EiszeitalterundGegenwart17, 85 86.Walker,G.P.L.(1959):Geologyofthe Reyl5arfjorl5ur areaeasternIceland.QuarterlyJ.Geol.Soc. Lond.114: 367-393.

PAGE 96

PreliminarySpeleological InvestigationsinSurtseySigurours.J6nsson Bjorn Hr6arsson Icelandic Speleological Society, PO Box342, 121Reykjavk, IcelandAbstractThevolcanic islandofSurtsey,offthesouthcoastofIceland, was formedduringasubmarineeruptionwhichwasfirstnotedonNovember 14, 1963.Theeruptionlastedforalmostfour years,ceasingonJune5, 1967.Earthquakeswerenoted severalhourspriortotheeruptionandprobablytriggeredtheformationofa fissureontheseafloorabout400meterslong, with abearingofapproximately0350 Phreato-magmaticactivityofVulcanian type,latertermedasSurtseyian,producinglargequantitiesofpyroclasticmaterial,wasdominantforthefirst weeksandmonths.Afterfivemonthsofexplosive activity, a rimofvolcanicashandfragmentedrockshadbuiltuparoundthevolcanic vent.Lavaofalkali-basaltic compositionstartedto flow fromthewesterncrateron April4,1964. Observationsindicatedthatlargeportionsofthelavaextrudedfromthecratersflowed sub-ae rially intubesandcanals. Shortlyaftertheeruptiontwo caves were found ontheisland.Thefirst specific speleological expedition took place in 1990.Intwo days, sevencaveswerediscovered,threeofwhich have now been surveyed.Thecavesareboth verticalandhorizontal. Mostofthecavesareto be found inandaroundthecrateronthewesternsideoftheisland.Theareaoftheisland is 1.9squarekilometers.Thelongestandmostvoluminous cave, SU-03, has one opening in a largepit(roofcollapse) onthewesternsideoftheisland,stretchesfor 181meterstotheeast-northeast,andopensintothecrater.Someofthecavesarestill quitewarmandexhibit extensivemineralencrustations.Introduction-HistoryofLavaExtrusionSurtseyis a volcanic island locatedabout33kilometerssouthofthecoastofIcelandand20kilometersfromtheonlyinhabitatedislandoftheVestmannIslandsarchipelago,Heimaey.Firstsignsoftheeruptionthatlaterformedtheislandwerenotedbyfishermenonthefishing vesselIsleifurIIonthe14thofNovember1963. Columnsofsteamandpyroclasticmaterialwererising50to 60metersabovethesurfaceofthesea.Thedepthofthesea-waterwas130meterspriortotheerup tion.Theexplosive activity increased rapidlyandonthe15thofNovemberanisland had formed,some10metersinheightandabout500meterslong.ItwasnamedSurtsey.Phreato-magmaticexplosion activityoftheSurtseyiantypecontinuedrestlessly, with asteam89column rising fromtheventssometimesreachingninekilometers in height.InJanuary1964activityceased intheeasterncraterandonApril 4, 1964,itceasedinthewesterncrater.Thefeeder pipehadevidentlybeenisolatedfromtheseawaterandlavawasextruded.Therimsoftheash-crater/tuff-rings,werethenabout170 metersabovesealevelandthetotalareaoftheisland1.2squarekilometers.Lavacontinuedto flow fromthewesterncrateruntilApril 29, 1964.Columnsofvolcanicashanddebriscontinuedtobeejected,addingtothecraterrimsandthesurfaceoftheisland.Inlaterstages,quieteffu sive lavaeruptioncontinueduntilJune5 1967withonlyminuteproductionofpyroclasticmaterial. When all volcanicactivityceased,theareaoftheisland was 2.8squarekilometers.Furtherdetails011thehistoryofthelavaflow inSurtseyaresummarizedinTable1.

PAGE 97

6thInternationalSymposiumonVulcanospeleologyEXTRUSIONEVENTSOFLAVAINSURTSEY1964 JanuanrPhreato-mafnuatic activity ceases intheeasterncrater.Anril4Phreato-maQ"matic activitv ceases inthewesterncraterandlava isextruded.Aori129Extrusionoflava ceases fromthewesterncrater.July9Lavaisextruded al!ain fromthewesterncrater.1965 May 17Lasteiectionsoflava fromthewesterncrater.1966 AUlruSt 19Lavastartsto flow fromtheeasterncrater.December12 Asmallejectionoflavafrom asmallcraterontheinsiderimoftheeasternash-crater.1967January1-4 A smallquantityoflavaisejectedthroughahornito/spatterconeontheoutsiderimoftheeasternash-crater.January1-8 Asmallejectionoflava from a smallcraterontheinsiderimofeasternash-crater. Januanr 2Lavais eiected from a smallcraterontheoutsiderimoftheeasternash-crater.January2-7Lavais eiected throul!h afractureontheinsideoftheeasternash-crater.June5Thelasteiectionsoflava fromtheeasterncrater.Table1(Based on Jakobson, S.P.&J.G. Moore;1982andEinarsson, Th.; 1968).TheSpeleologyofSurtseyPriortotheexpedition mentionedlaternoattemptshad beenmadetosearchforandexplorethecavities withinthelava flow in Surtsey, despite its small area. Two caveshadbeen noted byanIce landic entomologist who exploredthemtosomeextent(Olafsson, 1982).Otherscientists who vis itedtheisland, shortlyafterandduringtheerup tion donotmakeanyvaluablecommentsontheformationanddevelopmentoflava caves intheirreports.Theonly known phenomenon believed to beofanspeleological origin,apartfrom thosementioned by Olafsson (1982), was a largepitwith steeplycutedges onthewestern sideoftheisland. Viewed bytheauthorsonanaerial photograph,itresembled a roof collapse.Otherareasofspeleolog icalinterestwerenotknown.SurtseyExpeditionOn May1,1990,anapplication for a researchpermitwassentto theSurtseyResearch Society which, on behalfoftheIcelandicNatureConcerva tion Council, handles such matteI'S. Whenpennission was granted, thedatefor the expedition wassetasJuly9,1990. Membersofthemarinerescueteam"BjorgunarfelagVestmannaeyja"on90Heimaeytooktheexpeditionmembersto Surtsey.GettingashoreinSurtseycanbe difficultduetothegreatsurfandthelackofashelteredareato land a boat.Ahutwas built inSurtseyduringthelaterstagesoftheeruptionandrebuiltin adifferentlocation in 1982. A basecampwassetthere.Thefirsttaskoftheexpedition was to descendthelarge pit/col lapsementionedearlier,andexploreittoitsfullextent.SpeleologicalInvestigations-ResultsThecavesandcavities inSurtseyarenumberedaccording tothenumberingsystemoftheIcelandic Speleological Society. Altogether sevennewcaves were foundandexplored,whereofthreeweresurveyed.Thecaves found by Olafsson (1982) were giventhenumbersSU-OIandSU-02,butsurferosionhaddestroyedthecave giventhenumberSU-02, sothatnumberwas assigned toanothercave.ThenumberSU-02was given to a cave located onthesouthslopeoftheeasterncrater.Thecave is sevenmeterslong dipping70downwards.Thecaveisclosedattheendbywhatseemsto be a lava seal, thesurfaceis highly scoriaceousandthebot-

PAGE 98

Jonsson&HroarssonFigure1-GeologicalmapofSurtsey,showingknowncave entrances (after Jakobsson, S.P.&J.G. Moore; 1982). lEPHRANOV.196J-APRHU54.....'-,-to\,,;.'-..... ....t NI MflUS 200 '" .. .."I..". _.' <.IJ.......: ....... ..--"-..... ... ... --J ... ..J .. -throughthetube to the thresholdoftheflow.Earlierpapersdescribe huge columnsofsteamandvapors rising fromtheseainfrontofthelava edge (Einarsson, Th.; 1965). Nosurfacetrencheswerenotedandno flowing, molten lavawasvisibleatthesurfaceoftheflow. A theoryofsub-aerial lavaeruptionthrough a fissure was proposed,butits capabilityofexplainingtheoriginoftheheatsource,causingtheseato boil, becomes vague when such lava-feedersasSU-03arefound. Halfway insidethecave extremely large piecesofrock nearly closethepassageandarea major". '-\,..... ......,..,II.AVA........, vAUG 1968-JUNE 19671'-I LAVA -APR. H364MAY196!lI-:..---JLAVA DEC tomis coveredwithde-briscollapsedfromtheceilingandaeoliansand.Steamarisesfromamongsmallrubble coveringthefloor.Insidetemperatureis35Cel sius.Theaverageareaofthetubeisaboutonesquaremeter.SU-03(Figures 2and3) is acaveontheeasternsideoftheisland.Itleadsfromthelargeroofcollapseformerlymentionedandopensintoanotherpitinsidethecrater.Thebearingofthecaveis080andthetotallengthis 181meters.Theaveragedepthoftheroofcollapse is closeto15meters.Itsshapeiselliptical,itsmaximumlengthisabout25metersanditsmaximumwidthis 14meters.Thewalls expose four, one-totwometer-thicklayersoflavawithimbeddedreddishscoria.Theeasternentrancetothecave is fromthenortheastendofthecollapse.Theshapeoftheentranceisroughlysquare,collapse fromtheceilinghasnotbeenextensivebutisnotable.Fromtheentrancethecavedips 25downwardfor alengthof25meters.Theslope is covered with aeoliansand.Fromtheupperedgeoftheentrancetothesurfaceofthelava is 16meters.Thefirstnoted evidenceoftheoriginalglazed wallsurfaceofthelavatubeis 25metersbelowthesurfaceofthelava. Glazed original wallsurfaceis also visible 20metersinsidethecave fromtheeasternentrance.Ontheotherhand,thecave'sceiling is heavily collapsedandtheoriginal floor isnotseenanywhere.Thislavatubewasundoubtedly extremely voluminouspriortotheceiling collapse,anditis evidentthathugevolumesoflavahavebeen fed91

PAGE 99

6thInternationalSymposiumonVulcanospeleologySU-03longSectiontNK t EdgeefCrater EdgeefCellapsePit f Original Surfa<:e ICress Se<:tion (seeFig.3)SU-03MapFigure2-Longsectionand map ofSU-03(after J6nsson,S.S.&B. Hr6arsson;1990)Figure3-Cross sectionsof8U-03(after J6nsson,8.S.&B. Hr6arsson;1990).gypsum,thenardite,andsulfurareprecipitatedfrommagmaticgases.Thereforetheoccurrenceof secondary mineralsonthecave floor, debris,andfractured rocks from ceilingandroofcollapses, 10m1 OriginalsurfaceK A C 0 E GHobstacle. Anarrowopening was foundaftera close scrutiny,forminga nearly vertical passageofthreemeters.Theeasternhalfofthecave is both widerandlowerthanthewesternhalf.Ina large cupola,tenmetersfromtheeasternentrance,a small skylight was notedbutcouldnotbelocated onthesurface.Justinsidethewesterncraterthecave is termi nated. A large lava-poolhasevidently been formed insidethecraterandin its finalstagethecavehasservedasa resurgence forthelagoon.Shrinkagecracksandpressureridgesarepresentinsidethecrater.AsseeninFigure2thedifference in height betweenthetwo edgesoftheeasternentranceisalmosttenmeters. Secondary mineralencrustationscanbe foundthroughoutthecave. Gypsum isthemostabundantmineral,butwater-soluble sulfates,' suchasthenardite,canalso be found, though theyareslowly dissolving.Theidentificationofthosemineralshasnotbeen confirmed. Water-soluble minerals, asso ciated withseawaterderived halide, were found ingreatquantitiesshortlyaftertheSurtseyeruptionceased (Jakobsson, S.P.,pel'Scomm).Hcanthusbe fairly concludedthatmostoftheminerals, suchas92

PAGE 100

Figure4-Theentrance to SU-02. (photoS.S.J6nsson)indicatethattheceilinghascollapsedshortlyafterorinthefinalstagesoftheeruption.Thermalconditionsandunavailabilityofdissolvedmaterialdoesnotallow fortheformationofthesemineralsafterthetemperaturedropped. Totallenlrth 181metersMaximum heie:ht of ceiline: 16metersMaximunwidth13metersAveraae heie:ht 6metersAveraaewidth7metersMaximumarea125meters2Volume7600meters3Table2-DimensionsofSU-03.SU-04is asuperficiallavatubesoutheastofthewesterncrater.Ahornitoissituatedatopthecaveprovidinganentrance.Thebearingofthecaveis180.Fromthehornitothecaveextends5meterstothenorthbut128meterstothesouth.Totallengthis 137meters.Theroofhastwoskylights, 9and17meterssouthoftheentrance.Thecaveishorizontalandnearlystraight,withminorbends(lto5).Inthemiddleofthecavea ridgeoffine93Jonsson&Hroarssongrainedsandhasfonned,havingbeenwasheddownanarrowcrackalongthewholeextentofthecave'sceiling.Insomeareasthecaveisnearly filled. A bellycrawlhasto bemadealltheway toreachtheend, atumuluswithaflatscoriaceous floor.Mineralencrustationsareextremelyabundant,almostcoveringthewholeinsideofthecave.Aninsidetemperatureof35Celsiusmakesexplorationveryuncomfortableandpreventsrepeatedvisits.One19-centimeterlavastalagmitewasfoundandseveraltwotosevencentimeterlavastalactites.SU-05,inthemiddleofthewesterncrater,isalargepit,20metersdeepand8meterswide.Thestructureoftheinside wallsofthepitindicatesthatitisnota collapse,sinceflowmarksandspattersoflavaarepresent.Atrenchwithflowmarks,leadingintothepitfromthesouthernedge, suggeststhatlavahasflowed downintothepitinthelaterstagesoftheeruption,possiblyaftertheformationofthelavapondmentionedearlier.Thepitwidensatthebottomandtheexistenceoffurtherpassagesis possible.Thiscavewasnotdescendedandawaitsfurtherexploration.SU-06is acaveinsidethewesterncrater.Itissituatedinthenorthernslopeofthecrater.Theentranceisnarrow,lessthanonemeterwide,anddips65downwardtothenorth.Anapronofaeoliansandcreepsdowntheslope.Nearthebottomofthecaveis a verticaldropoffivemeterswhichendsina lava seal.SU-07,insidethewesterncrater,isanotherunexploredpit.Theentranceis only 1.6meterswidebutnosignsofthebottomcould be found.Thecavewasnotexplored.SU-08,ontheoutsideslopeoftheeasterntephraring, is aspatterconelhornitothatejected asmalllava flow.Thecone is hollowandseemsto be deep.Thecavewasnotexplored.ConclusionsItistheauthors'opinionthatthevisit toSurtseywas very successful.Sevennewcaveswerediscov ered,threeofthemweresurveyedbutothershavenotyetbeenexplored.Theareais undoubtedlyofgreatinterestto vulcanospeleologistsandmuchworkis to bedonethereinthenearfuture.Theabundanceofverticalornearvertical ca ves issurprising.Thetermcrater-cavehasbeen used to describethesephenomenaandtocategorizethemamongotherfeaturesofvulcanospelological

PAGE 101

6thInternationalSymposiumonVulcanospeleologyorigin.Theanomaloustemperatureinsomeofthecaves is alsonoteworthy.So istheoccurrenceofmineralencrustations.AcknowledgementsWethanktheSurtseyResearchSociety forgrantingpermissionfortheexpedition. Dr.SveinnP.JakobssonattheIcelandic MuseumofNaturalHistoryreceives specialthanksfor providing helpfulinformationonevaporationandalterationmineralsinSurtseyandforencouragingtheauthors.Dr.HaukurJ6hannessonisthankedforrevisingthemanuscript.94ReferencesEinarssonTh. (1968): Sagabergs og lands. Mal ogMenning,Reykjavik,335p.Einarsson,Th.(1965): Gosio [ Surtsey [ nuili ogmyndum.Heimskringla,Reykjavik,29p.Jakobsson,S.P.andJ.G.Moore (1982):TheSurtseyResearchDrillingProjectof1979.Surtsey Research Progress Report IX, 76-93.J6nsson,S.S.andB.Hr6arsson(1990):Hellaranns6kniriSurtsey.Surtur1990,3-11.Olafsson, E., 1982:TheStatusoftheLand-Arthro podFaunaonSurtsey, Iceland,inSummer1981.Surtsey Research Progress Report IX,p 6872.

PAGE 102

Figure1-MOON-ameanderingchannel whichmayrepresent a collapsed lava tubeinalunarmarearea near Apollo15landingsite, indicated by arrowtocross. (Photo:AstronautA.M. Woden,NASAApollo15Mission)The Undara Lava Tube System, North Queensland, Australia: Updated Data and Notes on Mode of Formation and Possible Lunar AnalogueAnneAtkinsonPOBox41,Ravenshoe, Queensland4872,AustraliaAbstractTheUndaraLavaTubeSystem,NorthQueensland, Australia, isremarkablenotonly foritsgeology,butalso foruniquefloraandvertebrateandinvertebratefauna.Thispaperconsiderssomeaspectsofitsgeology. Morethan60cavesandarcheshavenowbeendiscoveredinthesystem.Mostcavesarelessthan200meterslongbutthesystemincludesAustralia'slongestlavatube,over1,350meters.Morethansixkilometersoftubeshavebeensurveyedandthefirstprofileeverto depict a source volcano in addition torepresentativecavesandarchesispresented.190,000yearsago,theUndaravolcanoerupted23cubic kilometersofbasalticlavaattemperaturesrangingfrom1,170Celsius to1,220Celsius, coveringanareaof1,15Qsquarekilometers.Withanaveragegradientofonly 0.30,oneoftheflowsextendedmorethan160 kilometers to becometheworld'slongest flow from asinglevolcano.Thisgreatlengthisattributedto very high effusionrates,favorable topography,andlavatubeefficiency.Thelavatubesystemextendsmorethan110 kilometersandincludes caves,arches,andanalmostlevel ridgethatis 35 kilometers longandis knownas"TheWall."TheWall is consideredthebestEarthvolcanicfeatureanalogous tothesmallerbasalticridgesontheMoon.Adjacentto,oraligned with,thecavesandarchesthereareovalandelongatedepressions.Mostofthesedepressionsaremuchwiderthanthecavesandarchesandappeartohaveformedcontemporaneouslybythedrainingoflavaponds.Darkergreen"rainforest" typevegetationwithinthewiderdepressionscontrastssharplywiththatofthesurroundingeucalyptwoodlandandis indicativeofformergreaterarealextentofrainforests,now confined to coastalandnearcoastalareas.Comparisonoffeaturesofthe Undaratubes with thoseofcurrently activeandRecentPeriod tubes elsewhere intheworld, indicatesthatthetubesoftheUndaraSystem were formed bythedrainingofroofed lava channels, whoselocationsweredeterminedby palaeotopography.95

PAGE 103

6thInternationalSymposiumonVulcanospeleologyFigure2a-EARTHVerticalaerialphotographofthewesternendoftheWallSectionoftheUndaraLavaTubeSystem(northattop).Thislowbasaltridgeis35kilometerslongand may beanalogoustothesinuousridgeson the moon. (Photo:DepartmentofNationalMapping,Australia)saltswithonlyminorgeochemicaldifferences(MacKenzie, Donaldson,andGuilford, 1982).Asananalogue tothesmallerbasaltic ridges oftheMoon (Figure 2b),thelengthandshapeofTheWall(Figure2a)oftheUndaraLavaTube Systemis consideredEarth'sbestvolcanicfeature(Greeley,writtencommu nication, 1972and1991).ThefirstInternationalSymposiumonVulcanospeleologyanditsExtra-TerrestrialImplicationswasconvened in 1972and,attherequestofthechairman,Dr.Halliday,thefirstpaperontheUndaraLavaTubeSystemwasIntroductionIn photographsofthe lunar surface, the shape of channels (Figure1)sug gests fluvial origin. This hypothesis, however, had to be dismissed in the ab senceofatmosphere.Anumberofpapersappearedsuggestingthatthe sinuousrillson the Moon couldbecollapsedlavatubes(Kuiper, Strom, and Le Poole, 1966; Oberbeck, Quaide, and Greeley, 1969; Greeley, 1970and1971a;CruikshankandWood, 1972). These papersstimulatedthestudyoflavatubes onEarth.Furtherimpetus to this study came with the discovery 20 yeal'S agothatsome of the first lunar rock samples werevelYsimilar, megascopicallyandmicroscopically, toterrestrialba-Figure2b-MOONViewnorthacross the easternboundaryofMare Serenita.tis (basaltic)andHighlands.X-Yindicates basaltic ridge. Circular depressions areimpactcraters. (Photo:NASAApollo17Mission)96

PAGE 104

AtkinsonlBO12-16 lA8lAA144 McBrideProvince2012 0 tt----+iir---;l-+----+----1---+l.400 Figure5-The main areas (provinces)ofCainozoic basalt outcropping in northeastern Australia. The boxed area isshownin Figure7.TheUndaraLava Tubesarefoundwithinlava flows fromtheUndara Volcano (Figure6) which is locatedapproximately200kilometerssouthwestofCairnsinNorthQueensland, Australia.ThisvolcanoissituatednearthecenteroftheMcBrideFigure4-Mapofthe Pacific Ocean to show relative locationsoftheHawaiianIslandsandnortheastern Australia.100 20 16CANBERRA 0AUSTRALIACainozoic volcanismineasternAustraliaextendedmorethan4,000kilometers(Figure 3,Stephenson,Griffin,andSutherland,1980).InnorthQueensland,within200kilometersoftheeastcoast,therearefivemajorprovinces (Figure 5). .sOOl", LocationandGeologicalSettingoftheUndaraLavaTubeSystempresentedsix pages,includingfiguresandrefer ences.Fromthisinitialstudystemmedincreasinginterestandthecurrentpaperaimsto place before youanaccountofourdiscoveries todate.Figure3-Cainozoic basalt outcropsofeasternandsoutheasternAustraliaoccurwithin400kilo metersofthe coastandextend for over 4,000 kilometers. (Stephensonetal.,1980)97

PAGE 105

6thInternationalSymposiumonVulcanospeleologyFigure6-Aerialoblique viewof Undara Crater, 340 meters across, looking west. The tube system commences inthe lineofthe depressions that runs away from the crater towards the right. (Plwto:TomAtkinson) Figure7-The Undara lava field. Circlednumbersdenote sectionsofthe lava tube system referred tointhe text, namely:1.Crater Section;2,NorthSection;3,YaramullaSection;4,Wall Section. Othernumbersare locationsofcave entrances asshowninFigure12.Letters "A"to"D" denote locationsofbasalt specimens chemically analysed (Appendix1).'45'EinesltiohThecraterwallsaremainlycovered byangularblocks (uptoseveralmetersacross)ofhighly vesic144'14 4'1018'Province(Figure5) which coversapproximately5,000squarekilometers (White, 1962),andtopo graphically forms abroaddome.Thereareover160ventsintheprovince(Griffin, 1976),themajorityofwhichareinthecentralregion.TheUndaraVolcano (Figure7)rises to 1,020metersabovesealevel (ASL)andisthehighestpointintheMcBrideProvince.Itsimpressivecrater(Figure7)is340metersacrossand48 me-tersdeepwithinnerslopesofupto 400.Therimrises only20metersabovethesurroundinglavafield.Outwardslopes fromtherimvary from30to5onthenorthwestsidewherethemajoroutflows occun-ed. 98

PAGE 106

ulartomassivelava.Severalindistinctterracesinsidethecratermaymarkformerlevelsofalavalake.Partofthecraterfloor is coveredwitha fineredsoilcoritainingsmallfragmentsofscoriaceousmaterialandasmallareaofthefloorissmoothpahoehoebasalt.Thevolcanoerupted190,000yearsago(GriffinandMacDougall, 1975).IntheMcBrideProvince,onlyonevolcano,Kinrara,isyoungerthantheUndaraVolcano (White, 1962).TheUndaralavaflowscover1,550squarekilometersintheMcBrideProvinceandarebasalticincomposition.Appendix1 giveschemicalanalysesoffourbasaltspecimensfromtheUndaraflow.Oneflowtothenorthis,inpart,roughspinoseaabasaltbutmostoftheUndaralavafield is ofthesmoothpahoehoetype.Presentunderstanding,basedonrecordsofhistoricflowsandobservationofcurrentflows,isthatvolumetricflowratecontrolswhethertheflow willbeofpahoehoeoraatypebasalt-thehistoriclavaflowsinHawaiiarepahoehoeiftheyformedatalowerflowrate,whichallowedtimeforde-gassing(RowlandandWalker,1990).AtkinsonIt is inpahoehoe flowsthatthelonglavatubesoftheworldhavefonnedandcancurrentlybeobservedformingontheIslandofHawaii(Greeley, 1971b, 1972, 1978;PetersonandHolcomb, 1989;PetersonandSwanson,1974;RowlandandWalker, 1990).Thefeedingriversofpahoehoecanbeextremelycomplicated.Flowpatternsfrequentlyconsistofaninternalnetworkofinterconnectingconduitswhichsometimesattainconsiderableverticalandhorizontalcomplexity (Wood, 1976). However,almostallthetubesoftheUndaraSystemaresimpleinplanandappeartobesingle-level. (Todatetheonly multi-(three)-leveltubediscovered intheMcBrideProvinceis ontheflankofthesourcevolcanoofanadjacentflowofslightlygreaterage).LavaflowedinalldirectionsfromtheUndaraCrater,butthemainflowwastothenorthwest(Figure7).Theflow tothenorthwasapproximately90kilometerslongandenteredtheLynd River.Thevoluminousnorthwestflow, however, followedprecursorsofJunctionCreek,ElizabethCreek,andtheEinasleighRiver(Figure7) formorethan160kilometersto becomethelongestsingleFigure8-Aerialoblique viewofwidecollapse depressionsalignedwithand/oradjacentto theYaramullaSectionoftheUndaraLavaTube System,NorthQueensland. Kallwni Volcano, a cinder cone,notconnectedwithUndara, isontheleft. (Photo: H.J.L.Lamont)99

PAGE 107

6thInternationalSymposiumonVulcanospeleologyFigure9-Verticalaerialviewofwidecollapse depressionsalignedwithand/oradjacentto theYaramullaSectionoftheUndaraLavaTubeSystem,NorthQueensland. (Photo:DepartmentofNationalMapping,Australia)volcanolavaflow intheworld (Walker, personal communication, 1989).Walkerconsidersthattoreachalengthinexcessof160kilometers,Undara'seruptionmayhavecontinuedfor several years.TheUndaralavaswereeruptedattemperaturesrangingfrom1,1750Celsius to 1,2200Celsius (RoederandEmslie, 1970, cited in Atkinson, Grif fin,andStephenson, 1975). They donotappeartohaveunusualviscosities (Shaw, 1972;BottingaandWeill, 1972; cited in Atkinsonet al., 1975)which accordswiththeconclusionsofWalker(1973),thatvery long lava flows reflectcontinuedhigh effusionrate.StephensonandGriffin (1976) reached asimilarconclusion in astudyofeightlong basaltic flows in Queensland. GeneralthicknessoftheUndaralava field isestimatedfrom 5metersneartheedges to up to20metersormoreinthethickestparts.AlongTheWall,westofMtSurprise,theflow could be upto40metersthickbutthisis probablyrestrictedtothewidthofTheWall.Exploratorydrilling onthenorthsideofTheWall showedbasaltdepthof25 meters.Ifanaveragethicknessof15metersisestimatedforthewhole flow,the.total volumeoflavaeruptedfromtheUndaraVolcano is approximately23 cubic kilometers. Where rock is exposedneartheaxisoftheflow,polygonalmega-jointing(Spry,1962),whichformedasthelavacooledandcontracted,ofup to 1.75metersisevidentthroughoutthe90 kilometersfromthecratertotheterminationofTheWall.Theconstantrangein sizeofjointingovera distanceof90kilometersseemsto indiCate anhomogeneousflow.TheremaybesimilarjointingbeyondtheterminationofTheWall,butthisareahasnotyetbeen investi gated.ThelavatubesystemfromtheUndaracraterhasbeen dividedintothefollowingfivesections(Figure7)inorderto de scribethelocationsofthecavesandarches:CraterSectionextendingnorthfromUndaraCraterfor four kilometers;averageslope10 WestSection-westfromthecrater,extendingapproximately15 kilometers;averageslope 0.750 NorthSection -continuingnorthfromtheCraterSectionatleastafurther8 kilometers, possibly 28 kilometers,averageslope 0.50 YaramullaSection -extendingwest-northwestfromthenorthernendoftheCraterSection for over35kilometers;averageslope 0.70 WallSection-approximately35kilometers;analmostcontinuousnarrowridge,knownlocallyasTheWall;averageslope 0.090 Thedistributionofcaveswithinthelavaflow isasfollows:TheCrater,theWest,andtheYaramullaSectionscontainbothcavesandarches.IntheNorthSectionnocaveshadbeenfound,butalineofcollapsedepressionssuggestedthepresenceofalavatube.In1989,systematicsearchintheNorthSectionledtothediscoveryofthreecaves.TheauthorbelievesthatTheWallSectioncontainsamajorlavatubewithaverythickroofbuttodatenoaccesstosuchtubehasbeendiscovered.InvestigationsoftheUndaraLavaTubeSystemTheUndaraLavaTubeshadattractedtheattentionofthreegeologistspriortotheinvestiga tions described inthispaper. When discussingthedistributionofvolcaniccentersintheMcBride Province, Twidale (1956) noted twolineaments;he100

PAGE 108

incorrectlyinterpretedthealigned collapses (Figures8and9)as"...acleararcuate fissure ...with acenteroferuptionatitssoutheastend".Best(1960)andWhite(1962)subsequentlyrecognizedthelavatubesystem.Withoutopportunityfor de tailed investigation,theyinterpretedthepatternofcollapsefeatures(Figures 8and9)asa collapsedlavatube,withnorthandwestbranches.The first speleologists to visittheareawerefromtheUniversityofQueenslandSpeleological Soci ety.TheyexploredandmappedBarkersCave(Shannon,1969).In1972theauthor'sstudieswerecommenced.Itwasproposed: (1) To measure andmaprepresentative caves in order to establish whether there were any relationshi p3 between shape, size, and distance from the source volcano. This wasundertakenatthree locations, namely: in proximity tothe crater,ata maximum distance from it,andatanintennediate location; (2) To.seekevidenceofthemodeofformationoftheUndaraLavaTubeSystem. (3) To investigatethegeomorphologyofTheWall.Atthesametime,andsubsequenttothisinvestigation,thespeleologistswerecontinuingexplorationofthecaves.Grimes(1973) published acompilationoftheresultsofearlierstudiesofUndaraLavaTubes.IntheAustralianSpeleolog icalFederationKarstIndex,Matthews(1985)Atkinsonrecordedthecavenames,numbers,andbriefdescriptions.TheChillagoe Caving Club also continued explorationofthelavatubes.In1988,membersdiscoveredtheWindTunnelandInnerDome Caveandin1989 they investigatedareaswithinsix kilometerswestoftheCrateranddiscoveredtencaves.Inaddition, anumberofexpeditions fromtheExplorersClub (New York) haveexaminedthelava tubesandresearchers, sponsored bytheExplorersClub,considerthattheinvertebratecommunityin Bayliss Cavemakesitoneoftheworld'smostbiologically significant caves(Howarth,1988).In1989, 100volunteers(ingroupsof20) fromLondon-basedOperationRaleighcampedonsiteforthreemonthstoinvestigateareasnotexploredbytheauthor.UnderthegujdanceofQ.N.P.andW.L.S. Officer Goodwin,theysurveyed collapse depression's intheUndaraCraterNationalParkandin 10kilometersupflow from Bayliss Cave,anareaneverpreviouslystudied.Theydiscoveredandsurveyed23newcaves.TheirsystematicsearchintheNorthSectionresultedinthefirstdiscoveryofcavesinthissection,viz.DingbatHotHole,andWishingWell Caves,abou21kilometersnorthoftheCrater.Theirassistancein collectionofspecimensanddataoffloraandfaunaledtovaluableadditionstotherecordsofthendaralavafield. .f Figure10-RoadCave,northwall.Lavalevel lines extend from floor toroofofthiscave.Theyareamongthemostdistinctiveyetdiscoveredinthesystemandare more easilystudiedthanatotherlocations as they arein.daylightattheeasternentrance. (Photo:H.J.L.Lamont)101MethodsTheUndaraLava Tube System can be clearlylocatedonaerialphoto graphs (Figures 8 and 9).Itstandsoutbecausemanyof its collapse de pressionsSUppOltrainforesttype vegetation which contTasts sharply with the openforestofthesur !'Owlding country. Some ofthecaves, forexampleBarkersCave(CoverPhoto and Figure 13 and Road Cave (Figure 10) have been kJ10V.'!1 for morethan100 years.Thema jorityofcaves, however, were locatedbysystematicexplorationofcol-

PAGE 109

6thInternationalSymposiumonVulcanospeleologyTable1-UndaraLava TubeSystem-CaveDimensions Revisedandupdated (Atkinson, 1990) ASP*Cave Length Maximum Maximum Survey Number Width Heie:ht bv U1Hanson40 12 3**U2U3eDunmall Arch-6 2**U4 Taylor 108 16.3 10.8**U5 St.Pauls30-**U6Sarah10.7 0.91.4#**U7Peter13.8 9.9 3.8**U8Ollier 49.4 10.4 3**U9UlOeHarbour Bride:e 35 14.3 5**UllU12e Greelev 103 12.4 3.8**U13 Frances14#6 3**U14 Opera House 30 10 7.5**U15 Peterson 102 17.1 3.7**U16 Stevens 70.4 8.8 3**U17 Pinwill 150 21 8.9**U18 Traves 67 14 10.6**U19Atkinson 101.2 28 7.8 ** U21 Steohenson156#>25#>10#PDU22 Arch10.5#28#9#PDU23 Ewamin162#21#>8#PDU24 Picnic I (down) 420 22 15PDU25 Picnic II (NE) 45 12>14#PD U26 Dave I (uo) 5010#8#PDU27 Dave II (down) 27 -PDU28 U2ge Road 220 21.2 9.4**U30 Bayliss>950 18.9 11.5**additional (1988)>400 PM. DR U31 Darcy 99 16.3 6.3**U32 U33e Matthew 407#3#**U34Barker560+19.8 13.5 CS U35 Raleie:h I 23 15.8 7.3ORU36 Raleillh II 29.8 17 8.5ORU37 Lost World 74.2 13.5 5.7 OR U38 Tween 24 11.5 6.5 OR U39 Eotesicus 4222#6.1#OR U41InnerDome 68 22 7.5 OR U42 Wind Tunnel 293 328#OR102

PAGE 110

AtkinsonTable1-UndaraLava Tube System Cave Dimensions Revisedandupdated (Atkinson, 1990) ASP*Cave Length Maximum Maximum SurveyNumberWidth Heiuht bv U43ShortLittle Arch 15.85#2#OR U44 Mikoshi 46.614#11#OR U45 Misolaced Arch 2222#11#OR U46 Nastv 127 158#MGU47Fortune52.94.4#2.5#OR U48 TemnleofDoom 49.56#4.5#OR U49Fun33.2 9.8 1.25 OR U50 Dine: Bat600417.17#OR U51HotHole 171.9 13.5 3.5 OR U52 WishinQ' Well 104 13 3.3MGU53 Moth 9.2 4 1.8 OR U54Sunset>305.2#2.2#OR U55 Wallabvs Hideawav 38.5 94#OR U56 Exnedition I30#125#DI U57 Exnedition II 28 204#DI U58 arch (unnamed) 8.5 102.2#OR U59 Tom Tom 34 9.5 2.5 OR U60arch(unnamed) 16 132.5#OR U61 Komori>85 93#OR U62 SneakinQ' Tube 25.2 7.7 3.2 OR U63Flat CeilinQ' 8015#3#DI U64 Branch 1010#2#DI U65San2510#2#DIU66Graham223# 3#PS U67 Upper Secret150#PS U68 Lower Secret70#--PS Total6324.7*AustralianKarstIndex (Matthews, 1985)**V.andA.Atkinsonandassistants Abbreviations:PD=P. Dwyer, PM=P. Mainsbridge, DR=D.Ray, CS=C.Shannon, OR=Operation Raleigh, DI=D.Irvin, FS=F. Stone. #Estimateonly lapse depressions bytheauthorandassistants be tween 1972and1974, membersoftheChillagoe Caving Club 1985 to 1988,andOperation Raleigh volunteers in 1989. Initiallythecave entrances were marked with a 10-centimeter square painted on a conspicuous blockatthe baseofeachentrancecollapse. These squares were usedasthedatumfor cave surveys.103

PAGE 111

6thInternationalSymposiumonVulcanospeleologyUJI / :::::::0.-:-F---\ ---./ U4UOU9UIOEUl1,UI2EUIS I\ \ o-_/Plul300+ m00 0 Unsu' ....y.d\ I Wind TLl1nel& Inner Dome,.'Q Q 0o/UJ4 11 100100 to FigureII-Mapsofselected caveswithsome cross sections. Localities see Figure7;cavenamessee Figure12;CaveUII-12Eis Greeley Cave (AtkinsonetaL,1975);TheWindTunnelandInner DOl1'Le (1988)are shown.The1987extensionofBayliss Cave isnotshownas it hasnotyetbeen surveyed.Asurfacedatumwaspaintedto correspondascloselyaspossible withthecavedatuminordertoascertainroof thickness. Steel posts were leftassurfacemarkersto correspond with cave surveystations.Cavesandcollapse depressions were surveyed using steel tape,prismaticcompass,andAbney level.Thesameinstrumentswereused toconnectundergroundandsurfacedatumpointsandtomeasurethelengthsandinclinationsofentrancecollapses. Toprovidedataforlongitudinalandtransversecaveprofiles,caveheightsweremeasuredwithstrongheliumfilledballoons, amethodrecommendedbyR.Greeley.Anarrowribbonwasmarked,rolledontoafishingreelandattached.totheballoon.Heliumwas found to bethebestgasforthispurpose.Ononeoccasioncheaper"balloongas"wassupplied byanagenttryingto be helpfulandreduceourcosts.Itproved to bequiteunsatisfactory.Theresultsofthesurveyswerepresented(At kinsonet ai.,1975)asplanswithsometransverseprofiles (Figure 11)andasa longitudinal profilethroughthesourcecraterandrepresentativecaves (Figure 12),thefirstsuchprofileeverto includethecrateroforigin.CavesandArchesTheresultsofthecaveexplorationandmappingareshowninTable1.Sixty-onearchesandcaves have nowbeendiscovered intheUndaraLavaTubeSystemandatotallengthofoversix kilometersoflavatubecaveshasbeen surveyed.Thelargestpassageyetmeasuredis inBarkersCavewherepassagewidthreaches18.9metersandheight13.5meters.FeaturesoftheCavesandArchesAlthoughtheUndaraLavaTubesformed in a veryshortperiod 190,000yearsago,theyhaveretainedmanyoriginal features.Thesefeaturesshow minimalalterationduetotheirprotection from weathering.Evenwherefloorshavebeen coveredwithlatersediment, sufficientfeaturesremainto provide evidenceofthemodeofformationoftheUndaraLavaTubes. Originaldarkgrey to blackinteriorsareyellow, brown,orbuffdueto athincoatingofsecondaryminerals.Insomeroofs,whiteorlightcoloredbandsofsecondarymineralsup to 10centimeterswideoutlinepolygonal jointing.Figure11showstheplansofrepresentativecaves.Mostofthecavepassagesareelongateinthedirectionofthelavaflow.Figure12showslongitudinalprofilesthroughrepresentativecavesintheCraterSectionandYaramullaSectionoftheSystem.Theseprofilesillustratethevariationinshape,size,androofthicknessofthecaves.Thelargestcavepassagesarefound intheYaramullaSectionandtheyaremostlysimpletubes.Theonly lava tube cave inthisareato show complexdevelopmentis WindTunnelandInnerDome Complexbutthedevelopmentis on one levelandischaracteristicofthetendencyoflava rivers to braid.104

PAGE 112

AtkinsonU5U4 Tran.JOhniOnC... CoveVERTICAL EQUlllS TWICEHORIZONTALSCALEU2-U3EDunmell ""-""T-r">-etch U17Pinwlll Cue U30Boyll ssC.ve U14 iTTllTIlTrrnnnrrrrfTlT1Triillrn_ U18U19II I'll I I'j' r IIi"II "I IIII "f iIi!!IIIU32U34 "'.tlhe.... CaveBarker ClYOuru IIIIIIIIIIIIII '1"1' i nlole O__ -====-_-===-_.;;;SOOm U16flo.d coveSteven. Cave nnffl U28650Oorey CoveIlTIl1lTmmmn 600m U8UgU1OEFigure12-Longitudinalprofilesofvarious caves down flow from Undara Crater. The A.S.F. Cave Register numbers are shown. Floor symbols:sediment( .....),ropy lava(///1/)(Atkinsonetal., 1975).LavaTubeFloorsFloorsofthecaves,whennotcovered by sedimentorwater,representthefinal flowoflava inthetube, Withtheexceptionsofareasofrough,spinoseaabasalt(Macdonald, 1967) onthefloorofPinwill Cave,YaramullaSection,andWishing Well Cave,NorthSection,theexposed floors show featurestypicalofpahoehoe typebasaltflow.AttheentrancetoBarkersCave (Figure 13),thefloor isarched,witha single ropestructurerunningdown-flow. Beyond this,thefloorhasdistinctmarginalgutters(Cover Photo) up toonemeterdeep.Finelavalevel lines ontheouterwallsofthegutterscorrespond,butareabsentontheinnerwalls, whichshowsomeevidenceofformationaslevees,Theraisedcentralportionofthecave isthereforeinterpretedasa finalchannelflow inthiscave,Goodexamplesofropy lavaarevisible in Pinwill Caveandthe South Chapel of St. Pauls. In a central positionneartheentrancetoBarkersCave,crustfragments, approximately eight centimeters thick, have been raftedatvarying oblique angles (Figure 15) in amannersimilar to ice slabs on a frozen river.InPeterson Cave there is a small floor surface where lava drops from roof re-melt appear tohavepittedthefloor, as rain drops pit a muddy surface. Prolonged flowatconstant level is evidenced bythe"pavements"inTaylorCave(Figure14). Whererateofflow is lessagainsta convex bank, lava consolidates in amannersimilartothedepo sitionofalluvium on convexbanksofrivers.WallsandRoofsThereis a lava lining onthewallsandroofofmostcaves. Typicallytheliningis a single layerof105

PAGE 113

6thInternationalSymposiumonVulcanospeleologyFigure13-BakersCave viewed fromtheentrance collapse.Someoftheoriginalarched floorisexposedand has a distinctivelongitudinal "rope" structure.Itis notedwithinterestthatadistinctivepatternofvesiclesonthe large blockinthe center foreground can bematchedto oneinthe cave "roof" directly above it. (Photo:H.J.L.Lamont)up to20centimeters,butin placesmayapproach onemeterinthickness.Atvarious locationsthetube lininghasfallen offthewall to exposethehost lava behind it. The lining is sometimes multi-lay ered. The best exampleofthis is in Pinwill Cave where 15 layers, 2 to 4centimetersthickarere vealedatone location (Figure 15). Attheentranceto thesamecave, athinslaboflining called The Tablehasbecome dislodgedandnowrestsin anearhorizontal position (Figure 17).Onmost wallsandroofsaresomeareasofvery low vesicularityandshowingdripanddribblestructuresresembling cake icing (Figure 18). AttheentrancetoBarkersandPicnic Caves these dripsaredeflected. In historic tubes such surfaces have beenseenformingbyremelting and, because oftheirlusterareappropriatelytermed"glaze,"butintheUndaratubestheremeltsurfaces have weathered to a dull orearthyluster.Inplacestherearelavicicles (lava stalactites), commonly twocentimeterstothreecentimetersandoccasionally up to eightcentimeterslong, sus pended fromtheroof, inclined walls,andin wall106cavities (Figure 19).Lavastalagmitesarerare,asarelava columns. No"straw"stalactiteshave been found no doubt becauseoftheirextremefragility.Inmostcaves,lavalevel linesandledges onthewallsrepresentfluctuatinglavalevels.Thehighestlevelsareusuallyeviden t closetotheroof,asseeninTaylor, Road(Figure10), Arch,Ewamin,Picnic I,PicnicII,andBarkersCaves (Cover Photo).Thelavalevel lines usually slopedown-tubeatlow angles, probablyreflectingtheoriginaltubeslope.TerminationoftheLavaTubesThecavesgenerallyterminatedown-flow with collapses,orwithagentledownwardcurveoftheceiling to asiltfloor.BarkersCaveendsin a lake,thecave ceilingsteadilydecliningtowaterlevel.Severalcaveshavedown-flowentrancesandhavelittleornosiltontheirfloors.Pinwill Cave(Figure21),TheOperaHouse(Figure22), Pic nic,andWishingWellCavesterminatewithwalls.

PAGE 114

Atkinsoninesclaimthattheirpeople wouldhaveavoidedsuchplaces.No drawingS orevidenceoffireshavebeenfoundinthecaves,thoughsomeartifactswerefoundatonecaveentrance.CollapseDepressionsandTheirRelationshipstoCavesThisaccountwouldbeincompletewithoutreferencetothecollapse de pressions associated withtheUndaraLavaTube System.Forconveniencethesedepressionsaredividedintotwotypes,namely:narrowdepressions,30to50meterswide,andwidedepres sions,50to100meterswide.Geologistsandlocalresidentshadlong questioned howthewide depressionshadformed.Theauthorcorrelatedtheirappearancewithanhistoriclavapond in Hawaii(Figure23,fromMacdonaldandAbbott, 1972, p. 42).Withthewonderful cooperationofD.W.Peterson(USGS), fromacrossthePacificcametheconfirmation.NarrowDepressionsNarrowdepressionscommonlygiveentrytothelavatubecaves suggestingthatthey were formed bythecollapseofsegmentsofthetube. Vegetationwithinthesede pressions differslittlefromthatofadjacentopen forest. However,rainforesttreesandvinesarefoundatmostcaveentrances,oftenconcealingThereislittleevidencethattheUndaralavatubeswereusedinprehistorictimes. Local Aborig-HumanUseoftheUndaraLavaTubesFigure14 Taylor Cave. The prominent "pavements"(land2)are evidenceofanextended periodofconstant rateofflOW.Solidification has been greatestatthe apexofconvexity, asina fluvial river. There is a cylindrical opening(3)in the roof above the figure. The locationofthis opening suggests that some lava pondedinthe DeathAdderdepression (in alignment to the north)mayhave drained back into the tube through this conduit..(Plwto:H.J.L.Lamont)107

PAGE 115

6thInternationalSymposiumonVulcanospeleologythemand,asaresult,caveentrancesarediffi cuI ttolocateonaerialphotographs.WideDepressionsWidedepressionsform astronglinearpattern,madeconspicuousbyrainforestvegetation(Figure8).Theyseldom give access to cavesanddisplayfeatureswhichdistinguishthemfromthenarrowdepressions. Widedepressionsvaryinshapefromcircularoroval toelongateinthedi rectionofthelavaflow. AnexceptiontothisisseenwestofBarkersKnobwheredepressionsarelessregularinshapeandlocation,althoughthereissomeindicationofthreebranchingalignments.Theerraticshapesareinterpretedaspossible indicationthattheflowtraversedmarshygroundinthisarea.Most wide depressionshaveelevated rims, suggestingthattheyrepresentformerlavapondsasareseenassociatedwithhistoric flows inHawaii(Figure 23).Rimsandslopesofthedepressionsaremadeupofblocksofvariousshapesandsizes. Localareasofblocks possessing flatuppersurfaceswith low vesicularityarethoughtto besegmentsoflava pondcrustbecauseofthesimilaritiesto collapsed lava pondcrustsinHawaiiandOregon, USA(PetersonandGreeley,personalcommunication1974; Greeley, 1971a).Nearthebaseofsomede pressionsthelowersurfacesofsomeblocksaremouldedandoccasionallycontainembeddedfrag ments.Inrarecases, blockshaveretainedanorig inal ropy lava surface.PetersonandothersoftheU.S. GeologicalSurveyinHawaii(writtencommunication,1975)haveobservedthatlava becomespondedin specific areas, particularlywheretheslope is small.Onceformed,thepondstendtoperpetuatethemselvesduringthelifeoftheflow, even whentheflowfronthas advancedfurther.Thesepondscrustoverandthemolten lavabeneaththecrustisinterconnectedwith lava tubesthathadbeen developing intheflowbothupstreamanddownstreamfromthepond.ThecrustedsurfacesofthesepondshaveFigure 15"Rafted" blocks ofthecrustofthe {inal flow havejammedatvarious angles. Location: BarkersCave. (Photo: VernonAtkinson)Figure16-Multi-layeredlining.Uptofifteen layers are exposedatthislocationinPinwillCave. (Photo: VernonAtkinson)108

PAGE 116

Figure17"The Toole" athinsheetofliningnear the entrance toPinwillCave shows a degreeofplastic deformation. (Photo:VemonAtkinson)Figure18-LavadribblesinBarkers Cave. (Photo: H.J.L.Lamont)109Atkinsonbeen observed to subsideastheflow dwindlesandthepondedlavadrainsback intothetube.Thewide depressionsoftheUndaralavaflowhavebeeninterpretedasformerlavaponds.Thereis a depression 60metersnorthoftheentranceofTaylor Cave. This long depression lies directly in line withtheentrancesectionofthecave.Thecave was foundnottoterminatein a col lapsebeneaththedepres sion,aswas expected,butclose totheedgeofthedepression.Thecavebranchesandthetwopassagesroughly followtheoutermarginsofthedepression.Eachbranchcloses toaninaccessibletunnelandnearitsterminationtheeastbranchdivides again.Thelavalevel lines intheeastbrancharenearly horizontalandproceedalongboth sidesofthecaveandacrossthewide pillarattheend (Figure 24).TherelationshipoftheTaylor Cave passages tothedepressionsuggeststhecollapseinterferedwiththestill functioning tube. Whenthelava ponddrainedanditscrustcollapsedthetubebifurcatedFigure19-Lavaciclesu.ptosix centimeters long in Bayliss Cave. (Photo: Vernon Atkinson)

PAGE 117

6thInternationalSymposiumonVulcanospeleology .. Figure20-Boatingpartyon theterminallake, Barkers Cave. (Photo:R.Dutton) Figure21-"The Wave" terminationofPinwillCave whichhasa downflow entrance. (Photo:Mick Williams)110

PAGE 118

AtkinsonFigure22-TerminationofTheOpera House (note wings). EntranceisdownflOW.(Photo: H.J.L.Lamont)aroundthecollapse,butwasthenconstrictedandeventuallydammed.Subsequentlythedammedlavainsidethetubedrainedthroughminoroutlets. A cylindricalventintheroofofTaylorCave (Figure 14) isinterpretedasa locationwheresomeofthelavathatponded abovethemaintubedrainedbackintoit. Aminorlava fall, approximatelyonemeterhigh,emergesfromunderthe floor ofthewestFigure23-Isla.ndofHawaii,1895,HalemaumauCraterwithinKilauea Cladera.Thelava lake isheldina lavaring(aring-shaped levee)builtup by spatteringandrepeated overflows sud!astlwse visibleinthe picture. (Photo from RayJeromeBakercollection, Bishop Museum, Honolulu)111

PAGE 119

6thInternationalSymposiumonVulcanospeleologyFigure24-TerminationofTaylor Cave (east branch) as two closing tunnels beyond the figure. Note horizontal lava level linesandledges on wallsandcentral column. (Photo:H.J.L.Lamont)Figure25-Relationshipbetween surface depressionsandcaves:(a)Taylor Cave;(b)Barkers Cave (Atkinson,etal., 1975) terminal branchofthecaveandis interpretedasanotherpointof"drainback." Figure 25 shows howBarkersCave changes its course, deviatingarounda major depression 220meterswest ofthecave entrance.Thereisa small cavityinthecave roofundertheeasternendofthe depressionandcircular holes up to 1.5metersacross ontheinnerslope ofthedepression. This seems to indicatethatthe lava which had pondedinthedepression drained back into a flowing tube, forcingittoalterits course.TheWallTheWall (Figures 2a, 26,and27) consists of a very long,narrowridgethatrises up to 20metersabovethegeneral leveloftheflowandcanbe traced for 35 kilometers.Theupper surface oftheridge is relatively flatandvaries in width from 70metersto 300 meters.Itsdown-flow slope averages only112/N30m 30m(a)(b)

PAGE 120

AtkinsonFigure26-Obliqueaerialviewof "The Wall"fromthesouth.Notemegacolumnsflankingcentralcollapsedareaatthetermination.(Photo:JonEdmonds)1.72metersperkilometerwithoccasional undula tions.Theside slopesoftheridgeareup to 290 Thereareseveraldepressionswithinfive kilometersoftheterminationofTheWall.Oneofthesedepressionsmayrepresenta collapsed lava pond whichdrainedintothetubebelow.EdmondsLake, anarroweraxial oval depressionhasbeeninterpretedasa collapsedsegmentofthetube.ThetongueoflavasurmountedbyTheWall floweddownaprecursorofJunctionandElizabethCreeks.Functionalwaterbores inthevicinityofTheWallconfirmthatthenarrowridge is localized above a fon11erstreambed.ModeofFormationoftheUndaraLavaTubeSystemLavariversandassociatedtubesystemsarethemaindistributorsoftheliquidrockduringapahoehoelavaeruption.Thelavatubesystemandcavesassociatedwithitareformed in ashorttime;inthecaseoftheUndaraLavaTubes, probably inseveralyears(Walker,writtencommunication,1991).Evidenceofhowthelavatubesystemandthecavesinitformedhasbeenpreservedfor 190,000 years. This,togetherwith observationsof113caves forming in activeandrecentlava flows inHawaii(Jaggar,1947, cited in Wood, 1976; WentworthandMacdonald,1953; Greeley, 1971b, 1972aand1987; MacdonaldandAbbott, 1972;CruikshankandWood, 1972;PetersonandSwan son, 1974;PetersonandHolcomb, 1989),andIceland(Kjartansson, 1949, cited in Wood, 1976), has resulted inthefollowing discussionofthemodeofformationoftheUndaraLava Tube System (Figure28). Ariverofpahoehoe lava, confined in a valley, quicklycrustsoveranddevelops a roof.Theflow also begins to solidifyagainstthevalley wallsandfloor (Figure 28a).Theroofing occurs in severaldifferentways including growthofsemi-solid sur facecrustsbycooling,crustsfloating downthechanneljammingandaccumulatingatobstruc tions,andthegrowthoflevees fromthechannel sidesthroughrepeated overflows, splashing,andsplattering.Examinationoftheroofs intheUndaralavatubes indicatesthatmostoftheroofingtookplace bythegrowthofsemi-solidsurfacecrusts.Assolidificationoftheroof, walls,andbase continue,theflow becomesconcentratedwithin a cylinder (Figure 28b).Iftheeruptionceasesatthis

PAGE 121

6thInternationalSymposiumonVulcanospeleologyFigure27-Terminationof"TheWall"viewedfromthenorth.Arrowspointtothemegacolumnsonthehorizon. (Photo:TomAtkinson)B,, ; SEMISOLIDTOSOLIDLAVAFigure28-Stages observedinthe developmentofthe lava tubesinHawaii(afterMacdonaldandAbbott, 1972).Examinationofevidenceinthe UndaraLavaTubes indicatesthatthisexplanation is directly applicable.a.ThelavaflOW,confinedina valley, develops athincrust, by one ormoreprocessesandstarts to solidifyinwards from the edges, the centercontinuingto flaw.b.The active movement ofliquidbecomes restricted to a more or less cylindrical,pipelikezonenearthe axis.c.The supplyoflavadiminishesandtheliquidno longer fills the pipe,burninggases abovetheliquidheat the roofofthepipeandcauseittomeltanddrip.d.Furtherdiminutionofsupplylowers the levelofthe surfaceoftheliquid which finally congealstoform the floorofthe tube.114

PAGE 122

Figure29-Roofstructureinside Peterson Cave (east branch). Theprominentarched flowunitjustabove the observer'sheadhas a ropy interface. Higher ropy interfaces also occur. (Photo:H.J.L.Lamont)AtkinsonOncetheUndaraLavaTubeSystemwasformedinthemajoreruption,therewassubsequentthickeningoftuberoofsbylaterflowunits(Figures16,17,and29).Someoftheseflowunitspassed over ropysurfacesandnowbearrope imprintsontheirlowersurfaces.Thelow incidenceofropysurfacesandimprintsatUndarasupporttheobservation by Mac donaldandAbbott (1972)thatropystructureis oftenevidentonly over a small proportionofany flow.Figure30 showsthethicknessofvarious lava tube cave roofs: (a) Tay lor,(b)HarbourBridge, (c)Peterson,(d) Pi nwill (e) Road, (D Barker.Figure30-Cave entrance structures showing thickeningofroofs by successive surface flow units. Flowunitsare represented by wavy lines for recognised flowunitsUI/aces. Other near horizontal lines aremajorvesicle zones. (Diagram: P.J. Stephenson)time,andthetubedrainscompletely,itscrosssectionis circular.Whenthesupplyoflavadiminishesduringaneruption,itno longer fillsthewhole tube. Volcanicgasesescapingfromtheflowintothiscavitymayigniteproducingtemperaturesconsiderablyhigherthanthatofthemoltenlava.Thismaycausesomeremeltingoftheroofwithdripsoflavaforminglavicicles(Figure28c) whicharecommonly verti cal. Deflection israreandisthoughtto be caused by acurrentofveryhotair.IntheUndaraLavaTubecaves deflectionhasbeennotedneartheentrancetoPicnicIandBarkersCaves.Effusionratesfluctuateduringaneruptionbutwheneveraconstantrateismaintained,near-horizontalledgesoflavasolidifyonthetubewallslavalevel lines.Furtherdiminutionoftheflow lowersthelevelinthetubeandfinallytheflow congeals toformthefloor (Figure 28d).Manyormostofthelava tubes in a flow willremainfilledwithlavaandcaves form onlyifthetubedrainsorpartiallydrains.ExaminationofrecentlavasinHawaiiandIcelandhasshownthatmanyentrancesformduringeruption.Otherentrancesareopened by roof collapse,weatheringprocesses,orexcavation byman.115 5m(a)Taylor-5m(c)Peterson !(e)Road --'":. ----_.--.5m(b)HarbourBridge(d)Pinwell "n"...... ,. ,:......:. -'-': '.71" 5m(f)Barker

PAGE 123

6thInternationalSymposiumonVulcanospeleologyAcknowledgementsFigure31-Lunarvesicular basalt. Morethanhalfthisspecimen is "pore" space. Thepores or vesicles, are formed by frothing and bubblingduringvolcanism and indicatehigh gas activity at onetimeon the Moon.The appearance inthehandspecimen and underthe microscope show no marked difference from terrestrial basalts butthere are slightchemical differences. (MacKenzieetal., 1982)(Photo:NASA,USA)Subsequentflows,aswellasthickeningofthetube roofs,mayform additional lava tubes.Ifthese connectwithexisting caves, a complex cave system will develop.IntheUndaraLavaFieldthereis such development intheCraterSectionandintheprox imityoftheWindTunnel.BeyondtheYaramullaSection,thecontinuationofthelavatubesystemisTheWall.Thatitis20metersabovetheassociatedlavafieldwithaminimalgradient,suggeststhatitrepresentsanelevatedchannelflow whose"toe"solidifiedinitiallywhereTheWall nowterminates.Thiscaused atemporaryblockage which allowedthechanneltoroofovertoform amajorla va tube.Thelargepolygonaljointing(Figures 26and27) istakentoevidence considerable roof thickness. Asurgeoflavathroughthetubebrokedownthetoeoftheflowandcontinuedafurther70 kilometers.Slumpingofthetuberoofattheterminationleft a colonnadeofroughlycolumnarblocks (Figure 27).Itwould beofgreatinteresttoconfirmthestructureofthisunusualfeatureby geophysical investigationordrillingnearthecenteroftheridge.ConclusionFavorabletopographyanda very highrateofeffusion, coupledwithanefficientlavatubesystem,allowedoneflow fromtheUndaraVolcanotoextend160kilometerstobecomethelongestsingle-volcano flow intheworld.ThisflowcontainsthelongestlavacaveinAustralia.Withinthecavesandarchesofthelavatubesystem,protec tion fromweatheringhasallowedthepreservationofmanyfeaturessimilarto those inactiveandrecentlavaflows.Fromsuchfeaturesitcanbe concludedthatthelavatubesystemandthecaves initformed in amannersimilarto thosethathave been observedformingduringhistoriceruptionsofpahoehoe lava.Theauthoris indebted tomanypeople fortheirhelpandassistanceinthefieldandelsewhere toomanytonamehere. Specialthanksaredueto: AssociateProfessorStephensonandDrGriffin for permission to usematerialfromourjointpaper. My husband, Vernon,andourfamily;PeterStanton,Q.N.P.andW.L.S.; AssociateProfessorStephenson; Professor Greeley (ArizonaStateU niversity);Drs.Halliday(Tennessee),Peterson(U.S.G.S.),andStevens(U.Q.);andJuliaJames(S.U.) fortheircontinuedinterestandenthusiasm.MrH.J.Lamont,J.C.U.N.Q., forthefine cave photographs. Mick Godwin, Q.N.P.andW.L.S.,Cairns,whohasdone so muchtowardcompletingtheUndararecordsandwhoarrangedmysafeentryto (andreturnfrom)thecaves discovered in 1988. AudreyDurhamandGregAtkinson for editing, formatting,andmuch more.116

PAGE 124

ReferencesAtkinson,FA(l988a):TheRemarkableUndaraLavaTubeSystem-a geologist's view.InL.M.Pearson(Ed.),Pre-printsofthe17thBiennialCongress,"Tropicon,"Aust. Speleo. Fed.: 3 9-56.Atkinson,F.A.(l988b):VulcanspeleologyExtra-terrestrialApplicationsandtheContro versy: Modeofformationoflavatubes.InL.M.Pearson(Ed.),Proceedingsof17thBiennialConferenceoftheAustralianSpeleologicalFederation:57-63. Atkinson,FA(l990a):TheRemarkableUndaraLavaTubeSystem,NorthQueensland.Pointsofinterestasa background to its unique biology.Jour.TasmanianKarstandCave Research Group. May4,1990. Atkinson,FA(1990b):TheUndaraLavaTubeSystemandits Caves. Abridged from Atkinson 1988aandbandupdated. Helictite 28(1):3-14. Atkinson,FA,T.J. Griffin,andP.J.Stephenson (1975): A major lava tubesystemfromtheUndaraVolcano,NorthQueensland. Bull. Volcano 39(2): 1-28. Best, J.C. (1960) Some Cainozoic basaltic volcanoes inNorthQueensland. Bur. MineralRes.,Geo!.Geophys., Aust. Record 1960-1968 (unpub). Bottinga,Y.andD.F. Weill (1972):Theviscosityofmagmaticsilicate liquids; a model for calcula tion.Am.J. Sci., 272(5): 438-75.Kruikshank,D.P.andCAWood (1972):LunarrillesandHawaiianvolcanic features: possible analogues.TheMoon,3,412-47.Dana, J.D. (1890): Characteristics of Volcanoes, with contributionsoffacts and principles from the Ha waiian Islands. New York. DoddandMead. Greeley, R (1970): Topographic evidence forlunarlavatubesandchannels(abstract). Meteorics,V.5,202.Greeley, R (1971a): Geologyofselected lava tubes intheBend Area, Oregon. Oregon Dept. Geo!. Min. Ind. Bull. 71: 47.AtkinsonGreeley, R (1971b): Observations of actively form ing lava tubesandassociatedstructures.Ha waii. Mod. Geol.2:207-233. Greeley, R (1972): Additional observationofac tively forming lava tubesandassociated struc tures. Hawaii. Mod. Geol.3:157-160. Greeley, R (1987):Theroleoflavatubes in HawaiianVolcanoes.Chapter59 in Decker, RobertW,ThomasL. Wright,andPeterH.Stauffer(Eds), VolcanisminHawaii, U.S. Geo!. Surv. Prof.Paper1350. 1589-1602. Griffin, T.J. (1976):TheMcBrideBasaltProvince..Ph.Dthesis J.C.U.N.Q. (Unpub). Griffin, T.J.and1.McDougall (1975): Geochronol ogyoftheCainozoic McBrideVolcanic ProvinceNorthernQueensland. J. Geol. Soc.Aust.22(4): 387-396. Grimes, K.G. (1973):NorthQueensland Lava Tun nels. Down Under 8(3): 18-19.Howarth,F.G. (1988):Environmentalecology ofNorthQueensland Caves:orWhyaretheresomanytroglobites in Australia? In L.M. Pearson (Ed.), Pre-printsl7thBien. Con., "Tropicon," Aust. Speleo. Fed. 76-84.Kjartansson,G.(1949):Nyrhellir iHekluhrauni.Natturufraedingurinn,19;175-184. Kuiper, G.P.,RG.Strom,andRS.LePooie (1966):InterpretationoftheRangerRecords inRangerVIIIandIX, Pt-2. CaliforniaInstituteof Tech nologyJetPropulsion Lab. Tech. Report 32-800: pp.35-248. Macdonald,GA,1967):Formsandstructuresof extrusive basaltic rocks. In: Hess,' H.H.andPoldervaart, A (eds). Basalts The Poldervaarttreatiseon rocksofbasaltic compositionVol.1,Inter-Science (Wiley) New York, pp.1-63. Macdonald,G.A.and A.T. Abbott (1972): VolcanoesintheSea-TheGeologyofHawaii, University Press of Hawaii, Honolulu, Hawaii.441pp.MacKenzie,W.S.,C.H.Donaldson,andC. Guilford (1982):AtlasofIgneousRocks&117

PAGE 125

6thInternationalSymposiumonVulcanoSPeleologytheirTextures.HalsteadPress(John Wiley & Sons Inc.), USA, 148 pp. Matthews, P.G. (Ed.) (1985):AustralianKarstIndex, Aust. Speleo. Fed., Melbourne, 481 pp. Oberbeck,V.R,W.L. Quaide,andR Greeley (1969):OntheOriginofLunarSinuous Rilles.ModemGeology (1): 75-80. Peterson, D.W.,andRT.Holcomb (1989): Lava tubesinMaunaUlu, Kilauea Volcano (19721974).ProceedingsI.A.V.C.l.Symposium(1989).SantaFe. Peterson, D.W.andB.A.Swanson(1974): Ob served formationoflava tubesduring1970 1971atKilauea Volcano, Hawaii.StudiesinSpeleology 2(6): 209-224. Roeder, P.L.andRF.Emslie (1972):OlivineLiquid equilibrium. Contr. Mineral. Petrol.,29:275-89.Rowland,S.K.andG.P.L.Walker(1990):Pahoehoeandaain Hawaii: volumetric flowratecontrolsthelavastructure.BulletinofVulcan ology, Springer-Verlag. Shannon, C.H.s. (1969):BarkersCave,MountSurprise. Down Under 8(3): 18-19. Shaw,H.R(1972): Viscosities of silicate liquids;anempirical methodofprediction.Am.J.Sci., 272(9): 870-93. Spry,A.(1962):Theoriginofcolumnarjointing particularly inbasaltflows. J. Geol. Soc.Aust.8(2): 196-216.118Stephenson,P.J.andT.J. Griffin (1976): Some long basaltic flowsinNorthernQueensland. In:W.R.Johnson(ed.)VolcanisminAustralia,Elsevier Scientific Pub. Co.,Amsterdam.41-51. Stevens, N.C.andFAAtkinson (1975):TheUndaraLavaTubes,NorthQueensland, Australia.InW.R Halliday, (Ed.) Proceedingsofthe In ternationalSymposiumonVulcanospeleologyanditsExtraterrestrial Applications. A special sessionofthe29thAnnualConventionoftheNationalSpeleological Society, White Salmon, Washington, August 16, 1972. Stephenson,P.J.,T.J. Griffin,andF.L.Sutherland(1980): Cainozoic volcanisminNortheasternAustralia. In:RA.HendersonandP.J.Stephenson(eds)GeologyandGeophysicsinNortheast ernAustralia.349-374. Twidale, C.D. (1956): A physiographic reconnaissanceofsomevolcanicprovincesinNorthQueensland, Australia. Bull. Vol.,2:2-23. Walker, G.P.L. (1973):Lengthsoflavaflows. Phil. Trans.R.Soc.Lond.A 274:107-118.Wentworth,C.K.andG.A.Macdonald(1953):Structuresandformsofbasaltic rocks inHawaii. U.S. Geol. Surv.Bull.994: 98. White,DA(1962): Einasleigh, Queensland. Bur. Min. Res., Geol. Geophys. Aust., 1:250,000 Geo logical Series MapandExplanatoryNotes. Wood,C.(1976): Cavesinrocksofvolcanic origin. In: T.D.FordandC.H.D. Cullingford (eds.),TheScienceofSpeleology. Academic Press, London, 127-150.

PAGE 126

AtkinsonAPPENDIX 1 UNDARALAVATUBESYSTEM MAJORELEMENTCHEMICAL ANALYSES Specimen locationsareshown on Figure 7 *These analyses on samples driedat1l0Cn.d.=notdetermined A B C DSi0248.85 49.30 49.50 48.20Ti021.82 1.70 1.67 1.75 Al203 15.23 15.40 15.90 15.80Fe032.52 11.00 10.53 4.46 FeO 7.46trace0.06 6.38 MnO 0.16 0.15 0.15 0.17 Mg() 8.55 8.10 7.10 7.85 CaO 9.16 8.02 8.39 8.02Na203.90 4.20 3.87 3.57K201.75 1.77 1.53 1.71H20+0.35 n.d. n.d. n.d.H20-0.17 ** P205 0.64 0.50 0.34 0.72CO20.13 n.d. n.d. n.d. Total 100.69 100.14 99.04 98.63 Localitv (Fig 7)A B&C B&C D Analyses "A";Hostrock,BarkersCaveentrance,"B": Cave lining,BarkersCave entrance. Analyses: "A" T.J. Griffin, using XRF; Na,namephotometric; Fe:l, bytitration. "B" -"D" P.J.StephensonandT.J. Griffin, using Atomic Absorption (HF-Boric Acid digestion); P, spectrophotometric; .Fe2 bytitration.119

PAGE 127

6thInternationalSymposiumonVulcanospeleologyAPPENDIX 2 Author's fIrst mapandtransversesections,DndaraLavaTube System. Data: TomandAnne Atkinson, 1972.o10m Cove ProfilesPion BARKERS CAVE Towns ville 10..rHlnoHht-'IU.t..... O lfo McBRIDE PROVINCEN t Figure14-8:MapofBarkers Cam. From: Stevens,.S.&F.A. Atkinson, (1975): TheDndaraLava Tubes,NorthQueensland, Australia. In W.R. Halliday, (Ed.)Proceedingsofthe International Sym.posium.onVulcanospeleologyandits Applications.A special Session ofthe29thAnnual ConventionoftheNational Speleological Society, White Salmon, Washington, August 16, 1972.120

PAGE 128

Caves and Pits from the Azores With Some Comments on Their Geological Origin, Distribution, and FaunaPAV.Borges Universidade dos Departamento de Ciencias Agrarias Terra Chd 9700Angrado Hero{snw, Terceira, PortugalA.SilvaSociedade de Espeleol6gicaasMontanheiros,RuadaRocha, 9700Angrado Hero{smo, Terceira, PortugalF.Pereira Sociedadede Espeleol6gicaasMontanheiros,RuadaRocha, 9700Angrado Hero{smo, Terceira, PortugalAbstractIn1989 Ogawa publishedanaccountofthedistributionofvolcanic caves and pits from the Azores.Furtherworkinthelastfew years justifiesanupdatingoftheinformation. Ogawa listed 33 cavesand7 pits; now these numbersare88and24. In thispaperthecavesandpitsarelisted according to their occurrence intheislandsofthearchipelago: Corvo (1;0), Flores (0;0), Faial (3; 1), Pico (28;8), Graciosa. (16;1), Sao Jorge(7;5), Terceira (20;6), Sao Miguel (10;3)andSantaMaria (3;0). Somedataonthelocation, length, elevation,andfaunaofeach caveandpitarealso given. During recent speleological expeditionsbyOs Montanheiros totheislands of Faial, Pico, Graciosa., Sao Jorge, Terceira, Sao Miguel, andSantaMaria over 10,000 meters of lava tubes and 400metersofpits were surveyedanda totalof17new mapsarepresented in this work.Thelongest lava tube, Torres Cave (Pico),is3,350 meters long, 15metershigh,and22meterswide.Thebiggest pit, Algar do Montoso (Sao Jorge), is 137.5metersdeep. Presently 75% oftheknown caves have lessthan300 meters. Some caves really belongtoa single longitudinal lava tube broken into different sections.Wealsopresentsome comments onthemore relevant character isticsofeachofthemaincavesandthedistributionoflava tubes, pits,andrelated lava flows in each island. AshortnarrativeofAzorean geologyandsome information forthepreservationofthecavesaswellassome comments on the relict hypogeanfaunaarealso provided.IntroductionTheAzoreanarchipelagoislocatedintheNorthAtlantic,atthetriplejunctionoftheEurasian,African,andNorthAmericanplates.ThedistancebetweentheAzoresandthemainlandisabout1,390kilometerswestofCabodaRoca(thewesternmostpointoftheEuropeancontinent).Itisformedbyninevolcanicislands,alignedonawest-northwesttoeast-southeasttrend,thataredistributedinthreegroups:thewesterngroupwithCorvoandFlores;thecentralgroupwithFaial,Pico, Graciosa, Sao Jorge,andTer-121ceira;theeasterngroup \"IithSao MiguelandSantaMaria(Figure 1).Thebiggest island is Sao Miguel with 757squarekilometersandthesmallestis Corvo with 17squarekilometers.SantaMaria isthemostsouthernisland (37N, 25W),andFlores isthemostwesternone (31W).Themostnorthernone is Corvo (39.7N) (see Table 1andFigure1).Thedistancebetween CorvoandSantaMaria,themostwidelyseparatedislands, isabout615 kilometers. Corvo liesatapproximatelythesamedistancefromtheIberianPeninsulaandNew foundland.

PAGE 129

6thInternationalSymposiumonVulcanospeleologyoCORVO o FLORESAZ0RESGRACIDSA TERCEIRAs"Azore 5 Madeira-,400km SAO JORGEFAIAL ,# ort.',.. aihea .. PICD SAO MIGUEL ". Nordeste poncaY-LagO; villa Provoat;lJoDe/gada FrancaFormigas\SANTAMARIA Figurei-Mapofthestudiedarea, Azores.Alltheinformationconcerningthelongitude, latitude,area,maximumaltitude,andgeological ageofeach islandaregiven in Table1.AgeandOriginoftheIslandsAlloftheislands have a volcanic originandtherearemanyexamplesofhistorical volcaniceruptionsIslandLong.(W) Lat.(N) Area Altitude Af!e (million vears) (km2 )(m) A B C Corvo30.8 39.717718?? ?Flores30.9 39.4142915 0.010 0.62(2.9) 1.8Faial28.5 38.6 17210432.6 0.73 0.73Pico28.2 38.5 43323511.10.037 0.037Graciosa27.839.162402 0.62 0.62 2.5 SaoJonre 27.9 38.7 24610532 0.55 0.55Terceira27.2 38.7 40210232 0.30 2 SaoMif!Uel 25.5 37.7 75711034 4.01 4.01SantaMaria25.1 36.997587 8 8.12 8.12TableI-Comparisonofthe physical characteristicsofthenineAzorian islands. A=Forjaz (pers. conun.); B=Abdel-Monemetal. (1975),Feraudetal.(1980);C=Queiroz (1990)122

PAGE 130

MA876 5432FLOMID-ATLANTICRIDGE GRA TERSMGBorgesetal.SMR0-+--.......---.,.....-_.... _............._.,....--...,..--....,--........, 200o200400KMFigure2-Relation between the ageofeachofthe Azorean islandsandthe Middle Dorsal Atlantic.Thegeological ages are tlwse proposed by Queiroz(1990)(Modified from Borges,1991).(see Weston, 1964).Thegeologicalageofthenineislandsis very dissimilar. Sincetheirformationtook alongperiodoftime,theseislandspresentarecentvolcanic morphology (e.g., Pico)oramoreeroded,ancientformations(e.g., FloresandSantaMaria).ThereareseveralstudiesconcerningthegeologicaldatingoftheAzorean islands,butunfortunatelythereis noagreementontheageofsomeislands.Threealternativesareproposed: one followingForjaz(pers. comm.) (column A),anotherwiththeresultsobtainedby Abdel-Monemet at.(1975)andFeraudet al.(1980) (column B) withtheKJArmethod,andfinallyonefollowing Queiroz (1990) (column C).Thislastauthorfollows, inpart,AbdelMonemet at.(op.cit.)andFeraudet al.(op.cit.)butalsootherrecentstudies(e.g., Forjaz, 1986b; Whiteet al.,1976; Azevedoet al.,1986, all in Queiroz,op. cit.).InFigure2 wepresentthedataofQueiroz (1990) in agraphicalway.Theageofthedifferentislandsofthearchipelago isnotpositively correlatedwiththeirdistancetotheMiddle Dorsal Atlantic(Feraudet at.,1980).Thesamecould beinferredfromtheagesproposed by Forjaz (pers. comm.)orAbdel-Monemet al.,(1975)/Feraudet at., (1980).AswecanseefromTable1,differentageshavebeenproposed forsomeislands,butneverthelesstheeasterngroupistheolder one,with8.12 million123years(SantaMaria) (Abdel-Monemet al., 1975),comingfromthemiddleoftheMiocene.SerughettiandRoche (1968) (in Ryallet al.,1983) proposeabout2.9 millionyearsofage for Flores (ColumnB,Table1),butAzevedoet al.(1986) (in Queiroz,op. cit.)estimatestheageofthisislandat1.8 million years.Thecentralgroup istheyoungest one. We would also like to pointoutthatthegeologi caldatingsoftheAzorean islandsarefarfrombeingconsidered totally correct, mainly becausethegeologicalsamplesdatedwere probablynottakenfromtheolderstratigraphiclayers (Nunes, pers. comm.).Thewesternpartofeach Azorean island is, geologically,themostrecentone. This is connectedwiththeseismo-volcanicmechanismsofthis archi pelago (FOljaz, pers. comIll.), which isimportantbecausetheoccurrenceanddistributionoftheAzorean lava tubesaresomewhatrelatedtorecentlavaflows (see below).SpeleologicalStudiesintheAzoresTheearliestreferenceconcerningtheoccurrenceofcaves intheAzores is difficult to establish. ProbablytheworkofFougue(1873) who briefly discussed lava tubesandpitcaves on Terceira, Pico,andGraciosa is oneofthefirst. However, before hiswork, Webster (1821) mentioned caves

PAGE 131

6thInternationalSymposiumonVulcanospeleologyinand-nearPontaDelgada (Sao Miguel).Later,Pickering(1908)gavea follow-uponFouque'sexplorationofthelargepitFurnadaCaldeiradaGraciosa(FurnadoEnxofre)onGraciosaIsland.TheearliestspeleologicalstudyrecordedfromthearchipelagowasmadebyForjaz(1963)witha finedescriptionandsketchofFurnadeHenriqueMaciel (Pico).Unfortunatelythemapofthecaveisnotpresented.Recently(May 1990) twoFrenchspeleologists (P.BrunetandC.Thomas)accompaniedbyoneofus(A.Silva)madeamapofthisinterestingcave(unpublished).In1966, aworkofthePortuguesegroupMocidadePortuguesa-Centrode Instrugao EspecialdeEspeleologia-describesthecaveofPauVelho(GrutadosBalcoes)(Terceira)withanincompletemap.ThismapwasreproducedlaterbyHalliday(1980).In1967OsMontanheirosmadea finemapofthiscave,latercompletedbyMontserratandRomero(1983) (see below).Mottet(1970, 1972, 1974)presentedsomedataonthegeomorphologyofsomecavesfromTerceira(e.g.,GrutadasAgulhas,GrutadoNatal,Grutados Balcoes),butnomapsareavailable.Arruda(1972)studiedanddescribedsomecavesandpitsfromPico:FurnaAbrigo,FurnadeHenriqueMaciel II,FurnadeManuel Jose Lima,andAlgardo Alto do Morais. AlthoughthemapsoftheAlgardo Alto do MoraisandFurnadeManuel Jose Limaareprobably incomplete,thisauthorpresentsa finemapofFurnaAbrigo.TheAmericanspeleologist,W.R.Halliday, (see Halliday,1980andalsoAnonymous,1978)visitedtheAzoresinApril1980andworkedoutthefirstchecklistoftheAzoreancavesandpits(Halliday, 1981).Helistedthefollowingcavesandpits: Corvo (0;0),Flores(0;0), FaiaHO;O), Pico (2;2),Graciosa(1;1), Sao Jorge0;2),Terceira(11;2), Sao Miguel (3;0)andSantaMaria(0;0) (see alsoTableII).Intheseworkswecanfindsomesketchesofthecavesandpitsbutnoimpressivemapswerepresented.Someofthesesketches(e. g.,AlgardoCarvao,G.dosMontanbeiros)wereputatthedisposalofW.HallidaybyOsMontanheiros.AuthorsCavesPitsTotalHallidav(1981) 18 725 Ogawa (1989)35742TheAuthors8824 112TableII-Evolutionofthe knowledgeofthenumberofcavesandpitsfrom the Azores.124ThefirstcompletemapsoftheAzoreancaveswerepresentedbyMontserratandRomero(1983).Threelavatubes(BalcOes,PauVelho,Natal)aredescribedandmappedandonelavatube(Agulhas)andonepit(Algar doCarvao)fromTerceiraaredescribedbytheseauthors.MorerecentlyChinchonet al.(inpress)presentsfurtherstudiesonGrutados Balcoes,nowthebeststudiedlavatubeinthewholearchipelago.Recently,HayesandBraga(unpublished)presentedatthe5thInternationalSymposiumonVulcanospeleology(Japan,1988)thefirstchecklistofcavesandpitsfrom Sao Miguel. Two biospeleological expeditionswerecarriedoutintheAzores directed byN.P.Ashmole(EdinburghUniversity)andP.Oromi(LaLagunaUniversity). These expeditionsweresupportedbytheNationalGeographic Society, USA, inJulythroughAugust1987and1989 (thelatteralsowiththeparticipationofoneofusP.Borges)(seeOromiet al,in press; 01'000andBorges, in press; BorgesandOromi, in press).OroOOetal.(op. cit.)presentedthedescriptionofthebiologically studied cavesduringthefirstofthese expeditions (JulythroughAugust1987).ThemostrecentcatalogueoftheAzoreancavesandpitswasmadebyOgawa(1989)(TableII),listing35cavesand7 pits.Sincethen,severalspeleologicalexpeditionshavebeenmadeintheAzoreanislandsbytheTerceira(Azores)OsMontanheirosspeleologicalgroup.Foralongperiodoftime(1963to1987)theactivityofOsMontanheiroshadarecreationandtouristorientation,butalsosomespeleologicalstudiesweremadeduringseveralexpeditionsintheAzores:1963to1976-SeveralspeleologicalvisitsweremadetoGraciosa,directedbyA.LuisandR.Azevedo.TheresultsofthesevisitsarepresentedinTableIII;1967-AspeleologicalexpeditiondirectedbyA.Luis to Pico.Twocaveswerevisited(GrutadoHenriqueMacielandFurnaFreiMatias);1972-A speleological expeditiondirectedbyA.Luisto Sao Jorge.Asthemainresultsofthisvisit,severalsketchesweremadeofthelavatubesGrutadaBeiraandGrutado Leao andthepitBocasdo Fogo. Allofthemwererevisitedandcompletelymapped(seePlates5, 6,and7) inrecentexpeditionsofOsMontanheiros(see below, S.Jorge-88andMontoso-90);1975-AspeleologicalexpeditiondirectedbyA.LuistoFloresandCorvo.Nocaveswerefoundontheseislands;

PAGE 132

1976-Aspeleological expeditiondirectedbyR.AzevedotoPico.Thelavatube,GrutadosMontanheiroswasexplored forthefirsttimeandanaccessladderwasbuilt; 1978-A speleological expeditiondirectedbyA.Silvato Sao Miguel. Severallavatubesandpitswereexplored (e.g.,Grutado Esqueleto,GrutadaRuado Carvao,AlgardaBatalha).However,someoftheworks cited before (e.g.,Mottet,1974; Halliday, 1980, 1981;MontserratandRomero,1983;Chinchonetat.,inpress;Ogawa, 1989;Oromfetal.,inpress;OromfandBorges,in press; BorgesandOromf, in press)werepossible onlythankstothekindassistanceofOsMontanheirosduringpartofthefield work. OnlyrecentlyascientificgoalwasadoptedbyOsMontanheiros.Thepresentwork isdonebythreemembersofthisgroup.DuringthelastyearsOsMontanheirosorganizedortookpartin several expeditions totheislandsofFlores, Faial, Pico, Graciosa, Sao Jorge, Sao Miguel,andSantaMaria(alsothelocal island, Terceira).Theyhaveexploredandmappedover10,000metersofcavesand400metersofpits.Theexpeditions were:1988-0ctober31 toNovember11,S.JORGE88, SpeleologicalExpeditiontotheislandof Sao Jorge;1989-May21to26,BIOSPEL.89,BiospeleologicalExpeditiontotheislandofPico (Azores);1989-July4 to 11,FLORES.89,ZoologicalExpeditionoftheUniversityofAzores (Dept.ofBiology);1989-0ctober10to14,FAIAL.89,BiospeleologicalExpeditiontotheislandofFaial(Azores);1990-March3 to11and17 to 21,BIOSPEL90,BiospeleologicalExpeditiontotheislandofPico (Azores);1990-June8 to 16,ST.MARIA-90, ZoologicalExpeditionoftheUniversityofAzores (Dept.ofBiology);1990-August9 to 29,BIOSPEL-90-S.MIGUEL,SpeleologicalExpeditiontotheislandof Sao Miguel (Azores);1990-Septemberllto 15,MONTOSO-90,Spe leologicalExpeditiontotheislandof Sao Jorge;1991-March28to April 3,TORRES-91,Spe leologicalExpeditiontotheislandofPico (Azores);1991-June6to11,ARCOSPEL-91,Speleolog icalExpeditiontotheislandofPico (Azores).125Borgesetal.Theaimofthepresentcontribution is topresenta commented checklist of alltheknown Azorean cavesandpits (see Tableill,below). A totalof19newmapsorsketchesoflava tube caves, littoral caves,andpitsarepresented. Someremarkson the conser vationofthecavesandon their faunaarealso made.ChecklistoftheAzoreanCavesandPitsTableillis a revised catalogueoftheAzorean cavesandpits (following four pages). Unfortunately in some casesthedatapresented is incomplete (e.g., caves from Graciosa).Itincludesthemainnameandothercommonnamesof each caveandpit, their location,theknown lengthordepth in meters,andtheminimum-maximum height and width also in meters.Wealsopresentdatarelated to the altitude (elevation)ofthemainentranceof each cave and pitandtheUTM coordinates. Finally, in each casewestatewhethertherearemapsandstudiesofthefauna available.Thedatafrom Graciosa Island presented in Table III should be viewed with caution becauseitis based on incomplete notes takenbyA.Luis, J.M. Fagundes,andR.Azevedo between 1963and1976 (speleologi cal visitsofOs Montanheiros to Graciosa).Thefollowing abbreviationsareused onthemaps:a=mappedbyArruda(1972) b=mappedbyMontserratandRomero (1983) c=mappedbytheFrenchspeleologists, P.BrunetandC.Thomasaccompanied byoneofus(A.Silva) ( unpublished) d=mappedby OsMontanheirosspeleologicalgroupandbytheAmigos dos A<;ores ecologist groupduringtheBiospel-90-S. Miguel, Speleological Ex pedition totheisland of Sao Miguel (Azores)Mont=mappedby OsMontanheirosspeleologicalgroupOgawa=mappedbyOgawa (1989)Sketch=only a sketch,madeby Os Montanheiros, is available. We also use in Table IIIthesymbols:?=informationnotavailableand??=notconfirmed. Sevenmapsarepresented(Figures 3 to7)withthelocationofthelava tubes, littoral caves, pits,andthemainlava flows (information based on Anonymous, 1980 a,b,andc)in sevenofthenine Azorean islands.Thenotationisthesameasthatused intheChecklist (Table III).Forthecaves we usethesymbol u*" andforthepitsthesymbol "0."

PAGE 133

...N0) IslandandNo.MainNameOtherNamesLocation Length!HeightWidthElev. UTM MapFaunaIn.. mth 1m)1m)1m)1m)1.CorvoLavaTubes1GrutadoCorvo ? ? ????2.FloresNo Caves Known3.FaialLavaTubes 1Furnadas Anelares Lombega Lombega 35.5 0.7-4.0 1.4-2.5 80 3482/42663 Mont yes 2Grutado Cabelio doCantoConcheiros doCanto21.4 0.3-5.10 0.5-7.5 346 3420/42740 Mont yes 3G.doParquedo CapeloParquedo Capelo 55.3 0.35-1.50 0.4-3.40 300 3452/42727Pits4FurnaRuim Cabe"o Verde -55 20.6-73.1 565 3467/42722 Mont ves4.PicoLavaTubes 1FurnadaAreia F. doJ.MariaCaminho do caisMourato? ???? 2 F.daLaje F.daTi'Adelina; Lajido???103755/42688F.doRanheta3 F.daMiragaiaF. do Chico Miragaia doNorte50 ?? 140 3720/42661 4 F.dasCasasLugardasCasas ? ? ? 20 3709/42685 5 F. doCarregadorAlgar do Barrela; Algares 20 2 ?-6.0 330 3716/42641 F. dos Algares 6 F. doFreiMatiasEstradaNova (Longit.) 666 ?-7.2 ?-14.2 680 3735/42609 Mont 7 F. doHenriqueMaciel F. doEstacioSantoAnt6nio 812>?? ?-4.5 ?.0 140 3825/42649 c yes 8 F. do POlio NovoD.doGennano; POlio Novo(Neartheseaside) ? ? ? ?? F. do Calote 9 F. do Po"o VelhoCanadado Po"o Velho ?????10F. do Tancaim F. doTanquinho;Tambor(Misterio deStLuzia)??? 275 3731/42655 F. doRanheta11F. dos Bodes Cabe"o-Chao ? ????12F. dos Caldeir6es Canada des Caldeir6es, Bandeiras ??? 110 3721/42668 ; 13F. dos Mendon"as CanadadaTravessa?????14F. dos Montanheil'os Curra1 Queimado, Brejos 741 0.45-6.79 0.40-8.59 785 3831/42610 Mont yes15F. D'Agua BandeirasI;BandeirasITBandeiras (Misterio deStLuzia)250+100 ?-2.0 ?-5.0 100 3738/42670 F. dosFaustinos16F. Manuel Jose LimaSantoAnt6nio,Miragaia52 0.5-5.0 ?.0 140 3773/42670 a17F. Nova IFarrobo(Misterio deStLuzia) 270.1 0.75-4.0 1-2.50 230 3741/42658Sketch18F. NovaIIFarrobo(Misterio deStLuzia)?? ? 210 3741/4265919GrutadaBarcaEstrada Marcinal Barca???03675/42670 =pot.ga.... o =eofrIJ....=s o =.... o g.

PAGE 134

....I\)-..J IslandandNo.MainNameOtherNamesLocationLength!HeightWidthElev.UTMMapFaunaI nAnth1m) 1m)1m)4.Pico(cont)LavaTubes20G.daCapuchaAgostinha;CanadadaCapucha, Bandeuas 310.78 0.43-5.10 1.8-10.95 75 3730/42675Montyes Joao Serafun21G. das Torres Cabe<;o Bravo, Crea<;ao Velha3,350 0.50-15.0 1.1-22.0 300 3681/42618Montyes22 G. do Capitao-Mol' Cais doPico300 ?? 30 3850/42649 c 23 G. do Galeao IPanhado Galetio, S.Caetano255.9/-7.0 3.0.0 2.0-10.0 100 3749/42545Mont24G. doGaleao]]P. do Ga1eao (Ringue) 50 0.4-1.1 0.41-1.25 60 3748/42541Sketch25 G. do Ruivo Canegador 70 ? ??? 26 G. do Soldllo Malha;Soldado; Mistlrio daSilveira 1,150 0.40-5.960.43-5.39 10 3868/42526MontyesMoiro;TerraTapada27 G. dos Arcos Arcos (Mistlrio deStLuzia) 216.5 0.30-2.10 1.0-1.60503778/42686Sketchyes28 G. dosEsqueletosIgrejadeStLuzia910.80-1.60 1.0-2.10 130 3780/42674SketchyesPits29 Algal'daFumaAbrigoPicodo Pico -39 10.0-13.0 1,200 3750/42598 a 30A.do Alto do MOI'ais CanadadoMato(Frei Matias) 65/-1012.0.0 1,015 3755/42605 a 31A.do Cabec;o BravoCabec;oBravo (Cl'eac;Ao Velha) 323/-28.5 4.5-9.0 1.8.0 400 3698/42611Sketch32A.do Cabec;o daNegraCampoRaso, CandelAria ?/-15.0 ? 1 75 3695/42562 33A.doCapitaoTamborIIITambor (Mistlrio deStLuzia) ?/.5 ?1 200 3731/42658 c 34A.do Lanchao A.do Cadete;Banderias (MisMrio deStLuzia) 40.5/-5.5 0.40-.5.0 0.50-2.0 110 3721/42667SketchA.doTiAlfredo 35A.doTamborCraterado Cabe<;o Tambor (Mistlrio deStLuzia)97.4/-31.51.0-3.5 1.20-7.40 244 3733/42657Sketch36A.do Valeda No"" eil'a Valeda NOlrueira ? ? ? ?? 5.GraciosaLavaTubes1FumadaLabarda? 7.4 ? ?-4.40 ?? 2F.daMariaEncantadoF. do Castelo CumedaCaldeira 56.5 1-2.80 2.5-5.7 200 4151/43207 3F.do Anel ? 50.4 ? ?-3.50 ?? 4 F. doCanto? 11.3 1 ?-10.80 ?? 5F.doCardo115? ?-2.20 ?? 6 F. doGato? 11.0 ? ?.60 ? 1 7F.do Lin.heiro 1 8.2 ? 1.0 ? 1 8 F. do Luis ?12? ?-9.0 ? ? 9 F. doManuelde Avila ? 14.7 ? ?-8.10 ? ?10F.do Queimado ? 12.5 ? ?? 111F.dos Bolos ? 8 ? ?-6.50 ?? 12F.D'Agua? 10.5 ? ? 260 4148/4321113F.Fenado? 3.4 ?.20 ?-8.10 ?1 t:O"c%rnl"""

PAGE 135

.....I\)co IslandandNo.Main NameOtherNames Location Length! Height Width Elev. UTM MapFauna 1m) 1m) (m)(",) 5.Graciosa (cont) Lava Tubes14GaleriadoForninho Luz96 0.80.5?7.30? ?15Gl'UtadaCanadadasFW'nasFw'uadoRoque Canada das Fm'nas83 1.9.5 3.4.10 125 4148/4320816G,do BornJesusBomJesus Hl 0.55.10 2.25.0 504116143255 MontPits17Fw'nadoEnxofre Caldeira da GraciosEl.42 100 la714lIHJ/4:H9HOgawa 6. Sao Jorge Lava Tubes1FW'na das PombasG.doCais da U rzelina Urzelina ??? 0 4 27822F. do PoioF.daLagosde St Cristo Faja deSt Cristo ? '1?2li418tJ14275H 3F.doPombal Mina D'Agua Pombal, Fenos, Monfl(las ? '1 (HO404!l14276fJ 4GrutadaBeira Beira 188:Wl,lo.o2,!iO'lli,O27/)1I002/4283lJ Mont yes5G.da Granja Velas ?'1??f.HIISB/42817 6G.daLomba do Gato Gueimada, Velas ?'7'7MO300714281(1 7G.do Leao Presado Leao, Velas177 0./)0,83lJIH/42818 MontPits8AlgardasBocas do Fogo Bocas deStAmal'OLixeira deStAmaro55.3/.0 aO.O.flO.O0213982/42817 Mont yes9A.doMontoso Picodo Carvao 269/-137.59.0-50.0!).0.0 784 4048/42791Mont10A.do Pico daMariaPires Pico da Maria Pires? ? ? 6634000/4281411A.doPico dos Suspiros I Pico dos Suspiros???920 4049/4279212A.doPico dos Susoiros II Pico dos Susoiros???9204049/427927.Terceira Lava Tubes1FornadeStMaria Cabrito,PortoJudeu320 ?? 450 4841/42852 2F.doCabrito Cabrito,PortoJudeu200 ? ? 400 4841/42849 3F. D'Agua Cabrito,PortoJudeu250??450 4843/42845 4GaleriadaRibeira Seca Ribeira Seca60 ? ? 175 4918/42813 5Galeria Queimada Cafua Velha Biscoitos,PauVelho639.9>?? 0.3.5 0.26-10.9 473 4768/42895Mont6GrutaBrancaOpala Biscoitos,PauVelho87.3 0.9.1 1.1.8 280 4781/429237G.da Achada Biscoito dasFontinhas169 0.25.40 1.5-4.0 310 4868/42870 8G.da Mad.re de DeusPortoMartins244 0.5.8 0.5.0 210 4940/42816Mont yes9G.das AgulhasG.daSalgaPortoJudeu250.5 0.5.4 1.2-4.5 5 4909/42775Mont yes10G.das Feiticeiras OuteirodoBogango???600 4724/4285411G.das Merces Canadados Marcos,Feteira690.60.70 1.2-1.7 135 4869/4278412G.deSantoAnt6nioPortoMartins302.1 0.35.40 0.6.0 220 4936/4281813G.doCaldeira Biscoitos,PauVelho148 0.40.60 1.1.6 260 4774/42911yes14G.doCamelo CabritoPortoJudeu255.87 0.30.80 1.7-11.3 465 4841/42850Mont ....=r[CI>ga""".ge-rn o C1Jga:.....oCI>g. o

PAGE 136

..... t\)<0 IslandandNo. Main NameOtherNames Location Length! Height Width Elev. UTM MapFauna n""H, (m)(m) (m)1m)7.Terceira (cont) Lava Tubes15G.do Chocolate Biscoitos,PauVelho 109.7 0.50-6.20 0.4-36 250 4781/42924Montyes16G.doCoelho Lagoa do Negro 186.7??1.0-2.1 1.2-3.5 540 4764/4287917G.doNatalGalerias Negras; Lagoda do Negro 389 0.50-7.0 0.8-12.0 540 4766/42878 bG.doCaval018G.doPauVelhoG.dosPrincipiantesBiscoitos,PauVelho 245.5 1.0-4.0 0.4-12.0 350 4778/42908 b19G.do Ze GrandeSerretinha31.61 0.40-2.10 1.9-3.8 125 4867/42781 Mont20G.dos Balc6es Biscoitos,PauVelho 2,713 0.30-6.0 0.25.0 390 4778/42906 b yesPits21Algar do Carvao AlgardoCarvao,PortoJudeu120/ 1.6-40 2.10-20.0 629 4810/42865 Mont yes22A.doFunil Biscoitos -22 11.0-20.0 500 4778/4287923A.do Misterio Biscoitos 151/-12 0.50-2.10 0.5-2.4 545 4763/4287724A.do Negro LagoadoNegro, Biscoitos 16/-5.516540 4762/4287625A.doPico das Dez Pico das Dez,StBarbara60/ 0.30-3.50 1.0-4.5 350 4698/4284926A.doPicoGasnarP.Gasnar La'foda do Nearo Bis 8.51-18 2.35 540 4764/42873 Sketch 8. Sao Miguel Lava Tubes 1 Gruta da CanadadaGiesta PicodaPedra, Ribeira Grande ???1456228/41831 2G.da Quinta-Irene Ribeirinha, Ribeira Grande 30 ? ?-20.0 105 6329/41879 3G.daRuadoCarvao Algar da Rua de Lisboa Domingos Rebelo, P. De1gada 694.9 0.3-5.1 1.0-12.7 38 6159/41779 d 4 G.daRuadoPaimAlgar da Rua do Paim; RuadoPaim, P. Delgada 285.4 0.5.1 1.2-10.5 71 6158/41785 dG.ciaFabricadeTabaco 5G.das Arribanas Anifes,SerraGorda ??? 275 6153/41828 6G.das Escadinhas Ribeirinha, Ribeira Grande31..2 0.44-1.6 0.75-5.11406331/41868 d 7 Gruta de Agua dePau Agua dePau323.1 0.2-2.6 0.8.6 2 6295/41752 d yes 8G.do Esqueleto Lagoa do Fogo,R.Grande188.2 0.3-9.5 1-12.5 250 6311/41843 d yes 9G.doPico da Cmz FurnodoPico deCJ'uzPico da Cruz, Pico daPedra98.5 0.(i-2.9 0.85-5.4 273 6217/41830 d yes10G.doPicodoEnforcado Capelas,PontaDelgada 184.8 0.45-3.20 O.7-l>.O245 6160/41868 d yesPits11Algar daBatalhaGrutadaBatalha Faja de Cima,PontaDelgada 51.9/.5 0.4.3 0.5.7 240 6198/41837 d12A.daMerda Gr-uta da Ribeirinha Ribeirinha, Ribeira Grande 54.5/-5 0.9-2.5 ?-3.71506331/41870 d13A.doPico Queimado Pico QueimadofPicodoSanateiro10/.312 L(i 2506283/41830d ves9.Sa.nta Maria Littoral Caves 1 FW'na das Pombas FW'ua Velha ViladoPorto337 0.5-14.5 0.4.506663/40900 Mont yes 2 FW'na dos Ar\ios Anjos 117.85 0.65-8.6 0.44-11.2106639/40969 Mont yes 3Grutado Romeiro I1heu doRomeiro de S ?? ? 40 6745/40947 co o rnt"\ol:l!""'.

PAGE 137

6thInternationalSymposiumonVulcanospeleologyNewMapsandSketchesofSomeAzoreanCavesandPitsHerewithwepresent13newmapsand4 sketchesof12 lavatube caves, 2 littoral cavesand3 pits. Ashortcharacterizationofeach is pre sented.Thefour sketches(GrutadasTorres, AlgardaBocas do Fogo, GaleriaQueimadaandGrutadasAgulhas)willsoon be publishedasmaps.FaialThefloor isofaalavaandtheceiling is com pletely covered withthinbrownstalactites(blade like)andringstalactites.Fauna:Duringthevisit to this cave wehadtheopportunity to collectsomespecimensofoneinterestinghypogean species.Thespecies is probablythetroglobiticCixiuscavazoricusHoch(Homoptera, Fulgoroidea) describedfromGrutado do Canto (see below). They were col lectedon rootssituatedatthenorthpartofthecave (see points 3and3'ofthemap,plate1).1.GrutaDasAnelares(GrutadaLombega) (Plate1;Figure3, lava tube1)Location: Lombega (Faial); Elev: 80 m; UTM: 3482/42663; Length: 35.5 m; Height: 0.70-4.00 m; Width: 1.40-2.50 m.DuringtheTorres91Expedition totheislandofPico Os Montanheiros hadtheopportunity to studyandmapa small lavatubeatLombega, Faial.Laternamedby usFurnadasAnelares, becauseofthering-like (anel inPortuguese)stalactitescom monly dispersedallovertheceiling. This is a small lava tube with only one entrance, a skylight situated3.40metersabovetheground. 2.Grutado doCanto(Grutados Concheiros)(Plate2;Figure3, lavatube 2) Location: Cabe<;o do Canto, Capelinhos (Faial}j Elev: 346 m; UTM: 3425/42740. Length: 21.4 mj Height: 0.30-5.10 m; Width: 0.50-7.50 m.DuringtheFaial-89 Biospeleological Expedition totheislandofFaialwe hadtheopportunityto visittheCapelinhos area.Oninformation from a local person wewenttothe Cabe<;o doCantoandfound a small lavatube there.Theentranceis covered with ashesoftheCapelinhoseruption(1957-58)andthefloorofthecave is covered withmanycollapsed rocks.2 Figure3-Mapsofthree central Azorean islands, Faial, Graciosa,and Sao Jorge,showingthe locationofthelava tubesand pts (seea.lsoTa.ble3).130

PAGE 138

Borgesetale-I'I.AN ,-=-: ... ", m I'I{OI'11.11 oI :7 ) ..:) m o 1 ,) GRUTAOAsANELARES lOlllOlIoHA FAIALACORESoo DCJ.Q 2ooJ' Mop (If: '0:;MONTANIIIIIROS'SnJ\urJ:J;!!i;1;M. f', llORCI!.S J OOn::U 10 1.1A... 111991Plate1-GrutadasAnelares.GRUTA00 CABECO ooCI\NTQ CABE<;OdoCA'ITO,CAPf:lO FAIAL' A<;:ORESMapat: 'osMONTANllflIROS' Sill!e.IU
PAGE 139

6thInternationalSymposiumonVulcanospeleologyTherearetwo obvious levelsofdrainageshownonthedouble galleryattheendofthecave.Inthisparttheupperlevel formsanarch(double ceiling)andthewallsarereddish.Somesmalllavastalactitesarepresent.The Cabec;o doCantovolcanoispartofarecentcomplexofvolcanoes alignedoverafracturelinethatconnectstheCaldeiradoFaialandtheCapelinhos Volcano.Fauna:RecentlyHoch(manuscript)describedthetroglobiticspeciesCixiuscavazoricusHoch(Homoptera,Fulgoroidea)withtypespecimenscollectedbyusinthiscave.Thespecimenswerecollectedinrootssituatedinthenorthpartofthecave(seesectionsD-D'andE-E'ofthemap).CixuscavazoricusHochis arelictspecies,i.e., acavernicolousspecieswhichhasnocloseepigeanrelativesonthesame,orneighboringislands(Hoch,0p. cit.).Mainlytoensuresurvivalofthisorganism,thiscaveshouldbeprotected.Pico3.FurnadosMontanheiros(Plate3;Figure4,lavatube14) Location:CurralQueimado, Brejos, Regional RoadnO3,km17 (Pico); Elev:785m; UTM: 3831/42610;Length:741 m;Height:0.45-6.79 m; Width: 0.40-8.59 m.Thecave is a typicallavatubeandwasmappedduringtheBiospel-90 BiospeleologicalExpeditionofasMontanheiros.Themainentranceis askylightsituated400metersfromthewestpartofthetubewhereanotherskylight (hornito) occurs.Theaccess is a woodenstaircaseconstructedbyasMontanheiros.Itis aunitary"throughway"system,withremarkableformationsthatmakeitoneofthemostinterestinglavatubesintheAzores.Thefloorofthisvolcanictunnelisofaaorpahoehoe type.Thereareseverallevelsofdrainageregisteredonthewallsbylateralbenches(bancadas).Thesameoccurs intheim pressi velavatubesGrutados Balc6es (Terceira)andGrutadasTorres(Pico) (see below).Thewestpartofthecave isthemostinterestingonewithsomenotableformationsonthefloor, like a modellavatubeatreducedscalethatshowshow alargelavatubecanbe formed.Inthispartofthecavethelavaflowwasoxidized bytheentranceofair(due tothecompressionofgases),andasaPica22142430.CAVESPITS32-------'"'-;:-=4 Figure4-MapofPicoIslandshowing the locationof the lava tubesandpits(seealso Table3).132

PAGE 140

r.HOO ANHEIROSPIca MAl' MOUITO PROFILEIN unUCE Borgesetal. 'osSP.EL .!}ff.llit'IruVIUfiJOSPEJ.907'1P .. _ __. .. '_._.___ __ 0'0-__--_.--,-. _.----. ---- --_ .. J .'i.O._ ,. 0 ._----_.. ....__.".'i.'Y' ....__ ".:. A'CJ-------_._--" ::""I 'fI) I ::"-.o),",,Plate3-Gruta dos Montanheiros.consequencetherock is reddish.Therearemultiple levels.Fortunatelythetubeis wellpreservedwithalmostnocollapsedrocksfromtheceilingorwalls.Inthenorthpartofthetubetherearesomeareaswithcollapsed rocksandinotherpartswecanfind a collapsed rock covered bythelava flow. Several typesofstalactites(lava-drops) covertheceilingofallthecave.Fauna:BiospeleologicallythisisoneofthebeststudiedcavesintheAzores. As a consequenceofthebiospeleological expeditiondirectedby N.P. AshmoleandP.Orom!(1987), a hypogeangroundbeetlewasdescribed,Treehus pieoensisMachado (seeOrom!et al.,1990).Later,anothercarabidspecies(presentonly intheskylightareaofthecave)wasdescribed,TrechusmontanheirorumOrom!andBorges(seeOrom!andBorges, inpress).ThetypespecimenswerecollectedduringtheformerexpeditionandduringtheBiospel-89andBiospel-90BiospeleologicalExpeditionsofOsMontanheiros.TheoriginandspeciationofthesetwointerestingTrechusspeciesarediscussedinBorgesandOrom!(inpress).133Inthiscave we also found two new speciesofCollembola,Onyehiurussp.andPseudosinella azorieaGama,bothwithobviousadaptationsto cave life (Orom!et al.,1990).Otherspecies, common tootherPico caves (e.g., Soldao, Capucha, Arcos), could also be found inGrutadosMontanheiros,liketheundescribedCixussp. (see Hoch, in press)andthespiderThe ridion pieoMerrettandAshmole.SpeleologicallyandbiologicallyGrutadosMontanheirosisoneofthemostimportantcavesoftheAzoresandshould be protected.4.GrutadasTorres(Plate4;Figure4,lavatube21) Location: Cabe<;o Bravo, Crea<;ao Velha (Pico); Elev: 200 m; UTM: 3681/42618; Length: 3,350 m; Height: 0.50-15.00 m; Width: 1.10-22.00 m. This is nowthemostimpressive volcanic lavatubeintheAzores, with 3,350metersmappedandmorethan600 to800metersonly visited for a totallengthofabout4,000meters.Inthelistoftheworld's longest lava tubes revised (second revision) by Crawford (1979)theGrutadasTorreswould occupytheseventhplace.Grutados Balc6es (Ter ceira) is nowthesecond longest one intheAzores.

PAGE 141

6thInternationalSymposiumonVulcanospeleologyGRUTADASTORRES CReACAOVELIiA!'ICOA<;:ORE5 (SKETCH) SLikneI:OS JrotOt.IlAN'lntl'lOS SRI!1I,1"MIftJl)rd.il Plate4-Gruta das Torres.BetweenMarch28andApril3,1991, ateamofsevenmembersofOs Montanheiros undertook a speleological expedition, Torres-91, to this magnif icent cave,mappingandfilming it.Thecave liesinlava fieldsofthenortheastvolcanicsectorofPico Mountain,southeastof Creagao Velha.Itisa three-dimensional braided system with someremarkableformations.Thefloorisaaorpahoehoe type.Thereareatleast11levelsofdrain age registered onthewalls bylateralbenchesandthreecornice levels.Theheightof15metersandthe11drainagelevels giveanideaofthe majesty of this lava tube cave. This lava tube has two entrances, one, a skylightnearone extremity,theother, 600metersdown, a large cone fornled bytheslumpingoftheroof.Alloverthemaintube(about 2,500metersin length)therearegreatblocksoflava collapsed fromtheroofmakingprogress very difficult,butin someareasthefloor is cleanandofa beautiful pahoehoe lavaoraalava.Inthemaintunnelwecanfind some impressive lavagutters.Themostinterestingformationsareinthesecondary tunnels,someofthemareunique. Sometimestherearevery low crawl way passages.Fauna:TheundescribedCixiussp. (see Hoch,0p.cit.)was collected by usduringtheTorres-91 Speleological ExpeditionofOsMontanheirosto this cave. We have alsoputasetofpitfallsinthecavebutthearthropodscollected bythesetrapsarestillundetermined. Sao Jorge5.GrutadaBeira(Plates5and6;Figure3, lava tube 4) Location: Beira (Sao Jorge); Elev: 275 m; UTM: 3952/42839; Length: 183 m; Height: 2.50-10.0 m; Width: 2.50-15.0 m. This cave wasmappedduringtheSpeleological expeditionofOsMontanheirosdirected byA.Luis to Sao Jorgein 1972andlaterrevisited bytherecentS.Jorge-88 ExpeditionofOs Montanheiros.Thecave is located intheRosais Volcanic Com plex, mainly with porphyric basalts.Thelavatubehasanorth-northwestorientation,flowingtosouth-southwestattheseadirection.Theentrance,measuringtenby sixmeters,is a hollow inthecollapsed roofofthecave.Inthesouthernpartofthetunnelthereis alargeroom filled withearth.Several collapsed rocks fromthe134

PAGE 142

Borgesetal.l-l {J 1-IJ-JH-H c-c GRUTADABEIRAiLHADES.JORGEACORES0 ,,,,.3" '0,Im. PLAN '0 '0 H I I,mSECTIONSMapof:'05 MONTANHEIROS'SEE,\. LUlS &< L AZEVEDOEXDCdition of October1972 p-pCOLLAPSED ROCKS c2> SA. .. .. BASALTDJ:BIUS I ItIt IIoPlate5-GrutadaBeira(plan). PROFILE GRUTADABEIRAiLHADES.JORGE ACORES -I:. '> ..-_ -.---_ .. ___._-, _... .._ _._.---_ .._..__ .. ---_._---_._---_._--_._--.-..-.-._-__.. .J.:J.. H . ._.-. _..... .....--.-;'J......_... ----------------.. -----a'J:I ..".._--..-.._.--...._-----..._...__ ...-.-_. -. ..,.. .." of:OS MONTANUElkOS' L UETIJ:NCOURTM. AGUIAR;F.PEREIRA11th 15th Selcmber 1990Plate6-GrutadaBeira(profile).135

PAGE 143

6thInternationalSymposiumonVulcanospeleologyceilingcanbe found alloverthecave.Thefloor,andto someextentthelateralwalls,arecovered byearth,becauseofwaterinfiltration fromtheroofandtheentrance.Therearenolateralbenches,butmanystalactitescanbe found covered with a whitesubstancesimilartothatfoundinGrutadasAgulhas (Ter ceira) (see below). Becauseofitsdimensionsandbeauty,thislavatubeshould be protected.Fauna:As aresultofthebiospeleological expe dition directed by N.P. AshmoleandP.Oromi(1987), two troglobitic species were described fromthislava tube,thepseudoscorpion Pseudoblothrus oromiiMahnertandanisopod (Trichonoscidae) Gen. sp. indet.thatprobablyrepresentsanewgenus (seeOromietal., 1990). 6.Grutado Leao (Plate7;Figure3,lava tube7)Location:Presado Leao (Queimada),Velas (Sao Jorge);Elev:250m; UTM: 3964/42818;Length:177m;Height:0.50-6.00 m; Width: 0.80 3.00 m.Aswiththeprevious cave, this lava tube wasmappedduringthespeleological expedition to Sao JorgeofOsMontanheirosdirectedbyA.Luis in 1972andlaterrevisited bytherecentS.Jorge-88ExpeditionofOs Montanheiros. Wethinkthatthis cave was formed bythelava flowsoftheeruptionof1808 (BocasdeSt. Amaro).Theentranceis a hollow, 0.6by0.4meters,witha six-meter vertical drop.Thegallery isnarrowandhighwitha considerable slope.Thereareyellowish formationsneartheentrance,probably withthesamecompositionasthosepresentintheAlgardasBocas do Fogo (see below). Some collapsed rocks fromtheceilingandwallsarepresent.Fauna:Unknown.7.AlgardasBocasdoFogo(BocasdeSt. Amaro)(Plate8;Figure3,pit8) Location: LixeiradeSt.Amaro (Sao Jorge); Elev: 521 m; UTM: 3982/42817; Length: 55.3 m; Depth: 12.0 m; Width: 30.00-50.00 m. This pit wasmappedduringtherecentS. Jorge 88 ExpeditionofOs Montanheiros. Algar das Bocas do Fogo is a volcaniccraterin whichthechimneyhasthreeopeningsthatlead to achamberof30by50 meters.Thebestaccess isthelargeropening with a dropof40meters.The1808 eruptionofSt. Atnaro originatedattwo open ings with two lava flows.G RUTADO LEAO PRESADO LEAD -viLA DE VELAS.-ILHADES.JORGEMar of: 'OSMONTANIIElROS'SEEA. LUIS&L AlEVE[)()r.xpcdlliofl of Ocloncr 1972'. STI\LJ\C nTES:..,:LN!
PAGE 144

Borgesetal. 01ci6.o".t;..J.c..r,-8-G-8PROFILE E. II sBocusdeS.:lntoAm.:lro ILlIAD[ .<:,,\UjO(,1'.HUCKS000l.\AG/\ClN/\';....;.SI.Ol'H-::--=0V GYl'SUM STRUCTURES....SI.OI'I'.J)lltECTION ,_-'0 S;'l"tdu:1,.1[:'OSMONT/\NlIEIROS'SEEUEREIKtl M. A(;ln/\K;L /'ARHEI1tJ\ 15\ Novomhcr1988 Plate 8-AlgardasBocas do Fogo.Duetothematerialsaccumulatedunderthelateralopenings,thefloorhasa "V" cross section. Asmallconeofvolcanicmaterialsispresentunderthecentralopening.Thetwolateralrampsare30and20meterslongwithadropof15and10meters.Onthewallsofthesouthpartofthecratertherearesomedepositsofwhitegypsum.Fauna:Duringthebiospeleological expedition directed by N.P. AshmoleandP. Oromf (1989), anewspeciesofa troglobiticgroundbeetlewasfoundanddescribed later,TrechusjorgensisOromfandBorges.Unfortunatelyonly a female is known. 8.AlgardoMontoso(Plate9;Figure3,pit9) Location: Pico do Carvao (Sao Jorge); Elev: 1,019 m; UTM: 4048/42791; Length: 269 m; Depth: 137.5 m;Height:9.00-50.00 m.; Width: 9.00-70.00 m.ThispitwasmappedduringtherecentMontoso 90ExpeditionofOsMontanheiros.ThePico do Carvao isanextinct volcano with onecraterandthreeopenings-twoofthemclosedandthethird one open. Thislastvolcanic chimneyhasthreeOlifices(I,2,and3 from plate 8),theAlgar do Montoso (named incorrectlybyanerroroftoponymy,thecorrectnameshouldbeAlgar do Carvao).Ofthethreevertical pits, onlythesecondandthird(seeplate8)areused for vertical caving.Number2 ismoresuitable, being formedbyseveralterraceswith a dropof60meters,endingin a largechamberof150by70meters(height40to 50 meters).Afterreachingthebottomofpitnumber2thefloorhasasteepslope; asmalllakecoveredbyplantdebriscarriedin bytherainwaterliesatoneextremity.Theceilingandwallslostpartoftheircoverbecauseofthecollapseoflargebasaltstones.AsintheAlgar do Carvao (Terceira) (oneofthemostbeautiful volcanic chimneysoftheAzores),therearedripstoneandflowstone formations onthewalls, whicharecomposedofobsidianorpitch stone,aswellaslocally profuse silicious (SiOz) speleothems.PitNumberI has a vertical dropof80metersendingin a circularchambermeasuring50by30meters.Theassemblage resembles very wellaninverted funnel.PitNumber3 is a small well, 20metersdeep all coveredbya reddish stone, typicalofthehornitos,thatendsin a"throat"withoutanypassage.137

PAGE 145

6thInternationalSymposiumonVulcanospeleology Mop of:'OS MONTANIIP.IKOSSEEEx'ditia",of I'ln and19'1OVOLCANICCIIIMNI!Y-,.,. ALGARDO MONTOSO-/LHADES JORGEWater Iipahoehoe AStalactites 'V Collapsed rocks<2a72 Collapsed rocksnt'Dv.90 HH HPlate9-Algardo Montoso.TheAlgar do Montoso istheAzores' deepest pitandcould be developedasa show cave like Algar do Carvao (Terceira).Fauna:Unknown.Terceira9.GaleriaQueimada(Cafua Velha) (Plate 10; Figure 5, lavatube5) Location:PauVelho, Biscoitos (Terceira); Elev:473m;UTM:4768/42895;Length:639.9 m; Height: 0.30-2.50 m; Width: 0.26-10.9 m.TheGaleriaQueimadais located inthehistori cal lava flowofPauVelho (1761). LikethelargerGrutados Balcoes (situated inthesamelava flow)itis a three-dimensionally braided system.Itis a cave withsomeplanimetric complexityandisnotcompletely mapped(see?in plate 10).Itis the second biggest lava tube on Terceini. andoneofthemostbeautiful. Aftertheentrance,thebroaderpartoftheceilinghasaparticulardesign, forming two large"teats"(mamelonesfrom the Spanish).Therearesomeunusuallycolorfullimonitespeleothemsforming columns.Neartheendofthemaintubethereis a beautifulstructureoflimonite forming a "waterfall."Inthemaintubethefloor is mostlyofaalava,butinthenarrow, low secondary tubesthefloor is pahoehoe type.Inseveralpartsofthelava tubethefloor is covered withmudandwater. Polymorphicstalactites(lava-drops)occurontheceiling, someofthembeing veryinteresting.Fauna:Unknown.10.GrutadasAgulhas(GrutadaSalga)(Plate11; Figure 5, lavatube8) Location:PortoJudeu(Terceira); Elev: 5 m; UTM: 4909/42775; Length: 250.5 m; Height: 0.50 5.40 m; Width: 1.20-4.50 m. This is a mildly braided lavatubecavern(Halli day, 1981) formed by lavas fromthe eruption ofPico do Refugo.Itwas studied especially byMottet(1974) becauseofitsoutstandingsequenceofflow features.Thecave wasnamed"Agulhas" (needle) becauseofitsneedle-like lavaformationsofvitri fied silica (opal)about0.2 to 0.5centimeterslong.Themainentranceisatsealevel.Thefloor isaaorpahoehoe.Thereareatleastfour levelsofdrainage registered on the wallsbylateralbenches.Inthe middleofthecavethereisevidenceofa false floor which shows wherethelavahasdrainedaway leaving a small tube (30meterslongand0.5138

PAGE 146

TERCEIRA5km L--L...-L...-L--J'----J'_CAVES PITS2510231726222114123 7912Borgesetal.rFigure 5-Map ofTerceiraIslandshowingthe locationofthe lava tubesandpits(seealso Table3).GALERIA QUElMADABISCOITOS.PAUVELllOTERCEIRA Al;ORES (SKETCH) '\I!NTRANCI! \ii'o10(0 )01,0nY'. Plate10-Galeria Queimada.139 Skclch of:'05 MONTANHBJROS'SBll P ffiRElRA: 27lh PcbfUAlY 1991

PAGE 147

6thInternationalSymposiumonVulcanospeleologyHORNITOGRUTA DA!i AGULHAS rOlao J\1l1l'1l rEltCEIHAACORES (SKETCH)o20m '-------' PROFILE Map uC:'OSMONTANIIEIROS' SEE1'.PEREIRA M. AGUIAR; P. BORGES 6 thMarch199 IPlate11-GrutadasAgulhas.to 1.2metershigh) insidethemainlava tube.Onthelateralwallsthereareobliquestriatedmarksasa consequenceoftheaccelerated escapeofgases.Fauna:As a consequenceofthebios pel eo logical expedition directedbyN.P. AshmoleandP. Orom1 (1987), severalnewinterestingspecies were foundanddescribed from this cave:thehypogeanPseudoscorpion,PseudoblothrusvulcanusMahnertandtheAmphipod(Talitridae), MacarorchestiamartiniStock(Macarorchestiabeinganewgenus) -itsonly caveadaptationisthesmall eyes (Stock, manuscript).Threeotherhypogean species,notrestrictedto this cave,werealso found:thecollembola(EntOntobryidae) PseudosinellaashmoleorumGamaandP.azoricaGama(see Orom1et al.,1990)andthecentipedeLithobiusmelanops orotavaeLatzel (seeEasonandAshmole, manuscr.ipt). 11.GrutadoChocolate(Plate12;Figure5, lavatube14) Location:PauVelho, Biscoitos (Terceira) Elev:250m;UTM:4781/42924;Length:109.7 m; Height: 0.50-6.20 m; Width: 0.40-3.60 m.Grutado Chocolate is asmallbutbeautiful lavatubelocated inthePauVelho lava flow (1761).140Theentrance,asmallapertureof40by40centimeters,ismadethroughasecondarygallery which is partiallyobstructedbyearthandroots.Thefirstpartofthecavehasa reddish coloration up to onethirdofits height, probablyasa conse quenceofoxidation. Wethinkthattheoccurrenceofthreesuperimposed tubes is a consequenceofthebenttendencyofthegroundwherethecavewasformed.Therefore,themaingallery was subjected to severalstrangulationscaused bymaterialsthatobstructedtheflowofthelava. Anewsuperimposedtubeformed oncethelava flowed again.Thefirstofthegalleries is formed by adrainagetubethrougha hollow inthemain"sink"typetube.Itis a narrow, lowtubewithanaatype floor.Thewallsandceilingarerich inremeltstructures.Thereis also a formation(miniatureofalavatube)thatshows how a lavatubecanarise.Overthefirstgallerythereisanother,extendingthemaintube. Athirdgallery occurs overthesecondandreachesthecaveentrance.Fortymetersupstreamthereis alargelavarock recovered bythelava flow.Thepassageatthissiteis difficultandhasto betraversedbycrawlingoverpahoehoe lava.Higherupstreamthereareyellow-

PAGE 148

Borgesetal.GRUTA DO CHOCOLATEd",,,,,,.I,"'''ACORESMAPPROFILE ,vlJp 0(;'05 MONTI\NHI.lIROSSl!l!J."nJ;Tffi.'KOURTM.,\CUI,'.R; P.BORGESL. PARREIRA J,d M.",h 1990Plate12-Grutado Chocolate.ish formations, probably silica, coveringthelavastructures.Fauna:Unknown. Sao Miguel12.GrutadeAguadePau(Plate13;Figure6,lavatube4) Location: Agua dePau (Sao Miguel); Elev: 2 m; UTM: 6295/41752.Length:323.1 m; Height: 0.20 2.60 m; Width: 0.80-6.60 m.ThislavatubewasmappedduringtherecentBiospel-90-S.MiguelExpeditionofOsMontanheiros.Thisis a small,somewhatbraided lavatubecave located only twometersabovesealevelandcovered bysome70metersofoverburden(Orom!andBorges, in press).Therearealso two levelsofgal leries-alateralentranceneartheceiling,40metersfromthemainentrance,beingtheaccess tothesecond gallery.Therearetwomaingalleri sthatintercepteachother.Themain galleri s havlateralbenches insomeparts,covered with rocks collapsed fromtheceilingandwalls. On th floor thl'arlarge blocks141 CtHII.I\NCEyoflava. Onthewallstherearerodstalactitesandblisters(remeltingstalactites).Thesecondary gal leryhasvery low passagesandsomecrawlways.Thefloor is pahoehoeandtheceiling is covered.bystalactites(lava-drops).Thetubeisinterruptedby a collapseoftheroof. Beforereachingthispointanotherlargeamountofcollapsed. rocksmakesprogress verydifficult.Fauna:Thefaunaofthiscave was studied.duringthebiospeleological expedition directed.by.P. AshmoleandP. Orom! (1989).Thegeneralresultsofthisstudyarestill unpublished.,butone traglo bitic speciesofground beetle collected. in this cave was recently describedThalassophilusazoricusOrom!andBorges(seeOrom!and -Borges, inpress).Thetypematerialconsisted.of14 specimens00ofthemcollectedbyBorges in 1990),buttwomoreindividuals were collected. byoneofus (F.Pereira)duringtheBiospel-90-S. Miguel Speleo logical ExpeditionofOsMontanheirostotheislandof Sao Miguel. So faritistheonly eyeless ground beetle known fromtheAzores;itis a relictandpaleoendemic species (BorgesandOrom!, in press). This cave should be protected..

PAGE 149

6thInternationalSymposiumonVulcanospeleology f .CAVESPITSsAoMIGUEL11191262Figure6-Mapof Sao Miguel Island showing the locationofthe lava tubesandpits(seealso Table 3)GRUTA oEAGUA DE PAUAGUA DE PAUS.MIGUEL AC;ORESBNTRANCeM.p of:'OS MONTANllIUROS'Imp. AMIOOS DOS A<;OltnS J. CAIlRAL16IhI&,h 1\ ... 1990Plate 13 Gruta de Agua de Pau.142

PAGE 150

Borgesetal.13.GrutadoEsqueleto(Plate14;Figure6,lavatube5) Location:Lagoado Fogo road, RibeiraGrande (Sao Miguel); Elev:250m; UTM: 6311/41843;Length:188.2 m;Height:0.30-9.50 m; Width: 1.00 12.50 m. Aswiththeprevious one,thislavatubeoflargedimensionswasmappedduringtheBiospel-90 S.MiguelSpeleologicalExpeditionofOsMontanheirostotheislandof Sao Miguel.!tislocated inthelavafieldsoftheSerradeAguadePauvolcano.Theentranceis aconsequenceofthecollapseofalateralpartofthewallandroofatabout40metersfromthebeginningofthelavatube.Theinitialpartofthecave,thelargestone, is well preserved.Thereis a lid-type wall, probablythestoppingpointofalavaflowposteriortothetubeformation.Thewalls havemarksofseverallavalevels.Intheceilingtherearemanymelt-stalactites.Unfortunatelythemajorpartofthecave is verymuchspoiled.Thisisduetothecollapseofgreatblocksofbasaltfromtheceilingandwalls.Somevestigesofsmallstalactitesandpreliminarylavacanstill be seen.Thetubeendswitha collapseoftheroof. Probablythiscave was destroyedbyearthquakesandthelandmovementsthey caused.Fauna:Abiospeleological expedition directed by N.P. AshmoleandP. Oromf (1989) visited this cave.Thegeneralresultsofthisstudyarestill unpublished. 14.GrutadoPicodaCruz(Plate15; Figure 6,lavatube6) Location: PicodaCruz,PontaDelgada(Sao Mi guel; Elev: 273 m; UTM: 6217/41830; Length: 98.5 m; Height: 0.60-2.90 m; Width: 0.85-5.40 m.Thisis a simpleunitaryorthroughwaylava tube (seeHallidayandLarson, 1983)andwas mappedduringtheBiospel-90 S. Miguel Speleological Ex peditionofOsMontanheirostotheislandof Sao Miguel.Itis anarrow,low lavatubewithanovoid configuration in all its length.Theentranceconsistsoftwo holes,quiteneareach other,thatarearesultofa collapsed vault. Wethinkthatthelava flowofthePicodaCruz volcano istheoriginofthislavatube. Fivemetersbeforetheendofthetubeitbecomesnarrowerandlower with agreatslope. Fifteenmetersafterthemainentrancethereis a"sink" -\ .. I \ .-----1---O'Q I... ""'""IX PLAN c ..-/ c 0 a' Jr\tQ"cUc[;;1!: . Q.....D.,w, ... .c::J "on 0=0"-'PROFILE GRUTAdo ESQUELETOS.MIGUEL AI;ORESMap of:'05 MONTANIffiIROS'SI'.B f. !'REMM.AGUlA!l.AMIGOS DOS J.CI\llRAL 15:hA'1990Plate14-Gruta. do Esqueleto.143

PAGE 151

6thInternationalSymposiumonVulcanospeleology Map of:'OS MONTANIIl!IKOS' SI!.B M.AMIGOS OOS A<;QRBS J. CARRA\.: T.ORAG,\ 10Ih "Ull\U1 1990 PI.AN };ospcl I'KOPILBGRUTADDPICOD'CRUZ=":1 ItDI\ltll/lllllut .....0 ,,.,m -SBCTIONS$.MIGUEL ACORES ..,',. e'j"H' ",. ; .= .0,,y,,0. .0, ,<),eO,.0/),,C,,eD.,.Q.,D., .0 .9., Plate15-Grutado PicodaCruz.thatbegins a secondarysmalltubeunderthemaingallery.Thelevelsofdrainageareevidentinthewallswherewecanalsoseesignsofdraining.Duetoitsproximity tothehighgroundandthespeleleometricdata,thiscavemustbe a secondarylavatubeoriginated by a small lava flow. Thissituationcontrastswithotherbigger lava flowsoriginatingfromthatvolcano. Nearbythereareseveralsinksshowingtheoccurrenceofothercav itiesthatwere destroyed bylandmovements.Fauna:A biospeleological expedition directed by N.P. AshmoleandP.Oroml(1989) visitedthiscave.Thegeneralresultsofthisstudyarestill unpublished. 15.AlgardaBatalha(Plate16and17; Figure6,pit 8) Location: Faja de Cima,PontaDelgada (Sao Miguel); Elev: 24011); UTM: 6198/41837. Length: 51.9 m; Depth: 9.5 m; Height: 0.40-3.30 m; Width: 0.50-5.70 m. MappedduringtherecentBiospel-90-S. Miguel ExpeditionofOs Montanheiros, thispitis associatedwith a lava tube.Thelavathatflowed inthetube rosethroughtheroof forming a pitanda secondarytubethatended in a low,crawlinggal lery.Theupperlevel is 33.7meterslong, 0.50to3.20meterswide,and0.40 to 2.30metershigh.Thelower level is 18.2meterslong, 2.90 to 5.70meterswide,and0.90-3.30metershigh.Theentranceis a hole 1.40 by 0.90metersand9.5metersdeep.Fauna:Unknown.SantaMaria16.FurnadasPombas(FurnaVelha)(Plate18;Figure7,littoral cave1)Location: Vila doPorto(SantaMaria); Elev: 0 m; UTM: 6663/40900; Length:337m; Height: 0.50-14.50 m; Width: 0.40-12.50 m. This cave wasmappedduringtherecentSt. Maria-90 Expedition, being a littoral caveofmarine erosion located onthesouthcliffofSantaMarianeartheaeolicparkofVila doPorto.Insidethecavetherearelayersoffossiliferoussandstoneandtwobasaltveins, withhorizontalprismaticdisjunction. Fiftymetersafterthemainentrance,buried inthesandthatcoversthefloor, we found a calcite speleothem.Thewall inthis144

PAGE 152

Borgesetal.PLAN LEVEL I..IC' .U .. lUI'/JcoUo .. .. o1 1 5 ) ,.....jI**iI,..., o1 2 S 5m rui.,h...,..,.tnll..S.MICiUEl ACORES Mlp nf:os MONTANHBIROS' SHBP. I'EREIRA:M.AOJIARAMIOOS DOS J. CABRAL 22nd AllNIt 1990 LEVEL2I"_D .. o Plate16-AlgardaBatalha(Plan).PROFILEo12 S 45m AlGARDABATAlHA Map of:'05 MONTANHBIROS' SHEr. PER.E!RA; M. AGUIARAMIGOS OOS J, CABRAL 22nd AIJ6US\19901..,1 II('.jPU'& Due,u S.MIGUE l ACORES LEVEL ... Plate17 AlgardaBatalha(Profile).145

PAGE 153

6thInternationalSymposiumonVulcanospeleologySANTAMARIA NI .. CAVES 15km '-----'_--L_----'-_--.L-----J' Figure7-MapofSantaMariaIslandshowing the locationofthe littoral caves(seealso Table3). /' \-'<'"INSECTS (01 PTERA) =BASALT SEAWATI(CALCITE== SAND ........ SANDSTONE ECCENTRlCSTRUCTURES Mapuf:'OSMONTANHEIROS'SEEF PEREIRAM.AGUIAR P. BORGES14 th June1990 FUIlNA 10' V'L.' J.POllTOSI\NTI\AIt,Il'I\.ACORES,Dr ,0,. AG III II ,\ I I'." r\.j/ )\ '.h,;( 2J ;1 ,u,. ..."\.'. oSmPlate18-Fumadas Pombas.146

PAGE 154

Borgesetal.locality is covered by alayerofcalcite fromtheceilingtothefloor.Fauna:A biospeleological expedition directed by N.P. AshmoleandP.Oromi(1989) visitedthiscave.Thegeneralresultsofthisstudyarestill unpublished.17.FurnadosAnjos(Plate19;Figure7,littoralcave2) Location: Anjos(SantaMaria);Elev:10m;UTM:6639/40969;Length:117.85m; Height: 0.65-8.60 m; Width: 0.44-11.20 m.Aswiththepreviousone,thiscavewasmappedduringtherecentSt.Maria-90Expedi tion,beingalsoalittoralcaveofmarineerosionlocatedin aclifftothewestofAnjos.Thecaveislocatedinabasaltveinandwehadtheinformationthatarockexplorationoccurredon it.Ithasarelativelylargechamberattheentrancethatelongatesitselfintoatunnelwhichbifurcatesjustbeforetheend.Fauna:A biospeleological expedition directed by N.P. AshmoleandP. Oromf (1989) visitedthiscave.Thegeneralresultsofthisstudyarestill unpublished.ConclusionsThemostinterestingAzoreanislandfromthevulcanospeleologicalpointofview is Pico. This island isdominatedbythePico volcano, a tallbasalticcone (2,351metershigh).Thewesterntwothirdsoftheisland fornl a conspicuous la va fieldofrecentage(Anonymous, 1980c). Allthemainvolcanic lavatubeson Picaaresituatedin pahoehoebasalticlavaflows (FoIjaz, 1963). Theyarebuiltbyvery fluid lavasunderspecial conditions. Such a typeofcave is very common,appearinginotherAzorean islands also (e.g. Terceira).OnPicothereareseveral historical lava flows (seeFigure4),areaswith agreatconcentrationoflavatubecavesandpits.TheMisteroofS. Luzia (1718) isthePica lava flow with alargernumberoflava tubes (seeFigure4andalso Table III). Probablysomeofthemareremainsofa single longitudinal tube.Inthe Misterio ofSilveira (1720)thereis aremarkablelava tube,Grutado Soldao0,150meterslong),asimpleunitaryorthroughwaytype lava tube (see HallidayandLar son, 1983)thatis very well preserved. ..:_:::: JNSECTS (DII'TERA) 1 .. I",I -----==1"... ,. _ i __. I.FURNA001ANJOSANJOS'SANTA ""AlliAACORESD"D"d',b,n ,0, ,(J,,L1,. I -t I)" of:'os MONT ANIIEI ROS' S!lli M.I\GlJlAR;P. tlOl
PAGE 155

6thInternationalSymposiumonVulcanospeleologySeveral levelsofdrainageregistered onthewalls bylateralbenches(bancadas)arecommonly foundinmanycaves from PicoandalsoTerceiraand Sao Miguel.Howeverthebestexampleofthisis inGrutadasTorres(Pico),withapproximately11differentlevelsofdrainage.Uptonow28lavatubesandeightpitsareknownfrom Pico,butasa consequenceofthelaboriousworkoftheamateurspeleologistA.Garcia (Pico,Madalena)morewill probably be discoveredsoon.ThecavernicolousfaunaofPico is very richanddiversified. Muchworkon ecologyandevolutionaryecologycanbedonehereinthefuture. Withrespecttothecavesandpitsthatoccuronit,TerceiraiswithoutanydoubtthesecondmostinterestingAzorean Island,afterPico. Onthisislandthereareseveralareaswith cavesofgreatinterest(seeFigure5).ThePauVelho lava flow (1761) is probablytheareawiththemostinterestingcaves fromthisisland (see lava tubes 5,6,13, 15, 18,and20).Untilnow,threespeleological sites have been identified inthePauVelho lava flow (1761) onTerceiraIsland: Balcoes (20), GaleriaQueimada(5),andCaldeira (13).Oneofthem, Balcoes, ismadeupofmorethanone cave (Balcoes,PauVelho,BrancoOpala, Chocolate), located betweenaltitudesof240and400meters.Itis quite probablethatothercaves, stillunknown,will be found inthearea.MontserratandRomero(1983)mappedBalcoesandPauVelho.Duringthefieldsurveys(helped byOsMontanheiros)mostoftheotherlavatubessituatedinthelavaflowmentionedabovewerevisitedandmappedinthelastfewyears.Balcoes isthesecond longest lava tube intheAzores, 2,713meterslong.Thecaves cited before vary from87to 640meters,with several galleries, rooms,andhallsasbeautifulasin Balcoes. Twoofthecaves already exploredandmapped,theGaleriaQueimadaandGrutado Chocolate (seePlates10and12 respectively) have very diversified formationsandmayillustrate.theimportanceofthespeleological sitesofthePauVelho lava flow. These caves have amoderateimportance fromtheentomological pointofview, because mostofthemarecoveredbypasturesandthereis somemudinfiltration. Nevertheless,therelict cave car abidTrechus terceiranusMachado could be found in BalcoesandCaldeira lava tubes (Borges and Orom!, in press).148OnTerceirathereis also Algar do Carvao, aremarkablevolcanic chimney developedasa show cave since 1988.Asa consequenceoftheconstanteffortofOs Montanheiros,mostofthemainlavatubecavesandpitsfromTerceiraarealreadylisted, howeverthisspeleologicalgrouphasnotyetbeenable to findthe"magnific"pitdescribed byFouque(1873) (300metersdeep).ThehypogeanfaunaofTerceiraisnotso diver sifiedasthatofPico,eventhoughsomeremarkabletroglobitic species occur inTerceira'slavatubesandpits.On Sao Jorgetherearetwolavatubes(Beiraand Leao) andtwopits(Bocas do FogoandMontoso)ofgreatinterest,notonly becauseoftheirspeleolog icalstructuresbutalso becauseoftheiruniquefauna. Algar do Montoso is aremarkablevolcanic chimney (seeplate9) still poorlystudied.Faialhassmallandunimpressivelavatubesbutwithstrikingendemic hypogeanarthropodsonit.FurnaRuimisanexception withthethirdbiggest vertical dropoftheAzoreanpits(55meters).On Sao Miguel allofthemaincavesarelocated intherecentpartoftheisland,thecenterplateau.Mostofthemaresmallandverymuchdestroyed.Inspiteofthat,theirfaunaisworthnoticing, probably becauseoftheancientageoftheisland (four million years) (Abdel-Monemet al.,1975).SantaMariaistheoldest islandofthearchipel ago (eight million years) (Abdel-Monemet ai., op. cit)withoutrecentlava flows.Ithasonly littoral cavesofseaerosion (e.g., AnjosandPombas).Graciosa is still poorly studied,butonthisislandthebeautifulFurnadoEnxofreoccurs, with alargelakeatthebottomandsoifataras.Onthesmallestofthetwoeasternislands, Corvo,thereistherecordofonecave,presentlyclosed. Beautifulstalactites(lava-drops)andsomestalagmitesofmanytypesandformscovertheceilingandflooroftheAzorean cavesmakingthemexcellentobjectsofadmirationandstudy. After this workthenumberofknowncavesandpits fromtheAzoreanIslandsare:Corvo(1;0), Flores (0;0) Faial (3; 1), Pico (28;8), Graciosa (16;1), Sao Jorge(7;5),Terceira(20;6), Sao Miguel00;3)andSantaMaria (3;0). Islands like Faial, Graciosa,andSantaMarianeed a lotoffield work for abetterinventory.Otherslike Pico, Terceira,and Sao Miguelareinanadvancedstageofknowledgebutinspiteofthatthereis still much speleological work to be done.

PAGE 156

Pico is doubtlesstheAzorean islandwheremorespeleologicalsurprisesmayshow up.TheGrutadasTorresis a goodexampleofit.Presentlythebiggest lavatubeknownfromthisarchipelago,itwasonly discovered veryrecently(1990).ConservationAspectsCaveecosystemsprovide auniquehabitatforevolutionaryandecologicalresearch.Becauseofthat,allthecaveswherethereisfaunaadaptedtothesubterraneanenvironmentshouldbeprotectedfrom all typesofinjuries (seeTableIII;andalso Orom!et ai.,1990,Oromiet ai.,in press, BorgesandOromiin press).TheseAzorean caveswithbiologicalinterestare:Anelares, Cabec;o do Canto,andFurnaRuimfromFaial;Montanheiros,Soldao,HenriqueMaciel, Capucha, Arcos,GrutadosEsqueletosfrom Pico;BeiraandAlgardasBocas do Fogo from Sao Jorge;Balc6es, Coelho, Caldeira, Agulhas,Madrede Deus, Algar doCarvaofromTerceira;AguadePauandEsqueletofrom Sao Miguel.ButtheAzorean caveshaveothervalues,andwe shouldpreservethemfortheirgeologicaloreduca tionalinterest.Inprotectingthemweareprotect ingmuchscientificandrecreationalpatrimony.UnfortunatelysomeAzorean caves (e.g.,Furnado Cabrito,FurnaD'Agua-Terceira)wereclosedandmodified byconstructionbythegovernmentforprotectionofwaterresources.Others,liketheoncebeautifulGrutado Camelo (Terceira) is now completely destroyed, forthesamepurpose.Ontheotherhand,manyoftheTerceiralava tubesarevisited bytouristsandthepopulation ingeneralwhich is good.Howeveragreatamountoftrashcanbe found onthefloorsofthesecaves (e.g., Natal, Balc6es, Agulhas). OsMontanheiroshasrecentlycleaned upGrutasdoNatalandAgulhas.OnPicoand Sao Migueltheentrancesofsome lava tubesandpitsarecurrentlyused to disposeofdomesticanimals(e.g.,Grutado Galeao)orasgarbageandoffaldumps(e.g.,Grutado Galeao,GrutadaRuado Carvao,GrutadaMerda,andso on).Somelavatubes(e.g.,NatalandAgulhas)andpits (Algar do Carvao) fromTerceiraareunderthemanagementofOsMontanheirosspeleologicalgroupfromTerceira(AzOles).Thepeculiar featuresanddimensionsofthesecavesandtheremarkablescenicaspectsoftheAlgar do CarvaomakeTerceiraIslanduniqueintheAzores. Somesupportfor carefully supervisedtourismis being149BorgesetaI.implantedby OsMontanheiroswiththehelpofSecretariaRegional deTurismoe Ambiente (EnvironmentalandTourism Regional Secretary). We recently foundtbehypogean relict beetle from Terceira,Trechus terceiranusMachadointheAlgardo Carvao, showingthatarationaltouristexplorationwon'tharmthefaunaofcaves (pit inthiscase). Nevertheless we should like topointoutthat,insomecases,ifthehabitatofapeculiarspecies is changed,thespecies is doomed to disappear.Forexample,theTrechusmontanheirorumOromiandBorges lives onlyattheentranceoftheGrutadosMontanheiros(Pico) (see BorgesandOromi, in press).Inthiscase wethinkthatitshabitatmustnotbechanged,andin consequence, nocementorotherrelatedproducts should be used fortheconstructionofabetteraccessthantheexistingwooden staircase.AsalreadynotedbyHalliday(1981)theAzoresareislandsofunusualspeleologicalinterest.Theyhavesomeremarkablevolcanicchimneycaves (e.g., Algar do Carvao, Algar do Cabec;o Bravo,AlgardoTambor,FurnaRuim,andAlgardo Montoso)andlavatubecaves (e.g., Balc6es, Choc olate, Queimada, Agulhas, Torres, Montanheiros,FreiMatias, Soldao,andperhapsstill otbers).Thereforeallthelava tubesandpitsofthese islandsshould be protected.Thereareseveral solutions for this.Tbetop priority fortheconservationofthecavesandtheirfaunais toconductaccuratespeleologicalandbio logical inventories on all islands inorderto estab lish conservation priorities. Simultaneouslyitis alsourgenttolearnmoreabouttheecologyoftheAzorean cave species sotheprotectionmeasureswill be effective.AcknowledgementsWe were able tocarryoutthefield workthankstothesupportofSecretariaRegional de Turisl110 e Ambiente, Bombeiros Volunhirios daMadalena (Pico),BombeirosVoluntariosdasVelas (Sao Jorge), Bombeiros VoluntariosdaRibeiraGrande (Sao Miguel), Bombeiros Voluntarios dePontaDelgada (Sao Miguel), Bombeiros Voluntarios de Angra do Hero!smo (Terceira),CamaraMunicipaldaHorta(Faial),CamaraMunicipaldaMadalena (Pico),CamaraMunicipaldaRibeiraGrande (Sao Miguel),CamaraMunicipal dePontaDelgada (Sao Miguel),CamaraMunicipal de Angra do Heroismo(Terceira),InstitutoNacionaldoAmbiente,

PAGE 157

6thInternationalSymposiumonVulcanospeleology Servic;o Regionalde Protecc;ao Civil dos Ac;ores, MinistrodaRepublicadaRegiao Aut6noma dos Ac;ores, DepartamentodeBiologiadaUniversidade dos Ac;ores, Departamentode Ciencias Agnirias daUniversidadedos Ac;ores and Forc;aAerea Portuguesa.Ourtripstothe6thInternationalSymposiumonVulcanospeleology (Hawaii, 1991) weremadepossible bythesupportofSecreta.ria Regionalde Educac;ao eCultura(SREC), Direa;ao Regional dosAssuntosCulturais(DRAC), Fundac;aoLuso Americanapara0Desenvolvimento lnstiut.o Nacional de Investigac;ao CientificaUC). JuntaNacional de Investigac;ao Cientifica e ecnoJOgica (JNICT)andCamara lunicipal de Angra doHeroismo. We would also like to express our gratitude forthefield helpthatwe received fromourcompanionsofOs Montanheiros:M. Alves, J.Bettencourt,L.Bettencourt,J.Botelho,R.GabrielP.OviedoL.Pimentel, F. Silva, Joao Silva,JorgeSilva,J.Sousa,O.Teixeira;andalso J.A. Castro, J.V. Cas tro,J.Miratela, M.A.V.Pereira,M. Rosario, andV.Sousa (Pico); F. SilvanoandCmdt.Soares (Sao Jorge); T. Braga,J.Cabral, G.Hayes,J.unes.,andA.Belchior (Sao Miguel); D. PomboSantaMaria);andespeciallyA.Garcia(Pico) for his noteworthyandlaboriousworkin discoveringandlocating the lava tubesandpitson Pico.Ourverticalcavinginstructionwas done by oneofus(F.Pereira)whomadea courseofonemonth(February1988) inLaLaguna(Canaries) withtheorientationofL.Esquivel,J.Hernandez,A.Medinaand1.Zamora,andwiththesupportoftheNationalGeographic Society,CamaraMunicipal deAngrado Herofsmoand Servic;o Regional de Protecc;ao Civil dos Ac;ores. Ourbiospeleological instruction was done byanotheroneofus(P.Borges)duringthebiospeleologicalexpeditioncarriedouttotheAzores directed by N.P. AshmoleandP. OromiandsupportedbytheNationalGeographic Society, USA, inJulythroughAugust 1989.Wewould also like tothankR.Gabriel (Azores University) forherhelp intheimprovementoftheEnglish text.ReferencesAbdel-Monem, A.A., L.A.Fernandez.andG.M. Boone (1975): K-Ar AgesFromtheEasternAzores Group(SantaMaria, Sao MiguelandtheFonnigasIslands):Lithos,8: 247-254.150Anonymous (1978): Volcanic cavesoftheAzoresa Compilation.The Cascade Caver, 17(5-6):2732. Anonymous (1980a):Guide for Field Trip.ViIslandofS.Miguel.IA VCEI Azores University,PontaDelgada, Azores. Anonymous (1980b):Guide for Field Trip.V2IslandofTerceira.IA VCEI Azores University,PontaDelgada, Azores. Anonymous(1980c):Guide for Field Trip.V3IslandofFaialandPico.IA VCEI Azores Univer sity,PontaDelgada, Azores. Arruda, L.M. (1972): Contribuic;ao para0estudoespeleo16gicodailha do Pico (Ac;ores): Sociedade Portuguesa de Espeleologia, Publicar;ao Espe cial,5:1-13.Borges,P.A.V.(1991):ABiogeografiadosCole6pteros(Insecta, Coleoptera) dos Ac;ores. Universidade dos Ac;ores. Angrado Heroismo. (MonografiadasProvasde Aptidao Centifica e Capacidade Pedag6gica). Borges, P.A.V.andP.Oromi(in press):Thecave dwelling ground beetles ontheAzores(Col., Carabidae): Memoires de Biospeologie.Chinchon, J.;J.Montoriol-Pous;andA.Montserrat(in press): Contribuci6n al conocimiento de las concreciones del tubo volcanicoGrutados Balc6es (Ilha Terceira, Ac;ores, Portugal).Crawford,R.(1979):Listoftheworld'slongestlavatubes secondrevision.TheCascadeCaver,17(9-10):50-51. Eason, E.H.andN.P. Ashmole(manuscript):IndigenousCentipedesfromCavesandLavaFlows ontheAzores. Feraud, G.;1.Kaneoka;andC.J. Allegre (1980):KlArAgesandStressPatternintheAzores: geodynamic implications:EarthandPlanetary Science Letters, 46:275-286.Forjaz, V.H. (1963):Notassobrea"FurnadeHenriqueMaciel" (Pico, Ac;ores): BoletimdaSotiedade Portuguesa de CienciasNaturais,2"Serie,9:159-165.

PAGE 158

Fouque,F.(1873):Voyagesgeologiquesaux Ac;ores. Revuedes Deux Mondes,103( 1-3): 40-65and617-644. Halliday, W.A. (1980):CavingintheAzores.TheCascade Caver, 19(11-12):117-121.Halliday, W.A. (1981): CavesoftheAzores:aninitialreconnaissance.ProceedingsoftheNWRASymposiumon Cave ScienceandTech nology,Seattle,pp.30-39. Halliday, W.A.andC.V.Larson(1983):ApeCaveandtheMountSt. Helens Apes,ABCPrinting&Publishing, Washington,24pp. Hayes,G.andT.Braga(unpub):Grutase Algares de Sao Miguel.5thInternationalSymposiumon Vulcanospeleology.Hoch, H.(manuscript):Cave-dwelling Cixiidae(Homoptera,Fulgoroidea) fromtheAzores.Montserrati Nebot,A.andM.RomeroiRectoret(1983):Novedadessobreelconeixementvulcanoespeleol6gic de I'illadeTerceira (Ac;ores Portugal):Speleon, 26-27:93-104.Mottet,G.(1970):Contributon a l'etudegeomorphologique de I'Ue volcanique de Ter ceira (Archipel des A90res). Publications Roneo duLaboratoiredeGeographiedel'UniversitedeMadagascar,75pp.Mottet,G.(1972),Observationsgeomorphologiques a I'lle volcaniquedeTerceira (Ac;ores): Finisterra,7(14):199-252.Mottet,G. (1974): LesTunnelsdansles CouleesdeLavedeTerceira (Ac;ores): Finisterra9( 17): 111 117.151Borgesetal.Ogawa, T. (1989):TheVolcanic Cavesat Ac;ores Islands.Dojin,8(1):13-22.Oromi,P.andP.A.V.Borges(in press):NewTrechodinaeandTrechinaefromtheAzores(Col.: Carabidae): Bocagiana.Oromi, P.; J.L.Martin;N.P. Ashmole;andM.J. Ashmole (1990): ApreliminaryreportonthecavernicolousfaunaoftheAzores. Menwires de Biospeologie,18:97-105.Oromi, P.;J.L.Martin;andN.P. Ashmole (in press):LasCavidades Volcanicasenlas Islas Azores.1llJomadasAtlanticasde Preotec9M do Meio Ambiente.Pickering,W.H. (1908):ThevolcanoesoftheAzores.Appalachia 11(4):344-350.Queiroz,M.G.PB.(1990):Aspectos Vulcanol6gicos do Maci90 das Sete Cidades.Centrode Vul canologia do I.N.I.C.,PontaDelgada, Ac;ores. 139 pp. Ryall,P.J.C.;M.C.Blanchard;andF. Medioli(1983):ASubsidedIslandWestofFlores,Azores.CanadianJournalofEarthScience,20:764-775. Stock,J.H.(manuscript): AnewgenusandspeciesofTalitridae(Amphipoda) from a cave inTerceira, Azores. Webster, J.W.(1821):A DescriptionoftheIslandofSt. Michael.Boston, R.P.&C.Williams. Weston, F.S. (1964):Listofrecorded volcanicerup tions intheAzores withbriefreports.BoletimdoMuseueLaborat6rioMineral6gicoe Geol6gicodaFaculdadedeCiencias, 10(1):3-18.

PAGE 159

Lava Caves of Sao Miguel Island, Azores Joilo C.NunesCentro de VulcanologiaIINN-UA, PO Box12,9500 Ponta Delgada, Azores, Portugal Te6filoBraga AJnigos dos Ecol6gica, PO Box29,9500 Ponta Delgada, Azores, PortugalAbstractTheAzores Archipelago is locatedinthenorthAtlanticatthetriplejunctionoftheEurasian,African,andNorthAmericanplatesandisfonnedbyninevolcanicislandsalignedonawest-northwesttoeast-southeasttrend.At Sao Miguel,thelargestisland,ninelava cavesandpitshavealreadybeenidentified,someofthembeing open volcanic conduits. Severalsmallerlavatubesarealso known.Themajorityofthesecavesarefoundatthe"Picos Volcanic Complex," a volcanicunitofabout50,000yearsfonnedbyseveralscoriaconesandassociatedlavaflows.Inthepresentpapersomeofthefeaturesoftheselavacavesarepresented.Amongthesefeatureswerefertotheirshape, size, localsetting,smallassociatedstructures(levees, flowmarks,benches,andstalactites),andtheirprobable origin.Theimportanceofa deta;iled studyofthelava cavesaswellastheirfutureusearealso referred.TheAzores archipelago isparticularlyplentifulinlavatubes, above all owing totheabundanceoflavaflowsofabasalticnature(basaltandhawaiite)whereplentyofstructuresofthepahoehoe typeareto be found.ConsideringthesmallareacoveredbytheAzorean Islands,theirspeleologicalwealthis comparabletoanyothervolcanic region intheworld,duetothenumberofexistingcavesandtotheirparticularities(Oromiet al., 1988).Inspiteofthefactthattodatethereis no detailedaccountoftheexistingcaves intheislandof Sao Miguel,thegeologicalandgeomorphological conditionsoftheisland allowoneto foreseeanimportantspeleological wealth. However,inthesixteenthcentury,thelocalhistorian,GasparFructuoso,whendescribingthecoastofPontaDelgada,refersto volcanic caves tothewestofthecity: "Beyond, ashortdistancetothewestoftheFortress,thereis apointcalledPitsPointbecausetherearetwoentrancesto cavesthereandonenteringtheseitis possible towalka long distanceundertheground, inside them.Itseemsthatastreamofvolcanicstoneflowedinformertimes,ofwhichthereis no record." Morerecenthistorical references, above allofaninfonnativecharacter,refermainlytothe"Pit"(cave)ofRuaFormosa,nowRuadeLisboa(Walker, 1886; Silva,(?);andBryan,1963)anda cavesituated"aboutthreeorfour milesnorthwestofPonta Delgada" (Webster, 1821).From1988,ontheinitiativeoftheAmigosdos Ac;ores ecological association, a bibliographic listingandanexplorationofthecavesandpitsintheislandof Sao Miguelwasstarted.Atthemomentthereare22 known volcanic cavesandfourartificial cavities.In1989thefirstscientificexpeditionofa biospeleologicalnaturetook place, ajointventureoftheUniversitiesofLaLaguna(CanaryIslands)andEdinburgh(Scotland) which exploredabout20caves.In1990, withtheparticipationoftheAmigos dos Ac;ores, asMontanheiros,andtheUniversityoftheAzores(DepartmentsofGeosciencesandAgrarian Sciences)thefieldworkoftheBiospel Sao Miguel project took place,havingasitsmain152

PAGE 160

Nunes&Braga Corvo300W Floru-. GraciosaFaial Sao Jorge... Pico 'IITerceira Azore s.-. Madeira 400km saoMiguel ,... SantaMario .. o100200kmLI...1.' ---', Figure1-Locationofthe Azores Archipelago.objectivethemapping,photographing, listingofgeologicalcharacteristics,tourismpossibilities,andpossiblestratagemsforthepreservationandprotectionofthecavesandpitsof Sao Miguel.Figure2-MaintubeofAguade Pau Cave, coveredwithsecondary deposits (white colored), (Photo by JodoNunes) 153Withthepresentpaper,asa follow upofthatprojectandthefieldworkwhich took place in 1991,wehopetofillinagapexistinginthevul canospeleological bibliographyoftheislandof Sao Miguel,presentsomeoftheresultsobtained,andgive ageneralperspectiveoffutureactivities.TheAzoresArchipelagoTheAzores Archipelago ismadeupofnine landsofvolcanic originsituatedinthemiddleoftheNorthAtlantic,betweenlatitude37 to 40northandlongitude 250to310west(Figure 1). Aligned in ageneralwest-northwesttoeast-southeasttrend,theAzoresIslandsevidence a very spe cial geotectonicsettingatthetriplejunctionoftheEurasian,African,andNorthAmericanlithosphe ric plates.TheAzoresarea very active seismic regionwherevolcanicphenomenaarecommon.OntheIslandsof Sao Miguel, Terceira, Sao Jorge,Pico,andFaial,aswellasinthesurroundingocean, several volcaniceruptionshaveoccurredsince theyweresettledinthefirsthalfofthefifteenth cen tury. AlltheAzores Islands,withtheexceptionofSantaMaria(theoldest),presentoneormore qua ternarystratovolcanoes,oftenwithacaldera(Boothet al.,1978).Ontheotherhandthereareinthearchipelagomorethanathousandscoria cones, frequently alignedalongfaultsandresponsible fortheemissionofseveral flowsofbasalticnature.

PAGE 161

6thInternationalSymposiumonVulcanospeleologyo t ..:::..'::::::::::::::::::::. :::::::::::::::::::::::::::::::::::::::::::::::ro::::\:::::-:!I7.1iHisloric Eruplion, 1439 A.D. III ..Pico.VolconlcComplexc:50,000yI0 m FogoV.C.-250,000Y...... III E m SeleCidode.V.C...500,000Y...0... Furno.V.C.-750,000y.. ffiB] V.C. 3.0M.Y. Ii) 0 NordI.V.C. 4.01 M.Y.PonloDelgodoFigure3 Locationandgeological settingof Sao Miguel volcanic caves. Volcanostratigraphic sketchbyForjaz,1984and1985;in: Queiroz, 1990.SC=Sets Cidades,FO=Fogo,FU=Furnas,PO= Povoa,r;ao.4210.-----,.--------.-------,.--------r-----"""T--------.,r-------,.-------.., o 5 10km42004190 41804170 800 810820830 840 850860870Figure 4Tectonicmapof Sao Miguel island (Forjaz,1986)andlava cave locations.PD=Ponta Delgada,154

PAGE 162

Nunes&BragaSummaryTableof Sao Miguel Caves MainFeaturesC=Cave Geographic Altitude Total Geological AgeNameP=PitCoordinates (m) Length (m) Settinf! (years) 37 42'55H 15 323 F.V.C,500? 1-Agua dePauC25 '48H 37'27H24552/9.5PVC.4,000-4,6002-BatalhaC/P25'25H37'14H20>980PVC. :;:-4,600? 3-Carvao C 25'51" 37'49"235185PVC.<4,0004-Enforcado C 25 '36" 37'03" 135 31 F.V.C 4,990 5-EscadinhasC 25'00" 37'23"210188 F.V.C 4,790 6-EsQueleto C 25'29" 37'06" 260 98.5 P.V.C<4,0007-PicodaCruzC 25'22" 37'08"28537Rist.1563 A.D. 8-Pico Queimado P 25'45"37'14H150 54.5/5 F.V.C 4,990 9-Ribeirinha C/P 25'04" 37 48'06" 35 22SCYC. :::::20,800 10-Feteiras C 25'51"FYC.=Fogo Volcanic Complex; P.v.C.=Picos Volcanic Complex; SC.V.C.=SeteCidades Volcanic Complex; Hist.=Historic Eruptions.TheIslandof SaoMiguel Theislandof Sao Miguel,thelargest(747squarekilometers)andthemostdensely populatedintheAzores,hasthreeactivestratovolcanoeswithcalderas(Furnas,SeteCidades,andFogo)anda longrecordofexplosiveeruptions(Figure3).Theeasternpartoftheisland,ofextinctvolcanism, includestheVolca nic ComplexofNordeste,wheretheoldest rocks intheislandexistandareaboutfour millionyearsold.TheVolcanic Complexof is composedofastratovolcanowithacaldera(thebiggestintheisland), verymuchaffectedby erosion.Duringthelastthousandyears, several basaltic eruptionshavetakenplace intheregion knownas"Picos Volcanic Complex,"anareaextendingbe tweenthevolcanic massifsofSeteCidadesandFogo (Boothet ai.,1978andForjaz, 1986).Itis composedofabout200 scoria cones (builtduring155strombolianeruptions), aligned mostly along faultsin generallynorthwesttosoutheastandeasttowestdirections,andassociated lava flows (Figure 4).Thebasalticnatureofthelavaflows (mostlytheaaandpahoehoe type)andtherelativeyouthfulnessoftheformations(2,000years)makethisregionparticularlyplentifulinlavatubes.Infact,morethan60%ofalltheknowncavesandpitsintheislandof Sao Miguelaresituatedinthisarea.VolcanicCavesin SaoMiguel IslandInthepresentpapertherearesomenotesconcerningabouttenofthecavesandpitsin Sao Miguellslandaccordingtotheirsize, geomorphologicalsituation,andexistingstructures.InFigures2and3thelocationofthesecavesisshownwhileinTableItheirmainfeaturesaresummarized.

PAGE 163

6thInternationalSymposiumonVulcanospeleologyFigure5 SimplifiedsketchofCarvdo Cave.1=Pointindicated by Frutuoso,2=Alcohol/sugar factory,3=Tobacco factory,4=Carudo Street,5=residenceofMrBelchior,6=ResidenceofMrMadeira,7=Military barracks. Indicated also are the locationoftwo scoria conesandthe explored sectionsofthe cave (hatched line).BatalhaPittifulformationsofconeshapedfusionlavastalactites. Alsotobeseenarevariouslongextensionsofbenches,witnessesofancientlavaflow surfaces.Theentrancetothecave isalmostatsealevelthroughanearlycircularopeningabouttwometersindiameter.Theflow shows layeredlavaandintheareaaroundthecaveitis possible to observesomebucklinginthelava flowandlessertubes,sometimestotallyfilled in. Owingtoitsdifficult access,thecave is little visitedandso is relatively unspoiled.Havinganoval openingsituatedinapasture,theBatalhapithasalavatubeaboutthreemetersfromthesurface.ThispitissituatedeastofthePicosdeLimascoriacone,whichis ,placed onanactivegeologicalfaultwithanorthwesttosoutheastdirection(Figure4). Acoupleoflateralridgescanbe observedonthesurfaceatabearingofN155E,asaresultofthecollapseofthecentralpartofthelava flow.Thegeomorphologyofthis area, local information,andanotewrittenby Luis Ataide (1951) lead totheconclusionthatothercaves and/or pits exist in this locality.Thiswriterrefers to a visit tooneofthemin 1909andto "undergroundchambersfullofanimalbonesandlive owls." Recentlyitwas not possible to carry outa more detailed studyofitdue tothenauseatingsmell causedbydead animals inside, probably thrown downthere Co'storiheiro 4km o This cave,thesecond longest,hasa generaleastto west directionandmostofitcanbe walkedthroughstandingupright.Thetwo branches into whichitis divided upslopeareobstructed by big falls whichpreventgoing beyond them.Inthesecondary tubes, with a very low roofabout60centimetershighanda level floor,therearebeau-AguadePauCave156

PAGE 164

Nunes&BragaFigure6Carvao Cave, themostimportantknowntunnelon Sao MiguelIslandanda potential tourist site.Inthissection the cave isalmostfive metershighandtwo levelsofbenches can be observed. (Photo by Joao Nunes)bythefarmers.Theentranceofthispitis inurgentneedofprotectiontoavoiditstotaldestruction.CarvaoCaveThisisthebestknown cavein Sao Miguel.AlreadyinthesixteenthcenturythehistorianGasparFrutuoso,inhis"SaudadesdaTerra"refers totheexistenceoflava 'caveswestofPontaDelgada. EmigdyodaSilva, in his work, "Sao Miguelin1893" considers it"themostremarkableofthe volcanic cavesinthe Azores"andrefers toitin the following terms:"thecaveofPontaDelgada is over one kilometerinlength, so farasis known.Itcomesoutbytheseaafterpassing under the alcohol factory inSantaClara, coming in anorthto south direction." Halliday (1981) exploredthesouthernsectionandestimateditslength to beabout400 meters.DuringtheBioespel expedition,asMontanheiros exploredabout980metersofthis cave,mostofitmorethanfivemeterswide. Besidestheextensions, historical writings,andtheexistenceofothersections fallen in, blocked up,orsimplyofimpossible access -thereareindi cationsthatCarvao Cavemustbe much longer (Figure 5). As canbe seen inFigure5,thecave,followinganorth-northwest to south-southeastdirection,extendsformorethan20kilometers fromthecoastline tothevillageofArrifes. Halli day (1981) refers totheexistenceofa cavetheentranceofwhichwasnearthemilitarybarracksinthevillageofArrifes.Itappearsto beanup-slope portionofa system in cluding Carvao. Accordingtotheauthorthiscavemightbetheone describedbyWebster(1821).AnimportantfeatureoftheCarvaocaveisthefactthatthevisitedup-slopeportionends in achamberovertenmeterswide (Cabral,1990),completelyblocked, possiblyasa resultoffilling in (see Figure 5). Soitis possible to suggestthecontinuationoftheCarvao Cave furthertothenorthwest,assuggested by Halliday (1981)andalso tothecavementionedby Webster (1821).Ifthis werethecase,theCarvao Cave would bethemostimportantundergroundstructureinthearchipelago, being over five kilometersinlength.Owingtoitssize, agreatvarietyofstructurescanbe observedsuchasflowmarks,burstbub blesoflava,branchinggalleries,superimposedchannels,longextensionswithbenchesofrarebeauty,andatseveralsteps.Ontherooftherearemanyfusionlavastalactitesandotherirregulardeposition-typestalactites,sometimesovertheformer. Drainage workhasgreatly affected this cave, where garbage is thrown inaswellastheoverflowofwater. Theselatteraffect mostlytheflatterextensions depositingsandandclay which silt them up. The Carvao Cave, commonly known asthe"Algar do Carvao," is thereforeanimportantlava tube intheislandof Sao MiguelandtheAzores. A detailed studyofitshould be urgently carriedoutincluding a varietyofspecialities.157

PAGE 165

6thInternationalSymposiumonVulcanospeleologyPicoQueimadoPitPico QueimadoPitis apitabout30metersdeep tobefound in aparasiticspatterconeofPico Queimado,situatedonitsnorthwestslope.Itis an open olcanicconduitthathadformed aentinthehistoric basalticeruptionof1563 whichgaverise to a very fluid lava flow.Thislava flowedalong0distinctbranchesonetothenorthwes and anothertothenortheas(Figure 3.To southeast ofthpitthere a tension fracture abouone met.e.r widmorethanfi meters lanaand sill:meters dp.v opinain140 E trend, iisto foundin thntinu tiODofthmultipl t.ers ofPiQu "madandinthorienta"onofthe tivfaultsmap inth1 tectonicalignmentdefined by agroupofscoriacones (Figure 4),Inthisareathereis areferenceto two pitsover20metersdeep which couldbetheresultofthewithdrawaloflavafrom a fissure (Boothetal.,1978).Themainfeaturesofthiscaveareitsfunnelshapedroofandverynarrowwalls. Seemingly very solidandresistant,thisisoneofthemostinterestingofthespeleologicalheritageintheislandof Sao Miguelandis still in agoodstateofpreservation.Thisisavolcanic tube, theexplorationofwhich involvessomerisk,owing to enormouspilesofrocksfallenfromheroof-fallswhichhavereachedthe surface,leavin" four openintj .Inspiteofthesedifficulti Esqueleowingto itssizeasy a --a'ti:ling strutures(suchas leveesand flowmarks is apiworthvisiting.EsqueletoCaveEscadinhas Cave is a small lavatubenearthesurface following a40GE direction.ItissituatedinthegrabenofRibeiraGrande (Fotjaz 1986 andtothe we:.-t ofPicoda Mults, a very altered scoria cone.Theveryirregularandscoriaceousroof shows a plastic collapsein its central part, whilethefloor shows characteristicsofaalaa0erwhichitis extremely difficultto walk EscadinhasCaveEnforcadoCaveThisisacavecomposedofthreeextensionsseparatedby falls caused bytheclearanceoflandwhenitwasturnedintopasture.Withatotallengthofabout185 me tersandanaverageheightoftwometers,itshows aroofgenerallintheshapeofaninvertedfunnelandthefloor,seeminglyaashows levees. TheEnforcadoCave,withanalignmentFigure7-Enforcado Cavewitha general shapeofaninverted funnel.The138E,issituatedinafloor shows levee (Photoby Joao Nunes)geologicalstructure defined bythescoriaconesandspatterconesofthePico do CedroandPicadoEnforcadoresponsible for extensive lava flows.Thefaultsodefined is consideredasoneofthebestexamplesoffissureeruptionintheislandof Sao Miguel {Boothetat.1978.PicoDaCruzaveRibeirinhaPiThiscave is situComplexandalong158

PAGE 166

Atthebottomofthepit,abouttenmetersdeep,thereis asmallcave.Thereis historicalandgeolo gical evidenceofothervolcanic cavesinthisarea,wherethepitsmayresultfromthewithdrawaloflavafromexistingfaults.Unfortunatelyithasbeenusedasadumpforwasteandgarbagesothatitsstateofpreservationleavesmuchtobedesired.FeteirasCaveThisisprobablytheoldestoftheknowncavesintheislandof Sao MiguelandoneofthefewsituatedintheSeteCidadesMassifinthewesternpartoftheisland.Inspiteofitssmallsize,22meterslong,andaverageheightofonemetermoreorless,ithasaninterestingparticularity:abouthalfofitslengthconsistsoftwo superimposed galleriesasaresultofthejoiningoftwo levees.Itsup-slopeterminationwasfilled by alavaflowafteritsformation.Somehundredmeterstothewestthereis a lavaflowwhichcamefromPicosdasFerrarias(Queiroz, 1990)andwhich, accordingtosomeau thors, is considered tohavetakenplaceduringthefirsthalfofthefifteenthcentury(Figure 3). How ever,thelavaflowwhereFeteirasCave is tobefoundisamucholderflowandcorrespondstothelasteffusive localphenomena.Infact,thesuperiorformationsarecomposedofexplosive materials, speciallytrachyticpumiceandbasaltic pyroclasts (lapilliandash). Belowthecaveareotherlava flowssometimeswithverysmalllava tubes.ConclusionsOnaccountoftheirscientificimportanceandpotentialtouristinterest,thenaturalcaves justifythepassingofregional legislation toprotectthemandenergeticmeasuresfortheirrecovery.Itis alsonecessarytopromotecampaignsforthepreservationofthecavesandpitsintheislandof Sao Miguel,anintegralpartoftheregional landscape heritage.MterlegallyprotectingCarvaoCaveandcarryingoutthenecessaryandurgentworkofcleaning up,itwillbe possible and desirable to includethecaveinthetouristattractionsoftheislandof Silo Miguel, followinganorderofcontrolledandduly guided visits. It is equallyurgenttoprotecttheopeningsofthe remainingcaves to avoidtheirdeterioration.Nunes&BragaAcknowledgementsThispresentworkwaspossiblethankstothesupportgiven byDrsJ.P. Constancia andG.Hayestowhom weareextremely gratefuLReferencesAthaide, L.B. (1951):Apontamentossobre fOlja earmariaem Sao Miguel.Insulana,7 (1-2). Booth, B., R. Croasdale,andG.P.L.Walker(1978): Aquantitativestudyoffivethousandyearsofvolcanismon Sao Miguel Island, Azores. Philo sophical Transactionsofthe Royal Societyof London, 288(1352), 271-319. Bryan,R.(1963):TheAzores.Faber&Faber, Ed. London.Cabral,J.(1990):RelatoriodaexpediaoBioespe1l90. Amigosdos Aores-Associac;ao Ecologica. Forjaz, V.H. (1986):CartatectOnicadailhade Sao Miguel. Doc. CV/INIC, 09/86. Forjaz, V.H. (1986): Geological field trips-Sao MiguelIsland(Azores).Preliminary Guide. Centrode Vulcanologia doINIC-PolodaUni versidade dos Al;ores. Halliday, W.R. (1981): Cavesofthe Al;ores. AnInitialReconnaissance.NWRASymposiumCave Science & Technology,Seattle.USA. Hayes,G.andT.Braga(1988):Grotase Algaresde Sao Miguel. Amigos dos Al;ores-Associ3fao Ecologica. Moore, R. (1983):PreliminarygeologicmapofSeteCidades Volcano, Sao Miguel, Azores. UB.G.S.Open-file Report, 83-742. Moore, R. (1986):Preliminary geologic mapofAguadePauVolcano, Sao Miguel, Azores. U.S.G.S. Open-File Report, 86-192. Oramf, P.,J.L.Martin,andN.P.Ashmole(1988):Lascavidades volcanicas em'Ias, :Islas Azores, 1asJornadas AtIanticas de Protecc;ao do Meio Ambiente,Angrado Herolsmo. N;ores. 159

PAGE 167

6thInternationalSymposiumonVulcanospeleologyQueiroz,G.(1990):Aspectos VulcanoUgicos do das Sete Cidades.Tese. Centro de Vul canologia doINIC-P6IodaUniversidade dos Aores. Silva, M.E.(?) -Sao Miguelem1893. BibliotecadaAutonomia dos A<;ores, 1.160Walker, W.F.(1886):TheAzoresorWestern Is lands.Trubner&Co, Ed. London. Webster, J.W.(1821):A descriptionoftheIslandofSt. Michael.RP.&C.Williams, Boston.

PAGE 168

Graciosa Caldera LavaLake and Associated Lava Caves, Graciosa Island, AzoresJ.L. Gaspar Dep. Geociencias, Uniu. Ruada Mae de Deus, 9500 Ponta Delgada, Portugal. Centro de Vulcanologia do INIC, P6lodaUniu. CP12,9500 Ponta Delgada, Portugal.G.Queiroz Centro de Vulcanologia do INIC, P6lodaUniu. CP12,9500 Ponta Delgada, Portugal. V.H. Forjaz Dep. Geociencias, Uniu. Ruada Mae de Deus, 9500 Ponta Delgada, Portugal. Centro de Vulcanologia do INIC, P6lodaUniu. CP12,9500 Ponta Delgada, Portugal.TheAzoresarchipelagoislocatedintheAtlanticOceanandis formedofninevolcanicislandsdi videdintothreedifferentgroupsaccordingtotheirgeographicposition:eastern,central,andwestern.ThegeostructuralenvironmentoftheAzoresPlateau,definedbythe2,000-meterbathimetriccurve, isdominatedbytheconfluenceoftheAmer ican,Eurasian,andAfrican lithospheric plates.Thistectonicfeatureis responsible for aremarkableseismovolcanicactivityfromwhichtheCapelinhoseruption(Faial Island, 1957/58)andtheJanuary1,1980earthquake(epicentral location30kilometerswestofTerceiraIsland, Magnitude7.2)arethemostrecentcatastrophicevents.Graciosabelongs tothecentralgroupandis locatedintheTerceiraRift, afracturezone withanapproximatelynorthwesttosoutheasttrend,thoughttobethepresenteasternbranchoftheAzorestriplejunction.Themainfaultsintheisland alsoshowadominantnorthwesttosoutheastpatternwiththecentralgrabenbeingthemostimportanttectonicstructure.Theislandiscomposedofthreedistinctgeomor phologicalunits:(1)thecentralmassif-dominatedbytheheightsofSerradasFontes,SerraDormida,andSerraBranca-correspondstotheoldestvolcanic complex,stronglyfaultedandalmostcompletely covered byrecentbasalticactiv ity; (2)thenorthwestplatformconsistsofseveralsuperimposedaaandpahoehoelava flowseruptedfromdifferentcinderandspattercones; finally, (3)TheGraciosaStratovolcanothatrises inthesoutheasternendoftheisland with asmallcalderaonthesummit.Inthisvolcanothedepositsrelatedtohydromagnlaticactivity(surgesandlahars)representanimportantportion.ThecalderaofGraciosaStratovolcanoliesalongthenorthwesttosoutheastdirection with a maxi-161mumaxisof1.6 kilometersandanaveragedepthof200meters.Thestructureresultedfromthecoalescenceoftwoorthreesmallercratersduringa complex evolutionary process.Oneofthelatestepisodesconnectedwiththestratovolcanoevolutioncomprisedanimportantintracalderaeffusiveactivity.Atthattimealava lakewasformedprobablyinthesoutheastpartofthecalderaandsuccessivelavalevelchangesresultedinseveralstagesofoverflow.Thisprocessgaverisetosuperimposedlavaflowsonthecalderafloor,someofwhichgeneratedlavatubestructures.Whenthelakelevelreachedapproximately240meters,lavaoverrodethecalderarim. Related tothisstage, a lavatubewas developedonthenorthwestvolcano slope which wasanimportantpathforthelavaflowthatcoversthepresentLuz region tothesouth.Anotherlava flowreachedtheseaonthenorthcoast.Theendoftheeruptionseemsto beconnectedwiththesuddenlavalakecollapse leaving aveneeronthecalderawalls. A lavacavelocatedatthesoutheastcalderabottomandcontrolled bynorthwesttosoutheastandnortheasttosouthwestfaultscanbeinterpretedasapreferentialdrainageplaceduringthis final phase.AcknowledgementsThanksaredueto Prof.J.GuestandProf.A.Serralheirofortheirsuggestions.WearealsogratefultotheCamaraMunicipal deSantaCruzandthe Servi<;o RegionaldeDesenvolvimentoAgrario for logisticsupport.Thefield work on Graciosa was provided bytheUniversidadedos A<;ores andtheCentrode VulcanologiaoftheInstitutoNacional de Investiga<;ao Cientffica.

PAGE 169

6thInternationalSymposiumonVulcanospeleologyReferencesAgostinho,J.(1937): VolcanicactivityintheAzores. Bull. Volcanol.,VITI,123-138.Ferreira,A.B.(1987): AilhaGraciosa. Livros Horizonte, 2ft 164 pp. Forjaz, V.H. (1976):Cartavulcano16gica preliminardailha Graciosa (1:25000).lust.Geoc. dos Ac;ores. 162F01jaz, V.H. (1984): Esboc;o tect6nicodaregiao dos Ac;ores. Dep. Geociencias, Univ. Ac;ores. Gaspar,J.L.andG.Queiroz(1991):CartaVulcano16gicadailhaGraciosa,naescala1:15000 (em Zbyszewski,G.(1970):Levantamentosgeo16gicosdailha Graciosa.AcademiadasCienciasdeLisboa, 163-1?1.

PAGE 170

Vulcanospeleological PseudokarstinMicronesia: an OverviewBruceW.Rogers Cave Research FoundationandU.S. Geological Suruey 37899 Los Arboles Drive, Fremont, California 94536-6635In1984thePacificBasinSpeleological Surveyembarkedupona project to compile a preliminary listingoftheknown caves intheislandnationsofthePacific Basin.PreviousAmerican, Australian,French,andBritishworkin MelanesiaandportionsofPolynesiawasamatterofrecord so MicronesiawasselectedasthefocusofthePacific Basin SpeleologicalSurvey'sworkingarea.PohnPei, Kosrae, Chuuk,andYapStatesoftheFederatedStatesofMicronesia; Agrihan,Pagan,Saipan,andRotaIslandsintheCommonwealthofMarianaIslands;theTerritoryofGuam;andtheRepublicofBelauwerevisited.Extendedexpeditions totheseareasin 1984,1986,and1989 have found a smallbutsignificantsamplingofvolcanic speleo logicalfeaturesto be investigated.PohnPeiIslandOntheislandofPohnPei rocksheltersupto50meterswideanddeepand30metershighhave formedinvertical cliffs inthemiddle elevationsoftheisland. Thesesheltercaves havetheirorigininthedifferentialweatheringofbrecciabedsinterca lated with massive basaltic flows. Smallrockshel ters, formedeitherby collapseofbasaltic rock outcropsorfailureoflavatubesegmentroofsandcontaininglargeamountsof rOCk art,havebeen found on theuppermostslopesoftheisland. Someofthesesitesareprominentin indigenous people's religious beliefs.InthewallsofconstructionmaterialquarrieswherePohnPeianshave removed bothcolumnarbasalt"logs"andcrushed rock forPOHNPEl, F.S.M.(Ponape)Pahn Apara100ftFigure1-PanApraCave, Pohn Pei.The map oftheIslandshows the locationofPanApraCave(left),afrontal view (upper right),andcross section (lower right)ofthe cave. Noted both the easily weathered basaltic breccia intowhichthe cave has been erodedandthe massive basalt flowunitthatformsthecave'sroof163

PAGE 171

6thInternationalSymposiumonVulcanoSPeleologyPATATUNNEL50ft 20m CHUUK, F.S.M.(Truk)TOLISLAND ---.. ..-.. rw".,I\.-rFigure2-Chuuk(Truk)Island consistsofaneroded triple-vented volcano (lower right). On the western island ofTol (wp center)is the61-meterlong Pata Tunnel (left).over 800 years. many large, lava-filled tubesare exposed. Onthelower slopesofthevolcanic islandaremanyoutcropsofolivinebasaltshowing kluftkarren development.Theoriginofthese so lution formsispoorly understoodbutmay be due tothefactthatsilicate mineralsareunstable inthe presence ofwaterhighindissolved carbon dioxide andorganicacidscommoninwarm, hu.mid climates.KosraeIslandKosraeStatehasatleastone large lava tube developedinolivine(?basaltinthemiddle slopesofthecentralmassif.Thecaveisapproximatelytenmetersin diameter,isfloored. with deep depositsofboth bird andbatguano,andextends foran unknown distance. Twolarge coloniesofboth sac \vi.ng(? batsand cave-dwelling swiftlets occupythe cave. ChuukIslandsInthemainisland groupingofChuukState several volcanic pseudokarst featuresarefound. On thePataPeninsulaofTol Island a6l-meterlongandlO-meter-diameter lava tubeinan8.2million-year-old olivinebasaltlavahasbeenutilized by local inhabitants formanyhundredsofyears.Alocal legendattributesthe originofthetube to industrious sea turtles assistinganim prisoned local chief. TheJapaneseArmy also used the caveasa munitions bunkerduringWorld WarII.Ontheupper slopesofthe island, two 4.6-mil lion-year-old melilite nepheline basaltandnephelinebasaltlavaflowsaresurfacedwitha meter-high kluftkarren fieldasa resultoftheextreme-uptotenmetersdeep-weatheringcom mon to these islands.YapIslandTherearereportsofsmall sea caves several tensofmeters long eroded into the western shoresofYap, Rumung,andMap Islands in YapStateoftheFederatedStatesofMicronesia.Thesehaveformed in basaltandandesite nowsofCretaceous age. The volcanic rocks were metamorphosedbysubduction to a unique suite of garnet-bearing green schists and amphibolit s which were ubse-164

PAGE 172

RogersCarolineIslandsquentlyexposed byup-thrustingalongthePalauYap-Marianatrench.Figure3-On PaganIslandaremanylava tubes formedduringthe 1929 eruption.Thistubeisapproximately a meterhighandthree meters wide. (U.S. Geological Survey photo)PaganIsland istheonlyislandinthenorthern"innerarc"MarianaIslandswhichhasa wellknownvolcanic history.Itis aLateMiocene to Holocene composite volcano. Majoreruptionsin 1872, 1909, 1917, 1923, 1925, 1929-1930,and1982havebeen recorded. Whilemostofthebasal tic to andesitic lavas have beeneruptedasaaflowsorpyroclastic deposits,therearemoderate-sizedareasofpahoehoe flows.Intheseflowsonthewest, east,andespeciallythesouthflanksofMountPaganareconcentrationsofcavesofdifferingtypes.Lavatubes up totenmetersindiameter;collapsetrenchesover 13metersdeep;eruptivefissures, vents,andhornitosdeeperthan20me ters;andmany1.5-meter-diametersurfacetubeshavebeen reported. Some tubes have been utilized repeatedly with tubebearing younger flows emanat ing fromtheolder tubes' mouths. Only one seriesoftubes, however,hasbeen correlated withadocu mentederuption-thatoftheFebruaryto May 1925 eruptionofMount Pagan.Duringthis eruption,anolivine augite basalt pahoehoe flow descendedthewest slopesofMountPaganat4:00AM.onMarch11andformed a seriesoflavatubes. Manyofthese cavesarestill active fumaroles,emittinghot air andsteam.Theextentandcompositionofsecondary depositsintheseandtheotherknown older tubesareunknown;PaganIslandAgrihanIslandisaQuaternaryvolcanoofbasalticandandesiticcomposition. As recentlyas1917volcanicactivityincludedlavaflowsdowntheslopesofthecentralvolcanobutlittleis known oftheextentorcontentsoftheresultinglavatubes.AgrihanIslandTheislandsofSaipanandRotaintheCommonwealthoftheNorthernMarianaIslands,theTerritoryofGuam,andtheRepublicofBelau(Palau)arelargelycomprisedofelevatedMiocenetoRecentreefallimestones.Theseislands,however,alsohaveareasofexposedPaleocenetoEocenevolcanicbasementrockwhichhasbeenimportanttoboththelocaldevelopmentofkarstterranesandassourcesofculturalmaterialsfortheindigenouspeoplesofMicronesia.Intercalatedbasalticandandesiticlavasandtuffbedsinmanyofthesecarbonateterrainshavechanneledgroundwaterwhichproducedsolutioncaves.Thesebedsalsoallowperchingofthelocalwatertable,thusproducingflashysprings,someofmajormagnitude.VolcanicagglomeratesalsoarethehoststomanysmallseacavesinthelittoralzonesofGuam,Saipan,andBelau.ThesevolcanicrockshavebeenimportantsourcesoftoughrockfromwhichtheChamorro,Yapese,Kosraean,Chuukese,PohnPeian,andBelauanpeoplesfashionedtoolsandcarvedagreatvarietyofmegalithicsculpturesoverthelast3,500years.FarallondePajaros(Uracas),Maug,Asuncion,Agrihan,Pagan,Alamagan,Guguan,Sarigan,andAnatahanIslandsintheNorthernMarianaIslandsareMiocenetoHolocene vol canos. Allhavereportedlavatubesandothernon-solutioncavesbutlittleisknownoftheirextentorcontents.165

PAGE 173

6thInternationalSymposiumonVulcanospeleology '\-. Figure4-CharmaineLegge looks into the outletofWaterfall Cave on the southeast sideofLuta(Rota) Island.Thislargekarstspring is perched on athinbedofandesitic volcanic rock.andfruit-eating(?)batshavebeenmadeaswellasof for est-dwelling flying foxes.RotaIslandTheislandofRota,intheMarianas, derivesitswatersupplyfrom alargekarstspringperchedontheisland's andesiticbasaltpile. A small caveinagglomeratehasdevelopedattheisland'sSabanaDistrictsummit.Otherdepositsoffinegrainedandesiteandandes iticbasaltexposedonthesoutheastcoastwere utilizedassourcesofstonefor tools.SaipanIslandhowever, inferencesofsulfurandcarbonatedepositsarefoundintheliterature.Inlandfrommanyofthesteep, rocky headlandsareareasoffissure cavesuptotenmetersdeep formed byseparationofbasaltblocks fromtheheadlandsandresultingslowseawardcreep. AlongtheeastandnorthwestcoastsofPaganaredeepseacaves formed by littoral excavationofloose clinker.Thecaves have roofsandfloorsofmassivebasaltflow units.Theconstantvolcanic activity, civilianandmilitaryconstructionduringthe1941-1945Japaneseoccupation,and1950s U.S.MarineandNavywargamesactivitieshaveallbuterasedevidenceofPaganIsland'searliest thuswe knownothingoftheirutilizationoftheisland'scaves.TheSpanishandGermanoccupiersoftheisland left little recordoftheiractivitiesbutwe do knowthattheyminedsulfurfromvarioussitesintheinnercraterofMountPagan.TheJapaneseminedthesame(?) depositaswellasdeposits discoverednearthesummitofthesouthconeofSouthVolcanoduring1917and1934.Theamountofsulfurobtainedwassmall,thelabor considerable,andbothoperationswereabandoned.Duringthe1982eruptionofMountPagan,inhabitantsofLagona Villagesoughtshelterinlavatubesfor several daysuntilevacuatedby ship. Only incidental obser vationsofspelean biology have been made. Reports of large populations of cave-dwelling insectivorousOntheislandofSaipanintheSabanaDanDanareaaresmall soil pipe caves which have developedintuffaceoussiltstonesandsandstonesoftheEoceneHagmanFormation.IntheEocene andes itic volcanic rocksoftheHagmanFormationex posedontheHagmanPeninsulaareseveral small cavesatsealevel. Deep fissure caves in up toten-meter-squarecreepingblocksoftuffaceoussandstoneandconglomeratearealsopresent.Othersmallseaandfissure caves intheHagmansandstonesandconglomeratesarelocated alongthesealevelareasofPuntaINaftan.AndesiteanddacitefromtheEoceneandEocene(?)Figure 5-Theoriginal ChamorrosinhabitantsofSaipanIslandutilized both the basalt bed rock to fashion tools (right)andthe weathered basalt clay-rich soils to construct pottery (left). These pieces from CaveoftheSinkingWaters are approximately 1,000 years old.166

PAGE 174

Densinyama,Hagman,andSankakuyamaFormations were locallyquarriedfor tool making.GuamIslandOntheislandofGuamareseveralareasofbadlandtopography including small soil pipe caves developed in tuffaceousshaleoftheEocenetoOligocene AlutomFormation.Alongthesouthwestcoastoftheislandaresmallsealevel caves devel opedinthebasaltandbasaltbrecciaofthelower MioceneVmatacFormation.PalauIslandsInthenorthernvolcanic islandsoftheRepublicofBelaushortsealevel caves have developedinEocene to Oligocene basaltic andesite,andesite,anddaciteflowsandbrecciaoftheBabeldaop, Aimeliik,andNgeremlengui Formations. Large slabsofandesitealso furnishedmaterialfortheextensive megalithicsculpturetraditionandfor tools usedintheislands.ReferencesCloud, P.E.,Jr.;R.G. Schmidt;andH.W.Burke(1956): GeologyofSaipan,MarianaIslands,part1,GeneralGeology,V.S.Geol. Survey,ProfPaper280-A, 126 pp. Corwin, G.; L.D. Bonham; M.J.Terman;andG.W.Viele (1957): Military GeologyofPaganIsland,MarianaIslands,V.S. Army CorpsofEngineers, Intelligence Division,Headquarters,V.S.Army Pacific, 259 pp. Daly,R.A.(1916):PetrographyofthePacific Is lands, Geol Soc Am Bull, v 27, pp325-344.167RogersEmery,KO.,(1962): Geology of Guam,MarianaIslands,part2, Marine Geology,V.S.Geel Sur veyProfPaper403-B, 76 pp. Epp,D.(1978): AgeandTectonic Relationships AmongtheVolcanic ChainsOnthePacific Plate, (PhD. dissert.), Honolulu, Vniv. Hawaii, 199 pp. Keating, B.H.; D.P. Mattey;J.Haughton;andC.E. Hensley (1984): AgeandOriginofTruk[sic] Atoll,EasternCaroline Islands: Geochemical, Radiometric Age,andPaleomagnetic evidence, Geol Soc Am Bull v 95, pp 350-56. Mattey, D.P. (1982): MinorandTraceElementsGeochemistryofVolcanic RocksFromTruk[sic],Ponape[sic],andKusaie [sic],EasternCaroline Islands: Evolutionofa YoungHotspotTraceAcross Old Oceanic Crust, Contributions to MineralogyandPetrology, v 80,pp1-13.Stark,J.T. (1958): Military GeologyofTruk[sic] Islands, Caroline Islands,V.S.Army CorpsofEngineers, Intelligence Division,V.S. Army Pacific, 205 pp.Stark,J.T., 1963, GeologyofGuam,MarianaIs lands,part3,Petrology oftheVolcanic RocksofGuam,U.S.Geol SurveyProfPaper403-C, 32 pp.Stark,J.T.andR.L. Hay (1963): GeologyandPe trographyoftheVolcanic RocksoftheTrukIslands,EastCaroline Islands,V.S. Geol SurveyProfPaper4-09,41pp. Tracey, J.I.Jr.;S.O. Schlanger;J.T.Stark;D.E. Doan; H.G. May (1963): GeologyofGuamMarianaIslands,part1,General GeologyofGuam, U.S. Geol SurveyProfPaper403-A, 104 pp.

PAGE 175

CavesInCheju Island, KoreaSkiHwanHongSpeleological SocietyofKoreaChejuIslandis a volcanicislandformedattheendoftheTertiaryperiod. GeologicalstrataoftheislandincludetheSeoguipoFormation(endoftheCenozoicera),sedimentaryrocksoftheSeongsan,Whasoon,andShinyangriFormations(Quatenaryperiod),andbasalt,trachyte,andothervolcanicrockanddebris.Mostofthelayersarebasalt.ThoselayersinthePioseonri,Mt.Hanla,Cheju,HahyeriandShiheungriareasarebasicandoflowviscosity,andarecloselyrelatedtothedistributionoflavatubecaves.ThelavacavesofChejuIslandareinbasaltswithlowviscosityandalkali.About60areknowntohavebeeninvestigated.About100areknown.MostofthecavesofChejuIslandarelocatednearvillagesandhavebeen apartofthelifeofvillagers.Someofthemareseparatepartsoflavatubesystems.Inthese systems,thecavesathigher elevationstendtobelargerthanthoseatlower elevations. Two major groupsofvolcanic caves existontheisland:theManjangcaveareainthenortheast,andtheSochon caveareaintheHanlimregion.TheManjangcaveareaincludesSongdangCave,Dockchon,SagulCave,KaenaegiCave,PocknamooCave,PocknamoomitCave, Boojong Cave,WafulCavein Chocheon,ImmemerruCave, Gonaiesl Cave, Yooktigie Cave.TheSocheoncaveareaincludesHyopjaeCave,JorongCave,SanhyongCave,LargeChokitCave,andHwankeumCave.Thetemperatureofmagmaextrudingfromthegroundherewasabout900to1,200Cel sius.Thesurfacessooncooledbuttheinnerpartsoftheflowsremainedmoltenforlongdistances.Whentheyevacuatedthemselves,lavatubecavesremained.ThisoccurredextensivelyonChejuIsland.FeaturesofChejuIslandCavesThevolcanic cavesofChejuIslandhavescien tificandothervaluesbecauseoftheirsize, distri bution, density, topography,andnaturalfeatures.Someareamongthelongestintheworld,andsomeoftheirnaturalfeaturesareexceptional.Amongthesefeaturesarethefollowing:168LavarodorcolumnThesefeaturesareformedbymoltenlavacascadingintoacavepassagewhichpreviouslyhadcooled.Themostnotableis 1,000metersupslope fromthemainentranceofManjangCave.Itis7.6metershighandisthelargestintheworld.LavaballLavaballsareformedby solidificationofaggregatedlavainastreamoflava.LavabridgeLavabridgesareformedwhenthetopofthelavaflowing in alavatubecavecrustsandsolidifies sufficientlytoleave a flooroflavasuspendedfromthewalls.Figurei-Adouble lava column,7.6meters high, casCading from asmallupper level passage into themainpassageofManjangCave.Therighthandsection is hollow.

PAGE 176

HongNoSbitnmgri Hawaiite alOkm o LavastalagmiteLavastalagmitesform fromthepiling-upofdropletsoflavadrippingontoa solid floorwheretheyaccumulateina pileofsolidified drops.LavastalactiteInsomelocations,hotlavasolidifies when drippingfrom wallsorceiling likeanicicle,fonninglavastalactites.Mini-CaveinCave(TubeinTube)Mterformationofalavatubecave,sometimesanotherlavastreamflows alongitsbottomandproduces a mini gaseous cave insidetheoriginal cave.Thisis called cave in caveortube in tube.SilicarodorcolumnRarely, secondary silicastalactitesdevelop inlavatubecavesandextend to thebottomofthecave,formingrods. ThoseofChejuIslandaresomeofthemostnotable examples in the world.SilicationSometimessilicic acid intheliquidphaseis de positedonthecave wall by gas. This is called silication.GasballsSometimeshollowdropletsareattachedtothewallorceilingofacaveduringlavaflow. Originallythey containedconcentratedg.a:resand arecalledgasballs.Gas balls on thefloorare fonnedbyincomplete extrusion of gasinthelava flow.RopylavaSometimestheweightof Iow-dens.itylavaon cave walls presses it downward.in a wavyform.. Thisiscalledropylava.LavaledgeLava ledgES are formedbysolidifyingofkip outer edges of flowing lavaina lavacn-e.. Meteorology of" Cheju Island Ca es The temperature of CbejuIslandcavESis 120 to 16"Celsius. Theinner:z:.one:;arealmrt..oJ;ai; aconstant temperature all year,en trancearea temperatures BiotainCheju IslandCaes Thelavatube caves on CbEjuJ.sJamdareThirtyspecies of animalsare0IlBllyfrrolllIll caves,with one Toglobi e(Eptmerdwd11A$clavisetosus Fifty-onesurfareBn:ameidenti.lwdincaveshere.Onlytimre:ame aquatic.169

PAGE 177

Mineralogy of Bilemot-Kul CaveinCheju Island, KoreaNaruhikoKashimaEhimeUniversity,JapanTakanori OgawaJapanVolcanospeleological Society,JapanShiHwanHongMoowoong Choi KonKukUniversity, KoreaIntroductionCheju Island is locatedthesouthernmostpartofKorea, between 126 10' to 126'eastlongitudeand33'to33'northlatitude.Itis composed mainlyofalkalibasaltlava flows,minorpyroclastic rocks, hyaloclastics,andnumerousparasitic scoria conesofearly Pliocene toQuaternaryage.Mterthe5thInternationalSymposium on Vul canospeleology heldinCheju Island in November 1988,thewritersvisited Bilemot-kul Cave foraninvestigationofspeleo-minerals.Bilemot-kulCaveThe entrance of Bilemot-kul Cave opensinEum2 Ri, AewolEub,BukChejuKun,33 24'Ol"N, 126'08''E. This caveisdeveloped in the Sihungri lava (hawaiite) where the lavaflowedagainst a ridge of the Pyosonri lavaandstagnated. The narrow en trance barely allows a person togothroughbutleads to grand hallsandanextremely complex cave system with branching and crossing horizontally and verti cally. There is even a spiral passage between upper and lower parallel caves. The main cave is 2,917 meters longbutthe length of the complex branch cave systemis8,832 meters making the total length 11,749 meters.MineralogyThe mineralogyofthespecimens was deter mined by X-ray powderdiffraction analysis using a Shimazu Seisakusho Ltd.X-D3Aunitequipped with a coppertubeandnickel filter'andscanningmicroscope scrutinies using aJEOLJSMT-20.The<2,umsize,suctioncollected,handpickedspecimenswereorientedontheglass slides with acetone. Analytical results for specimens were as follows: Carbonates (calcite, trona), Phosphate (taranakite), Silicates (albite, opal, quartz),andSulfate (gypsum). Albite, (Na, Ca)(Si, Al)40S.Thismineralmaybe crystallizedundersyngenetic conditions. Calcite, CaC03. Calcite speleothems occurasthin whitecrustswhicharesublimates. Gypsum,CaS04H20.Thismineralis a com mon speleo-mineralinvolcanic caves,andoccursaswhite wall coatings whicharesublimates. Opal,Si02'nH20.Composedofamorphoussil ica, opal is a common speleothem (anthodite) in this cave. Quartz, Si02.Themineralquartzis a syngenetic product in hightemperatureconditions. A 28-centimeterlong siliceous pillarwasfoundinthiscave.Taranakite,(K,NH4)Al3(P04)3(OH)'9H20.Inlava caves,taranakiteoccursasaresultofreac tions betweenwaterleachedthroughbatguanoandtheclayey cave deposits;thephosphorusandammoniumderived fromthebatguanoandthealuminium fromtheclay. Trona, Na3H(C03)2'H20.Thesodiumandcar bon dioxide gas forthemineraltronaarederived from alkalibasaltlava flowseruptedfromdeeper(high pressure) igneous activity.Asto the origin of speleo-mineralsinBilemot-kul Cave, therearetwomainmechanisms: (1) Syn genetic (rock fonning) and(2)Epigenetic (biochem ical) processes.ReferencesKashima, N., T. Ogawa,andS.H.Hong(1989): Volcanogenic Speleo-mineralsinCheju Island, Korea.J. Speleol. Soc. Japan,14: 32-39. Lee, B.S., (Ed.) (1987):GeologyofKorea.KyohokSaPublishing Co., Seoul, 514 pp. Sameshima, T., T. Ogawa,andN.Kashima(1988):5thInternationalSymposiumonVulcanospeleology Excursion Guide Book,80pp.170

PAGE 178

Volcanic CavesinBulgariaB. KnlevAida Cave Clubof Haslwuo,Bulgaria'Y..SJwpou Departmentof Speleology,SofiaUniuersity,Sofia IntroductionThe largest areaoftheBalkanPeninsulacoveredwithvolcanic formationsisintheeasternmarginoftheRhodope Massif.Itsareaisabout3,600squarekilometers.TheRhodope paleo volcanismisoneofthebestknownvolcanicstructuresinEurope(Boyanov, 1961).DuringtheLowerandMiddle Oligocene,theeasternRhodopeunderwentvigorous volcanic activ ity,withseveral stages atthebottomofa warm, shallowseaandpartly abovesealevel (TzankovandSpassov,1968).Thevolcanic activityhadseveralphaseswithsimultaneousactionoftwomagmasources.Itwascyclicandpossessedmanycentralandunstablevolcanicstructures.Andesites, latites,trachytes, trachyandesites, dacites, rhyolites, tuff,andagglomerates are represented. Repeated depositsofsubmarinevolcanics withmarinesediments haveundergoneelevationof2,000to2,500 meters (TzankovandSpassov, 1968).WithintheeasternRhodope paleovoJca.nicsarethree secondarystructures:1)NortheastRhodope structure.Thisin cludestheprototypical "Borovichki" voIca:mcmas sifanda widelavafloodinthe Metcb.kovet.z, Dragonia,andSini-vruh hills.Inthisstructureisalarge ring-shapedvolcanic structure(Dragoinovo)witha diameterof16by 19kilometers (SpiridonovandRivera,1978).2)SoutheastRbodope structure.'Thisem bracesapartofthemiddle drainage or theAIda Riverandapartofthe southeast of the massif, withmajorvolcanic constructionsof eralpaleovolcanoes: IrantepensJri. 1. PpauHuHHaH3704HopoAoncKa7a2.D aJleoBy JlKaHCKMCJ:pyK7ypM(Paleovol.e&Dic::IItrad'I!Wes;) 3. ByJIKaHCKHnetqepH (Volcanic cavn) 171

PAGE 179

6thInternationalSymposiumonVulcanospeleologyYurkidendagski,Kardjaliyski,Perpereshki,Sveteileysky,andsomesmallerexamples.3)Madjavorostructure.ThisembracestheeasternpartoftheRhodopes alongthemiddledrainageoftheArdaRiver.ItincludestheMadjarovo paleovolcano. Some specialists use slightly different bound aries,butthedifferencesaretrivial (Boyanov, 1961; Galabov, 1937; Ivanov, 1960).Manycaves existinthispaleovolcanic area. They differ in size, morphology,andgenesis.Untilabout25yearsago,itwas believedthatsuch caves didnotexistinBulgaria, or,ontheotherhand,itwas believedthatsuchcaves wereofnointerestto speleology(TrahteevandGeorgiev, 1968).Inthepast25years,morethan80caves have been found in thisarea,thanksto researchofmembersoftheAida Cave Club inthetownofHaskovo. Since 1977theirresearchhasfollowed aprogramofresearch on volcanic cavesoftheBulgarianFederationofSpeleology (Kolev, 1987).OriginofVolcanicCavesintheRhodopesTheRhodope volcanic cavesaretheresultofprimaryvolcanic processes plus a seriesofexogenicandendogenic processes.Theiroriginandmorpho logical characteristicsaredeterminedby specificsoftheRhodope paleovolcanism, characteristicsofsedimentation,somepost-volcanic processes,andseveralweatheringprocesses: lateral erosion, de nudation, suffosion,andthermalerosion.Inthespecialized speleologicalliteraturethereareseveral genericandmorphological classifica tionsofvolcanic caves (Maksimovich, 1975). Basi callytherearetwo typesofvolcanic caves:primaryandsecondary.Primarycavernsarethose formedduringemp tyingoflava. Thesearelava tubes,lavapits (shaftsorvertical conduits), gas bubbles,andcavernsbeneathlavafalls.IntheRhodopes,thelasttwo typesarecommon. Usually they have smooth wallsandvaulted roofs. Someareenlarged by processesofphysical weathering, suffosional undermining, lat eral erosion,orotherprocesses.Primarycavities servedasa base for developmentofthelargercaves. This istheoriginofsuch caves asPrilepnataPeshtera(BatCave)andGumburdek(Ringing Cave) inthemiddle Arda region; Kaleto II, III, IV intheregionoftheringstructureofDragoinovo;172andthecavesnearMadjarovoandonSheinovetz Peak.Anexampleofa lavatubecave is Kaleto Iontheslopesofa paleovolcanonearMostovo Village. This cave isabout30meterslongandupto fourmetersin diameter.Itsceiling is coveredwithlavapendantsupto fivecentimeterslongandwithcrystalgypsumdrusesupto five millimeters long. Cavernsbeneathlava fallsareformedduringthesuccessiveemptyingoftwo lavastreams.Forex ample, GolymataPeshtera,withatotallengthof51 meters, was formed bytheemptyingofa lavafall over previously cooled lava.InthemiddleArdaregion,thecaves called TopalKadirovataDoupkaandMalkataPeshterahavethesamecharacter.Theyareformed in a rhyolite canopy.Lateralero sion modifiedthem.Secondary volcanic caves include allthecavernsformed in lavaandtuff, tuffite,andpyroclastic rocks byweatheringandfrom fallingwater.IntheRhodopesthereareseveral types:1)Suffosion-erosional.Thesearemostlyintuffandaresmall. Suffosionanderosionarethemaingenetic factors.ExamplesarethecavenearDobrovoletz Villageandthecavecalled Ogledalnata(passage)nearGolobradovo Village.2)Lateralerosion.These comprisemostofthevolcanic cavesoftheRhodopes.Theyareformed bylateralerosion inthevalleysofthegreatrivers. Theyarefound chieflyoncontactsbetweenthehardestlava rocksandunderlying tuffs, tuff-brec cia, lava breccia,andotherpyroclastic rocks.Theymarkold lateral levelsoftheriver.Theseinclude Vichegradskata,Podskalna1and2 Caves, cavesinthemiddle Arda regionnearMostovo Village,andcavesnearStudenKladenetz Gorge.3)Denudo-erosional.Thesearecavesformedinsubvolcanic bodies(massifs),uncoveredbydenudationofthevolcanicmassifs.ThisisthegenesisofmostofthecavesinthenortheastRhodopesstructuraldepressionandintheDragoinoringstructure,suchasJultataPeshtera,Probitiya'Kamak,MyurekovataPeshtera,Lipovitza,andso on. 4)Gravity-erosional.Theseareformedinblocky fissured volcanic rocks bysupplementalenlargementandhollowing by erosionandotherweatheringprocesses. This isthecharacterof

PAGE 180

.----;---A Kolev&Shopov nEw,EPA"c. KflAAEHEl..4 ,Xc. ,-Cf! GolymataCave(B.Kolev, 1971) urH)/Y1EKJPA II c.BIACOKCI.nOIl9HICl.,K}K.blloAA1AeAAU or e5'I'It Gumburdek(B.Kolev, 1973)J0 ZIt",...kuillJj'" 173

PAGE 181

6thInternationalSymposiumonVulcanospeleologyGolyamataPeshteranearNochero Village, IvanovKamaknear SaTIlitza Village,andothers.5)Rockbridgesandarches.Theseareformed mainly in pyroclastic rocksasaresultoflateral erosionandflowing surface waters,andareinvalleysofthegreatrivers.TheyincludeDuptchenKamakandHobotainthemiddle Arda regionandProbityaKamak(Kolev, 1987).ThepatternofdistributionofcavesintheRhodopesisnotuniform.Twenty-sixareknowninthenortheastRhodopestructure,44inthesouthweststructure,and14inMadjarovo.TheyareespeciallynumerousinthevalleyoftheArdaRiverandalongthevalleysofitstributaries,ontheslopesoftheDragoinovoringstructure,aroundthecraterofMadjarovopaleovolcano,andonhighelevationdenudedsurfaces.SecondaryMineralsintheVolcanicCavesOfthe227cavemineralsknown (Shopov, 1989), 18areknown only in volcanic caves. Those oftheRhodopesareclassifiedasfollows:1)Volcano-weathering.Theseareformedasaresultofweatheringofvolcanic rock.Thisgroup includes gypsum, allophane, gibbsite, soda,andthermonatrite.Gypsum isrepresentedby crystals two to five millimeters long ontheceilingofmostofthecaves. According to HillandForti(1986)itisthemostcommonmineralofvolcanic caves. Allophaneisrepresentedby acrust50centimeterslongand10centimetersthick in Gyumburdek Cave. Gibbsite is represented by pale yellow porous sediments lavishlyimpregnatedwithsodaandthermonatriteinPrilepnataCave (Shopovetal., 1987;Shopov, 1988). This isthesecond recorded obser vationofthermonatriteandthirdofsodain caves.2)Volcano-guanogenic.Thesemineralsareformed bytheactionofguanoonthevolcanic rocks, including acetamide, newberryite,andpurpurite.SmallquantitiesofacetamidearefoundinsedimentsofPrilepnaCavetogetherwithsodaandthermonatrite(Shopov,1988)anddeterminestheirbrown color. This isthefirst recorded occur renceofthis mineral in caves (Shopov, 1989). New berryiteandpurpuriteform a rose-coloredcrustin Gumburdek Cave. Theyareformedasaresultofinteractionofbatguanowiththecave walls which TIEUJ.EPAI c.Bu.cokctnOIl9fI.uJ ... ,K>K ..-----_.' Prilepnata Cave174

PAGE 182

arethesourceofmagnesiumandmanganese.Thisisthesecond recorded occurrenceofpurpuriteandthefifthofnewberryiteincaves. Allthecitedmineralsweredeterminedbyx-raydiffraction analysis.Theirfurtheranalysis will be publishedseparately.OtherInterestsThesecaves alsoareofbiospeleologicalinterest.Troglophilesfamiliartokarsticbiospeleologistsaremostcommon.InPrilepnataCave inthemiddleArdaareabout1,200 individualsofthebig horse shoe nosedbat,R.ferrumeguinum.Someofthesevolcanic cavesarealsoimportantarchaeologically. Vichegradska Cave was inhab itedduringtheneolithic periodandbronzeage(Djambasov,' 1958; Mikov, 1933).Someotherswereused forculturalpurposesandforsanctuarybyancientThracians,forChristiansanctuaries,andforshelterbythelocal populationduringtheMiddle Ages (Kolev, 1983).SummaryVolcanic cavesinBulgaria havemanyinterestsandrequiremultidisciplinary study.Thedryclimateandthepresenceofbatguanohasresulted intheformationofseveralrarecave minerals.ReferencesBoyanov,1. (1961):ThePaleogenMagmatismusintheNord-EastRhodopes. Annual ofthe Univer sityofSofia,2,Geology. Djambasov, N. (1958):The CavesinBulgaria.Sofia. Galabov,J.(1937): NeophusiaeintheValleyoftheUpperandMiddle Arda.Bulletinofthe Bulgar ian Geographic Society.V.Hill, C.andP.Forti(1986):Cave Mineralsofthe World.NSS238 pp.175Kolev&ShopovIvanov,R.(1960):TheMagmatismusinthe East Rhodopes Paleogenetic Lowering, Works of the Geological SocietyinBulgaria.Kolev, B. (1987):TheVolcanicCavesintheRhodopes-ConditionandScienceProblemsAbstractsoftheVN ationa! Conference ofSpe leology. Kolev, B. (1983)ThracianSanctuariesinCavesandRock Niches fromtheEasternRhodopes.MaterialsoftheEuropeanRegional Conference ofSpeleology,1,P 173,SofiaI-lOX1980. Maksimovitch,G.A.(1975):TheCavesintheVol canic Deposits."Pechteri,"14-15,Perm.Mikov,V.(1933)PrehistoricDwellings andFiruilJ in Bulgaria.Sofia. Shopov,Y.Y.;B.Kolev;and Petrov. Sr (1987): Mineralogyofa VolcanicCaveinthe Eastern Rhodopes. (abstract)Vational Conference ofSpeleology, Sofia., p3.Shopov,Y.Y.(1988):BulgarianCave MinemJs. NSSBulletin,ationa! SpeleoSoc, 50:21-4. Shopov,Y.Y.(1989): Genetic Classi.fication of Cave Minerals.Proc 10Int C
PAGE 183

The State of Speleological Investigation of Volcanic Voidsinthe U.S.S.R.v.N.AndraichukDoctor Sci (GeologyandMineralogy),MiningInstitute, Ural Branch, U.S.S.R.AcademyofSciencesAbstractIntheU.S.s.R.therearemanymountainous systems where, in various geolo gical times, active volcanic processes took place.Theevidenceofthis activity is provided bythepresenceofa varietyofvolcanic deposits. Caves developedinthesedepositsareof secondary originandresulted from epigenetic processessuchasdenudation, erosion, suffosion,andman'sactivity. Caves developed in volcanic rocksareusually small in volumeandnumerous in number. Volcanic caves proper formed astheresultofvolcanic activityareassociated withareasofQuaternaryeruptions (Caucasus)andrecentvolcanic activity (Kamchatka, Kurile Islands). Caves formed intheprocessesofoutflowandgasescape inthelava (tube-likeandsphere-like caves) have been revealed intheabove regions. Thelargestlava caves, approximately 500meterslong, have been de scribed in Kamchatka.Itis worth mentioning in this connectionthatthestudyoflava caves intheU.S.S.R. isattheinitialstageandwearelooking forward to discovering newandmostinterestingcaves.Inthegeneral genetic classification proposedbytheauthorjointly with V.N. Dubljansky, volcanic cavesarereferred to volcanogenetic subclassofendogeneous classofunderground voids. Volcanic subclass includesthreetypesofvoids: explosive, extrusive,andgeyser.176

PAGE 184

The Fajanita Cave (La Palma, Canary Islands): A Volcanic Cavity Originated by Partial Draining of a Dike La Cueva deLaFajanita (La Palma, Islas Canarias): cavidad volcanica originada por el drenaje parcial de un dique*J.Sergio Socorro MuseodeCienciasNaturalesdeTenerifeApartadodeCorreos853,38080SantaCruz de Tenerife, Islas Canarias, Espana J.L. Mart(n c/oPoeta Viana,33,SantaCruz de Tenerife, Islas Canarias, Espana AbstractTheprobablegeneticprocessofavolcaniccavecontainedinabasalticdikeispointedout.Theeruptivefissure,whichbecameadikeaftersolidi fying,waspartiallydrainedwhentheinnerlavafloweddown,thusoriginatingthecave.ResumenSe describe el posible procesodegenesisdeunacueva volcinica desarrolladaenelinteriordeundique basaltico.Suorigenhasidointerpretadocomo consecuencia deldrenadoparcialdeunagrietaeruptiva, aldescenderla lavaquerecorriasuinteriordebido aundefecto demasayalaacci6n gravitatoria.Descriptionofthecave As shownonthemap(Figure 5),thesmallbranchesofFajanitaCave (cuevadelaFajanita)arevertical. Basically,thecave consistsofamaingallery 250meterslongwithitssecondhalfinside aburiedvolcanic cone.Thecavityopenstotheoutsidethroughoneentranceonly,situatedalmostinthebaseofa high cliff, with asteepgradient(35).Mterashorthorizontalpassage,itstartsto descend, gentlyatthebeginningandabruptlyattheend.Intheless collapsed walls, groovesandsmalllavastalactitessimilartotheones formed in typical lavetubescanbe seen. This indicatesthatstill liquidlavaflowed insidethegallery.Thesecondhalfofthecaveisinsideaburiedcinderconewherethedikebecamethicker.GenesisWhen a new emission ventopens inaneruptive fissureata lower levelthana previous one,itcancreate a remarkable decreaseofthepushorpressurethatcancause a descentofthestill fluid lava throughthelaminarconduit.Thefinal result ofthis draining effect canbea totallyorpartiallyemptydike,oreven a pit,underthemouthofthe volcano.*Esteestudiosehabeneficiadoenpartedelaayudaproporcionadaporel proyecto concedido alGIETdela Universidad deLaLaguna"CatalogodecavidadesvolcanicasdeCanarias,"subvencionadoporla DireccianGeneraldeMedio Ambiente del GobiernodeCanarias.EI segundoautor(J.L.M.) conta conayudasdel Excmo. CabildoInsulardeLaPalmaydela Federaci6nTerritorialCanariadeEspeleologia.177

PAGE 185

6thInternationalSymposiumonVulcanospeleologyThis phenomenon took placeinFajanitaCave. Today, scarcely 270metersremainsofwhatcould have been a complexnetofvertical labyrinths caused bythedrainageofthedike.Introducci6nEnlacampanade prospeccion y catalogacion de cuevas realizada por el Grupo de Investigaciones Espeleologicas de TenerifeenlaIslade laPalmadurante1987,selocalizounacavidaddemorfologfamuydistintaalade lasrestantesde la isla.Suformacionseinterpretocomo consecuencia del drenado parcial deundique casi vertical.Esteorigenseapartaencierto modo de las hip6tesis actualessabrelaformacion de cuevas volcanicas (Wood, 1977; Ollier, 1983; Ogawa, 1986) y quizas debido a que sepresentade formabastanteinusual,nose habia tenidoencuentaenlas clasificaciones de cuevas volcanicas existentes (Montoriol-Pous, 1973;Martinet al., 1985).Porotro lado, elpresentedescubrimiento con tribuye aincrementarlaimportancia espeleologica de la Isla de laPalma,ya de por sf sobresaliente debido a10espectacular de algunas desusespecies cavernfcolas.Enefecto,entresu faunaseencuentraneldermapteroAnataelia troglobia y el anfipodo Palmorchestia hipogaea,unosdelos pocos troglobios conocidosentodo el mundoensus respectivos ordenes (Martin et"al., enprensa).RasgosgeologicosdelaisladeLaPalmaLaPalma,situadaenel extremo noroccidental del Archipielago Canario esunade sus islas mas j6venes, conunaantigtiedadqueno sobrepasa los dos millon de aiios (N uez, 1985). Su principal accidente geologico10constituyeunaenormecalderadeerosiondeunos40kilometros cuadrados que se conoce como Caldera de Taburiente y que ocupa la zona central de sumitadnorte.Enlos flancos exteriores deestadepresion, yendisposicion radial hacia la costa, seencuentranprofundos barrancos (Figura 1). Lamitadsur, por el contrario, se menos erosionada,en'parteporseraquf dondeenlosultimosmilenios acaecieronvariaserupciones volcanicas. Precisamente,enelextremosurde laPalmatuvolugaren1971 la ultima erupci6n volcanica registrada en el Archipielago Canario, la del Volcan Teneguia.178EQuidistancia200m I.Canarias, oCl a <1 0 Km Figura1-Situaci6n geografica deiacavidad.Ennegro se representan las coladas hist6ricas. Figure1-LocationofFajanitaCave. Historic lava flowsofLaPalmaareshowninblackPuedendistinguirsetresunidadescaractensticas: el complejo basal, las seriesantiguas, y las series recientes (Hernandez-Pacheco y Nuez, 1983). Las seriesantiguassehansubdivididoencuatrocategoriasenfun cion desusdistintasedades y constitucion (Coello, 1987).Lacueva objeto de nuestro estudioseencuentraenla serieantiguatres, que comprende toda lapareddelaCalderadeTaburienteyel borde posteriorhastalacosta norte, con algunos afloramieritosintennediosde las se ries antiguas uno y dos,enfondos de barrancos.Laserieantiguatresparececorresponderal ciclo efusivo subaereo mas importantede la Isla.Estaserieestanaformada por un apilamiento de coladas,aglomeradosypiroclastosbasalticos,traquibasalticos y tefrfticos (Coello, Gp. cit.).

PAGE 186

Figura2.Enlaprimeramitad,el dique esmuyestrecho, contrastando con el final donde adquiri6ungranespesor. Figure 2-Thefirst stretch is very narrowincontrastwiththe secondhalfSocorro&MartinFigura3.Enla parte superior de laimagenapareceunagaler(a ascendente. Figure3-Anascendent gallery appearsatthe topofthe figure.Lascapas estan atravesadasporunareddediquesconunespesorde0,5 a2meteros,predominandolosdetipo basaltico yrumbonordeste,aunquetambienloshaydeorientacit6nnorte,norte-nordestey oeste.Haymuypocasdatacionessobrelaedad dE) estosdiques,siendolos mas j6venesdeunaedadelitre0,5 y1mill6ndealios(Feraud,1981).Estafechasecorresponderiaconlamencionadaetapadeintensaactividadefusivadelaserieantiguatres.Enelinteriordeunodeestosdiquesverticalesenlacostanortedelaislaseform6lacuevaquenosocupa.DescripciondelacuevaTalcomoserepresentaenlaFigura5,laspocasramificacionesdelaCuevadelaFajanitasonenvertical. Esta constituidaenesenciaporunagaleriaprincipaldeunos250metrosdelongitud,179

PAGE 187

6thInternationalSymposiumonVulcanospeleologyII,':II ( IFigura4-Esquemadealdisposici6n espacial dealcavidad.Laentrada se encuentra en la base deunacantilado costero. Figure4-Perspectiveviewofthe cavity.Theentrance is situatedatthe baseofa coastal cliff.N .... longilud256m De.nl 150mQPJIH IuJ ," "41' rI (J TOP.P.Orom'O.E.eoloJ.l.MOrllnCUEVALA'FAJANITALAPALMA-ISLASCANARIAS N 0 \;;)aQt;:JQce Ts I 0 ., Ec.. .., 0 ..,.., c eQ,. Q MDK J FEDCB A c N Figura5-Topograf{a de la Cueva deLaFajanita. Figure5-MapofFajanita Cave.180

PAGE 188

181Socorro&MartinFigure6-Schematic sequenceof the wideningof the dikein the buried coneand the later collapseofthe final hall.ADuringthe developmentof the eruptive fissure, the lava is injected into a buried volcanic cone carrying fragmentsofscoriaandlapilliawayandthusbecomingmuchthicker. The differenceofthe thickness can be appreciated comparing Figures3and6.B.Themagmacools slowerinthe thickerpartsofthe dike.C.When the pressure decreases, themagmathatwas stillliquiddescended by gravity, leaving thedikepartiallyempty.D.Asthedikeis inclinedandempty, apartofthe buried cone remainswithoutsupportandcollapses. E.Thecollapse widens the cave considerably.

PAGE 189

InternationalSymposiumonVulcanospeleologyencontrandoselasegundamitadinmersaenunco no volcanico sepultado.Estacavidadseabreal exteriorporunasolaboca,casienlabase de unpotenteacantilado, conunafuerterampade unos350 Despues deuncorta trayecto horizontal, comienza a descender, primeropausadamentey luego deunaforma mas brusca.Lainclinaciton mediaenestazona es de unos450 ,aunquea veceslapendientealcanzalos800 Aproximadamente a unos 180metrosdelabocay despues de descender unos50metrosenvertical, se alcanza elpunta mas profundo.Entodoestetramodegrandespendienteslasparedesdeltubasemuestranconsolidadas soloenalgunos lugares,mientrasqueenotros estan bastantedesgajadas.Enlostramosdonde los desplomeshansido mas intensos, los derrubiosseacumulanenelsuelo, siendo mas abundantessobre todoenlaspartes mas profun das verticalmente.Enestos segmentos es posible apreciar a ambos lados de la cueva la existencia de coladas horizontales que fueronatravesadaspor el diqueenelmomentode su fODnacion. Dondelasparedesapenashansidoderruidasseaprecianestriase inclusopequenasestalactitasdelavasimilaresa las de los tubos volcanicos chisicos, 10queevidencia eldiscurrirdelalava aun bastanteHquidaporelinteriordela galeria.Entodo eltramodecuevadesdelabocahastaellugar mas bajo,lasseccionestransversalessonpor10general mas altasquesuanchuraydedimensionesreducidas(Figura2),peroapartirdeaqui,sumorfologiacambiaostensiblemente(verFigura5).Estepuntocoincideconunestrechamientodebidoalacumulodederrubiosprovenientesdelasgaleriasaamboslados.Enadelanteycasihastaelfinal,lacuevaasciendeconunapendientemediadeunos200ylasparedes estan bastantederruidas,sobretodoensuladoizquierdo,10quepermiteelafloramientodelosmaterialesencajantesenlosqueseinyectoeldique(Fotos3y 4).Setratadepirodastosdefuertetonalidadrojizaquealserfacilmentedisgregableshanpermitidoeldesplomedeextensosbloquesy elconsiguienteensanchamientodelagaleriaprincipal(Figura6),originandoseccionestransversales-alcontrarioqueenlaprimerapartedelacuevamas anchasquealtas,quesuperanaveceslossietemetrosenambasmedidas.Cercadelfinaldelacavidad,lasparedesaparecendenuevobienconsolidadas ylaamplituddelagaleriavuelve adisminuirconfigurandounasecciontransversalsemejantealadelaprimerapartedelacueva(Figura8),pero mas ancha,Figura 7Puntodonde comienza la parteinmersaen el cono sepultado. Figure7 The secondhalfis inside a buried cinder cone where thedikebecame thicker. "182

PAGE 190

Figura8-Enel segmentofinalse coservan ambas paredesdeldique hueco adheridas a las escoriasylapilli del cono volcanico sepultado. Figure8-Lastsegmentofthe cave.Thewallsoftheemptydikeare attached to the cone's cinder.posiblementedebido aunmayorgrosordeldiqueenestazona.Las pocas ramificaciones existentes determinanunadisposici6n esencialmente verticalenla estructura tridimensional de la cueva, comoesl6gico al haberse constituidoenel interior deundique volcanico casivertical. Algunasdeestas ramificaciones no se explorarandebido a la dificultad de acceso, peraencualquier casa, evidencianunacierta complejidadenla estructurade la cueva similar a la de 103 tuhos volcaniccs clasicos, peraestos ultimos obviamente conunadisposici6n basicamente horizontal.GenesisdelacuevaDesdelasprofundidadesenquesegeneranlosmagmasbasalticos,elfluidoasciendeaprovechandoalgunadebilidad0fracturadela183Socorro&Martincorteza.Lapropiapresi6ndelmagmava pro pagandoestagrietahastaquealcanzalasuperficie,lugardondeseproduce laprimerabocaeruptiva.Perolalavapuedeseguirempujandodentrodelagrietaa k.il6metrosdedistanciayllegaralasuperficieenotroslugares, produciendonuevospuntaseruptivosque estaran alineadosentresf.Si 103 puntasfinalesseencontraranaunacotasensiblemente inferior a los iniciales,estosquedariansinel suficiente empuje0presi6n, pudiendo llegar incluso acesarpor completo elaportedemagmaComo consecuencia,sila lavaqueDenalagrietaeruptivapermaneciese liquidaensutotalidad al men03 enlaspartes mas gruesas del conducto, podria descenderporgravedad dejandosemivacialagrietaporlaqueantesascendia con violencia.Elresultado final puedeserunaredlaberintica vertical producto del drenaje de la lava.Estacuevatiene ademas laparticularidaddequeensusegmentofinal,lagrietaeruptivasedesarro1l6enelsenodeuncono volcanico sepultado,por10queadquiri6unmayorgrosoralser mas facil,enestematerialdisgregado,arrastrarfragmentos.Porotrolado,alsermuchomayorel espacio vacioenestazona, ytenereldiqueunaciertainclinaci6n,seprodujounenormedesplomequeafect6a estesector (Figurn 6y7), salvo losmetrosfinalesdelacavidad(Figura8).AgradecimientosAgradecemoslacolaboraci6ndeO. Escola yP.Oromienel trabajodecampoparalaelaboraci6ndelatopografiadelaCuevalaFajanita_ Ademas debemoshacerunamenci6nespecialalapoyomostradoporlaDirecci6nGeneraldeMedioAmbienteenla Isla de laPalma,yenconcreto a la persona deC.Albaportodaslas pro porcionadasdurantelas campafias de prcspecri6n espeleo16gicaenestaisla.Por Ultimo vaya nuestro agradecimiento a las institucionesquecontribuyeron econ6micamente a la realizaci6n del estudio asi como a HelgaG.CourtyA. Hernandez-pachecoparsus respectivos comentarios criticosalpresente articulo. BibliografiaBravo, T.DepartamentodeGeologiadelaUniversidad delaLaguna,Tenerife,IslasCanarias,Espana.CoelloAnnenta,J.(1987):Lasaguas subterraneas enlas formaciones volc3nicas delnortedeIa

PAGE 191

6thInternationalSymposiumonVulcanospeleologyPalma(Is.Canarias).SimposioIntemacionalde recursos hidraulicos, Canariasagua2000.Ed. Consejeria de Obras Publicas del Gobierno de Canarias: 1-19. Feraud,G.(1981):Datation de reseaux de dykesetde roches sousmarinesparles methodes K-Aret0Ar-39Ar. Utilisation des dykes comme marqueurs de paleocontraintes.Tesis inooita, depositadaenel Dpto. de Geologia delaUniv.LaLaguna. 146 pp. y3 anexos. Herrero, E. Casa del Deporte, Federaci6n Territo rialCanariade Espeleologia.C/.S.Sebastian.SIC.de Tenerife.Fspana.Hernandez-Pacheco,A.y Nuez,J.delao(1983):Lasextrusiones salicas delsurde la Isla de la Palma.Est. Geol.,39: 3-30.Hernandez-Pacheco,A.DepartamentodePetrologia,Facultadde Ciencias, Universidad Complutense de Madrid, Espana. Martin, J.L.;J.J.Hernandez; yA.Lainez (1985):Lassimas de origen volcanico enlas Islas Canarias.IISimposiumde laFCNE,Burgos, Espana: 21-30.184Martin, J.L.; I. Izquierdo; y P.Oromi(en prensa).Surlesrelationsentreles troglobiesetles espeees epigees des lIes Canaries. Mem. Biospel.Montoriol-Pous,J.(1973):Sobrelatipologiavulcanoespeleogenica.IIISimposiumdeEspeleologa,Matar6,Espana:268-273. Nuez,J.delao(1985):LaPalma,Gomeray Hierro.EnSntesis deLaactividad volcanicadelas Islas Canarias,(Curso "Evoluci6n Volcanol6gica del AtlanticaCentral"de,la U.I.M.P.) Ed.Institutode Estudios Canarios,SIC.deTenerife: 39-48. Ogawa, T. (1986):Theformationoflavacave.Proc. 9th. Int. Spel. Congr.,Barcelona,Espana:440-444. Ollier, C.D. (in rress): LavacavesandLavaflows.Procofthe i IntSymposiumonVulcanospeleo logy,Catania, Italy. Wood,C.(1977):Theoriginandmorphological diversityoflava tube caves.Proc. 7th. Int. Spel. Congr.,Sheffield, England: 440-444.

PAGE 192

Volcanic CavesinEIHierro Island, Canary Islands, Spain*J.J.Hernandez Museo de CienciasNaturalesdeTenerife. Apdo.853,38080SantaCruz de Tenerife (Canary Islands, Spain)A.L.MedinaMuseodeCienciasNaturalesde Tenerife. Apdo.853,38080SantaCruz de Tenerife (Canary Islands, Spain)I.Izquierdo Departamento de BiologtaAnimal(Zoologta). Universidad deLaLaguna.38206LaLaguna(Canary Islands, Spain)AbstractThecompletecatalogueofvolcaniccavesfromEIHierroIsland(Canaries)ispresented.Thetotalnumberofcavesknownuptotodayis 35,ofwhich27arelavatubes,7arepitcavesand1 is apit-tube.Theunpublishedmapsof10cavesareshownaswellasabriefcommentaryabouttheirmorerelevantgeologicalandbiologicalfeatures.IntroductionEIHierroIsland,withanareaofonly278squarekilometersandmaximumageofbetweenoneandthreemillionyears(Abdel-Monemet al.,1972),showsagreatnumberofcavesofvolcanicnature.Thisismostlyduetotheyouthofthelavaflowsspreadallovertheinsulararea(only a fewthousandyears)togetherwiththebasalcharacterofthematerialsofwhichtheyaremade.BackgroundAmongthecavesofEIHierroIsland,one,called"CuevadeDonJusto,"isoutstandingforitsgreatlength.It,withits6,315-metertotallength,hasmotivatedthepresenceintheislandofseveralspeleologicalexpeditions.Thefirstreportwehaveaboutspeleologicalexplorationintheislandisdatedfrom1961.Inthatyeara local speleologicalgroup-surelythefirstoneintheCanaryIslandscalled"GrupoHerreiiodeEspeleolog6a,MontaiiismoyEscalada"(GHEME)wasestablished.Eventhoughitsworkwasneverpublished,themembersofthisgroupachievedthefirstexplorationandmappingoftheCaveofDonJusto.Morerecently,intheyear1974,theDepartmentofCrystallographyandMineralogyoftheUniversityofBarcelonaandtheGroupforUndergroundExplorationoftheClubMuntanyencfromBarcelonastartedwiththemappingofthiscave(anonymous,1975;Montoriol-PousandDeMier, 1977).Intheyear1976theSpeleologicalExplorationTeamoftheExplorationCenterofCataluiiavisiteditagain.In1978anotherexplorationbythesamecatalangrouptogetherwiththeSpeleologyBranchoftheExplorationSocietyofMalaga,finishedthesurveyofthiscave(Montoriol-Pousetal.,1979).Atthattime,only fivecavesoftheislandwereknowntospeleologists:theabovementioned,threemoreofthesubaerialtypediscoveredduring1974'sexploration(Montoriol-PousandDe Mier, 1980),andanoldreportaboutthe"Cueva*Thisworkhasbeencompletedinthefieldoftheresearchproject called"SchemeofPreparationofa CavesCatalogueintheCanaryIslands.1.TheWesternIslands:LaPalma,EIHierroandLaGomera"giventotheDepartmentofAnimal Biol ogy (Zoology)ofLaLagunaUniversitybytheCanarianExecutivePower'sGeneralAdministrationofEnvironment,November1986.185

PAGE 193

6thInternationalSymposiumonVulcanospeleologyAZORES -.. ." AlGERIA s. l.al-byeta S. Narciso!.asPartie1.cEl.asflt:ll.ermEl.Qrirx::OOGraDeCarl6'0__Jtx:OO.--r+""*-S.PiooI.a Mrta----+#-I.a Urva._---.t--lb s.
PAGE 194

del Hoyo"atthebeginningofthiscentury(FernandezNavarro,1908). Nevertheless,theinformation wehadabouttheisland showed agreaterquantityoflavatubes.Forthisreasonwe decided to com plete various explorationsinordertoincreasethespeleologicalchartofEIHierroandalso biological studies, soastodemonstratewhetherornotcavefaunais possible insidethesetubes.Forthispurpose,theGroupof. SpeleologicalResearchersofTenerife(GIET), fromtheUniversityofLaLaguna,hasmadetwotripstotheislandduringthemonthsofAprilandMay 1984, whichresultedinthestudyof16 caves.ThisworkwaspublishedintheIIRegionalSymposiumofSpeleology which took placeinBurgos(Spain) in 1984(Martinetal.1985a,Socorro, 1985)andinthe9thInternationalCongressofSpeleology, whichtookplaceinBarcelona,Spain,in1986 (Socorro, 1986).Afterwards,theauthorswentonwiththisworkduringvariousvisits totheisland(May 1985; May,December1986;March,April,andNovember1987)theresultsofwhicharethebasisofthisreport.ResultsForthetimebeing,asaresultoftheselastexplorations,35cavesareknown,spreadalloverEIHierro.Amongthem,sevenareofthevolcanicpittype,thebiggestbeingthe"SimadeLasPalomas"withadepthof75meters.Amongthe28lavatubesknown,thelongestoneisthealreadymentionedCaveofDonJusto,thethirdvolcanictubeofCanaryIslandsandoneofthelongestoftheworld. Table I showsthecaves known to date, withdataofinterestsuchaslocation, length,whetherthereis amapornot, interest,anddegreeofpreserva tion.Insomecases,theinterestis purely a geolo gical one, whileinothersitisoutstandingbotanicalandzoological outlooks (Martinetal.,1987). Some cavesareofarchaeological value since they havebeenusedduringhistoricalperiodsbythe"bimbaches" i.e. primitiveinhabitantsoftheis land.Othersareofpaleontological value, since insidecanbe foundremainsofbonesofbig vertebratespecies nowextinct(Izquierdoet al., 1989).The locationofeach cave is shown inFigure1.ReportoftheCavesStudiedFollowing isthetopographicstudycompleted inthecavesofLinke,EI Mocan, Los Pozos, Taco-187 Hernandez, etal.ron,LaCurva,andRajaandthepitsof Guinea, Crater,LasPalomas,andPicoLaMata,withabriefdescriptionofeach caveandcommentsaboutthefaunafound inside.CaveofLinkeLocation:LaRestinga (Frontera) UTM: 28BR067635 Length: 290metersDescription:Thecave issituatedat800metersontheeastsideofMountPrim,betweenalotofsmallovensrankedup tothecoast.Itsonlyentranceisatanaltitudeof150metersabovesealevel,itistightandofatrigonicalshape.Thehole gives accesstoanascendingtube60meterslongandanotherdescendingtubeofapproximately300meters.Thereis alotofdustinside,suchaquantitythatthenumerouslavastalactitesbur iedinthegroundcanhardlybeseen.Biology:Thecavesheltersspeciespeculiaroftheundergroundenvironmentoftheisland.Someofthem,suchastheearwig Anataelia lavicolaMartinandOromiorthecockroachLobopteraombriosameridionalisMartinandIzquierdo,areessentialtotheecosystemoftheCaveofDonJusto,which iswithinone.kilometer.CaveofMocanLocation: EIPinar(Frontera)UTM: 28BR037694 Length: 214metersDescription: Alavatubewithonlyoneentranceontheupperendataheightof1,100metersabovesealevel.Thetube,ofanaverageheightofsevenmeters,islargethroughoutallitslength.Inthemiddleareathereis asmallsplitintheroof,whereabeamoflightcanfinditswaythrough.Theappearanceofthecaveshowsthatitisoftenfrequentedsincevariedrubbishisfound inside. Biology:Theinvertebratefaunaseemstobevery poor.Thediscoveryofsubfossilremainsofgiantlacertidsstandsout.CavesofSanAndresorLosPozosLocation:SanAndres (Valverde) UTM: 28BR082741 Length: 390metersDescription:Thisis asmallareaofthreerankedcaves, with atotaloffiveentrances situ atedatanelevation ofl,OOOmeters.Theextremewestentranceis a closed oveneightmetersdeepthatcanonly beenteredwithropes.Themiddle

PAGE 195

6thInternationalSymposiumonVulcanosPeleologySECCIOIIESPLANTA D I = CUEVADELLINKELARESTINGA-ELHIERROTOPOGRAFIA: ... L.".DI" ...J.J.H N .. NDU.I.I2DUIOO ........DOLA(G.I.E.T.l Universidadde I.B Laguna LONG. TOTAL:a.om 'lHDI(NTE : 115.6 ". II 20", ---------------------------------------------------------------------CUEVADELMOCANHoy.delMorcillo-EIHierroAizado J Q dSecclones CO. I.F..T. (;lIi'cr.idndd.1..MLaguDIlQuQ .,.....;.--N "r"'OII"Tt:22.2'LONG.TOTAL:214 mo 10m -__ ..!L _188

PAGE 196

5ANAN0RESIELHIERR0) A,L.C.DI..... I. IJ.t1I'.H......DOLA (GIETIUNIVERlllOAODE L"LAGUNADE LOS Hernandez, etal.POZOS ... lZ A C0S[CC'OH[$CUEVA DE TACORONL.Re.tlng.EIHierro TOIIGQ"""A,A.L .01 .l..I.HCltMaaalZ. LIZQUIEJlDO 11.1\.A"......-=LONe. TOTAL, 3J4m c0Seccion..VI) <::>l:JCl ... 6 U CJ<>. C D .'CH1J 189 0o AlzadaOI. ... lwfiL:)LIo...

PAGE 197

6thInternationalSymposiumonVulcanospeleology.....H' I:,.,""':}}):.:::, Cave Localio/ 'InterestPreservationSima de Marciso Arenas Biancas-29Yes Gool Good Sima deLaHoveta Arenas Biancas-26Yes Gool Good CuevaLasPardelasLomo NeQ'To 180Yes GooIlZool Accentable Cueva CuacloLasMolerasLaDehesa170Yes Zooll Archaeol Accentable CuavaGrandede OrchillaPtade Orchilla85No Archaool Acceotable Cueva del ConcheroPtade Orchilla80No Archaool Acceotable Cueva del GuinchoPtade Orchilla20NoNoneAcceotable CuevaLaMaiaditaPtade Orchilla50No None Acceotable Sima de Manue Ptade Orchilla-15No Gool Acceotable Cueva del AcantiladoPtade Orchilla401Yes Gool Good Cueva deJudithLa Restine:a 120YesGeo1Good Cueva de LosJordisLa Restine:a 46Yes Gool Good CuevaMonserratLa RestinQ'a 114Yes Gool Good Cueva de Arenas BlancasLa Restine:a 95No None Acceotable Cueva del LinkeLa Restine:a 290Yes GoollZool Good Sima delCraterLa RestinQ'a -36Yes Gool Acceotable Cueva de DonJustoLa Restine:a 6315Yes GooIlZool GoodCuevaRoiaEl Laiial300Yes Gool Good Cueva de Tacor6n EI Laiial334Yes Geol/Zool Accentable Cueva del LaiialEILaiial??No Gooi/Zool Good Cueva deLaCurva EIPinar141Yes Zool Aceotable Sima Pico laMataEIPinar-23.5YesNoneAcceotable Cueva EI Mocan ElPinar214YesTouristAcceotable Cueva de Los PozosSan Andres 390Yes Zool Accentable CuevaLaLechera Isora??No None Acceotable CuevaSanLazaro Echedo-100No None Acceotable Cueva del Mato Valverde20No None Acceotable Cuevas de GuineaFrontera30No Archaeol Aceotable Sima de GuineaFrontera57(-8.7)Yes ZoollTourist Good Cueva del HovoFrontera247Yes Geol/Zool Good SimaLasPalomas EI Golfo300(-75)Yes GeollZoollBot Good Cueva de Mauricio EI Golfo193Yes Zool/Geol Good CuevaLasErasSabinosa80No None Accentable Cueva del DiabloLa RestinQ'a 20NoTouristAccentable Cueva del RiscoFrontera40No None AcceotableTablei-Relationofall volcanic cavesknowntodateinElHierroIsland(Canaries).190

PAGE 198

Hernandez, etal.Description:Thiscaveisonly a hole,justonthecraterofMountJulanataheightof350meters.Thisholetakesonetoatubeofgreatmagnitudewhichshortlydividesintotwobranches.Theonefromtherightgoesgraduallydownward.Itreachesa70percentslopeatsomepoints,andthencontinuesleveluntilitsdeepestpoint.Thebranchtotheleftistighter,withscarcelyanydipuntilisgetstoapoint where thetubechangesintoarealvolcaniccavernofabout12metersdepth.Aswestepdownward,itenlargesandgrowssoastoformabigvaultwithlayersofdifferentcolorsonitswalls.Insomestretchesofthecaveonecanobservehowthebasalticplaqueshavefallen (rom tewallsshowingapyroclasticstratumofthe la:pilli type.Thisstressesthepointthatthelava flows thatoriginatedRajaCaveexcavatedunderthematerialcoveringthesurfaceofthearea,whichinthatparticularcaseis a large stratummadeofpyroclasticmaterials.PitofGuineaLocation:GuinearonteraUTM: 28RB047756 Length:57meters .7meteISDescription:Asmalilaatubebelongingto eo Guinea'sCavearea,atan elevation of 95meters. Ropesarenecessarytoenter sinceheonly tranceiscollapseoftheroofofa bigcae metershigh.From therestarts a largetube 57meterslong,running southeasttoesL Thereisanimportan deposi ofclay covering wholecaveandeven closingbotends 0tube.Biology:Outstanding 15 heCurcuJionidaebeeles0 heParalomeuma, spidersbelongingLinyphiidaeandDysderidae speciesof springtails,gastropods,woOOliice,. soon.Bonesoflizardsangoa can whichprovesaformer communicati outside, nowdisappeared,sioce existedonly a few day:;before 0 is possiblethatthe cia'eposi. couldhaveapaleon logical TheCraterPitLocation:La Restingaera) UTM: 28BR068636 Depth: 36metersDescription:The pi toea.. aoout80meters, is no beast RojaCaveLocation:ElIajial (FronraUTM: 28BR043642 Length:300 meters CaveofLaCurvaLocation:ElPinar(Frontera)UTM: 28BR069667Length:141metersDescription:Thisis asmalllavatube, locatedataheightof400meters,beneaththeroadleadingtoTaibique.Itpresentstwooverlappedtubes,theupperonewithonly40metersoflength.Atitslowerendthecaveisobstructedby landslides. Biology:Inspiteofitsshortlength,thecaveshowsagreatbiologicalwealth.Inside,bothhumidityandtemperaturearehighandthecavehasmanyrootscoveringthefloorandwalls.ThefaunafoundincludesthecockroachLobopteraombriosameridionalis,asmalltroglobiticFulgoroidCixiidae),andanotherFulgoroidbelongingtothefamilyMeenoplidae,possiblyMeenopluscanauusRenameandRoch,alsofoundlivingintheCaveofDonJustoHachandAsche,1988.CaveofTacoronLocation: EI Lajial(Frontera)UTM:28BR032642Length:334metersDescription:Thisis avolcanictubewithfourentrancesallalongitslength,locatedat500metersabovesealevel.Itpresentsapronouncedslopeduetothedipofthesoilonwhichitformed.Fromthelowerentranceasmallgallerystartsupwardsuntilreachingtheupperlevel,about20meterslong.Thefourentrancesarenottheusualtypeofcollapsebutseemtohaveoriginatedduringthegeologicalformationofthetubes.Itsmorphologyshowstheupsanddownsofthelavaflow, whichseemstodemonstratethattheholesweregenuinelavadrains.Biology:ThepresenceoftheearwigAnataelialauicola,alsotobefound inothercavesofthelowlands, isinteresting.cavehastwoentrancesandis26metersintotallength.Theextremeeastcave isthebiggestwithtwoentrancesanda totallengthof350meters.Atthatpointthecavepresentsa high degreeofwet nessandshowsagreatadductionoforganicmaterial fromtheoutside.Therearepondssomemeterslongandthestratumismadeofmuddydeposits.191

PAGE 199

6thInternationalSymposiumonVulcanoSPeleologyCUEVADELACURVAELPINAR-ELHIERROTO'OG .....'IA:J.J.H.,,,'nde.l,A.L. ...dl, Llzqwieu.o IG.I.E.T)-Univ. de LaLagunaPUNTA n LONe;. TOTAl,3OO ... N SECCI 011 ESQ CUEVAROJALaRestlnge.EIHierro C..U.T. UMlvrltSlDAD!)fu.UCU\ItAoOa"Oc.Qo:;;;l=U bcd.r h k I192

PAGE 200

Hernandez, etal.FRONTERACElHIERRO) TOill'O,,,..f'IA:j.J.MIIIU.,,,.OUi l.lJOUlueo: C.NAI&LUNO (CI.I.I.T.) UN'VI!.IIDADOil!:LaLAGUNA SIMADEGUINEA 8-7,. ... LONG.TOTAL: 51",AlZADO"L.A H T Ao..."l Z ADO o .......G.....;::..-NSIMA DELenTELARESTINGA-El HIERROUH,V(I't$ICAO0(-1,..LAG.dIW,IolGUI 193

PAGE 201

6thInternationalSymposiumonVulcanospeleology SIMA DE LASPAI.OMllSAlZ "00,...... ...........,.--.../"'\Pl'" NT ... "" .. "1.FRONTERAIELHIERROJ1'0'0 ........ : ..LI.It1Jt ll.LUOIlU.eo1I"'VlliaIOADDrLAl.AOU.' (D.LI:.'.ILONG. ""'CHiNTl.la.:I sSECCIONE,t ,I I ,,,, ,,:,, : :. :.'" ,0,", SUIA PICO LA MATA ELPINAR IELHIERRO]TorO 'IA.1..1.M J.I.IZ.UIDD." 1' CG.LI.tJ .....a,.IIDAOoa LA LAGUNAALZ A 00 t ,,,I I,I I i," ,..'"I, , ,I,, ,,II,,,I, PLANTA ....,GN194

PAGE 202

andneartheseacliff whereanaggregateofsmallovensandcraterscanbeobserved.Theeruptive chimneyofoneofthemistheentrancetothecave.Thehole isaboutfourmetersindiameterattheaccessofthefirstpitofeightmetersdepth,withapproximatelythesamediameterasthehole.Inthisareatherearelotsofblocks fallen from outsideandfromthewalls.Furtherawaytherearetwomorepitsoffourandsevenmeters.Theyaremuchsmallerthantheentranceoneandlotsofscoursandslipsobstructingthewaydown force onetofind his waybetweenfitted blocks. Biology:Thereareremarkableandvariousremainsoflivingvertebratessuchasgoats,rabbits,seagulls,andothers. As occursinmanypits,itisusedasanestingplace bynumerouspigeons.PitofLasPalomasLocation: El Golfo(Frontera)UTM: 28AR986721 Depth: 75metersDescription:ThisisanamazingandfrightingcavelocatedintheslopeoftheTanganasogavolcano.Itsentrance,whoseverticaldiameterformsadescendingslopeof45percent,gives waytoasmallovenfromwhichthreeoverlyingtubesgointhesamedirectionandwithsamedeclivityasthatoftheslope.Thelowertubecanreachheightsof15meters.Thisisoneofthedeepestvolcanicpitsofthearchipelagoandinitsbirththetypicalmechanismoflavatubeformationwasmergedwiththelattermeltingoftheoverlayingtubes(Martinetal.,1985a). Biology:Therearelotsofpigeons'nests(Columbalivagmelin)ontheflooroftheuppertube.Intheverticalwalloftheentrancethereismuchpigeonguanoanda rich,recentlyinvestigatedarthropodfauna(forexample,therove-beetlesSepedophilustenuicornisLind,andOmaliumocellatumWoll).PitofPicoLaMataLocation:ElPinar(Frontera)UTM: 28BR057690 Depth: 23.5metersDescription:Thiscaveislocatedatabout900metersabovesealevel.Itpresentsthecharacteristicformofa typicalchimneyoftheCanarianvolcanic pits:ithasadiameterlargeratthebottom(50meters)thanattheentrance(2 meters).Fromtheentrancethereis a freedropof13.5meterstothetopofa pileofblocks which have fallen fromtheoutside.Fromhereon,the Hernandez, etal.caverunsaboutsix moremetersuntilitreachesthedeepest point.Itdoesnotseemtobevery old sinceitswallsarenotverydamagedandarefulloflavastalactites.Thepiling upoftheblocks fallen from outside isnotveryimportant,sincejustunderneaththelava flowsoftheprimitivestratumcanbeseen.Theexternalstructurespeculiartoaneruptivehole,arevery well preserved.ReferencesAbdel-Monem,A.;N.O. Watkins;andP.W.Gast(1972): Potassium-Argon ages, volcanicstratigraphy,andgeomagnetic polarity historyoftheCanaryIslands: Tenerife,LaPalma,andHierro. Ann JourScience 272:803-825.anonymous (1975): Espedici6 a l'illa deElHierro.Circular del Club Muntanyenc Barcelones: 225pp.FernandezNavarro,L. (1908): Observaciones geol6gicas delaisla deHierro(Canarias).Mem R Soc EspHistNatV:55-56. Hoch; H.andM.Asche (1988):Onthetrackofcave-adapted Fulgoroideainlava tubes ontheCanaryIslands.TymbalAuchenorryncha Neu sletter11:11-14.Izquierdo,1.;A.L. Medina;andJ.J.Hernandez(1989): Bonesofgiantlacertids from anewsiteonElHierro(CanaryIslands).AmphibiaReptilia10:63-69.Martin,J.L.;J.J.Hernandez,andA.Lainez(1985a):LasSimas de origen volcanico enlas Islas Canarias.Actas delIISimposiumReginaldeEspeleologia(F.C.N.E.) Burgos: 21-30.Martin,J.L.;1.Izquierdo;P.Oromi;J.J.Hernandez;A.L.Medina;andS.Socorro,(l985b):Cavidades volcanicas enIaIsla del Hierro.1.(Islas Canarias).Actas delIISimposiumRegionaldeEspeleologCa(F.C.N.E.) Burgos: 65-75. Martin, J.L.; P. Oromi;and1.Izquierdo (1987):Elecosistema e6lico delacolada volcanica de Lomo Negroenlaisla deElHierro(Islas Canarias).Vieraea 17:261-270.195

PAGE 203

6thIntl'nationalSymposiumonVulcanospeleologyelcorrentde lava de los Lajiares(1.Canaries).Sota Terra 1:22-27.Socorro, S. (1985):LaCueva del Hoyo,unnuevo tipo detubavolc6nico.Aetas delIISimposiumRegional de Espeleolog(a (F.C.N.E.)Burgos: 9 14. Socorro, S. (1986): Geomorfologiadela Cueva del Hoyo (El Hierro, Islas Canarias).Aetas del [)O Congreso Intemacional de Espeleolog(a.Barce lona, Vol2:pp51-53. J,and J.D Mi r1980:Estudi 't.atslclmiu d lvolupadesen

PAGE 204

"'Poster exhibit,textfromtheYork Grotto Newsletter,Vol28No3, pp 45-51 1991.theirdepthandsize,sofarasI know. (Note:Ijustrecentlylearnedofa biggerchamberontheAzores.Itisnotmuchbiggerandnotasdeep. Iamnotquitesurewhichoneismorevoluminous.)Theopeninginthetopoftheconeis four by fourmeters.Theverticaldroptothebottomoftheunderlyingchamberis 121meters.Thevent wid ensfrom four byfourmetersatthetoptoeightby 15metersat50metersindepth.From35to55metersindepthis anarrowparallelsideventtothenortheast(0.5to1.5metersindiameter)which,incrosssection, isshapedlikethehandleofa jug. At60metersdepththeventwidenssuddenlytothenortheastandmeasuresabout15by40meters.Abovethenortheastendofthewideningis alargechimneythatis clearlyconnectedwithacraterbowl10metersnortheastoftheentranceopening.From60metersdownis atremendouschamberabout150,000 cubicmetersinvolume.Thecenterofthechamberis 121metersbelowthesurface.Thediameteratthispointonthebottomis48 prihnukargigur*Ami B. Stefanson Kambsvegur 10, Reykjau!k, Iceland Themostnortheasterlyofthe Pnbnukar (ThreePeaks)is a hollow volcaniccindercone(Figure1)thateruptedinaboutthetimeofthesettlementofIceland(784AD)(J6hannessonand Sremundsson, 1989).Itis36metershighandstandsonthehighlandedgeabout20kilometerssoutheastofReykjavik,atanaltitudeof550meters.Inthetopoftheconeisanopening-underneathis atremendousvolcanicchamber,sidepassages,andvent.Onthesouthwestslope is asmallcraterthatemittedasmallflowofabout200Figure1-Themostnortheast Prlhnukar, a hollow volcanic cone.squaremeterstothesouth. Also tothesouth-west,150to200metersfromthemainvent,arefoursmallcratersthatspewedasmalllavaflowofaboutonehectaretotheeast.Thiswasasmallfissureeruptionthatsoon centereditselfinthecinderconeonthenortheasterlypartofthefissure.Thelavacoversabout38hectares(94acres)andisestimatedtobefivemetersthick.Ittotalsabouttwocubichectares[sic](J6nsson, 1978)andisrathersmall.Thelavaisrichwithplagioclasedotsandis easy todistinguishfromthe olderprfhnukar lavathatonlyhassomesmallolivinedots(J6nsson,1978;Einarsson).Aboutonekilometertothenortheastaresomecratersinthesamelinethatspewed forth a biggerlava,estimatedat200hctares(495acres) (Jonsson, 1978.This lava is ala very plagioclase rich J6nsson, 1978;Eina son) and theeruptiontheremay very wII have tn.kenpl.ac attheSame time. Whatmak th pIl!{lJl1iquis th volcanic chamoorandthlvolcanic v nts thathave rnptied themselveswJtbout collapsing. Th indercone,the trendouhamb r, fHldpallsug 8 undrneath ar'l.ngyJarI.nil'kin Iin Lhworld for 197

PAGE 205

6thInternationalSymposiumonVulcanospeleology IVIIi'-: !! "-prfhnukarA .\I ""I. .-. I -(\'luI-)"f;3lafjofl \ ...........\,----'-. Island \\\ CJEIdrW--\ CN-......sa.._lCJY_-__ I I II ilil_" /; __SjnoZ__ Ii I T_..,/---.lhgI-_'Ill'....----_....--.. -. "f..... Figure2 -Topographic m.apof Prlhnu.kar.

PAGE 206

Stefanson "Hrauntruss"(lava "sputter") Grot hraunhUO (Coarse reme/tedlava)AOmestulanggar6tt hraunhtlO (Long rippled lava coat)MispykktOluvert sprungin, eldri hraunlOg. (Fractured olderlavalayers of variousthicknesses) 6skilgreint. Ymiskonar berg. moberg, o.1\.(Undefined: various rocks.luff, rfhnukagfgur 5500 540 530 520 30 510 40 500 50 49060 -iiiE480 70 CDCDG) 47080 G) E E :s=g 46090 liCD..e.ell >100 450 a..:>1100 C)!B:1:430 120 420 130 410 140 400 150 390160380 170 370 180 360 190350200MetersComputerGraphicby Speleo-Research Associates TeiknaOaf (Drawnby)Ami B. S ansson 10-91199

PAGE 207

6thInternationalSymposiumonVulcanospeleologyto 30 centimeters thick. The coat is similar tothecoatinthemainvent. At 40metersin height in this chimney there is a circular sill. Abovethatthelavahasaquitedifferent,muchcoarserre-melted glassy appearance with yellow deposits. The sill is apparentlythesettingedgeofthemolten lavathatmusthave stayedtherefor some time.Itis probablethataftertheupperpartofthisventclosedthegas pressure fromthegasesemittedfromthemolten lava withheld thissettingedge. Nowhere else was asettingedge to be seen. This points to a continuous drainageofthelava down fromtheventto a point deeperthanwe were able to penetrate, how quickly ishardto say. Lastly, there was some lavaspatteronthesoutheastwall in the southwest passageat185 to 190metersdepth-thesamekindasfound aroundthechim neyatminus 60 meters. The wallsofthemainchamber, from 75 to 125 meters depth, consistofthreequite cracked old (probablythelastinterglacial period) lava layers 15 to 25metersthick. No"in-between" layer could be seen,buttheboundaries were fairly distinct. Between minus 125and150meterstherearealso old lava layers,butmuchthinner(onemeteratminus 125metersand5 to 10 centimetersatminus 140 meters).Onthelowestpartofthenorthwest wall is a thick (15to 20-meter) lens of compressed volcanicashthinningoutdown to the southwestandnortheast, possiblytherootofthemost west erly l>n1mukar (tuff). The bottomofthechamber is a saddle formed from rock breakdown fromthewalls. The break down is higheragainstthesoutheastandnorth-Figure5 Looking up the chimney.200west walls becausethemaincollapse is fromthelong sidesofthefissureandthereforehigheron these walls,butlower tothesouthwestandnorth east.Therock onthebottomandonthewalls is colored with somehematite(brown-red-yellow). This indicates considerableheatinthechamberfor some time and, fromthelookoftherock,themaincollapse took placeduringthisearlyphase.Therockcontractson cooling sothemaincollapsetakesplaceduringthecooling phase, likeinmostlavacaves.Onthedriestplaceonthewallsofthesouthwest passageatminus145metersandminus200metersdepth,thereweresomesmall, one-cen timeter-thicksulfurdeposits.Thisisunusualfor a lava caveandspeaksfor considerabledrynessatthese places. The tonguesoforiginal lavacoatdown onthesouthwestandnortheastwallsofthemainchamberaretheconvexendsofa fissure.Thisfissure was probably 10 to 15meterswideand60meterslongatminus100 meters.Inanoriginallynarrowfissurethelavaconcentratedon thispart.Thesubsequent widenessmustbe fromtheerosionofthelong sides bytheeruptinglava.Themaincol lapse is fromthelessstablelong sidesandthereforethecircular formofthechamber.Ifwe couldtryto imagine, fromthesizeofthefissure with elonga tion down tothesouthwest,justhow deeptheoriginal lavahassunk,itmustbe 300metersordeeper.Thatthiswasa fissureeruptionis also con firmed bythefactthatonecanseetheoriginal dikeonthenortheastwall, fromthebottomuptothelavacoattongueatminus90meters,anddown fromthelavacoattongueonthesouthwestwall,intheceilingofthesouthwestpassage,inthesoutheastedgeofthechimneyatminus175meters,andcontinuingon intheceilingofthesouthwestpassageasfaraswecouldgototheminus204meterdepth, in allunbrokenforabout190meters.Thedirec tionofthefissureandallitsformationsissouthwest tonortheastlikethemainfissuresysteminIceland.

PAGE 208

prfhnukagfgursniOSA-NV(cross-sectionSENW) Stefanson,.---IMgangur (Entrance)50MetersComputer GraphicsbySpe/eo-Research AssociatesGjaJlkella (CInder Cone) HIi&lrms (K6muhandfang) '----r JugHandle" SideVent) SMullagaIvun rbotnl (Breakdown "Saddle")NorOausturmOrk glgketllslns 0 (NortheastUmitofChamber)IJ ,I \ ...'1'\ "'1\,".' Strompur\ (ChImney) :: ", \ (1t,r. .\I :.:/ I \ SuOvestlJrT8srn ( Passage)\I I \\\.1TeiknaO at(Drawn by)AmiB.Stefansson10Figure 6Cross sectionof PrChnl1kagCgur southeast to northwest.201

PAGE 209

6thInternationalSymposiumonVulcanospeleology5500540530 52030510 4050050490 60-.,;E 48070 '100 E 450 a.,>-110>-J:430 120420 130 410 140 400150390160380170370 180360190 350200Computr Graph;by Speleo-Res8arch Associate 202 prfhnukagfgurSniO NA-SV (Cross Section NE--SW)8090 '100 110 120 130 140 TeiknaOaf (Drawnby) Ami B. Stefansson 10-91

PAGE 210

Thesurfacetemperaturerangedfrom_100to_30Celsius.Thetemperatureatthebottomofthebigchamberwas 40Celsiusandatminus204metersitwas50Celsius.Temperatureofgroundwaterintheseareasis4.80Celsius (Sremundsson). Therewasa slownortherlybreeze,increasingduringtheday(April 6, 1991),anditwasdry.Thebreeze pulledairfromthevent,soconditions for photographyweresuperb.Oftenitisquitehumidandfoggy downinthehole.Themeasurementsweremadewithcompass, tape, anda five-meter-Iong stick.Itwas a longwaytothewallsinthechamberandtotheceilinginthefirstpartofthesouthwest pas sage, sothereissomeguesswork there.Thedepthofthechamberwasplumbedwithanostretchnylon linethatwassubsequentlymeasuredwitha tape.Thetotaldepthis probably withintwotothreemeters.Thereis alotofwork behind these results. We would liketothankallofthose who helped usand203 Stefanson thefirmsthatsupporteduswithequipment, SkatabUOin ReykjavikandJohann ROnning hlfReykjaVlK (Hitachi Agency)andtherescuesquadsofReykjaVlKandK6pavogur.References:J6nsson,J6n(1978): JarOfrcet5ikort afReykjanesskagaog skyringar par viiS. Orkustofnun.Einarsson,Sigmundar: geologist, oral communica tion.J6hannesson,HaukarogKristjan Sremundsson (1989): JarOfrreOikort afIslandi1:500.000,Berggrunnskort, NatturufrmlSistofnunIslands ogLandmlingar Islands, Reykjavk. Sremundsson, Krist jan: geologist, oral communi cation.

PAGE 211

Contribution to the Vulcanospeleology of the Galapagos Islands*J.J.Hernandez Museo de Ciencias Naturales de Tenerife. Apdo.853,38080 Santa CruzdeTenerife (Canary Islands-Spain)1.Izquierdo Departamento de BiologCaAnimal(ZoologCa).UniversidaddeLaLaguna. 38206LaLaguna(Canary Islands-Spain)P.DromC Departamento de BiologCaAnimal(ZoologCa).Universidad de La Laguna. 38206LaLaguna(Canary Islands-Spain)AbstractDuringAprilandMay 1990andMarchandApril 1991theMuseodeCiencias NaturalesofTenerife (Canary Islands) carriedouttwo expeditionstoGalapagos Islands, within the frameworkoftheProject "Galapagos:PatrimoniodelaHumanidad," ontheoccasionoftheFifth CentennialoftheDiscoveryofAmerica.Wepresent here the first resultsofthespeleological research, consistingofthelocationandtopographyofseven newcaves-twopits in Isabela Island (Cerro GrandeandLasTorres)andthree lava tubesandtwo pits inSantaCruz Island (Elena,LaMicona, and Casajo Cavesandpits knownasLaPiramideandPozodeLos Gemelos). Among these Cueva del Casajo is really notable; with its lengthofthree kilometersitis undoubtedlythelongest lava tubeoftheArchipelago. We present the mapsofthesecaves,aswellasinformationabouttheir geomorphology, stateofpreservation, location,andmeansofaccess.AlistofaUGalapagos volcanic caves known todate(a totalof50 caves) is shownandanup-to-date speleological viewofthis archipelago is discussed.IntroductionStretchingacrossthemiddleofthePacific Ocean, 972 kilometers off the coast of Ecuador, there liesanextraordinary island group covering some 8,000squarekilometers.Itis made upof19 islands, 42 isletsand26 rocks (Figure1).The islands extend overanareaofsome 320 kilometers fromeastto westanda bit less fromnorthto south. They connect with South America viatheCarnegieunderwaterridgeandwith Cen tral America by meansofthe Cocos underwater ridge. Their volcanicnaturegivestheislands a beautifulandvaried landscape, where hundredsofslag cones, a multitudeofbasaltic lava flows,andspectacular sunken calderas predominate. SinceDarwin'svisit to these islands in 1835 they have truly become a milestone inthe historical evolutionofscientific thought. The special geologicalnatureofthese islandsaswellastheirextraordinaryvegetationandfauna(especially verte brates)hasalwaysattractedtheattentionofagreatnumberofresearchers. However, despiteaUthisinterest,theabundantvolcanic cavesthatexist ontheislandsandtheenigmaticsubterraneanwildlifehavebeen, until*Thisstudyispartoftheprojectcalled"Galapagos: PatrimoniodelaHumanidad ..car riedoutbytheMuseumofa uralSciences of Tenerife, underthedirectionofDr.Juan Jose Bacallado Aranega, with sponsorship of the Island Councilof Tenerife, theTourismand Transporta tion CounciloftheCanarian Government, andthe ational andCanarian..estab lishedto participate in the a. 'vitiesthtwilltakeplace in commemoration ofthe FifthCen.tennial ofthe Discovery of Ameri 204

PAGE 212

Hernandez, etal. \j PINTA UARCHENA GENOVESA a CRISTOBALOSANTAFE BARTOLOME o BALTRARABIDAoSANTACRUZPINZON__________________________ _N50MILESFLOREANA0.ESPANOLA Figure1-ThemainGalapagos Islands.justa fewyearsago,unknowntotheinternationalscientificcommunity.Thisstudyrepresentsanattemptto providemoreknowledgeabouttheinterestingvul canospeleologyoftheseislands, which holdmanysurprisingsecretsyettoberevealed.BackgroundAlthoughDarwincitedtheexistenceofcertain cavesontheislandofSanCristobal (Darwin, 1845)duringhis visit totheGalapagos, we believethatitwasthe"Mission Scientifique BeIge awe Galapagos" in 1962thatdeservesthehonorofbeing recognizedasthepioneerofspeleological studies on these is lands.Thefirst contributions to speleology coming fromtheseislands weremadebyG. StoopsandP.DePaepe, who participated on this expeditionandwho published twobrief reports in 1965 (Stoops, 1965;DePaepe, 1965)abouta cave locatednearPuerto Ayora (IslandofSantaCruz)andwhich isunmistakablyknowntodayasKUbler Cay .In1970theHungarianspeleologist,DenesBalazs,mappedthiscaveaswellasanothercavity,namedafterhim, locatednear Bellavista (SantaCruz). Fiveyearslaterhisstudieswerepublished (Balazs, 1975).Itwasinthisyearthatanexpeditioncalled"Galapagos'75"wasundertaken,thefirstSpanishspeleological expeditiontobe carried outontheseislandsandwhoseresultshavebeen reported inthreepublications,abouttheislandsofFloreana(Montoriol-PousandEscola,1975),SantaCruz(Montoriol-PousandDeMier1977)andIsabela(Montoriol-PousandEscola, 1978).Laterthatyear,inJulyandAugust1982,the"Societede Speleogie etdePrehistoiredes Occidentales(SSPPO)" embarked onanexpedition,"Ecuador82,"in whichcaveswerecataloguedincontinentalEcuadoraswellasontheGalapagosIslands(SSPPO,1982).ThisisthefirstgeneralcatalogofcavesoftheGalapagosIslands.Itmentionsatotalof38cavities. By 1985, DoctorsStewartandJarmilaPeckfromCarletonUniversity(Canada)initiated, in205

PAGE 213

6thInternationalSymposium.onVulcanospeleologyCave Length BioI. Gool Island Main name Other names (m) WorkWork ReferencesCueva Bucanero I Pozo dela Bahia 567 No Yes 27Santiagode los Bucaneros I Cueva BucaneroII Grota dela Bahia ?NoYes 27(3)de los BucanerosIICueva del CrAter deSal-350Yes Yes27.()Cueva de Sucre 355 Yes Yes141627(.)CuevadeMacas92 Yes Yes 141627(.)!sabalaCueva deLaCadena114 Yes Yes141627(.)(5)Simas deLasTorres -46 No Yes(.)Simas deCerroGrande-20NoYes1()CuevadePost-OfficeSuperior38 Yes No 121627(.)Cueva de Post-OfficeInferiorG.32 202 YesYes 121627(.)FloreanaCueva del Pin.z6nFinchCave 110 Yes Yes 26(.)(5)Cueva deLaLechuzaBarnOwl Cave 60 Yes Yes 26(.)Cavidades dela Bahia delasCuevas Cueva deLosPiratas16'10'4NoYes1227Cueva de Andres 205 No Yes162527Cueva de IlZWUla G. delaEst.Darwin100(-12) YesYes162527Cueva de RaUlAwirre 115 No Yeso131627Cueva de Gallardo Cuevas de BellavistanOl&n02.Los TUneles 2250YesYes 1 131627(.)Cueva deSra.ColombiaC.de Jorsze Sevilla 47 Yes Yes1627Cueva de Gilberto Moncavo 590 Yes Yes1627(.)Cueva de Kiibler G.12 852 YesYes1413162728Grietadel Pozo dePuertoAvora 50(-15) Yes No 16GrietasdeBahia Tortulf
PAGE 214

Hernandez, etal.CaveLengthBioi. GoolIslandMainnameOthernames(m)WorkWorkReferences4 cavidadesenZonaNarania?NoNo 12527 SantaCruzCuevaalN de E!Chato?No No 25 (cont)Cueva de! CaballoC.de Cheval: G.36? Yes No827Cueva de Rovalino Cueva deCastro50 No Yes 27 IAJruieros de AJrua G.26?Yes No927Cueva deMime! Arias -1000No Yes (..)SanCristobalPozos de Hundimiento -15 No No1327(2)Cueva de Cerro Pelado?No No(#)Table I -All volcanic cavescurrentlyknownon the GalapagosIslands:Spanishnamesare used,ascaves areknownbyinhabitantsof the islands.(*)Cavesvisitedbyusduring theexpeditions of1990 and 1991.(**)PatWhelampersonalcommunication(#)OralcommunicationsfromSPNGonSan CristObal. collaborationwiththeCharlesDarwinResearchStation,a project, stillbeingcarriedout, forthestudyofthebiologyanddistributionofthecave dwellingandsoilanthropodsoftheGalapagos.In1986theinitialresultsoftheirstudieswerepublished(PeckandPeck, 1986a)inwhich30cavitieswerecitedandinwhichinterestinginformationwasgivenaboutcavelocations, biologicalcharacteristicsofcertaincaves,andunpublishedmapsdrawnbyChrisVanbeverenin1985.In1986theAmericanpaleontologist, DavidSteadman,published astudyonvertebratefossilsoftheislandofFloreana(Steadman,1986),inwhichheshowsmapsofvariouscavesonthisisland.Hisstudiesonvertebratefossils found intheinteriorofthelavatubeshavepermittedhimtodiscover unknowncaveswhicharecitedinhispaleontologicalstudies(Steadman,1981, 1982;Steadmanand Ray, 1982).BiospeleologyThefirstbiologicalstudyofthesubterraneanfaunaoftheseislandswascarriedoutby N.andJ.LeleupoftheBelgianRoyalMuseumofCentralAfrica, whoin1965spentsixmonthsontheGala pagos Islands, collectingandstudyingcryptozoic wildlife.Theseauthorsfoundtenspeciesinundergroundwaters,incracksofrocks,inthesoil,andin caves (Leleup, 1967, 1968).AmongtheinterestingfindsmadebytheseBelgianscientistsontheexpeditionwasaneyelessfishCaecogilbiagalpagoensisPollandLeleup,aswellasseveralalbinocrustaceans(Van Mol, 1967; Poll, 1976).ThesamplestakenbyLeleupcamefromonlythreecaves,andthissuggestedindirectlythatthereexisted aterrestrialtroglobitefaunaontheislands. Leleupthoughtthiswildlifetobea relictfaunafromimmigrantsofthePleistoceneperiod (Leleup, 1976).Thepresenceofthisfaunahasnotonlybeenconfirmedbuthasbeenconsiderablyincreasedthankstotherecentworkby S.andJ.Peck(PeckandPeck, 1986b, 1986c;PeckandShear,1987a, 1987b; CampbellandPeck, 1989). Accordingtothelatterauthors,thetotalnumberofspeciesofcryptozoicanthropodscomes to 56,ofwhich 21 (37.5%)havebeenfound inside caves (Peck, 1990).ResultsAccordingtothespecializedliteraturethathasbeenconsulted,aswellasourownfield research,thetotalnumberofvolcaniccavescurrentlyknownontheGalapagosIslandsis 50.Theirdistributiononthevariousislandsisquitediversified, which reflects besidesthespeleologicalrichnessitselfofeachisland -moreimportantly,thedifferentdegreetowhicheachoneofthemhasbeenstudied.Inthisway,theislandofSantaCruz,perhapsthatwhichhashadthemosthumanactivity,showsatotalof35cavities,Floreana5,Isabela5,Santiago3,andSanCristobal 2 (Table1).Mostofthesecavesarehorizontallavatubes(althoughmanyofthemhaveanabundanceofverticalextensionsintheirinterior, which formpassagestoothertubeslocatedatdifferentlevels).Therestarevertical pits, formedsometimesbytherefluxoflavaintheinteriorofvolcanic chimneys,andothertimesbythefracturingoftheearthasa consequenceofseismicmovement.207

PAGE 215

6thInternationalSymposiumonVulcanospeleologyISABELAISLANDCerroSolitarioC.rroBoconilloISLA VOLCAN CHICO ..... CerroV.rd. '.. .... "', ,. .'1 ,. .,.l:C.rro ........ ..... EI.Porvenir' ,' ...-_...CerroColorodo/LOSiorro VOLCAN DEAZUfREFigure2-Locationofknown caves on Isabela Island.1=PitsofLasTorres.2=Pits0fCerro Grande. 3=Macas Cave. 4=SucreCave.5=LaCadena Cave.208

PAGE 216

Thefieldstudycarriedoutduringtheexpedi tionsof1990and1991hasled tothelocationandmappingofsix previouslyunknowncaves(PitsofLaPiramide,CerroGrandeandLasTorresandtheElena, MiconiaandCascajo Caves)inadditiontotwo caves previouslymentionedinotherwritingsbutwhichhadneverbeenmapped(PitofPozo de Los GemelosandKastdalenCave). The following pages describe these eight findings with information about the location, access, related fauna,andstateofpreservationofeach one. 1.IsabelaIsland(Figure 2)Therewere onlythreesmall caves whose exis tence was known on this large island.ThecontactsestablishedinPuertoVillamilwithSr. Arnaldo Tupiza,thecurrentrepresentativeoftheGalapa gosNationalParkServiceonIsabela (SPNG),has Hernandez, etal.allowed us to locate two groupsofpitsthatwereuntilthenunexplored (Figure 2).1.a.PitsofCerroGrande(Figure 3) UnliketheLasTorrespits,thepitsofCerroGrandearepartofa largecrackorfacture intheground, caused by seismic movement. TheyarelocatedneartheCerro Grande, tothenortheastofSantoTomas(Figure 2).Thelargestofthesepits donotexceed 20metersindepthand,similartothenextcase,theirnarrownessmakesthemex termely difficult to explore.l.b.PitsofLasTorres(Figure 4).Thisis a groupofsmall pitsthathavea maxi mumdepthof46metersandaminiumdepthof25 meters. Theystartattheemissiontubesofsmall eruption vents, knownasLasTorresandare10-SIMASDECERROGRANDEISABELAo10M?ALZADQISLASGALAPAGOSc? ?C AC>. DSECCIQNESE F 45 L TOP:ISAACIZQUIERDOJUAJ.HER ANOE ZISABRIL1990Figure3 Pitsof"Cerro Grande. "209

PAGE 217

6thInternationalSymposiumonVulcanospeleologySIMASDELASTORRESISABELA--ISLASGALAPAGOSEPlANTAB ? F LX ALZADOa10MATOP:ISAACIzaUIERDOJUANJ.HERNANDEZ16ABRIL1990 :7 SECCIONFigure 4Pitsof "Las Torres."210

PAGE 218

o oaSANTACRUZISLAND Hernandez, etal.BALTRAISLANDII Steve O ....ln.CerroCrock.r o CerroMedialuna '\ ..c:>Caamo"o II.Figure 5LocationofcavesmappedbyusonSantaCruz Island.211

PAGE 219

6thInternationalSymposiumonVulcanospeleologyCUEVADEELENASANTAROSA-SANTACRlJZ-ISLAS GALAPAGOSTOll\lo....."a;'UAN .,51 MIIUUIIIIlDIZ I ....... C tIOUII_DO ...YO-t.M ., A .. I Innn n_U__ nun...__n... .._.. -n.... ALZADO IDI I'L.WT..SECCIOHI'1 o10mFigure6-ElenaCave.catedbetweentheagriculturalareaofSantoTomasandthesouthsideoftheSierraNegra Volcano.Thereareextremelynarrowpassagesthatextend between the two pits. Generally these pitsareintheformoflong, narrow cracks, withanaverage widthofone meter.Enteringthese caves isnotonly difficult becauseoftheir narrownessbutalso quite dangerous due totheconstantthreatofrock slides.Thereexists a largenumberof boneremains,especiallyofgalapagos(Geochelone),which have fallen inside. 2.SantaCruzIsland(Figure 5)2.a.ElenaCave(Figure6)Located onthepropertyofSteve Devine,intheagriculturalareaofSantaRosa,ElenaCave is 677 metersinlength, with two accesses for which a small climb is required to enter. This cave displays a curious formofgeomorphology, a typeoflabyrinthin its lower extreme. The difference between the upperandlowerpartof its slope isaround38metersandsomeofthe larger passages reach heightsofup to 10 meters.Italso exhibits some lava stalactite formations as wellassmall overlap ping tubes. Insidethecavethetemperatureisaround23.60Celsiusandtherelative humidity is high (90 to 95%).Thefaunawhich havebeencollected,andarestill being studied, seems to bequiteinteresting.Intheinteriorofthepassageways livestheonly speciesofGalapagostroglobiticrovebeetle(Pinostygus galapagoensisCampbellandPeck);anundeterminedpseudoscorpion associated withdecomposingroots,spiders(PholcidaeandLinyphidae), millipedes (diplopods Polydesmidae),theamblipigyCharinusinsularisBanks,depigmentedwoodlice,theblindearwigAnophthalmolalJissp.,andso on.Thecave receives virtually no visitorsanditis inanexcellentstateofpreservation.2.b.LaMiconiaCave(Figure7)This small tube, 276metersin length, is also located onthelandofSteve Devine,notfarfromthepreviouslymentionedcave.Thiscave displays auniform,lineararrangement,withtwoen trances, oneattheupperextremeandtheotherinthemiddle, wherethecave becomesquitenarrow. The differencebetweeneachendoftheslope is 24 meters. This cavity isapparentlyoflittlebiological interest.212

PAGE 220

Hernandez, etal.CUEVADELAMICONIASANTAROSASANTACRUZ"ISLASGALAPAGOS TOltoo.",.... : IIAAC IZQul,ADO. JUAN JOI. HI........ DII toAN'OH'OIlI-o30Aalltll'0 12 1 412 "IOn .. ---_._-----.--------.---.--------.------------.--_!!,_-017 13M15 ,e__ auC"11(;:)0000_ 2 ..5 I .11 o20 .. ,.Figure7"La Miconia" Cave.2.c.PitofLaPiramide(Figure 8) This pit,also locatedinSantaRosa (Salasaca), isanemissiontubelocatedattheverycenterofthecraterof"LaPiramide"givingita curious geomor phology.Thispitfeatures a hollow pyramid-like monolith which projectsoutoftheground,makingalmost11metersofits44metersoftotaldepthsurficial. Belowthegroundlevelthepit dropsto33metersshootingoff inthreedirections intolarge openings. Boneremainsofgiantriceratscanbe foundinthedeepest opening,butitappearsthatthecave doesnotofferanythingofmuchinterestinthewayoffauna. Given its difficult access,thecave isnotvisitedandits goodstateofpreservationhasbeenmaintained.2.d.PitofPozodeLosGemelos(Figure9)ThePozo de Los Gemelos is a well-known place onSantaCruz Islandandoneoftheimportanttouristattractions.Itconsistsoflargesunkencalderaslocated on both sidesoftheroadthatgoes fromPuertoAyora to Baltra, approximately 2.5 kilometersnortheastoftheSantaRosa crossing. Betweenthesetwo large calderas, sometenmetersfromthesouthwestcorneroftheonefurthesttotheeast,thereisa wellorpitwithanalmostcircularmouthofsometenmetersin diameter. Thisdiameterisreduced to formanalmostcylin drical chimneyofsometwo tothreemetersin diameter, wideningagainatits lowestheightandbifurcating into two opposite openings. Although this cave is foundjustbetween twolargecollapsesinthearea,itdoesnotseemtohave originated in this way.Thewalls alongthechimney,andinthetwo lower openings, have a perfectly visible lava layer, whichmakesone supposethatthis actedasanexhausttube for molten lava material. Accordingtoourinformation, we werethefirst to explore this pit.Thecave isabout560metersabovesealevelanditstotaldepthis 64 meters, with a vertical drop from itsmouthof52meters.Theexterior temperaturewas 32.3 Celsius, whileatthedeepest endofthepitit fallsaslowas29 Celsius.Froma biologicalpointofview,therewereseveralsurprisingdiscoveries:eyelessharvestmen(currentlybeingstudied),smalldepigmentedpolydesmiddiplopods,symphyla,springtails,two-prongedbristletails,andants.Craneflieswereespeciallyabundantatthelowerend.213

PAGE 221

6thInternationalSymposiumonVulcanospeleologyTOP:JUANJ.HERNANDEZ ISAAC IZQUIERDO 2a ABRIL 19ao'
PAGE 222

SIMADELPOZODELOSGEMELOS Hernandez, etal.SANTACRUZISLAS GALAPAGOSrar.: 1.I10UIERDD:J.J.IERUMDEl&r.DRallIABRILlUll aNEo efbc9Figure9-Pitof"Pozo deLosGemelos."J215

PAGE 223

6thInternationalSymposiumonVulcanospeleologyCUEVADELCASCAJOISLA SANTA CRUZ GALAPAGOS 10': J.J. H(ftHAHDfl; I. IZOUIUDO:'.OftON'. W. URIYIIMAYO 1 o.AI.Ul,.1" Figure10-Cascajo Cave. Ground plan.them.Inmanyoftheseskylightsitisnotun usualtosee aGalapagosBarnOwl (Tytoalba)nesting.ThelargequantityofboneremainsoftheextinctGiantRatofSantaCruz(Megaoryzomys curioii) issurprising,andtherearealsoremainsoflandiguanas,galapagos,andvarioustypesofbirds.Inthisway, Cascajo Caverepresentsanimportantpaleontologicalde posit which should bestudied.10MedioLunoondKastdalenCaves10Pta.AyoraTheinvertebratefaunais unquestionably richandvaried.Inthefirstsamplingthepresenceofspiders (PholicidaeandLinyphidae)wasdetected,alongwiththeamblipigyCharinusinsularis,depigmentedmillipedes(dipolopodsPolydesmidae), centipedes, Symphyla,depigmentedwoodlice, springtails, cockroaches, two-pronged bristle tails (Diplura, campodeids),groundbeetles(Calosoma),tenebrionidsandcurculionids beetles,UlvloAguirreproperty 5'l National park boundarymark '.C'cucalo lavalubeNATIONAL PAR IeFigure11-LocationofCascajo Caveanda wayof access to the cave's entranceNo5.216

PAGE 224

Hernandez, etaleCUEVADEKASTDALENBELLAVISTAISANTACRUZ)-I.GALAPAGOSPLANTA, 50",........ H10 .. I ===:: Figure12-KastdalenCave.lepidopteras,dipteras(Phoridae, Sciaridae,andTipulidae),ants,andso on.Ofspecialinterestisthediscoveryofanewspeciesofa troglobite curculionid beetle, belonging tothegenusAnchonus.Dueto itsgreatlengththis cave extendsunderprivatelandandalso intoareasoftheNationalPark.Itreceives practically no visitorsanditisnotunusualtofindatitsentrancestheremainsoflivestock (mostly cows) which have fallen in.2.f.KastdalenCave(Figure 12). This cave is locatedonKastdalenFarm,some two kilometersnortheastofBellavistaatanalti tudeofapproximately300metersabovesealevel. As itis well describedinPeckandPeck(1986a),itconsistsofa seriesoffourentrancesto sectionsofthelargelavatube.Thesesections donotcommu nicateundergroundand,althoughtheyhaven'tbeen mapped,theyareestimatedto have atotallengthofsome500meters(PeckandPeck, 1986a).Ourworkwascenteredontheentranceatthesoutheastend, which gives access tothreeoverlap pingtubesofwhichthelowestonehasyetto be studied,duetothedifficulty presented by its vertical access.Itsentrancelooks exactly likewhatitis,alargelava tube,measuring1,500meterslong. Although Kastdalen Caveextendstowardsthebig CaveofBellavista,itdoesnotconnects with it.Thepartofthecavethatisperhapsthemostinterestinghasa vertical fallofsome12meterswhichmakesitnecessary to use a rope for its exploration.Thelastsection, whichisvery easytomove through, features whitemineraldepositsofsimple composition, coveringtheceilings, walls,andfloors. This tubehadalreadybeen explored by Chris Vanbeveren in 1985,butgivenitsdifficult access,itremainspractically undamaged.Theselavatubeshaveunquestionablebiologicalinterest.PeckandPeck(1986a)hadalreadyfound,inthecurvedsectionsofthenorthwestsector,aninterestingtroglobiticfaunamadeupofharvestmen,GalanommamicrophtalmaJuberthie,andpholcidspiders(Corysocnemisspp.)amongothers.Oursamplingstoppedoffthesefindswiththepresenceofslugs, eyelessspiders(Gnaphosidae), woodlice,thesilverfishNicoletia meeinertiSilvestri, earwigs,ants,click beetles,andso on.217

PAGE 225

6thInternationalSymposiumonVulcanospeleologySpeleologyInTheGalapagosThevolcaniccavesontheGalapagosIslandsaretrulyanaturalheritage.Theirspecial geomorphol ogy isofgreatgeologicalinterestbecausethroughthemtheconstitutionanddynamicsoftheirinteriorformationcanbestudied.Biologically,theyareofevengreaterinterestsinceinsideofthemlive very specialanimalcommunities,inwhichmanyofthespeciesaretotallydependentontheevironmentalconditionsofthesubterraneaneco system.Sometimesthesecavitiescanalsorepresentimportantpaleontological depositssincetheremainsofanimalswhichnolongerexisthavebeenpreservedintheirinteriorforthousandsofyears.Inmanycases we onlyhavetheseboneremainsto lead us totheknowledgeoftheirexistence.Thepeculiarcrypticfaunathatliveinthesecaves,andingeneraltheentirenetworkofsubterraneanspaces,isextremelyinterestingfromanevolutionarypointofview, giventhesimplicityoftheecosystemsinwhichtheydevelop.Thereis nodoubtthatthisisjustthebeginningofthestudyofthecryptozoicanimalsontheGalapagos,andjudgingfromthefindsthathavebeenmadeinthelavatubesoftheAzores,Canary,andHawaiianIslands(Oromietal.,1990;Hernandezet al.,1986;Martinet al.,1989;Howarth,1972, 1982)therearestillmanycryptic species whichhaveyettobediscoveredonthoseislands,althoughtheroleofthesespecies isalreadystartingtobecomeunderstoodinthefunctionaldynamicsofisland ecosystems.Wearefortunate to be able to saythattodaytheGalapagos cavesareinanexcellentstateofpreser vation.Insome casesthesteepnessoftheentrancestothecaves iswhathasstopped visitors from comingandthereforeanoptimumstateofpreservationhasbeen maintained.Inothercasesthishasbeen simply due to ignoranceoftheirexistence. Nevertheless,thepopulationoftheGalapagos is growing sharply,andthenumberoftourist-visitors is progressively in creasingeachyear. AllthishasalreadymeantmoreinterestonthepartofthecolonistswholiveintheagriculturalareaofSantaCruztousethe lava tubesthatexistontheirlandfortouristpurposes. Withaninfrastructurethatleavesmuchto be desired,partoftheBellavistaCaveisbeingutilized forthispurposeunderthename"TheTunnels."Otherlandownersarebeginningtorequestreportsonthetourisism viabilityofthecaves.Insomecasesthesecaveshavetremendousbiologicalandpaleontolog-icalinterestand,thoughtheyarenotlocatedwithinthelimitsoftheGalapagosNationalPark,theyshouldbepreservedatall cost. WethereforeurgethatthesenaturalresourceslocatedontheGalapagosIslandsbecompletelycatalogued,inordertocarefullyorganizetheiruse(tourist/didacticandscientific)andthattheappropriateorganizationsplantheterritoryproperly,consideringthenaturalvaluethatthesecavesrepresent.AcknowledgementsTheauthorswish tothankDr.StewartPeck(Carleton University, Cana,Pa) forthevaluable informationhemadeavailableaboutthemappingandlocationofmanyofthecaves. We would also like tothanktheCharlesDarwin Research Station,andespeciallyPatWhelan,FionnualaWalsh,andSandraAbedrabbo fortheirinvaluable collaborationduringourstayontheGalapagos.TheGalapagosNationalParkService fortheauthorizationgrantedto us,andespecially Sr. ArnaldoTupizafor hisgreatassistanceintheworkonIsabela Island.ToP.N.AshmoleandN. Ashmole fortheircolaborationinthefield work. Toourgoodfriend, guide,andcollaborator WJlfrido UriveandthekindstaffoftheHotelGalapagos fortheirhospitalityandthoseunforgettablegoodtimes, wesharedwiththem.ReferencesBalazs, D.(975):LavaTubesontheGalapagosIslands.NSSBull.370):1-4. Campbell,J.M.andS.P.Peck(1989):Pinostygus galapagoensis,anewgenusandspeciesofeyelessrovebeetle(Coleoptera:Staphylinidae:Paederinae)fromacaveintheGalapagosIs lands,Ecuador.The Coleopterologist Bulletin43(49):397-405.Darwin,C. (1845):Journalofresearches into the natural historyandgeologyofthe various coun tries visited during the voyageofH.M.S.Beagle, under the conunandofCaptain Fitzroy,RN.2nded, (revised)JohnMurray.London.DePaepe,P., (1965):CavityfillinginrocksfromlavatunnelsontheGalapagosIslands.Noticias de Galapagos. 5/6:19-20.Hernandez,J.J.;J.L.Martin,andA.C.Medina(1986):Lafaunadelascuevas volcanicas en218

PAGE 226

Tenerife(IslasCanarias).Proc gth IntCongr Speleol Barcelona,2:139-142.Howarth,F.G., (1972): CavernicolesinlavatubesontheIslandofHawaii.Science,175:325-326.Howarth,F.G., (1982): BioclimaticandgeologicfactorsgoverningtheevolutionanddistributionofHawaiianCaveInsects.Entomologiageneralis,8 (1):17-26.Leleup,N.,(1967):Existenced'uneFauneCryptiqueRelictuelleauxIlesGalapagos.Noticias de Galapagos,5/6:4-16.Leleup, N., (1968):Mission zoologique belgeau.x iles Galapagoseten Ecuador. Resultats &ientifiques.Vol.1.Introduction.Publ MusRAfrCentr. Leleup, N., (1976): Les implicationsdel'existenced'elementsrelictuelsparmilafauneentomologiquecryptiquedesTIesGalapagos.BullAnnSoc r BelgeEnt,112:90-99.Martin, J.L.;1.Izquierdo;andP.Oromi (1989):Surles relationsentreles troglobiesetles especes epigees des iles Canaries. Mem Biospeol XVI:25 34.Montoriol-Pous,J.andO.Escola(1975):Contribuci6nalconocimientovulcanoespeleol6gicodelaislaFloreana(Galapagos,Ecuador).Speleon.Monograffa LVSimposiumde Espeleologia. 57-66.Montoriol-Pous,J.andJ.DeMier(1977):Contribuci6nalconocimientovulcanoespeleol6gicodelaisladeSantaCruz(Galapagos,Ecuador).Speleon.23:75-91.Montoriol-Pous,J.andO.Escola(1978):Contribuci6nalconocimientovulcanoespeleol6gicodelaislalsabela(Galapagos, Ecu ador).Speleon.24:101-110Oromi, P.,J.L.Martin,N.P.Ashmole,andM.J. Ashmole (1990): ApreliminaryreportonthecavernicolousfaunasoftheAzores. Mem Biospeol,12:97-105.PeckS.andJ.Peck(1986a):TheGalapagos Is lands. Volcanic CavesandCaveFaunaofthe Hernandez, etaleGalapagosIslands.TheCanadianCauer, 18(1):42-49. Peck, S.andJ.Peck(1986b):PreliminarySummaryoftheSubterraneanFaunaoftheGalapa gos Islands,Ecuador.Part1.IntroductionandNon-InsectInvertebrates.Proc glh IntCongr Speleol Barcelona2:164-166.Peck, S.andJ.Peck(1986c):PreliminarySummaryoftheSubterraneanFaunaoftheGalapa gosIslands,Ecuador,PartII.Theinsects,evolution,andbiogeography.Proc glh IntCongr Speleol Barcelona,2;166-169.Peck, S.andW.A.Shear(1987a): AnewblindcavernicolousLygromma(Araneae,Gnaphosidae)fromtheGalapagos Islands.The Canadian Entomologist,119 (2):105-108. Peck, S.andW.A.Shear(1987b): Aneweyeless,stridulatingTheridionspiderfrom caves intheGalapagosIslands(Araneae, Theridiidae).The Canadian Entomologist,119 (2):881-885. Peck, S. (1990): EyelessArthropodsoftheGalapagosIslands,Ecuador:CompositonandOriginoftheCryptozoicFaunaofa Young, Tropical, OceanicArchipelago.Biotropica22 (4):366-381. Poll,M.(1976): Au sujet deCaecogilbia galapagosen sisPolletLeleup.PoissonBrotulidaemicrophthalme deseaux interieures deI'TIedeSantaCruzetdesonprocheparentlittoral:Caecogilbia deroyiPolletVanMol.Mission Zoologique belgeau.xles Galapagos et en Ecuador(N.etJ.Leleup,(1964-1965).VolIII(1976):345 355.Steadman,D.W. (1981):Vertebratefossils in lava tubes intheGalapagos Islands.Proc rJh IntCongr Speleology,2:549-550.Steadman,D.W. (1982):TheOriginofDarwin'sFinches.TransactionsoftheSanDiego SocietyofNaturalHistory,19 (19):279-296.Steadman,D.W.andC.E.Ray(1982):Therela tionshipsofMegaorzyzomys curioi,andExtinctCricetineRodent(Muroidea, Muridae) fromtheGalapagos Islands, Ecuador.SmithsonianCon tributions to Paleobiology,51,23pp.219

PAGE 227

6thInternationalSymposiumonVulcanospeleologySteadman, D.W. (1986):Holocene VertebrateFossils from Isla Floreana, Galapagos,Smithson ian Institution Press, Washington, 103 pp.S.S.P.P.O.(1982):Ecuador82.Expedition Speleologique de la S.s.p.p.a. Suivid'unpre-in ventaire speleologique de l'Equateur,Federa tion Francaise de Speleologie: 69-88.220Stoops,G.(1965):OnthepresenceoflavatunnelsonIslaSantaCruz.Noticias de Galapagos,5/6:17-18. Van Mol,J.J.(1967): Ecologie comparee dedeux espeees de Brotulidae (Pisces) des les Galapagos:Caecogilbia deroyiPolletVan Mol 1967etC.galapagoensisPolletLeleup (1965.BullI'Acad RoyaleclSci,Ser5, 53:232-248.

PAGE 228

221Theoretical Biological Conservation and Management Topics

PAGE 229

6thInternationalSymposiumonVulcanospeleology222

PAGE 230

Lava Tubesinthe Solar SystemRonaldGreeley DepartmentofGeology,ArizonaState University, Tempe,Arizona85287-1404AbstractAllofthemajorplanetsandsatellites have been visited byspacecraftexceptPlutoanditsmoon, Charon. Resultsshowthatvolcanism isimportantinthesurfaceevolutionofnearlyall planets, althoughthetypeofvolcanism varies considerably.Theinnersolarsystemisdominatedby basaltic volcanismandlavatubesorchannelshave been identifiedonMars, Moon,andpossibly Mercury.Theothersolarobjectsofgeologicinterest,thesatellitesofmajorplanets, consistofmixturesoficeandrock.Unusualstylesofvolcanism includeeruptionsofsulfur, water-slush,ormethaneices, someofwhich form flowchannelsasseeninspacecraftimages. Depending upontheirrheological properties, thesematerialsmayalso form tubes. Venus isthelastterrestrialplanetto be explored geologically.IthasoftenbeendescribedasthesisterplanettoEarthbecauseofits similarityinsize, density,andproximity inthesolar system. Because Venus is completely shrouded by dense,hotclouds,itssurfaceis hidden from view by conventional cameras.Itsgeological diversity iscurrentlybeing revealed bytheU.S. Magellan mission. Launchedin1989andbeginning operationinAugust 1990,thismission involves a sophisticatedradarimagerthatis systematicallymappingthesurfaceofVenusata resolutionbetterthan100 meters.Preliminaryresultsshowthatvolcanismdominatesmanyareas.Thinflowshundredsofkilometers longareseen,manyofwhich originated from calderas, smallpitcraters,orfissures. Someoftheflowswereclearly emplacedthroughlava channels,partsofwhicharediscontinuousandsuggestroofing to form lava tubes.IntroductionWiththeflybyoftheVoyager 2spacecraftpastNeptuneinthefallof1989,thegeological recon naissanceoftheSolarSystem is nearly complete, withpartsofallmajorplanetsandsatellites pho tographed except forthePluto-Charon system. Analysisofphotog eo logicalresultsfor solid-surfaceplanetsandsatellites showsthattheprincipal pro cessesinsurfaceevolutionareimpactcratering, surficial processes (suchaslandslidesandweath ering), tectonic deformation,andvolcanism. Im pactcrateringandsurficial processes effecttheplanetfrom sourcesexternaltotheplanet; volca nismandtectonicdeformationresultfrominternalprocessesandareprimarilymanifestationsofheatloss fromtheinterior. MostofthelargerplanetsandsatelJitesandsomeofthesmallersatellitesoftheouterplanetsshow evidence for volcanism.Darkregions onthe223Moon, calledmaria,areknown to beofvolcanic origin;similarplains regionsseenonMarsandMercuryarealsotheresultoferuptions.RadarimagesofVenus obtained fromtheMagellanmission show hugemountainsandvastplainsthatareofvolcanic origin. ManyofthesatellitesofJupiter,Saturn,Uranus,andNeptuneexhibitsmoothplainsthataretheconsequenceofliquidmaterialseruptedfromtheirinteriorsontothesurfaces to form plainsthatmantleolderterrains.TheMoonMapping showsthatmarelavaflows coverabout17%ofthesurfaceoftheMoon.Thetotalvolumeofvolcanic rock, however, probablyconstituteslessthan1%ofthecrust, withmostofthematerialbeingcomposedofimpact-producedbrecciated rocks. Nonetheless,marelava flowsdominatethenearsideoftheMoonandcontaina varietyof

PAGE 231

6thInternationalSymposiumonVulcanospeleologyFigureI-Mosaicofphotographs taken by the Apollo17astronauts from orbit around the Moon, showing the southwesternpartofMare Imbrium.Someoftheflowsseen here canbetraced nwre than 1,000 kilometers north (toward top) from vent areas southofthe area shown here. Initially, the flows were fed through lavachannelsandlava tube systems(NASAAS17-155-23714 to 23716).volcanicfeaturesandflowstructures(Wilhelms, 1987).SamplesoftheMoonreturnedbytheUnitedStatesApolloprogramandtheSovietunmannedLunaserieshaveshownthatthemarelavasarecomposedofbasalticrocks.AlthoughverysimilartobasaltsonEarth,theytendtobemoretitanium-richandwereeruptedmorethanonebillionyearsago.Estimatesoftheviscositiesofthelavasatthetimeoftheireruptionshowthattheywereextremelyrunny,havingtheconsistencyofmotoroilatroomtemperature.InDecember1990,theGalileospacecraftflewpasttheMoonandreturnedthefirstnewinformationforthefarsideinmorethantwo decades (BeltonetaI.,1992).Thedatarevealedthepresenceofnumerousiron-rich depositsinthehighlandterrainthatconstitutesmostofthefarside.Manyoftheareasshowingthisdistinctivesignatureappeartobemaredepositsthathavebeenmantledbyimpactgenerateddebris.Mappingthelocationoftheseareas,termed"cryptomaria,"isshowingthatvolcanismontheMoon ismoreextensivethanpre viously considered. Althoughmostofthelava flowsontheMoonwereemplacedasvastflood lavas which generatedhugepoolsofmoltenmagma,someoftheflows,particularlyinthelaterstagesoferuption,wereemplacedthroughopenriversoflavaorthroughclosedsystemsoflavatubes(Figure 1). Theseancientlavachannelsandpartlycollapsedlavatubesareseentodayaslunarsinuousrilles(Figure 2) likelavatubesandchannelsfoundonEarth,withmanylunarsinuousrilles exceeding 100kilometers inlengthand1 kilometer in width. Despitethedifferences in scalebetweenthelunarandterrestrialfeatures,themechanicsoferuption, flowemplacement,andlavatubeformationareconsidered to be similarbasedontheassumptionthatitistherheologicalpropertyof224

PAGE 232

GreeleyFigure2-Lunar Orbiter (robotic spacecraft)imageofthelunarMariusHillsregion,showingseveralsinuousrillesandpartly-collapsed lava tubes (lower left)thatemplaced lavasinthemareregions(NASALOV-M-213,sunilluminationfrom the right,northto the top, areasshownisabout60 kilometers by55kilometers).thelavaandthestyleoferuptionthatlead tothefonnationoflavatubesandchannels. Acurrentdebateforlunarsinuousrillescentersontheroleoferosionbyflowthroughtubes.Someplanetaryscientistssuggestthatthesinuousrillesareprimarilytheconsequenceoferosionbyflowing lava, whileothersmaintainthattheyarepredominantlyconstructionalfeatures.Theonlylunarsinuous rille visitedonthesurfaceoftheMoonwastheHadleyRille,locatedontheeasternmarginoftheImbriumbasinonthelunarnearside(Figure3).TheApollo 15missionlandedonlavaplainsbetweentherilleandtheApennineMountainstotheeast.Samples collected bytheApolloastronautsshowthatthelavasthatspilled fromthebankoftherillearebasaltic.PhotographstakenoftheinteriorwallsofHadley Rille showdistinctivehorizontallayersthataretypicalofthoseseenintherelativelythinlavaflowunitsassociatedwithmostlava tubesandchannelsonEarth.Recentworkby Spud iseta1.(1988) indi cates a complex geologic history forthedevelopmentandevolutionofHadley Rille.TheMoonwasthefirstextraterrestrialplanetaryobjectexaminedfor volcanicfeaturesandmuchofwhatisknownaboutlavatubesintheSolarSystemcontexthasbeenderivedfromthestudyoflunarsinuousrilles.HadleyRilleanddozensofsimilarfeaturesshowthatmanyofthelavaflowsontheMoonwereemplacedthroughunitarylavatubesandchannels.Mappingtheiroriginandtracingtheirpathwaysenableeruptiveventstobeid ntified.Thesemappingprojectscontributtothunderstandingoflunarsurfacehistory.MarsMorethanhalfa dozenspacecrafthavebeensenttoMarsoverthepasttwo decadesandatremendouswealthofinfonnationhasbeen returnedfromthered planet. Mostoftheinfonnationhascome fromtheUnitedStatesMariner9andViking missions, bothofwhichoperatedduringthe19705 (Carr, 1981). MorethanhalfofthesurfaceofMarsisseentobecoveredwithvolcanicmaterialsofonefonnoranother(Figure 4; GreeleyandSchneid, 1991). Althoughinfonnationonthecompositionofthevolcanic flowsanddepositsisvery limited, x-ray fluorescencemeasurementsobtainedbytheVikinglanderspacecraft, multispectralremotesensingobservationsofthesurface,andvarious geophysical models allsuggestthatthepredominantrocksarebasaltic. However,somemodels alsoincorporateultramaficmaterials, such225

PAGE 233

6thInternationalSymposium.onVulcanospeleologyasOlympusMonsandtheothervolcanoesoftheTharsisregion,variousplains-producinglavaflows composemostofthesurfaceareaofthevolcanic materials. Manyofthelavaflowsthatbuiltboththeshield volcanoesandtheplainswereemplacedthroughlavatubesandchannels,asshowninFigure5.Inthesehigh resolution im ages, obtained fromtheVikingOrbiterspacecraft, openchannelsandroofed channelsegmentsareclearly visible.Someofthevolcanoes,suchasAlbaPatera,areenormousstructurescoveringthousandsofsquarekilometersandarecom posedofindividuallavaflows fedthroughextensivetubeandchannelsystems.TheMarsObservermission, to be launched bytheUnitedStatesin1992, willcarryanarrayofinstrumentsto providenewandimportantinformationonthegeologyofMars.Ofparticularinterestforthestudyoflavatubesandchannels istheimagingsystemthatwill be capableofobtainingpictureswitha resolutionof-1.5metersforanyplacetargetedonthesurfaceoftheplanet.Inaddition,theThermalEmissionSpectrometerwill obtainmeasurementsthatwill allowthecomposi tionsofthemartianiavasandothervolcanic de posits to be assessed.In1994,theSovietsarescheduled to launchanambitious mission toMarsthatwill includenotonlymeasurementsmadefrom orbit,butalso small simple probesthatwilllandinatleastfour differentlocations. A high prioritytargetforonelanderis ayoungvolcanicterrain.Thegoal is to obtainaskomatiiticlavaflows. Komatiitic lava flowsarecharacterizedasmagnesium-richandwere commoninthe early history oftheEarth.Studies suggestthatthey were extremely fluidandflowedasfast-moving, turbulent masses. This characteristicposesintri guing problemsinthe consideration of lava tubeandchannel formation,andkomatiiticlavas are being studied by planetary scientists for comparisons with features seen on MarsandVenus. Althoughthemostimpressive volcanic features on Marsaretheenormousshield volcanoes, such f '. '..! Figure3-Apollo15mappingcamera photographofthe Hadley Rille (115 kilometers long)and the Apollo ISlanding site ("A'); "H"marks the nwuntainblockthatispartof the ancient lunar crust.Sunillumination is from the left, north is to the top (NASAAS15-414).226

PAGE 234

GreeleyFigure4-ViewofMarstakenby the robotic Viking Orbiter spocecro{t,slwwing vast lava plainsthathave nearly completely floodedandburied older terrain. Best estimatesofcompositions suggest that these flows are basalts,area shownisabout 150X170 kilometers(NASAViking Orbiter {ranle 056A14). in-situmeasurementsofthecompositionofthelava flowsandhigh resolutionimagesfromthesurface.Atthesametime,aGermanbuilt,high-resolutioncamerawillobtainstereoscopic imagesfromtheSoviet orbiter.Imagesfrom thissystemwillenablephotogrammetricmeasurementsandconstructionoftopographicmapsoverlavatubesystemsandvolcanicterrains.Theinformationto be obtained fromtheAmer icanandSoviet missionshasthepotentialformakingsignificant contributionstothestudyofmartianlava tubes.Dataonlavacompositions, imagesofcollapsedtubesegmentsandpossibletubeentrances,andtopographicinformationwill aidinunderstandingtheformationandevolutionofthemartiansurface. MarsremainsoneofthemostimportantplanetsforunderstandingtheevolutionoftheinnerSolar System.MercuryTheonly geological information available for Mercurycamefrom theMariner10spacecraftthatflewintheearly 1970sandobservedabouthalfthesurface.PhotographsofMercuryandlimited remotesensinginformation show various smooth plainsthataresignificantly youngerthantherestofthesurfaceoftheplanet(GreIy,1987).Itis only bycircumstantialevid nee, however,thatthese areas arconsider d to be volcanic,andthetypesof features, such as sinuous rill s seen ontheMoonandMars,gon ra1lya1' notsnonMercury.Formany yeaiiianadvan' clmission to Mercury was de md impo8siblor v t"J dim ult;from anengineering perspective.Recentstudieshowever, showthatitis feasibletoplace aspacecraftintoorbitaroundMercury. Such a mission could obtainnotonly high resolution images for suspectedvolcanicareasofthesurface,butalsotoobservetheother50%oftheplanetwhichremainstotallyunknownatthistime.VenusVen ushasbeen calledthesisterplanetofEarthbecause bothplanetsarenearlythesame size anddensity,andoccupythesamegeneral locationintheSolar System. Venus however,iscompletely envelopedincloudsanditssurfaceisnotvisible to conventional cameras.Theclouds, composedofdropletsofsulfuricacid,createagreenhouseef-227

PAGE 235

6thInternationalSymposiumonVulcanospeleologythatreturnedthefirsthighresolution(-75me ters/pixel)radarimagesofthesurfacefromorbit.Magellandatahavere vealedVenustobea geo logicallydiverseplanet,dominatedby volcanismandtectonism(SaundersandPettengill,1991). LikeMars,Venusexhibitsbothcentralvolcanoesincludingshieldstructureshundredsofkilometersacross,andvastplainsformed bytheaccumulationofcountlesslavaflows(Figure6).Venusexhibitsawidervarietyofvolcanic land formsthanMars,andin cludesdomesthatappeartobecomposedofviscous,pastylavasandhundredsoffieldsofcindercones.Amongthepuzzlingvolcanicfeaturesrevealed byMagellanarenumerouschannels,someofwhicharenearly7,000kilometerslong.Preliminaryanalysis revealsseveraldifferenttypesofchannels,mostofwhichareinferredtobeofvolcanicorigin.Onecategoryincludeslong,narrowchannelsthathaveaconstantwidth;theyalsoshowbreachedchannelsegmentswherelavaflowshavespilledontothesurroundingterrain.Althoughanalysesareonly preliminary,itis likelythatmanyoftheflowswerefedthroughsystemsoflava tubes. eitherdirectly fromvents,orasfeedersystemsfromthechannels.ThegreatlengthofthechannelsonVenusposesinterestingproblems for volcanology. Althoughitis conceivablethatconventional flows. suchasthose composedof basalt, may account forthefom\ationofthechan.nelother,more exoticlava compositionsarealsobeingconsidered.For examfeet, causingthesurfacetemperaturestoriseto 4500Celsius,orin excessofthemeltingtemperatureoflead.Venus isthelastofthe.innerplanetstobeexplored geologically. AlthoughtheSoviets have landedinmorethana dozen locationsonthesur faceandreturnedinformationonlocalrocktypes(indicating primarily basaltic compositions),theglobal perspectiveoftheplanethasonly recentlybeenobtainedbytheMagellanspacecraft.Launched bytheUnitedStatesandplacedinorbitin 1990, Magellancarriesaradarmapping system ., .Figure5-Mosaicof images of tIle Martian volcano, Hecates Tholus.This shield volcano is moretJUnt 200 kilometers ocrossQlld is composed ofhundredsofindividual flows, many ofwhich were emplaced throughlavatubes andchannels. Segments ofcollapsed tubes are visibleas radialpatternsaround the summit caldera(NASA Viking Orbiter mosaic). 228

PAGE 236

GreeleyFigure 6Radarimageofthe Lada regionofVenus takenbytheMagellan. spacecraft,showinga seriesoflavaflows,someofwhichwere emplacedthroughchannelsandnetworksoflava tubes; areaslwwn is about550 x 630kilometers(NASA P-38088).pIe,sulfurcompoundsareknownto existintheatmosphereofVenusanditisconceivablethatsomeoftheflows could be composedofsulfur. Carbonatiteis araretypeoflava foundinsomeplacesonEarthandalsohasbeensuggestedtoexistonVenus.Theseflowseruptatvery low temperaturesand,intheVenusianenvironment,carbonatiteandsulfurflows wouldneversolidify,butwouldcontinueto flow so longastherewasa slope.TheanalysisofMagellanimageswillrequiremanyyearsofstudybygeoscientistsandthewealthofdatais only now being realized. As istruefortheEarth,Moon,andMars,studyofthevolca nicfeaturesmustincludeassessmentoflavatubesandchannelsintheemplacementoftheextensive lava flows.OuterSolarSystemSatellitesTheJovianplanets-sonamedfortheirresem blance toJupiter-includeSaturn,Uranus,andNeptuneaswellasJupiter.Allareenormousgas eousplanetscomposed predominantlyofhydrogenandheliumandlack solid surfaces. Although theyarenotamenableto geological study, they all have solid-surface satellites,manyofwhich exhibit ex tensive geological modification.Jupiter'sfourlargemoons were first discovered by Galileointheearly 1600s. They include two objects -GanymedeandCallisto -thatareaboutthesizeofMercury,butwhich have low densities, suggestiveofwater-ice compositions.Theothertwo moons,10andEuropa,areaboutthesizeofEarth'sMoonandhave densities suggestiveofrocky material. Two VoyagerspacecraftreturnedextensivedataontheJupitersystemandrevealedthefirst evidence for active volcanism intheSolar System outsideofEarth.Voyager images showthateruptionsaretakingplace constantly on10,with pyroclasticmaterialrainingdownonthesurface nearly everywhere.Inaddition, high resolutionVoyagerimagesshowcountlessflowsemanatingfrom enornlOUS calderas. Spectral re flectancedatasuggestthatsulfurispresentonthesurfaceof10andithasbeen proposedthatsomeoftheflowsmaybe composedofliquid sulfur.Althoughrareandoflimitedextent,sulfurflows have been observed onEarthandcontainsmalltube-like features.Ifsuchfeaturescanformatlargerscaleson10,they would beimportantintransportingliquidsulfurlava long distancesinthefrigid (-1400Celsius)environmentoftheouterSolarSystem.Jupiter'sEuropaandGanymede;Saturn'sEnceladus, Tethys,andDione;andUranus'Mirandaareall ice-rich satellitesthatshow large, smooth plains areas. Theseareaslackabundantsuper posedimpactcratersandareconsidered to begeologically young.Theplainsarethoughtbymostplanetaryscientists tohaveforn1ed bytheeruptionofslushy iceontothesurfaceasa consequenceofinteriorheatingandmeltingofice.Fractures temsseen in association withsomeofthplain prob bly rvedaserupti ve cond uitstothesurfaInIIIcas,thefracturesareancintfeatu229

PAGE 237

6thInternationalSymposiumonVulcanospeleologythatformed in response to largeimpactevents.Inother cases, thefracturesappearto have formed in response tointernalactivityandcrustaldeforma tion. Suchinternalactivityandtheeruptionofliquids ontothesurfaceofsome small moons was a surprise tomostplanetaryscientists.PriortotheexplorationoftheouterSolar System,thedegree ofinternalactivity was considered to be a functionofplanetarymass-largeplanetswould contain more radioactiveelementsandhencegeneratemoreheatandmagma. Small objects, suchas500 kilometer-in-diameter Enceladus, werethoughtto befartoo small togeneratesufficientheattomeltrocksoreven ice. The discoveryofactive volcanoes on10(and onNeptune'smoon Triton) caused a reassessmentofthese ideas,anditwas recognizedthatfactorsotherthanradioactiveheatingcan generatemagmaandlead to active volcanism.Forexample,10resides inanorbit betweenJupiterandanothermoon, Europa. As such,itis constantly subjected to gravitational tidesthatpush-pull its crust. Frictionalheatgeneratedby this tidal stress ing is morethanadequatetomeltpartsof10andto drivethevolcanism observed today. Unfortunately,mostimagesoftheouterplanetsatellitesareoflow resolutionandprimarily pro vide only a reconnaissanceoftheirsurfaces. De tails ofthestylesofemplacementandhistoryofthematerialsthatflooded ontothesurfacesofthese objectsmustawaitbetterdatato be obtained on future missions.Forexample, the Galileo mission, launched in 1989andcurrently on its way to Jupi ter,willbeinorbitaroundthisgiantplanet for some 20monthsbeginning in late 1995.Duringthattimeitwillmakerepeated passes of the Galilean satellitesandobtain images of 10 to 100 timesbetterresolutionthantheVoyager images.Inaddition,tentativeapproval has been given for ajointNASAEuropeanSpace Agency missionnamedCassini. LiketheGalileo mission to Jupiter, Cassini will involve a spacecraft placedinorbit aroundSaturnandwill observenotonlythegiantplanetandits rings,butitmyriad satellitesaswell.SummarySolar System explorationhasdemonstratedthatvolcanism isanimportantgeological processes on230theterrestrialplanets-Earth,Moon, Mars,and(possibly)Mercury-andonmanyofthesatellitesoftheouterSolar System. While basaltic volcanism dominates mostoftheterrestrialplanets, exotic (byEarthstandards)compositions,suchasultramafic komatiites, sulfur,andcarbonatitelavas,mayalso be found.Lavatubesandflowchannelsplayanimportantroleintheemplacementofmanyofthelava flowsseenontheterrestrialplanets.Understandingtheoriginandevolutionofthese flow features is criticaltothederivationoftheevolutionoftheplanetswheretheyarefound.Outerplanetsatellites include volatileelementssuchassulfur, ice,andmethane.Understandingthemechanicsoferuptionandemplacementofvolatileandice-richmaterialsmustawaitfutureexplorationbyspacecraftsuchasGalileoandCassini planned forlaterinthis decadeandextendingintothenextcentury.ReferencesBelton, M.J.8.andtheGalileoImagingTeam(1992): A viewofthewesternlimbandfarside fromthefirst GalileoEarth-Moonencounter,Science(in press). Carr, M.H. (1981):ThesurfaceofMars ,Yale Univ. Press, New Haven, 232 pp. Greeley, R (1987):Planetary Landscapes,UnwinandAllen, London, 265 pp. Greeley,RandB. Schneid (1991):Lunarmariaandotherrelated deposits,Science(in press). Saunders,RS.;R E. Arvidson; J.W.Head; G.G. Schaber;E.RStofan;andS.C. Soloman (1991):AnoverviewofVenus geology,Science, 252,249-260. Spud is, P.D.;G.A.Swann;andR Greeley (1988): The formationofHadley Rilleandimplications forthegeologyoftheApollo 15 region,Proc.18thLunarPlanet. Sci. Conf., 243-254.Wilhelms, D.E. (1987):Thegeologic historyoftheMoon,U.S. Geol. Survey,ProfPaper 1348.

PAGE 238

Nomenclature of Lava Tube Features Charles V.Larson Western Speleological Survey 13318NE12thAvenue, Vancouver, Washington 98685AbstractInthepast75 years, works including well over 1,000 differentnamesandphrasesfor featuresoflavatubeshavebeen published. In!'1Smuch asthereareonlyabout100lavatube features arguably deserving distinction,thatisfartoomanyto goaround.Theexcess consistsofsynonyms(themajority), ambiguous modifi ers, oxymorons, conjectures,innocentmisuse, doubletalk.,andefforts to convey dimensions with terminology. Whilemuchoftheredundancyis simplypersonalpreference, sometimeswithoutregardfortheliterature,certaincharacteristicsoflavatubesgeneratemorethantheirshareofconfounding terminology.Thispaperwill focus on those aspects,themosttroublesomeofwhich isthematterofsegmentationwhich evenhaspolitical implications. Pitfallsarepointedoutandsuggestions offered for improving lava tube terminology.IntroductionPrior to the early 19605, U.S. literature regarding lava tubes was scantyandfragmentary. There arefewexcellent monographs about individual lavatubeseven fewer about groUp> of lava tubes -byand large, writers were more concernedwithprocessesofvolcanismotherthanlava tubes. For example, the fundamentalconnection betweenlavatubesandtheemplacement oflava far removed from a vent escaped notice byallbutafew.Except for the ubiquitous "lavacicles," namedin1923butnot sU
PAGE 239

6thInternationalSymposiumonVulcanospeleologycaves,butstalactitescomposedoflavafonnonlyinlavatubes. Aspeleothemis asecondarymineraldepositfonnedina cave,andcannotbecomposedoflava,somesay,sinceithasavariablecompositionofmanyminerals.Over1,000differenttermsandphrasesfor featuresoflavatubeshavebeenpublished in thelast75years.Thereareonlyabout100lavatubefeatures arguably deserving distinction.The exee:s consistsofsynonyms (the majority), ambiguous mcxlifiers, oxy morons, conjectures,innocent misuse, double talk, andeffortstoconvey dimensions with terminology. Amongthe exee:s arethefollowing:Misuses:"projected"when"inferred"ismeant."linear"when"elongate"ismeant-asurpris-inglycommonmisuse. confusing"roofcollapse"and"ceiling collapse.""channel",when"river"or"stream"ismeant."hydraulic"when"hydrostatic"ismeant."uppertube"when"upperlevel" ismeant"cross section"when"profile" ismeant,andvice versa. "icecave"when"glaciere" ismeant(or"cavecontainingice"ifpreferred)"perennialice cave"when"cavewithperennialice" ismeant."permanentice"when"perennialice" ismeant.Thereisnosuchthingaspermanentice."remelt"(orremelted)whenthereis no wayofknowingifremeltingoccurred.Redundancyand.Reiteration:hotmoltenlava.moltenliquid. cupola in roof. verticalpitdownstreamflow [ofmoltenlava] excessiveuseof"lava"asanadjectiveOxymorons:segmentedcave collapsedchannelloose cinder, loose welded cinder, looseclinkerceilingstalactiteundergroundlavatube,undergroundpassageConjectures:Formerskylight, covered-over skylight.NonSequiturs:partialnaturalbridgesecondaryspeleothem.pre-lavaaa-pahoehoetransitional ruled skylightAmbiguousTerms:physicallyconnectedmapview. old skylight."Intact"or"original"areoftenusedbutrarelyqualified.Eithertermpresupposessomeconditionthatshouldbespecified.ProblemAreasSegmentation.Lackofbroadagreementregardingsegmentationoflavatubesandsystemsincreasinglyspawnsconfusionaboutthenatureofopeningsintolavatubes.Acasecouldbemadethatthereareonlytwokindsofopenings: skylights,whichareconsideredtoosmalltosegmenta tube,andallotheropeningswhich do.Thisproposition issupportedbyCurl'sargument(1965)thatalldefinitionsofacavewhichhaveeverbeenofferedincludethenotionofrock overhead.Theprincipalaspectofsegmentation,thatofindividualcavesisolatedfromthetubeorsystembycollapse,istroublesome.Itdirectlyaffectsthenumberofindividualcavesinagivenprovince,amatterofsomesignificancenowthataU.S.FederalCaveLawrequiresthatlistsofcavesbegenerated.Italsodirectlyaffectsthepositionofagivencaveinlong-cavelists,amatterofvirtuallynosignificance.Perhapsnothingillustratesthelackofasegmentationprotocolmorethantheoccasionaluseoftheterm"segmentedcave."Speleothems."Speleothem"is agenerallyaccepted,butfrustratingtermthatdifferentiatesanicicleformedinacavefromoneformedunderahighwaybridge-andrestsontheinsecuredefinitionofa cave. A goodexampleofatermrunamok.Ontheonehand,somespeleologistscontendthatamineraldepositformedinamine,andmorphologicallyandchemicallyidenticaltoonefoundin a cave, isnotaspeleothem.Ontheotherhand,therearethosewho wouldlumpallmineraldeposits,regardlessofwherefound,includingmanyrheologically-formedlavafeatures,underthespeleothemumbrella.232

PAGE 240

Openings.Thetermsskylight,entrance,andopeningareoftenusedattheexpenseoftrulydescriptiveterms.An"entrance"isnota lavatubefeature.Neitherisan"exit."Bothtermsrefertoa useofanopening,andoftenconvey a false impressionoftheopening.Forexample,therearethreeopeningsintoApe Cave,intheMountSt.HelensNationalMonument.Allthreeareskylights,andthey donotsegmentthetube,yetonly one is called a skylight.Theothertwoare"entrances"-itwouldmakeasmuchsenseto callthem"exits" becausethat'swhere visitors goinandout.FlowFeatures.Thereisanentireclassofformscreatedwhen lava freezes-lavaflowstone,lavastalactites, lavastalagmites,andotherthingsthatresemblespeleothemsbutaren'tfor whichthereis noattractivegeneralterm."Rheologically formed" isanobvious candidate,butitissucha mouthful."Primary"would be,itseems, appropriate,butaspresentlyconstrued"primary"includescollapsefeaturesthatoccurredwhile lava was flowing. "Flowfeature" is appropriatebutbynomeansenjoys universal use.RecommendationsUseexistingtermswhenpossible.Borrowfromsolutioncavenomenclatureifappropriate.Forexample,aspeleothemmaybe foundinanytypeofcave.Sinks,pillars,sandcastles,stalactites,stoping,andso onarecommontosolutioncavesaswellaslavatubecaves.Theglossaryaccompanyingthispaperincludesmostformerusage,butnothingwillsubstituteforsearchingtheliterature.Termsshouldnotbe used to denote dimensions: for example, one writer uses tube let for little tubes.Ifatermhasto bemanufactured,trytomakeitasexpressiveofthemorphologyandcompositionofthefeatureaspossible. Avoid usingnamesofeveryday,commonlyencounteredobjects,ornamesofpersons livingordead. Use lavaasanadjective only to distinguish from similarly-shaped featuresofdifferent composi tion inothertypes caves. Excessive useoflava,pahoehoe,andbasalt-asadjectives-isun called for inregardto lava tubes.LarsonDon'tallow pointofview to influence terminol ogy:Forexample, skylights(there'sthattermagain!)areusuallyseenasskylights from insidethecave,butoftenaspitswhenviewed fromthesurface. Don'tconfuseroofandceiling. Avoid speculativetermsorspeculativeuseofterms,e.g."remelt."Mostofwhathasbeen calledremeltwas certainly fluidatone time,butexamplesthatcanbepositively identifiedasremeltarefewandfarbetween.GlossaryofVulcanospeleologyThefollowing GlossaryofVulcanospeleologywasculled from over 1,000termsfoundintheworksofabout100 differentauthors.Therefer ence list is bynomeansexhaustive-itgives only references topertinentworks rich in terminology. Those worksinturnprovide reference tomuchotherliteraturepertainingto lava tubes. I have includedfeaturesaptto be associated with lava tubes,andsomehavingsimilarmeaningregardlessofcave type,andavoided redefininganythinginothergeologic senses. Thoughnotspe cificallyrelatingto lavatubefeatures,thefollowingtermsareincluded because theyarenotuniversally understoodandoftenm.isused: ceiling, cross sec tion,maplength,planview, profIle, roof,traverselength,andothers."Lava" is frequently usedasanadjective to avoid conflicts with morphologicallysimilarforms (principally speleothems) foundinotherkindsofcaves. Aka (Also known as):Thesearetheother900 oddnamesforthesamething,asnearlyasI could discern. Manyofthesetermsareclearly synonyms,butequallyasmanyhavenoteven approached common usage. Many have been used only once,andthennotclearly defined. I expectthatsomereaderswill beunhappybecausetheirfavorite term(s) werenotlisted prominently. Pleaseletmeknow.Ifthis glossary does nomorethannarrowthefocus on lavatube nomenclature, I will consider ittimewell spent. The illustrated glossary (see references) shouldbeavailable bythetimethispaperis published.Itincludes photosofnearly alltheprincipal features,andanalphabetized listofall ternls, cross refer encedtothesource literature.233

PAGE 241

6thInternationalSymposium.onVulcanospeleologyGlossaryofLavaTubeFeaturesAbbreviations used:Aka=Also known as,Cf=compare with, e.g.=for example, i.e.=thatis, Syn=synonym.AA.A typeoflavaflowwitha rough, jagged, spinose, clinkery,andgenerallyirregularsurface. Fully developedaaisunusualinside lava tubes.Pronouncedahah,asinfather. Etymol: Hawaiian.Anexpletiveofpain when walkingbarefootonsuchlava.Cf:caulifloweraa,pahoehoe. ALCOVE. A relativelysmallrecess inthewallofa lava tube. Cf: cupola. Aka: balcony,lateralpocket. AMBERAT.A varnish-like deposit composed pri marilyoftheresidueofraturine.Itrangesin color from clear yellowthroughred, brown, mahogany tojetblack.Ithasbeen reported onlyindrycaves.Etymol:Resembledamber,smelledofrats.Typematerialfrom Sheep Can yon Cave, Montana. Aka:ratite.APRON. A top surfacethatslopes downinwardfrom a lavatubewall. Aka: sloping alcove, slopingapron,slopinglavabench, sloping lava ledge, sloping-top bench. BENCH. Abankalong the sideofa lava tube. Distinction between benches, shelvesandle veesisn'talways clear.Ingeneral, benchesareessentiallyrectangularincross section,andjoin both floorandwall; leveesareusuallyattachedtothefloorandseparatedfromthewall,butmay beattachedtothewallatconsiderable distance above the floor; shelvesareattachedto the wallandoverhang.Cf:curb, terrace. Aka: balcony,basaltbank, "B" type lava ledge, bench line, flow bench, flow ledge, flow level, flow shelf, lateral lava shelf, lateral ledge, lava ter race, lavatunnelterrace, ledge, lining curb, perched balcony, perched lava bench, shelf, shoreline, shoulder, side walk,spatterbench, terrace, tide bench, tidemark.BLISTER CAVE.Alavablisterthatcanbeenteredbyahuman.BLOCK RAMPART. A ridgeorwallofloose blocks adjacent toorsurroundinga collapsesinkorcollapsetrench;theremnantofatumuluswhich collapsed back intothelavatubefrom whichitcame.Cf:pressure ridge. See also: raised-rim crater. Aka: elevated rim, hydraulicrampart,rampart,tiltedrampart.BOTRYOIDLAVASTALACTITE. A clusterofshort,branchinglava helictitesthatresembles234abunchofsmallgrapes. Aka:grapetype lava stalactite,knottedstringstalactite.BRANCH TUBE. (or simply"branch")(a)Eitherofthebranchesataforkofalavatube.(b)Theplacewhereatubeforks. See also:distributarytube, effluent tube. Aka: bifurcate,branched,once-branched, secondarylavatube, side pas sage,subordinatetube. BREAKDOWN. Ageneralternlforbrokenpiecesofalavatube'srooforwalls -theproductofcollapse-appliedto individual blocks, accumu lationsandvariousstructuresresultingfrom re-incorporationofloose pieces in fluid lava. See pillar,raftedbreakdown. Aka:basaltrub ble, breakdown block (a single piece), break down rock, collapse block, collapse breccia, collapsedroofblock, collapse rubble, pre-lava[sic]collapse breccia, rubble. BREAKDOWN FLOOR. A cave floorthatismostly covered with breakdown. BREAKDOWN JAM.Anaccumulationofraftedbreakdown lodged insucha wayasto plug a tube.Identitymaybe totallymaskedby lin ing(s), especiallyontheupstreamend,butindi vidual pieces oftenremaindiscernibleatthedownstreamend. Cf:lavaseal. Aka:breakdownplug, breakdown seal, floorjam,jamofjostled pahoehoeblocks,jamofraftedblocks, lava ball, lava blockjam,lava-carriedbreakdownpile, plug. BRIDGE. Aremnantofalavatuberoof no wider,measuredparallel tothetubeaxis,thanthewidthofthetubeitspans. Aka: arch, balcony, lava bridge, lavaspan,naturalbridge,span.BULBOUSLAVASTALACTITE.Alavastalactitethatis significantlythickeratthebottomthanatthetop. Known examplesappearto be small,hanginglava toes. Aka: bulbouspendant,lava stalactite,pushoutlavastalactite.CAULIFLOWERAA.A typeoflavatransitionalbetween pahoehoeandaa,thesurfaceofwhich consistsofclosely-spacedlumpsthatrangefromabout5 to 30 cm across,thatarefirmlybondedtotheunderlying lava.Theouterskinofthe"floret" is typically knobby, bumpy,oreven spiny. Caulifloweraaisquitecommoninlava tubes on thesurfaceoflavafalls, floors, leveesandtongues,andoftenentrainsraftedbreakdown, broken crusts, lavastalagmites,andanythingelsethatfellonitpriorto congeal ing.Itis frequently modifiedonabroadscale

PAGE 242

withbillowsandropes.Gradationaltoclinker(loose pieces). Cf: aa, clinker, spiny pahoehoe. Aka: aa-pahoehoe[sic]transitional,clastolith, clinker, clinkery pahoehoe, clinkery pahoehoe ripple, frothy pahoehoe,granular,granularlysurfacedpahoehoe, pahoehoetoaasurface,scraggyveneer,spinypahoehoe,tesselated,transitionalpahoehoe-aa.CAULIFLOWERAAFLOOR. A lavatubefloor which ispredominantlycauliflower aa. Aka: clinkery floor, klinkery ripple. CAVE. "Anaturallyoccurringvoid, cavity, recess,orsystemofinterconnectedpassages whichoccursbeneaththesurfaceoftheearthorwithina clifforledge...andwhichislargeenough topermitanindividual toenter... n (FederalCaveResourcesProtectionActof1988).Federallawnotwithstanding,thereis no commonly accepted definitionofa cave.Forexample,onepopularelastic definitionrequiresthatthecaveextendbeyondthetwilight which, bydefinitionis virtually undefinable. See also(thelimitationsoD: lavatubecave. Aka: cavern.CAVERNOUSWEATHERING.Chemicalandmechanicalweatheringwhichresultsindisintegrationoflavatubelinings,andassociated cliff-likesurfacefeatures,insemi-arid regions.Theusualresultis arangeoffeaturesremarkablysimilarinappearanceto speleogens in solutioncaves,andsomepeculiarities like hollowbreakdownblocks. Limitedstudytodateindicatesthatthephenomenaisthe"cavernousweathering"describedinBatesandJackson(1987) also knownas"fretworkweathering"or"honeycombweathering."Thecavities so produced, including hollow boulders,areknownas"tafone"(ta-fo'-ne). Aka: differentialweathering,groundwatererosion, lava weathering,saltreplacementweathering,subterraneanweathering,weatheredform. CEILING.Theupperinsidesurfaceofa lavatubeormultiple level thereof. Cf: floor, roof. Aka: back.CHOCKSTONE.A lava block,ormassofconsolidateddebris,caughtin a passage constriction.Subsequentmodificationbycontinuedlava flowoftenobscurestheorigin, e.g. chockstonesareoftenthenucleusofa pillar. Aka:lavaball, meatball, perched lava ball. CLINKER.Small(usually lessthanonefootindiameter),loosefragmentsoflavawithrough,jaggedsurfaces. Clinker is commonly foundonthefloorandbehindliningsoflava tubes.Itis235Larsonaprimaryfeatureandshouldnotbe confusedwithpiecesofbreakdownwhichhavefracturedsurfacesandmaybeeitherprimaryorsecond ary. See also:clinkerfloor.Aka:autobrecciated lava, flow breccia, flow-top breccia, loose clinker[sic].CLINKERFLOOR. A flooronwhichclinkerspredominate.COLLAPSE.Themechanicalfailureofpartsofalavatubetowithstandgravity. Collapse, likemanyothermodifications,maybeprimaryorsecondary. See also:breakdown,collapse sink, collapsetrench,stoping. Aka: breakdown, cavein,caving,post-volcanic(roof)collapse,rockfall, unraveling. COLLAPSED LAVA POND. A shallowsurfacede pression with gently dipping sides,resultingfromdrainageofalavapond. Typicallythepondcrustsettlesgentlydownwardleaving a relatively evenbasinbroken only by tension cracks. Aka: sag,sagbasin, shallow collapse basin. COLLAPSE SINK.Anessentially circular, usually steep-sided,surfacedepressionresultingfrom collapseintoanunderlying cavity, e.g. a lava tube. Cf: collapsetrench.Aka: breakdown, col lapse basin, collapse depression, collapse hole, collapse pit, jameo. COLLAPSETRENCH.Anelongate, usually steep sidedandsinuous,surfacedepressionresultingfrom collapseofa lavatuberoof. Cf: trench. Aka:breakdown,breakdowntrench, brokensurfacetube, caved-intrench,collapse depres sion, collapse pit,jameo,lavatubecollapse de pression, rift,surfacetrough. COLUMN. (a) A speleothem fornled byjoiningofastalactiteandcorrespondingstalagmite.Rarein lava tubes.(b)A lavastalagmitereachingthe ceiling. Only two examplesofthelatterhavebeen described (Halliday, 1967; Ogawa, 1980). Cf: pillar. Aka:mitertite,pillar, stalacto-stalag mite. COMPOUND [features].Anadjectivedenotinga seriesofsimilarfeatures. Multiple benches, flow lines,andleveesarecommonly found over lapping, instairstepfashion,andmaybetermedcompound [features], e.g. compound benches. Aka:"C"type lava ledge, multiple levees,setofsteps,stairstep, successive lavanlarks,successivelevellnarks.CONTRACTIONCRACK. Anarrow,elongatecrackcaused bycontractionoflavaasitcools.Contractioncracksareabundantinlava tubes,

PAGE 243

6thInternationalSymposiumonVulcanospeleologyusually limited to a single flow unit,andvary in width from microscopic to several centimeters,thewider often found in floorunitsofconsider able thickness which cooled slowly. Aka: cooling crack, contraction fissure, contraction fracture. CONULITE.Thecompactedand/ormineralized liningofa drip hole in sediments. Conulites impregnated,andlined, with calcite have been identified,butothermineralsseemsuitableaswell. When exposed by erosionofthesurroundingunconsolidatedmaterialtheyarestrikinglyapparent.Aka:antistalagmite,mudcup, splash cup. CORALLOID. A generaltermfor a nodular, glob ular, botryoidal,orcoral-like speleothem. Com monly foundonprojectionsoftheceiling, wall,orfloor where a nucleus for growth is providedandevaporationis enhanced. Siliceousandmarginallycalcareouscoralloidshavebeen identifiedinlavatubes, mostly in semi-arid regions. A widerangeofcolorshasbeen noted. Aka: cave coral, cave grape, concretion, coral,corallava,coralloidalopal,globulite,knobstone, lava coral, lava lace, opal coral, pi solitic concretion, popcorn.(Avariantin which spinesoflava project beyondthespeleothem is knownaslava lace.) CROSS SECTION.Theoutlineofsomethingcutoffatrightanglestoanaxis,inthespeleological context,thetransverseoutlineofa cave, stalac tite, etc.ata specified point. Cf: profile. (Someofthe adjectives used to describethecross sec tionoflavatubes are: arched, bell-shaped, bulging,ceilingchannel,channeled,circular,cutbank, dome-shaped, double tube, elliptical, figure-8,flat-roofed,gable-shaped,gothic(arch), hemispherical, horizontally oval, hour glass, irregular, keyhole, moorish dome, multi storied, multi-tiered, mushroom, oval, overcut,semi-circular,shell-shaped,skull-shaped,stacked, triangular, undercut.) CRUST. (a)Thehardened exteriorofa bodyoflava. Inside lava tubes,crustsform whereheatloss is greatest, typicallynearopenings tothesurface. See also: lower level roof. Aka: balcony, initial roofstratum, (b) A formofspeleothem.Crustsareunusualin lava tubes except for gypsumcrustsin lava tubes in arid locales. CUPOLA. A recess intheceilingofa lava tube. Possible originsofa cupola are: a cavitycreatedby collapse, inflationoftheroof by gasorlava pressure,orthe roofed-over siteofa former236tubeoverflow. See also: risechamber.Cf: al cove. Aka:breakdowndome, ceiling dome, coveredskylight[sic],dome, filledskylight[sic],formerskylight[sic],old skylight, overflow dome,roofed-overskylight[sic],standpipechamber. CURB. A low,narrowbench. Aka:curblining, lining curb, small flow edge ridge. CUTBANK.Theconcave walloflavatubemeanderbendthatis frequentlythesiteofa recessoralcove eroded byanimpinginglavastream.Cf: slip bank. Aka:meandercutbank.CUT-OFFBRANCH. Alavatubecutoffby col lapse, plugged with congealed lava,orlefthangingabovesubsequentflows in amaintube. Cf: perched tube. Aka:formerbranching,once branched, once-interconnected. DEFLATED FLOOR. A floorcrustwhich collapsed followingwithdrawalofunderlyinglava. Cf: inflated floor. DIP-LAYERED STALACTITE. Alavastalactitecomposed ofhigWy vesicular,concentriclayers,apparentlyresultingfromrepeatedinundationby fluid lava.Theyarerarebecauseofthespecial conditionsrequiredfortheirformation. Cf:spatterstalactite.Aka: candle-dip stalac tite, coarse lavacicle. DISTRIBUTARY TUBE. A lavatubeflowingawayfrom amaintubethatdoesnotreturn(as are-entranttube).Cf:effluenttube.Aka:branchingsecondary tube,divergentbranch,egressive branch, feeder tube,majordistribu tary,minorlava tube. DRAINBACK.Anopeningthroughwhich alavatube overflowedontothesurface, usually dis tinguishable by obviouspatternsoflavaflowing back intothetube.Otherindicatorsaretheabsenceoffracturedsurfacesaroundthelipoftheopeningand/orpatchesofred, oxidized lin ingsadjacenttotheopening. Aka:drainbackfeature, influx, lavaretreat,roofrupture,sky light.DRIBLETSPIRE.Asmallertypeofhornitobuiltofimbricatingclotsoflavafeeblyratherthanviolently ejected.LargeexamplesinIdaho(Greeley, 1971) averaged 12 feetinheightand5 feetindiameter.Hornitoscanbemuchlarger. Aka: driblet cone, lavacicle,smallrootless vol cano. DRIP HOLE. A vertical hole eroded bydrippingwater. Drippingwatercreatesdripholes in sediments, soluble rocks,andmineraldeposits. Drip holesthatpenetratedmineraldeposits to

PAGE 244

erode underlying bedrockhavebeendescribed.Insedimentstheyareusually tapered, with a roughly circulartransversecross section.Theymaybe slightly tilted,orconsiderably elongatedintransversecross sectionasaresultofprevailingairmovementondrippingwater. See also: conulite. Cf:sandcastle. Aka: drill hole, drip cup, drip-drilledmudpit, drip-formed depres sion,splashcup,splashhole.DRIPLINE.Theline defined on a cave flooratanopeningwheresurfacewaterdripsfrom overhangingrocks. Because overhangsarevulnerabletoerosionalprocesses-especiallyicewedging-thedrip line isoftenmarkedby a wallofrecently-fallen blocks.Thedrip line is also a valuable reference point for surveyingandresolutionofsegmentationdilemmas.DRIPSTONE.Aspeleothemprecipitatedfromdrippingwater,abundantinsolution cavesbutunusualinlava tubes. Cf: flowstone, lava flow stone.EFFLUENTTUBE.A lavatubeflowing away from amaintube. Cf:distributarytube. Aka:divergentbranch,egressive branch, side tube.ELEPHANT'SFOOTSTALACTITE. A lavastalactitewhichhaditsgrowthterminatedonanobstructionlaterremoved. Seldom morethana fewcentimeterslong because they usually occurbetweenseparatedroof linings. Cf:tubularlavastalactite.Aka: club footpendant.ENTRANCE(Cave).Anopening into a cavelargeenough toadmitahuman.Naturalentrancestolavatubesareeitherresidual openingsorarecreatedby collapse tothesurface. Aka: collapseentrance.FALSE FLOOR. A lower levelroof(usually a crust)overanunderlying passage too small toenter.Aka: hollow floor, secondary floor, subsidiary floor, tube-in-tube.FESTOON.Anarcuatefoldorridge formed by gravity-inducedslumpingandwrinklingoflavaflowstone. Festoonsarecommonon lavatube walls. Cf: ropy lava. Aka:arcuateplications,draperyoflavadripstone,festoonedropypahoehoe, wrinkle.FILLEDLAVA TUBE. Asegmentofa lavatubethatis filled withhardenedlava,asaresultoffailure todrainorinvasion by asubsequentlavaflow. Aka: reactivated system.FLOOR(lava tube). Th lowrinideurfaeofa lava tubeortnultiplIvalthr of.For xalU pie,thtopsurfaof a low rIv11ofdividing lev1of a multil vItubi a flor.(:'\in,237Larsonroof. Floorsmaybethecompletely exposed, aa-congealedsurfaceofthelastlava to flowinthetubeorcovered with debris, like clinkers, breakdown,fragmentsofplatesandlinings,orcomposites thereof. Such coveringsrangefromanoccasional piece to elongateentrainmentsseveral feet thick, oftenraftedalong, conveyor belt fashion. Infrequently, floorsarecovered to some degree withsand(usually tephra), sedimentsandotherdeposits, especiallynearopeningstothesurface.Thecharacterofaa-congealedfloorsurfacesdependsonwhetherthelavawasmovingorquiescent whenitcongealed,anditsstateoftransitionfrompahoehoetoaa.Surfacesrangefromverysmoothpahoehoe (assmoothasa sidewalk) to, rarely, full-blown aa. Caulifloweraapredominates.Onabroadscale,patterns revealing movementarecommonregardlessofthesur face, e.g. billows, ropes,contractioncracks(as wellastensioncracks), levees, tube-in-tube andso on. See also: breakdown floor, cauli floweraafloor, clinker floor. FLOWFEATURE.A collectivetermfor features formed bymovementofmoltenlava. Aka: rheogenetic feature. FLOW LINE.Anelongate projectionorgroove alongthewallorfloor, toosmallto significantly affectthetube'scross section. Flow lines alongthewall typicallymarkinterruptionsofrecedinglava flowandoftenaccumulate in stair-stepfashion (see compound). Ordinarily theyaregently dipping down-tube, reflectingthelavastream'shydrostatic grade,butstandingwavesmayreversethedip locally.Dipsupto15 de greeshave been noted. Cf: strandline. Flow lines onthefloor typicallydemarcatecurrentseddies,andzonesofshearintheflow. Aka:bathtubring, curbing,(CD"typeshelvesandledges, flowcrestline, flowmark,formerlavalevel, frozenshoreline, high lava mark, highstand,horizontal ridge,lateralflow groove lateralline,lavamark,longitudinal deposit, min iaturelava bench,minorledge, multiple lateral grooveshear,stripe, shoreline,temporarysurface level, tidemark,wall groove)wallridge. FLOWSTONE. A speleothem deposited by flowofwater fIlms, commonin limestone caves.Inlava tubes, ice flowstoneinmassive accumulationsiscommonbutrarely dootherminerals BC umulateasflowstoneinexcessoffilmor atings. Cf: dripstone, lava flowstone.

PAGE 245

6thInternationalSymposiumonVulcanospeleologyFLOW UNIT. A successivebutessentially contem poraneous layerorunitoflavaconstitutinga singlelargerflow.Eachunitrepresentsa separatesurgeorsheetofliquid lava, allofwhicharepartofthesameeruption. Thicknessrangeswidely, fromcentimetersto several meters. FORMATION. (a) A geologicaltermforthebasicorfundamentalunitbywhichrocksaregrouped in geologic mapping. (b) Any kindofa distinctiveorunusualnaturalfeaturearisingfrom processesofdeposition, molding,orero sion, henceithasbeen indiscriminately applied tomanyofthefascinating featuresofcaves. Aka: decoration. FUMAROLE. A gas vent,sometimesassociated withspatteringoflava. Cf: hornito. GLACIERE. AFrenchword forsubterraneanice.Itwas tentatively proposed by Balch,in1900,asatermfor a cave inrock -thatcontainsice. (Not to be confused with "glaciercave" which is a caveina glacier.) Cf: ice cave. Aka: caveofperpetual ice, caveoftransientice, freezing cave, freezing cavern, ice cave. GLAZE. A thin, smooth, vitreous surface com monly found on lava tube features, especially on lava flowstone. Some researchers believethatconvectionandradiantheatfromthelava flow aloneareenough to glaze even hardened basal t.Othersbelieve glaze is, to some degree,remeltbutcould only occur in a blast-furnace-likeatmosphereaugmentedwithburninggases. Aka: flash glaze, glassy surface,remeltglaze,sheetofglassy lava,thinlava veneer. GROOVEDLAVA.Grooves, striations,andgouges produced bymovementbetween bodiesoflava,ofwhichatleastone is still plastic. Aka: ceiling groove, dragged Oava),dragmark,flow groove,scratchmarks,striation. GUTTER. A trough-like, elongate depression be tween a levee,ortongue,andadjacent wall,thebottomofwhichmaybe lowerorhigherthanthemedial floor. Cf: lava channel. Aka: flow channel,lateralgutter,lava channel, shear, slot, trough, wallgutter.HORNITO. A conicalstructurebuilt up by clotsoffluid lava ejectedthroughanopening in thecrustofa lavaflow.Common ontheroofofalavatubeandoccasionally foundonfloors. Usu allyretainsthecentralconduit. Cf: driblet spire, fumarole, rootless vent. Aka: agglutinatespattercone, blow hole, blowout, blow pipe,chimney,dribletcone,entrance,fumarole, pneumatogenetic explosive cave, rootless spat-238tercone, rootless volcano,secondaryspattercone, secondary vent,spattervent,smallvol cano,spattercone,spattercone pit, volcanowithoutroots.ICECAVE. A caveinice.Thetermis, however, commonly applied toanytypeofcavethatcon tains ice. See: glaciere. ICE HORIZON. Asharp,thin,rimstonemarkingaformericestandlineinalavatube.Theyareseldommorethana film,andtypicallysoincon spicuousthattheyareonlyapparentonmoreorlessuniformsurfacesateye level. INFLATED FLOOR. A floorcrustrupturedby injectionoflavabeneathit. Typically,thecrustsplitsnearthecenterandalongthewalls, creatingplates tiltedupwardinaformresemblingapressureridge. Cf: deflated floor. Aka: arch,breadloafridge, floorinflation,heaved-upblocks. ISLAND. An obstruction (usually a pieceorraftofbreakdown)"runaground"onthefloorofalavatube,surroundedandoftenmodified bypassinglava flow. Aka: bubble, concentric, depositional concentric, lava ball,splashring. Cf:raftedbreakdown. KIPUKA. An islandofolder rocksurroundedbyyoungerlava.LAVA.A generaltermfor amoltenextrusive,mostcommonly applied tosurfaceflows from a vol canic vent, also forthevolcanic rockthatsolid ifies from it. LAVA BLISTER. A hollow, surficial swellingofthecrustofa lava flow, puffed up bygasfrom withinorbeneaththeflow. Blistersrangefromtensofcentimeterstoseveralmetersindiame ter. Blisters notedonlavatubefloorsrangeindiameterfrom a fewmillimeterstotensofcentimeters. Theyhavea thin,vitreousskin,andmaybeemptyorfilledwithnestedlayersoffrothy lava. Theymaybe found singlyorin wall-to-wallaccumulations,makingnon-destructivepassage virtually impossible.Seeblistercave. Aka: blister,gasblister,lavabubble, pneumatogenetic expansion cave.LAVACAVE. A generaltermforanycavewithinlava, regardlessofhow formed. See also: cave, lava tube, lavatubecave. Aka: volcanic cave.LAVACHANNEL (or simply"channel").A long open trough,onorina lava flow, occupiedorformerly occupied by a lavastream.Commonly, channels bounded by levees -orwallsbuiltupofcongealed overflows splashes,andspatter-

PAGE 246

areperchedaboveadjacentsurfaces.Channelsinside lavatubesaretypicallymuchsmallerandelosely followthetubecenterline. Cf:gutter.Aka:channel,contractionvalley, feederchannel,gutter,lavabrook,lavagutter,lavariver,openlavachannel,river,shoot[sic],trough. LA VACICLE. Ageneraltermthathasbeen applied tonearlyanythingthatprotrudesintoalavatube, evenstalagmites.Itisambiguousunless qualified. [The wordoriginatedwithPhilBrogan,a prolificwriteraboutOregon'snaturalhistory, who appliedittobothstalactitesandstalagmites.Itis first known tohaveappearedinprintin 1923(as"lava-ciele"),inIraWiliams'"TheLavaRiverTunnel,"inreferencetothetubularlavastalactiteswhichwereonceabundantthere.] LAVA DAM. A levee across a lava tube. Aka:dam.LAVA FALL. A precipitousdropinthefloorofatubeoverwhichlavaflowed. Aka: cascade,dam,fall,lavadrain,rapids. LAVAFLOWSTONE.A fluidlayeroflavaontheboundarysurfaceofa lava tube. Commonly, a fluidlayerremainswhenanintratubalstreamoflavarecedes. A fluid layermaybe acquired byremelt,ormaybe deposited byspatter.Also, a generaltermfor lava formsresultingfrom its flow. Cf: dripstone, flowstone. Aka: dripstone, lavaciele, dribble,driplava, filmofliquid lava, flowoffilm, flows tone, lava dripstone,lavaformation,lavaspeleothem, liquid lining film,primarydrip,skinoflava, solidified dripsofonce fluid lava, vertical flow lines. LAVAHELICTITE.Acylindrical-oftenpartiallytubular-extrusion,usuallycontortedandjointedbutsometimeslinear, unaffected by gravity.Manyresembletubularlava stalactites-withwhich they occur incombinationsinallrespectsexceptthattheyarenotgravity-controlled. Mostemergeabruptlyfromthehostsurface,apparentlyextrudedin responseto gas pressure,andmaygrowateitherend.Ranginginsize from tiny, five-millimeterdiameter,twig-likebranchesup tothefamiliardiameteroftubularlavastalactites.Theyemergefrom allkindsoflinings,otherhelict ites,stalactites,andeven fromfracturedsurfaces. Aka:eccentric,eccentricstalactite,erratic,irregulartubularlavaciele, lavaciele, worm,wormstalactite.LAVA LAKE. Astandingbodyofusually basaltic fluid lava in a volcaniccraterordepression.The239Larsontermapplies to solidifiedandpartlysolidifiedstagesaswellastothefluid,activelavalake. LAVA ROSE. A broad, lowformresemblingthebloomofa rose.Therearetwodistincttypes which, whilesimilarinappearance,originatequitedifferently. (a)ExtrudedRosesarecreatedby successive, concentricextrusionandruptureoflavabubbles,theresultresemblinga rose bloom. Averagingabouteightcentimetersindiameter,theyseldomexceed fivecentimetersinheight. Likelavabubbles,theyareuncommonandextremelyfragile. Aka: minicano. (b)StalagmiteRose.Theblunt,cup-shaped topofa lavastalagmite,flattenedbytheimpactofrelativelylargeelotsoflavafallingfromconsid erable height,theresultresemblinga flower bloom. Also resembles asmalldribletspirebutlacksthecentralconduit. Aka:lavapuddle,pancakelavastalagmite,puddle, rose ciele. LAVA SEAL. Apointwherealavatubeis com pletely blocked by congealedlavaCf: break downjam.See also: filledlavatube, lava sump. Aka:intrusivelavaseal,lavafill, lava plug, plug,sump,viscous plug. LAVASPRING.Lava wellingupintoa tube, typi cally onthedownstreamsideofa lava sump. Aka: upwelling, upwelling sourceoflava. LAVA STALACTITE. Astalactiteconsistingofa moltenorsolidifiedmassoflava. All lavastalactitesoriginateinthemoltenstate.Someharden,withoutmodification, fromtheliquid.Othersaredistortedexternally(bygascurrents)orinternally(by vesiculation) prior tohardening.Stillothersaccumulatelayersoflavaflowstoneorspatter.Transversecross sec tionsrangewidely, fromcircular(Seeteatstalactite) toextremelyelongate(See rib). See also: botryoidlavastalactite,bulbouslavastalactite,dip-layeredstalactite,elephant'sfoot stalactite, pipestemstalactite,sharktoothstalactite,sodastrawstalactite,spatterstalactite,teatstalac tite,tubularlavastalactite.Aka:accretedform, cicIe, basalticornamentation,commonstalac tite,dripciele, driplavastalactite,dripdecoration,dripstonestalactite,festoon,glazestalactite,lava candle, lavaciele,lavadripfor mation, lava drip, lava ciele, lava formation, lavacielestalactite,lavaspeleothem, lavatite,ornamentation,primaryornamentation,remeltstalactite,solidifieddripsofonce fluid lava, speleothem,stalactiteofbasalt,stalactitic

PAGE 247

6thInternationalSymposiumonVulcanospeleologydroppingsoflava, syngeneticbasaltstalactite,taperedstalactite. Cf:stretchedlavaprojection. LAVA STALAGMITE. A verticallyorientedaccre tionofdropletsanddribblesofsemi-solidandsolid lava, occurringina wide varietyofshapesandsizesrangingfrom broad, low lava roses rising barely abovethefloor, togiantsover twometershigh. Theyareinitially associated with a ceiling orwallstructurewhich dripped (a low point, stalactite, etc.),butusuallythehost sur face movesoris overridden,causinga numericaldisparitybetweenstalactitesandstalagmites. See also: column. Aka:basalticornamentation,commondripstalagmite,cored form,dribletspire,dripaccretedstalagmite,drip-formedstalagmite,dripmound,dripstalagmite,floor ciele,globularlavastalagmite, lavaciele,lavaformation,lavamite,lavaspeleothem,littlepeople,littlepeople formations,multiglobularstalagmite,ornamentation,pancakelavastalagmite,primaryornamentation,speleothem,stalagmitelav aciele. LAVA STREAM. A bodyoflava flowing in a lava channel.LAVASUMP. A local depressioninthefloor where lava drained from a lava tube. Althoughmostlavasumpsarelavasealsatthedown-tubeendofa lava tube segment, occasionally they occur elsewhere, for example where lavadrainedinto a lower level. Aka: inverted siphon, inverted spoon, lava fill, lava siphon,siphon, siphon plug, solidified lava sump.LAVATOE. A bulbousmassoflava in tough, seemingly elastic skin which emerges fromthecrustedfrontofarelativelyslow-movingpahoehoe flow,andis aprimarymeansofexpansionofpahoehoe lava flows. Toes vary widely in size, up to several meters. Coalescenceoftoes isthoughtto be aprimarymeansby which distributariesoflava tube systems ad vance. Toes inside lava tubesarenotcommonandlimited in size.LAVATREE.A lavatreemoldthatprojects abovethesurroundingsurface. LAVATREEMOLD. A cavity inside a lava flow formerly occupied by atreeengulfed bytheflow. Many, perhapsmostmoldsaresubstan tiallyalteredasthetreeburns. Frequentlythemold preservesthecrazepatternofburned wood inminutedetail. Occasionallytreemoldsareexposed inside lava tubes.Cf:lava tree.240LAVA TUBE. Aconduitformedofhardenedlava,onorwithinalavaflowthroughwhichlavaflowstoanadvancingflow front, also a cavern oussegmentoftheconduitremainingafterflow ceases. Only twovariants,surfacetubeandtube-in-tubeareliterally tubes. Cf: cave,lavacave, lavatubecave,lavatubesystem. See also:branchtube, cut-offbranch,distributarytube, effluent tube, filledlavatube,maintube, mastertube, perched tube,re-entranttube,surfacetube,tributarytube,unitarytube. Aka:basaltcave,drainpipeofsolid lava,lavacave, lavatublet[sic],lavatunnel, rheogeneticsurfacecave,truelavacave,tublet[sic],tunnel,volca nic flow drain. Alavatubemaybeactive(carryingfluid lava),abandoned(seeprimary),filledwithsolidlava(didnotdrain),reactivated(invaded by asubsequenteruption),orfilled to some degreewithdeposits likesandorwater.LAVATUBEBOXWORK.Pairsofintersectingblades projecting fromtubeceilingorwalls whichappeartobeoftwo possible origins. (a)Preferentialremeltingonoradjacenttocontractioncracks. Related tomelt-outpocket. See also: remelt. (b)Preferentialcavernousweatheringadjacenttocontractioncracks.Aka: boxwork. LAVATUBECAVE.(Orsimply"lavatube.") Aspecificlavatube,orsegmentofalavatubethatqualifiesasa cave. (Distinctionbetweenindi vidual lavatubecaves is complicated by pro gressive collapsecreatingnewopenings to -orsegmenting-knowncaves,andincrementaldiscovery,butmostofall by lackofconsensusabouttheeffectofsegmentingfeatures.Forexample,theusual typeofopening, a collapse, oftencreatesmorethanoneopeningandthequestion arises: isthesinkapartofa single cave,ordoesitseparatetwo caves?TheInternationalUnion of Speleologyhassuggestedapartialresolution:ifthesink'slargestdimen sionmeasuredhorizontally exceedsitsdepth,thetubeis segmented,resultinginmultiple caves.Allpartsofasegmentwhichcanbetraversedbyanindividual,withoutpassingthroughasegmentingsink,constituteanindi vidual cave.(InternationalUnionofSpeleol ogy, 1979.) Aka:lava-tubecave,lavatubesystem, open tube. LAVATUBESLIME. A relativelythinlayerofmoist, algae-like,sometimesgelatinousmaterialthatlocallycoatsthewallsandceilingsoflava tubes. Limitedstudyindicatesthatamajor

PAGE 248

componentisbacteriaofonesortoranother,whichaccountforthewiderangeofcolorsreported.Undercertainconditionstheslime becomeshydrophobiccausingwaterbeadstoform,andrenderingthesurfacehighly reflective-thewhiteorsilveryappearanceoftenre ported. LAVATUBESYSTEM. A distributivenetworkoflavatubesthatischaracteristicoftube-fed pahoehoe flows,andtheprincipalmeansbywhichsuchflowsaresowidelyandthinlyspread.Whilesystemsrangeincomplexity fromunitarytubestocomplicatednetworksofpar allel, overcrossingandre-entranttubes,theyareusually broadlydendriticinpattern,withanidentifiablemastertube.Forobvious reasons,in-depthstudyoflavatubesystemsis virtually limitedto inactive examples.Aninactivelavatubesystemis a seriesornetworkoflavatubecaves, collapsetrenches,andothercharacteristic features, allofwhich,itis reasonably certain,arepartofcontemporaneousflow units.(Characteristicfeatures, roughlyinorderoftheirprobabilityfromproximaltodistal extremitiesofasystemare:collapses, hornitos, skylights, rootless vents, tumuli,andpressureplateaus.)Aka: axialconduitnetwork,axialtubesystem,braidedcomplex,braidedpattern,chainofcollapsetrenches,chainoflargelava tubes,conduitsystem,distributarypatternofchannels,distributarysystem,interconnectedsystem,internalarterysystem,lavacave system,lavadistributarysystem,lavatube,lineofbreakdowns,lineoflargefeeder tubes, lineofmajorbreakdowns,majorcave system, majorlavatube,masterdrainagesystem,masterlavatubesystem,repeatedlybranching, rift,setoflavatubes. LAYERED LAVA. Successivethinflowunitsandnear-surfacezonesofvesiculationwithinthethinflowunits.Commonly associatedwitha leveedchannelorsemitrench.Aka: lamina,multi-lamination.LEVEE. (a) Surface. Aretainingwallofhardenedlavaalongthesideofa lavachannelorlake,builtupincrementallyby successive overflow,overthrustingoflavacrustsorblocks,orspatter.(b)Intra-tubal.Afree-standinglateralremnantofa lavatongueorflowcausedby coolingalongtheedgesandsubsequentevacuation.Theoutersurfaceis usuallyroughandblocky (cauliflower aa);theinnersurfaceissmootherbutusually grooved,striatedandmarkedwith241Larsonflow lines,andtheupperedge issometimescrenulated.Typically leveesleaninwardandoccasionally opposing leveesarchoverto join,forminga tube-in-tube.Ifthereis aspace(gutter)betweenitandthewall,itis a levee. Leveesmaybefoundatconsiderabledistanceabovethefloor.Gradationaltotube-in-tube. Aka:archedledge, coffin, cornice,crust,free-standingwall,gutterrim,kerb,lateralridge, pull-offcurb,rail,railroadtrack,sheared-outcurb,shearedwall,spatterbench. LINING. Alayerofhardenedlavaleftagainsttheinteriorsurfaceofalavatubebyintermittentflow. Liningsmaybefusedtothehostsurface, mechanically locked in place by conformityorintermittentlyseparatedby air, clinkers,orzonesofshear.Liningthicknessis widely vari able,rangingfrommillimeters tometers,andnotnecessarilyuniformorcomplete.Liningis aprimaryfeature: collapse, for example,maybeprimaryorsecondary.Curbs,benches,. scrolls,andterracesare linings. Cf:crust.See also: lining plug,liningshut.Aka:accretionarylayer,accretionaryliningoflavaplaster, ceiling lining,cemented,chilledmargin,concentric shelling,crust,detachmentlaminae, dripstone, floor lining, laminae,laminationsofthewall,lateralcoating,lateralcrust,lavacoating, lavadeleplaster,lavalining,lavaplaster, onionskinlayer, peeledoffwall lining, peeling accretionarywall, peeling wall, peeling walloflavaplaster,plaster,plastered,selvage,sheetofglassy lava, shell, skin,skinofbasalt,tubewall lining, veneer, wall coating, wall lining.LININGPLUG.Anobstructionformedofsucces sive liningsthatcompletely blocks a lava tube. Aka: plug, solidbasaltofconcentric rings, suc cessive tube-in-tube,tube-in-tube.LININGRUPTURE.Localdetachmentofa lining, usually limited tothenear-tubestrata.A recess formerly occupied by apatchoflining blownawaybythepressureofexsolving gas, so weakenedby vesiculationand/orremeltasto no longerwithstandgravity,orexfoliated by differentialshrinkage(spalled). Aka: blowout,blowoutpocket,brokengasbubble, bubble,burstblister,burstbubble,gasblowout, peeling dripstone, peel-off, peel-offofdripstoneplaster, peel-offofthinlava plaster, pull-down patches, pulled-out, pulled-out bubble, pull-off, pull-off patch, pull-out, pull-out patch,rupturedblister,rupturedbubble,rupturedlining,rupturedwall lining, sag.

PAGE 249

6thInternationalSymposiumonVulcanospeleologyLININGSHUT.Massive, opposing accumulationsofliningsonthewallsofalavatubewhich have joined toseparatethetubehorizontally. See also: lower level roof. Aka: initial roofstratum,partition, selvage. LOWER LEVEL ROOF. Apartitiondividing a lava tube horizontallyintomultiple levels. Some in cipient forms, often heavily modified by subsequentflow,arecrusts, shelves, lining shuts,andtube-in-tubes. See also: bridge. Aka: balcony, cave-in-cave, ceiling, crust, double deck, false ceiling, false floor, false roof, horizontal divi sion,internalbalcony,internalroof, lava floor, lining partition, lower balcony, lower tube ceil ing, multiple subsidiary roof level,newroof, overhang, partition, roof bench, roofing-over partition, roofing partition, roofofthelower level, secondary crust, secondary roof, septum, subsidiary roof level, successive floor, tube-in tube,upperbalcony, upper deck,upperfloor. MAIN TUBE. (a) A lava tube which supplies lava toallotherdownstreamtubesandbranches.(b)Thelargestofbranchtubes. Notethatamaintube isnotnecessarily amastertube. Aka:maincave,maindistributarychannel, main feeder tube,mainlava feeder channel, main passage, major artery, major feeder tube,parentlava tube,trunkpassage. MAPLENGTH.Thelengthofa cave derived using its vertical projection onto a horizontal surface.Cf:traverselength. Aka: projected length. MASTER TUBE. Adominantlava tube in a lava tube system. Amastertube typically occupies the axisof a.low, broad ridge built by subordinatetubesandoverflow fromthemastertubeitself,andis readily identified if the system is studied, e.g. topographicmapsnearly always reveal a tell-tale seriesofcollapse trenches. Locally, individual lava tube caves may be iden tifiedassegmentsofamastertube bycertaincharacteristic features: size (relatively large, voluminous), vertically elongate cross sectionandmultilevel development,modifications reflectingsustainedactivity(largebenches,shelves,andmultiple linings), indicationsoferosion (down-cuttingby the lavastreaminto pre-flowstrata),andpresenceofsubordinate tubesandoverflow complexityatvarious levels. (Un-segmented, inactivemastertubes probably donotexist; none have been described.) Aka: apical ridge, axial feeder tube, axial tube, axial tube system,centraldrainagechannel,centralsupplytunnel,centraltube,centraltunnel,242dike-tube system, feeder conduit, feeder tube, feeding channel,largefeeder tube,mainaxial feeder tube,mainchannel,mainconduit,mainfeeder tube,maininternalchannel,maintube,maintube line,maintubesystem,majordistributary,majordrainagetube,majorlavatube,parentlava tube,primarylava conduit,primarylava tube,primarypassage,primarysupply channel,primarytube, principal feeder, princi pallavatube, rift,throughwaytube,trunkchannel,tubeline. MEL'l'-OUTPOCKET.A recessintheceilingorwall seeminglycreatedbyremelting,usually foundinclusters,sometimesina perplexing association with fractures. Widthanddepthrangewidely, from a fewcentimeterstoameterormore. Related to lava tube boxwork. See also: remelt. MICROGOUR. (a) A tinyrimstonedam(centimeterscale). (b) A small rimstone-like,orterracelike depositinlavatubes.Theytypically occurinstairstepclustersonmoderatelysloping to vertical surfaces. Someareclearly compacted clastics;othersappeartobemineraldeposi tions. Thoughmorecommoninlavatubesthanrimstonedams, theyarenobetterunderstood. Aka: gour, lava speleothem, lava wall gour,meltcup, rippled clastic flowstone. MULTILEVEL TUBE. A lavatubehavingtwoormore levels, each longerthanwide,separatedby a lower level roof. Aka: compound tube, dike-tube, double decked, double tube,multiplelevels,multistoried,multipletube,primarytube,stacked,stackeddrainageconduits,stacked passages, superimposed tube, tiered, two-storied, vertically stacked.OPENVERTICAL CONDUIT.Anabandoned,es sentially vertical passagethroughwhichlavarose tothesurface.Themouthis thoughnotnecessarily,atthetopofsomesortofventstructuresuchasa hornito,spattercone,orspatterridge. Aka: influx, influx tube, lavaretreat,open vertical vent,spattercone pit, vent,ventcave. OVERFLOW CHAMBER. A cupolaatthesiteofa lava tube overflow. Aka:distributionpool, formerskylight[sic],overflow dome, risechamber, roofed-over skylight[sic],upperbalcony.PAHOEHOE.AHawaiiantermforbasalticlava flows typified by a smooth, billowy,orropy exteriorandinternally bylavatubesandnearlyspherical vesicles.PronouncedPA-hoey-hoey. Literally"smooth"inHawaiian.Cf: aa, cauli-

PAGE 250

flower aa. Followingaredescriptionsofvarious typesofpahoehoe surfaces,asdefinedin Gary (1972). Corded Pahoehoe.Thetypical kindofpahoehoe,havingasurfaceresembling coilsofrope. Syn: ropy pahoehoe.ElephantHidePahoehoe. A typeofpahoehoe havinga wrinkledanddrapedsurface.Entrail[s]Pahoehoe. Atypeofpahoehoethathasasurfaceresemblinganintertwinedmassofentrails,formedonsteepslopesasdribblesaroundandthrough cracksintheflow crust.FilamentedPahoehoe. A typeofpahoehoe,thesurfaceofwhich displays thread-likestrandsformed by escaping gas bubbles,andthatarerecumbentandaligned withthedirectionofflow.Itis acommontypeandoftenfound superimposedonotherforms.SharkSkinPahoehoe. Atypeofpahoehoe,thesurfaceofwhich displaysinnumerabletiny spiculesorspinesproduced by escapinggasbubbles. Shelly Pahoehoe. A thin-shelled, glassy typeofpahoehoe,thesurfaceofwhichcontainsopentubesandblisters;itscrustis 1 to 30 centimetersthick. Shelly pahoehoe ischaracteristicofnear-ventregions where devolatilizationcanoccur rapidly to formemptyblisters. Slab. A typeofpahoehoe,thesurfaceofwhich consistsofa jumbledarrangementofplatesorslabsofflow crust, presumably soarrangedduetothedrainingawayofthebubbles,andthatarerecumbentandaligned withthedirectionofflow.Itis a common typeandis often found superimposed onotherforms. Spiny. A typeoflava which, on a broad scale,hasthesmooth, gentlyundulatingbillowsandropesofpahoehoe,buton a millimeter scale resem bles aa,havinga spinyandgranulatedsurface. PALEOSOL. A buried soil,weatheringprofile,orsoil horizon developedduringthegeologic past.Whenexposed by lining collapse,suchlayers provideanopportunitytostudytherelationofthelavatubeanditshost flow tothepre-flow topography. Aka: fossilsoil horizon, interbed,paratubalearth,pre-flow soil, pre-lava soil[sic],soil horizon.PERENNIALCAVE ICE. Cave icethatpersists,yeararound, for a periodofyears, sometimes recedingoraccumulatinga little eachyearin response to climatic trends.Perennialcave ice is usually recumbent,againstthewallorfloor,rarelypendant,moreorlessclouded,is243Larsonsmoothly contouredasaresultofmeltingorsublimation,andusually displays a few prominentfractures.Itisoftenlayered, reflecting seasonal accumulationaswellasimpuritiesintroducedduringmeltingandrefreezing,andcrystallizeddueto refreezingorfracturing. Cf: seasonal ice.Aka:fossil ice,permanentice, perpetualice,prismaticice,year-aroundice.PERCHEDTUBE. Adistributaryor tributary tubeconnectingsomedistanceabovethefloorofamaintube,lefthangingabovesubsequentflows. Cf: cut-off branch. Aka:hangingtube, higher tube complex, ledge, overflow cave, subordinatetube, tributary tube,uppertuberemnant.PILLAR. A bodyofrock which divides a cave for ashortdistance. How bigcana pillar be?Thedefinition suggestedinChabertandWatson (1981)seemsreasonable:itis a pillarifitslargestdimension is lessthanthecombined width ofthetwopassagesitseparates. Cf: col umn. Aka: column, island,mitertite,rock par tition. (Though seemingly solid,mostpillars in lavatubesarebuiltaroundpiecesoraccumula tionsofbreakdown.PIPESTEMSTALACTITE. A partially deflatedtubularlavastalactitehavinganovalorpinchedtransversecross section,similartothestemofa tobacco pipe.PITCRATER. A massivesinkcreatedby withdrawalofa largemassoflava.Notnecessarily related to a lava tube.PLUNGEPOOL. A pooloflavaatthebaseofalava fall. Aka: lava fall pit.PRESSUREPLATEAU.Anupliftedareaofa pon ded lava flow,theupliftofwhich is due to injectionoflava into a still-hot interior. Flows initially lessthanonemeterthick which in flated totenmetersandmore, have been describedinHawaii.Pressureplateausarecharacteristicoftube-fed pahoehoe flows, createdwhenthevolumeoflava througha lava tubesystemexceedsthecapacityoftheflowfrontto expand.PRESSURERIDGE.Anelongate bucklingandupliftofthecrustofa lava flowresultingfrom differentialmovementbetweenthecrustandunderlying lava,thatresultsin a ridge which is commonly cracked openatthetopthroughoutits length,thecracksnarrowingdownward.Anelongate tumulus. Cf: blockrampart.Aka: fold, lava ridge, schollendom.

PAGE 251

6thInternationalSymposiumonVulcanospeleologyPRIMARY FEATURE. Conditionsorfeaturesofa lava tube existing prior to cessationoflavaflowandfinal cooling. (Notethatcollapse isaslikelytobeprimaryassecondary.) Cf: secondary.Aka:featuresoforigin, intact, lava (asin"post lava,"), original, pre-lava[sic], primary lava structures, synchronous, synflow, syngenetic. PROFILE.Anoutlineofa cave, alonganarbitraryline, projectedhorizontallyontoa vertical plane. Usually such a profile is a longitudinal section alongthesurvey traverse,butinanyeventshould be specified. Cf: cross section. Aka: cross section, longitudinal cross section, longi tudinal section. RAFTED BREAKDOWN. Single piecesoraccu mulationsofsolidified lava (usually piecesofbreakdown)floatedorentrainedina lavastream.Although solidbasaltis slightly denserthantheliquid, much breakdown floats becauseitcontains vesicles. Cf: island. Aka: breakdown raft, lava-carried breakdown pile, raft, rafted, rafted blocks, synflow breakdown blocks. RAISED-RIM CRATER. A surface depression createdby collapseofatumulusaroundwhichremnantsofthetumulusremainasa raisedrimorwall. Syn: blockrampart.Aka: collapse blis ter, collapsed surface dome, collapsed tumulus, non-explosivecraterswith high outward-top pled rims. RE-ENTRANT TUBE. A lava tube which, having branched from amaintubeorsomeotherpoint in a lava tube system, rejoins downstream. Aka: bypass, cut-around, loop passage, loop tube, meanderloop, ox-bow, side passage. REMELT. Re-mobilizationofsolidifiedorpartially solidified lava by re-heating. Remelted lava is probablynottotally representativeoftheorig inal melt. Some researchers insistthatradiantheatandconvection alonewon'tremelt solidi fiedlava-thatremelt is evidence of combus tion. Remelt may be implicated in formation of boxwork-like features whichareseparatedby projectionsoffractures Cf: lava tube boxwork. Aka: refluxed, refusion. RESIDUAL DEPRESSION. A pit-like depressioncharacteristicofextremitiesoftube-fedpahoehoe lava flows, resulting from inflation of a lava flowsurroundinga chilled area. Easilymistakenfor a collapse sink. RESIDUAL OPENING. A primary opening into a lava tube.Threecommon kindsofresidual openingsarehornitos, drainbacks,andun-244roofed sectionsofcontiguouslavachannel. Seealso:entrance,skylight. Aka: skylight. RIB. A vertical,ornear-vertical, drapery-like rib bonoflava flows tonethatprojects from overhanginginclinedsurfaces.Theformisgradational from a lavastalactitetolavaflow stone. Size is influenced primarily bythefluid ity (and drip size)ofthemoltenconstituentsandsteepnessofthehostsurface. Thicknessrangesfrom 0.5 to 1.5centimetersandup, horizontal width averages 2.5centimeters,butlength (measured parallel tothehostsurface)rangeswidely, fromthediscernableuptoseveralmetersonfavorablehostsurfaces.Aka:driblet ridge, flow ridge, lavaciclesthatbendandflow intonormallavadripstone,lavadripridge, lava rib, lava ribbon,lavatrickle, long drips tone lavacicle, projecting rib, ribbed lava, ribbed wall, ribbon-like roofpendant,ribbonoflava, rib-like flow ridge, rib wheel, ridge, rivulet, run,thinparallel ridge,thinprojecting rib,thinraised line, wall flute.RIFTTUBE. A lavatube formedinlava flowing insideandthrougha rift. Aka: dike-tube, fissure tube, hollow dike, rheogenetic fissure cave,riftcave. RIMSTONEDAM. A relativelythin,dam-like de posit with a level topsurroundinga poolofwater, common in solution caves. Rarely, small examplesrangingin length fromcentimetersto decimeters, occur in lavatubeswherewaterisabundant.Thelatteraredeposited inthemannerofspeleothems,othersareclearly clastic in origin,butno detailedstudiesareknown. Cf: gour. Aka: gour. ROOF. Thebasaltstrataoverlying alavatube, usually includingtheinitialroofcrust. See also: bridge, lower level roof. Aka: bridge, overbur den. ROOTLESS VENT. A sourceoflavathatisnotdirectly associated with atrueventormagmasource, commonlyanupwellingoroverflow from a lava tube. See also: cupola, hornito, open vertical conduit, rise chamber. ROPYLAVA.A lava flow with acorrugatedsur face resembling coilsofrope.Thecorrugationsarea broad scale distortionofvarioussmoothersurfaces, resulting from differentialinternalandexternalmovement, e.g. caulifloweraafloors modified with "ropes" over a foot thickarenotuncommon.Theropesaretypically closely spaced, curved,andconvex inthedirec tion of underlying flow. Inside lavatubesand

PAGE 252

channels, ropethicknessrangeswidely, from lessthananinchup to a footormore,butonthesurfacemaybefarthicker. Cf: festoon. Aka:clinkerypahoehoeripple,cordedpahoehoe, curved corrugations,dragfold, festooned ropy pahoehoe, flow ripple, flow wrinkle, frozen rip ple, pahoehoe rope, pulledpattern,ripple, rip pled lava, ripplemarks,ropy pahoehoe, wrinkle.RUNNER.Small,recumbent,roughly cylindrical, sausage-like rivuletsoflava flowstonewitha glazed skin,thatarenotfusedwiththesurfaceonwhich they rest. Much liketubularlavastalactites,butusuallyoflargerdiameter.Cf:lavatoe. Aka:lavadribble,lavatrickle, rivulet,streamlet,worm,worm'snest. SAND CASTLE. A columnofclay, mud,sand,orsimilarclasticsedimentleft bypreferentialero sionofthesurroundingmaterialbydrippingorflowingwater.Aka: badlands, fairy castle,mudturret,sandcastlestalagmite,sandstalagmite,siltpillar,tentrock. (The column is preservedeitherby a cap-stone, a relativelylargepieceofdetrituswhich deflectsthewaterdrops,ora"dry"areainthepatternofdrippingwater.) SCROLL. Auniqueformoflining failurethatoccurswhenstill-plastic lining rollsoffthewall,creatinga cylindershapedlike,butmuchlargerthan,a looselyorpartially rolledparchment.Scrollsrangeindiameterfrom inches to several feet. Aka: "A" type lava ledge,bankingupandcurlingback, bench of...curled lavacrust,brokenandcurled lavacrust,brokenandcurled slabs, cigar-like cylinder, curleddetachmentlaminae, curl-up, curly bench, jelly roll (cur!),laminae,lavaroll,lavarope, lining scroll, low benchofcurled-down lavacrust,peeledlining, peeledoffwall lining, peelingaccretionarywall, peeling wall, peeling walloflava plaster, peel off, peel-offofdripstoneplaster, peel-offofthinlavaplaster, peel-off shell, plastic defornlation, pull-off curb, pull-out, roll, shellsofpeeling la va plaster,snake-shapedpipe, wall lining, wall scroll. SEASONAL CAVE ICE. Cave icethatforms inwinterorearly spring,andis gone bylatefall.Seasonalicemayoccuranywherein a caveandinnearlyallthewellknownspeleothemicforms crystals, flowstone, helictites,draperies,stalactites,andso on. Seasonal cave ice is usually opticallyclearunless formedofrunoffwater.Cf:perennialice. See also: speleothem. Aka:annualice speleothem,ephemeralice,transientice.245LarsonSECONDARYFEATURE.Modificationsoradditionsto alavatubefollowing cessationofthehostlavaflowandcooling. (Notethatcollapse isaslikelytobeprimaryassecondary.) Cf:primaryfeature. Seealso:collapse, secondary. Aka:intact,intrudinglavadrips tone, post-ac tivity (collapse),postflow, post-lava, post-vol canic, post-volcanic (roof) collapse,reactivatedsystem, secondary basalticornamentation,secondarycollapse,secondaryflow features. (For example, collapse, invasion bysubsequentlavaflow,detritaldeposits,mineraldeposits(speleothems),anderosional modificationsaresecondary features.)SEMITRENCH.Alavatubeformed by roofingoverofalavachannelhavingwallsthatarebuiltupaslevees. SHARKTOOTHSTALACTITE. A blade-like lavastalactite.Usuallyaboutaswideaslong, theytaperradically to asmalldrip-sized, sphericaltipseldom exceedingonecentimeter.indiame ter.Onhorizontal ceilings they occurasindivid uals,areroughlysymmetricalabouta vertical axis,andresemble alargerosethorn.Itisnotunusualfor two to be joinedalonga vertical centerline, forming athree-corneredbase.Ifthehostsurfaceis inclined,theindividualstalactitesareskewed downhillenmasseuntilultimately,onnear-verticalsurfaces,theymerge,fonning drapery-like ribbonsstandingoutfromthewall.Sharktoothstalactitesaretypicallysmoothandthinly glazed externally, uniformly vesiculated internally,anddonotreflecttherestraintofa toughouterskintothedegreethattubularlavastalactitesandrunnersdo. Occasionally theyaredistortedenmasse, parallel tothecave passage,asifdeflected by gasorlavaflow. Aka: drippendant,lavacicle,homogenousstalactite,lavapendant,rosethornpendant,shark'stoothprojection,shark'steethlavapendants,shark'steeth, ta peredstalactite,triangularlava drip, wide triangularblade. (See rib).SHELF.Anelongate,overhangingcrust,remnantofacrust,oraccumulationofliningsattachedto a lavatubewall. Shelvesaregradationaltoandfrom lower level roofsand,asa rule, followthelavatube'sgrade.Cf:strandline.Aka:archedledge, balcony,boundaryledge, bulge, cornice, cornice-likeformation,cornice-like shelf,crust,curb,curblining, flowcrestline, forOler lava level,hangingledge, high lavamark,highstand,lateralledge,lateralridge,

PAGE 253

6thInternationalSymposiumonVulcanospeleologylavamark,ledge, overhanging flange, overhangingledge, relict lava strandline, solidified edge,temporarysurfacelevel,tidemark,trenchshelf,truebalcony, wall ridge. SINK. A generaltermfor a depressionintheland surface. Syn: sinkhole. See also: collapsed lava pond, collapse sink, residual depression. Cf: trench. SKYLIGHT. (a)Anopeningintheroofofa cave t,Qat admitsdaylight.(b)Anopeningintheroofofa lava tubethatadmitsdaylightandisnotconsidered tosegmentthelava tube. ("Sky light" is used interchangeably with "entrance," especiallyifit'stheonlyorcustomary way in.) See also:entrance,drainback. Aka: breakdown, breakdown skylight, ceiling collapse, collapse hole, collapse pit, collapse to surface, residual skylight, skylight entrance, well, window. SLIP BANK. Theapronontheconvex sideoflava tubemeanderbend where occasionally cooler, slower moving lava accumulates. Cf: cutbank. SLUMP BLOCK. A large lateral blockofbasaltthatslumps, moreorlessasa unit, into a collapsetrenchasaresultofbeing undermined by collapseofa lava tube. Theyrangein size from oneortwometerstotensofmeters. Aka: lateral slump block, slumped-off column. SODA STRAW STALACTITE. (Or simply "soda straw.") A predominantlystraighttubular sta lactite. Aka: lava sodastrawstalactite, lavastraw,lavatite, rod stalactite, soda straw, sodastrawcicle,sodastraw-diameterstalactite,strawstalactite,strawtube,thinspindly lavaci cle,tubularlavacicle,tubularsoda straw-like stalactite. SLUMPED LINING. Lining deformed by gravita tional slumpingandbuckling while still plastic, literally sliding downthewall. See also: festoon. Aka: deformed glaze,dragfold, drapery, draperyoflavadripstone,plasticdeformation, slump, slumped glaze, slump ripple, wall drap ery, wrinkle, wrinkled flow ridges.SPATTER. Small fragmentsorclots of ejected lava, commonly agglutinated upon coming to rest. SPATTER CONE. A steep-sided coneofagglutinatedspatterbuilt up on a fissureorvent. Cf: hornito, open vertical conduit. Aka: agglutinate cone, blow hole, blowout,chimney,pneumatogeneticexplosivecave,spattervent,volcanello, vulcancito.246SPATTER RAMPART. A low wallofagglutinatedspatterproduced by fountainsofvery liquid lavaeruptedfrom fissures. Cf:spattercone.SPATTERSTALACTITE. A lumpy,irregular,highly vesiculated, concentrically-layered lava stalactite accumulated fromspatter.Common insidespattercones. Cf: dip-layered stalactite.Aka:granularconcentricstalactite,thickbodied lava stalactite.SPLASHCONCENTRIC.Concentricripplesformedina partially-hardened floor by a pieceoffalling breakdown. Occasionally found some distance down-tube fromthesiteoftherockfall.Aka:concentric. SPELEOTHEM. Amineraldeposit formedina cave. Coined in 1952 fromtheGreek"spelaion" (cave)+"thema"(deposit). A generally ac cepted,butfrustratingtermthatdifferentiatesanicicle formed in a cave fromoneformedundera high way bridge -andrestsontheinse cure definitionofa cave.Themostabundantmineral depositedinlavacaves is ice.Nextin orderofabundancearesilicates, sulphates,andcarbonates-thelatterusuallyco-deposited with silicates. Ice, mirabilite,andopalaremoreabundantinlava cavesthansolution caves. Common formsofmineralsdepositedinlava tubesarestalactites, films, coatings, coralloids,andcrusts-lesscommonareanthodites,crys tals, flows tone,stalagmites,helictites,andheligmites. Aka: caliche, cave formation, cave ice, cave stalactite, coating, decoration, forma tion, glaze, ice candle, ice formation,lavablis ter, lava lace,ornamentation,post-volcanic speleothem, secondary, secondary deposit, sec ondary chemical deposit, secondary mineral,secondarymineralization,secondaryspeleothem, secondary stalactite. SQUEEZE-UP.Anextrusionoflavaemanatingfrom a fractureorotheropeninginthesolidi fied surfaceofalava flow, e.g. frombetweenthewallandfloorcrustin a lava tube.Itmaybe bulbous or elongate,andmayexhibit grooves. See also: grooved lava. Aka: lava boil, overflow squeeze-up,tumulusmound. STALACTITE. A generally elongate, pointedortapering, gravity-controlled, objectofdeposi tionthathangs from a ceilingoroverhangingsurface.Astalactiteisnotnecessarilya speleothem. They form in all typesofcaves,aswellasmines, vugs, veins, tunnels,hotsprings,underbridges,andso forth. Coined in 1655 to describemanyexamples,somefromcaves,

PAGE 254

which"...belong totheIcicle class..." (Worm, 1655).Stalactitescomposedofamberat,lava,minerals,mud,peat, pitch,sand,andsinterhavebeendescribed. Virtuallyanymaterialwhichissoluble,orcanbecarriedasa colloidorinsuspension,orwhichmaymeltundergiven conditions,canform astalactite.Cf: helictite. See also:lavastalactite.Aka: cavestalactite,depositionalstalactite.STOPING.Upwardmigrationofachamberorpassagedueto ceiling collapse.Theremaybe acorrespondingaccumulationofbreakdown. See also: collapse. Aka:breakdowndome.STRANDLINE.Thecongealedmarginofa quiescentbodyoflava.Unlikeashelfthatfollowsthehydrostaticgrade, astrandlineishorizontal. Cf: flow line. Aka:bathtubring, high floodmark,highlavamark,highstand,shoreline, solidified edge,standline,thinmini-ledge, tidemark.STRETCHEDLAVA.A bodyofpartiallyhardenedlavastretchedbetweenpointsorzonesofattachmentwhichmovedapart.Distinctivestretchmarksresult, which generally reflect(amongotherthings)viscosity, vesicularity,andalways directionoftension.Stretchedlava iscommonbetweenpatchesofslumpedlining whichseparatedandbetweenwallandsubsidingfloor.Iftensilestrengthisexceeded,stretchedlavaprojectionsresult(see below). Aka: pulled pahoehoe, pullmarks.STRETCHEDLAVAPROJECTION.Projectionsresultingwhenstretchedlava is pulledapart.Thetornshapesrangefrom thread-likestrandswithneedle-sharppointsto wide, curtain-like,sharp-edgedsheets. Theyaretypicallyelongateandsymmetricalintransversesection,withvaryingdegreesoftaperfrom base to point.Unlikestalactites,withwhich theyareoftenconfused,theyneednotbeverticallyoriented(oftenarenot),andhavesharppointsoredges. Aka: bladestalactite,drooping"hands,"needle like lavastalactite,pulledstalactite,ribbon lavacicle,ribbonstalactite,shark's-toothprojection,sharktoothprojection,sharkteeth slickenside,sharplavastalactite,sharppointedlavatiteblade,stretchedstalactite,tear-tite, treaclylavastalactite.SURFACETUBE.Thehardenedouterjacketofanelongatelavatoe,orlobe,thatdrained. Typi cally,surfacetubeshavea uniform wall thicknessandsemi-circular cross section, flat sidedownagainstthesurfaceon whichtheyfonned.Branchingis commonandbroadlydendritic247Larsonnetworksarenotunusual. Widthsrangefrom adecimetertoseveralmeters.Lengthdependsprimarilyonanuninterruptedsupplyoflavaandrangeswidely.Surfacetubesarefarmorenumerousthanisgenerally realized becausemostaresubsequentlyburied. See also: lava tube. Aka:miniaturelavabrooklet,miniaturetube,minorlavatube,surfacelavatube,terti ary lavatube.TEATSTALACTITE. A lavastalactiteshapedlikeaninvertedcone,havinga generallycirculartransversecross sectionanda drip-sized tip. Aka: conical ceilingstalactite,cowteatstalac tite. TERRACE. A wide bench.TONGUE.Anelongate,raisedflowoflava.Tongues in lavatubesusually have a cauli floweraasurface. Aka: flow tongue,lavafloor tongue, lava ridge, lava toe,narrowlobe. TRAVERSELENGTH.Thelengthofthetraverseonwhich a cavemapis based. RougWy,thetotaldistanceonewould travelifvisiting allthecave'spassages. Cf:maplength. Aka: continu ouslineardevelopment,lineardevelopment, slope length,sportlength,totalsurveyedtraverse,trueslope length.TRENCH.(a) A collapsetrench.(b)Anemptylava channel. Aka: lavatrench.Itcanbedifficult todiscernthedifferenceifrelativelyoldanderoded. TRIBUTARY TUBE. Alavatubethatfeeds intoanother.Aka:coalescenttube,confluentbranch,confluenttube,convergentbranch,feeder tube, ingressivebranch,side tube.(Truetributariesarerare;tubeswhichappeartobetributariesareusuallyre-entranttubes.)TRUETRENCHTUBE.A lavatubeformed by roofingoverofalavachannelconstitutinga single flow unit.TUBE-FEDPAHOEHOE(lava flow). Tube-fed pahoehoelavaflowsarecharacterizedinternally by lavatubesystemsandlayered struc ture.Externallytheyarebroadandthin, with a broadlydendriticplan,featheringoutfrom low broad ridges overlyingmasterlava tubes.Largecollapsessinksandtrenches, chainsofhornitos,skylights,andsmallrootless lava flows (see rootless vent)arecharacteristicoftheupperandmidpartsoftheflow. Various expressionsofinflation, like tumuli,pressureplateaus,andresidual depressionsondecameterto kilometer scalesarenumerousattheextremities.Tubefed-lavareachessitesso far

PAGE 255

6thInternationalSymposiumonVulcanospeleologyremoved fromthevent only because lava tubes so efficientlycarrylava with little lossofheat. TUBE-IN-TUBE. Asmallertube resulting from medial closureofinwardleaning levees, onthefloorofa lava tube,andusually consistingofthelastflow throughthetube.Theoutersurface is typically caulifloweraaandtheinnersurfacemaybe grooved. Complete tube-in-tubesareseldom long,butlengthy sequencesoflevees, roofed sections,andcollapsed sectionsarecom mon. Aka: coffin, encased tube, hollow tongue, internally developed tube,mummy'scase, sec ondary lava tube, tube lining. TUBULARLAVASTALACTITE. Atubularsta lactite composedoflava. Mostareslightlyanduniformly tapered.Theirdiameter, averagesabout0.7centimeter,andoftendecreasesslightly towardthetip,butextremes from0.4to1.0centimeterhave been noted. Lengthsrangefromtheperceptible to ameterandmore. The tip may be hemispherical,oropen for a considerable distance,buttheinterior is usuallyanentrainmentofelongated vesiclesandsepta, Theoutersurfacemaybe macrocrystallineandpartiallyorcompletelymarkedwith shallowannulargroovesthoughtto be growth incre ments. They often serveasconduits for consid erable quantitiesoffluid lava. Stalagmitesof100 timesthevolumeofcorrespondingtubularstalactitesarenotuncommon. Frequentlyoccurringincombination with lava helictites, theymaybe crooked,straight,branching, bot ryoidal, deflected, twisted, even deflated,orcombinationsoftheabove. See: pipestemsta lactite, sodastrawstalactite. Cf:runner.Aka: bracken-like stalactite, conduit form, conduit speleothem, hollow dripstone tublet[sic],icicle likependant,icicle-like stalactite, icicle-like projection, irregulartubularlavaciele, lavaci ele, lava formation, lava pipestem, lava straw, lavatite, rod stalactite, roof cicle, small stalac tite, soda straw, soda-straw ciele, soda straw-diameterstalactite,strawstalactite, thin spindly lavacicle,tubularlavaciele,tubularsodastrawstalactite,tubularsoda straw-like stalactite tu bular stalactite, wornl, worm stalactite. '248TUBULAR STALACTITE. A hollowstalactiteofnearlyuniformdiameterdepositedfromahangingdropofliquid.Bothmineralandnonmineraltubularstalactiteshavebeende scribed. See also:tubularlavastalactite.TUMULUS. A domingorraisingofthesurfaceofa lava flow, typically ellipticalinplanandlen ticularinsection, caused byhydrostaticpressureofunderlying fluid lava (e.g. from alavatube),orhorizontalthrustingandbucklingdueto differentialmovementbetweenthecrustandunderlying lava. Theyareacharacteristicofthedistalpartofa well developedlavatubesystem. Tumuliarenotusually hollow like blisters, al though theymaybeasaresultoflavadrainingoutaftertheirformation. Atumulusmaybe residual, i.e.surroundedby collapseresultingfrom differentialdrainingawayofunderlying fluid lava. Gradational topressureridge. Cf: lava blister. Aka:agglutinatepile, hollowtumuIus, lava bubble, lava dome,pressuredome, schollendom,stonyrise,surfacedome, trench. UNITARY TUBE.Anessentiallyunbranchedlava tube. (Strictly speaking, onlythesmallest,mostrudimentarylava tubesremainunbranchedifflowissustained,butsegmentsofmajortubesandsystems without knownbranchesofrela tive consequencearecommon.) Aka: simple Oava tube), unbranched,unitaryconduit.REFERENCES:Curl,R.L. (1964):Onthedefinitionofa cave.BulletinoftheNSS26(1):1-6.Larson, CharlesV.(1989):Preliminaryglossaryoflavatubefeatures.Vancouver,Washington:Western Speleological SurveyBulletinNo.86.Larson, CharlesV.(1990):A glossaryoflava tube features. InNSS1990 Convention Guidebook,Yreka, California, ed. Victoria Johnson, pp21-55.Huntsville,AL:National Speleological Society. Larson, CharlesV.(1990):lllustratedglossaryoflavatubefeatures. Vancouver, Washington:Western Speleological SurveyBulletinNo. 87.

PAGE 256

The Rift CavesinJapanTakanori OgawaJapanVulcanospeleological Society,c/oNipponAdventureClub, Daiini-HayashiBuilding,3-7-7Iidahashi, Chiyoda-Ku, Tokyo 102,JapanAbstractInJapanmanycraterseruptedfromfissurescanbeseenonthevolcaniclinefromMtFuji toHachijouIslandinthePacificOcean.Butfissureeruptionshavenotalwaysleftriftcaves.RecentlyIhaveinvestigatedthisareaandrecognizedfourriftcavesatMtFuji,threeonMiyakeIsland,andthreeonHachijouIsland.OnMiyakeIsland,alongcrackandoutpouringoflavaoccurredatthetimeofthefissureeruption.Itis possible toseeriftcavesonlyinthecaldera.Inriftcaves,thinlycoatedlavamaybeseenonthescoriaceouswallofthecavityandalsosidewaysextensionsbygaspressureonthesurfaceoftheearth.Ihaveidentifiedtwotypesofriftcaves: gasextendslaterallyandcausescavitationwithsubsequentblowout; gasformedthecavitywithsubsequentblowout.IntroductionRiftcavesarerecognizedatMtFuji,HachijouIsland,andMtOyamaonMiyakeIsland,Japan.Inthecourseofourresearchwe foundcommoncharacteristicsasindicatedbelow.MtFujiInthisvolcanoarefivelinesoffissureeruptioncraters.Fourriftcavesarelocatedintwooftheselines.1.IceFissureCraterCave,HyouketsuThiscaveislocatedatanaltitudeof1,440meters,northeastofMtFuji.Inthisarea(Figure1)fissureeruptioncratersarelocatedin alineaboutonekilometerlong.ScoriawaseruptedfromYumiizukavolcano,andathicklayerwasformedatKooriike,HakudairyuooVolcano.Fromthecraterofthelatter,asmalllavaflowerupted(14C 1,230BP).Theriftcaveformedinthiseruption(Figure3)hasalargecavityatitsbottom.Lavacrustattachedtothescorialayerhaspeeledofffromtheceilingandbothsidesofthisriftcave. Ontheflowsomescoriaisincorporatedinthelayer.2492.KomitakeRiftCavesNo.1,No.2,andNo.3Komitake-FuketsuLavaFlow(Hyo),KenmarubiLavaFlow(Ken).OonagaremaruyamaLavaFlow (Ona)eruptedduringthesameperiod. As showninFigure1,theHyolavaflowissmallbutcontainsfissureeruptioncraters.Threeriftcavesarepresentat2,063to 1,980metersabovesealevel. WewereunabletoenterCaveNo.1becauseitis filledwithsolid icefromendtoend.No.2andNo.3Caves(Figure5)arealso ice-filledattheirbottomswhichthuscannotbeinvestigated.Inthesecaves(asintheothers)thescoriawalllayersareslightlycoatedby lava, someofwhich peels off.Inthelowerpartsofthecaves, aredscorialayerispresent.ThisalsooccursinotherriftcavesinJapan.Athickscorialayerexistsfromheretotheupperarea.Snowmelthascarriedthislayertothelowerareawherethecaveswerecreated.HachijouIsland3.EigouNo.1RiftCaveThisriftcaveislocatedatthenorthernfootofMtHachijoufuji(855.4meters)onHachijouIsland.Riftcavesherearefoundinfissureerup-

PAGE 257

6thInternationalSymposiumonVulcanospeleologyIIII 2345Km .'i), vv,,: ,.,II'I Ii JI '. ./,I:,.I,I jRI!1 .. \'D '. ,N",'rNf,lt ..:\.....: ./....... \":V f, .. :'/ I .' Ii I. v.\.' i'\"8)/ .....,... : rJ'IP .J.: !!/.r: \ til! :,: /.)'..-:.. /Nw. .. .,0 . / ',. Figure1-Geologicalmapofthe northwestern sectionofMtFuji showing the locationsofI.HyoketsuandKomitake rift cave areas. .250

PAGE 258

OgawaFigure2-MapofHyouhetsu area.251

PAGE 259

6thInternationalSymposiumonVulcanospeleology L."A. .),tliliJlI: 1."\0m m AW"$LevelA . LeYel C .; .., . LevelD5 ...Snow IceaIcepillar l:.l ScoriaBc ProfileSurveying: O1ikyu Club IL-_...l..-------.LI_-1..1_-..11 __ ------,-,1 olO1520 PlanFigure3-Hyouhetsu Ice Fissure Crater Cave. tioncratersformednearthe beach (Figure 6). Among these, theriftcaveatthe lowest level has a deepshaft(Figure7)andhasthesameinternal appearanceasotherriftcaves (Figure 5). This rift cave is one oftheworld'smostcomplex examples because cavities extend verticaIlyandareinter twined. Approach is difficult becauseoffrequent peelingofthe walls. Howevertheoriginal condition oftherift cave has been maintained. The horizontalpartisnarrowandthecavity ex tends vertically (Figure 8).ThisissimilartotheNo.5RiftCaveonMiyakeIsland(Figure11).Becauseofsomeconstructionwork,theoverburdenofthisriftcaveisexposed.Itsthicknessisover20meters.Aswehaveseenatotherriftcaves,averythickscorialayerispresent.4.EigouNo.2RiftCaveTheentranceofthis smallshaftis locatedjustabovetheroadwhich circlestheisland.Ithasnotbeen investigated.5.EigouNo.3RiftCaveThisistheuppermostriftcave inHachijouIsland(Figure6).Itextendsintwodirections.MiyakeIslandThe1940 fissureeruptiononMikakeIslanddidnotcreateriftcaves.The1983fissureeruption, whichextendedmorethan4.3kilometers,createdariftcave onlyinitscaldera.CuevasNegrasonTenerife,CanaryIslands,wereformedthroughthesameprocess bythe1949eruptioninLasCanadascaldera.Somecondi-252

PAGE 260

Ogawa1020 30m......... Profile iII.N.Survey:Olikyuu chili o 1-1------->, I 5.,"f-/c=::=:==\C ----==--=--------=---1-1-,fj....:=.-----;I I Ii F==>--i.;.....1---'.="""'l:::".... i---------',011"---',\ IJ I==Gir 10. 7., Figure5-KomitakeRiftCaveNo.2andNO.3.253

PAGE 261

6thInternationalSymposiumonVulcanospeleologyIIIIII ----;50lD Figure6-Mapofthe rift caves areainHachijou Island.254

PAGE 262

OgawaProfile, l tCave,Figure7E'19OU No1 R'fi 255

PAGE 263

6thInternationalSymposiumonVulcanospeleologyProfiIe \ I \,-,'----------.4/11f------=------:-r:---i+Z IIIIIII 1:------: o -----;15 2 O. N.N."'-------1 10L 12_Figure8-EigouNo.3RiftCave.256

PAGE 264

OgawaWidth 60Cll1 lIeight1.7mWidth40an --+Width30an-+ I_LI .-11---L-1J.,1-='1l__ ---;1. 10mo :l 4.7m14mo{] -'::----,J:I=',L..&-,20m 10m5m016m 8.9m9.1m33mFigurelO-A-3RiftCave Profile Figure12-B-9RiftCave ProfileW1.53mPlan.._---26'--_= :-----/ 9.6mHB.18m H5.06mWO.93m WO.60m H8.0019.0mProfileN15.6mCross18m20m10m5 ht' I 1& Figurell-B-5RiftCave.257

PAGE 265

6thInternationalSymposiumonVulcanospeleologytionsofthecalderacanbe consideredimportantfactorsinthecreationofsuchriftcaves. 6. A-3RiftCaveThisriftcave(Figure10)hasa33-metershaft.Itslowerpartextendsintwo directions.Thiscavewasformedbygasmovinglaterallyatthetimeoferuption.Someofitsterminalportionisnarrow,withawidthof30centimeters.Thecavityisformedatthenarrowerpartandextendedhorizontally.7. B-5RiftCaveThisriftcave (Figure 11) issimilarto CuevasNegras(Tenerife,CanaryIslands), Komitake Rift CavesNo.3and4,andEigouNo.3rift cave.Itscavity extends only horizontally.Inthenearerpartoftheentrancewecanseetheportionpenetratedby gas like a hall. Becauseofthenarrownessofits end, wecannotenterit.Fineashhasaccumulatedonthewallandfloorasaresultofitsblowingupfromthelowerendofthecave.Factorscommonto allriftcavesseenhereareasfollows: Lavawaspaintedslightly onthesurfaceofthescorialayerandformed acrustwhichcaneasily be peeled away. Scoria layersareexposed inmanypartsofthe cave becauseofthepeelingoffofthecrust. 8. B-9RiftCaveThisriftcave is verynarrowbutthelowerpartis a little wider (60 centimeters) (Figure 12). At its far endaretwo pipe-like shafts,butitisnotpossible toenter.258ConclusionThroughtheseexplorations wehavefound con ditionscommontoriftcaves inJapan.Riftcavesarecreatedonlyinthickscoria. Scoriamayholdmorewaterthanlavaandthiswaterbecomes gaseousduringaneruption.Justasinlavatubecaves,lavapaintedonscoriacreatesacrustwhich easily peelsofffromthescoria side becauseofwatervaporin the scoria. Alsoinweldedtuffcaves,gascollectsbehindthecrustandmakessmallcavities like pockmarks.ReferencesAramaki, S.andY.Hayakawa(1984):3rdand4thOctober 1983 Miyakeshimaeruption.JourVole. Soc.Japan2ndSer. (29) S24-S35. Arana,V.andJ.C.Carracedo(1978): Los VolcanesDeLasIslasCanariasI.Tenerife92-95 Ogawa, T. (1971):Lavacavesofvolcano Fuji. ResultofCo-operative ScientificStudyofMtFuji. 38-45 Fuji KyukouCoLtd.SanMiguel DeCamara,M.andT.Bravo(1967): CatalogueoftheActive VolcanoofTheWorld XXI Hoyo Negro7172InternationalAssocofVolcano. Tsuya, H. (1941):TheeruptionofMiyake-shima, oneofthesevenIzuIslands,in1940 I, II.Bull.Earthq. Res. Inst.(19)263-294, 492-522. Tsuya, H. (1971): TopographyandgeologyofvolcanoFujiResultofCooperative ScientificStudyofMtFuji. 1-127. Fuji Kyukou Co. Ltd.

PAGE 266

Floor Modifications in Small Lava TubesLuurtNieuwenhuis,NSS6708POBox2353,Vancouver, Washington 98668-2353AbstractMoltenlavasarethixitropic liquids:theyhavealowerviscosity while flowingthantheyhavewhenstationary.Thischaracteristicaffectsthepassageshapeandthefloorstructureoftheresultanttube.Theviscosity effectisalso responsible fortheexistenceofarelationshipbetweentheslopeofthegroundandthedepthofthelavarequiredtoflowoverit.NumerousstudiesbyShawet ai.(1968,etseq.)onHawaiianlavashavedemonstratedthatlavaviscositythinswithincreasedmotion.Thehighestviscosityisdemonstratedbylavasthatarenotin motion.Thisassumes,ofcourse,thatotherfeaturesoftheflowsuchastemperatureanddissolvedgascontentareheldconstant.A fluidwiththisqualityofflow-relatedthinningiscalleda"thixitropicliquid."Othernamesappliedtotheseliquidsare"non-Newtonianfluids"andliquidsthatbehavelikeBinghambodies.ThedetailsofthixitropicfluidsasappliedtolavaflowswasinvestigatedbyHulme(1974).Anotherwayofdescribingthispeculiarbehavioristosaythataslavamoves faster,itbecomesmorefluid,whichenablesittomove faster, whichmakesitmorefluid, whichenablesit...Ofcoursethereis alimittoall this.Theeffect ismostpronouncedinslow speedandstationaryfluid.Twointerestingcharacteristicsofthisthixitropicbehaviorareexhibitedinlavaflows.Oneisthatoncestopped,thelavacanremainmoltenwithoutstartingto flowagainaslongasitdoesn'tcoolandcrystallize.Ifachangecomes,suchasasurgeoflavafrom up slope,thelavacanremobilizeandstartflowing again.Theotheristhatthereis a critical depth-to-width-to-slope relationshipthatdetermineswhetherornotthelavawill flow.Hulmederivesratiosbetweenflow width, flowdepth,andleveewidthandrelatesthemtotheslopeofthelandandthephysicalcharacteristicsofthelavaflow.Oneobviousrelationshipbetweentheslopeofthelandandthelavaflowingoveritisthatwhenthelavaflowsovera sectionofsteepslopeitwill flowfasterandbecomethinner.Thethicknessoftheflow will become lessandthecross sectionof259theconduitnecessarytotransporta givenrateofflow will also become less.Theconverseisalsotrue.Whentheslope isflatter,theflowwillbe(mustbe)deeperinordertomaintainmotion.Thisis amoresubtlepoint,butisborneoutby fieldobservationsinHawaii.Itwasstatedearlierthatliquidlavacanstopflowingandsetupeventhoughithasnotcrystal lizedintoa solid.Thisisthephenomenonthatgivesrisetotheoriginalchannellevee development.Theflow movesoverthelandandtoalesserdegreespreadslaterally. Aswasmentionedbefore,thereis a criticalthicknessrequiredfor a thixitropic fluidto flow downa slope.Theflowthinsinthedirectionofmovementunlessthereisareplacementoflavafromupstream.Thelavaatthesidesoftheflow willthusmoveuntilitbecomes toothinfor movement.Thenitwillpauseandgel.Thelavabehindthelevee will pileupuntilitisthickenoughto moveagain.Thisrequiredthicknesswillbeleastinthesteepestdownslope direction.Thelaterallevees willremain stationary aslongasthelavavolumedoesn'tincreaseandslowly crystallize.Surgesordecreasesinthequantityoflavabeingdischargedthatcomeaftertheleveeshavestabilizedtaketheformofthinoverflowlayersthatbuilduptheleveesoroflower ledge leveesthatform insideofthefirst-fonnedlevees.Smallsurfacetubesoftenformnearthefrontoftheflow,branchingandrejoining, a behaviorthatis called"anastomosing."Thisspreadslavaoutoverthewidthoftheflow front.Thesesurfacedistributiontubesoftenhavea flattened, half-el lipse cross section. Theyarecomparativelysmallandshallow,andareoftennearthelowerdepthlimitsthatpermitlavaflow.Their"distributiveness"resultsfromthesmallquantityoflavathat

PAGE 267

6thInternationalSymposiumonVulcanospeleologyproducesthem.Therelativelyshortdurationdoesn'tlead to depth, a significantly flow-modified shape,ortheextensive liningandoverflow featuresthatareassociatedwithmajorconduits.Thesurfacetubeoftenhasasmoothfloorandismarkedby solidified flow features alongthefloorandlowerpartsofthewalls. As thelava supply dwindles,thelevelfrequentlyfluctuateswithminorsurgesandrecessions. These fluctuations leave ridgesofaccretion (lava buildup) alongthewalls.Whentheflow falls belowthecritical thick ness necessary for. motion,theflowing slowsandstops. Thisphenomenonis related tothethixitropic behaviorofthelavaandisnotaprimaryresponse tothecoolingandcrystallizationofthelava.Thesizeofthelava conduit is related tothecharacteristicsofthelavaandtheslopethatittravels on.Thedepthoftheliquid lava within the conduit when flow ceases is also a factorofthe slope. Lava flowing on a very flat slopemust(accordingtoHulme'swidth-depth-slope interrelation ship) be relativelythickinordertomaintainmotion.Theroof layerofasurfacetube formed in such a flow will often beabout30centimetersthick.Theflowthroughtheconduit will be slowandthecross sectionofsuch a tube will often be signif icantly widerthanhigh,withratiosof3:1 to 4:1 occurring commonly.Theappearanceofthecross section is a little likethetophalfofanellipse. Such a slow-flowing surface tube often shows astrongtendency towardsstreambraiding.Ifthebraidsareshortandclose together, pillars form inthemiddleofthe passage. Sometimestheonly indicationofa braidthatdidn'tquitedevelop is a lowered ceilinginthe middleofthepassage. Flow on a gentle slope requires a deep layeroflava. When the supply dwindlesandtheleveloflava in oneofthese tubesstartsto decrease,itcaneasily drop belowthecritical value needed tomaintainflowandlowered viscosity.Therewill still be molten lava onthefloorofthetube, possibly even to a depthofa fewmeters-itjustwon'tbe flowing. This phenomenon can be seen inthedeep contrac tion cracks on the floorsofsomeofthese tubes (3centimeterswideby75centimetersdeep). Another indication isthata cross sectionthroughthetube looks likeanellipsethatwas partially filled from the bottom, often withacuteangles between the floorandwalls.IntheTroutLake caveareainWashington, Resurrection Caveandmanyofthesmall caves intheeasternendofthevalley, such as MasseysBarnCave,arevery clear exampleofthese cave-forming dynamics.260Asituationthatisoftenfoundinsmallanastomosing cavesonsteeperslopes isthatsomepassagesaremqchlessslopedthanothers.Thesituationdescribed above also applies here;smalloverflow tubesandsidebrancheswilloftenbepartially filled withtheremnantoftheirflows. Although connected tothemainconduit,theyfail todrainfully becausethethixitropicnatureofliquidlavameansthattheshallow overflowsandsidebranchesgelmoreeasily.Thegradationbetweensurface(distribution) tubeandlargemain(primary)conduitis gradu31 andreflectsthedifferentfunctionofeach. Attheflow front,lavatendstopushoutinall directions, feeding a fan-shaped lobe.Theconduittendsto form a wide, shallowshapeandthedepthofthelava belowtheconduit isthinandclose totheminimumnecessary toenableflow. As thefrontoftheflow passes downhill,thesidebranchesofthelobe stop movingandeventually crystallize, whiletheinteriorshapeofthetube becomesmoreregularasthethicknessoftheflow increases. Whilethewallsarelargelygelledmotionless,surgeswill easily remobilizeportionsofthewallsmakingbranchingpassageseasier.Oncethewalls crystallize,surgeswilltendtocoatthewallswithliningsandcoverthecaveroofwithoverflows.Theseactivitieslead totheformationofamoreregularpassageshape.Alloftheinternalmodificationfactorscombinedwillresultin apassagethatisproportioned1:1oroftenevenhigherthanitis wide. Asealandpluginalavaconduitcanforminseveralways.Afterthecave-formingflowstops,extensivecoolingoftheceilingoccurs.Thedevelopmentofcontractioncracksinthesolidifiedbasaltoftheceilingmaycausea collapsewhichblocksthelavaconduit.TheconnectionbetweenNewCaveandWildcatCave,andbetweenJugCaveandMikes Caves,aretheresultofsuchplugs.Thelastdregsoflavawhichmovedownthetubepondupbehindthisblockage. Alittlebitoflavamaystill flowthroughthedam,ascanbeseeninLavaBrookCaveatLavaBedsNationalMonumentinCalifornia. Another scenario is responsible fortheforma tionofatruelava siphon.Asthelava flowsoverashortlevel place,thechannelconformstothegroundcontours.Afterroofformationis com pleted,someportionsoftheroofthickenmorethanothersandjutloweroverthelavastream.A loweringintheflow level occursduringthelateeruptivestages.Ifthedepth-to-flowratiopassesthecritical

PAGE 268

depthfor whichmotiontakesplace,thelavastopsandgels. Veryoftenthefloorwherethisoccursinalavatubewillshowthevery deep,narrowcontractioncrackscharacteristicofthemassive coolingofaone-meterormorethicknessoflava.NewCave,justdown-slope fromthemiddleentrance,shows a good floor which,ifa little higher, wouldmakeagreatsiphonseal.ThelowerendofJaRCaveatTroutLakeis probably atruesiphon,thoughnocaverskinnyenoughhasbeenfound to verify this.Ifthereissomemovementoflavathroughthesiphonbefore full solidificationsetsin,theresultwill be ripplesofcrystallizedscumbuildingupinthelake.Theysoonhardenintoapassagefloorthatcompletely blocksthecave.Thesefeaturesaresometimesreferredtoas"festoons"andcanbeseenatthelowerendsofCheese CaveandDavidsDenatTroutLake, Washington. Ararefeatureresultingfromthethixitropicnatureofmoltenlavacanbeseenin Wildcat CaveatTroutLake.Thiscave exhibitsmarkedshelvesalongthewalls. Wide, deep(3x50centimeters)contractioncracksindicatethattheseshelves cooled fromonehomogeneousunitandarenotcomposedofconsecutively builtuplinings.Thesurfaceoftheshelfis rough,withatexturethatis easilydistinguishedfromtheadjacentupperwalls.Thespaceinthecenterofthepassage,betweentheshelves, consistsofa vertically sidedtrenchuptothreemetersdeep.Thewidthoftheshelves decreasesdownslope untiltheybecome indistin-261Nieuwenhuisguishable.Thetubeitselfalsodecreasesinsizedownslopeandendsinalavaplug.Theshelves formedwhentheflowinthetubewashaltedfor a periodoftimeneartheendoftheeruption,possiblybyatemporarybreakdownblockageatthecave'slowerend.Thelavalevelduringthehiatuswasnothighenoughto fill WildcatCave completely, hencethespacebetweenthetopoftheshelvesandtheceilingofthetube.Thethixitropiclavastiffenedwithoutsolidifying com pletely.Whentheflowbeganagain.Thelavainthecentermobilized firstandcuta deep verticalchannelinthemassthathadgelledduringtheperiodofnoflow.Theconcurrentsealthatdeveloped betweenWildcatandNewCaves held whilethelavadrainedaway;nonewlavacamefromupcavetoaffectthefinal flow.Theperiodofstagnationwas longenough,andtheslope shallow enough,thattheshelvesattainedenoughrigidity toretainstructuralidentitywhenthepassagecenterdrainedaway.Theemplacementoftheshelvesandlava sealsmarkthefinal motionofthelavainthisportionofthelava flow.Thethixitropicnatureoflava(thatpropertythatmakesitmorefluid while flowingandthickerwhilestationary)canthusbeseento beanimportantfactorintheexplanationofwhysurfacedistributiontubeshavewide passages, low ceilings,andflatfloors,andhowsuchflow-thinning behavior explainssomeoftheinternalfeaturesencounteredinlavatubes.

PAGE 269

Formation Mechanism of Cave Systems Based on the Joining of Unit CavesTakashiOhsako,NSS32260JapanVulcanospeleological Society, c/oNipponAdventureClub, Daiini-HayashiBuilding,3-7-7Iidahashi, Chiyoda-Ku, Tokyo 102,JapanAbstractA formation mechanismofhorizontally complex tunnel-shaped lava cave systemswithouttracesoflava flows related to cave formation was proposed.Theformation mechanism was discussed qualitativelyinconsiderationofrheological propertiesoflavaandmorphologyoflava caves (growth directionofunitcaves, inside morphologyofunitcavesata joining point, astateofcollapseofunitcavesata joining point).Theformation mechanism was discussedusingthecavecrusthypothesis because traditional theoriescannotexplainthelava cave systems.Inorderto establishtheformation mechanism, only tunnel-shaped lava caves formed owing to cavecrustwere dealt with. Moreover, to simplify discussionofit, thispaperstudiedthelava cave systems composedoftwounitcaves.Theformationmechanism.iscomposedofcoupling joining,penetrationjoining, buoyancy joining,andfracturejoining.Furthermore,aT-shapedpas sage,anX-shaped passage,anda K-shapedpassagecanbeexplainedbythefour kindsofjoining.1.IntroductionFigure1-Ideal Behaviorofa plasto-visco-elastic fluid.SHEARINGSTRESS r o 1:'ynp LIOUIDSEMISOLIDSOLID >f..> CIl ou CIlf Z ... a: 0..0.. The purposeofthispaperis to propose a forma tion mechanismofhorizontally complex tunnel shaped lava cave systems. The coalescing drainage model is responsible forsomesmallthree-dimensionallycomplexlavacavesandsome braidedbutnotvertically complex lava caves (J.W.Harter,1974). In this model, therearetracesoflava flows inside lava caves becausethecavesareformed by lava flows. InJapanand South Korea, however,therearehorizontally com plextunnel-shapedlavacavesystemswithouttracesoflavaflows related to cave formation. Con sequently, a new lava cave formation mechanism is necessary to explainthehorizontally complex tunnel-shaped lava cave systelI).s becausetheco alescingdrainagemodelcannotexplain them. To establishtheformation mechanism ofthehorizontally complex tunnel-shaped lava cave systemswithout traces of lava flows,theideaofacavecrustproposed by Ohsako (1982, 1986) is usedasa precondition of discussion. Moreover, to simplify the discussion, thispaperstudiestheformation mechanism of lava cave systems composedoftwo unit caves.262

PAGE 270

2.IdeaofaCaveCrustTheassumptionsusedintheideaofacavecrustwillbedescribedbelow. (1)Lavaflowshaverheologicalpropertiessuchasviscosity, plasticity,andelasticity(PinkertonandSparks,1978).Thatis,lavaflowsmayberegardedasplasto-visco-elastic fluids. As showninFigure1,a plasto-visco-elastic fluidbehavesasa solid, a semi-solid,orliquidaccordingtoshearingstress(M.Reiner,1969).Figure1showsthata solidlavacrust(acavecrust)canbefonnedina flowinglavaregionwherethestressis belowtheyield value.Thisassumptionisthenecessaryconditiontofonnacavecrustandacavecap(ashell-shapedlavaballatthetipofacavecrust).(2) A no-slipconditionissatisfiedontheboundarybetweenalavaflowandacavecap.Thisassumptionisthenecessarycondition tofonna semi-solidlavalayeraroundacavecap.Theadvanceofacavecaptransfonnsthesemi-solidlavalayertoacavecrustowingtodegassing. (3)Thereis localtopographycapableofformingacavecapinalavaflow(K.AdachiandN. Yoshioka, 1973). (4)Lavaismovingduringtheformationofatunnel-shapedlavacave(aunitcave).Thisassumptionisthenecessarycondition toadvanceacavecapmainlyonaccountoftheviscoelasticityofalavaflowandtherebytogrowa cavecrustbehindthecavecap. As described above,theideaofacavecrust(thecavecrusthypothesis)hasadistinctivefeaturethatdoesnotrequirethesolidificationoflavabasedoncooling fortheformationoftunnel-shapedcaves.3.ObservationsofJoiningMorphologyandFourKindsofJoiningThejoiningmorphologyofunitcaveswasobservedfromthepointofviewofgrowthdirectionofunitcaves, inside morphologyofunitcavesatajoiningpoint,andastateofcollapseoftheunitcavesatajoiningpoint. Consequently, from observation,Iseethattheformationmechanismofthehorizontallycomplextunnel-shapedlavacavesystemsis composedofcouplingjoining,penetrationjoining,buoyancyjoining,andfracturejoining. 3.1CouplingJoining3.1.1Growthdirectionoftheunitcaves. Thelinesofgrowthofthetwounitcaveslieona curve.263OhsakoTwounitcavesjoinincoupling.Theunitcaveontheupstreamsidejoinedatthestartingpointofgrowthoftheunitcaveonthedownstreamside. 3.1.2Insidemorphologyoftheunitcavesatajoiningpoint(1)MorphologyinahorizontalplaneSomepassagesnarrowatthejoiningpoint. Somepassageswidenontheupstreamsideofthejoiningpoint. Thelinesofgrowthoftheunitcavessometimesbreakatthejoiningpoint. (2) MorphologyinaverticalplaneTherearesomesharpdropsincavefloor levelandceiling level. Theremainsofa cavecaparesometimesleftontheflooroftheunitcaveonthedownstreamside. Thelavaoftheunitcaveontheupstreamsidesometimesflowsintothepartnearthejoiningpointoftheunitcaveonthedownstreamside. Atthejoiningpoint,theunitcavehasa low ceilingand/orahighfloorwhentherearenosharpdropsincavefloor levelandceiling level. 3.1.3Stateofcollapseoftheunitcavesatajoiningpoint Collapsetendstobefoundwhenthetwounitcavesdonotlieonacurveatthejoiningpoint. 3.2PenetrationJoining3.2.1GrowthdirectionoftheunitcavesThetwounitcaves join ingradecrossing. Thereisthejoiningpointbetweenastartingpointandanendingpointofthefonnationoftheunitcave. 3.2.2Insidemorphologyoftheunitcavesatajoiningpoint.(1)MorphologyinahorizontalplaneAT-shapedpassageisfonnedwhenthecavecapofoneunitcaveapproachestheotherunitcavefromabout90.AK-shapedpassageisformedwhenthecavecapofoneunitcaveapproachestheotherunitcave fromabout0.Figure2 showsaninstanceofa K-shaped passage. (2) Morphologyina verticalplaneSharpdropsincavefloor levelandceiling levelareformedwhentwounitcaveswithdifferentpassagewidthsjoin. Sharpdropsincave floor levelorceiling levelareformedwhenthefloorofoneunitcaveandtheceilingoftheotherunitcavejoinpartially. 3.2.3StateofcollapseoftheunitcavesatajoiningpointA cavecaptendstobefoundwhencollapseoftheunitcaves doesnotexist.

PAGE 271

6thInternationalSymposiumonVulcanospeleologyUNITCAVEA aD---7 PASSAGEUNITCAVEAAUNITCAVEBUNITCAVEBCEILINGUNITCAVEAPASSAGEUNITCAVE8FLOORCD< >(2) BFigure2-Aninstanceofa K-shaped passage.(AJa schematic plan.(BJA schematic cross-section3.3 BuoyancyJoining3.3.1Growthdirectionoftheunitcaves Thetwounitcaves joiningrade crossing. Thereisthejoiningpointbetweenastartingpointandanendingpointofthegrowthoftheunitcave. 3.3.2Insidemorphologyoftheunitcavesatajoiningpoint(1)Morphologyina horizontalplaneAT-shapedpassageis formedwhenoneofthepassagesonthestretchedside isseparated. An X-shapedpassageis formedwhenthepassagesonthestretchedsidearenotseparated.3.3.3Stateofcollapseoftheunitcavesatajoiningpoint. 3.4FractureJoiningIntheabovethreejoiningsthejoiningswithcollapsearedefinedasfracturejoinings. Items3.1.3, 3.2.3,and3.3.3showthatthedeformationrateofthecavecrustsislargerthantherelaxationrateofthecavecrusts.Thatis, a plastic flowofthejoiningpartchangesintoductilefractureunderthiscondition (M. Reiner, 1969).4.JoiningMechanismsofUnitCavesI will propose four kindsofjoiningmechanismsofunitcaves in considerationoftheobservations described in Section 3. 4.1 MechanismofCouplingJoiningFigure 3 showsthemechanismofcouplingjoining. (1) Aunitcave A is formedinalavaflowonthebasisofthecavecrusthypothesisdescribedinSection 2. (2)AnotherunitcaveB developsinalavaflow locatedontheupstreamsideofunitcaveA.(3)Thelocaltopographyiserodedbythesemi solid regionofunitcaveBandthethicknessofthetopography isreducedgraduallyasaresult.(4)ThecavecapofunitcaveB collidesagainstthelocal topography. Weassumeherethatdeformationratesofthecavecapandthelocal topogra phyareslowerthantheirrelaxationrates.(5) Ashearingstressistherebysetupinthecollisionarea.Weassumeherethattheshearingstressis beyondtheyieldstressesofthelocal topographyandthecavecap.(6)Theplastic flowpartofthecavecapextendstotheupstreamsideasthecavecapofunitcaveBadvancesdownstream.Ontheotherhand,theplas tic flowpartofthelocaltopographyextendsfromtheupstreamsidetothedownstreamside. (7)Thecavecapgoesthroughthelocal topogra phy withthelengthofthecapshortenedbytheabove process. (8)Unitcave B willjoinunitcave Awhenthecave capcanwhollygothroughthelocal topography. 4.2MechanismofPenetrationJoiningFigure4 showsthemechanismofpenetrationjoining.(1)Thereis aunitcaveA in lava. (2) Aunitcave BapproachesunitcaveA.(3) The cave capofunitcave B collidesagainsta cave crust (a side wall, a ceiling,ora floor)ofunitcave264

PAGE 272

LAVA SURFACEUNIT CAVE B) _CAVECRUSTDIRECTIONOf ALAVA FlOJ--" SEll-SOLIDREGION )/./.,./ ---PRE-FLO'LAVALOCALTOPOGRAPIlYOhsako(UNITCAVE A'--'-'-----------------------------------LAVA SURFACE ------:::::.:::---....... CAVE CAPLAVA SURFACELOCALTOPOGRAPHYCAVECRUSTUNITCAVE A PRE-FLO' LAVA (CAVECRUSTICAVECRUSTI r-r--, UNITCAVEBFLUIDIZEDLOCAL CAVErJl> )UNITCAVEATOPOGRAPHY-FLUIDIZEDCAVECAP r ------I IIIFigure3-Couplingjoining265(

PAGE 273

6thInternationalSymposiumonVulcanospeleologyFigure 4-PenetratwnJoming UNITCAVEBZFORMATIONyLx DIRECTION,CAVE,OFUNIT CAP" CAVEB\I\I\ICAVECRUST\,I IIII II,III III IIIFORMATION c:;> DIRECTIONUNITCAVE A OFUNITIIIICAVE A IIIIIIIIIIIZYyLxUNITCAVEBzLxCAVECRUSTI ....,V01 T1IIIIIII IIIIJUNITCAVEB..UNIT. UNITCAVE A I:CAVEA IIIIII IIIIIII IIIIII IIIII III:PARTIHERE------:INTERSECTIONLIHE.. . r!::;r PARTIHERE t" > t" ZyyLx zLx -UNITCAVEB---CAVECRUST '-fCAVECRUSTIIIII IIT1IIIIIII I III I c:J. REMAINSOFHIECAVE CAP UNIT CAVE BUNITCAVE A (IIIIIIIIIIIIIIIIII b) IIIII..266

PAGE 274

Awithdeformationratesofthecavecapandthecavecrustbeing slowerthantheirrelaxationrates.(4) Ashearingstressistherebysetupinthecollisionarea.Weassumeherethattheshearingstressis beyondtheyieldstressesofthecavecanandthecavecrust.(5) Slip-linespenetratethecavecrustbecausethecavecrustisthincomparedtothelocal topog raphy,and,asa result, plastic flow occursmoreeasilyinthecavecrustthaninthecaseofcoupling joining. (6)Thecollisionpartsundergoplastic flow, sothatthecavecapmakesa holeinthecavecrustofunitcaveA.(7)Partofthecrustwheretheshearingstressisequaltonearlytheyieldstressesisbentinwardatthesametime.Thisbendisduetothevisco-elasticpropertiesofthecavecrust.(8)Thisbentpartpreventsmoltenlavafrom flowingintotheunitcaves by abandlike constrictionaroundthecave cap. (9)Thisbentpartactsasanadhesiveagentinjoiningthetwounitcaves. (10)Thisbentpartsolidifiesagainafterthecavecaphaspenetratedbecausetheshearingstressis belowtheyieldstresses.(11)Unitcave B willjoinunitcave A inthisway.Ohsako(12)Thecavecapofunitcave Bcannotmakea second holeintheothercavecrust(side wall)ofunitcave A becausethepassageincreasesrapidlyinvolumethroughthejoining,sothatdegassingwillnotoccur. 4.3MechanismofBuoyancyJoining4.3.1FormationofanX-shapedpassageFigures5(a) 5(b)and5(c)showtheformationofanX-shaped passage.(1)Acrustofsolidifiedlavaflow is formedonthesurfaceofastationarylavaflow. (2) Aunitcave Acanriseinthestationarylava(by buoyancy) tocomeintouchwiththesurfacecrustifthebuoyancy force issuperiortothepowerofresistanceduetotheapparentviscosityofthestationarylava. (3) Weassumeherethatthedeformationratesofthecavecrusts(ceiling, side wall, floor)areslowerthantheirrelaxationrates.(4) A plastic flow doesnotoccurbetweenthecavecrustandthesurfacecrustbecausethetouchisnotintheconditionofpointcontactbutintheconditionoflinecontact,hencetheshearingstressisnotlargeenough togenerateplasticflow. (5)Thebuoyancy isgeneratedwhena tensile forceduetotheadvanceforceofthecave cap decreases. SURFACE CRUSTz'(z lIltTCAVEA UNIT CAVE BIII!II__-x-_-UNITCAVEBX:POSITIONOfPOINT CO/lTACT1Il1TCAVE BFigure 5(a) FormationofanX-shapedpassage -Initialstage267

PAGE 275

6thInternationalSymposiumonVulcanospeleology LIlITCA\EA y t-x zSURfACE CRUST -----------UNITCAVE8111111111111111 LIlITCA\EA UNITCAVEB---:INTERSECTIONLINEPARTIIHEREr>ry:PART1HERE r"TyLftITCAVE BFigure 5(b) FormationofanX-shaped passage Intermediate stage lJllT CAVE A y z \JIlTCA\EA SURFACECRUSTUNITCAVE8IIII"I I.-..Jf1 0 -----.;t---;;----it:.T UNIT ... .-...-[ ---:INTERSECTIONLINE PART WHERE r > r y:PARTWHERE r" ryFigure5(c)-Formationofan X-shapedpassage-Finalstage268

PAGE 276

(6)Unitcave Aandunitcave B will overlapeachothercrosswise. (7)Unitcave B rises becauseofbuoyancyandcollidesagainstunitcaveA.(8) Weassumeherethatshearforceactsonthecollisionpartsofthecrusts(thefloorofunitcave Aandtheceilingofunitcave B), sothattheshearingstressis beyondtheyieldstressesofthecrustsofthetwounitcaves. (9)Plasticflow occursontheintersectionline. (10)Theintersectionline obtained bythecrossingofthetwounitcaves developswithforming a closed curve. (11)Thepartwheretheshearingstressisnearlyequaltotheyieldstressisbentdownwardbytheriseofunitcave B. Thisbendisdueto visco-elasticpropertiesofthecavecrust.(12)Thebentcrustofunitcave Breturnstoitsoriginalshape.Thatistheelastic recoilofthecavecrustduetothevisco-elastic property. (13)Thisbentpartactsasanadhesiveagentinjoiningthetwounitcaves. (14)Thebentcrustsolidifiesagainaftertheunitcavehaspenetratedbecausetheshearingstressis belowtheyield stresses. (15)Furthermorethisbentpartpreventsmoltenlavafrom flowingintotheunitcaves.Ohsako(16)Unitcave B comes in touchwiththesurfacecrustsothatthebuoyancyjoiningis finished. 4.3.2FormationofaT-shapedpassage.Figure6 showstheformationofaT-shapedpassage.(1)Weassumeherethatunitcave A isstretchedinthedirectionoftheX-axisandunitcave B isnotstretchedinthedirectionoftheZ-axis.Unitcave Amayberegardedasatubewithoneendfixedandtheotherendfree. (2)Thereis a fixedendofunitcave A inthenegativerangeofX values.Lettheorigin(0)be ajoiningpointofunitcave Aandunitcave B. (3)Items(1)through(9)inSection 4.3.1 occur. (4)UnitCave A is sandwichedbetweenasurfacecrustandunitcave B, sothatthecavecrustinthepositiverangeofX values isstretched,whilethecavecrustinthenegativerangeofX values doesnotcome tobestretched.(5)InthepositiverangeofXvalues,ahighershearingstressissetupinthecavecrustofunitcaveAcomparedtotheshearingstressinthecavecrustofunitcaveBbecausethecompressionstressliesinthecavecrustofunitcaveAwhilethetensilestressisappliedperpendiculartothecompressionstress(S.P.Timoshenko,1952).yUNIT CAVE AUNIT CAVE Bz }----x UNIT CAVEASEPARATED UNIT CAVEA Figure6-Formationofan T-shaped passage269

PAGE 277

6thInternationalSymposiumonVulcanospeleology(6)InthenegativerangeofX values,theshearingstressinthecavecrustofcave Aisequal to oneinthecavecrustofcaveB.(7)InthepositiverangeofX values,anapparentviscosity T/A ofunitcave A decreases with increas ingshearingstressasis evident from Figure1.Ontheotherhand,thereis no changeinanapparentviscosity 1'/B ofunitcave B. Consequently, 1'/B will be biggerthan 1'/A. (8)Unitcave AinthepositiverangeofX values isseparatedfromunitcave B, whileunitcaves AandB inthenegativerangeofX values joininthesamewayastheformationofanX-shaped passage. 4.4 MechanismofFractureJoining4.4.1Fracturejoining in coupling joining Whenthelocal topography is stressed rapidlybya cave capandthereby deformationratesofthelocal topographyandthecave cap exceedtheirrelaxation rates, elastic energycannotbe used up insuchashorttimethrough a plastic flowandhence ductile fracture occurs inthejoiningpart(M.Reiner, 1969). 4.4.2FractureJoininginPenetrationJoiningWhen a cavecrustis stressed rapidlybya cave cap, ductile fracture occurs inthejoiningpartin thesameway asstatedabove. 4.4.3FractureJoiningin BuoyancyJoiningWhen a cavecrustisstressedrapidly byanothercave crust, ductilefractureoccursinthejoiningpartinthesamewayasstatedabove. Whentheshearingstressis beyondtheyieldstress,theunitcavesaredestroyed bythebuoyancy forceactingonthecavecrustsbecause ductilefracturecannotformthejoining sothatlavaaroundthecavescamnotflowintotheunitcaves. Accordingly,itis necessary fortheshearingstressto benearlyequal totheyield stress.5.DiscussionI discuss qualitativelytheformationmechanismofhorizontally complextunnel-shapedlava cave systemswithouttracesoflava flowsrelatedtothecave formation in considerationoftherheological propertiesoflava.Consequently, four kindsofjoin ing (coupling joining,penetrationjoining, buoyancyjoining,andfracturejoining)canbeinterpretedasthefactors inthepresentformation mechanism fromthreepointsofview (growth di rectionofcaves, inside morphologyofunitcavesatajoiningpoint,andastateofcollapseofunitcavesatajoiningpoint)asshown in Table1.Thatis, twounitcaves joinwithoutcollapsewhena plastic flow occursatthejoining point.Ontheotherhand,twounitcaves join with collapse when ductilefractureTable1ConditionsoffourkindsofjoiningDIRECTIONSSHEARINGDEFORMATION-RATEFLOW/OF2UNITSTRESSVERSUSKINDSCAVES r RELAXATION-RATEFRACTUREOFJOININGD 't'y D>RDUCTILEFRACTUREJOININGGRADED 't'y D>RDUCTILEFRACTUREJOININGTWOLEVEL 't' > 't'y DRDUCTILEFRACTUREJOININGCROSSING270

PAGE 278

occursatthejoiningpoint.Furthermore,Iinterpretthatthegeneral formationmechanismofthehorizontally complex tunnel-shaped lava cave systemswithouttracesoflava flows is formed by repetitionofthesamefactorand/ordifferent factorsinthepresentformation mechanism.Uptonow we donotknow how tointerpretcollapseinapassagewithintherangeoftraditionaltheoriesoflavacave formation. Collapse in apassagecanbe partially interpretedbythepresentformation mechanism.Furthermore,wecannow explain a K-shaped passage, a T-shaped passage,andanX-shaped passage, while only a Y-shaped passagehasbeenexplained bytraditionaltheories.6.ConclusionInthepresentpaper,Idiscuss only tunnelshapedlava cavesystemsformed onthebasisofthecavecrusthypothesis.Furthermore,Ideal withlavacavesystemscomposedoftwounitcaves to simplifythediscussion.Underthese conditions, I proposethattheformation mechanismofthehor izontally complex tunnel-shaped lava cave systemswithouttracesoflava flows related tothecave formationiscomposedofcouplingjoining,penetrationjoining, buoyancy joining,andfracturejoining.Thepresentformationmechanismwill be agreathelpinexplainingstructuresofotherhorizontally complextunnel-shapedlava cave systems.The271Ohsakonextstageis todeterminewhetherthecavecrusthypothesis is applicable toanL-shaped passage.ReferencesAdachi,KandN. Yoshioka, 1973:Oncreeping flowofa visco-plastic fluidpasta circular cylinder:Chemical Engineering Science,v28pp125-226.Harter,J.W., 1974: Multilevel lava tubes:Speleo graph,v10pp125-126. Ohsako T.andT. Ogawa, 1982:FormationoflavacavesinJapanandKorea:Abstractsofthe3rdInternationalSymposiumonVulcanospeleo logy. Ohsako, T., 1986: Lavatubeformationdueto a cave crust:Proc.ofthe9thInternational Con gressofSpeleology,p41Pinkerton,H.andR.S.J. Sparks, 1978: Field measurementsoftherheologyoflava:Nature,v 276,pp383-385. Reiner, M., 1969:Deformation,StrainandFlow:H.K. Lewis&Co. LTD., 347 pp. Timoshenko, S.P., 1952:StrengthofMaterials,PartII, New York, 317 pp.

PAGE 279

Lava Tube Formation: A Cave Diver's PerspectiveDennisW.WilliamsIslandCaves Research Center 5385SandLakeDrive, Melbourne, Florida32934AbstractVolcanic geomorphologists have studiedandwrittenaboutlavatubesthatare rehitively dryandabovesealevel.Thereare,throughouttheworld,manylava tubesthatwere formed whensealevel wasasmuchas100meterslowerthanpresent. They were subsequently floodedassealevel roseattheendoftheace age. Explorationofthesubmerged sectionofJamos del AguainLanzarote,CanaryIslands,hasadded overthreekilometersofcave totheseven kilometersofhistorically significant dry passage. Diveable passageterminatesin a lavasumpata depthof70metersbelowsealevel.Hawaiiansnamedthesmall circular pond onthesouthpointofHawaiiLua0Palahemo. Explorationhasshownthatthis pond is theflooded skylightofa lava tubethatextendssouthwardbeneaththeshore lineofHawaiiandcontinuesunderthePacific Ocean for severalhundredmeters.Passageheightsrangefrom onemeterto over25meters. Diveablepassageterminatesin a white calcareoussandchoke. These two examplesillustratethatcave diving researchers havetheability togatherdataon submerged lava tubes. The additional 40%oftube length available forstudyintheCanaryIslandsandthediscovery of a large tubeatthesouthernextentofthesouthwestriftzoneofMaunaLoa havethepotential to contribute toward abetterunderstandingofthegenesisandmorphologyoflava tubes. Theliteratureon lava tube formation is compared with field observations from several submerged tubes with emphasis ontheLua0Palahemotube.272

PAGE 280

Inventory, Evaluation, and Management of Publicly Owned Cavesinthe Western United States and the Impact of the Federal Cave Resources Protection ActJimNielandCave Management Specialist,MountStHelensNationalVolcanicMonumentAbstractOverthepastdecadesmanyinroadshavebeenmadeinthemanagementofpublicly owned cavesinthewesternUnitedStates.NottheleastoftheseistheFederalCave ResourcesProtectionActof1988.Thisact, forthefirsttime, clearlymandatesfederal agenciestomanagecaves. Avarietyofmanagementstrategiesandtechniqueshave been formulated,someofwhicharedescribed inthispaper. Agenciesareovercomingalackoffundinganda lackofqualified cavemanagementspecialiststhroughtraininganduseofknowledgeable volunteers.Thispaper, in ageneralsense, applies managementofallwesterncavesbutspecialemphasisis placedonmanagementoflavatubecaves.PubliclyOwnedCavesTheconceptofmanagingcaves isnothingnew,buttheprinciplesofmanagementhavechangedovertheyears.Caves intheWest were firstmanaged for commercialorrecreational purposes.Insomecasesimprovementswereaddedsuchasstairs,trails, railings, lights,anda guide was pro vided toentertainvisitorsandperhapsevenshareabitofnaturalhistory.Touristcaveswerethenormandtheimprovementsprovided were intendedtoenhancethatuse.Theincentive was two fold: first, provide arecreationexperience for visi tors; second,generateincome to help fundtheendeavor.Notallcaveshadguides,manyweredevelopedasdispersedrecreationsiteswherethepublicwasencouragedtocomeandexplore ontheirown.Thecaveswouldbeadvertisedonmapsandin brochuresandgenerallyattracteda fairamountofuse.Theproblem isthatuse was uncontrolled.Duetotheremotelocations in whichthecavesarefound,vandalismwasa problem.Vandalisminsomecaseswasintentional,butfrequentlywasunintentional.Thetramplingoffloor features,leavingoflitter,useofsmokytorchesorflares,takinga rocksouvenirhome, allcontributedto ageneraldegradingofcave resources. Manyofthesecavesremaintoday open tothepublicastheyhave been foroverfifty years.273Startinginthelate1960s,emphasisbegantobe placedoncavesasanoutgrowthofpublic concern.TheBureauofLandManagement,theForestSer vice,andtheNationalParkServiceintheGuada lupeMountainsofNewMexico developedjointmanagementagreements.Theyagreedto a caveinventoryandclassificationsystemthatwouldbeusedby all.Thissystem,withminorrefinements, is still in use today.Itwasdeveloped forandis wellsuitedforthedelicateandoftendangerouscavesofthearea.In1986theForestServiceandBureauofLandManagementdeveloped directives formanagingcave resources. Fieldunitsweredirectedandgivenguidanceindealingwithcaves.InNovemberof1988,PresidentReagansignedintolawtheFederalCave ResourcesProtectionAct whichmadeitthepolicyoftheUnitedStatestomanagecave resources.FederalCaveResourcesProtectionActTheconceptofcavemanagementhasonly re centlyemergedasa disciplineoflandmanagement.Thecatalystinthisemergencewasthesigninginto lawoftheFederalCave ResourcesProtectionActof1988.Thislawmakesit"thepolicyoftheUntiedStatesthatFederalLandsbemanagedin amannerthatprotectsandmaintains,

PAGE 281

6thInternationalSymposiumonVulcanospeleologytotheextentpractical, significant caves." Before this timetherewas concern,incertaincircles,thatcave resources were being impactedbutanycoor dinated effort to addressthesituationwas frus tratedbythelackofa clearmandate.TheFederal Cave Resources Protection Act of 1988 settledthequestion: nowit'slaw.Itwould seemthatall problemsarenow solved,butthat'sjustnotso.Thereal work isyetto begin. Whentheactwasdraftedtherewas concernthat"protectionandmaintenance"ofevery cavemightbe too burdensomeandthatitwould bebetterifonly "significant" caves fellunderprotectionoftheAct.Insome cases, promotersoftheactfeltthatthis compromise wasbetterthanhaving no caves protectedatallandwere willing to agree tothelastminuteamendment.Thisamendment was advanced largelyasa cost savingsmeasureby agencies,butwill probably prove to be more costly.AstheAct stands, agencies will be required (in a practical sense) to evaluate caves to determineiftheymeetsignificance cri teria. Toimpactcaves before this evaluationanddetermination is made could place agencies into non-compliance withthepurpose oftheact.Itis expectedthatprojectsincaveorkarstareaswill require investigationandevaluation prior to thestartoftheprojects. How willdeterminationsofsignificance be made?TheDepartmentsofInteriorandAgriculturearejointly developing regulationsthatwill describethemethods to be used inmakingdeter minations.Theexact methodsarestillunderde velopmentandwillrequirea periodofpublic reviewandcommentbefore being completed.Itis generally understoodthatanevaluation of cave resources will bethebasis for decisions.Resources to be evaluated will include,butnotnecessarilybelimitedto:biological;geological,mineralogical,orpaleontological; educational or scientific; hydrological, culturalorhistorical; or recreational values. Special considerationmaybe given toareasdesignatedasnationalparksormonuments,areasofcritical environmental con cern, specialinterestareas,researchnaturalareas,andso on when those designations were made in wholeorpartbecauseofthepresence of cave re sources.CaveInventoryProjectsWhile implementation regulationsarein prepa ration,manyofficesaregatheringcavedatausing274theabove criteria. They expectthattheregulationswillbe flexible enough totake.intoaccountlocal differencesincave values. Sincethegatheringofbasicdataforfutureevaluationcanproceed withouttheimplementationregulations,manyareashave decided to activelypursuecave inventories. Inventoriesarebeing performed mostly by vol unteers. MembersoftheNationalSpeleological Societyareparticularly active,aswellastheCave Research Foundation,theIndianaKarstConser vancy,theNorthwestCaveInstitute,PrinceofWales Island Expeditions,andmanyothers. Agen cies generally lack,orhave chosennotto allocate, funding for cave resourcemanagement.Ifitwerenotfor somanywilling volunteers, very little would be happening.Perhapsinnootherresourceareaistheregreaterinvolvementofvolunteers,oragen cies moredependentupontheirsupport,thancavemanagement.Adangerforgovernmentofficialsnotfamiliarwithcavemanagementisassumingthatvolunteershavealltheanswers.Itiscriticalthatmanagersexercisetheirresponsibilitytomanagetheresourcestheyarechargedwithmanagingandnottrytoshiftthatresponsibilityto volun teers.Volunteersareanexcellentsourceofassistanceandcanhelpgenerateawealthofgoodideasthatcanbeimplemented.Theofficialmustalways keepinmindlaws, policies,anddirectivesandmakedecisionsbasedonall factors,notjustlocal public opinion.Themanager'sresponsibilityis tomanage.CaveSpecialistsA difficulty inmanagingcaves on publiclandsis a lackofqualified cave specialists. To be qualified one needs tobea generalist with knowledgeofcave resources, followed byanunderstandingofsurfacemanagement.Additionally, one needsanunderstandingofpertinentlawsandregulationsunderwhichtheiragency works,andhavethepersonalattributesneeded to work with individualsofdivergentinterests.To be successful,anindividual needs technical skill,butequallyimportantis skill in interpersonal relationships. Most cave specialists working for agenciesareindividuals who have come upthroughtheranks.They have generally developedaninterestincaves outsideofwork,manytimesthroughsportcaving. Theinterestincaves is often pursuedthroughspecialized technicaltrainingin geology, biology, orothersciences.Insome cases individuals with

PAGE 282

technicaltraininghavedevelopedaninterestincavesasanoutgrowthoftheirspecialty.Onecananticipatea steadilyincreasingdemandfor qualified individuals toworkincavemanagement.Overthepasttwo decades agencieshavegone from no cavemanagementspecialists tothecreationofpositionsatmostimportantcavesorcaveareas.ToimplementtheFederalCaveResourcesProtectionActitwill be necessary for agreatmanymorepositions to be created. This is goodnewsfor peoplewantingtomakecavemanagementtheircareer. Agenciesarestartingto considerappropriategradelevels for differing levelsofresponsibility. Avarietyoflawsandregulationsexistorwillsoonexistforthemanagementofcaveresources.Theimportantpointtorememberisthatcavemanagementisdynamicandeverchanging.Asnewideasarebroughtforwardandtried,ideasandconceptschangewiththem.Cavemanagementisanemergingfieldofnaturalresourcemanagementandwilltakeitsplacealongsidetraditionalfieldssuchasforestry,range,wildlife,andrecreationmanagement.Traditionalmanagementhasfocusedentirelyonsurfaceresources,cavemanagementfocusesonthoseresourcesbeneaththesoil/airinterface.Thesurfaceandtheundergroundarelinkedanddependentuponeachotherinwayswearejustnowstartingtounderstand.InventoryandEvaluationofLavaCavesWhen a caveinventoryandevaluation process is developeditis usually developed for local use. Variousauthorshave proposed unifiedsystemsfor use across a widerangeofcave typesandgeograph icalareas.Managershave foundthatitis better tocustomizethesystemtomeetlocal needs. Theyhavefoundthattheconcerns formanaginglavatubesarequitedifferentfrom thoseoflimestone caves.Asa result,changesareneeded inthewayevaluationsareconducted.Lavatubestendto be gently slopinglinearsystemswithoutthecomplexity normally foundinsolution caves. Vertical dropstendto be short, lessthan100 feet,andarefound onlyatentrancesandinsomematuretubes subject to erosionalordepo sitional modification.Formationsareless common in lava tubesthansolution cavesandareusuallytheresultofmeltingorextrusion while the tube275Nielandwasforming. Secondary speleothemsarerareduetotheyoungageoflava tubes.Lavatubeshavegenerallybeenthoughtofaslackingininterestandasrobustcavesthatcanwithstandgreathumanimpact.Exactlytheoppositeistrue.Undisturbedlavatubeshavebeenfound tocontaindelicatecoralloidsneartheirentrances,andsometimesatotherplaceswhereevaporationisaccelerated.Theseformmostreadilyonfloorsandlowerwallsurfaces.Inaridareasgypsumflowers,crusts,andseleniteneedlesarenotuncommon.LavastalactitesandstalagmitesarecommonincertaincavesandbecauseoftheirsmallcrosssectionsarehigWyvulnerabletobreakage.Insomecavesthefloor willbeencrustedbysmallsphericalsoflavadripwhichcanbecrushedbycarelessexplorers.Depositsofdrip-erodedvolcanicashorclayoftencoverlavatubefloorsandareasimportanttothebeautyandinterestofthecaveassecondaryformationsaretosolutioncaves.Treerootsareoftenfoundemergingfrom ceilingcracksandextendingtothecave floor. These pro videoneofthefewnutrientsourcesfor caveadaptedinvertebratesandareeasilydamagedbyeithercareless explorersorremovaloftreesfromthesurface. Cave biota is usuallymorescarceinlavatubes due tothelower levelsofnutrientinputbutarehighly evolved. Someresearchersfeelthatonly asmallpartofthepopulationsarefound inthehumanlypassable openingsandthatlargepartsofthepopulationinhabitcontractioncracksinthelava flows.Indesertareaslavatubeshavebeen found to provide refuge toplants,animals,andinsectsthatinhabitedthesurfacewhen climateswerewetterandcolderthantheyaretoday.Themicroenvironmentfound in caveentrancesoftenprovidestheonlyremaininghabitatfor spe cies whichhaveotherwise becomeextinctonthesurface.Packratmiddensanddriedpackraturinecalledamberatisanimportantsourceofinformationconcemingpastclimatesandvegetative types.Ratmiddens indrycaves holdsamplesofthousandsofyearsofvegetative historyasdoes pollen embedded inamberat.Ice depositsduringthePleistocene epoch pro vided awatersource fornativeAmericans. Aroundtheentrancescanbe found evidenceofextensive village sitesandinthecavesarefoundgreatquantitiesofcharcoal from fires built tomelttheice.Thecold-trappingnatureoflava tubeshasmadethemnearly exclusive in thispasthumanapplica-

PAGE 283

6thInternationalSymposium.onVulcanospeleologytion.Inotherareas, suchasHawaii, where surfacewateris nonexistentdueto the porousnatureofthelava fields, earlyhumanscollected dripping water. Because lava caves were a focusofprehis toric use, theyareamongthebest preservedandimportantsites for decipheringhumanhistory.ALavaTubeEvaluationMethodThecommon practice is toevaluatelava tubes using resource categories fromtheFederal Cave Resources Protection Act.Thefollowing system isusedatMountStHelensNationalMonumenttocreatea cave evaluationandclassification matrix. Valuesarecompiled usingtheresourceratingguide.Thematrixis a convenient methodofdis playingtherelative importance of cave resourcesandis helpful whenmakingclassification determi nations.Thevalueofdeveloping resource valueratingsisthattheycanbedone with relatively little field work.AtMountStHelens a groupoflocal cave expertswasaskedtorankcaves accordingtotheirvalues. Followinganextensiveinventoryproject,therewasno appreciablechangeinranking.This showsthatinitial classification is possiblepriorto doinganextensiveinventory.Thequalityoftheproductwill,however, dependupontheuseofknowledgeableexpertsandtheexistenceofsome prior work.ResourceRatingGuideThefollowingratingguideprovides,inasimplifiednarrativeform,briefstatementsthatcanbeusedtoassignavaluetorespectiveresources.Whenviewedinalargermatrixitis possibletocomparerelativevaluesbetweenSampleCaveEvaluationandClassificationMatrixMountStHelensNationalVolcanicMonumentGeologicalEduca-CaveCaveNameBiologicalHydrol-HistoricRecre-Paleontoltional, Classifica-ogicalationalogical,etc Scientific tion Ape Cave2133 342Barneys Cave2 012223 Beaver Cave 4013 33 1 Beaver Bay Cave 301223 3BatCave501 3 451 Breakdown Cave2 01 1 1 1 3 Blue Ribbon Cave2 01 3 4 3 1 Christmas Canyon Cave2 012443 Column Cave 301 1 3 1 3 Dollar-And-A-Dime Cave3'01 4 3 43 Dogwood Cave 1012 213 Duckwalk Cave201 1 1 13 Flow Cave 301 3 3 3 3Table1-Anevaluationandclassificationmatrixis useful for displaying the relative importanceofvarious resource values.276

PAGE 284

caves.Therelative valuescanbeusedasanindicationforcertainmanagementneedssuchasgating,restrictedaccess, specialsurfacemanagement,andsoon.Oneshould usethisapproachwithgreatNielandcautionandnotrely solelyontheratingsformanagementdirection.Goodjudgmentandcarefulanalysisofindividual caves shouldneverbeoverlooked.BiologicalResourcesValueExplanationofValue0Biologicalcomponentslacking.1Biologicalcomponentsexistbutoflowapparentsignificance. 2 Biologicalcomponentspresentandnumerous,sensitivity low.3Biologicalcomponentspresent,numerous,andofmoderatesensitivity.4Biologicalcomponentsnumerousandsensitivetodisturbance.5Biologicalcomponentsverynumerousandhighly sensitive to disturbance.Habitatis critical to species survival.Thecavecontainsuniquespecies,oronesfoundonstateorfederal sensitive,threatened,orendangeredspecies lists.HydrologicalResourcesValueExplanationofValue 0 Hydrologiccomponentslacking.1Hydrologiccomponentspresentbutoflow importance. 2 Hydrologiccomponentspresentbutoflow sensitivity.3Hydrologiccomponentspresentandofmoderatesensitivity.4Hydrologiccomponentsimportantandvery sensitive.5Hydrologiccomponentscomplexandhighly sensitive.CulturalorHistoricResourcesValueExplanationofValue 0Culturalresources lacking.1Potentialforculturalresources low.2Potentialforculturalresources moderate.3Culturalresourcespresentorimplicated by historic records.Sitemaybeeligible fortheNationalRegisterofHistoric Places.4Culturalresourcespresentandsensitivetodisturbance.Siteeligible fortheNationalRegisterofHistoric Places.5Culturalresourcespresentandhighly sensitive to disturbance.Siteeligible fortheNationalRegisterofHistoric Places.277

PAGE 285

6thInternationalSymposiumonVulcanospeleologyRecreationalValueValue ExplanationofValue 0 Cave lacks recreational value.1Recreational value low. Littleorno scenic appeal.2Recreational value lowbutreceiving some use. Scenic values low.3Recreational values, scenic values,anduse moderate. 4 Recreational values, scenic values,anduse high.5Recreational values, scenic values,anduse very high. Amajorcaveofregionalornational significance.Geological,Mineralogical,orPaleontologicalValueValue ExplanationofValue 0Featuresofsignificance lacking.1Someinterestingfeatures present.2Featurespresentandresistantto disturbance.3Featurespresentandofmoderate sensitivity to disturbance. 4Featuresnumerousandofhigh value.Featuressensitivetodisturbance.5Featuresrare,valuable, numerous and/orofgreatsensitivity to disturbance.EducationalorScientificValueValue ExplanationofValue 0 Cave lacking educationalorscientific value.1Cave with low educationalorscientific value.2Cave with featuresthatcanbeused for educationalorscientificstudybutareotherwise considered common tothearea.3Cave which provides opportunity for educationalorscientific use. 4 Cave providingunusualopportunity for educationalorscientific use.5Cave withuniqueopportunity forinterpretationandpublic educationorscientific study.CaveClassificationAtMountStHelens cavesareplaced into oneofthree classifications depending upontheresource value. Many different cave classificationsarepossible depending uponthetypeofresources, resource sensitivity,andexpected impacts. No classification systemhasbeen widely employedbutall have certainsimilarities.Itismoreimportantthatsystems278

PAGE 286

NielandCaveClassificationClassExplanationofClassification Class 1SensitiveCaves.Caves consideredunsuitablefor exploration bythegeneralpubliceitherbecauseoftheirpristinecondition,uniqueresources,orextremesafetyhazards.Theymaycontainresourcesthatwould beimpactedby low levelsofvisitation.Thesecavesarenotshownonmapsordiscussedinpublicationsintendedforgeneralpublic usesuchasguides, brochures,andmagazines. Class 2DirectedAccessCaves.Caveswithdirectedpublic accessanddeveloped for public use.Thesecavesareshownonmapsorhavesignsdirectingvisitor access.Frequentlyhaveguidedtoursandartificial lighting. Regardlessofthelevelofdevelopment, public visitation is encouraged.Thecavesmayhavesensitiveresourcesthatareprotected. Class 3UndevelopedCaves.Cavesthatareundevelopedorcontainunmaintainedorminimaldevelopmentsthataresuitableforexplorationbypersonswhoareproperlyprepared.Ingeneral,thesecavescontainresourcesthatresistdegradationbyrecreationaluse. However, public use willnotbedirectedtowardthem.Table3-AtMountStHelens caves are placed into oneofthree classifications. Each classification carries specific management direction.beadjustedto fit local conditionsthantotryfor uniformity.Overtime,asvarioussystemsareemployed,refinementswill nodoubtoccur,makingfuturesystemsbetterthanthose used today.StandardsandGuidelinesA common methodofdescribingmanagementactions is through useofstandardsandguidelines. This allows amanagerto develop a listofstandardactionsthatwillbe applied whenever cave resourcesareencountered.Thefollowing is a listingofstandardsandguidelines common intheNorthwest. Logging, roadconstruction,andotherusesofheavyequipmentaboveorinthevicinityofa cavewithathinroof,oroverthecourseofsucha cave,shouldberestrictedifthereispotentialfordamage. Vegetation inthevicinityofa caveentranceoroveracave'scourse should beretainedifrequiredtoprotectthecave'smicroenvironment. Caveentrancesshouldnotbealteredorusedasdisposalsitesfor slash, spoils,orotherrefuse. Managementactivities shouldnotbepermittedwithinanyareadrainingintoa caveiftheymayaffectthecave ecosystem withsedimentation,soil sterilization,theadditionofnutrientsorotherchemicals,orwillchangethecave'snatural hydrology. Surfacedrainageshallnotbedivertedinto caves. Public access should be limitedifrequiredtopreventdamagetothecave ecosystem,artifacts,orotherfeatures. Thelocationofcaveswillbekeptconfidentialwhenneededtoprotectarchaeological si tes, habitatforendangeredwildlife,sensitivecave biota,anduniquegeological features. Communicationandcooperationbetweentheagency,cavingorganizations,andrecreationistswillbefostered.Exchangedinformationwillnotbemadepublicifitcould lead tothedegradationofsensitive caves. Caves with high resource value, high hazard,orhigh public usewillbe subject to a written cavemanagementplan.Theplanwilldescribe specificmanagementmeasures, methods c;>f implementa tion,anda monitoring plantodetermine effective nessofthemanagementmeasures.Dependinguponthelocal conditionsandtheexpected impacts,manyotherstandardshavebeenwritten.Hereagain,itisimportanttotailormanagementstrategyto local needsandexpected impactsandnotlimitone'sthinkingtoactionswhichhavebeentakenelsewhere.279

PAGE 287

Accurate Survey of a Hawaii Island Lava Tube for the Purpose of Conservation and ManagementDarrel Tanaka Graduate student, Geography Department UniversityofHawaii, Honolulu, Hawaii FredD.Stone Hawaii Community College, Hilo, Hawaii The Hawaii Cave Conservation Task ForceoftheN.S.SAbstractA major projectoftheHawaii Cave ConservationTaskForce isthepreservationofPahoaCave, amajorlavatube inthePunaDistrictoftheislandofHawaii.In1987theHawaiiStateDepartmentsofLandandNaturalResourcesandAgriculturerequestedthatwe accurately surveytheportionofthis cave underlying agricultural lots leased bytheStateto private growers.Theproblemofcaveroofcollapse due to heavyequipmenthad causedthelessees toreturnthelandtotheState.Inordertodeterminewhich survey method wouldmeettherequired accuracy, we comparedthreenon-electronic survey methods: theodolite, plane table,andtripod-mounted compasses. We initially believedthatthecompass method wouldnotbe accurate becauseoftheproblemofpaleomagnetisminthelava rock. We didnotuse triangulation due to time factorsandoccasionalnarrowpassages.Thetheodolite, while givingthehighest precision for individual readings,hadthegreatestclosure error: 18.7 meters. The plane-table alsohadanunaccept able closure error: 11.4 meters.Inspiteofpaleomagnetism,thetripod-mounted compasses gavetheleast closure error: 1.3metersin906meterstotaldistance. Sincethetheodoliteandplane-tableerrorsarecumulative, we decidedthatclosure reductionbystatistical methods wasnotacceptable, so we re-shot severalstations.Duringthesurvey, we also determinedthatPahoaCavecontainedsignificant archaeological, biological,andgeological features worthyofprotection.TheHawaii Cave ConservationTaskForce has beeninstrumentalin developing a pro posal in whichtheStatehas agreed in principle to lease 25 acresofland, including two milesofPahoaCave, totheU ni versi tyofHawaiiasa Cave Preserve.280

PAGE 288

Diplura of Lava Tube CavesLynnM.FergusonLongwoodCollege, Fannville,VirginiaUSAAbstractTheexaminationofcampodeiddipluranscollected from 21lavatubecavesinWashington, Oregon, Idaho,andnorthernCaliforniahasrevealedsevenoreightspecies belonging tothegenusHaplocampa.Onespeciesmaybelong totheendogeanspecies H.rugglesi,originally described fromMountRainier.Theothersarenewundescribed species. A morphologicalstudyofthecave specieswasdoneinanattempttolearntheirphylogeneticrelationshiptoeachotherandtotheknownendogeanandcavernicolous (inlimestonecaves) speciesofHaplocampa.Lavacicle Cave inOregonisunusualinthatitcontainstwo speciesofdiplurans;intheUnitedStatesonly twoothercaves (limestone)areknowntodo soatpresent.However,thisdistinctionmayvanish followingthestudyofsomeextensivecollectionsofdipluransfromlavatubecavesinWashingtonstate.ConsideringtheirwideoccurrenceinthelavatubecavesofthenorthwesternUnitedStates,itissomewhatsurprisingthatdipluransareso poorlyrepresentedinthefaunaofvolcanic caves elsewhere intheworld.IntroductionDipluransaresmall, white, eyeless, wingless hexapodsthatliveunderstones, inthesoil,andin caves.Thereareseven taxonomic families recog nized fortheOrderDiplura(Ferguson,1990),butmostofthecave speciesbelongtothefamilyCampodeidaeandarecharacterizedbyhavingtwolongmultisegmentedcerci (tails) which macro scopicallysomewhatresembletheantennae(Fig-Figure1-Campodeiddipluran(Haplocampasp.) on wet rock, Upper Falls Creek Cave, Washington. (Photo: F.G. Howarth)281ure1).Over40species, belonging to 10genera,ofcampodeiddipluransareknownfrom cavesintheUnitedStates(Ferguson,1981).Thespeciesknownsofarfromlavatubecaves belongtoa single genus,Haplocampa.Thisgenusis found inthecentralandwesternUnitedStates,particularlythenorthwest,andintoCanada.Itisrepresentedbyendogean(soil-dwell ing) forms innorthernCalifornia, Oregon, Wash ington,Montana,andAlberta; by cavernicoles inlimestonecaves in Illinois, Missouri,Utah,Arizona,andWashington;by cavernicoles in lavatubesin Idaho, Washington, Oregon,andCalifor nia;andby a species from amineinnorthcentralCalifornia.DistributionintheContinentalUnitedStatesThefirstdipluranfrom a lava cavethatI was able toexaminewascollected byStewartandJarnlilaPeckin 1969atBoyScoutCave,CratersoftheMoonNationalMonument,Idaho, while Stewartwasstudyinga cave beetle found illthelava tubesthere(Peck, 1974). Sincethen,collectionsbyFrankHowarth,JohnHolsinger, Rod Crawford, Clyde Senger,andme, aided by LibbyNielandandothers, have revealed sevenoreight

PAGE 289

6thInternationalSymposiumonVulcanospeleologyGUlFCavernicolousHap/ocampo\Figure2-DistributionofcavemicolouscampodeiddipluransinthewestemUnitedStates. See text for explanation.speciesofcampodeid diplurans from 21 lava caves inthestatesofIdaho, Washington, Oregon,andnorthernCalifornia. The distributionofspecies isasfollows (seeFig. 2).InIdaho the only collection istheone specimen fromCratersoftheMoon NationalMonumentmentioned above. Additionalattemptsto collect more specimens myself in1972were unsuccessful. The Idaho form represents a new (undescribed) speciesofHaplocampa.InthestateofWashington,thenorthernmostsolid circle onthemapin Figure 2 represents Windy Creek Cave in Skagit County. This is a limestone cave.Thespecies found here is probablyH.chapmani,anendogean known from nearby Mount Baker.InsouthernWashingtonthemore westerly solid circle represents a new species found in Ape Caveandothers(DollarandDime Cave,LittleRedRiverCave,andLakeCave)inSkamaniaCounty associated withtheMountStHelens lava flows.Theeasterlysolid circle representsanothernewspecies fromCheeseCave,ThanksCave,andJugCaveinKlickitatCountyandDeadHorseCave, New Cave, Big Cave, Dyna mited Cave, IceRinkCave,DryCreek Cave,LowerFalls Creek Cave System,andUpperFallsCreekCave SysteminSkamaniaCounty associatedwithMount Adams.TheopencircleinsouthernWashingtonstandsforSnowpatchCaveinKlickitatCounty.Thespecies foundherealsoappearstoinhabitLavaRiverCaveinsouthcentralOregon, alsorepresentedbyanopencircle symbol.Thesecol lectedspecimensmaybelongtotheendogeanspeciesH.rugglesi,originallydescribedfromMountRainier.282

PAGE 290

Thesolid circle innorthernCaliforniaindicatesthelocationofLavaBedsNationalMonument,Siskiyou County,whereI foundanothernewspe ciesinMerrill Ice Cave in 1982. (More recently,in1989,RodCrawfordhascollectedcampodeiddipluransthereinCatacombsCave,FernCave,LostPinnacleCave,andMerrill IceCaveaswell.)Thesolid circleinnorthcentralCaliforniarepresentsSunnysideMineinPlumasCounty,thesiteofanothernewspeciesofHaplocampa.Thesolid circle totheeastinOregonstandsfor anewspecies found onlyinSouthIceCaveinLakeCounty. Andthesolidtriangleindicates Lavacicle Cave,DeschutesCounty, which isuniqueinthatthecavecontainstwo speciesofHaplocampa.Infact, only twoothercaves (both in limestone)intheUnitedStatesarecurrentlyknowntohavetwo speciesofcampodeidsinthem.Oneis Steeles Cave,MonroeCounty,WestVirginia,theotherisPantherCreekCave,HancockCounty,Tennessee.Elsewhereintheworldthisconditionofsyntopy forcavedipluransisrarealso.Theuniquesituationfor Lavacicle Cavemaysoonchangehowever.DuetointensivesamplingofmanylavatubesinWashingtonbyRodCrawfordandClydeSenger(1988)usingbaitedpitfalltraps,alargenumberofspecimens(707!)arenowavailableto study. SincethenCrawfordhascollectedmanymoredipluransin CaliforniaandWashingtonlavatubecaves(personalcommunication).Nowthatweknowthattwo (ormore?)speciescanexistinasinglecave, everyspecimenoftheselargecollectionsneedsto beintenselystudiedtomakespecies identifications,andnotjustarepresentativesampleashasbeendoneinthepast.PhylogenyReferringagaintothemapinFigure2,theothersolid circlesonthemaprepresentlimestone cavesandpossibly four additional species.Justconsideringthephylogenyofthespecies known from lavatubecaves, based onthemorphologyofthespecimens,thetwo species found in Ape Caveet al.andCheeseCaveet al.arevery closelyrelatedandprobablyhadacommonancestor.Infact, allofthelavatubedipluransinthenorthwesternUnitedStatesshowa close affinitytooneanotherandtothesurfaceorendogeanspecies foundthere.Theyrepresenta fairly homogeneousgroup.Incontrast,theHaplocampaspe cies in Arizona,Utah,Missouri,andIllinoisare283Fergusondistinctlydifferentfromoneanotherandfromthenorthwesternforms.Theidentificationandphylogenyofcampodeiddipluransis based largely onthenumberanddistributionofcertainlargebristlesandhairs.Littlecanbesaidabouttheadaptationtoliving in caves, i.e., becoming a troglobite, byusingsuchfeatures. However,somecharacteristicswhichpresumablytroglobiticdipluransdisplayare:(1)Anincreaseinoverall size.Haplocampaspecies, however,areall relativelylargebodied forms,eventheonesonlyknownasendogeans. (2) Clawswithlargetergal(dorsal)crests.AllknownHaplocampaspecieshavesuchclaws already.Indeedthisisoneofthecharacteristicsofthegenus.Interestingly,thespe cies fromSunnysideMine in Californiahasthelargestfeetof all! (3) Apicalsegmentoftheantennaewitha cup-like depressionatthetipcontainingfiveormorecomplexsensilla(sensory devices). Allofthespeciesknownonly fromlavatubesseemtomeetthiscriterion. Therefore,perhapstheyaretruecavernicolesortroglobites. Tosummarizethefindings for lavatubecaves inthecontinentalUnitedStates,sevenoreightspeciesofthecampodeidgenusHaplocampahavebeen identified from 21lavatubecaves,andspecimenshavebeencollected fromatleast11more cavesinthesameregion. Alsoseveralofthecollec tions consistoflargenumbersofspecimens.Therefore,campodeiddipluransseemtobefairlynumerousandcommonin lavatubesinthecontinentalUnitedStates.Whataboutotherareasoftheworldinwhichlavatubesarefound?ElsewhereIn1986,whenI visitedSurtshellirCave in Ice land,about100 kilometersnortheastofReykjavik, I foundseveralinvertebratesincludinga coupleofspeciesoffliesandarhagidiidmite,butno diplurans.Onemightsupposethatin Icelanditis too cold forsuchorganismstooccurregularly, sowhataboutinthetropics, like in Hawaii? Many lavatubecavesareknownfromtheislands,anda fairnumberoftroglobiticarthropodshave been found toinhabitthecavesthere(Howarth,1983).Thereis evenanendogeancampodeid ontheislandofOahu,Litocampa(Cocytocampa)perkinsi(Silvestri, 1934;BarethandConde, 1972); how ever,nonehaveeverbeen found in a cave.ThesomewhatsimilarprimitivethysanuranNicoletiahasbeen found in cavesthere.

PAGE 291

6thInternationalSymposiumonVulcanoSPeleologyOthervolcanic islands inthetropics with lava tubes includetheGalapagos Islands, where PeckandKukalova-Peck (1986)andothers(Hernandezet al.,1992a)havefoundLepidocampa zetekiFolsomincaves there. This species is ahardyendogean,nota troglobite, whosesetaearemodi fied into scales which probablymakeitmoreresistantto desiccation,andtherefore,morecapableofdispersalthanothermoisture-loving soil dwellers.Itis known frommanylocalities in CentralandSouth America.Otherislands with lavatubeswhicharebeingbiologicallyinvestigatedaretheCanaries(Hernandezet al.,1992b)andtheAzores (Borgeset al.,1992). They donotspecifically mentionthepresenceofcampodeid diplurans; however,othercave invertebrates havebeenfound.Onecould supposethatthegeographic isolationofvolcanicislandsandtheresultingchanceimmigration(sweepstake routeofdispersal)ofplantsandani mals,andtherelatively young geologic ageofmanyvolcanic islands, all reducethechancesofancestralcampodeids reachingtheislandsandthenpopulatingthecaves. Yetithas happened intheGalapagos Islandsandelsewherebysimilar arthropods (butnotcampodeids). As for continental areas, suchastheAuvergne regionofsouthcentralFrance, frommybrief lookattheareawithallofitscindercones, basaltic lava flows,andlong line of volcanos,itwould certainly seemthattherewould be lava tubes associated with this area;yetIamunawareofanycavernico lous diplurans having been identified from there. (The meticulousFrenchzoologistsandbiospeleol ogists certainly would have discoveredthemifthey were there.) Therefore, in lightofthecommon occurrenceofcampodeid diplurans inthenorth western continentalUnitedStates,andthewide spread occurrenceofthese primitive arthropodsincaves in general,itissomewhatsurprisingthattheyarenotmore widely known from lavatube caves elsewhere intheworld.AcknowledgementsI would like tothankthecollectors mentioned aboveandotherspast, present,andfuture, withoutwhose labor we would know even less about the biotaoflavatube caves.ReferencesBareth,C.,andB. Conde (1972):Diploures campodeides des lIes Salomon.Rev. Ecol. BioI. Sol, 9(2):235-256.Borges, P.,A.Silva,andF.Pereira(1992): Cavesandpits fromtheAzores withsomecommientsontheirgeological origin,distribution,andfauna. In:Rea,G.T., (Ed)Proc. ffh IntSymposiumon Vulcanospeleology.Crawford,RL.,andC.M. Senger, (1988):Humanimpactstopopulationsofa cave dipluran(Campodeidae).Proc. Washington State En tomol. Soc., 49:827-830.Ferguson, L.M. (1981): CavedipluraoftheUnitedStates.Proc. Elh Int.CongoSpeleol.(Bowling Green, KY), 1:11-12. Ferguson, L.M. (1990): Insecta: Diplura.InD. L. Dindal (ed.),Soil Biology Guide.JohnWiley&Sons, Inc., pp 951-963.Hernandez,J.J.,1.Izquierdo,andP.Oromi,(1992a). Contribution totheVulcanospeleologyoftheGalapagos Islands (Ecuador). In: Rea, G.T., (Ed)Proc. ffh IntSymposiumon Vul canospeleology.Hernandez,J.J.,A.L. Medina,and1.Izquierdo, (1992b). Volcanic CavesinElHierroIsland(Ca naries-Spain). In: Rea, G.T., (Ed)Proc. ffh IntSymposium on Vulcanospeleology.Howarth, F.G. (1983): EcologyofCave Arthro pods.Ann. Rev. Entomol., 28:365-389.Peck, S.B. (1974): BiologyoftheIdahoLavaTubeBeetle,Glacicavicola. Nat. Speleol. Soc.Bull.36(1):1-3. Peck, S.,andJ.Kukalova-Peck, (1986): PreliminarysummaryoftheSubterraneanFaunaoftheGalapagos Islands, Ecuador,PartII.Thein sects, evolution,andbiogeography.Proc. 9thInt.CongoSpeleol.(Barcelona, Spain). 2:166-169. Silvestri, F. (1934): DescriptionofanewspeciesofThysanura(Campodeidae) fromtheHawaiianIslands.Proc. Hawaiian Entomol. Soc.,8:5i9 522.284

PAGE 292

Behavioral DivergenceinPopulations of the Cave-Adapted Planthopper Species Oliarus Polyphemus on the Island of Hawaii (Homoptera Fulgoroidea Cixiidae)Hannelore Hoeh Philipps-Universitat, Fachbereich Biologie-Zoologie Lahnberge,POBox1929,D-3550 Marburg/Lahn, Federal RepublicofGermanyAbstractWith80describedendemicspecies,thecixiidgenusOliarusisknowntohaveundergoneextensiveadaptiveradiationontheHawaiianIslands.InOliarus,however,adaptiveradiationisnotrestrictedtosurfacehabitats.Several evolutionarylines have invaded cavesontheislandsofMolokai (one species), Maui(threespecies),andHawaiiIsland(two species). They have acquired typical troglomorphies suchasreductionofeyes, wings,andpigment.Populationsofoneofthecave invasions onHawaiiIsland,thecompletely blind, flightlessandpigmentlessOliaruspolyphemushavebeen foundinnumerouslavatubeswithinallmajorvolcanic systems. Thisapparentlywidedistributionofa species which isrestrictedtothecaveenvironmentwasthoughttobetheresultofundergrounddispersalthroughthemesocavernous rock system.Recentinvestigationsonthematingbehavior, especiallytheanalysisofthecourtshipsignalsofsevenO.polyphemuspopulations, however,haverevealed a high degreeofdivergence:thesignalsofall seven populationsstudieddiffer significantlyevenbetweenpopulations from caveswithinthesamevolcanic system,andonly a coupleofmilesapart.Sincethecommunicationsignalsservematerecognition, theyaresexually selectedandspecies-specific,thusthesevenO.polyphemuspopulations testedareregardedasreproductively isolated entities, i.e.,separatebiological species. Hypotheses to explainthishigh degreeofdivergenceamongO.polyphemuspopulationsarediscussed.Futureresearchwillconcentrateonthequantificationoftheobserved divergenceonthemolecular levelusingmitochondrial DNA sequencedata,andonthecorrelationofdivergenceeventswithevolutionary time.285

PAGE 293

Anchialine Lava Tubes and Their BiotaDennisW.WilliamsIslandResearch Center,535SandlakeDrive, Melbourne,Florida32934AbstractTheword "anchialine" was proposed by Professor LipkeB.Holthuis (1973)asatermfor land-locked coastalsaltwaterpoolswithsubterraneanconnections tothesea.Thetermhasbeen broadenedandisnow commonly used to describe costal cavesthatcontain tidal phreatic water.Therearemanyanchialine lavatubesthroughouttheworldthathave provided a windowtotheunderwatercrevicularhabitatofvolcanic islands. Access by cave explorersusingSCUBAtothesub merged sectionsofthese lava tubeshasresultedinbiological collectionsofinterestto taxonomyandbiogeography. Two lava caves,Jameodel Agua,Lanzarote,CanaryIslandsandLua0Palahemo, Hawaii Island, have produced cavernicolousinvertebratesofgreatphylogentic agethatwere previously known only from collections made intheBahamas, Bermuda,andAscension Island.286


printinsert_linkshareget_appmore_horiz

Download Options

close
Choose Size
Choose file type
Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.