Citation
Cave And Climate Change: Educating The Public At Rats Nest Cave, Alberta, Canada

Material Information

Title:
Cave And Climate Change: Educating The Public At Rats Nest Cave, Alberta, Canada
Creator:
National Cave and Karst Research Institute
Publisher:
National Cave and Karst Research Institute
Publication Date:
Language:
English

Subjects

Genre:
serial ( sobekcm )

Notes

General Note:
Charles J Yonge Yonge Cave and Karst Consulting Inc. 1009 Larch Place, Canmore, AB T1W 1S7, Canada chas-karst@telus.net Adam Walker Canmore Caverns Ltd. 200 Glacier Drive Canmore, AB, T1W 1K6, Canada info@canmorecavetours.com Andrea Corlett Alberta Speleological Society 1606-924 14 Ave SW, Calgary, AB. T2R 0N7, Canada alcorlett@hotmail.com AbstractRats Nest Cave is a Provincial Historic Site whose mandate is to present its natural history to the public. In addition to a suite of interpretive messages, and relevant to this conference's topic, we have addressed diverse climate change over the geological history of the cave. We start with the cave-hosting rock and the fossils it contains, to its origin along a thrust fault, ending with its enlargement and secondary mineralization during the Quaternary glaciations (the latter having been dated by radiometric methods). We have undertaken a program of speleothem remediation which, visible to the public, serves to reinforce the conservation and sustainability message emphasizing the importance of caves to society.
Restriction:
Open Access - Permission by Publisher
General Note:
See Extended description for more information.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
K26-00583 ( USFLDC DOI )
k26.583 ( USFLDC Handle )
12004 ( karstportal - original NodeID )

USFLDC Membership

Aggregations:
Karst Information Portal

Postcard Information

Format:
Serial

Downloads

This item has the following downloads:


Full Text
Description
Charles J Yonge Yonge Cave and Karst Consulting Inc. 1009
Larch Place, Canmore, AB T1W 1S7, Canada
chas-karst@telus.net
Adam Walker Canmore Caverns Ltd. 200 Glacier Drive Canmore,
AB, T1W 1K6, Canada info@canmorecavetours.com
Andrea Corlett Alberta Speleological Society 1606-924 14 Ave
SW, Calgary, AB. T2R 0N7, Canada alcorlett@hotmail.com
AbstractRats Nest Cave is a Provincial Historic Site
whose mandate is to present its natural history to the public.
In addition to a suite of interpretive messages, and relevant
to this conference's topic, we have addressed diverse climate
change over the geological history of the cave. We start with
the cave-hosting rock and the fossils it contains, to its
origin along a thrust fault, ending with its enlargement and
secondary mineralization during the Quaternary glaciations (the
latter having been dated by radiometric methods). We have
undertaken a program of speleothem remediation which, visible
to the public, serves to reinforce the conservation and
sustainability message emphasizing the importance of caves to
society.



PAGE 1

20th National Cave and Karst Management Symposium NCKRI SYMPOSIUM 371Interpretive information related to climate changeFor our public education (on climate change), we start outside (Figures 3 and 4) with the cave-hosting Missis sippian limestone (the Livingstone-Mount Head Forma tion), which contains index fossils: brachiopods, horn corals, and crinoids. Our interpretation here focuses on the corals and therefore tropical paleoclimate of the time, and how that could have been considering that we now experience a Siberian-type climate. The out-ofplace fossils give a good opportunity to talk about plate tectonics (especially looking across the valley to the classically folded and thrusted mountains that constitute the Canadian Rocky Mountains). It appears that during the Mississippian, these limestones were laid down just north of the equator along reefs aligned east-west (Gadd, 1995). In discussing plate tectonics, we introduce mountain building and faults that occurred during the Cretaceous as the ancestral super continent of Pangea was breaking AbstractRats Nest Cave is a Provincial Historic Site whose mandate is to present its natural history to the public. In addition to a suite of interpretive messages, and relevant to this conferences topic, we have addressed diverse climate change over the geological history of the cave. We start with the cave-hosting rock and the fossils it contains, to its origin along a thrust fault, ending with its enlargement and secondary mineralization during the Quaternary glaciations (the latter having been dated by radiometric methods). We have undertaken a program of speleothem remediation which, visible to the public, serves to reinforce the conservation and sustainability message emphasizing the importance of caves to society.IntroductionRats Nest Cave was protected as a Provincial Historic Site in 1987. Public tours began some years afterwards in 1995 supported by interpretive information gained via a number of studies at the cave by the authors and others (Yonge 2012, Yonge 1991 and e.g. Figure 1) and by provincial funding from the Science Alberta Foundation. The tours are wild in nature with horizontal and vertical caving being offered: (www.canmorecavetours.com). A wide variety of the populace has been taken through the cave over the years, with 2012 numbers at 3,553 participants. Visitors were world-wide (with the female to male ratio at 45:55 %), but the majority have been Albertan (82%) in recent years (Figure 2). Groups range from independent tourists, corporate, school, church, guide and scout and tertiary institutions. The cave generates considerable interest, with a high rating on Trip Advisor plus several media releases in the media, e.g. TV and radio.Adam WalkerCanmore Caverns Ltd. 200 Glacier Drive Canmore, AB, T1W 1K6, Canada info@canmorecavetours.comCharles J YongeYonge Cave and Karst Consulting Inc. 1009 Larch Place, Canmore, AB T1W 1S7, Canada chas-karst@telus.netAndrea CorlettAlberta Speleological Society 1606-924 14 Ave SW, Calgary, AB. T2R 0N7, Canada alcorlett@hotmail.com CAVE AND CLIMATE CHANGE: EDUCATING THE PUBLIC AT RATS NEST CAVE, ALBERTA, CANADAFigure 1. McMaster University sampling seepage water to study the systematics of speleothem formation under the present climate regime (temperature, drip rate, humidity and stable isotopes).

PAGE 2

NCKRI SYMPOSIUM 3 20th National Cave and Karst Management Symposium72up and dinosaurs roamed in and around the ancestral Bears Paw Sea (the world-class Albertan Tyrell Dinosaur along one of which the cave has formed (Figure 3) and which is readily seen underground (Figure 5). The climate change story then moves into the multiple Quaternary Glaciations which, when ending at a given interglacial, result in the enlargement of the cave by extensive glacial meltwater (Canadian Rockies Caves are intimately coupled to glaciations leading to classic glaciokarsts in the region Ford and Williams, 1989). At this stage the cave also experiences clastic sedimentation and secondary mineralization, which potentially give proxy paleoclimate records (Figures 6, 8 and 9). (Fairchild and Baker, 2012; Ford and Williams, 1989) and at Rats Nest Cave, a number of U-Th dates of Calcite speleothem fabrics can yield information about past temperature (and vegetation cover) above the cave Figure 3. The geological setting for Rats Nest Cave, which is developed along a thrust fault as indicated.Figure 4. The geological setting for Rats Nest Cave, which is developed along a thrust fault as indicated.Figure 5. Inclined passage in Rats Nest directed along a thrust fault. Figure 2. Percentage of visitor types to Rats Nest Cave in 2012 (total visitors are 3,553).

PAGE 3

20th National Cave and Karst Management Symposium NCKRI SYMPOSIUM 373than speleothems. Just inside the cave entrance, debris has accumulated in a 15m pit, of which bones are a Carbon-14 dating of the bones has yielded a maximum of 7.2 ka, showing that all of the 34 mammals represented are of Holocene origin having fallen in after the last glaciation. Two artifacts recovered from the pit have been dated back 11), a late stage bison-hunting group that arose and thrived during the warmer than today Holocene Hypsithermal period, 7.5-5.0 ka. The fact of this climatic optimum is supported by speleothem stable isotope studies at the cave (Figure 9). Pictographs at the cave entrance appear to be more recent, perhaps 500 years old. While the prior discussion is somewhat technical for a lay audience, the interpretation can be tailored to suit needs; the audience might of course include climate scientists. At a less technical level, for example, we conduct an school: climate change forms part of the curriculum of their so-called Ascent Program. (e.g. Figure 8). For example, one sample collected in the cave dates to the so-called Marine Isotope Stage 5e at 123ka, a warmer interglacial than today when sea levels were 5m higher (Figure 8). We consider the outside, where repeated glaciations successively act to remove evidence of prior glaciations (Rutter et al. 2006). So while there is abundant recent glacial material (i.e. from the Wisconsinan Glaciation), little Caves however, being enclosed, tend to preserve all phases of sedimentation making them important archives of climate change, especially speleothems which can be dated by Uranium Series methods (principally 234U-230Th). An important adjunct to this is that in the Canadian Rockies, speleothems form during the interglacial stages, of seepage water (if in permafrost) during glacials. In addition to the Pleistocene glaciations, the cave contains interesting material from the Holocene other Figure 6. Paleomagnetic sampling of clastic sediments in Rats Nest Cave.Figure 8. Speleothem U-Series dates from caves in the Canadian Rockies compared to those from Rats Nest Cave and Oxygen isotope record of marine and ice cores.Figure 7. A stalactite from Rats Nest Cave, showing growth during interglacial periods with Figure 9. Holocene stable isotope temperatures based on several speleothems from Rats Nest Cave.

PAGE 4

NCKRI SYMPOSIUM 3 20th National Cave and Karst Management Symposium74Speleothems have accumulated after cave dewatering during the interglacial periods and, as argued above, are very important in determining past climates above the cave. Because the cave is static, containing copious quantities of clastic glacial sediments, it has suffered as these have been spread around by careless cavers prior to its provincial designation. The cave contains a great variety of calcite formations and these are of great interest to visitors (Table 2). The interpretation outlined above further adds to their value in the public eye. We have therefore embarked on a remediation plan, mainly tackling dirty and damaged formations (Figures 13, 14 and 15). With the help of volunteers from the Alberta Speleological Society, the formations along well travelled pathways within the cave are being cleaned. The techniques used Speleothem Remediation at the CaveRats Nest Cave is a static cave in the sense that no vadose cave in fact is almost entirely phreatic and was completely to its glaciallycoupled origin: rapidly melting ice sheets would have given little time for passage entrenchment. Figure 10. Debris spilled out from the base of the Bone Pit including skulls (Bighorn, sheep, cougar and bear) and bones.Table 1. A preliminary list of species from Rats Nest CaveFigure 11. A schematic of the Bone Pit with inset dart tip circa 3,200 years old.Figure 12. The Grotto in Rats Nest Cave containing copious speleothems and pool resulting from the accumulation of seepage water.

PAGE 5

20th National Cave and Karst Management Symposium NCKRI SYMPOSIUM 375signage has been placed to explain the restoration project and encourage visitors to stay on established trails and avoid touching the formations. A secondary many volunteers regarding cave conservation and the spreading of that knowledge throughout the local caving community. to clean the muddied formations have been adapted from those described in Cave Conservation and Restoration (Hildreth-Werker and Werker 2006). Preventing further damage to speleothems is intrinsically important to the remediation process: both the tools and water used to clean formations must be carefully selected. Tools chosen for formation restoration must be non-abrasive to the delicate outermost layers of calcium carbonate. As such, soft bristled tooth brushes nail brushes and plastic tooth picks are among the cleaning kits. Care is taken by the volunteers when using the cleaning tools to not apply excess pressure on the formations and extremely delicate speleothems are often not remediated to avoid causing further damage. The water required to clean the formations must be collected from a standing pool that self-replenishes from rain and surface water slowly percolating through the rocks above. This pool serves as a reliable source for the vital calcium bicarbonate rich water required to safely clean mud away from the formations without dissolving the outermost layer. The results so far have varied from poor to outstanding. We have found that the formations that have been growing at a more rapid rate have already sealed the mud under several thin layers of calcium carbonate, while those growing more slowly have come almost entirely clean. Educating the visitors to Rats Nest is a key factor in the continued conservation of this Provincial Historic Site. To assist in this goal, formations that have been Table 2. Speleothem varieties and locations in Rats Nest Cave. Figure 13. Work in progress on a column, taped off with a notice informing and educating selfguided cavers. Figure 14. Cleaning work on the column shown in Figure 13.

PAGE 6

NCKRI SYMPOSIUM 3 20th National Cave and Karst Management Symposium76Transactions of the British Cave Research Association, p. 119-129. Yonge, C.J., 2012, Under Grotto Mountain Rats Nest Cave (second edition): Friesens Corporation, 152 p. Palmer, A.N., 2007, Cave Geology (Chapter 7): Cave Books, 454 p. Rutter, N., Cuppold, M., and Rokosh, D., 2006, Climate Change and Landscape: The Burgess Shale Geoscience Foundation, 137 p. Fairchild, I. J. and Baker, A., 2012, Speleothem Science, Quaternary Geoscience Series: Wiley-Blackwell, 432 p. Ford, D. C. F. and Williams, P. W., 1989, Karst Geomorphology and Hydrology: Unwin Hyman, 601 p. Hildreth-Werker V. and Werker J. C., 2006, Cave Conservation and Restoration (2006 Edition): Huntsville Alabama, National Speleological Society, Inc, p. 401-407. Gadd, B., 1995, Handbook of the Canadian Rockies (second edition): Corax Press, 831 p.Conclusions interpretation of this protected cave site has resulted in a successful management model, which has the added The alternative could have been to recognize the cave researchers. However, with a city of over one million inhabitants within an hours drive (Calgary) this strategy would have been a disaster. Without daily presence at the site, the gate would have been compromised and the cave severely vandalized. This has been the result at the more remote Cadomin Cave, which has suffered from spray paint, garbage and disturbance of its bat population. The results of illuminating the caves value as a record of geological history, paleontology, and climate change has last year.ReferencesYonge, C.J., 1991, Studies at Rats Nest Cave: Potential for an underground laboratory in the Canadian Rocky Mountains: Cave Science, v. 18, no. 3,Figure 15. Results of speleothem cleaning: the inside, lower area is in its original dirty condition.