Citation
Theoretical and Applied Karstology

Material Information

Title:
Theoretical and Applied Karstology
Series Title:
Theoretical and Applied Karstology
Creator:
Emil Racovita Institute of Speleology
Publisher:
Emil Racovita Institute of Speleology
Publication Date:
Language:
English
French

Subjects

Subjects / Keywords:
Geology ( local )
Genre:
serial ( sobekcm )
Location:
Romania
Coordinates:
46 x 25

Notes

General Note:
TAK Reviews Tenu, A. Davidescu, F., D. La datation par radiocarbone dans la recherche spéléologique, pp. 7-16. La mise au point de la datation par radiocarbone, réalisée par Libby en 1955, a permis d'établir des chronologies absolutes et efficaces pour la période des dernières 40 milles ans. Malgré le fait qu'en Roumanie la méthode fût signalée en 1956, la datation proprement dite par radiocarbone a été réalisée seulement en 1977, à l'Institut de Météorologie et Hydrologie de Bucarest. Depuis cette année, les applications au radiocarbone en Roumanie ont visé exclusivement la datation des eaux souterraines. Ce rapport, par la présentation succuncte des bases théoriques, expérimentales et méthodologiques et des déterminations préliminaires, effectuées sur des spéléothèms, voudrait être une tentative pour l'extrapolation de cette méthode dans la recherche spéleologique. Le travail expose, d'une façon succinte, les bases théoriques, expérimentales et méthodologiques de la datation par radiocarbone dans la recherche spéologique et présente aussi, pour illustrer la méthode, trois déterminations d'âge pour des spéléothèms de Roumanie. TAK Articles Ungureanu, C. Mineralogic and geochemical research of the Tecuri Cave (Romania) red clay, pp. 17-32. Le travail tente de tirer au clair la genèse des dépôts argileux se trouvant dans la zone Bojita-Tecuri-Rachiteaua du Sud-Ouest des monts de Sebes. Après un aperçu historique sur les recherches effectuées dans la zone, on y trouve présentées des données orohydrographiques, la géologie de la région et la pétro-chimie des roches. La comparison des paramètres géochimiques des roches se trouvant dans cette zone - c'est-à-dire des schistes cristallins du domaine Gétique, des calcaires du Jurasien et des argiles rouges (qui abondent dans la grotte de Tecuri) - a porté aux conclusions suivantes: 1. La composition granulométrique des échantillons d'argile indique une fraction pélitique d'environ 50%. 2. La composition chimique des argiles indique des taux de Al2O3 et Fe2O3 élévés, qui les approchent des argiles bauxitiques (Suliman, 1976). 3. Les minéraux argileux déterminés ont été: le kaolinite, le gibbsite, le diaspore, l'illite et le halloysite. 4. La genèse des argiles est liée à l'altération des métamorphites appartenant au domaine gétique, sourtout l'altération des micaschistes et des amphibolites. 5. Il y a égalment la possibilité de la formation des minéraux argileux par l'altération des bauxites à un pH acide (5.5-6.4). 6. L'apparition de ce genre d'argiles saulement sur substrat de calcaires peut être due aussi au phénomène de piézo-électricité du calcite (Diaconu, 1986). Ionescu, G. Ionescu, C. Considerations on the morphology and genesis of the Jurassic paleokarst in Farcu Hill area (Southern Padurea Craiului Mountains, Romania), pp. 33-40. Based on surface data and more than 300 boreholes investigations in Farcu Hill area, in the Southern part of Padurea Craiului Mountains, the present paper deals with some features of the Jurassic fossil karst relief sunk now under limy Cretaceous deposits. Our purpose is both theoretical: to enrich the image about some factors and their evolution in modelating this paleorelief and practical: to detect bauxite bodies in this region by use of reconstructing methods, as is the isobathic map and geostatistical analysis of these data, in correlation with geological and geomorphological observations. Constantin, S. Rotaru, A. Considérations génétiques sur la grotte "Pestera cu Lacuri din Valea Seaca" (Monts Locvei, Roumanie), pp. 41-49. Les auteurs présentent une hypothèse sur la genèse d'une cavité de dimensions moyennes, située dans le Bassin Valea Mare (Monts Locvei). La grotte est ascendante, disposée sur deux étages et elle présente sur son parcours une suite de lacs situés à des cotes croissantes par rapport à l'entrée. Compte tendu de la morphologie d'ensemble et de détail de la cavité on advance l'hypothèse que son creusement a eu lieu regime noyé après lequel, consécutivement à un abaissement relativement rapide du niveau phréatique, les galeries ont restées fossiles. Le niveau hydrostatique actuel est marqué par le niveau de l'eau dans les lacs. Le mécanisme de constitution du réseau karstique est analysé en tentant compte des similitudes entre la situation présentée et celle de certaines cavités de la zone de Mendip (Angleterie). Etant donné que l'alimentation de l'acquifère est due exclusivement aux infiltrations on considère que dans l'abaissement brusque du niveau phréatique un rôle primordial serait revenu à couverture argileuse imperméable qui a couvert, à partir du Pléistocène supérieur, les plateaux calcaires sommitaux. Cette couverture aurait eu un rôle de "tampon", diminuant la quantite d'eau écoulée vers l'acquifère. On apprécie ainsi que l'âge de l'abaissement du niveau phréatique, et donc de la "fossilisation" des galeries, pourrait être situé le plus tôt, à la fin du Pléistocène supérieur. Serban, M. Racovita, G. L'extension de la zone glacée dans la Grotte de Scarisoara (Roumanie) - effet des oscilations météorologiques multiannuelles, pp. 51-64. La limite des formations stalagmitiques de glace qui se développent dans la zone périglaciaire de la Grotte de Scarisoara (Monts du Bihor) présente des variations saisonnères dues aux changements périodiques qui lieu dans le régime de ventilation de la cavité. Ces variations ont été suivies par des mensuelles effectuées durant l'intervalle 1983-1988. L'analyse stastique des données primaires, basée sur la méthode de Ballot-Besson d'adjustement d'une suite chronologique de valeurs, mpntre que cette limite comporte aussi des oscillations d'ordre supérieur, correspondant à des tendances multiannuelles d'extension ou de restriction de la zone glacée. Leur cause réside dans des fluctuations thermométriques analogues qui se produisent au niveau de l'atmosphère souterraine et qui peuvent être mises en corrélation avec les tendances de long terme liées à l'évolution météorologique de l'extérieur. Mafteiu, M. Contributions to the investigation of the Padis karst area (Bihor Mountains, Romania) by means of resistivity measurements, pp. 65-76. Geological measurements are frequently used in karst investigation for the identification of underground cavities, of tectonic fractures which may favour the development of karst phenomena and for establishing the flow directions of corresponding groundwater bodies. Taking into account the strong control that the dimension and burial depth of a certain anomalous body exert on the electrometric methods applicability, arrays with various depths of investigation were used. The present paper included the results of a survey performed above a known anomalous body, the cave of Padis, as well as that of a subsequent extended application of the methods over a wider area. The data interpretation resulted in maps of the karst drainage areas and in establishing flow directions of the groundwater bodies. The water-table level and the flow directions indicated by the soundings were adjusted according to the information derived from boreholes and from tracing experiments. Davidescu, F., D., Tenu, A. Slavescu, A. Environmental isotopes in karst hydrology. A lay-out of problems with exemplifications in Romania, pp. 77-86. The paper provides actual examples of the possibilities to apply environmental isotopes in determinating certain hydrogeological characteristics and parameters in carbon-matrix aquifers of economic importance in Romania. Iordache, O., Isopescu, R., Gaspar, E. Isopescu, A. Interpretation of tracer experiments. Multi-cell of imperfect mixing, pp. 87-92. A new model is put forward for the dispersion processes in hydrokarstic systems exhibiting more scales of mixing. An expansion using Laguerre polynomials is obtained for the residence time distribution. The first term in expansion corresponds to the standard multi-cell model while the following are corrections for imperfect mixing. The results are applied to interpret tracer research on the dynamics of underground waters in the Cerna Valley. Slavoaca, D., C. Slavoaca, R. The karstic water participation in the genesis of the thermomineral water reservoir of the spa complex Calimanesti-Caciulata-Cozia (Romania), pp. 93-96. The paper sets in evidence the karstic waters participation at the genesis of the thermomineral water reservoir exploited in the spas: Calimanesti, Caciulata, Cozia. The water-inflow zone is situated in the northern part of the thermomineral reservoir, at the base of the senonian sedimentary deposits. The karstic water proceeds from jurassic carbonate rocks, which outcrop in the Vinturarita zone. Oraseanu, I. Hydrogeological map of the Padurea Craiului Mountains (Romania), pp. 97-127. The hydrogeological map shown herein covers an area of 670 sq. km. In the Padurea Craiului, a massif that makes the North-western termination of the Apuseni Mountains. Owing to a varied geologic structure, with Mesozoic limestones and dolomites outcropping on 330 sq. km, the relief boasts a great variety of features, noteworthy among which are the karst plateaus and valleys, as well as the caves and the potholes. The numerous karst catchment processes, of which some are in full progress at present, disorganized the surface hydrographic network, leading to the formation of an endoreic zone of roughly 224 sq. km and of a diffluence area extending on 94 sq. km. The hydrologic links between these areas and the zones bordering the massif is secured by surface and underground flows. The great lithologic diversity and the different tectonization indices of the deposits in the lithologic structure of the Padurea Craiului Mountains led to the individualization of five groups that boast distinct models of underground water supply, circulation, storage and discharge. In the hydrogeological map, the five types are separated cartographically and characterized hydrogeologically; the map also gives their detailed lithologic description. International conventional signs show various models whereby the water penetrates the carbonate massif (diffusely, ponors and caves, a.o.), as well as different types of karst exurgences, all while pinpointing the permanent or temporary hydrologic character of the flow and the speleologists' access - or lack of it - to the underground realm through these points. The precipitations that fell in October 1982-September 1983 hydrologic year on the non-karst area of the massif generated a specific annual mean runoff ranging from 3 to 20 l/s sq. km, with its vertical gradient standing at 3.3 l/s sq. km. The value of that index is strongly influenced by the presence of the areal carbonate rocks wherein the karst-catchment processes substantially diminish the discharge. The 78 tracer labellings performed by various authors pinpointed the general directions of flow of underground waters and the comparison between those data and the results of the hydrometeorogical observations and measurements provided for a hydrogeologic characterization of the major hydrogeological karst systems. The discharge, variability indices and the recession curve discharge coefficients for 13 of the major karst sources of the massif, as well as the distribution in time of underground flow of that area were shown. The overall hydrogeological picture of the Padurea Craiului Mountains, without Remeti graben, is characterized by the presence of an unitary karstic aquifer in which there is a deep circulation from the East to the West overlay by numerous underground "surficial" (shallow) ones which discharge at the periphery of the massif, by sources with overflow meaning, the water excess resulting from the rainfall on its surface and which can't be involved in deep circulation. Ponta, G., Terteleac, N. Gaspar, E. Three karstic systems (Rosia, Toplita de Rosia and Vadu Crisului) in the Padurea Craiului Mountains (Romania), pp. 129-142. The paper presents data regarding three karstic aquifers: Rosia, Toplita de Rosia and Vadul Crisului, whose hydrogeological basins were outlined by surveying the subterranean cavities and the tracers experiments. Complete informations are given concerning the experiments with In-EDTA, La-EDTA and Rhodamine B, carried out in Valea Perjii, Birtin and Pintiuca sinkholes. These tracers appeared in Rosia Spring respectively Vadul Crisului. There is also a presentation of the Ciur Ponor cave and a structural characterization of the three karstic systems. Feru, M., U. Capota, A. Les eaux thermominérales karstiques de la zone de Mangalia (Roumanie), pp. 143-157. Oraseanu, I., Gaspar, E., Pop, I. Tanase, T. Tracers experiments in the karst area of Bihor Mountains (Romania), pp. 159-172. The complex geological evolution of Bihor Mountains led to the grooth of karstifiable and unkarstifiable rocks mosaic. This evolution is hydrogeologically reflected by the presence of numerous karstic aquifers having different extensions and being charged by precipitations and surface streams, karstically trapped either total or partial. In order to find out the main running water directions of some karstic aquifers, the authors carried out a number of 36 labellings with rhodamine, fluoresceine, stralex, radioactive tracers (I-131, Br-82) and activable tracers (In-EDTA, Dy-EDTA, I-). On the whole, the tracers labellings accomplished up to now in the karst area of Bihor Mountains showed an average running speed of the underground waters of 45 m/hour. The longest course was found between the pothole of Hoanca Urzicarului and Pauleasa spring (4,800 m), while the maximum level difference was between the Muncelu cave and Blidaru spring (665 m). Pirvanescu, E. Pirvanescu, A. Overall water balance computation in the karst zone "Sapte Izvoare Reci", Scropoasa (Romania), pp. 173-181. The paper presents the manner of balance elements assessment and the computation of the overall water balance in the karst area "7 Izvoare Reci" Scropoasa proposed for valorization as export "flat waters". The main purpose of this computation was to establish the feed zones of the source with a view to implement protection systems against polluting agents. Ionescu, G. Ionescu, C. Considerations concerning the gyps occurrence in the Ciur-Izbuc Cave (Padurea Craiului Mountains, Romania), pp. 183-187. Nedopaca, M. La pyrite bactérienne de Risculita - Département de Hunedoara, Roumanie, pp. 189-191. Fratila, R. Constantin, S. Aspects of the karstification in the Cornilor Spring area (Padurea Craiului Mountains, Romania), pp. 193-203. The paper presents the researches accomplished in a karst area with a small surface (2.6 sq. km) which hide a great cave, Cornilor Cave, with a length of 10.14 km. The karst morphology study, together with the geological and tectonical observations are used for realizing the karst map of this area. The factors that conditioned the genesis of the cavity are analyzed: lithology, tectonics and hydrochemical conditioning. Finally, based on this analysis, the authors propose a hypothesis on the endokarstic drainages succession and the genesis of the cavern. Defleur, A., Crégut-Bonnoure, E. Radulescu, C. Excavation at the Grotte des Cèdes (Le Plan d'Aups, Var, France), 1987. Evidence for a Late Rissian episode, pp. 205-210. A brief account is given of recent excavation at the Grotte des Cèdres (Le Plan d'Aups, Var, France). Pleistocene deposits yielded lithic assemblages associated with abundant mammalian remains indicative of a Late Rissian age (isotopic stage 6 of deep-sea cores). Oraseanu, I., Ventel, R. Gaspar, E. Tracers investigations in Poiana-Tecuri area (Sureanu Mountains, Romania), pp. 211-212.
Restriction:
Open Access - Permission by Publisher
Original Version:
Vol. 4 (1991)
General Note:
See Extended description for more information.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
K26-04794 ( USFLDC DOI )
k26.4794 ( USFLDC Handle )
11621 ( karstportal - original NodeID )
1012-9308 ( ISSN )

USFLDC Membership

Aggregations:
Karst Information Portal

Postcard Information

Format:
Serial

Downloads

This item has the following downloads:


Full Text
Description
TAK Reviews Tenu, A.
& Davidescu, F., D. La datation par radiocarbone dans la
recherche splologique, pp. 7-16. La mise au point de la
datation par radiocarbone, ralise par Libby en 1955, a permis
d'tablir des chronologies absolutes et efficaces pour la
priode des dernires 40 milles ans. Malgr le fait qu'en
Roumanie la mthode ft signale en 1956, la datation
proprement dite par radiocarbone a t ralise seulement en
1977, l'Institut de Mtorologie et Hydrologie de Bucarest.
Depuis cette anne, les applications au radiocarbone en
Roumanie ont vis exclusivement la datation des eaux
souterraines. Ce rapport, par la prsentation succuncte des
bases thoriques, exprimentales et mthodologiques et des
dterminations prliminaires, effectues sur des splothms,
voudrait tre une tentative pour l'extrapolation de cette
mthode dans la recherche spleologique. Le travail expose,
d'une faon succinte, les bases thoriques, exprimentales et
mthodologiques de la datation par radiocarbone dans la
recherche spologique et prsente aussi, pour illustrer la
mthode, trois dterminations d'ge pour des splothms de
Roumanie. TAK Articles Ungureanu, C. Mineralogic and
geochemical research of the Tecuri Cave (Romania) red clay, pp.
17-32. Le travail tente de tirer au clair la gense des dpts
argileux se trouvant dans la zone Bojita-Tecuri-Rachiteaua du
Sud-Ouest des monts de Sebes. Aprs un aperu historique sur
les recherches effectues dans la zone, on y trouve prsentes
des donnes orohydrographiques, la gologie de la rgion et la
ptro-chimie des roches. La comparison des paramtres
gochimiques des roches se trouvant dans cette zone -
c'est--dire des schistes cristallins du domaine Gtique, des
calcaires du Jurasien et des argiles rouges (qui abondent dans
la grotte de Tecuri) a port aux conclusions suivantes: 1. La
composition granulomtrique des chantillons d'argile indique
une fraction plitique d'environ 50%. 2. La composition
chimique des argiles indique des taux de Al2O3 et Fe2O3 lvs,
qui les approchent des argiles bauxitiques (Suliman, 1976). 3.
Les minraux argileux dtermins ont t: le kaolinite, le
gibbsite, le diaspore, l'illite et le halloysite. 4. La gense
des argiles est lie l'altration des mtamorphites
appartenant au domaine gtique, sourtout l'altration des
micaschistes et des amphibolites. 5. Il y a galment la
possibilit de la formation des minraux argileux par
l'altration des bauxites un pH acide (5.5-6.4). 6.
L'apparition de ce genre d'argiles saulement sur substrat de
calcaires peut tre due aussi au phnomne de pizo-lectricit
du calcite (Diaconu, 1986). Ionescu, G. & Ionescu, C.
Considerations on the morphology and genesis of the Jurassic
paleokarst in Farcu Hill area (Southern Padurea Craiului
Mountains, Romania), pp. 33-40. Based on surface data and more
than 300 boreholes investigations in Farcu Hill area, in the
Southern part of Padurea Craiului Mountains, the present paper
deals with some features of the Jurassic fossil karst relief
sunk now under limy Cretaceous deposits. Our purpose is both
theoretical: to enrich the image about some factors and their
evolution in modelating this paleorelief and practical: to
detect bauxite bodies in this region by use of reconstructing
methods, as is the isobathic map and geostatistical analysis of
these data, in correlation with geological and geomorphological
observations. Constantin, S. & Rotaru, A. Considrations
gntiques sur la grotte "Pestera cu Lacuri din Valea Seaca"
(Monts Locvei, Roumanie), pp. 41-49. Les auteurs prsentent une
hypothse sur la gense d'une cavit de dimensions moyennes,
situe dans le Bassin Valea Mare (Monts Locvei). La grotte est
ascendante, dispose sur deux tages et elle prsente sur son
parcours une suite de lacs situs des cotes croissantes par
rapport l'entre. Compte tendu de la morphologie d'ensemble
et de dtail de la cavit on advance l'hypothse que son
creusement a eu lieu regime noy aprs lequel, conscutivement
un abaissement relativement rapide du niveau phratique, les
galeries ont restes fossiles. Le niveau hydrostatique actuel
est marqu par le niveau de l'eau dans les lacs. Le mcanisme
de constitution du rseau karstique est analys en tentant
compte des similitudes entre la situation prsente et celle de
certaines cavits de la zone de Mendip (Angleterie). Etant
donn que l'alimentation de l'acquifre est due exclusivement
aux infiltrations on considre que dans l'abaissement brusque
du niveau phratique un rle primordial serait revenu
couverture argileuse impermable qui a couvert, partir du
Plistocne suprieur, les plateaux calcaires sommitaux. Cette
couverture aurait eu un rle de "tampon", diminuant la quantite
d'eau coule vers l'acquifre. On apprcie ainsi que l'ge de
l'abaissement du niveau phratique, et donc de la
"fossilisation" des galeries, pourrait tre situ le plus tt,
la fin du Plistocne suprieur. Serban, M. & Racovita,
G. L'extension de la zone glace dans la Grotte de Scarisoara
(Roumanie) effet des oscilations mtorologiques
multiannuelles, pp. 51-64. La limite des formations
stalagmitiques de glace qui se dveloppent dans la zone
priglaciaire de la Grotte de Scarisoara (Monts du Bihor)
prsente des variations saisonnres dues aux changements
priodiques qui lieu dans le rgime de ventilation de la
cavit. Ces variations ont t suivies par des mensuelles
effectues durant l'intervalle 1983-1988. L'analyse stastique
des donnes primaires, base sur la mthode de Ballot-Besson
d'adjustement d'une suite chronologique de valeurs, mpntre que
cette limite comporte aussi des oscillations d'ordre suprieur,
correspondant des tendances multiannuelles d'extension ou de
restriction de la zone glace. Leur cause rside dans des
fluctuations thermomtriques analogues qui se produisent au
niveau de l'atmosphre souterraine et qui peuvent tre mises en
corrlation avec les tendances de long terme lies
l'volution mtorologique de l'extrieur. Mafteiu, M.
Contributions to the investigation of the Padis karst area
(Bihor Mountains, Romania) by means of resistivity
measurements, pp. 65-76. Geological measurements are frequently
used in karst investigation for the identification of
underground cavities, of tectonic fractures which may favour
the development of karst phenomena and for establishing the
flow directions of corresponding groundwater bodies. Taking
into account the strong control that the dimension and burial
depth of a certain anomalous body exert on the electrometric
methods applicability, arrays with various depths of
investigation were used. The present paper included the results
of a survey performed above a known anomalous body, the cave of
Padis, as well as that of a subsequent extended application of
the methods over a wider area. The data interpretation resulted
in maps of the karst drainage areas and in establishing flow
directions of the groundwater bodies. The water-table level and
the flow directions indicated by the soundings were adjusted
according to the information derived from boreholes and from
tracing experiments. Davidescu, F., D., Tenu, A. &
Slavescu, A. Environmental isotopes in karst hydrology. A
lay-out of problems with exemplifications in Romania, pp.
77-86. The paper provides actual examples of the possibilities
to apply environmental isotopes in determinating certain
hydrogeological characteristics and parameters in carbon-matrix
aquifers of economic importance in Romania. Iordache, O.,
Isopescu, R., Gaspar, E. & Isopescu, A. Interpretation of
tracer experiments. Multi-cell of imperfect mixing, pp. 87-92.
A new model is put forward for the dispersion processes in
hydrokarstic systems exhibiting more scales of mixing. An
expansion using Laguerre polynomials is obtained for the
residence time distribution. The first term in expansion
corresponds to the standard multi-cell model while the
following are corrections for imperfect mixing. The results are
applied to interpret tracer research on the dynamics of
underground waters in the Cerna Valley. Slavoaca, D., C. &
Slavoaca, R. The karstic water participation in the genesis of
the thermomineral water reservoir of the spa complex
Calimanesti-Caciulata-Cozia (Romania), pp. 93-96. The paper
sets in evidence the karstic waters participation at the
genesis of the thermomineral water reservoir exploited in the
spas: Calimanesti, Caciulata, Cozia. The water-inflow zone is
situated in the northern part of the thermomineral reservoir,
at the base of the senonian sedimentary deposits. The karstic
water proceeds from jurassic carbonate rocks, which outcrop in
the Vinturarita zone. Oraseanu, I. Hydrogeological map of the
Padurea Craiului Mountains (Romania), pp. 97-127. The
hydrogeological map shown herein covers an area of 670 sq. km.
In the Padurea Craiului, a massif that makes the North-western
termination of the Apuseni Mountains. Owing to a varied
geologic structure, with Mesozoic limestones and dolomites
outcropping on 330 sq. km, the relief boasts a great variety of
features, noteworthy among which are the karst plateaus and
valleys, as well as the caves and the potholes. The numerous
karst catchment processes, of which some are in full progress
at present, disorganized the surface hydrographic network,
leading to the formation of an endoreic zone of roughly 224 sq.
km and of a diffluence area extending on 94 sq. km. The
hydrologic links between these areas and the zones bordering
the massif is secured by surface and underground flows. The
great lithologic diversity and the different tectonization
indices of the deposits in the lithologic structure of the
Padurea Craiului Mountains led to the individualization of five
groups that boast distinct models of underground water supply,
circulation, storage and discharge. In the hydrogeological map,
the five types are separated cartographically and characterized
hydrogeologically; the map also gives their detailed lithologic
description. International conventional signs show various
models whereby the water penetrates the carbonate massif
(diffusely, ponors and caves, a.o.), as well as different types
of karst exurgences, all while pinpointing the permanent or
temporary hydrologic character of the flow and the
speleologists' access or lack of it to the underground
realm through these points. The precipitations that fell in
October 1982-September 1983 hydrologic year on the non-karst
area of the massif generated a specific annual mean runoff
ranging from 3 to 20 l/s sq. km, with its vertical gradient
standing at 3.3 l/s sq. km. The value of that index is strongly
influenced by the presence of the areal carbonate rocks wherein
the karst-catchment processes substantially diminish the
discharge. The 78 tracer labellings performed by various
authors pinpointed the general directions of flow of
underground waters and the comparison between those data and
the results of the hydrometeorogical observations and
measurements provided for a hydrogeologic characterization of
the major hydrogeological karst systems. The discharge,
variability indices and the recession curve discharge
coefficients for 13 of the major karst sources of the massif,
as well as the distribution in time of underground flow of that
area were shown. The overall hydrogeological picture of the
Padurea Craiului Mountains, without Remeti graben, is
characterized by the presence of an unitary karstic aquifer in
which there is a deep circulation from the East to the West
overlay by numerous underground "surficial" (shallow) ones
which discharge at the periphery of the massif, by sources with
overflow meaning, the water excess resulting from the rainfall
on its surface and which can't be involved in deep circulation.
Ponta, G., Terteleac, N. & Gaspar, E. Three karstic systems
(Rosia, Toplita de Rosia and Vadu Crisului) in the Padurea
Craiului Mountains (Romania), pp. 129-142. The paper presents
data regarding three karstic aquifers: Rosia, Toplita de Rosia
and Vadul Crisului, whose hydrogeological basins were outlined
by surveying the subterranean cavities and the tracers
experiments. Complete informations are given concerning the
experiments with In-EDTA, La-EDTA and Rhodamine B, carried out
in Valea Perjii, Birtin and Pintiuca sinkholes. These tracers
appeared in Rosia Spring respectively Vadul Crisului. There is
also a presentation of the Ciur Ponor cave and a structural
characterization of the three karstic systems. Feru, M., U.
& Capota, A. Les eaux thermominrales karstiques de la zone
de Mangalia (Roumanie), pp. 143-157. Oraseanu, I., Gaspar, E.,
Pop, I. & Tanase, T. Tracers experiments in the karst area
of Bihor Mountains (Romania), pp. 159-172. The complex
geological evolution of Bihor Mountains led to the grooth of
karstifiable and unkarstifiable rocks mosaic. This evolution is
hydrogeologically reflected by the presence of numerous karstic
aquifers having different extensions and being charged by
precipitations and surface streams, karstically trapped either
total or partial. In order to find out the main running water
directions of some karstic aquifers, the authors carried out a
number of 36 labellings with rhodamine, fluoresceine, stralex,
radioactive tracers (I-131, Br-82) and activable tracers
(In-EDTA, Dy-EDTA, I-). On the whole, the tracers labellings
accomplished up to now in the karst area of Bihor Mountains
showed an average running speed of the underground waters of 45
m/hour. The longest course was found between the pothole of
Hoanca Urzicarului and Pauleasa spring (4,800 m), while the
maximum level difference was between the Muncelu cave and
Blidaru spring (665 m). Pirvanescu, E. & Pirvanescu, A.
Overall water balance computation in the karst zone "Sapte
Izvoare Reci", Scropoasa (Romania), pp. 173-181. The paper
presents the manner of balance elements assessment and the
computation of the overall water balance in the karst area "7
Izvoare Reci" Scropoasa proposed for valorization as export
"flat waters". The main purpose of this computation was to
establish the feed zones of the source with a view to implement
protection systems against polluting agents. Ionescu, G. &
Ionescu, C. Considerations concerning the gyps occurrence in
the Ciur-Izbuc Cave (Padurea Craiului Mountains, Romania), pp.
183-187. Nedopaca, M. La pyrite bactrienne de Risculita -
Dpartement de Hunedoara, Roumanie, pp. 189-191. Fratila, R.
& Constantin, S. Aspects of the karstification in the
Cornilor Spring area (Padurea Craiului Mountains, Romania), pp.
193-203. The paper presents the researches accomplished in a
karst area with a small surface (2.6 sq. km) which hide a great
cave, Cornilor Cave, with a length of 10.14 km. The karst
morphology study, together with the geological and tectonical
observations are used for realizing the karst map of this area.
The factors that conditioned the genesis of the cavity are
analyzed: lithology, tectonics and hydrochemical conditioning.
Finally, based on this analysis, the authors propose a
hypothesis on the endokarstic drainages succession and the
genesis of the cavern. Defleur, A., Crgut-Bonnoure, E. &
Radulescu, C. Excavation at the Grotte des Cdes (Le Plan
d'Aups, Var, France), 1987. Evidence for a Late Rissian
episode, pp. 205-210. A brief account is given of recent
excavation at the Grotte des Cdres (Le Plan d'Aups, Var,
France). Pleistocene deposits yielded lithic assemblages
associated with abundant mammalian remains indicative of a Late
Rissian age (isotopic stage 6 of deep-sea cores). Oraseanu, I.,
Ventel, R. & Gaspar, E. Tracers investigations in
Poiana-Tecuri area (Sureanu Mountains, Romania), pp.
211-212.



PAGE 1

INSTITUTUL DE SPEOLOGIE ,EMIL RACOVI'fl" THEORETICAL AND APPLIED KARSTOLOGY Volume 4 BUCHAREST 1991

PAGE 2

THEORETICAL :AND APPLIED KARSTOtOGY Volume 4

PAGE 3

THEORETICAL AND. APPLIED KARSTOLOGY (ISSN. 1012-9308) Editorin-chief Dan D.ANCAU -Institutul de Speologie ,Emil Str. Frumoasa 11, 78114 12, Romania. Executive Editaz Constantin MARIN -Institutul de Speologie ,Emil Str. Frumoas!t 11, 78114 12, Romania Editorial Board Marcian BLEAHU Silviu CONSTANTIN Traian CONSTANTINESQU Gabriel DIACONU Emilian AR Cristian GORAN Viorel HOROI Adrian JURKIEWICZ Horia MITROF AN Iancu loan POV AHA Gheorghe RACOVI'fA Costin RADULESCU Mihai Dumitru TODOR Valer Copyright 1991 by INSTITUTUL DE SPEOLOGIE ,EMIL RACOVITA" For the foreign readers the volumes published in this series are available by change with specialized publications

PAGE 4

INSTITUTUL DE SPEOLOGIE ,,EMIL RACOVIT!." THEORETICAL AND APPLIED KARSTOLOGY Vol u me 4 BUOIAR EST -I.S91

PAGE 5

S.C. l JNIVERSUL S.A. c 381

PAGE 6

and Applied Karstology vol. 4 (1991) CONTENTS TENU, A et DAVIDESCU F. D.:-La datation par radiocarbone dans la recherche speleologique . . . . . 7 UN GUREANU, C. : Mineralogic and geochemical research of the Tecuri Cave (Romania) red clay . . . . . 17 lONESCU, Georgeta and lONESCU C.: Considerations on the morphology and genesis of the Jurassic paleokarst in Farcu Hill area (Southern Padurea Craiului Mountains, Romania) 33 CONSTANTlN, S. et ROTARU A. : Considerations genetiques sur la grotte cu Lacuri din Valea Seadi.'' (Monts Locvei, Roumanie) . . . . . . . . . 41 M. et RACOVl'-l'A G.: L'extension de la zone glacee dans la Grotte de (Roumanie)-effet des oscilations meteorologiques multiannuelles . . . . . . 51 MAFTE1U, M.: Contributions to t.he investigation of the karst area (Bihor Mountains, Romania} by means of resistivity measurements . . . . . . . . . . 65 DAV1DESCU, F. D., '.f'ENU A. and SL.!.VESCU Ana: environmental isotopes in karst hydrology. A lay-out of problems with exemplifications in Romania . . . . . . 77 IORDACHE, 0., ISOPESCU Raluca, E. and ISOPE-t5CU A. : Interpretation of tracer experiments. Multi-cell of imperfect . . . . . . . . . 87 R.IJ AVOAC.!., D. C and SLAVOAC.!. Ruxandra: The karstic water participation in the gene s i s of the thermomineral water reservoir of the spa complex (Romania) 9 3 I.: Hydrogeological map of the Padurea Craiului Mountains (Romania). . . . . . . . . . 97 PONTA, G., TERTELEAC N and E.: Three karstic systems Toplita de and Yadul in the Padurea Craiului Mountains (Romania) . . . . . 129 FERU, M. U. et CAPOT.!. Ana : Les eaux thermominerales kars tiques de la zone de Mangalia (Roumanie) . . . . . 14 3 I., E., POP I. and TAN.ASE T.: Tracers experiments in the karst area of Bihor Mount a ins (Rom a nia) 159 P!RV ANESCU, Eugenia and PtRV ANESCU A. : Overall water balance computation in the.karst zone Izvoare Heci", Scropoasa (Romania) . . . . . . . . . 1 I 3

PAGE 7

6 .Theoretical and Applied Karstology val. 4 (1991) IONESCU, Georgeta and IONESCU 0. : Considerations concerning the gyps occurence in the. Ciur-Izbuc Cave (Pltdurea Oraiului :Mountains, Romania) . . . . . . . . . 183 NEDOP ACA, M. : La pyrite bacterienne de -Departe-ment de Hunedoara, Roumanie ..... . . . . 187 FRA'fiL.!., R and CONSTANTIN S.: Aspects in the Cornilor Spring area (Pltdurea Craiului Mountains, Romania) 193 DEFLEUR, A., CREGUT-BONNOURE EVELYNE, RADULE-SCU C.: Excavation at the Grotte des Cadres (Le Plan d'Aups, Var, France), 1987. Evidence for a Late Rissian episode . 205 ORAE;)EANU, I., VEN'fEL, R. and E.: Tracers inves tigation s in Poiana-Tecuri area Mountains, Romania) 211

PAGE 8

Theoretical and Applied J\arslo/ogy. Vol. I (1991), pp. 7 to 16 LA DATATION PAR :B.ADIOCARBONE DANS LA RECHERCHE SPELEOLOGI QUE PAR A. .'fENU et F. D. DA VIDESCU La mise au point de la datation par radiocarbone, realisee par Libby en 1955, a permis d'etablir des chronologies ahsolues et efficaces pour la des dernieres 40 milles ans. Malgre le fait qu'en Roumanie Ia methode Jilt signa lee en 1956, Ja datatlon jlroprement dite par radiocarbone a ete realisee seulement en 1977, a l'Jnstitut de Meteorologic et Hydrologic de Buearest. Depuis cette annee, les applications au radioclllbone en Roumanie ont vise exclusivement Ja datation des eaux soutenaines. . .. Ce rapport. par la presentation succinctc des bases tbeoriques, tales et methodologiques et des determinations effectuees sur des spcleothemes, voudrait etre une tentative pour }'extrapolation de cette methode dans Ja recherche speologique. Le travail expose, d'une succincte, les: bases theoriques, experimentales et methodo!ogiques de Ia datatlon par radiocarbone dans Ia recherche speologique et presente aussi, pour 'fllustrer Ia methode, trois determinations d'flge pour des spl!leotbemes de Roumanie. Velaboration de la methodologie de la datation a l'aide du carbone-14, en 1949, a permis en principe d'etablir des chronologies absolues et efficaces pour la periode des dernieres 30.000-40.000 annees. Mais, c'est seulement en 1955 que Libby, considere en general le fondateur de la methode, publie l'ouvrage ,La datation par radiocarborre" (Libby, 1955). Pour cet ouvrage qui pose des fondements scientifiques solides pour les applications au radiocarbone en differents domaines, l'auteur a en 1960, le prix Nobel. Les annees qui ont suivi ont donne de nouveaux elements, indis pensables au. parachevement de cette methode, mais le principe et les elemel!.tB base ont restes memes. En Rouma:r;tie la methode au ;radiocarbone a ete signalee par George .Atanasiu, ei).1956 .Apres cette date, il reprend dans ses travaux la question du radiocarbone, en eiivisageant d'une part son role dans !'ionisation de l'aif des grOttes (.Atanasiu, 1958), part dans la determination de l'age des concretions calcaires et des residus organiques des grottes (Atanasiu, 1959) en proposant en meme temps d'inclure cette methode dans le programme d'etudes l'ln:stitri.t de Physique de l'Academie, section de Goophysique.

PAGE 9

8 A. teJtu, F. D. Davidescu 2 Cela se realise en 1977, quand des specialistes de l'Institut de Meteo rologie et Hydrologie de Bucarest ont reussi a determiner le radiocarbone en Rournanie ('fenu, 1977). Malheureusement, pendant toute la decennie ecoulee jusqu'a present, cette methode a ete mise en pratique uruquement pour la datation des eaux souterraines. Elle n'a pas eM utilisee aui recher ches speologiques ou archeologiques, bien que les conditions aient eta avantageuses. En ce sens ce compte rendu serait, selon l'avis des auteurs, une demarche positive. 1. LES BASES THEORIQUES DE LA METHODE Le radi6carbon:e est l'isotope radioactif, a la masse 14: du carbone, avec une frequence moyenne de 10-6 ppm et un domaine de variation en conditions naturelles de 10-7 a 10-90/00 En taut qu'atome radioactif, le radiocarbone a un noyau instable qui se desintegre, sa periode etant T1 2=5.730 annees. Lors de ce processus, il emet des rayons beta faibles, avec E = 0,155 MeV. . On mesure ces rayons a l'aide de certains detecteurs a gr .ande sensibilite; on peut ainsi calculer les activites specifiques (dpmfg carbone) des differents echantillons orgariiques ou anorganiques, ce qui permet d'estimer leur age relatif ou absolu. Les activites en 14C sont definies en pourcents par rapport a une teneur ainsi-dite ,,carbone moderne". On a adopte comme activite de 100% carbone moderne (100 pmc), la concentration existante en C02 atmospherique de l'anne. e 1950; cette activite standard correspond a. une activite specifique de 13,56 dpm/g carbone. J.Je principe de !'utilisation du carbone-14: en tant que chronometre naturel s'appuye sur la loi de la desintegration; cette loi est exprimee par une equation exponentielle dont la forme est: Oll: (1) N 0 est le nombre initial de noyallx radio-actifs ; N le nombre de noyaux radio-actifs qui restent apres .un' in:tervalle de temps t; ---: la constante de desintegration, egale pour le radicicarbone avec 1,209.10-4 ans-1 ; e -la base du logarithme naturel. Vu qu'il n'est pas. possible de determiner l.a variation du nop1bre de noyaux, on poursuit dans la pratique la diminution radioactive dans l'unite de temps par l'intermediaire des radiations ey;nisesi cette valeur etant proportionnelle avec le nombre de noyaux et representant ce qu'on appelle habituellement ,activite (A)". A= .Aoe-:l.t (2) Par la datation on calcule l'intervalle de temps : t qui s'ecoUle d'un cmtain moment, comrile par exemple, le moment-de ; I ;'I., ...

PAGE 10

3 :t.a cliatation par rad!iocarbone 9 d'un organisme ou la formation d'un cri stal CaC03(t0 ) et le de la determination (t1 ) ; t = t1 -t0 En. ces conditions, la formule u s uelle du calcul de l'age radiometrique est : t = T1/2 In Ao/A ln2 (3) oil: Tl/2. est la periode radio-active du radiocarbone; A0 et A = les activites specifiqiles en 14C (dpmfg) dans ces deux moments. En utilisant les valeurs numeriques, la formule ci-dessus est s implifiee: t = 8270 In (A0/A), ans (4) En guise de conclusion, on peut retenir que pour determiner l'age d'un ecbantillon a l'aide du radiocarbone, il est nece s saire d'etre en possession de deux valeurs : -l'activite de l'echantillon (A), qui s'obtient experimentalement; -l'activite initiale (A0 ) qu'on obtient par evaluation ou par/deter-mination experimentale. 2. FORMATION ET MIGR.ATION DU RADIOCARBONE La product. ion du 14C s'effectue par v.oie naturelle, par 1'impa.cte de la eomposante neutronique de la radiation cosmiql}e et les noyaux d 'azote de l'air conformement a la r e action : (5) Cette voie de production a ete envisagee pendant une certaine periode comme determinant un taux constant de 14C dans !'atmosphere. Mais la comparaison des a ges radiometriques avec les ages reeHes (materiaux tires des necropoles et smtout par dendra-chronologies) a mis en evi dence certaines non-concordances ou negatJ ves, avec une dence des sens des ecarts par intervalles de temps bien definis Entre autres hypotheses a ete celle de la presence d'une. variation periodique du taux uaturel de production du 14C. Cette variation a ete demontree par des etudes systeinatiques et mise en relation ayec la variation du champ geomagnetique (Eucha, 1970), lequel, tout en determinant des variations de l'intensite de la radiation cosmique, influence aussi sur le taux de production du radiocarbone (fig. 1 ). Sur la base des resultats obtenus par 500 analyses du radicr carbone, executees sur des echantillons dont l'age etait' connu, w endland et Donley (1971) ont dresse le diagramme qui permet de corriger l'age pow: les 7100 derniers ans (fig. 2),; ils ont etabli egalementl'equatio:n.analytique de relation des deux ages: = 112 :t: 0,690 Vr + 0,152 -7 -0,138 (6)

PAGE 11

10 A. ].'enu. .F. D. Davidescu oil: Vc = l'age reel (corrige); Vr = l'age radiometrique 140.' Ainsi qu'on demontre sur la.. figure 2, dans l'intervalle 500-2100 ans B.P., les ages reels et les ages radiometriques sont a peu pres de valeur ega.le, mais pour des delais de moins de 500 ans et en depassant 2100 ans, les ages ra.diometriques sont plus ,jeunes". Done pour un age ra4io-2000 11 2 2000 A .D. -o-a.c A o-o-sc 2000 2000 4000 6000 4 'l 0 1 6 8 TO 12 ,, Fig. 1 Influence des modifications du. moment geomagnetique (cour be a) sur Ia variation des Ages du radiocarbone (courbe b). La courbe c represente Ia sinusoide moyenne a periode de 8.900 ans des peux courbes anterleures (d'aprils Bucba, 1970). a. tD 6000 >-4000 a:
PAGE 12

. La datation par tad!iocarbone metrique de 4000 a.ns, l'igc rtel, cnlculc selon la formule (6), est de 4.421 ans. Outre la voie naturelle, il existe egalement une voie artificielle de production du 140. Elle consiste d'injections provoquees dans !'atmosphere par les tests nucleaires et t.hermo-nucleaires, executes particulierement entre les annees 1954-1963. L'exces de radiocarbone etait de 100% en 1963 (fig. 3), le niveau naturel se retablissant vers l'annee 2020, a condition qu'on elimine completement les souces d'injection artificielle 1969 t96S 1910 1915 1980 1985 Fig. 3 Variation des teneurs en radiocarbone dans )'atmosphere terrestre suite aux tests thermonudcaircs [7. ] 1 dans Ia zone 30-90" latitude nord; 2 dans Ia zone 9-90 latitude sud; 3 decroissement calcule (d'apres Vinogradov cd., 1972) (Vinogradov et al., 1972). Toujours d'origine anthropique, mais a l'effet de sens contraire est l'ainsi-dit ,Effet Suess", engendre par la combustion des matieres combustibles fossiles,_ qui produisent, specialement a.:pres l'annee une dilution du radiocarbone dans !'atmosphere. n en resulte que 1 'activite initiale (.Ao), tres necessaire dans le processus de la datation, est loin d'etre con'Stante dans le temps. N eanmoins, a I' ex ception des 35 dernieres annees, on pourrait la considerer ainsi, a condition que le systeme soumis a 1 'analyse soit reste ferme, autrement dit sans aucun apport en ca1;bone actif ou ,mort", qui pounait denaturer les ages calcules en s'aidant de la loi de desintegration du radio carbone. Une fois formes par n'importe quel mecanisme signale, les atomes de 14() sont oxydes dans un delai de minutes ou d'heures, en dormant naissance au 14002 En melange avec le C02 de !'atmosphere, toutle C02 atmospberique devient radioactif; une partie du uc penetrera dans la biosphere par photosyntbese et. metabolisme, l'autre partie sera dissoute dans les eaux des precipitations. Le cycle biologique du radiocarbone est assez simple. bn arbre ou n'importe quel organisme vivant garde, durant sa vie, nn etat

PAGE 13

12 A . !fenu, F . D. Davidescu 6 entre le taux naturel de production du 14C et la desintegration du 14C dans les tissus. Au moment de la mort, le processus est brusquement interrompu et se poursuit seulement celui de la desintegra tion. En ce cas, la notion de systeme ferm e est facilement admise, partic1llierement en ce qui concern e les detritus vegetaux massifs, tels que le bQis, par exemple. Si l'on part de l'activite specifique initiale (A0 ) de dpmjg carbone, ce qui corre spond a 100% pmc et si l'on mesure l'activite resi duelle (A), le calcul du temps ecoule, exprime soit comme age radiometrique (apparent), soit corrime age reel (corrige) est une operation mathematique sim ple. La penettation du 14C dans !'hydrosphere est plus complexe et e ll e s'effectne de deux differentes (fig 4) : -un transfert direct par l'equilibre C02-H2C03 ala surface libre des eaux oceaniques ou continentales ; INDIRECT TRANSFER co1 r BIOSPHERE COSMIC NEUTRONS t4N / .UPPER ATMOSPHERf. tr.c.. F i g. 4 -Schema de la formafion c t du transfert du radiocarbone de !'atmosphere: dans. 1'hydrosphere:_ :_ une penetration par l'intermM1aire de la biosphere qui se realise essentie llement par cloroP.hilienne. La voje par sa complexite et son role pour_ les eaux continentales, exige quelques brefs commentaires. _ _ _ Les plantes engendrent d'importantes de C02 (ians la couche de sol, s oit par fermentation, soit par la des racines ; la pression partielle du gaz est habituellement de deu. x 9rdres de valeurs_ phis grande dans le sol, que ce lle de l'atmosp here, ce qui determi.p.e une dissolution plus importante de C02 par les eaux du sol, pat les_ eau:X: de s precipitations. couche de sol est ainsf ledomairie essimtiel du

PAGE 14

7 La par passage du carbone entre !'atmosphere ia. partie continentale de l'hydrospherel tout en etant un reservoir a concentration maxime en 140. Le 002 qui .est dissout dans l'eau des sols declenche une chaine de reactions du type: -002 (gaz) <:_ J 002 (liq) 002 (liq) + H20 H2003 H+ + 003Me ROO;+ Me2+ {7) 8 (9) (10) Oes reactions synthetisent :1e processus de dissolution d'un carbonate solide, alcruin-terreux, sous l'action. des eaux agre'ssives: (11) Oonf .ormement a cette equation, il . faudrait envisager Vactivite drt carbone dissout sous forme de bicarbo:Uate en tant qu'ur,i : d'nn. l)leli:inge equiatomique de types de 'carbone: 002 porteur de 14Q et. le ear bonate solide; en general depourvu de. radiocarbone. En conditious de 100% carbone tnodefhe dans le OQ2 d'origine biogenique et 0% dans le ear bonate mineral, il en resulterait une activite initiale (A0 ) de so % pour le bicarbonate dissout. Mais, en cette situation intervienneri.t d'autres mecanismes, lesquels engendrent des modifications dans ce schema simp lificatric e . Il faudrait par consequent noter qu'au cas de .Panalyse du radiocarbone a base de bicarbonates et de carbonates dissouts-ainsi qu'on pratique l'hydrogeologie -il ne serait pas question de systemes En ces conditions, l'estimation de iJ; litiale (A0 ) est une operation laborieuse qui suppose la connaissane
PAGE 15

A. Tenu, F. D. La methodoiogie de transformation des echantillons d'origine organique ou minerale en benzene suppose toute une serie de reaetions et de modifications successives comprenant en general trois cycles distincts : acidification, carburation-hydrolyse et trrmerisation, qu'on pourraient exprimer synthetiquement ainsi : Gar bonate precipite Bioxide Carbure acetylene benzene de carbone de lithium acidification .carburation-hydrolyse trimmerisation Ces reactions se produisent dans une qu'on appelle synthetiseur de benzene. La synthese du benzene a lieu conformement aux reactions ci--dessus, qui passent par les trois etapes, lors du traitement d'un echantillon mineral comme, par exemple, le carbonate de calcium des spe!eothemes ou le carbonate de barium precipite des eaux souterraines. A 1 'analyse de certains echantillons organiques, tels que le bois, la tourbe, le charbon, l'os, la premiere etape disparait, la carburation s'effectuant suite a un traitement preliminaire, en y utilisant la matiere organique qu 'on analyse. ll faut noter que pour la datation des os, on utilise le collagene a la place du squelette mineral ; qui subit par 1 ration dans le sol d'importantes modifications chimiques (Longin, 1970). 4. LA DATATION DE CERTAINS SPELEOTHEMES Pour. illustrer la mise en pratique de la datation par radiocarbone dans la recherche speologique, on a execute 1 'analyse de trois echantillons qu 'on nous a tres aimablement offerts,de sa collection particuliere. Dr. Mar cian Bleahu. Echaneillon 1 -(;orallite blanc preleve de la grotte Pojarul Poli}ei (monts de Bihor). Les deux speleothemes au poids de 36,4 g; aux dimensioDB maxima 3 et 5 em, ont la couleur blanc laiteux, des formes arborescentes et des terminaisons a. ignes, qui donnent l 'impression d 'une formatiOn :recente. Par synthese, on a obtenu 3,5 em 3 de benzene. L'analyse a fait ressortir une teneur de 108,6 pmc, en depassant, par consequent, celle du carbone moderne, ce qui mene a la conclusion certains que la precipitation s'est effectuee lors des explosions thermcr nucleaires dans !'atmosphere, c'est a dire apres l'annee 1960. L'age reel de cette formation est assurement de 25 ans au maximum. Echant-illon 2-Corallite rose prove;u. d'Uilegrotte qu'on n'a pas reussi a identifier. Le speleotheme, dont le poids etait de 20,5 g, aux dimensions approximatives de 5 X 2 em, etait de couleur rose, ala forme massive-arborescente, aux terminaisons tres arrondies. L'analyse du 14C par 1 'utilisation des 2,0 cm3 de benzene obtenus a mis en evidence une teneurde 0,2 pmc seulement. (;ette activite residuelle

PAGE 16

La datation par radiocarbone 15 infime permet le calcul, pour n 'importe queUe activite initiale comprise dansl 'ecart de 30% a 100%, des ages situes au-dela des limites de detection la methode. On peut de cette considerer que 1 'age du speleotheme depasse certainement 40 milles ans. Echantillon 3 -Perles de caverne, oollectee s de Perlelor (Nucet, monts de Bihor). L 'echantillon consiste en 27 ,o g de perles a couleur blanche-grise, aux dimensions variables mais aux diametres compris en general de 2 a 10 mm; on a estime qu'environ 90-95% de toute la masse a ete constituee de perles au diametre de plus de 6 mm. On a synthetise un volume de 2,3 cm3 de benzene dont 1 'activite en radiocarbone a ete de 86,2 pmc. ce cas; !'absence d'une determination de 1 'activite initiale {A0 ) rend impossible la preci s ion de 1 'age reel de l'echantillon. Si l'on suppose cependant, pour A0 une valeur de 100 pmc, on peut obtenir un radiometrique .de 1250 ans, cette valeur constituant la limite maxima possible de moyen de 1 'echantillon. On peut par consequent admettre pour cette speleo-formation le fait qu'elle pourrait avoir un quelconque, entre zero et 1250 ans. Les resliltats de ces datations ont ete presentes aux travaux de la VI-erne session du Symposium National de Carstologie Theorique et Appli quee; qui a lieu dans la localite Ba,ile Herculane, du 6 au 9 mai 1988. Les discussions ont fait ressortir un vif interet de la plupart des speloologues. 5. CONCLUSIONS a) u point de vue theorique cette demontre grande precision en raison des elements suiva.nts : -en premier lieu, cette methode est fondee sur une loi physique sta.ble, qui agit separement de la. composition chimique, la. pression, la. temperature ou a.utres parametres physico-chimiques de l 'envirdnment ; en second lieu, les techniques de correction de 1 'a.ctivite initiale (Ao}, permettent de convertii les ages appa.rents (1adiometriques2 en ages reels. b) La pratique mondiale permet d'estimer la precision des datat iona comme : tres bonne, pour les e.pelOO-formations (a condition que la dete r mination de 1 a.ctiv1te initiale A0 soit executee dans la mf.me gro t te) et aussi pour le charbon de bois, la. tourbe et meme pour le bois ; -bonne, pour le cas des os (determinations sur collagene). La methode de la data.tion par radiocarbone pourrait etre, en Rou manie aussi, d'une grande effica.cite dans la recherche speleologique et arohOOlogique, tant pour la determination des ages absolus des formations ca.rbonatees anorganiques ou des residus organiques, que pour etablir la succession de certains evenements ou leur deployement parallel en temps et en espace.

PAGE 17

A. Tenu, F. D. Davidescti \10 BIBLIOGRAPHIE ATANASIU, G. (1958), Rolu/ radiocarbonu/ui .uc in ionizarea aerului din peteii (Role du radiocarbon e 14C dans /'ionisation du /'air des groiies ). Stud. cere. fiz . T.IX, nr . 3, p. 313 . ATANASIU,. G. (1-959), Sur. l'uti/isation des methodes radioactives-en speologie, Rev. de Physique, T. IV, nr. 1. . BUCHA, V. (1970), Influence of the Earth's magnetic field on radiocarbon dating. In Radiocarbon variations and absolute chronology",-Ed. Olsson, Almquist & Wiksell, Stockholm, p. 501-512. LIBBY, W. F. (1955), Radiocarbon dating, The Univ . of Chicago Press. LONGIN, P. (1970), Extraction du collagene des os fossiles pour leur datation par Ia methode du carbone-14. These, Unlv. de Lyon, 70 p. NYDAL, R., LOVSETH, K Prospective decrease in atmospheric radiocarbon. Jr; Geophys. Res., Vol. 75, p. 2271 .-2278. TENU, A. (1977), Tritiul i radiocarbonul; baze teoretice, metodica de determinate i aplicalii practice. ( Le tritium et_le radiocarbone; bases theoriques, methodes de determination d applications). Ref. doct. Univ. Buc., 71 pag. 'VINOGRADOV, A. P., DEVIRTS A. L., DOBKINA, .E. I. (1972), uc concentration in the trooosphere 1953-1971. Geochem. Int . Vol. 9, pp. 79-84. . WENDLAND, W M., DONLEY, L. D. (1971), RadioGill'bon-i:alendar age relatio -nship. Eartll. Planet. Sci. Lett., Vol. 11, pp. 135-139. Manuscript received l!.'i May 1988 Address of the authors : Dr. Augustin TENU and Florin D. DA VIDESCU -Institutul National de Meteorologic Hidrologie, $os. 97, 71581 Romania

PAGE 18

Theoretical and Applied Karsiolog!J : Vol. 4 (1991), pp. 1-7 to 32. MINERALOGIC AND GEOCHEMICAL RESEARCH OF THE. TECURI CAVE (ROMANIA) RED CLAY BY C. UNGUREANU Le travail ten:te de tirer au clair la genese des depOts argileux se trouvant dims la zone Bojita-Tecuri-Rachiteana du Sud-Ouest des monts de Apres un historique sur les recherches effectuees dans la zone, on y h:;ouve presentees des donnees oiohydrographiques, la geologie de la region et la petro-. chimie des roches. La comparaison des parametres geochimiques des roches se trouvant dans cette zone -c'est-a-dhe des schistes cristallins du domaine Getique, des calcaires du Jurasien et des argiles rouges (qui abondent dans la grotte. de Tecuri) -a porte aux conclusions suivantes : 1. La composition granulometrique des echantillons d'argile indique une fraction pelitique d'environ 50%. 2. La composition chimique d es argiles indique des taux de Al201 et Fea08 eleves, qui les approchent des argiles bauxitiques (Suliman, 1fl76). 3. Les mineraux argileux (jetermines ont ete: le Kaolinite, le gibbsite, le diaspore, et"le halloysite. 4. La genese des-argiles est lie!l a !'alteration des metamorphites appartenant au domaine getique, surtout !'alteration des micaschistes et des amphibolites. 5. II y a egalement la possibilite de la formation des mineraux argileux par !'alteration des bauxites a un pH acide (5,5-6,4). 6. L'apparition de ce genre d'argiles seulement sur substrat de calcaires peut due aussl au phenomene de du calcite (Diaconu, 1986). 1. 1NTRODUCTION The research to the red clay. deposits to be found both .in Tecuri Cave in Mounta ins and in the area of Jurassic limestone that surrounds the cave. . The. Tecuri Cave exte!ldS through -the lirriest()ne to be fmin:O,. SW of on the left of the upper valley of Strei.. The. cave entrance is situated at an altitude. of 1027 ,3 m ; The ,full length of the cave is 484 m. and variation in height is 49 nf. The access to the cave is possi]?le from Crevedia village following the. road to ch:;Llet. . . :for carrying out this :Wqrk, I made the undergro:mid cartography of the 'defioliits in the cave, the g e ological mapping and tlie inorpho karstic mapping (J?.g. 1) of the zone and I: 2-c. 381

PAGE 19

. /, / ,..,/ C'\ /00 rc:JKEY 2'(" s0 3 .,........_, 6 ra---Apl 6 .. g {. ,--..... 70 wx Fig. 1 :-Geological bedrock of the Tecurl -Bojlta Rlichiteaua zone and the test points Key : 1 = dollne, 2 = wall, = swallet, 4 = road, 5 =Albian deposits, 6 = Oxfordian-Aptian limestones, Pc-crystalline deposits (Getic Domain), 8 = Metamorfite samples, 9 = limestone samples, 10 =clay samples. -l eo 9 oq g "'

PAGE 20

3 ll'he Tecuri Cave red clay 19 collected rock samples and I made measurements of the pH of the water in the area. In the underground cartography I made use of the Margareta Dumitrescu's map (1967) (fig 2) on which I wrote down the places where red clay was prevalent. Its thickness varies from a few centimeters to 30 em. I wrote down also the places from where I had taken samples. Fig. 2 Map of the 'recori cave and the clay test-poins. Key : 1 = clay, 2 = temporary lake, 3 = Jake, 4 = stones, boulders, 5 = excentriques, 6 = stream, 7 = steep, 8 =sinkhole, P.l = sample Nr. (after Dumltrcsco et al., 1967) N A 0 7 .c=J 2 1: : 1 ,..,0] 5 i .... 6 rn:o 7 ITJ -.11 r:-yl In the tmrface cartography I used the map issued by C .S . ,Cepromin" .and C.S. ,Piatra (the work has been communicated at ,Speospott '85") to which I reduced the scale from 1 : 5000 to 1 : 12500. There were taken 10 samples of metamorphites, 6 of limestone and 6 of clay (3 on the surface and 3 from the inside of Tecuri Cave) (fig . 1, 2).

PAGE 21

2Q <3. Ungtp:eanu 2. THE GEOLOGY OF THE AREA From geological viewpoint there appear three ele:rp.ents: The Getic Domain represented by the. group,-is formed by mezometamoq)hites (Constantinof 1954, Pavelescu 1964). This has been divided in 3 complexes: . r 1. The :Mica Slate Complex that develops specially in the center and E .1 of the area (from W Godeanu up to the border with the Hateg sedimentary basin), and to the SE it appears a bit S of Dealul Cerbului. The rocks are mica slate, biotite-muscovite, granat and 9-isten mica slate, granat mica slate, biotite quartzite. 2. The Feldspar Complex appears in the studied areaNW of Crivadia and in the Valea Jupanesei area. The rocks are paragneiss, mixte gneiss. (linear and ocular) and scarcely pegmatite. '3. The Amphybolitic Complex that appears in large amounts in theW on the river Gintoaga. The Complex is represented by orthoamphybolite. There are also mentioned in the Getic silicate shales of Mn and .Fe (spessartin, pyrox-magnite, redonite, dannemorite) that appear from Jigureasa Peak up to Dealul Bretan and Piriul Dracului b) The sedimentary are represented by tithonic-neocomian limestones. c) The limestone is entirely covered by a red clay layer which has. beneath it a thin soil, the area being afforested. This clay was formed in Albian. It appears also in all the cavities iri the area (the Tecuri cave, the Clenjii cave etc.): In the studied area there appear the three mentioned elements. The Getic Domain In mezometamorphites that. characterize it I found in the field biotite-muscovite mica slate. These are the prevaling rocks of the Getic. They have an accentuated schistosity and a rich development of the mica plates. Their mineralogic composition is: quartz biotite muscovite 2-15%, plagioclase 2:-8%, accessory minerals (chloritic, epidote, zoisite). Under the microscope it can be observed the quartz with extension having slightly elongated furr,ns parallel to the schistosity. 'l'he biotite appears as elongated parallel brown in colour and very pleochroic. The muscov-ite appears similar to the biotite and closely associated with this one. The feldspar appears as albite xenoblaste or oligoclase with 12-15% polysynthetic macled anorthite; These micaschists belongs to the biotite zone from the biotite-chloritic subfacies of the green shale facies. In the feldspar complex the same authors described : a) The paragrieisses that appears SE and. NW of Crivadia -and Valea. Jupanesei area. These rocks appear .like alternations of white quartz feldspar layers and micaceous strips (biotite). The structure is granuloblastic or granulolepidoblastic. The. texture is slate like. There ar paragneisses with 2 micas that contain 15-55 p.c. plagioclases, 14-36 p.c. quartz, 7-27 p.c. biotite, 1-15 p.c. muscovite, 1-4 p.c. accessory and secondary minerals.

PAGE 22

5 The Tecuri C.ave red clay 21 The accessory minerals are: the. apatite, the titanite, the zirconium and the opaque minerals. The secondary op.es are: the epidote, the chinozoisite, the .chlorite mi<:lrocline and the gra.nate. The plagio clase is polysynthetically macled. The biotite plates are more or less chloritisated. b) The mi:xed gnaisses injected the schistosity planes of the cleft s There are two types of mixed gnaisses: 1. White-pink, linear mi:x;ed gnaisses with granulolepidoblastic or granuloblastic s.tructure. The texture is schist like or, rarely, massive. As minerals there appear 5-47 p.<:\. the microcline, 12-45 p.c. the plagiclase, 20-45 p.c. the quartz, :J-20 p.c. the biotite, 0-:-15 p.c. the. muscovite, 0,5-9 p.c. the accessory and: secondary minerals The accessory ones are generally the same like at tl1e other meta-. morphites (apatite, zirconium, titanite). The secondary minerals are the chlorite, the zoisite, the epidote. 2. The ocular mixed gnaisses that appears in Valea Luncanilor, Valea Vinatorului, Valea and Valea Stingului and contain increased amounts of microcline ( + quartz, + plagiclases) that make eyes of centimetric dimensions. The mineralogic analysis shows that there is 18-69 p.c. microcline, 24-38 p.c plagiclase, 6-39 p.c. ac cessory and secondary minerals (apatite, titanite, rutil and epidote, chlorite; In the amphibolitic complex there are ottho-and paraamphibolite. 'l'he orthoamphiholites appear like bodies W of P. Gintoaga -a green masR (amphiboles) with plagioclase eyes in alternation with mostly amphi bolitic layers. Therefore the ribbon like aspect. The structure is granonematoblastic and the texture is a few schistous. The green hornblende i s 30-55 p.c. from the rock; the plagioclases 3-32 p ; c. the clinozoisite and the zoisite 10-45 p.c. The accessory minerals are the same and t.lw secondary minerals are the chlorite and the calcite. The hornblende appears like green-blue prismatic crystals very pleochroic. It contains in c lusions of titanite, rutil and opaque minerals. The plagioclases appear lik e widely developped and sericitisated xenoblastes. The paraamphibolites a re da1k green rocks with a greater schistosity than the ampbibolite s They appear ltke layers (1-2 m) among the other crystalline scnists betw een P. Jiguleasa and .D. Rudelor. There are paraamphibolites with biotite and with granates. Those with biotite contain green hornblende in a proportion of 35-65 p.c., 20-40 p.c. plagioclases, 2-15 p.c. biotite. The amphibolites with granates contain 30-65 p.c green hornblende, 18-30 p.c. plagioclase s 3-20 p.c. almandine granate, 0-2 p.c. biotite. There are als o de scribed amphibolitic gneisses with plagiocla ses -2351 p. c., green hornblende -28-69 p.c. quartz -2-12 p.c. The acces sory minerals are the same, that i s titanite, rutile, apatite, zirconium, ilmenite and opaque minerals. The secondary minerals are epidote, clinozoi s ite, chlorite and calcite. b) Limestone It is in the limestones that stretches from S from Crivadia River to the Teiul Lung in the N and from W from Valea Streiului to the

PAGE 23

C. Ungureanu 6 Valea Jupanesei in the E that. the Tecuri Cave is extended; their age is Jurassic (Oxfordian-Aptian) . This limestone is a white-grey rock with a compact structure and a conchoidal fracture. At the surface and in the clefts appear oxide and hydroxide formations (limonite, hematite). Under the microscoJ>e it appears as calcite. Prople affiliates it with biomicritic limestone. c) Clay The clay covers almost entirely the-limestone area hl'l:ving a thickness between 10 em and some meters. The clay loses colour at the surface, almost in the sunny places. Inside the cave the clay is vividly colomed in red and cherry 'Colours that are predominant on the walls and the apeleotbemes. The clay inside .the cave bas a better sorting unlike that at the surface which is mixed with micaceous sand. Tb. e clay is greasy to the touch, plastic and very consistent, especially that from inside whicb contains water in greater proportions. 3. ROCKS PETROCHEMISTRY The metamorphites chemistry was analysed in 14 complete analyses (after I. Pavelescu and M. Pavelescu, 1970): 4 paragneisses, 2 mixed gneisse, 2 micaschists and 4 amphibolites to which the Barth eell was calculated again at 1600 oxigens (tab. 1a, 1b, fig. 3). Table 1 a PereeDtSge meaD eamposltioD of the roeks beloDgiDg to the 6etle DomaiD I MICASCHISTS I PARAGNElSSES I AMPHIBOLITES I Si02 51.62 64.55 ,fi .58 TiOa 0 .92 0.48 1.66 Al2 03 22.87 23 .03 H.58 Fe203 4 86 3 .20 2 0 .MnO 4 03 0 05 0 12 FeO 3.12 1.99 8 12 MgO 1.06 1.70 6.78 CaO 0 19 1.60 11.89 Na20 1 .98 3 .11 2 50 K20 2 .8 0 3.40 0.24 MIXE D GNEISSES 65.06 0.24. 14.38 1.82 0.005 1.94 1.30 2 .75 4 26 2 88 The Niggly parameters and the Stefanova parameters were calculated too. The Barth diagram points out great amounts of Al203 (22,37 ; 23%) in the micaschists and paragneisses and more reduced ones in the amphibolites and mixed gneisses (14,58%). There are variations between the mixed gneisses -and the amphibolites (fig. 3 .). Na20 diminish from the mixed gneisses (4,26) to the paragneisses (3,11). The content

PAGE 24

1 The Tec'l;1ri Cave-red clay 'fable 1 b Barth signs of the rocks belonging to the Getle domain ealeulated at 1600 oxygens I 'MICASCHISTS I :PARAGNEISSES I \ SiO. 417.38 557.46 439.76 Tio: 6.3 3 18 6.39 Al,j03 242.94 169.11 158.88 Fc203 32.65 20 .98 20.19 IV( nO 31.38 0.40 0 .98 FcO 23.33 15.54 63.20 MgO 14.40 22 15 93.21 CaO 1.85 14.98 117.70 Na!O 34:72 41.66 44.96 IdloSI i -... / ......... amphytohtts lllftqoeossu % l!'uca 20 400 / ....... / ...... I / Al10j Fig. 3 -Barth diagram for the r9Clu of the Getic: Domain. so 40 Fig. 4 -Nlggll diagram for the. roc'ks of the Getfe

PAGE 25

24 _____________________________ b) K,. -Kk diagram (fig. 5b) groups the rocks in 4 fields after tberr chennstry and their mineralogic composition : L The ultrasoda field in which amphibolites bas been projected. 2. The soda field in which the p aragneisses and the mixed gneisses has been grouped. g no-dioritr) ranotts 1 1 1 100 l I D r m -I i t' l f t , J r I. { j;' .! I ,J { l I u J u u @ ., ' I! KJ 1\a u.soatr I 1 sodr Cl8 I I I I Ql; ., s I "I at 1.2 lll 2J 1 G @ I polassocl I I u .potamD I I I I g t I l 2 I I I I I I I 2& Fig. 5a -K -Q diagram :with four domains; I -:-diorite quartzite, II grano-, diorite, IIi-granite, alkaline granite, IV -Fig. 5b-K -Q diagram with four domains: I-ultrasodic, II-sodie; Ill -potassic, IV -ultrap(ltassic. 3. The potassic field that contains the micaschists. 4. The ultrapotassic field that contains the micaschists and the paragneisses. B. Carbonatic rocks The mineralogic composition of the -limestone was projected on the Visbneakov diagram. Six limestone samples were chemically analysed. The data were processed after the normative method (fig. 6). The normative .values were projP.cted in the cell 14 on the Vishneakov triangle,cell that m!.oluble + Fe203 /; Fig. 6 -Detail of the V.isnnykov diagram..:. cei l i4 our are projected.

PAGE 26

The clay 25 to nearly pure lilllestone (OaQ03 over: It is easy to see this l.ii:llestone contains :very little Al203 and Fe203 . The microscopic analysis pointli! out the presence of the calcite (99%) associated in a biomicritic structure. C. Clays Six red clay samples were analysed, three from the slll'face, three from the Tecuri Ca y e. Granulometric, chemical, differenti31l; tpermal, infra-red spectroscopy, X-ray diffract ometey -and electronic l]licroscopy :aua lyses were made. C1 -Granulometric Analyses Granulometric curves were traced on the basis of the read.i.Jlm! .inade by the densimeter methods for six samples. It may be notieed that the pelitic fraction goes beyond 50% mostly with .the inside samples {fig. 7), confirming the mainly character of these deposits. : -Clay Dust Sand % Veryf1ne fme .. / ItA '. 7 9 '1 -, I v -3 80 [.....-, .. ---.. --70 f.-f-7 , I// ,' .. .. ... I I .. .... .... 8 Jl j : ,' -1-.-"' .. -/.() r! ? "' i .... ' JIJ -v ;. j al I j v I .. 1 I.J--. 0 .001 0 002 o.oos o,01 o.oz 0.05 0.1 O.l Fig. 7-Grading curves of clays. : 2 3, 9 _:_ external tests; 6, 7, 9 -tests from the inside of the cave. 01 -Chemical Analyses They point out the increased contents of Al30:i and Fe203 and the lower ones of MnO and Ti02 The percentage of these oxides projected in the Barth cell, were afterwords written on the Barth diagram (fig. 8). For analogy, the Barth ceU of a bauxite was plotted on the same diagram. On this diagram there appear great contents of Al203 (18--40%) and Fe203: (3,18_,10,88%) the Tecuri clay, contents that do not exceed qf (49.24% ..Al and 30,56%

PAGE 27

26 C. llngureanu 10 Depending on the contents in Al203 and Ti01 the six samples were projected on the Ti03-Al203 diagram (Suliman, 1976). Our samples belongs to the bauxite clay (fig. 9). \ \ \ '180 \ \ \ roo .\ .'\ \ \ \ ----..... ..._ .............. \ \ \ F!g. 8 -Barlll di agram for c lays and a bauxite ( ) in comparison For a better framing of this clay I used the Avidon Method (fig.10); coordina tion: the sum R80 + RO + Fe203 + Ti02 and the Al203/Si02 ratio. The samples of clay were projected likewise : the sample 2 and tbe sample 3 in the field 13 ; the sample 6, 8, and: 9 in the field 14. The scattering on the diagram is due probably to the variations of the caolinite and gibbsit contents. 03.:__ Differentiate Thermal Analysis ]'rom the analysis of the thermal cwve, the following clayey mine rals rould have been identified (fig . li) : a) caolinite, that has endothermal effects between 550-:-660 0 ; b) halloysite, with endothermal effects around 600"0 ;

PAGE 28

11 The Tee uri Cave'" red clay fig. 9-Suliman diagram (1976): Ibauxite clays, II -clay bauxites, III -bauxites. t. 3 l c.a C6 I I I 1-!Ii ---'j j !'I' \.: C.l ,. f. -m--'ii\!f 0 0.2 xm \ l F -, I I _] I I VH i t" 1 I I t..,--, -.. .. lX I _Vl!I 0,4. 0,6 1-j 0.8 .relays I I I llllll : I 70 I I I so I I I I e I 30 I I e I I I I I 10 t I I I 1 3 5 TlOz I 8 i XIV -I .9 .. I I \-2 L r-5 3 -!( 1 112456 7 69 = F .t>zC) .l Ol, 27 ....., Fig. 10 Avldon diagram with the: projection of the clay-tests. domain : I allophanic and pholeritic clays, II caolinic clays ; caoliilltl.c and halloysitic clays, III monothermal clays, IV -baddeleyltlc clays, V -alumo-montmoiillonitic clays, VI tero-montmo t illonitic clays, VII-zlnc-montmorlllonltlc clays, VIII-montmorlllonitic clays, IX-magneaio-montmorlllonitlc clays, X -clays and hydromica, XI 0.001 rom fractions ot the )l.,dromlca claJs. XII -glauconitic clays, XIII. -dlasporic clays, XIV -bauxttlc clap.

PAGE 29

28 f!. Vngureanu --------------------------700 600 b 500 3oo z 200 ----------------Fig. 11 D. T A curves for three clay tests : a -caolinite, b -halloysite, c -illite. c) illite, with endothermal effects around 140, 600 840 In the analysed beside the clayey minerals there were identified the follow:ing mineral species : diaspore and boehmite. 04 -Infra-red : .Absorption Spectrum (fig. 12a) 'J?be observation was registered in the domain of wave number of 2000-50000 There were determined the following clay minerals: the caolinlte (3690, 3640, 3625, 1010, 790, 690, 540, 470, 430 cm-1); tl1e illite (3700, 3670, 3640, 1650, 1460, 1020, 950, 760, 545 cm-1); the halloysite 527; 471, 432 cm-1); the gibbsite (3620, 3530, 3420, 1200, 1160, 1030 cm-1). C6 -X-ray .Analysis (fig. 12b) Depending on the inter-reticular values there have been identified the following minerals: a) caolinite with d = 1.83; 2.29; 2.33; 2.37 ; 2.54; 2.56; 2.82; 3.33; 3.57 ; 3 .89; 4.17 7.18 .A b) illite with d = 1.98; 2.37; 2.82; 3.27; 3.33; 3.69; 3.89; 4.17; 4.44; 10 .A c) halloysite with d = 1.85; 2 .56; 4.46; 4.99; .A d.) quartz with d = 1.81; 2.13; 2.27; 2.45; 2.56; 3.33 ; : . 4 24 .A e) gibbsite with d = 1.98, ; 1.96; 2.37 ; 2.69; 3.02; 3.27 ; 3.33; 3.54 .A f) d = 2.18; 1.72; 2.69; 2.45; 4.18 .A g) hemat1te With d = 1.84; 1.68; 1.83; 2.51; 2.69 .A h) diaspore with d = 1.47; 1.63; 2.07 ; 2.13; 3.58 .A i) boehmite with d = 1.30 1.45 ; 1.84; 2.34; 3.16 .A

PAGE 30

il The Tecuri Cave red clay 29 0 1200 IOJO 600 600 c c 0 ... v ..... ... -
PAGE 31

C. Ungureanu The alteration appears in the presence of. the underground waters and of the precipitations that enrich in HC,03 hu,mic and fulvic acids that entail a lowering of the pH. At this may contribute the presence of some sulphus mineralisants (there result t}le Fe hats). The intrusion of these waters in the rocks make possible the silicate minerals alteration (potassium feldspars and plagioclases) that suffers an incongruent followed by the precipitation of some clay minerals depending on the ratio of the two elements j'l.nd the pH. The microscopic analyse of these alteration crusts shows a zonation. There appear two zones: a.) The inferior zone with caolinite + quartz, gibbsite and Fe hydroxide . b) The superior zone with quartz, gibb s ite, caolinite. It is worth mentioning that the cadinitic minerals tend to transform themselves in gibbsite. The greater part of the researchers agree that the pH is more impor t ;ant than the temperature and pressure in this respect. So, temperature and low pre ss ures under acid pH conditions favours the formation of the montmorillonite, when the concentration of the K ions is high enough. To expla.in the transformation of the feldspars in clay minerals we must go deeper in the intimacy of their alteration process. When water or other solution that run in the earth act on the feldspar, the positive ions of metals that saturated the alumosilicate electronegative radical are eliminated by hydroli e and water is linked in the crystaline network. Under the action of the water, the feldspar crystals decompose in lamellar particles of at most f fJ, the .which are nothing else than clay. The clay particles are made up from silicic a-cids planes and from Al hydroxides also plane in shape. The clay mineralogic composition that are prevalent in the 'l:ecuri clay is: a) the caolinite, monoclinic with hexagonal lamellar habitu<;. It makes up scaly la:mmollar aggregates, has a perfect under the face 0.001-d = 1.25, g =--= 2.6, white or yellow colour. The main mass results at the alteration of the aluminoRilicates in a warm and wet climate in a neutral or weakly atlide medium (Suliman, 1976, Pedro, 1964). In that case, a part of the alkali, the alkali-terros DJ.etals and a lot of SiOa a.re extracted. In the case of the bauxites, the caolinization is accompanied by a gain of silica and a partial extraction of Al. b) thehalloysite Si206(0H)4.Al3H20 is monoclinic with a fibrous habitus. It makes up compact aggregates and as a secondary mineral makes up channels clefts in bauxites. Its colour may be white, grey, bluish up to green. It associates with the caoliriite in clay, in the basic rocks alteration crusts, frequently in the gibbsitic and boehro.itic bauxites and rarely .in the diasporic ones. Mention must be made here that the measuring of pH made in the waters of the area have shown values between 5.5 on the crystalin and 6.5 on the limestone, that confirms the idea. of a favourable medium for the genesis of these minerals. -c) 'the illite ltAl4[(.A.lSi2)0s0J(OH)4 is monoclinic. It appears like pointsha.ped asso ,ciated with :.d. the halloysite. d) the gibbs1te .Al(OH)3 contains 65.4 p.c. Al203 and 34.6 H20. It is monoclinic and prismatic. Its crystaline structure is pseudohexagonal,

PAGE 32

15 ll'be 'l'ecwi Cav.e red clay 31 schistous, lamellar similar with that of the brucite Mg(O:H)2 The crystals are hexagonal plates, prismes -or double or triple macles like at the plagiO clases. The colour is yellow, red or pink. The shining is glossy, d == = 2.5-3.5; g = 2.35. It dissolves in alkali and in acids at up to 100. The gibbsite makes up the main mass of the lateritic depositu and of the karst bauxites: It associates with the hematite, the goethite; the caolinite, the halloysite, the boehmite. It results from the silicate rocks alteration in a warm and wet climate. In nature, the gibbsite is replaced with the caolinite, the siderite, the iron pyrites, the calcite, the chlorite. In the present oceanic sediments in Hawaii it takes place the transformation of .gibbsite in chlorite . e) the diaspore Al(OH) contains : 85 % Al203 and 15 % H30; it is rhombic, makes up tabular crystals under the face 0.10 or prismatic with a perfect cleavage after 0.10 and good after 110. Its colour in nature may be brown, pink, yellow, white or colourlefl&. It may contain as isomorphe mixtures Fe203 up to 7 %, Mn up to 4 p.c., Or up to 5 % and Si02 up to 4 % d = 5.7 -6.3, g = 3.3. It makes up aggregates in which there appear long, acicular crystals up to 20. In bauxites it forms prismatic, tabular, aciculai sometimes irregular crystals. The rocks varieties are made up by diaspore and hematite. The whitening processes of these bauxites under hypergene conditions carry on the formation of a diasporic dust, made up by diaspore acicular crystals. These dissolve very little in acid or alkali solutions under temperatures bellow 100 oc, but do it fast in concentrated sulphuric acid. In alkali at 230 the diaspore di sso lve s completelly. In that case up to 90% of the. Al oxides are extracted (Bu (Bushinski, G. J. -1971). In the paragneisis the diaspore appears together with the boehmite, .the hematite, the geothite, the caolinite and the halloy site. It may be replaced by the caolinite, the iron pyrite, the calcite, the siderite, the chlorite . f) the boehmite AlO(OH) contains 84 % Al203an15 % H20. It is rhombic, bipiramidal, it is much like the lepidoprecite FeO(OH) at the crystaline structure. It may be colourless, white, yellow or pink depending upon the isomorphe mixture. The crystal colour is generally pale yellow markillg 'up worm like aggregates. The mineral appears rarely in laterites but frequently in bauxites. It is insoluble in acids and bases at 10000. The coloidal boehmite dissolves in alkali at 100 "0. In parageni sis it. appears with t:p.e hematite,. the geothite, the gibbsite, the diaspore. 4 CONCLUSIONS The results obtained from the complex analysis of the Tecuri eav e red clay as well as from the area Tecuri cave -Bojita Chalet Ponoriei 1I have been arranged as follows : 1. The samples granulometric composition makes evident their clay character, the pelitic fraction going beyond 60 % 2. The chemical composition of the clay shows incre ased contents of Al1P3 and Fe203 This. makes us consider it similar to the bauxite clay (Suliman 1976).

PAGE 33

32 c:;. Ungureanu 16 3. The mineralogical composition deteriQ.ined by different methods (I.R., D.T.A., X-ray etc.) was: the caolinite, the halloysite, the illite, the boehmite, the gibbsite, the diaspore. 4. The clay minerals genesis is related to the alteration of the metamorphites belonging to the Getic, mostly of the micasehists and the am phibolites, so, the clays covering the limestone in the investigated a.rna are allohtone. 5. Taking into account the fact that ihere are bauxite limestone at Banita and bauxite is being extractedat Baru Mare, the two places _being quite near of the resear c h area, it may be asserted that it appears as possible the formation of clay minerals by alteration of the bauxites at ?n acid pH (5.5 on the crystaline and 6.5 on the limestone) that contribute :i.t the formation of the above mentioned mostly of the caolinite. This point of view is also based on the existence of the gibbsit and the diaspore in the clay. 6. According to Diaconu (1984) the presence of the clays, mainly on the limestone surface, seems to be a. consequence of the piezoelectric phenomenon of the calcite in the limestone, phenomenon that had been proved by the same author. RIBLIOHitAl'H Y HENTELSPACHER, H., & H W. van -der MAREL, (1968), A/las de microscopie electr.onica a mineralc/or argiloase $ i a ameslecurilor lor. Amsterda m -London, Elsevier Publishing, New York, Comp BOLD.1REV, A., I., (1976), Spectre in in{raro$LZ ale minerale lor Moscova . ,,_f H JSINS.KL __ Q J .!.Jl971), Geologia bauxite/or. -D-:;-[f9f52r;-cetcettlrrgeoroyice In partea d e SW a Mun(ilor D S. Com Geolog., vol. XLIV (1955-1956), p. 213-236, ref. Zbl. 1964, II, 628. DIACONU, G., (1984), Consid<'ralions concernant Ia genese des argiles sur /es calcaires de Ia ,:one Clo$ani" -1'r!onls 1'vlel!edil1/i. Theoretica l and Applied Karstologie, vol. I, Buc. DIACONU, G., Corina, HADAHEANU, Irina, HUSU, (1987), Tile Piezoelectricity o{tlte Calrite. Travaux de l'institut de speologie ,Emil Racovita", tome XXVI, 1987. GANDHABURA, E., (1983), Curs de geocl!imie. Universitatea ,AI. I. Cu'.a", OH.GHIDAN, T., NEGREA,.St., RACOVITA, Gh., LASCU, C.l (1984), Pe$1eri din Romttnia. Editura Sport-Turism. PAPIU, C., MANZATU, Silvia, IOSOF, U., (1967), Geneza bauxite[ or de pe teritoriul R.S. R. In:. Revista Mine! or (C.N. LT.) XVII, 5. p. 195. PAPIU, C. (1970), Caraclerele chimico-mineralogice ale bauxite/or din Masivul Pialra Craiului. ln: Analele Inst. de Geologie, vol. XXXVIII, p. 111-179: PAVELESCU, L., & PAVELESCU, M., (1970), Cercelari geologice :ji pelrologice In zona mediand a Carpa(ilor Meridiona/i. ln: Analcle Inst. de Geologie, vol. XXXVIII, HADULESCU, D., (1965), Pelrologia rocilor sedimentare. Editura didacticii 5i pedagogidl. RADUI.ESCU, D., DIMITRESCU, R., (1982), Petrologia endogena a leriloriulul R S H., Univcrsitatea ZAMFIRESCU, Fl., COM$A, R., MATE!; L. (1985), Rocile argiloase in praclica inginereasct'1. Edltura tehnica. 1 \Januseript recrioed 22 July 1988; Address of il!e author : Clltlllin UNGUREANU -I:P.E, G. Banat, Brlgada Geologica Sasca Montana, Sasca MontanA, Romania.

PAGE 34

Theoretical and Applied Karstologg, Vol. 4 (1991), pp. 33 to 40. CONSIDERATIONS ON THE MORPHOLOGY AND GENESIS OF THE JURASIC PALEOKARST IN FARCU HILL AREA (SOUTHERN PADUREA CRAIULUI MOUNTAINS, ROMANIA) BY GEORGETA IONESCU, _C. IONESCU Based on surface data and more than 300 boreholes investigations in Farcu Hill area, in the Southern Pl!:rt of.Pa.durea Craiului Mountains, the present paper deals with some 'features of the Jurassic fossil karst relief sunk now under limy Cretaceous deposits. Our purpose is botti' theoretical: to enrichthe image about some factors and their evolution in modelating this paleorelief and practical: to detect bauxite bodies in this region by use of rcconstrtlcting methods, as is the isobathic map an<} geostatistical analysis of these data, in correlation with geological and morphological observations. 1. INTRODUCTION studied area is placed in the. South Qf Padurea Craiului Mountains and it is bordered by Rosia and Lazilli valleys toward East and West (Fig: 1), wich c?.ts deep gorge-like walls into the carbonatic rocks. Te low relief . energy surface is pinched by la piaz fields and swarming dolines, that aremore or less clustering on the alignments. The two lateral watter flows drain almost the entire plateau ; the surface drainage is missing. Karstic spring are Qnly incidental on its surface and, of short-life beeing tectonically dependent. They are collec .ted in the dolin where they spring from (i.e. Hirto!ml Doghiului, fig. 1). 2. GEOLOGICAL DATA The most hnportant geolo gical elements in this area belong t o the Mesozoic sedimentary cover of the Bihor Autochtonous Unit and are represented by Jurassic and Cretaceous deposits prevailing in limy facies. Jillassic .succesion is oomplete ir( this region; beginnilig with the Lower Jurassic of Gresten facies, dominated by sandstones, then oolithic s-c. 381

PAGE 35

34 Georgeta Ionescu C Ionescu KEV 0 0 .25 0.5Km lu:::J 7 zun=J 8 r 3Ck:] 4Dli] 10 5[]TI 11. 0 Fig. 1. Geologic map of the Farcu Hill Area. 1) Quaternary-sands; 2) Sennonian-sandstones, marls, sandy-limestones ; 3) Barremian limestones ; 4) Kimmeridgian-Tithonian limestones; 5) Dogger sandy-oolithic limestones; 6) Liassic sandstones; 7) borehole; 8) quarry; 9) gorge; 10) karstic spring: 11) doline; 12) cave. limy sandstones in the Middle Jurassic ending with Upper Jurass ic consisting of two lithostratigraphic units (Pat111lius et al., 1981): .A. Farcu Limestone (Oxfordian-Lower Tithonian) is a reef forma tion, massif, white-greish colour, up to 120 m thick, of bio-

PAGE 36

3 Jurasic paleokarst in Fa'rcu Hill 35 and intrapelsparites, rich in constructing organisms such as coralls, hydro zoans, echinoderms, gastropods. 1;\. Albioara Limestone (Tithonian) is, ordinarily, dark-grey, micritic, oncoidal, a lagoon-type, with calcarenitic intercalations, poor in fauna., well stratified, up to 70 m thick. Upper Jurassic deposits represent a spreading of the sedimentary basin period (Bihor Platform) followed by a block uplifting of the carbonate platform, probably connected with the Neokimmerian tectonic phase. Henceforth the denudated area platform ha. s been exposed to karstic errosion. As karstic depressions developed they were filled with allochtonous alluminous material. After the bauxite accumulation period the carbonate platform underwent another subsidence and a relative sea level rise wich brought the karstic activity to an end and induced a relativell heavy lacustrian flood, subsequently followed by marine watter invasion. Carbonate platform-type sedimentation continued in the Lower Cretaceous (Barremian, when limestones with pachiodonts decveloped), to be gradualy substituted by'a subsiding-type regime which was responsable for the accumulation of some detrital deposits that conti .nuaed with few enterruptions down to the Senonian. Finally, the definitive uplift at the erid of the Mesozoic retriggered the mechanism that caused the actual karstic relief in this region. . 3. UPPER JURASSIC KARSTIC PALEORELIEF Several information about the limit between the Upper Jurassic and Lower Cretaceous limestones (borehole investigations) were used in drawing the isobathic map on this level (Fig. 2). The map reflects a rough image of the Jurassic fossil exokarst, with the paleomorphology sunked now a cover of Cretacequs sediments. An of this map shows several features of the ancient relief, which, under its actual aspect, is the result of some succesiv evolution stages, since the Lower Cretaceous until Neogene. At first, the carbonate platform uplifted in the Neokimmeria.n phase was relatively monoton in terms of morphology, some sparse depress ions on its surface allowing by themfielves the bauxite accumulation. The mi s sing of some important detrital material supply in. their deposits accounts for the low relief energy in this stage. Although the initial distribution of bauxite accumulations must have been relatively uniform on the tableland surface, the actual repartition of bauxite lensses intercepted by boreholes shows the most of them lie nuw in the upper parts of the relief. This is the. main argument for the ideea that in the period between bauxite accumulation and the following subsidstage this carbonate platform continued to undergo karstic erosion. The result is represented by an alternation of negative and po s itive shapes (dolinas and elevations) that are more or less grouped together. Of peculiar importance in this evolution was the tectonic configuration of the area, as is obvious in the map and proved in some cases by boreholes data. Such movements in probable connectian with the Austrian phase generated t:he first fault system, that has a direction about E-W and divides

PAGE 37

36 Georgeta Ionescu C .. Ionescu the area in two large sectors. The following movements (under-hercynian) were form the second fault system that intersects the first one. The -Laramian and Neogene phases were not so felt in the region. They just generated vertical displacements along tb,.e pre. existing faults of previously sketched compartments. The differentiate that developed later on, made the Eocretaceous deposits thiner m the uplifted compartment let the Jurassic sediments to outcrop in the North of the area. As a matter of fact, some boreholes attested bauxite accumulations or tipical clay, or ferocarbonate cement sandstones, or even empty cavities inside the Upper Jurassic limestones (Fig. 3). 'l'his states the case for the ideea of some paleokarstic cavities besides the same age karst-surface which is better-knoWn.. This prove s once again that the same transforming agents that are today at work in karstic processeswere active in geological time, upon the Jurassic limestones :rpass, too. 4. GEOSTATICAL INTERPRETATION OF DATA Con s idering two crowds of geological data, the first represented by the set of absolute high data at the Upper Jurassic level and the second at the Lower Cretaceous level, as obtained in each borehole and assuming these data as uniformly distributed in space, we have calculated some parameters defining this selections. Thus we obtained the selection volume (n), amplitude (A), the arithmetical wegb,ted mean (x), standard. deviation (s) and the variance (v) (Table 1) (according to Bomboe, 1979). Table 1 The statistical repartition parameters calculated for Upper Jurassic and Lower Cretaceous surface Parameters A = Xmax" Xmln 1 ....., i.J x1n1 s v =-=X n Upper Jurassic surface !Lower Cretaceous surface 326 274 319 68 0,215 326 181 391 45 0,115 -------------------------The variance i s a. st3:t istical parameter of high information level, wich is almost reaching tb.
PAGE 38

I< E y 2-Fig. 2.-Isobathic map .. up to the boundary between Upper Jurassic and Lower Cretaceous 1) borehole 1 2) .line; S) bauxite lense; 4) fault:. 5) up-lifted compartiment; 6) descending compartment.

PAGE 39

1.30 41() I J70 350' 330 w r . . "'' :<..:: '; : : --'(( :: ... : .. ; (. -... : l I_, I I I I _:. ; . -.. i ;c.; : ; , I. : I : .. ....... ... r,j':-'C I .. -.. ... : ;, C.:--' o 'I ;::!c'l'' .. :z. ... . . I ----.. X .. "--' ..... .-... :---. .. . : :-< -: --=-\ '" ; ; I). l -.-..: ;-. .. '-';':: c .:C>.; : -: C ." .:: o;:: : C : ,'.' ; '-" .. ... .. ' ,. .. I -' : i :.: . --c: . \ 1 .-. \.. \ ......... 1 [$[4 r:::::::::::;;; w E '.'/ E 310. or : t-:--f '.-..!.:.: ;,: . -t / t. 1.1 0 I ._-;{J! . '[ I -_ .... "" .. -= ... .,.. : .. ,..-< J ;J.. ,. ,. : ; I - : . I.;..-./ I .. ;:'' -;--; ....... .. ( J'C -'"' ." 'I ( :. . --. -=k-"' : l \ --JJG :.: / 'j ,r::: Fig. :l. -Schematic geological cros.s-sections : 1) soil ; 2) clay; 3) Barremian limestones; 4) Tithonian limestones; 5) bauxtie lensses. 01 l 'C f ... I'' 2 -:.;) .-..]

PAGE 40

38 Georgeta ionescu C::...:.....;I:...:o:..::n:.::.es:...:c:..::u:.__ ____ --.,.--_:.__ ___ 6 variance and its amplitude comparative with the .Cretaceous one, indicates a higher energy for the Jurassic limy surface than the Cretaceous one. This could be explailied by the independent action of a group of factors or, more probably by their conjointed work. These coW.d be: the lithological conditions of the karstification process which would mean Table 2 The statistical repartition parameters calculated for Upper Jurass ic and Lower Cretaceous surlate for bofh raised and failed compartlments Upper .Jurassic surface Lower Cretaceous surface Parameters I I raised fail e d raised failed compartm. compartm. comparlm. compartm. n 184 I 142 184 142 A= xmax -Xm1n 20:.! 220 177 169 1 x = -367 254 412 361 n x i 39 43 30 46 S = n -1 s V = -0,106' 0,168 0,073 0,127 X that the Jurassic limestones were more suitable for this process, the climatic conditions which, during this period encourage the karstification, or the suitable preservation of karstic forms on the Jurassic limestones surface after they hav e been sunk and protected against erosion under the Creta ceous deposits, but. could have been reactivated in a new karstic system after the definite uplifting, at the end of Mesoz oic age, However, it is noticed that these values have been influenced by the tectonical division of this area (Fig. 2) as was also shown .by the frequency distribution histograms (Fig. 4) which presents a bimodal a spect for the Jurassic limestone surface. It was necessary to eliminate this effect and recalculate the same parameters taking into account the two majior compartments (Table 2). We notice that the Jurassic data variance is still high in comparison with the Cretaceous one, both of them for the elevated and sunked compartments, which confirm the fortegains observations The frequency distribution histogram (Fig. 5) for the Cretaceous limy surface s how that in the elevated area the high values prevail over the small one s This can be explain as an effect of erosion denudation that made uniform this area from the relief point of view. The lower compartment show s a bimodal aspect histogram, with one apex for high values and another i foi' low values, which can be explained by the large spread of doline s in this area. The dolines can be divided into .two types for this compartment: the ,simple" dolines, generated on the Cretaceous erosion level, conic in shape and circular in Outline and the ,double" dolines, that

PAGE 41

7 Jurasic paleokarst in Fa'rcu Hill 0 -r r-__.-,-I--162 IU "" .. o-" Fig. 4. -The frequency distribution histograms. : for; a) Barremian limestones surface; b) Upper Jurassic limestones surface, f) frequency; m) altitude; I. qJ ... Fig. 5 -The frequency distribution histograms a) Barremian limestones surface in the up-lifted compartmel\t; b) Jurassic limestones surface in the up-lifted compartment; c) Barremian limestones surface in the descendant compartment ; d) Jurassic limestones surface in the descendent compartment ; can be found both in the Cretaceous and Jurassic levels and which represen t a reactivated karstic element; they can have a truncated shape with a plate groun" d and oval outline .Relating to this aspect, the Jurassic limy surface present an unimodal feature for both compartments. The correlation diagram (Fig. 6) indicates an ordinary distribution of data.under investigation (t .he ascendent aspect of correlation cloud) which proves the similarity of the modelling agents working on both surfaces.

PAGE 42

40 Georgeta Ione s cu C. I oil.escu 8 Its ,two b ranch" aspect i s d u e to t h e ex i stence of the two tecto n ic a l compartments. This p a p ers p r esents just a way of a p r oaching t h e compre h ens i v e s u b ject of t h e p a l eoka rst and a rp.od ality o f process ing thi s kind o f data that may be improve d and extend ed to other similar z o nes o 400 "- 16..1 . 0(1 0 0 a. q O . )1,() 0 . . "' UQ '6 0 0 4 lXJ . . 16 l70 c 2'0 llO 250 . '\, 8 ... 0 . @ . 0 . . -0 .. o'l.


PAGE 43

Theoretical and Applied Karstology. Vol. 4 ( 1991 ), /)P .41 to 49. CONSIDERATIONS GENETIQUES SUR LA GROTTE ,PE$TERA CU LACURI DIN VALEA SEACA" (MONTS LOCVEI, ROUMANIE) PAR S. CONSTANTiN et A. ROJ;ARU Les auteurs une hypothese sur la genese d'une de dimensionS" moyennes, dans le Bassin Valea Mare (Monts Locvei). La grotte est ascen dante, sur deuX. etagcs et elle sur son parcours.unesuite de lacs llituCs' a des cotes croissantes par rapport a Compte tenu de Ia morphologic d'ensemble et de:. detail de on avance que son creusement a eu lieu en regime noye apres fequel, a :un abaissement relativement raplde du niveau phreatique, les galcries : ont rcstees. fossiles. Le hydrostatique actuel.est marque par le niveau de l'eau dans his lacs. Le.niecanisme de constitution (iu reseau karstique est analyse en tenant compte. des similitudes entre lo,'situa -tion et celle de certai-nes de la zorie
PAGE 44

42 S. Constantin, A. Rotaru 2 Le karst du bassin a fait l'objet de quelques etudes au cara.ctere general elaborees -par Sencu (1972, 1979) et Negrea et Negrea (1967). A partir de 1983, l'activite deployee dans cette region nous a permis d'effectue une recherche intensive de l'endokarst ainsi que d'emettre certains llypotheses concernant la genese et !'evolution de ce dernier Ces hypotheses seront presentees ci-dessous. 1. LE CONTEXTE GEOLOGIQUE Les dep6ts qui affleurent dansla zone limitrophe de la cavite appartiennent dans leur totalite ala couverture sedimentaire de l'Unite Getique. lls sont plisses en une altemance de synclinaux et d'anticlinaux affectees tEOENOE I KEY 01 CIJ11 -2 CIJ12 E22)3 on. rJt. Q14 @s [Q)15 r22J 16 HI' ___. B 1 n t;;3s laq [!:J1o 0zo 'Fig. 1. -La carte du karst du Bassin Valea Mare (Monts Locvei) (d'apres Sencu, 1979-modlfiee et completee). 1 d cpc}ts karstifiables ; 2 depOts non-karstifiables ; 3 -couverture rt\siduelle impermeable ; 4 -axe d'antyclinal ; 5 -axe de synclinal ; 6 -limite de discordance; 7 -faille; 8 chariagc; 9-abrupt; 10-grotte active; 11 -grotte 12 -grottc fo sslle; 13 -exurgence; 14 doline ; 15 -ouvalc; 16 valee de dollnes; 17 -laplaz; 18 -ruisseaux; 19 -ville; 20 village : Les Iettres indiquent : a) : Mtb -metafufs basiques (Serle de Locva); Pg -granodiorite; mili -micaschistes (Serie de Lot ru); J1 -Jurassique lnferieur-serie detritlquc; J9-K1be-serle calcalre jurassique; K1v-ap1 -serie carbonatique cretacee; b) grolles: A-cu Lacurl din Valea Seaca; B -Gaura cu Frunze; C Pc!jtera de Ia Padina :Mate!; D-Gaura Vulpll; E-Gaura Haiduceasc:l; F-Pe:Jtera de llngi1 Drum.

PAGE 45

3 .La grotte ,Pestera oo Lacuri din V'alea SeacA" 43 de failles longitudinales et sont disposes, dans la partie, est, transgressivement sur le soubassement cxista.llin de la mert.e unite (Scrie de Lotru). Dans la partie Guest, les depots sedimentaires sont traverses par un alignement de failles orientees_-N -S sur lesquelles se sont poses des corps d'intrusions banatitiques qui ont genere au contact des phenomenes de metamorphisme thermique .Au point de vue stnl.tigrapbique, les depots couvrent l'intervalle Liassique-.Albien, avec une importante discordance entre l'.Aptien inferieur et. l'.Albien. Dans la_ partie centrale du perimetre, la. couvertute f'iedimentaire forme un pli synclinal (le Synclinal Moldovita) dans l'axe duquel affleurent des calcaires organogenes avec une riche faune d'Orbitolines, Brachyopodes et Echinides, maintes fois avec d'intercalations marneuses, fissurees et accompagnees, dans la partie superieure, d'importants pheno menes d'allithisation. L'age de ces depots connus sous le nom de ,Calcaires de Valea est considere, des recherches recentes (IJragomir, 1982), comme .Aptien inferieur (Bedoulien). Sur les flancs du synclina l se disposent des calcaires recifaux ,de Plopa", developpes en fa;cies urgonien, avec des nombreux restes de corails du type Montli1altia sp. et des .mollusques aberrants du genre Requienia, calcaires consideres par le meme auteur comme appartenant au Barremien. Sous l'horlzon des calcaires de .t:'lopa se trouve un paquet de calcaires marneux avec des nodules concretionaires siliceux appartenant au Hauterivian (Nastltseanu, 1964, 1972). Dans le bassin hydrographique de Valea Mare ees varietes de carbonatees (cretacees) sont celles impliquees le plus souvent dans la karstification, les calcaires jurassiques ayant, dans ce sens, un .apport .Ain_si, l'horizon des calcaires hauteriviens est le moins karsti fiable a cause de la composante terrigene qu'ils contiennent. Les ca1caires de sont, a leur tollll', moins karstifiables que ceux de Plopa tant Fig. 2, Collonnes stratigraphique des depllts carbonatiques cretacees dans le perimetre Valea Seaca. 1 Calcaires de ; 2 :..... Calcaires de Plopa (facies urgonien); 3 calcaires marneux avec des concretions siliceux ; 4 Marncs de Crivina ; 5 dtpOts pa!Co-karstiques ante-albienes. k,ap, k1br < ;-'--+--. 1 -k1v L EGJ NDE 5J1 EJ2 83 0 100m "=:!

PAGE 46

44 S. Constantin; A. Rotaru en raison d'une porosite plus faible ( ce qui a comme eifet un plus faible de l'eau aggressive dans la roche), qu'en raison de l'exondation qui a eu lieu durant l 'intervalle Bedoulien Albien, lorsque la zone respective a ete affectee par des processus karstiques, avec depot d'argiles resid uelles dans des paleodepressions. Ulterieurement, ces argiles ont pu impernieabi liser un partie importante des (fig. 2). L'effet morphologique de ces differences est represevte par !'existence des differences en ce qui concerne les dimensions deb cavites on des de cavites developpees dans de differents types de calcaires. Une discussion plus detaillee sur ce sujet fera l'objet d'une :riote ulterieure. La cavite etudiee se trouve dans le flanc est du etant developpee integralement dans des calcaires de Valea disposes en banes decimetriques, orientes approximativement N -S, avec un pendage allant jusqu'a 3oovv 2. DESCRIPTION L::t' grotte cu Lacuri din Valea. SeadV' (2223/24) est une cavite de dimensions moyennes (developpement = 270 m; denivellation : + 11 m), deve!oppee sur deux etages dis tincts. L'etage inferieur commence a partir d'ruie petite salle situee a proximite de l'entree (ftg. 3); la galerie a en general des dimensions reduites, formant, en cer taim, points, des veritables. tuyaux de 0,3 X 0,5 m. Sur son parcours s'aligne:i::Jt deux lacs siphon (L2 et L.a) aux superficies relativement reduites (2 x 3 m maximum) et profonds de plus de 1,5 m. L'eau. ue cef' lacs se trouve a la cote relative + 1 par rapport a l'entree. Ijes galeries de l'etage superieur ont des dimensions un peu. plus grandes et une topographie compliquee par la presence de nombreux piliers. Sur le trajet de cet on rencontre egalement plusieurs lacs : L4 (cote + .'>), L5 (cote + 5) et L6 (cote -1-t:i), l e de:rnier constituant un veritabl e puits-siphon de grandes dimensions, au diametre d'env'iron 6 m et d 'une profondeur de 4 m au minimum. Signa lons, a proximite de l'entree, un petit lac (L1 ) de dimensions modestes (cote 0). Ija morphologie de la cavite revele des traces evidentes d'un modelage en region noye : y sorit deg formes de corrosion du type des piliers, des septes, des arcs laruelb, ire8. La section des galeries est arrondie; elles out une disposilion en plan labyrinthique. Le plancher et le plafond sont denues de remplissages detritique et presentent des aretes aigues. I1es concretions sont rares, communeR comme genef:e et dimen;:;ions : pht .ncher stalagmitique, goms, stalactites etc.), tandis que les depots aUuvionnaires wnt formes exclusivement d'argile rouge. 3 . CONSIDER.ATrDNS GENETIQUES L'alimentation de l'exurgence Valea Seaca se fait sur un vaste ai'eal englobant tout le plateau karstique Padina Matei situe au NE. de cu Lacuri etfou nne partie du plateau karF.tique (NO), l es eaux provenant exclusivement des infiltrations.

PAGE 47

. 5 I:.a grotte ,Pestera. cu Lacuri oin .Valea Seaca" 45 .REPRESENTATION AXONOMETRIQUE Dressi ,.r AlAI ROTARU Vicnl All.OJR_EI Sdvru COHSTAN'T14 16' Oevtloppemtnt : 270m 67ni + 11m. F ig. 3.-La grnlle cu Lacu r i di n Valea Seacii

PAGE 48

46 S. Constantin, A. !Rotaru 6 En prenant en consideration tous les elements morphologiques presentes que la disposition predominante des galeries sur de s pl a ns de s tratification, on peut affirmer avec encore plus de certitude que celle;:;-ci ont ete modelees en regime noye, conse({utivement a un ecoulement sous pression. L'abs ence des remplissa,ge detritiques plaide eUe aus s i en faveur de cette observation. Les 6 lacs se.situent sur des di s continuites de nature tectonique, constituant des veritables tubes phre atiques creus ee::;, les plu s probable, par llD.e corrosion ,par ascensum". L'ensemble entier pre se:r;J.te une similitude evidente avec l'exemple theorique de l'ecoulement par des tubes considere par IJehmami (1932) (dans Bleahu 1974, pp. 3 50-359) pour-des lois gouvernant l'ecoulement sous pre & sion dans le harst (fig. j}. Dans cet exemple le niveau de l'eau etait marque dans des piezometres inseres dans un tube d'ecoulement d'un reser v oir uans le cas de la grott.e qui fait l'objet de notre discussion on peut con R id erer que Ja ,tube d'ecoulement" est situe quelque part au niveau de l'exurgence, t andis que les ,piezometres" sont materialises par les 6 lacs-siphons. Les ni v eaux deca.les des eaux des lacs, qu'on peut difficilement encadrer dans une courbe piezometrique theorique, s'expliquent s i l'on considere la section du tube variable ce qui est, d'ailleurs, caracteri s t ique pour un aquifere fissural. Dans !'explication de la de la cavite nous supposons !'existence de deux etapes bien distinctes. Dans une premiere phase (fig. 5-A), entre les plateaux calcaires mentionnes et la resurgence s'est etabli un drainage avec formation de boucles phreatiques incluant des anastomoses deve loppees sur des plans de stratification, liees entre elles par des cheminees de contact. C'est l'etape pendant laquelle, eventuellement consecutivement a une concurrence entre les divers drains, se sont formees les galeries de la cavite. Pendant la seconde phase (fig. 5-B), un abais sement general. de la surface phreatique determine le drainage de l'eau des galerie s vers un niveau inferieur, celles-ci restant emmergees. Le niveau piezo;metrique est marque par le niveau de l'eau dans les La situation presente des similitudes evidentes avec la theorie elaboree par Ford (1971) en vue d'expliquer la genese de quelques grottes de la zone de Mendip (Fig. 6). 11 existe, evidemment, aussi des differences dues en premier lieu a la situation structurale differente, au pendage des strates, qui a des valeurs basses a 30) dans le de Valea Mare, tandis que dans la zone de Mendip .ces valeurs sont plus accentuees. La consequence de cette structure est !'installation d'un drainage de type epiphreatique. L'e lement represente par le ,,boucle phreatique" est cependant commun aux deux Qui plus est, la phase B, constituant une etape intermediaire entre le stade d'inondation des galeries et celui fossile, four,uit un argument en faveur de l'interpre- tation Rirnilaire de la genese de cavites fossiles dans lesquelles les boucles phreatiques sont plus malaisees a etre reconnues, etant maintes fois ,decoupees" par les processus d'incasion. En ce qui concerne l 'abaissement du ni v eau phreatique, nous emet. tons !'hypot hese selon laquelle l'aba.issement s'est produit a s sez rapide ment, supposition. eta. yee par Pabsenee des p_reuves 1 d'une circulation vadeuse; laquelle 1mplique un paE sage de la ca v 1te du si.ade d'ecoulement en regime noJ:e directement au stade de gro tte foss ile. ans cette baisse

PAGE 49

7 La grotte ,Pestera cu Lacuri din Valea Seaca" \ ---a b c e Fig. 4 -La p erte de charge uniforme au "longue d'un tube a section constante (a). Pertes non-uniformes de charge dans Ie cas d'un tube avec elargissements (b) et r H r ecissements (c) Ecoulement dans des tubes incline s d escendant (d) ou ascendant (e). Le niveau piezometrique dans le cas d'une apport eonlinu par les pi ezomctres aussi que par le reservoir (f) (d'apres Bleahu, 1974) Fig. 5.-Evolution de Ia grotte cu Lacuri din Valea Scacli : A -formalion des boucles phreatiques ; B -abais-sement du nlveau phreatique. B 4.7 brusque de l'apport de l'eau dans l'acquifere il parait que le role principal ait ete joue par un climatique qui a eu lieu pendant le Pleisto-dme superieur (Nastaseanu, 1972). Un rechauffement du climat (avec des sur les precipitations) a conduit a la formation,

PAGE 50

48 S. Constantin, A. Rotaru 8 Fig. 6. -Eta pes dans Ia genese des cavites de In zone Mendip (d'apres .Ford, 1971). dans la zone des plateaux de et de Padina Matei, d'une couverture argileuse impermeable. Ce depot, d'une epaisseur relativement a agico:irll;ne un ,tampon", retar(!ant ou mf>me entravant partiellmnent l'acces des eaux d'.lnfiltration vers l'P karE>tique Cet .te hypothese donne ainsi la possibilite de datat.icm du moment de l'ahaisse-

PAGE 51

9 La grotte ,Pestera cu Lacuri din Valea SeacA"-ment de la surface phreatique ( et, implicitement, celui de la formation des galeries fossiles actuelles), moment qui pourrait etre situe, le plus Mt, a la fin du Pleistocene superieur. BIBLIOGRAPHIE BLEAHU, M, (1974), Morfologia carslica. Ed. $tiintiflcli BOTO$ANEANU, L., NEGREAAlexand,ina, NEGREA, St. (1967), Grottes du Banal exploree:s de 1960 d .1962. ,Recherches sur les grottes du Banat et d'Oitenie (Roumanie, 1959-1962)", Ed. C.N.R.S., Paris. DRAGOMIR, B., P. (1982), "Fauna de echinide apfiene de Ia MoldolJq Noud (Banal). Lucr. scs. 11t. ,Grigore Cobiilcescu'', Univ. ,AI. I. Cuza", FORD D. C., (1971), Geologic structure and a new explanation of limestone calJern genesis. Trans. Research Group oJ Great Britain, vol. 13, No. 2. NASTASEANU, S., Prezentarea hdrfii geologice a zonei Noud. An. Com. Geol., XXXIII, pp. NASTASEANU, S., MAIER 0., (1972), Haria geologica a R.S.R. scara 1 :50.000. ,MoldolJa -Noud" . Bucure11ti. PI$0TA, I., TRUFA$, V (1976), Hidrografia.-,Geografia"-Grupul de cercetiD-i complcxe ,Portile de Fier" seria monograficii, Ed. Academiei RSR, Bucure11ti. SENCU, V., (1972), La carte du karst des Monts LoclJa (Banal) suivanl Ia legende internalionale. Rev. Roum. Geol., Geogr., Geoph. Geographic, T. 16, nr. 1, Ed. Academiei, Bucure11ti. SENCU, V. (1979), Carstul din Defileul Dundrii. Speologia, Grupul de cercetiiri ,Portile de Fier", Ed. Academiei RSR, Manuscript receiped 13 April 1988; Addresses of the authors : Silviu CONSTANTIN -Institutul de Speologie ,Emil Racovita", Str. Frumoasli 11,78114, Bucure11ti, 12, R.omania, Aurel ROTARUMinis terul 0Mcdiului, Str. Libcrtlitii 12, Romania

PAGE 53

Theoretical and Applied Karslology, Vol. 4 (1991), pp. 51 to 64. L'EXTENSION DE LA ZONE GLACEE DANS LA GROTTE DE SCARI$0ARA (ROUMANiE)_:_EFFET DES OSCILATIONS METEOROLOGIQUES MULTIANNVELLES PAR 11. G. RACOVJTA La limite des formations stalagrnitiques de glace qui se developpent dans Ia zone periglaciaire de Ia Grotte de (Monts du Bihor) presente des variatipns saisonnieres dues aux changements periodiques qui ont lieu dans le regime de ventilation de Ia cavite, Ces variations ont ete sui vies par des mesures mensu elles effectuees durant l'intervalle 1983-1988. L'analyse statistique des donnees primaires, basee sur Ia methode de Ballot-Besson d'adjustement d'une suite chronologique de valeurs, montre que cette limite comporte aussi des oscillations d'ordre superieur, correspondanl: a des tendances multiannuellcs d'extension ou de restriction de Ia zone glacee. Leur cause reside dans des fluctuations thermonietriques analogues qui se produisent au niveau de } 'atmosphere souterraine et qui peu"ent mises en correlation avec les tendances de long terme liees a l'evolution meteorologique de l'cxterieur. La topographic particuliere de la grotte glaciere de -nne cavite descendante constituee d'un aven de 48 m de profondeur et d'un vaste situe a un niveau inferieur et ferme en cul. de-sac a permis la constitutiop. et la conservation durant au rnoins les quatre derniers milenaires d'un bloc de glace dont le volume a ete estime a plus de 50.000 m3 (f;\erban et al., 1948). Ce bloc occupe le secteur central de la grotte, domine par un merot:limat froid. n est flanque de trois ootes de salles oii se developpent des champs de stalagmites de glace, qui constituent !'element caracteristique pour ce qu'on: a appele la zone periglaciaire de la cavite (f;lerban, 1970) et qui se trouve a la limite d'entre le mero climat froid et le :meroclimat chaud des secteurs profonds 1984). La zone periglaciaire arrive a son extension maximum dans la salle nommee Grande R.es erve, ou on a pu observer non seulement des differences dans la morphologic des stalagmites de glace determinees par l'ambiance thermique dans laquelle se developpe ce type de speloothemes, mais arussi des modifications dans la position que l'epicentre du champ de stalagmites occupe par rapport" a l'entree de la grotte. Ces observa tions ont mene ala definition du concept d'ecologie des formations SO"!Iterraines de glace (f;!erban, 1970), dont 'l'etude s'est avere des le debut d'un tres grand interet.

PAGE 54

52 :M:. Gh. Raccivita 2 Les premieres recherches faites dans cette direction sont dues a Viehmann et Craciful (1969), qui ont suivi entre janvier 19. 64 et mai 1967 les variations mensuelles de la limite de la zone glacee. Les auteurs mettent en evidence une correlation inverse entre la temperature souterraine et !'extension maximum des formations de glace, ce qui est tout a fait naturel, mais ne donnent aucun detail ni sur les particularites saisonnieres de ces variationg, ni sur les tendances de long terme qui pourraient y apparaitre. Les etudes de climatologie et de glaciologie ont ete reprises dari.s b Grotte de a partir de 1982, comme suite de l'interet q"Q.e le Conseil populaire du departement d'.A.lba a manifeste pour l'amenagement touristique de la cavit.e et pour sa conservation en tant que monument de la nature. Ces etudes sont une consequence de l'effort de recherche scientifique impose par le p1obleme de la consert'ation du fond glaciaire de la Grotte de dans le s conditions du futur impact anthropique determine par !'exploitation touristique de la cavite. 11 s'agit en premier lieu d'un plus grand apport de calories a l'interieur de la grotte, du au flux de visiteurs et surtout a la chaleur par le s corps d 'eclairage electrique, quoiqu'econ0miques soient-ils. . Les recherches entreprises jusqu'a. present ont.porte sill la.dynamique des stalagmites de glace et les du niveau du bloc de glace. Elles ont montre unt;)_ evolution antagoniste de ces deux elements, avec une qui parait correspondre a un de 22 ans (Racovita et al., 1987). 11 etait done interessant de suivre egalement les oscillations rtmltiannuelles de l'extension de la glace 'dansla zone periglaciaire de la Grande Reserve, en correlation avec les va. riati.oll.s t}lermiques. Ce sont justement les resultats obtenus au cours de telles etudes qui font l'objet du present travail. 1. DONNEES INFORMATIONNELLES DE BASE A partir du m.ois de. janvier repris les obseryatiolls concernant la limite des formations de glace sur d13ux des alignements etablis par Viehmann et Craciun (1969) dans . Grande Reserve : l'un .dans la zone centrale de la salle, _au voisinage sa paroi est, Les mesures ont eu comme point de reference .Un: n3pere fi_:l{e choist .arbitrairement p()ur chaque aligneinent a part. ; e lle s ont ete faites avec une precision
PAGE 55

3 La zone glacee dans la grotte de 53 ------Les particularites de la meteorologie externe, qui determinent au cours de chaque cycle annuel les parametres topoclimatiques soutetTain s ant ete definies en nous rapportant aux temperatures moyennes mensuelles relevee s ala S tation de (1384 m d'altitude), qui, est la plus proche de Grotte de (tab. 3). 2. I N'l'ERPRETATION DES DONNEES PRilVIA!RE S La succession des mesures mensuelle s montre que la limite des forma iions de glace est sujet de fortes oscillations saisonnieres (fig. 1 et 2), !'extens ion de la zone glacee augmentant regulierement au cours de l'hiver et du printemps et se restreignant durant les mois d'ete et d'automne. Vampli1ude de ces oscillations est plus grande sur l'alignement central de la Grande Reserve, m't elle atteint un maximum de 26m en 1984-1985 (tab. l. fig. 1), tandis que pour le meme interv alle, elle n'est que de 18m au Yoisinage de la paroi est (tab. 1, fig. 2). Quoique les donnees thermometriques fassent defaut dans ce dernier point 1, il est facile a concevoir que cett e difference est. due justement a la. proximite de la paroi rocheuse. L e :-;urrefroidissement de celle-ci pendant l'hiver, ci.U.and la. grotte est le Riege d'une ventilation bidirectionnelle qui transporte de l'exterieur des rnar
PAGE 56

7t 1' 12 12 ssc=C> 8 6 2 0 -2 -4 -:6 AA' y= 0 ,00311t 12.06 I'''' 1 '' ''' J .i'' ''' ''' 0 I 0 '' 1 0 '' 0 I 0 0 ' 0 '' '' 'J '0 0 ''''I''' 0 '' '''' r 1983 1984 1985 1986 1987 1988 Fig. 1. -Variation. de Ia limite de Ia zone glacee sur l'alignement central de Ia Grande. Reserve. AA' = droite de r e gression. Les fl eches horizontales marquent l'effet des hivers rigoureux 1985 et 1987. Les fl e ches verlicales indiquent l effet du mois de fevrier 1988, chaud. "' 21 /() II! IIJ 14 11 10 ] l 8 0 i 65 c:::::> 0 l 88 6 BB r-0 Olt. r 8. 671 r"TTrTonooiiOIIOOOIIOOIIIOilllillililiolliOiqllii,,,,,,,,,,,,,,,.,ljilill 1983 1984 1985 1986 1967 1988 Fig. 2. -Variation de Ia limite de Ia zone glacee sur l 'alignement est de Ia Grande Reserve. Milmes details que pour Ia fig. 1.

PAGE 57

5 La zone glacee dans la grotte de 55 3. ANALYSE STATISTIQUE DES DONNEES Compte tenu de ce& concordances, nous avons essaye de surprendre en premier lieu les tendances de long terme qui peuvent apparaitre eventuellement dans les oscillations de la limite des formations de glace, comme effet des fluctuations climatiques de l'exterieur. En premiere approxima tion, de telles tendances sont mises en evidence par les droites de regression COITespondant a chaque serie de donnees primaires. Calculees d'apres la methode des moindres caiTes, ces droites ont comme equation numeriques y = 0,0031 X + 12,06 pour la zone centrale, et y = -0,024 X + 8,67 pour la zone est de la Grande Reserve. n s'ensuit que la droite de regression est egalement ascendante pour la zone centrale et descendante pour la zone est, mais l'angle de pente ( dont la tangente COITespond a la valeur numerique du Coefficient a de la fonction lineaire) est toujours si petit (fig. 1 et 2), qu'il est impossible de parler ni de differences vraiment significatives entre les deux aligne ments, ni de !'existence d'une tendance quelconque dans les oscillations a longue echeance de la li:mit_e des formations de Cette derniere observation est particulierement interessante. En effet, le meme genre d'observations et la meme analyse des donnees appli quees au niveau du bloc de glace et a la hauteur des stalagmites de glace ont montre !'existence dans les deux cas d'une tendance de long terme llien evidente, manifeste durant l'intervalle 1963-1985 et al., 198 7). Negative pour le bloc et positive .pour les stalagmites, cette ten dance est maximum pour les speleothemes de Grande Reserve. On devrait normalement s'attendre ala trouver encore plus accentuee pour la limite d'extension de la zone glacee, car dans toutes les autres situations la pente de la droite de regression est proportionnelle a !'amplitude des variations mensuelles; or, cette amplitude arrive a ses valeurs les plus grandes justement dans le cas de la limite de la glace. Quant a la temperature de l'air, les droites de regression calculees les deux series de valeurs. correspondant aux stations 13 et .14: sont a leur tour pratiquement horizontales (fig. 3), cette fois-ci en corcon dance avec les resultats obtenus dans les autres points de mesures psychro metriques situes dans la glacee de la grotte. On peut done en conclure que, dans une ambiance thermique qui, outre les variations saisonnieres, n'est point sujet d'autres modifications, la dynamique des differents types morphologiques sous lesquels apparait la glace de caverne est affectee a longue echeance par des tendances antagonistes, mais que de telles tendances ne concernent plus la limite de la zone glacee. On doit neanmoins observe que cette conclusion n'est valable que lorsqu'on la rapporte aux series de donnees primaires considerees dans

PAGE 58

56 M. Serba'n, Gh. RacovitA tc 3 0 1 j -" /V\ r"\ St.14 8' ....:--"". V V V I t I St 13 3,0 A A" y =0, 00$1 X-0,164 88' y: 1,975 -I'' '''''''''1'''''''''''1'''''''''''1'''''''''''1'''''''''''1'''''''''''1 1983 1984 1985 1986 1987 1988 Fig 3 . -Variation de la temperature de l 'air aux stations 13 et 14 de la Grande Reserve. leur ensemble. Les resultats sont bien differents si l'analyse statistique a comme but la mise en evidence des periodicites qui peuvent appara1tre dans l'intervalle de temps donne. Pour atteindre ce but, nons avo:ris la d'ajustement de Ballot-Besson (Besson, l.924, cite par Dumitriu-T at.aranu et 1988). Brievement, 'l'algorith:m,e de cette methode est le suivant: a. Soit y, = y1 ... Yn les valeurs successives qui constituent la suite chrcinologique a etudier. b. On determine la moyenne arithmetiq ue y pour les valeurs y,. c. On calcule les ecarts ; ... en, positifs ou negatifs, de chaque valeur y1 . Yn par rapport a la moyenne y; on a done d. On calcule les sommes successi v es cumulees 81 . Sn. de ces ecarts, c'est-3.-dire qui rempl acent fi?alement les valeurs y1 Yn de la suite primaire. On comprend facilement que, en suivant cet algorithine, les variations accidentelles .tendent a s'effacer par compensation, tandis que les variat ions dues a ;une cause stable tendent" a s'accentuer par cuni.ulation (tab. 1 et 2).

PAGE 59

7 La zone glacee dans la grotte de 57 La representation graphique des sommes _s, <>l>tenues pour les deux !tli,griements_. de mesure de la limite des formations de glace (fig. 4: et 5) aboutit a des resultats parfaitement ce qui coilstitue d'eiilblee St 40 . 30 20 to 0 -10 -zo -30 -40 -50 -60 -H I \ AA.' r=-'3.2Z2u15,939 88' y = l.4t;Z, 6$,!97 I' I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I I II' I I I I I I I I I I I I 'I I I t I' 'I I I I I 198J 1984 1985 1986 1987 I 1988 Fig. ol. -Courbc ajustee Ia methode de Baliot-Besson pour Ia variation de Ia limit c de Ia zone glacec sur l'alignemen t central. AA' et BB' = droites de regression partielles pour les tcndances multiannuelles. 50 40. 'iO 10 -20 -30 -SO -60 AA' y = -1. 3 J 1 x 12, 533 88' 1 = 1 848 X-?2. 78V -70 I''''''' I Iii I''' I ''"''''1.''1 1111111 I I Itt I I I I I I'T' ... '""' ..... I ..... T,T"II"11 ,..,.,.,..,T"IIMI"TI'r1'"111 1983 1984 1985 1986 19!\7 1988 Fig . ). -Courbe ajustee pour.la limite de Ia zone glacce sur .l'alignement est. Mctne details que pour Ia fig 4.'

PAGE 60

58 8 M. Gh. RacovitA ----------------------la preuve que les courbes ajoustees expriment un phenomene reel. Ces courbes montren,t dans les -deux cas !'existence de deux periodes nettement distinctes: une periode de retraite generale de la limite de la zone glacee durant l'intervalle janvier 1983 -november 198i, et une periode d'avancement de cette limite le long de l'intervalle novembre 1984 -novembre 1987. Si on calcule main tenant separement les droites de regressi011 correspondant a chacune de ces deux periodes, on aboutit a des tendances de long terme bien evidentes, pour lesquelles le coefficient a de la fonction lineaire a dans tous les cas des valeurs supraunitaires (fig. 4 et 5). Ces v aleurs sont toutefois moindres pour l'alignement est, en liai s on directe a v ec le fait que }'amplitude des variations mens uelles est elle auss i pluR faible .Appliquee a la suite des valeurs thermometriques enregistrees a la station 13 (tab. 2, fig. 6), la methode d'ajustement de Ballot-Besson conduit a la differenciation des deux meme s periodes. Dans le cadre de celles-ci, les droites de regression partielles ont une inclinaison contraire a celle des droites determinees po.ur les limites des formations de glace (tig. 4 et 5), ce qui prouve cette fois -ci que les tendances multiannuelleR qui peuvent etre decelees dans les fluctuations de la limite des formations de glace se trouvent sous le contr6le immediat de la temperature soutet raine. En effet, on trouve une correlation inverse statistiquement signi ficative entre les ordonnees des courbes ajustees calculees separement pour chaque periode, d'une part pour la temperature de l'air ala station 13 et d'autre part pour chacun des d,eux alignements le long desque1s 3 2 1 . o.oo1u -1.86 St. 14 St13 -1 -2 1 = 1317 -U, 595 l -5 -6 y = -0 1244 ){-0, 079 I I I I I I I I; I I I I I I I I I I I I I I I I I I I I I I I I I 1 .1' I Fig. 6 -Courbes ajustccs pour Ia variation de Ia temperature de l 'air a l i x stations 13 ct 14

PAGE 61

La zone giacee 4f!.ns la grotte_de Sl!iiri!ioa'ra 59 on a. suivi de la. zo-ne glacee (tab. 4). n faut neanmoins rema.rquer que cette n'est pas exempte des variations saisonnieres, qui sont evidemment synchrones et qui ne sont qu'attenuees dans les courbes ajustees. . C'est precisement pour cette raison que le test statistique donne des resUltats egalement dans la comparaison faite entre les temperatures mesurees aux stations 13 et 14, quoique les droites de regression partielles sont nettement differentes, car elles sont pratiquement horizontales pour la station 14, avec des valeurs faibles du coefficient angulaire a (fig. 6). Malgre cela, la suite chronologique des valeurs ajustees conserve la separation des deux periodes, car les droites de regression se placent a des niveaux bien distincts. Ce resultat est normal, parce que la station 14 se trouve deja dans le meroclimat chaud de la grotee, qui se caracterise non seulement par des valeurs plus eievees de la temperature de l'air, mais aussi par un:e plus grande stabilite t.hermique (Racovitlt, 1984). 4. EVOLUTION DE LA TEMPERATURE EXTERNE Tel que nous l'av ons mentionne, le contexte meteorologique dans lequel se sont deroulees les variations des parametres etudies dans la Grotte de a ete defini a partir des temperatures moyennes mensuelles relevees ala Station de (tab. 3). La. droite de regression c alculee pour l'intervalle 1!)83-1988 a comme e quation numerique y = 0,0193 X + 3,984 et montre U.ne legere tendance d'augmentation de la. temperature au cours des six cycles annuels (fig. 7). Ce resultat est difficile a interpreter. En effet, il est deja bien connu que, etant le siege d'une ventilation bidirecla Grotte de n'est soumise aux influenc e s de la meteorologie externe que durant l'hiver. C'est seulement au cour s de cette saison que la thermocirculation implique un echange aerodyD.a mique entre la surface et i'atmosphere souterraine et que la temperature d e la grotte peut etre mise en correlation avec celle de l'exterieur. En periode estivale, urie telle correlation devient impossible, car l'arret de la thermocircula.tion amene la temperature souterraine au. palier de+ 0,5 0 qui est tout a fait independant des variations thermometriques de l'ex te-1 rieur.

PAGE 62

60. M. Gh. Racovit;A 10 I"( 16 } 87. ==> 12 10 8 6 A :l 2 -' 6 8 -10 A.A' I'',,'' I I I.,''''' 'I'' I,,'' I I I' I I 'I I I I II I I'' ''I,, I I I II I .... ,',, I I I,,' ''I 19113 1964 196.., 1986 1987 1988 Fig. 7. T em p eratures moyennes mensuellcs rclevc es a la Station de Biiioara durant l 'interva lle janvier 1983 -novembre 1988. Les indiquent Ia valeur minimum et maximum de Ia suite chronologique. S ; 5 I. 7 0 l 7 1 v -I. 5 6 -7 -e 9 AA' y = 0 .521 )( -2.135 88' :=-0 .039Y-1 554 Fig. 8. -Courbe ajustee pour les temperatures moyennes mensuelles enreglstreee en salson hivernale (novembre-avril) il. Ia Station de

PAGE 63

11 La zone glacee dans la grotte de 01 Pour ce motif, il est raisonable de limiter la comparaison entre la temperature souterraine et celle de l'exterieur seUlement a la saison hivernale. Nous avons done applique la methode d'ajustement de Ballotr Besson a la serie constituee par les temperatures moyennes mensuelles enreg!strees a la Station de dans l'intervalle novembre-a;vril entre 1933 et 1988. Le resultat est cette fois:.ci parfaitement satisfaisant (fig. 8). La courbe ajustee montre une distinction nette entre les deux periodes departagees par le mois de novembre 1984, et pour chacune cl 'elles les droites de regression partielles refletent la meme ten mult!annuelle que dans le cas des temperatures relevees a la station 13 dans la-Grande Reserve. ll apparait ainsi que, a partir de l'hiver rigoureu:x 1984-1985, quand on a enregistre la moyenne mensuelle minimum de 10,4"0 (tab. 3), les saisons hivernales se sont caracterisees par !'accumulation dans la grotte d'une quantite plus grande d'air froid, ce qu'a. eu comme consequence une tendance d'accroissement des formation de glace et d 'extension de la zone glace e. 5. CONCLUSIONS 1. Appliquee pour la premiere fois aux probleines de glaciologie que souleve la Grotte de la statistique BallotBeRson d'ajusteinent des series de donnee chronologiques s'est montree particulierement utile pour l'analyse du phenomene d'oscillation de la limite de la zone periglaciaire soutenaine. 2. En dehors des variations saisonnieres, la limite des formations de glace presente des m;cillations d'ordre superieur, conespondant a de s tendances multiannuelles d'avancement ou de retraite. 3. Ces tendances wnt determinees d'une fafton directe par des fluctuations du meme ordre qui apparaissent dans l'evolution de la temperature de l'air dans la zone a meroclimat froid. 4. A l'origine de ces fluctuations se trouvent les changements meteo rologiques qui se produisent a l'exterieur dans une suite de cycles annuels et notamment durant les hivers. 5. Comme dans le cas de la dynamique des formations de gla<>e aussi, l'etude de !'extension spatiale de celles-ci met en evidence un deter minisme lie aux variations thermometriques externes et, en demiere instance, aux periodicites qui caracterisent !'evolution meteorologique de l'exterieur. 6. Ces remarques constituent autant d'arguments pour la neces site et l'utilite d'un programme de recherches climatologiques et glaciologiques poursuivies a longue echeance dans la Grotte de

PAGE 64

62 M. Gh. Tableau 1 Tableau ll Tableau J moyennes mensuelles Llmltes de Ia zone glac c e (y1 ) a Ia et valeurs s1 des courbes ajustees m cnsuellcment aux stations 13 de p our le s deux ali g n e ment s et 14 de Ia Grande (y1 ) Biill1oara (y1 ) e t de Ia Grande Heser v e ct !es valeurs S1 d e s courbes valeurs S1 de In ajuste e s courbe pour les mois d'hiver (no -vembre -avril) Alignemcnt Aligncment Station 13 Station 14 central paroi d'est Mois N" Y1 sl Yt st Y1 sl Y1 sl Yt s1 d'ordre F i g 1 Fig. 4 Fig. 2 Fig. 5 Fig 3 Fig. 6 Fig. 3 Fig. 6 Fig. 7 Fig. 8 I 1983 1 17. 0 3 .83 10. 5 3."32 -0. 2 -0.148 2 0 -0.08 -2. 6 -1.11 F 2 19. 4 10.06 13. 5 9.64 0 8 0 .896 1.8 -0.36 -6. 2 -5.82 M 3 18. 0 14.89 12 5 14.96 0 0 -0.844 2.0 -0.44 0 : 7 -3.63 A 4 16.0 17.72 11.0 18.?8 0.0 -0.792 2 0 -0.52 6 4 4 .26 M 5 9.9 14.45 2 2 13.80 0 4 -0.340 2 2 -0.40 10. 6 -I 6 9.5 10. 78 1.0 7 .62 0 4 0 .112 2.2 -0.28 11.4 -I 7 7 0 4 61 0 7 1 .14 0 4 0.564 2 2 -0.16 14. 4 -A 8 -4. 5 -13.06 0 5 -5.54 0 5 1.116 2 2 -0.04 13. 5 -s 9 -5. 0 -31.23 -0.2 -12.92 0.5 1.668 2.4 0 .28 11.2 -() 10 -6.0 -50.40 -1.8 -21.90 0 6 2 .320 2 4 0 .60 5 3 -N 11 -46.77 11 1 -17.98 -0. 2 2 .172 2 2 -1.0 4.75 D 12 16. 9 -43.04 11.2 -13. 96 -0. 1 2 .124 1 .. 8 0.44 -1.6 4.64 I 1.984 13 18. 2 -38. 01 1.3. 0 -8.14 0 6 1.576 1.6 -0. 04 -3. 3 2 .83 F 14 19.4 -31.78 13. 7 -1.62 -1.0 0 .628 1.6 -0.52 -4.7 -0.38 M 15 19. 1 -25.85 13. 2 4.40 0 7 -0.020 1.8 -0.80 -3.1 -1.99 A 16 18. 0 21 .02 12. 0 9 .22 0 0 0.032 2 0 -0.88 2 2 1. 70 M 17 16. 6 -17.59 10. 8 12.84 0 3 0.384 2 0 -0.96 9 2 -l 18 9 0 -21.76 2.0 7.66 0.4 0.836 2 3 -0.74 9.8 -I 19 7.0 -27. 93 -1.0 -0.52 0 5 1.388 2.0 -0.82 11.7 -A 20 6 2 -34.90 -2. 0 -9./0 0 5 1 .940 2 2 -0.70 12.5 -s 21 -1. 0 49 .07 3 0 -19.88 0 6 2 .592 2.4 -0.38 10. 8 -0 22 2 0 64 .24 -4. 0 -31.06 0 5 3 .144 2 8 0 .34 7 7 -N 23 -5. 0 82.41" -1.0 -39.24 0 2 3 .396 0 46 2 4 5.59 J) 24 15. 5 -80.08 9 6 -36.82 -1.2 2.248 1.4 -0.22 -2. 7 4 .38 I 1985 25 19.5 -73.75 13. 8 -30.20 -1.3 1 .000 1.0 -1.30 -7. 5 -1.63 F 26 20. 3 -66.62 13. 9 -23.48 1 8 -0.748 1.0 -2.38 -10.4 -10.54 M 27 21.0 -58.79 14.0' -16.66 -2.4 -3.096 1.5 -2.96 0.4 -8.65 A 28 19.8 -52.16 13.8 -10.04 ...:..o. 2 -3.244 2 0 -3.04 3.8 -3.36 M .:.!9 19. 5 -45.83 13.4 3 .82 0.0 -3.192 2.1 -3.02 10.4 -I 30 18. 0 -41.00 13. 0 2.00 0.3 -2.840 2.2 -2.90 9 5 -I. 31 17 1 -37.07 12.6 7.42 0.5 2 .288 2 2 -2.78 13.4 A 32 16. 5 -33.74 11.3 11 .54 0.4 -1.836 2.2 -2. 66 14.6 -s 33 16. 5 -30.41 10. 6 14.96 0 4 -1.384 2 4 -2.34 9 3 -0 34 10. 5 -27.08 1 8 9.58 0 7 0 .632 2 5 -1. 92 5 0 -N 35 15. 5 -24.75 1 8 4 .20 0 3 -0.28 0 2.2 -1.80 -0. 1 -1.97 J) 3b 11.0 -26.92 1.7 -1.28 0 2 -0.028 2.1 -1.78 0.5 0.02

PAGE 65

lS La zone dans la grotte de ________ 6_3 IJ Fig. Fig. 4 j Fig. 2 Fig. 5 II Fig. 3 Fig. 6 I Fig. 3 Fig. 6 II Fig. 7 Eig. 8 I 1986 37 18.0 -22.09 13 0 4 54 -0. 8 -0.776 1.9 -1.96 -4.4 -2.89 F 38 19. 5 -15.76 13.6 10.96 -3.2 -3.924 2 0 -2.04 6 5 -7.90 M 39 19. 0 -9. 93 12. 5 16.28 -0. 3 -4. 172 2 0 -2.12 0 0 -6.41 A 40 16. 8 -6.30 12 6 21 70 0.2 -3.920 2 0 2 .20 7 1 2.18 M 41 16. 5 -2.97 10 9 25.42 0.2 -3.668 2.1 -2.18 11.1 -I 42 12 0 -4 14 7 5 25.74 0.3 -3. 316 2 2 -2.06 11.4 -I 43 11.5 -5 81 2 1 20.6b 0.4 -2.864 2.4 -1.74 12.5 -A 44 9.0 -9 98 1.8 15.28 0.4 -2. 412 2 4 -1.42 15 2 -s 45 7 5 -15.65 1.8 9.90 0 5 -1.860 2 5 -1.00 11.4 -0 46 0.0 -28.82 1.0 3 72 0.4 -1.408 2 2 -0.88 5.5 -N 47 8.5 -33. 49 0 8 -2.66 0 5 -0.856 2 3 0 66 1 . 8 5 47 D 48 19 3 -27.36 13.9 4 .06 -0.6 -1. 404 2 4 -0. 34 -2. 8 4 .16 I 1987 49 20. 1 -20. 43 14' 2 11.08 -0.5 -1.852 1.9 -0.52 -7.0 -1.35 F 50 20. 9 12 70 14. 5 18.40 -0. 4 -2.200 1.5 -1.10 -2.1 -1.b6 1\{ 51 21.8 -4 .0? 14. 8 26.02 -3.6 -5. 748 1.2 -1. 98 -6.9 -7.37 A 52 20.0 2 .76 13. 9 32.74. 0 0 -5.696 1.7 -2.36 2.4 3 48 M 53 19. 0 8.59 13.3 38.86 0 0 -t>.644 1.9 2 54 7 2 -I 54 18 0 13.42 11.5 43.18 0 2 -5.392 2 0 .... 62 12. 5 -I 55 17. 5 17 0 75 11.4 47 .40 0.3 -5.040 2 0 -2.70 16 5 -A 56 17.0 21.58 11. 3 51 .52 0.4 -4.588 2.1 -2.68 11. 2 -s 57 16. 5 24.91 4 0 48 34 0.5 -4.036 2.'4 -2.36 12 6 -0 58 15. 0 26. 74 4 0 45 .16 0 5 -3.484 2 4 5 0 -N 59 12 0 25.57 4.0 41.98 0 2 3 232 2 4 -1.72 0 9 -1.09 D 60 13 .. 5 25.90 1.9 36.70 0 0 -3.180 2 2 -1.60 -2. 8 -2.40 I 1988 61 15. 5 28.23 9 0 .38. 52 0.0 3 .128 2 2 --1 48 -0.3 -1.21 F 62 15 0 30.06 l2.0 33 .34 0 2 -2.876 2 2 -1.36 2 7 -2.42 M 63 18. 0 34.89 12. 6 38.76 -0.4 -3.224 2 2 -1.24 -2.7. -3.63 A 64 15.0 36. 72 8 8 40.38 0.2 -2.972 2.0 -1.32 0 16 M 65 10. 3 33 .85 1.9 35.10 0 5 2 420 2 3 -1.10 8 9 -I 66 8.5 29.18 1.7 29.62 0.4 -1.968 2.2 0.98 10.7 -I 67 8 0 24.01 1.5 23.94 0 4 1 516 2 3 0 76 15. 7 -A 68 7.5 18 34 1.5 18.26 0.5 -0.964 2 3 -0.54 14 i -s 69 7.5 12.67 1.5 12.58 0.6 -0.312 2 .3 -0.32 9.6 -0 70 7.0 6 .50 0 0 5.40 0.6 +0.340 I 2.4 0.00 5.3 -N 71 I 6 7 0.03 1.9 0 .12 -0. 4 -u.oos 2 1 + 0 .02 -4.5 somme inoyenne 935.1 13.17 509. 9 7 .18 -3.7 -0.052 147. 7 2.08 332. 3 4 68 Tableau 4 Corr6latlon statlstlqne entre Jes ordonn6es des eonrbes ajustees pour Jes divers parametres thermo-glaelologlqnes "' Temperature de !'air a Ia station 13 Suites chronologiques de "0 C.oel!icient I 0 lest I Degre de donnees ;::: de t sign ni fication p., correlation r l.imile de Ia zone glacee sur l"ali gnement I -0.92 10.75 tres signilicatif central II 0 75 17.32 trl!s significatif --Limite de Ia zone glacee sur l'aligne-I -0. 95 13 94 tres significatif ment est II -0. 81 8.11 significatif -T emperature de I 'air a Ia station 14 I 0 .625 3 .67 significatif II 0 .655 5.12 signilfcatif

PAGE 66

64 M. Gh. Rac9vitli 14 BIBLIOGRAPHIE BESSON L. (1924),An. Serv. Tech. Hyg. Paris, pp. 159-198. DUMITRIUcTATARANU I., POPESCU M. (1988), lnvesligarea dendrologicd a unui trunchi sub{osil de stejar. Stud. cere. bioi., seria bioi. veget., 40, (1), pp. 29-39. RACOVIT A G . (1984), Sur Ia structure meroclimatique des cavites souterraines. Theor. Appl. Karstol., 1, pp. 123.:....140. RACOVIT A G., :;>ERBAN M., VIEHMANN I. (1987), Tendances de lohg terme dans la dyna mique des formations de glace de Ia grotte de (Monts de Bihar). Theor. Appl. Karstol., 3, pp. 143-163. :;>ERBAN M (1970), Morplwlogie comparee des stalagmit e s de glace de Ia grotte de Sciirioara (Roumanie). Trav. Inst. Speol. ,E. Racovitii", IX, pp. 35-60. $ERBAN M., COMAN D., GIVULESCO R. (1948), Decouvert e s recentes el observations sur Ia glaciere naturelle dile ,Glzefarul de Ia Sciiri o ara". Bull. Soc Sc. Cluj, X, pp. 174-210. VIEH!\IANN I. CRACIUN V (1969), Migrafia glzetii in pelera ,Glzefarul de Ia Sciirioara Lucr. Inst. Sp e ol. ,E. Racovitii", VIII, pp. 51-54. Manuscript received 22 May 198 8 Address o( lhe autlzors : Ing Mihai $ EHBAN and Dr. Gheorghe RACOVITAInslitutul de Speologie ,Emil Hacovita" (Seep a Str. Clinicilor 5, 3400 Cluj Romania.

PAGE 67

.Theoretical and Applied Karstolog(J. ViJt, 4 (1991), pp. 65 to 16. CON,TRIBUTIONS TO THE INVESTIGATION OF THE KARST OF PADIS AREA (BIHOR MOUNTAINS, ROMANIA) BY MEANS OF RESISTIVITY MEASUREMENTS BY U. JriAFTEIU Geological measurements are frequently used in karst investigation for the Identification of underground of tectonic fractures which may favour the development of karst phenomena and for establishing. the flow directions of corresponding groundwater bodies. Taking into account the strong control that the dimension and burial depth of a certain anoqtalous body exert on: fhe electrometric methods applicability, arrays with various depths of investigation w e re used .. The present paper included the r esults. of a survey performed above a known anomalous body, the cave of as well as that of a extended application of the methods o ve r a wider area. The intcrpretatli:!JL resulted In maps of the karst drainage areas and in establishing flow direction& ot groundwater bodies, The water-table level and the flow rlirections indicated by the soundings were adjusted according to the Informations derived from boreholes and from tracing experiments. INTRODUC1'ION The_ grandiose karstic phenomenon of the Padiey Plateau (Bihor Mountains) has represented one of the main attractions for cavers and karstologists. In recent years it has become also a target for prospecting, by means of drillings and geophysical surveys, haVing an economic interest for the basement of the thick sequence of carbonate rocks. The deposits thickness increases towatd the SW, according to the 35 dip of their substratum. Intercepting. a karstic cavity, either with or without a filling, or a. highly fissured area represents an obstacle in drilling a borehole, and hence it became necessary to establish; by means of geophysical methods, faster and cheaper than drilling the paths of the fractures and of the coresponding karst phenomena as well as the flow directions of groundwater. In 1987 and 1988 resistivity .methods were used, in an attempt to solve the abo v e mentioned problem. . . . Previously, in the Padiey Plateau, only hydrologic investigation methods and tracing experiments .had been performed by IPGG-Bucharest 1987), while the drillings were by CIMR-Buchlilrest (Ma.tiasy 1988). 5 -c. :JBI

PAGE 68

66 ll. Matteiu 2 1. PREMISES OF THE GEOPHYSICAL SURVEY The surveyed areas are situated in the main karst depression of 1. -Poiana 2. -Poiana Cantonului Silvie 3. -Poiana Tomascar-Rachita; SW of Chalet (fig. 1). By means D J$ 8171b I I I Ql [/16 0' lZl' Fig. 1. -Location map of the areas inyestigated geologically and by tracers (Padif -Blhor 1987-1988): I -area investigated by YES with Schlumberger arrays-II-area investigated-by VES with Logn arrays-Poiana Cantonului III-area by YES with Logn arrays and by ,mise a Ia masse" method -Chalet; 1 -alluvia; 2 -limestones ; dolomites ; 3 <;onglomerates, sandstones ; 4 -faults (according to 1987); 5 -faults (according to Matiasy, IMR-1988); 6-underground flow diiection (established by tracing experiments); 7 -spring; 8 -swallet; 9 flow directions (established by IMR-electrometry); SWALLETS: 69 -70 -Cutilor, 71 -Renghil, -Arsurii, 73-74-Picrderea Girjoaba; SPRINGS: 76-Izvorul G!iivoiu, 77-Izbucul Poiana Ponor, 78-Ponorul "din Poiana Ponor, 53-Ftnttna 56-lzbucul 57 -izbucul Boga, 68 -Izbucul Galben. of costly karst investigation methods,. i.e. the boreholes drilled by CIMRBucharest between 1976 and 1988, some karstic cavities and groundwater bodies were identified. At the same time, the laborious activity of groundwater tracing and discharge recording, performed by IPGG during several years, allowed to establish the. main flow paths and the emergences o:f the groundwater in the area.

PAGE 69

Restlvity measurement ln the karst area Pad!i!J 67 Taking into account the purpose and the magnitude of the drilling program, as well as the .local impediments we co:me across with, when performing the drilling to the depth of interest, the necessity occured to identify the fractured areas in the limestones, water circulated or dry, as well as the flow direction and water-bodies levels. The electrical resistivity prospecting methods that were used con sisted of: -vertical electric_al soundings (VES) with injection electrodes maximum separation .ABmax 1000" m and potential electrodes maximum separation MN max = 300 m, aimed at identifying anomalous bodies situated at depths of no more than 200 m ; pole-dipole electrical soundings with AB = 1000 m, MN = 20 m and a step of 20 m, aimed at identifying shallower bodies ; this is a very expeditive method, both for establishing the flow paths and the water-table level (Mitrofan, 1984); ,;mise a la :masse" and equipotential lines methods with .AB = = 1000 m and MN = 20-300 m, aimed at delineating the fractures and the flow paths of the groundwater. In order to understand the limitations of the :method, it is useful to consider the table 1. below, that distinguishes the investigated media according to the rather weak variation of the parameters measured (resistivity and conductivity) ; Table 1 RBSISTIVITY (m) CONDUCTIVITY AFTER DORTMAN (1976) AFTER THE MATERIAL I -ACADEMY OF THE ON SAMPLES IN SITU PEOPLES' REPUBLIC OF CHINA (11!76) AIR 00 00 0 GROUNDWATER 1.1 X 10 s-1 x to- 1 X 10-1-1 X 10-a FISSURED LIMESTONE 1X104-1X101 1 X 101-1 X 101 1 X 10-3-1 X 10-3 COMPACT LIMESTONE 1 x 104-1 x toe 1Xl02-1X101 1 x to-a-1 x 10-a SANDSTONE ixt05-txtoe 3X 10-2X t01 -CLAY t X 103-t X tOI 1X10-1X109 10-1-10-s -At the same time, in interpreting the geophysical measurements it is w .orth noticing that the resistivity contrast varies with the square of the ratio between the radius and the depth of burial of the karstic pheno menon. In theory, a certain anomalous body is seizable by resistivimetry for a ratio of more than 1: 4. Yet, under the practical geomorphologic (area of distension in limestone) and hydrogeologic (flow along fractpres in kar.st) conditions this ratio becomes moref avourable to the identification of anomalous sources from a greater depth. The resistivity contrast increases as a consequence of water flow and consequently at the surface, it has been achieved an increase of the potential and resistivity anomalies amplitudes accordingly (Constantinescu et al. 1979) (Mitrofan, 1978).

PAGE 70

68 IL Mafteiu 1.2.-THE PURPOSE OF THE MEASUREMENTS Taking into accoUii.t the importance of the drillings from Pam!} for CIMR and the technical problems arisen during the drilling, the geo physical survey and especially the electrometry, as a rapid and .cheap method, tried to investigate the degree of fracturing and. karstification, the position of the areas mostly affected, the tectonic setting and the groundwater flows and implicitly the cavities associated these phenomena (Mafteiu 1987). The study 'was performed both along the vertical and along the horizontal plan, thus establishing a picture of the karst which turned to be useful in the positioning and the optimization, of the drilling grid. It is worth mentioning as well the nondestructive characte1 of the investigation method, that needs only the insertion of several electrods, 12 mm in diameter, into. the ground and the rolling of some wire lines above ground. 2. INFORMATION ACQUIRED FROM MEASUREMENTS DATA INTERPRETATION 2.1. MEASUREMENTS PERFORMED ON KNOWN ANOMALOUS PATTERN.S 2.I.l.A CARSTIC CAVITY-THE CAVE OF PADIS . In the south-western part of Poiana below Piatra Boghii, is situated the cave of (fig. 2), with a known lenght of about 100m and having a dip of 40, a dry karstic cavity which may be assimilate(! to several succesively interconected cylinders of diferent radia, from 5 to 15 m. By means of the VES with Schlumberger array method and the pole-dipole (Logn) sounding method, (fig. 3) values measured :;:Lnd computed within tbe range of' the above-mentioned limits were Trying to concesive a dip resistivity map, one can notice the appearance both on the vertical and horizontal plane of the fracturing effect tbat predetermines the development of the cave (fig. 4). The dipole soundjng with a lesser depth of investigation in fig. 4b indicates the presence of the fault down to a depth of 58 m sustaining its southern dip. 2.1.2. MEASUREMENTS ON A HYDROLOGICAL BOREHOLE . In the middle of Poiana _6antonului Silvie Padif} 100m SW qf the junction of the. Pietroasa-road with the one leading -to Ohalet, a 300 m deep drilling has been carried out. It crossed an alluvial filling 70 m which after it penetrated the Anisiap. limestones. Between depths from 107 to_ 150 m the borehole crossed a karstic cavity and a fractured which after it penetrated Permian shales and" sand stones. Electrical soundings were performed in cross, on 4 directions delineating the resulting conductivity (the reciprocal of resistivity) diagTam.

PAGE 71

5 Restivity in the karst area 69 It indicated two superimposed flow i.e. two water tables, one within the alluvial with a .NE-SW strike and another one in the fractured limestone, striking NW.:_SE. This last direction is consistent KPTNiml @ 1/) A.rd Fig. 2. -The cave of : a) vertical profile, b) Horizontal projection ; 1 -li mestones, 2 -karstic cavity, 3 -VES profiles. I 2 J ABA! .;:.qr' (j'{l(?p-1m1 Fig. 3. -Geophysical measurements at the cave of :a) Vertical resistivity protile Constructed rclying on the VES with Schlumbcrgcr arrays data; b) Geological profile; c) Vertical resistivity proflle, constlucted relying on the VES with Liign arrays data: 1 -resistivity maximum ; 2 -karstic cavity ; 3 -resistivity contours ; 4 -measu-rement station. with the one outlined by the tracing experiment between CuWor and Renghii -valley swallets and Boga Spring, fig. 1-70, 71 (Orafilanupersonal communication).

PAGE 72

70 M. MStteiu DEPTII rm1 f! J8 141 oJ ' P, I -7DfB-I ----I C:f--e. o_l Zfl F ig. 4. -Resistivity maps constrrcted with information pertaining to an oblique plane, w hose dip included the is of the of a) VES with Schlumberger array; b) YES with Logn array; 1 -isohms; 2 -faults; 3-cave entrance; 4-VES station; 5-the plane including the axis of caVl l. @ N @ 7/J-Itm D-S"m / ' .. IV t I,,. ,I t I I J Fig. 5. -Conductivity measurements performed on the head of wellbore 321B (C.antonul : a) conductivity diagram; b) flow directions diagram.-

PAGE 73

7 Restivity measurement in the karst area Pa
PAGE 74

(UI) --f AT 7 CQ!& 2 7(w 8 3 9 0 4 "T.?+J !0 . s .. . 8 oJi712 Fig. 6. Main karstified areas subyected to water .flow and drainage directions j n Poiana : 1 -faults; 2 -rcsistiyity minimum ; 3 -swallct; 4 -sinkbolc ; 5 flow directions ; a -geolog ic limit; 7 -permori ss ic d eposits ; 8 werfenian deposits; 9 -anisian deposits; 10 -stratified limestones; 11 -road; 12 -wcllborc. HI6H {6/J 11040 "DNOIU l78b */ H 12' 4,.p nc' """'-. I IIIJO C <::) : fit .. --(If /-ii&N tm) -------,. lnJ N .li s I 'r' IIP1,t TjlMt ( f!PO I I I __ ---0 ----7i <111z ___ ..... --... -, ..... fiOO 1iw t!L::f'!'. I I J I 9 fiJ @i] [] p;..-1 lPfl ,_./ ,.-.,.l!i-"' _,. --Fig. 7. -Padit Chalet area :a) Geoelectric profile IV-IV'; b) Gcole(:
PAGE 75

9 Restivity the karst area Padi!i 2 3. THE "MISE A LA MASSE" METHOD In the proximity of swallet, 700 .m SW of Chalet, an attempt was tried to further use 'the method indicated at 2.1.2, in order to e stablish, by rp.eans of a different technique, the local drain directio:o. of the underground stream. At the same time, the tectonic fractures may be identified as well. The ,mise a la masse" method in our pnder the varjant of the equipotential lines, consists in inserting one clllTeri.t injection electrode into the swallet, while inserting the other one 4lto tP,e a distanc e of 1000 m ; after releasing a certain electiOlite (50 kg halite in our case), elect}'ic potential measurement performed along eeve:,:-al directions, at different succesive time intervals. The advancement of the electrolite or the water flooding of the draining karstic cavity : would lead to the distortion of the current lines and of the equi poteiltials, theJorm of which would indicate tbe strike of the cavity and tbe water flow direction. . tigure 9 rndicates an enhance of the conductive area values along the 'NE-SW of the faults identified by the geological survey. It clearly results the connection between the 3 swallets i.e. the water from swallet 3 tlows toward swallet 2, which after it :meets the drainage channel running from swallet 1. The figure also indicates the contours at tne tgp of the aquifer, established by the method described at 2.2.3., which fnither reveal' the groundwater sinking points flow directions. CONCLUSIONS. The geoelectric methods used in the study of the study of the karst prove once again their efficiency, through their rapidity, low cost and nondestructive character of the performed research with respect to the environment. The present paper investigated several specific and local features of the karst of the Plateau, both along the aiid horizontal profile, pointing out the transcription of the. typical phenomena into a geoelectric picture. At the same. time new iilf01mations concerning the groundwater drainage in the ai'ea are brought to light. In the area of Cantonul because of the. tectonic control, .the general E-W groundwater drainage direction, established by tx:acing experiments, has a local SSW strike, at. down to the south7w.estern border of the glade. Similarly, in Poiana and in Poiana Tomasca -Rachita the drainage direction is obviously tectonically controlled and. it is generally consistent with that one indicated by the tracing experinients > It is recommended that these non destructive method should be .used in as many karst areas as possible, since at this.time a rather adequate slll'Vey equipment a:ad fast measuring and interpretation techniques are available.

PAGE 76

M Mafteiu 10 Fig. 8. -'fop of the aquifer contour map -Polana Cantonulul Silvlc Padl'f : 1 -contour of the lop of the aquifer; 2 -fault ; 3 -sinkhole; 4 -wellbore ; 5 -alluvia ; 6 ..!. limestones 7-dolomites.

PAGE 77

11 \\ fiestivity _in' tlle :tarst area ,*"" cg 8 3 ./ 4 I '! c3 6 0 q 10 lQ-500 ,..n .. Fig. 9. -:Mise a la masse -method -Trtnghieftl swallet : 1 -contour of tile top of. the aquifer; 2 -isoohms before releasing the electrolite; 3 -lsoohms.after releasiDg 50 kg ot NaCI ;4 -flow direction ; 5 -fault ; a -measurement station in the awallet.

PAGE 78

76' M Mafteiu 12 AKNOWLEDGEMENTS I want to thank to Horia Mitrofan from the Institute of Geology and Geophysics ot Bucharest for his help in selecting the investigation methods At the same ,time I want to thank to Ioan Povara from the Speleological Institute ,Emil Racovita" of Bucharest for his support and his effective review of the manuscript. REFERENCES CONSTANTINESCU P. et al. (1979), Engineering geophysics. Technical Publishing house, Bucharest. l\IAFTEIU, M (1987-1988), Reports about electrical survey in Padi$-Bihar. CIMR, Bucharest, MATIASY, S. (1979-1988), G e ological r e porls on h eavy pro s pection in Padi$-Bihar. CIMR, Bucharest. MlTROFAN, H. (1978), Contribut i on to the spel e olog ical knowledge of the Ponoare area based upon the complex interpretation of the geophysic a l measurements. N ymphaea VI, pag. 251-264, Orade!i. . MlTROFAN, H (1984), Contribution of the resistivity survey the karstic aqulfcrs disco 'ntinuily inve s tigation. Travaux d e l'institut de speologi e, tome XXIII, PubliShing house of Academy RSR: I. (1 Geological reports .IPGG, Bucharest. Manuscript received 29 November .19go Adress of the aut/tor : Mihai MAFTEIU Regia Autori'oma a 'Metalelor Rare; Sectia Prospectiuni, str. 5i, C.P;:-MoG 25, Romania

PAGE 79

Theoretical and Applied, J{arstology. Vo.l. c 4.(19.91), pp. 71 to 86. ENVIRONMENTAL ISOTOPES IN KARST HYDROLOGY. A LAY-OUT OF PROBLEMS WITH EXEMPLIFICATIONS IN ROMANIA. BY F. D. DA VIDESCU, A. TENU and AN A SLA V:ESCU The paper provides actual examples of the possibilities to apply environmental isotopes in determining certain hydrogeological characteristics and parameters In carbon-matrix aquifers of economic importance In _Romania. The main isotopes employed nowadays in hydrogeological research at a wmld scale as well as i1;1. Romania, : begining with 1970 w;hen the Laboratory of _environmental isotopes was organised and equipped in the. Institute. of Meteorology and Hydrology, are: -tritium (the mass-3 isotope of hydrogen) and carbon-14 as radio-aetive isotopes;. -deuterium (the mass-2 isotope of hydrogen), oxygen-18 and carbon-13 as stable isotopes. Table 1 shows the most significant characteristics of these isotopes (known as isotopes): T 1/2 , determination procedure, isotopic contents. It is worth mentioning that either of natural or artiticial natme, the es.vironmental isotopes are part of the very water (T, D, 180) oe of dissolv.ed s-qbstances (130,. 140) wich enables their presence over. the entire water cycle in nature thus turning into ide!l>l tracers. Further on we provide a brief presentation of some major aspects i!lvolved in the topics approached in stllodying the Romanian aquifers with carbon-fissured or karstified matrix -using this methodology as far as the following are concerned : 1. Origin and genesis of karst-waters. 2. Recharge areas -transit times. 3. movement (flow directions, actual velocity). 4. of some hydrogeological parameters (average porosity) . 5. The underground mixture phenomenon between different waters.

PAGE 80

'18 F. D. Da'Videscu et al. 2 Tablt 1 The main Isotopes eurrentiy used In hydrogeologleal research Type Sym-T 1/2 Measuring I Contents bol years) procedure (expressed in :) . e TRITIUM radioactive SH 12.43 Liquid scintillation -tritium unit5 (T\J ) spectrometry -radioactivity I'C units (Bq/Kg). CARBON-14 radioactiv e 5,730 Liquid Scintlllati on -young carbon Spe<;trometry procents (%C-mod.) t -radiometric ages I (years). DEUTERIUM stable 2H -Spectro.mctric meas. -relative isotopi 1 -abundance OXYGEN-18 180 l (8D%0 v-SMOW stable -Spectrometric meas. -relative isotopi I abundance lBC (81'0 %0 v-SMOW. CARBON-13 stable -Spectrometric meas. -relative isotopi I abundance (813C%0 v-PDB) c ) c ) c The aquifers being considered here as examples of solutions to the problems approached are : the Lower (;Teta.coous thermal aquifer in the region of Felix-1 Mai Spa a.nd the high-thermal aquifer in the Oradea. region, the thermal aquifer in the Geoagiu Spa and the two carbon-matrix of great economic importance to be found in .south Dobrudja : the Barremian-Jurassic and the Sarmatian. 1. ORIGIN .AND GENESIS OF KARST WATER The isotopic study of the therm:;t.l water stored in the Lower Creta ceous limestones in the Felix -1 Mai region carried out in 1976-1979 facilitated the definition of their origin. In terms of the average isotopic compositions (table 2) it specified that these waters as well as the high thermal water in the Triassic aquifer to be found in the Oradea region are of meteoric origin (Ti:mu, A., 1981). Likewise, it was possible to establish the fact that these wa.te1-s are part. of the active hydrological cycle (i.e. having radiometric ages below 30,000 years), although the water in the Triassic aquifer are quit-e close to its upper limit. Of particular importance in the management of the aquifer and the planning of its use was, besides the afore-mentioned specifications of service water, the determination of a recent charging component (in a ratio of about 1/7) by means of tritium.

PAGE 81

3 Environmental isotopes in Jcarst hydrology 79 Table Z Average lsotople eontents of the thermal trater stored In the lower Cretaeeous and Trlusle aquifers situated In the Felix Oradea zone Stable isotopes Radioactive isotopes Deuterium Oxyg e n-18 I Carbon-14 Tritium I {OD"/oo (olsO ."/oo (T U ) I %Cm0d. Radiom. A v-SMOW) V-SMOW) ages Lower Cretaceous -69. 1 -10.0 Bgd(0. 2) 8 20 20. 300 Triassic -73.4 -11.1 Bgd 4.16 26 500 2. RECHARGE AREAS -TRANSIT TIMES a) For the same mesosoic complexes above mentioned, it was speci fied on account of the individual contents and the average j sotopic composition that the recharge areas are located in the high karst zone of the (Jraiului Mountains. The values given in stable isotopes suggest the fact that the charge areas of the two aquifers are situated at dhferent -altitudes: the Triassic aquifer, as shown by the correlation diagram D -180 (Fig. 1) is' recharged from an area lying higher and implicitely farther from the water catchment are a. In fact, this is confilmed by the differing transit times !larger with the Triassic aquifer by about 6,000 years cf. table 2). b) Another evidence ib provided by the thermal aquifer in the G e oagiu spa which was hydrogeologically studied and by means of environ-mental, isotopes in 1984 ('fenu, A.) 1>. The geological pattern in the area is given in Figure 2 : a basement of crystalline limestone belonging to the Rapolt genetic series, outcroping west from the spa on the Clocota valley. The drillings carried out in the resort come across this layer at depths of 40 in The sedimentn.ry cover is made. of venomanian marly sandstones as well as Quaternary chalky tfu.ffs of26-47 m depth and alluvial deposits. '.l'he Geoagiu falllt, a tectonic accident developed WSW -ENE, i s of peculiar importance in both structure .and water flow; it determines a dip of about 30m in the north compartment. The major thermal aquifer stored in the crystalline limestones is generally permeable and provides water flow through fissures, karst holes and tectonic accidents. Of similar importance from a hydrogeological standpoint is the Cenomanian basement !lind the aquifer layer stored in the chalky tuffs an the travel tines in the area. The average isotopic contents of the major types of water being analised (surface, cold karst and thermal waters table 3) against the background of zonal geological stl'Ucture allows the following brief -1) Tenu A {1984) -CerceUrl Izotoplce privlnd apele termale din zona Geoagiu Raport, Arhiva IMH-CNA.

PAGE 82

80 :1: > 80 0 .C) 0.0 . F. -D. 'Da'vide5cu et 81. 1 S IIQOfoe VStltN .. ' ' e! Hill \ \ ' \ \ o -I 1 I ' \ \ I 2 !2_--f::Sj 3 -250 4 Q, 5 6 0 7 Fig. 1. -The 8D-8120 correla.: tion for the thermal mesosoic aquifers in the Felix ...!. Oradea region. \ ,'.. \ '\ \ ' \ \ -\ \ 500m .l;>o -....:...: 8 ;;..--9 10 Fig. 2. Geological map of Geoagiu-Spa area : Quaternary: travertine, chalky tuffs; 2. Cretaceous (Cenomanian): marls and sandstones; 3 Basement: crysta1Iine limestones; 4. Cold water 'Spring: 5. Thermal spr..inil; 6. ISPIF-well; 7 : lFLGS-well; 8. Directions and slope of the g e ological strata; 9. Fault ; 10. Gr<>undwatcr Bowing direcHons .

PAGE 83

5 Environmental isotope5 in -k.al'&l hydrology 81 schematisation : -the thermal water are recharged from meteoric water fallen under climatic and altitude conditions characteristic for the high western plateau, especially in the cold season; Table 3 Average lsotopie eontents at the GeoagiuSpa areas ... .. Deute ri u m Oxygen-f8. Tritium Carbon14 (Ill S O % o) (T U ) (year s ) Surface water -70.0 -9 8 4.4 present-da y Cold water -82. 0 -11. 2 39 present-day Thermal w ater -84 0 -11.4 7 14 0 0 0 -this component having an apparent corrected age of about 15,000 years belongs to a deep water flow along which it turns geochemically homogeneous and a heating takes place ; hence it is led to the Geoagiu faults to the resort where due to local conditions the waters mix up with a local descending component, also of meteoric origin having an apparent age Of 5-25 years. The cold ka1stic water is of the same age . 3. GROUNDWATER MOUVEMENT -FLOWING DIRECTIONS In order to exemplify this aspect, the carbonated aquifers of Southern Dobrudja were selected due to their economic importance : the BarremianJurassic extended over 5,000 km2 and the Sarmatian of llydrogeological importance in the South-eastern littoral region. The regional studies carried on in 1972--o--1975 ('J'enu, A., et al. 1975) was resumed in detail in 1981-1985. The preservation of the isotopic contents over 10 years is remarkable ('J'enu, A., et al., 1987). Some slight differences having occurred in this interval emphasized only some influences. at a local scale due to the anthropic factor. The shape of the 14(; isochrones for the B arremian-Jurassic aquifer (Fig. 3) -the values of 1985 -indicates a preferential flow direction WSW-ENE ; i.e. from the recharge area (the pre-Balkan Plateau over the Bulgarian territory) toward the area of major drainage, bot h natural and artificial, in the nort h-west of (.,onstantza. A secondary flowing direction was noticed in the Adamclisi Cobadin zone, directed SE towards Mangalia, where the oldest waters were tl'aced. In fact, t aking al s o into account the stable isotope contents} an older component rech51rging upwarP. the B arremian-Juras sic down even the Sarmatian was signalled south and . from Tuzla Topr&Isar horst. This emphasizes the major role played by tectonics in water circular tion through a matrix. The fact that the 17,500. years isochronous line closes somewhere atound Basarabi shows the existence of an inflow recharge perturbating the progressive development of water ages to the major discharge area. 6 -c. 381

PAGE 84

82 F'. n. E>avidescu et al. Fig. :l. -14C isochrones distribution in the Barremian-Jurassic aquifer of South Dobrudja : 1. Sampling point; 2. Isochrone and its value (years); 3. Area with lacking (eroded) deposits. o .. .. s_..,.to Km A Fig. 4. -1'C isochrones distribution for the Sarmatian aquifer in southeastern Dobrudja : 1. Isoch.rone and its value; 2. Sampling point.

PAGE 85

7 Enviromental isotopes in karst hydrology 83 in North-West of Constanta city. The existence of this recharge zone is due to the Senonian chalky formation of maximal development hex e, where it is crossed by the Sea chanel along which large amounts of water are vehicled. It is also worth noticing that the image provided by the 1'<.., iso chronous lines contradict the initially forwarded hypothesis on intuitively hydrogeological grounds pursuant to which it is possible that the Barremian-Jurassic should be recharged by the Danube along the stretch Ostrov -For the Sarmatian aquifer, of hydtogeological and economic import ance in the South-East of the region (Fig. 4), the isochrones distribution of 14(; shows flowing directions a proximately W-E in concordance with the ones established in terms of groundwater levels measurements (Pitu, N ., 1981). The existence of a recharge area with recent water in the Plopenizone, where irrigation water penetrates down to the Sarmatian it is worth mentioning. T -he oldest water are met in the easternmost area (;ostinel}ti Tatlageac where the fracture borders the Tuzla-Topraisar horst in the south, allowing an order component of ascending recharge to penetrate ; this component is also confirmed by the stable isotope contents. Its presence was mentioned at the Jurassic aquifer belonging to the same region . 4,, DETERMINATION OF SOME HYDROGEOLOGICAL PARAMETERS The correlation of the radiometric corrected ages through Fontes Garnie1 method (the most laboxious and complete method so far known, considering a complex of chen;lical and isotopic factors in correcting the assessment of exchange reactions with the bed rock in view of an exact determination of the initial activity) with the distance helped computing the real flowing velocity as an average (0.8 mjyear) for the Sarmatia.n aquifer and as a variation. range (2.6-5.4 mjyear) for the BarremianJurassic. Mention should be ma.de that the real velocities for the two aquifers were practically maintained within the same range for t .he two research stages over 10 years. With the two aquifers being investigated the values of mean effective porosity were determined in terms of these values a.nd the computed apparent velocities (table Table 4 Average values ol some llydrogeologleal parameters ln the earbouted aquifers of southern DobroodJa Parameter I Apparent velocity Aquifer -mjyear-Sarmatian 0 .10 Barremian-Jurassic 0.13-1.02 R e al velocity -m /year 0.8 2.6-5.4 E ffective porosity 0 .12 0.050 19

PAGE 86

F. D. Davidescu . et al. 8 Therefore, for the Sarmatian aquifer in the eastern littoral area, the mean value of this parameter is 0.12 while for the Barremian-Jurassic the values are somewhat between 0.05 and 0.19. 5. THE UNDERGEROUND MIXTURE PHENOMENON BETWEEN DiFFERENT WATERS The example of a sketchy hydrodynamic situation is provided in the north-east of Southern Dobroudja : Poarta Alba Midia -'--Navo dari (Fig. 5) for the use of isotopic study. As shown by the figure the flowing directions are the same as at a regional scale, i.e. SW -NE to the Siutghiol lake (the latter being thus recharged with a l.0-1.5 m3fs discharge) and to _the zone of artificial drainage in the areas neighbouring the water catching points (where discharges of 2.7-3.0 m3/s and even higher are tmned into account). The stable and radioactive isotope contents at the level of 1984 enabled a sketchily delimitation of some zones, where the recent waters (precipitations, irrigations, surface flow) directly penetrate into the Lower Cretaceous -J urasic or Upper Cretaceous due to some local geological conditions. Thus in the catching point of CarageaDermen,the recent water contribution can oover 25% of the usable discharge in periods of intense activity (Davidescu, F. D., 1981). This influence is also great in areas where the Barremian-Jurassic chalks outcrop (the Ovidiu quarry sluice) but it is smaller around Poarta Alba. As for the Senonian aquifer, a significant penetration of recen t waters (about 50%) is encountered in the -area Basarabi -Valul lUi Tra.ian. Such influences were not traced by means of isotopes in the deep wells operating North and South of These assumptions and examples are along the same line as the eonclusions generally reached in the worldwide study of the application!!! of environment isotopic methodology in hydrogeology, particulariy in the study oi fairly developed a-qUifers with carbonatic matrix. In such cases, the use of point measurements for certain. hydrogeological parameters are often highly non-unitorme and therefore they fail to supply satisfactory inte1 pretations and c olutions to more uncommon problems. This technical-methodological approach should . not-be neglected as the aquifers having limestone matriX: are associated or identical with economically important aquifers supplymg drinking water, thermal or mineral water.

PAGE 87

Fig. 5, -Hydrodynamic processess schematlzation on the isotopic basis of Poarta Alba Niivodari area : 1. Sur face wate r ; 2 Quaternary water tem ; 3. Upper Cretaceous water system ; 4. Lower Cretaceous -Jurassic water system ; 5. Local Isotopic composition; 6. Recent water contribution ( %) in the Upper Cretaceous aquiefr; 7 Recent water contributions ( %) in the Lower Cretaceous -Jurassic aquiefr ; 8 Artificial drainage zone ; 9. Groundwater flowing directions. 1 J 6 2 7 0 3 8 4 9 11ot .. TU 5 ,. 1 0%. pmc 0 2 4 Km a -.0. -.tastelu ' ' ;'ina -Ia,._ ., -"'"-'' "" n >-1t. I (/) :.:: \,J -<( ,.J' <0 .... a (I) 1:1 s--C) "! ..... ::I p;-11> .., "' .... ::r '< Q. .... g. 0 ill '< 00 Ol

PAGE 88

86 F. D. Davidescu et al. J(} REFERENCES DAVIDESCU, F., D., (1981), noi privind interrelatiile diferitelor tipuri de apl1 din 2ona Siutghiol, furnizate de tritiul natural. Hldrotehnica, vol. 26, nr. 9, pp. 261-264. DAVIDESCtJ, F. D., TENU, A., SLA VESCU, A., (1983), Considerajii privind componentelt principale de aliment are ale acviferului eocen-sarmajian din zona Techirgfdol. St. cercet. IMH, Hidrogeologie, vol. L, pp. 205-216. PITU, N. (1981), Contribujii la studiul micdrii apelor subterane fn roci cu particulari:z,are Ia complexele acvi{ere din zona litoralului. Teza de doctorat, Univ. TENU, A., NOTO, P., CORTECCI, G NUT!, S., (1975), Environmental isotopic study o( the Barremian-Jurassic aquifer in south Dobrogea (Romania). Journ. Hydro)., vol. 26 pp. 185-198. TENU, A., (1981), Zacamintele de ape hipertermale din nord-vestul Romdniei. Ed. Acad. RSR, 208 p. TENU, A., DAVIDESCU, F D., SLA VESCU, A., (1987), -Recherches sur les souterraines des formations calcaires dans la Dobroudja Meridionale (Roumanie). Isotope techniques in water resources development, I.A.E.A., Vienna, pp. 439-453. Mimuscript received :u March 1988 Address of the authors : Florin D. DA VIDESCU, Dr. 'Augu!ltin TENU and Ana> SLA VESCU -Instltutul National de Meteorologle Hidrologle, 97, 71581 Romania.

PAGE 89

ThcorelicD.l and Applied J(arslology. Vol. 4 (1991), pp. 87 to 96 INTERPRETATION OF TRACER EXPERIMENTS. MULTI-CELL OF IMPERFECT MIXING BY 0. IORDACHE, RALUCA ISOPESCU, E. GASPAR and A. ISOPESCU A new model is put forward for the dispersion processes In hyd!okarstlc systems exhibiting more scales of mixing. An expansion using Laguerre polynomials is obtained for the residence time distribution. The first term In expansion corresponds to the standard multi-cell model while the following are corectlons for Imperfect mixing. The results are applied to Interpret tracer research on the dynamics of underground waters In the Cerna Valley. 1. INTRODUCTION Some aquifer systems can be considered a.s consisting of various sub-component volume elements interconnected with each othe1. The physical of the s
PAGE 90

88 0. lordache et al. 2 transit time through each cell to account for a possible delay ot tracer when the multi-cell approach was used to a system of fissm ed rocks with a porous matrix. The model presented here is valuable when the flow could be separated into zones with different, but finite scales of time. In such systems we are faced with imperfect mixing i.e. with ,stagnant water" and ,short-. circuiting". The zone corresponding to a given mixing scale appears as stagnant relative to the portion of flow that travels more ;r.apidly from entrance to exit and as a shortciicuit with respect to the portions of flow that move more slowly. The new model is a; development of the theory presented for a simple perfect mixing cell (Imdache et al., 1988). The dispersion of tracer in karstic groundwater experiments is compared with theory (Gaspar, Simion, 1985): 2. THE MODEL It is assumed that an ,imperfect mixing" takes place in each cell and that the1 e is no mixing between the cells. The number of ideal cells n + 1 is a parameter characterizing the real flow. The sum of the voluines equals the volume of the entire system and it is supposed that the volumetric flow rate is constant. A multi-cell model is described by the system of equations : (1) where h(t} by Ho>(T.) = + bln(t) + ... + (3) -that is by the vector :H<1>(T) :__ [b&l)(t); h11)(t), ... Here e is an expansion parameter while wm, m = 1, ... M are constants. observe that T and Hm(T) are elements of a field (Iordacbe et al., 1988). The niulti.:.ceU model in the new frame will be hy the cmiesponding system of differential equations : dH(I). = -AH
PAGE 91

Interpretation of tracer eXperiment 80 We replaced the real const!tnt a by the veetor A = [a, o, o, o : .]. Taking T = [t, t, ... t] and T1 = [t -.M, t -.:lt, ... t .:lT] in the i-th equation of the using the rule of product in the non-archimedean field (see Iordache et aL, 1988) and letting .:lt -> 0 we obtained: for l < i < Ii and 0 m M. A condition that ensures the normalization of RTD is: From (6) and (7) we obtained: 1 i il (6) (7) (8) were Ll!>(a t) denotes the Laguerre polynomials (Abramowitz et al., 1965). Taking i = 0 but M # 0 the solution obtained for imperfect mixing in a single cell results. Contrary taking M 0 but i # 0 the solution studied in hydrology by Przewlocki and Yurtsev:er 1974 l'e s ults. A general computed solution of (4) is: hc(t) = L (9) m ho( 6) = 0) i ql,i>( 6). 6) 1. (10) Here 6 = a t, and ql,i> only depends on the m-th time scale Uaing the orthogonality properties of the Laguerre polynomials (Abramowitz, Stegun, 1965) we from (10): 00 ql!> : (m + i> !Jr:p. !i! S h( 6)Ll,i>( (ll) 0

PAGE 92

90 0, Iordache et al. The pllysical rele-vance of the coefficients qm consists in their use as -vaxiational parameters for minimizing the distance between he( 6) and h( 6) wher:e 11( 6) is the experimental RTD. Equally well can be -viewed as titting parameters a theoretical RTD function h( 6) to the model (to). In the new frame we cannot disCiiminate between the models that corresponds to different M. The best model i.e . the number M of scaies is selected u sing, the sum of the squares of de viations: 00 S = (hc(6)-h(6))2d6 (12} 0 or other objective functions. When tbe experimental study gives the cumulati-ve RTD function F( 6) of the i-th --cell, the constants are obtained using a dF( 6) = = h( 6) d6 "in (11). 3. ANALYSIS OF EXPERIMENTAL DATA AND INTERPRETATIONS The predictions of the present model are discussed now with respect to the tracer dispersion in hydrokarstic systems. The experiments of Gaspar and Simion (1985) concerning the Oerna Spring (see their table 1) are compared with the. new model (11) in Fig.l (here a= (n + 1)/tm where t111 is tbe over'an meen residence time). F 1,0 0.8 0,6 0.4 0,4 0,8 t2 1,6 2.0 2.4 2.8 t/tm Fig. 1 -Cumulative resi dencc time distribution : 1. model ; 2. experimen-tal. The best. fitting is obtained at n = r; (i.e. in a system containing six cells) and M = 1 (two scales of mixing correspondes to m = 0 and m = 1). The sum of the squares of deviations S for cumulative RTD

PAGE 93

s Interpretation of tracer experiment 91 function in the case of six compartment is sbown in Fig. 2. It has been found that M = 1 satisfactory-picture of the flow. We obtained qS5> = 1 and q\5> = 0,202. s 10 8 Fig. 2. -Objective function 2 0 t 2 tevel The coefficient qt> can be interpreted as the ratio of the volume with !;tagnant water to the total volume of tbe system. It is also related to the ratio microporosity (fissure porosity + microporosity) studied by Zuber [1]. Obviously in this case it is considered that in the microporosity domain the flow is slower. Following tbe interpretations of Przewlocki and Yurstsever (1974) the case qt> > 0 corresponds to aquifers with inoreasing depth along the flow direction. The increasing depth give rise, in this interpretation, to' the apparent stagnances of the fluid. Observe that we can find moments of the RTD starting from hc(t) or hc(6). Denote by 9., the dimensionless computed mean residence time. Restricting the study to the case with six compartments we obtained fl'om (10) : (13) Note that if M: = 0 (i.e. in the case of standard multi-cell model) we obtained, 60 = 6 If q[5> > 0 it results that 9c < 9. Note that 6., should be interpreted as the mean residence time of the perfectl_y mixed part of the whole system. The experimental mean residence time G = 6 is larger due to the existence of slower motions. Applying the model presented here it is possible to obtain the following : determining flow parameters as for instance the numbet of cell and fraction of stagnant or short-circuiting flow

PAGE 94

92 _ o. _Iordache .et al. -calcwating the nonideal RID using (11) -: predicting possible contamination of the groundwater for -any initial time distribution of pollution concentration.. One may conclude that the new proposed multi-cell model agrees well with the experimental data obtained in the karstic system studied herein and it could possibly be a promissing starting point for the iiivesti gation of other flowing processes in hydrological systems However a basic difficulty in pursuing such an attempt would be the stochastic _character of the dispersion process, the statistical properties of h( 6) being mme difficult to be assessed (Iordache, 1987). ABRAMOWITZ, M., STEGUN, I., A., (1965), Handbook of Mathematical Functions. Dover, New York, GASPAR, E., SIJI.IION, G., (1985), Tracer research on the dynamics of underground waters in the Cerna Va//ey (Southern Carpathians, Romania). Theoretical & Applied Karstology, vol. 2, p. 183-197. -HlMMELBLAU, D. M., BISCHOF_F, K., B., (1968), Process Analysis and Simulation-Deterministic--System. I Wiley New York. IORDACHE,' 0., (1987), Po!yslochastic models in chemical engineering V.N.U. Science Prrss, Utrecht, The Netherland, IORDACHE, 0., ISOPESCU, R., GASPAR E., (1987), Interpretation of tracer dispersion in Karst Groundwater. Theoretical & Applied Karstology, vol. 3, 223-227. IORDACHE, 0., ISOPESCU R., lSOPESCU A., IACOBINI A., JINESCU, Ghe., (1988), Nonarchimedean models of mixing -I. Residence time distribution (or systems with imper fect mixing. Chern. Eng. Sci.,43, p. 693-697. PRZEWLOCKI, K., YURTSEVER, Y:, (1974), Some conceptual mathematical models and digital simulation approach in the use o(tracers in hydrological systems, Isotope Techniques in Groundwater hydrology, vol. II, p. 425-450, IAEA, Vienna, 1974 ZUBEA, A., (1986) ; Review of existing mathematical models for interpretation of tracer data in hydrology. IAEA, Vienna, 1986. YURT SEVER, Y., (1983), Guidebook on nuclear techniques in hydrology. IAEA, Vienna, 381-402. Manuscript received 30 Meg 1988 of the authors: 0. IORDACHE-Instit1,1tul Politcbnic Catedra de Inginerie Chimica. Str. Polizu. 1, 78126, Romania. Dr. Emilian -Institutul de Fizidl Ingincrie Nucleara, 5206 Romania. Dr. R. JSOPESCU-Centrul de Calcul al Industrici Cbimict', Romania.

PAGE 95

Theoretical lind Applied. Karlflology. : .-Vol : 4 ( 1991'), pp. 98_ to 96. THE KARSTIC WATERS PARTICIPATION IN THE GENESIS OF THE THERMOMINERAL WATER RESERVOIR OF THE SPA COMPLEX CACIULATACOZIA (ROMANIA) BY D.C. SLA VOACA and RUXANDRA SLA VOAcA The paper sets in evi'dence the carstlc waters participation at the genesis of the thermomincral Wi!ter rczervolr exploited In the spas: Ciiciulata, Cozia. The water-inflow zone is situated in the northern part of {he thermomineral rezervoir, at the base of the senonian sedimentary deposits. The carstlc water proceeds from jurassic carbonate rocks which outcrops in the Vinturarita zone. 1. INTRODUCTION The spa complex Caciulata-ozia strings-out on the Olt River atter it leaves the narrow formed between the Cozia and the Od.patinii Mountains (The Southern ()arpatbians). The thermo mineral waters used in these spas have special therapeutic properties and their origin have been a subject for many studies. This paper sets in evidence the carstic waters participation at_ the forming of tlie thexmomineral water rezervoir exploited in Citciulata and Cozia. 2. GEOLOGICAL BACKGROUND The 2;one examination is situated between the calcareous massit in _the western part and the. Olt River's left bank in the eastern part (Fig. 1). . , The crystalline 'rocks are assigned to two overthrust nappes: the Getic Nappe and Overgetic Nappe. The crystalline rocks are Tepresented by two complexes belonging to the Lotru series : the paragneisses complex which is situated in the lower part and the paragneisses with amphybols complex, in the upper part of the series . The overgetic nappe crystalline is repxesented by the Cozia gneisses e.omplexe whiCh l?elong& to the (Jozia series.

PAGE 96

D. 0. SlAvoa.cA, Ruxandra Sl.!voaci The sedimentary formations include the deposits overthrusted by the Getic Overgetic Nappe and the sedimentary deposits formed after these two overthrusts (Fig. 2). a) The sedimentary deposits overthrusted by the Getic Nappe have Jurassic and Gretaceous age. The oldest outcrops are the carbonate rocks ot Kimmeridgian.:Titbonic interval. The biggest part ot these are the broocious limestones that can be seen in the calcareous massif The cretaceous sediments belongs to the Senonian. The first, VraconianCenomanian interval, is represented by marls and clays with sandstone intercalations and polymictic conglomerates. The following stratigraphic interval, Coniacian-Santonian, is formed in the hase by gritty, conglomerate and carbonate deposits and quasiflyschy gritty deposits, in the upper part of the interval. The sedimentary deposits are continued by the Campanian-Maastrichtian formations Irom which the gritty ones (Turnu sandstone) are situated at the base. They have over them marls and sandyclays with sandstone intercalations (G11.ciulata series). b) The sedimentary deposits overtbru.sted by the Overgetic Nappe belongs to Campanian-Maastrichtian interval. They have the same facies with the sedimentary formations of the same age, which have been ov erthrusted by the Getic Nappe, presented before. c) The subsequent sedinientary process formed after getic and overgetic overthrusts began with Eocene deposits. The lower part of the Eocene is represented by the conglomerate series of_ Ypresian -Luthetian age. They have mostly a psammitic character being formed by conglomerates, sands and breccias. Over these follow the marls series which are prevailingly pelitic formations of Luthetian -Priabonian age. Over the eocene deposits follow Oligocene and Lower Miocene deposits, having in the base eonglomerates, sandstones, clays (Cheia Conglomerates) and black clays, marls, sands (Pucioasa Marls) in the upper part of the interval. The sediillentary process continues with s.andstones with marls intercalations (Muiereasca Sandstone) which belong to the upper part ot the lower miocene. These formations are overlaid by. dell uvial and prolluvial quaternary deposits. In the previous geological and hydrogeological researches, the authors infered that the thermomineral water is shrinkaged into sedimentary deposits situated above overgetic crystalline rocks (The Oozia series), but the deep water well 1006 1008 put in evidence t;he thickness of these sediments more than 3260 m. The overlap of the sedimentary deposits overthrusted by Overgetic Nappe above Getic Nappe sedimentary deposits can explain this considerable thickness. This observation allowed us-to infer that the carbonate rocks of the calca reous massif Vinturltrita continue at the base of the sedimentary deposits shrinkage the thermomineral water.

PAGE 97

THE GEOLOGICAL MAP L G ENU QU/.f(RNAR tOWER HIO([N w 1 LOWER MIOCUI(. I OliGO[ N 1 J f O[fN {[_,_--oj4 ----, I I II i s _ __] GET! [ N4PPf f)VfRG fl[ N A PPE UPNI< !! r o f9i. J UPPER i'77TJ I RO. EROlOI[ k:"..:>::/ l10 "' 0 @ c. .... a b. c 'J I!O f OI}ICd f / llftOIOI}I C a/ oou ndary 1"411it o vl!rthrusf bou ndary. format1on tJi p mmer;J/ sprmg s p r mg ro"' a. matJe b! LBF. WjfPr >tf'l/ b made b y lS.P.I.F c flddP byLF.Ui.i. t't!JfP. f ... I y j,J' OF : co s t ... .. 29 ca-ml /' ... '(POH S((110NS ;,. r A r t !'fi. ,..f r a, ,,.fJ,,.; 'Z I :::::: J '" s J v 'fi fr '> : : 8 .. -_.:.,. Dani1bian Domain ; a -crystal line hastmrnt ; b st dime u t m y i.: Q d -crystalline rO -0\'e t g l'lic l\"appt : l'fystallinr Cozia Ser.i :es)';) . :..:. f:(!'iuy.,. deposits '(Turnu Sandstone) and marl s sandycloys with sanllstunt iulala Series); E -Sedimentary formations fQrmed after getic a n d ovr r gl'lic ovrrthrus ls: sands and brecc ias Conglomerate Ser i es): k-i\l arls S rrirs : I conones, clays (Chela Cong lomerates) and black c lays, marls, ( l'u cioasa m ,an< I SandS:tones); .. -fault; 2 -owrthrust :1-w a te rs. o f from 4 KarstiC' water inflo w : ; --Hlinl'l' n l wal r i nllo iu,Jinr water; the reser,oir; 7 -watL r \ \l'll ; 111i>h r a l spring ''' ,; .. .:_-" y t-.. ., I' .r. " 1 1

PAGE 98

3 The spa oomplex 95 3. HYDROGEOLOGICAL. CONSIDERATIONS The interpretation of the hydrogeological parameters of the thermo mineral water reservoir determined us to infer about the existence of a, complex blending process of three water types in proportion : 1)2) : -the karstic water which the underground water reservoir from depth ; . -the mineral water similar with stratal water of petroleum deposjts ; -waters of infiltration proceeded from local precipitations. The following arguments led us to the conclusion of ka.rstic water participation on the underground reservoir supply : a.) the piesometric loads distribution (fig. 1) sets in evidence the water circulation from the lower to the upper in the same time with the existence of a main water-inflow from depth in the northern part of the underground reservoii ; b) the karstic type supply explains the maintenance and even the growth of the water-flow and the reservoir pressure into the deep water wells 1006 and 1008, during their exploitation ; NNW t s e t ,. D A __ er...,. wn MOCJ oy _IFL6S 6 rt!IGfet wHJ &y tS...,; 5 C Ole L 2ii' --Fig. 3 -The piesometrlc loads d .lstrlbution 1> Sllivoaca D. C., Sllivoaca Ruxandra (1989), Sinte:.a hidrogeologicd a datelor priointl zciciiminte/e de ape minerale ,i termominerale de Ia CcUimi'ine$ti, jud. Vilcea. Arhiva l.P.G.G a) Boros! G., Slmcn H., Mitrofnn H. (1987), Studii de etapa a posibi/itdJi/or de exploatil u a sistemului hidrogeolermal Cor.ia-Ci'iciulata. Arhivn I.G.G.

PAGE 99

116 D 0. Slavoaca, Ruxandra Slavoaca c) the hydrostatic pressure values from 1006 and 1008 water wells, about 30-40 atmospheres (with t-he mention: the ground level is aprox. 280m), can be interrelated with the level of the supply zone with karstic water from the Vinturarita mass if. d) the chemical waters anal ysis set in evidence the following : for tlle Oa ion concentration values of 1006 and 1008 deep-wells wat-ers are 1700-1800 mg/1; for the other s ource s which intlow from the less d ee p l e vel, the (Ja ron concentration value s are included in the interval of 3 0-1000 mg/1. the r e l ation rS04 > (r miliieq uivalents) typiealy for t h e vados e water i nflow, was also in evidence in the chemical wate r an a lysis of the 100 6 and 100 8 deep well s -at the sources in the nor thern pa1 t of the thermo mineral water r eservoir, the total mineralisation has a l ess value than the characteristic va.lues of the southern sources though the freatic water bas a ie::;::; con t 1ibution in the northern then in the southern zone becaus e of the extens ion and inc lination of the senon ian sedimen t s All thes e observations indicate the carstic water supply from depth i nto the northern zone of the t h ermomine ral water reservoir. We mention a lso h B laga's a> conclu s ion resulted by analysis of Deuteriu conc en t r a t i on dat a (19 77) : ,the contribut ion of some waters l)l'oceded from high levels is distingui shed with prevelancy in the nort h ern n one o f the Oalimanet;ti Gaciul ata mine ral water reservoir." I n conc lm ; ion, there is a carstic water sup1)l y from the zone, which pal t icipates at the thermo mineral water reservoir exploited in tlle spa comp lex -O aciulata oz ia, and thi s carstic waterinflow has a g reat contribu tion determining: the chemical character of the u nderground water, the r eservoi r pres sure t h e thermalism and a l s0 makes the underground rezetvoir abl e to be exploited. l.UPU i\1., POPESCU B., ZASZ L., HANN H., GHEUCA I., DUMITRICA P POPES Cl', GH., (1978) H ar ia g e o logi ca a R.S.R., s c ara 1:50.000, {oaia Vinlurari/a (0/ane$/i ) POPESCL' B SZAZS L., HANN, H., SUSTEH A. ( 1 977), Haria geologica a R.S.R., scara 1 : 5 0.000 {oaia Cdlimanc li. SANDULESCU i\-1., (1\-184), Geoleclonica Romclniei. Ed. Tchnica, Manus cript receiv e d 10 M ay 1990 Address o f the author s : Dan C SLA VOACA and Ruxancl.ra SLA VOACA -,Prospecpuni S.A.", Str. 1, 78768 Romania. 3) Blaga L. et. al. (1977), Sludiul b azat pe masuriilori d e concenlratie a d e uleriulu i din ape/e mine ra/e din zona Cdciulala. Arhiva I.S.L.G.C.

PAGE 100

Tlreorelical and Applied Karslology. Vol. 1, C 1991 ), pp. 91 lo 121. HYDROGEOLOGICAL MAP OF THE PADUREA CRAIULUI MOUNTAINS (ROMANIAr) BY l. OllA$EANU The hydroge olo g ical map shown h e r ein covers. an area of 670 sq.kms. in the Piidurea Craiului, a massif that makes the North-western t ermination of the Apuseni Mountains. Owing to a varied ge olo gic structure, with Mesozoic limestones and dolomites outcropping_ on 330 sq.kms., the r.elief. b Qasts a _gr_eat vruiely ofTeal:ures, noteworthy among whi c h arc the kat:.?t plateaus and valleys, as well as the caves and tli e potnules. The numerous kars t catchment processes, of which som e a r c in full prog ress at present, disorganized the surface h ydrog r aphic network, l eading to the formation of an endorcic zone of roughly 224 sq.kms. and of a difflue nc e a r ea extending on 94 sq.kms. The hydrologic links b etwee n these areas and the zones bordering the massif is secured by surface and unde r ground nows. The great litholog i c dive r sity and the diffe r ent t ectonization indice s of the deposits in the lithologic structure of the Padurea Craiului Mountains led to the individualization of five groups tha t boast distinct m od es of unde r ground water supply circulation, storage and discharge In the hydroge olo g ical map, the fiv e t y p es are separate d cartographically and characterized h ydrogcologically; the m a p also gives their d etaile d lithologic description. International conventional signs show various modes where b y the water p e n etrates the carbonate m ass if (diffusely, ponors and caves, a.o.), as well as diffe r ent types of karst exurge nces, a ll while pinpointing the permanent or temporary hydrolog i c characte r of the flow and the speleologists' acces s -or lack of it -to the underground r ealm throug h these points The prcdpiLations that f e ll In October 1982 September 1 983 hydrologi c year on the non-karst area of the mass if generated a specifi c annual m ea n runoff ranging from 3 to 20 l j s sq.kms., with its vertical gradient standing a t 3.3 l f s s q .kms. The value of that index is strongly influenced by t h e presence of the a real carbonate rocks wherein the karst-catchment proce sses substantially diminish the discharge. The 78 trace r l a b cllings p erformed b y various authors pinpointe d the general directions of flow of underground waters and the comparison b etwee n those data and the results of the hydrome t eorologica l observations and measurements provided for a h ydrogeolog ic characterization of the major hydrogeologica l karst systems. The disc harge, variability indices and the r e c es s ion curve discharg_c co e ffi c i ents for 13 of the major k a r s t source s or the massif, as well as the in time of underground flow of that a rea wer e show n 1> Pape1 presented at the 3 -rd S y m p o siu111 of Theoretical and Applie d Karstology, Cluj-Napoca, Romania, 3 1 May-2 june 1985. 7 c. 381

PAGE 101

I. The overal hydrogeological picture of the Piidure a Craiulul Mountains, without Remeti graben, i s characterized by the p1esence of an unitary karstic aquifer in which there is a deep cilculation from the East to the W es t overaly by numerous underground "surficial" (shallow) ones which discharg e at the periphery of the massif, by source s with. overflow m eaning, the water excess resulting from the r ainfa ll on its surface and which can't be involved in deep circulation. 1. I NTRODUCTION '2 The Padurea Caaiului Mountains li es in the North-western part of the Apus eni Mountains. They appear in the form of a digitation, exteniling far towards the \ Vest, almost reaching Oradea. They are bounded by the Neogene basin of the Vad (of the Repede river) to the North, by theN eo gene bas in of the (of the N egru river) to the South and they borde1 on the eruptive Vladeas a massif in the East, with the lad Valley acting as a demarcation line between the two mass if s. The P adurea '--'raiului Mountains form a geologically well defined unit, which, morphologically speaking, boasts two di stinct main units, conventionall y separated by the alignment: the Padurea Graiului Mountains in the Eas t and the hill s of the P11dure a Cr a iului (the Virc ior og, and Valani) in the West. The hydrogeo l og ical map at i s sue covers an area extending on 670 sq.km::; and refe r s only to the terrains a s Ciibed to the former unit The r e fore, i t i s that unit that will b e furthe r r eferred to as the Padurea Craiului Mountains The sa,Jient moq1 hol og ical and h ydrogeo logical elements of that arra a r e r ep r e sente
PAGE 102

3 Hydrogeological m,ap of the Padurea Craiului Mountains 90 with which the fir s t references to hydrogeo logic elements ( springs ponorfl, underground drainages, a o.) were made by researches of the underground, geomorphologists and geologi s t s (Jeanne l and Haco>itza, 1929, Maxim, 1954, Preda, 1968, etc. ) Over 1956-1976, researchers of the Institute of Speology ,Emil Hacovita" in Cluj-Napoca, and Th. Rusu in particular, conducted a com plex geomorphologic study of the kars t in the Padurea Craiului Mountain s making a substantial contribution to knowledge of the morphology of the exo-and endokarst ; furthermore, they could pinpoint the areas of influence of numerous kars t s ource s at the end of 41 l abe lling:-; with fluor esce in. The hydrogeological research proper into the mass if, performe d by the Enterprise for Geological and Geophisical Pros p e cting, started in 1979 b e ing related, in the main, to research into the hydrogeologica,l eonditions of the bauxite d eposits and the assesioiment of the aquifer potential of that area. In the respective inte n a l, the author togethe r with E. I. Pop, P. Stanescu, A. Jurkiew icz, T. Tudor, N icolle and P. Brijan e ffected another 31 trace r labe lling s of whic h s ome highlighte d major karst catchment processes of surface flows In the period spanning 1981 1983, a n extensive programme of bydrometeo rological ob servations and m ea qurement s for the entir e Padurea Craiului Mountains area was work e d out, as the fruit of the coop eration between the Enterprise for G e ological and Geophy s i ca l Pros pecting (I. 01aA. Jurkiewicz), Meteorological and Hydrological institute (G. Hotoleanu, Paraschiva Hotoleanu, Victoria Prcoteasa, Tatiana Nicolae, Luminita Tibacu) and Institute of Speology ,Emil Racovita" (I. Povara, Th. Rusu, C. Marin, t;)erban, I. Viehmann, G. Diaconu, C. Las cu) which supplied early quantitative data on the condition of the s ource s and the aquifer potential of the massif. The speological research, which r esulted in the di scovery of roughly 700 underground cavities -with the longest cave -the Viutului C a Y e -and the deepest pothole -the Stann Foncii among the m -contributed substantial data about the hydrogeologi ca l past and present of the massif, about the karst networks that haY e been cm v c d b y waters (Szi lagy A 1976, and Drimba, 197 8, 1980 1981, 1981, a.o .). 3. GENERAL 3.1. RELIEF. Althought of an average altitude -only 505 m (Figure 1) -the Padurea Craiului Mountains are well-defined in point of relief, owing to the low altitudes characteristi c of the depress ion s surroundi ng them in the North and the South. The great variety of rocks making up the geologic structure, as well as their mosaic like di s position, which i s a r esult of an advanced te_otonic process the massif underwent, are morphologic a lly expressed

PAGE 103

10 0 I. 4 --------------------------------by a chaoti c r e li e f that lacks a gene r a l unique feature. The masive, stately relief including sandstones conglomerates and erupti ve rocks, alternates with the l owe r relief of lmrst capture d ep re ss i ons and the flat relief characterizing the karst plateaus strewn with s i n kh o l es. Allolvde lm.l 1000 800 &00 LOO \ \ ' ' ', ____________ ,, .-----1---.... ' 20') 408 ' \ \ \ \ &00 ,._. Fig. 1 Hypsomclric curve of the Piidurea Craiuh.ii Mountains. The altitude of the r e lief from the to the NorthvVes t and a major cr es t can be d e f ined only in the fir s t ha.U of the inbetv, r een the p ea k s of (1,02. 7 m), Magura Dosului (945 m) and Rujet (84m). Farther on, i t s high r elief in vast karst p lateaus broke n b y i so l ated ridg es, a r es ul t o f the rough geo l ogic structm e of the underl ayer, or by d eep Yalleys can e d by water courses There a r e several secondary r-idges spring in g off the mai n cre s t atJ<1 t h eir morphol og ical e l ementR boast a general North East --South \i\' es t mientation, as by the geolog i c structure Noteworthy tuw ardPthe No rth-East a r e the Le:;mlui Hill, Botii. Hill and the Preluca Pea k c r est, bounded by the Acre depress ion and the Reme1, i karsti c area to the South-Eas t and by the kars t plateaus of C hiceraA r smi and Ponoare to the Ko r t h-West. They are b y the kars t depre ss ions of and Carm[Lzan, separate d b y summits in c l uding no n -karstifiable ro cks, and then the rough r e li ef m allu; room for the l arge k a rP-t p lateau s of Z ece Hotare, Zgleam anu a .nu Igret (Hirtoapel e), that extend t o -the Northw estern limit of the m ass if. South of the m a i n c re:-:;t t h e reli ef is s b ongcr and bro k en by de ep vall eys. 1'h e s ali ent feature of t h e 1e licf i u that--area a r e the broke n course of the

PAGE 104

5 Hydrogeological map of the Padurea Craiului Mountains J01 L azuri brook, the bro.1d groove o f the karst conidor o f Albioara-Poiana, the scen i c kms t r e li ef of the Vida va llry and the s inkhol es of the Hacaf}:...Sclavul and Runcuri karst plateaus. B efore merging w ith the f lat r e li c f of the B eiuf} basin toward!". the South, the Padurea Craiului Mountains r e li e f dips in the Senon ian basin of the and then modestl y rises on the a lignment. 3.2 THE HYDROGHAPHlC NETWOHJ<. The surface waters i n t h e Pi1duren. Craiului Mountains belongs to the hydrographi c basin of the rive r s C 1 Repede and N egru, whoRe waters h e d boasts a we ll de f ined location i n the South-eastern h a lf of the mass if. In the North-western part, howe Y e r i n the area under karst plateaus, the locati on of the smfacc water shed is uncertain fo r lack of an organizecl surface runoff. The hydrographic network of the Padurea Craiului Mounta in s is hig}Jl y desorgani secl as a r esult of the intem;e proceRses of k a rst capture that l e d to the buria l of many surface fl ows. The on l y important, permanently active valleys crossing the k a rst area of t h e massif a r e the Yalleys o f Iacl and of in the Repede b as in, of the Vida ancl the with its tributaries -the L azu ri the Sohodo l the Meziacl and the Strimtura, in the Neg1u Basin. The V id a Yalley i s the onl y important Yalley in the respectiv e mass i f that cro.-ses k a rst terrain;; onl v The procef:S of karst capture of surf ace flows by t h e mai n karst spring on t h e outskirts o"f the massif is in fu ll progress 1985). So, for insta. nce, in the case of the hydrographic basi n of the Repeadurea Cra i u l u i }\'founta in s a r e f'OY e r et1 by clcciduous forests, which exten d chie fly i n the South-eastern pmt of ihc ma::;sif. 'l'he other J1alf is cove red by 11ayfi elds and ngricnltma l cull mer;. 3. 1. Huli!AN ACTIYITIES Inhabitants of the Pi"klurea Crain l ui Mou n t aiJ1 s ;:;.re cl:i ... 1'i:; concnncd with farming a,n<'l a .nima. l breedii; g, .the \ ast oL. th e J;.m t

PAGE 105

102 I. Oril.!ieanu 6 ------------------------------------------------------plateaus offer altogether exceptional cond itions in this respect. A substantial part of the population i s engaged in activities aimed at exploiting the bauxite depo s its, which are scattered throughout the mass if, refractory c l ay deposits, situated south of the locality of Suncuiuf;l, as well as the limeston e and c lay needed by the cement combine in A third major concern of the inhabitants of the area is woo<1 exploitation. 4. TEE KARST OP TEE PADURE,A. CR.AIULUI MOUNTAlNS. The Pi1durea Cra iului Mountains boas t the l arges t density of exo and endo-karst formations in Homan i a. The 1981 inventory listed 680 caYes, of which 17 has more than one kilometre in length ( Goran, 1981). At present, their number is far l arger ; tables 1 and 2 give the morphometric data of the major cavities that were charted. The main caves o[ P:idurca Craiului JUountains 1 ) No.I C a v c "> Loc:1tion 1 2 ? 4 5 6 1 8 9 10 11 12 l : l J4. 15 16 17 1 8 19 20 21 I tcra \ 'Jntului 320 Northern border Ciur Ponor (182) 480 Runcuri plateau Uonchii (204) 455 basin I\J2 .Jofi 445 Basin spring 420 Br:ltcu\a basin i\f('ziad 435 basin Sincu\a 728 Chic<'ra Arsuri pln trn u I Pon (29) 604 depression Os o i (9:l) 400 Topa basin Potriva 357 Mnicra l>asin Gabor (94) 445 Topa basin Auriea ") 410 Topa basin 250 Northern border (7) 394 Norll!ern border Yidu\a 11 (118) 370 Vida ba.sin Uiitrinului 574 Zecc Hotarc plat. PV", Viiliiu mine 3> :175 basin cu Apii de Ia Bulz 370 lad basin 1\Ioanci 485 basin Ciur lzbuc 5 15 Runcuri plteau tern de Ia Vadu Cri!jului 305 Northern border 1> After Goran (1981) and (1982-1988); 2> Jn brackets number of cave on hydrogeological map ; "> Cave intercepted by mine gallery. r. ( 111) 36. 000 17 078 6 .686 6.657 4.800 4.750 4.200 3.851 3.700 3 018 2 707 2.679 2 614 2.357 I 2.032 1.633 1.224 1.177 1 170 1.030 1.000 Table 1 190 f. 200 p i 163 t.i. 144 4 p.o. 89 f 296 f 211 t.i. 50 p.o. 56 t. i. 25 p.o. 33 p.o. 33 t.i. 41 p.i. 18 t.i. 120 64 p.o. 104 p.o. 20 f 25 p .o. I H = Altitude of cave entrance; L = Length of cave passages; D = Difference in level; I LB Hydmlogic regime or cave entrance : f fossil, p. i.-permanent inflow, t. i. -tcmpomry inflow, p.o. -permanent outflow. Note : A ll mentioned caves have stream water.

PAGE 106

7 1 2 4 5 6 7 8 9 10 11 12 Hydrogeological map of the Padurea Craiului Mountains rHE :UAIN l'OTHOLES OF PADURf:A CRAIULUI MOUNTAINS 1> p 0 t h 0 1 c 2 ) I (I-1 I (m) Location I Stanul Foncii (1 98) 600 Cu lilor basin Pobraz (74) s:3o lad bas in Fanca Bahii (209) 540 Lazuri basin Big pothole from Gugu mine 625 JV!nicra basin Sohodol I I (189) 545 ia basin i\fihai (39) 765 Damis area Berna (:10) .'i85 area Condrovici 550 Zcce Hotare area Onq til or 525 Lazuri basin Ciungii Scod 870 lad basin JVhigura Dosului 70.') arra Groapa Sturzului (11) 610 area 1 ) After Goran (1981) and (1982 HJ88); 2 ) In brackets number or pothole on hydrogeological map; HH = Hydrologic regime of cavity : a -activ e ; f -fossil. 339 4106 185 353 131 173 120 170 102 250 100 1 80 98 697 85 105 82 1fi3 67 144 61 61 55 85 103 Table 2 a a r a a r H f a -r a f With the analysis of the morphometri c and hydrologic da.ta refening to a number of 260 caves as a ba::;i s, Th. B.usu (1988) shows that by summing up the lengths of their gall eries, we reach an average of the massif standin g at 295 .7[) m of galle1ics per r::q.km; 62.3% of thes e mves are fos sil cavities, 32.32% a .re temporarily active and 5 .38 % boastpermanent hydrologic condi t ions. As for the distribution of these caves according to the age of the fo1mations shaping their entrances, the aforesaid author shows that 52 .3 % boasts Jurass ic limestones, 28.46% Eo cretaceous limestones and 18.46% Triassic limestones and dolomites. The genesis of tbe Padurea Craiului Mountain s karst i s linked to the emergence of the carbonate p latform of Bihor in Upper Triass ic, from the end of the Jurassic and, more particularly, of the current sta.ge, which started in Paleogene. To assess the age of the karst formations gen e rated in the first two stages of the kar::;t -formation process i R a highly difficult task, possibl e onl y in the areas where the covering deposits were not subjected to erosion. Belonging to the first g e n eration might be the relief boasting Anisian and Ladinian limestones and dolomites, i"Ub sequently coYered by the det1 itic deposits of the Eo jurassic transg:resr-;ion It i s well known in the a rea in particular owing to the exploration and exploitation operations performed on the refractory clays that a,rc cha,ractmistic of that relief. Linked to the second-generation ka. rst, which i s better known, i R the genesis of the bauxite accumul ationf:.. Their expl oitatio n uncoYered a depressionary, rough paleorelief with numerous hollows, dissolution channel s and lapies. It ha,s been studied from Cornet to and tl10 spring and, in the case of the areas with covered bauxite deposits, the data supplied by research drilling provide for the e l aboration of topo-

PAGE 107

104 I. 8 graphic map of the paleore lief form e d in the period of emergence at the end of the Jurass ic. Undoubtedly, the g enesis of the numerous karst formations covering the entire area under limestones and dolomit es i s mainly the result of the third stage of the karst-formation process a stage that still continues after having reached a climax during the Pleistocene, when hydromete o rologi ca l c ondi t i ons w ere highl y suitable for -kaJ st form ation. 5 GEOLOGIC SETTING The Pa,dme a Cra.iu lui Mounta i ns are mo stly formB d of d epos its b e l o ngi ng to the Bihor Autochton. D eposits a scribed to the Codru Nappes (the Vil l ani, F e ri ce and nappes), as well a ; erupti Ye rocks of t h e Vl a.tleasa b a n a.tit i c massif can also be follild on small a r eas on the southern and Pouth-eastern s ide 8 'J'he sedimentary formations of the Bihor Autochton outline a vast. monoc lin e crystalliJ1e baFement in the Ea>=. t and South-East, cover ed, toward: theN 01 tb\ Ves t n e > \ e r and newer formations, to the Eocretaceaou:,; lightly fol
PAGE 108

9 H ydroge ological map of the Padurea Cra:iului Mountains lO!i The microtecto ni c mea urements made t hroughout the entir e areal of the Padurea Crai n lui :rviountainl' there were two major systemfi of fi ssures, wlJich affect the cm bonate deposits They face tl1e Yorth West -South East and North South Wes t and they l 1ave deepgoing im p lication s for .the underground karfit drainage 5.1. CARBONATE SERlE). Three l arge carbo nate se 1i es of :;pecia l hyrl a i n by a Permo-Werfe nian detri t i c se ri es ; -the Jurass i c car bonate SGri es, whi ch i s 150200 m thick on a n average i s formed. of M iddle and U ppe r Juraf:si c lim es tones and is se para.t e u from the 'l.'liasl"i c carbonate s<:rief\ by a Lower Jurat:si c d c tritic formation which bas a maximum thickness of 70 m; -the C r etaceous carbonate se 1 i cs which i s discorstern r art of tJJe mass if, Sarmatian graYcl s, !';ancls and with s Lreaks, c r op out t r ansgress iYe l y ove 1 : aider. d e posits, while in t h e north-wstern part t h e outc r op i s formed of marls. and c l ays, wi t h Volhynian ljmestone. n .nd sandstone st.reakl', as well as ,gravel s, san dy m a rl s and -Pa, nnon ian c l ayey sandf: The Qu atf .rnary f ormatiops in t .he Hi.durea C r aiului Mounta i ns are r<::p1csented b y perigl ac i a l and drluvial-karst d e posits, alluvial dc:p9FJi.S (terrace s and m eadows), proluvial d e po::::its and P l e i stoc. ene an d Hol oceuo diluviums (grav e l s de jectio n cones) Of a ll t h ese depot=its, the block s at Oarzana mak e the cbaractc:ristics fc:ature of the a rea at i ssue They are formed of l arge b l oc k s of Werfen ian quartzitic congl ome rates, l ocate d o n the s urrunit s of t h e r e li ef, whic h haYe b ee n spared the effects of erosion. 'l.h ey T eac h a maximum thickm: ss in the Oarz.ana Hill, s ou t h-west o f Corne t and a 1 e a l so to b e found i n the 1idges bet\veen i h e Surducel-Vida and Vida-Albioara va ll eys

PAGE 109

106 I. 10 6. CLIMATE AND SURFACE WATER.S RUNOFF 6 1. CLIMATIC FEATURES The Padurea Craiului Mountains are situated on the western side of the secto r of moderate continental climate, in an a rea where the average solar radiation-stands at 100 calf s q .cm. 100 50 .r-.,. ., I I bl I r,. I I .. --, --... '-- ..... '--[_ .. t II Ill IV V VI Vii V.'U X X Kl K/1 1-:I!J. 2 Mean monthly rainfalls disl!ibulions in Stilla d e Yalu (a ) and Oradea (b) in 1886-19!5 and 1921-1955 time in tennis. 10 0 ., ,....J I .J f {! Ill /II V VI Vf/ 1111/ I X 'xt KJ1 Fig. 3 -Mean monthly temperature s distributions in Oradea (a) and Stin a de Va'le (b) in !898-1955 time lntc
PAGE 110

Fig. 4. -Distribution of main endorheic areas and diffluence surf a ces and location of ga u ging sections in the Padurca Craiului Mountains. 1 -Exorheic area ; 2 D iffluence surface ; 3 -Endorhe i c area ; 4 -Permanent su r iace cou rse; 5 Temporary surface course ; 6 \Va lcrshed between Repedc and Negru ri vers; 7 Gaug in g secti ons in national hydrometric network; 8 -Gaugin g sections in X 19 82-IX .1 983 time interval 3-numbc r o f section in table 3; 9 -Gauging section in 1950-1974 time interval; 10 Main spring; 11 -Ponor; 12 -Limit of h y dro geo lo-gical map. ) }..--....... ..\ \-..... ___ ,.. ... E: G fJ () 0 t llilillJ ,. -t r --t! t: 16 11 I f(J { r .J , ; / ... # ..J... v ''-. ------..... ..... f; 0 OQ 0 OQ c=; e. a :;t II> "' "" 0. Ei II> Ill () ..., e 8 0 ::s .... Ill s "' ..... 0 -..!

PAGE 111

108 I. --------------------------The Yalucs of evapotr anspiration increase from t h e Eas t to the We:Rt. Jn Lhe hydrolog i c year t h es e values ranged from 540.4 llllll at Zece Hota.re to 695.8 mm ::tt Oradea. 6.2. SURI"ACE WATERS HUNOFF FEATCRES. 'lh e kars L-captme p r oc e ss e. of the surface hydrographic network !eel to the c reat ion of a vas t end01h e i c area, which extends on 224P.q.kms ( F'ip:ure 4). T h e wate r resul t i ng from precipitations after the e li m ination of the evapotranspiration fraction, whic h flows over thi s a r ea, infiltrateP. LoLally and reapears to 1 h e surface t h roug h t h e peri p h eral P.ourc<'P. situate d in t h e exorc i c a rea of Craiului Mountai ns ']' h e r e i R no runoff in the cas e of t h e la .rge karP.t platcauP., but insid e o[ the cndorh c i c arefLs permanent sul'face cour ses can develop, whi c h are ca; \cd. into 1h c reli ef and subsc ri8.l link with the ba::;i c ( exorc i e) hydrographic netwmk was severed by underground kan;t-capture pro< X sseR. A typical exampl e in this resp ect i s t h e Mniera brook. A l o n gsid e endorhe ic zon es, diffluence surfaces, r esu lting from basin k ar::;t d i ffluence processes represent anoth e r element of broad deve l op m ent and major in the d i stribu t ion of surface fl ow. According to t h ose Jlr ocesses, the availahl e wate r of a hydrogntphi c bas in, in the w ake of partial capture, i s distributed as an infiltrated fraction, whie h i s taken out:-;ide that hydrographic basin t h roug h underground drainage as anot her fracti on,w hic:h conti nues its permanent or tempor ary f\urface How, downstream o f the captur e area ( 1 985 ). Diffluence extend on 94 and their presenceposes sessing the variation of the speci fic annual mean runoff q5), fuuetioll ol' altitude. T h e results obtained ('['abl e 3 and Figure G) bC'P.peak a fin e corre lation between t h e two parameters and indicate a value of 3 .3 l jsec. sq .km s of the vr-rtica l of the specifi c ammal mean runoff in case or a l evel d i ffer ence of 100 m vVilh the h elp of t h e d iagram in Figure .:"} and knowing t h e mean alt.itude of the hydrogra]_.;hic bas ins who s e runoff i s infuluene d by t.ho 3l In lhis cummulatcd surfaces it is no i:;cludecl the dilflu e n ce area 1 V!ini era vallevMoara Jurjii spring. This area i s situa ted i n t h e no:th of 1he endorh ci e a re a or t h e Padti"rea Craiului Mounl ains, on t h e medium and uppe r cour se of the Miniera b ro u x, upsteem of Ca l:l;ea, and has a surface of about 1 3 km2

PAGE 112

No.1 ) 1 2 a 4 5 6 7 8 9 10 11 12 1 3 14 15 16 17 18 19 20 21 MORPilO METlUC AND HYDROL OGlC DAtA OF RIVERS Hiver Gauging station Hepede IVadu Hcpede Vadu Hcpede Oradca lad downstream Hemeti dam. lad lad lad Bulz BriHcuta Upstream Rusu val ey B ratcu\a Downstream B n'\lcani spring Mniera Cali\ tea Mniera Chi ji c Copikel Osorhei Negru Pocola Pocol a Lazuri fntre Hluri l )pstrearn Toplicloara Hunqor Moara Daruiui Vida Upstream Luncasprie Va l ca lui Vasile li Top a Topa Virciorog Top a Vlrcior og ---1l Number of gauging section in figure 4 ; 2J Altitude of gauging section : l Mean altitude of watershed; 4J Surface of wathersed ; h 2) m 280.0 280.0 118.69 425.00 435.0 335.0 371.94 37 1.94 195.0 176.84 166 92 166.92 212.0 372.0. 600.0 165.0 143.3 275.0 275.0 -6J Measured specific annu a l mean d ischnrgr ; 6J Availabl e specific annual mean discharge I-PJ m 821.0 821.0 979.0 914.0 849.0 771.0 289.0 190.0 551.0 (427. 0) (427. 0) (584 0) 599 0 685.0 750.0 508. 0 376.0 474.0 474.0 ,Note : The values of H, F and Q in brackets are aproximate. p4J Period of data Qmean Qmax Qmtn sq kms recorder cu. m/s 1325.'0 1950-19/4 20.400 1325.0 X.1982-IX.1983 15.600 89.600 3.000 2126.0 1950-1974 24.200 101.0 X.1982-IX.1983 2.660 13.600 0.067 2 .820 163.0 1950-1974 3.970 223.0 1950-1974 5.060 15.0 X.1982-IX.1983 0.311 6.360 0.058 X.1982-IX.19 83 0.725 5.320 0 .260 1950-1974 0.280 X.1982-IX.1983 0.170 4.060 0.003 36.5 X.1982-IX.1983 0.162 0.007 52. 3 X.1982-IX.1983 0.096 792.0 1950-1967 3.100 (26(. 0) Hl50-1967 3.400 (267. 0) X.1982-IX.1983 2.710 59.200 0.431 (155 .0) X.1982-IX.1983 1.570 38.800 0 303 47.0 X.1982IX.1983 0.657 16.5 X.1982-IX. 1983 0.236 6.8 X.1982 -IX.1983 0.138 55.5 X.1982-IX.1983 0.624 16.100 0 .085 14.25 X.1982-IX.1983 0.075 155.0 1950-1967 1 .030 72.5 1950-1966 0.4941 72. 5 X.1982-IX. 1983 0.322 15.500 0.004 rable 3 q 6J qa ft) 1 /s s q krns 15.4 11.8 11.4 26.3 28.0 24.4 22.7 20.8 4.4 1 8 16.6 (12 7) (10 .1) (10 .1) 14.0 14.5 14.3 ]6.8 20.2 11 .2 12.0 5.3, 6.6 6 8 4.4 11.0 ... w ::X: '< 0.. .., 2l 0 OQ (;' a 0 ..... s: ro "0 "'' 0.. E; () ;:: E. 0 S' s (/) ..... 0 <0

PAGE 113

110 14 I. karst, the available specific annual mean runoff of the respective basin (qa) can be aEs e s sed. By comparing the values of t:ke measured (q) and available (qa) specific annual mean runoff, the presence of losses or contributions fromfin the respective hydrographic basin is highlighted, as well as their values. H ere are the main courses in the Padurea Craiului Mountains which feature particular aspects in the distribution of runoff. The Mniera valley represents a permanent surface course, with a hydrographic basin situated. at. the highest altitude in the karst area of the massif. It is 15.5 kms long and boast a reception basin of 17.5 sq. kms, which d e v e lops in the endOiheic zone of the massif, prima.rily between the karst plateaus of Igret and Zece Hotare, which is why it is particulary difficult to a s se s s the area of the hydrogeologic basin. The numerous in the upper course on the right-hand bank beaspek an extention of the basin to the terrains covered by the Zeee Hotare plateau. : The discharge measurements conducted in different sections of the Mniera brook indicate the presence of a massive infiltration area in the valley thalweg in the Cornet area (Figure 6) .According to the labellings performed, the infiltrated waters are guided towards the spring at Moara Jurjii. Figure 6 also shows a powerful rise in the slope of the brook inbetwee n Filip's Spring and the which is an outcome of the succes sive karstic capture of the brook in the Saua Gurguiatu-Potriva Cave zone, accompanied by its erosive action to attain a new equilibrium profile. 'Ihe major hydrologic effect of the karstic capture was the interruption of the flow of the Mniera brook waters towards the basin and their 'jlnderground direction towards the Vad basin. The hydrometric station at CaHl.tea, located on the lower course of the Mnit:ra brook, registered an mean multiannual discharge Of 280 lfsee in the 1957-1974 interval (Figure 7), the mean seasonal flow being distributed, in terms of percentages, as follows: 31.6 per cent in spring, 17.7 per cent in summer, 16.3 per cent in automn, 34.4 per cent in winter. Runoff at the Calatea hydrometric station stopped in the droughty periods of a prolonged autumn. The Tapa brook collects the in the western part of the Padurea Craiului Mountains, from an area extending on 143 sq.kms, as was assessed at the hydromettic station. The processing of the hydrometric data suplied by the hydrometric station at Virciorog, which hydrometrically controls the upper basin of the Tapa brook, whose area is of 72.5 sq.kms, indicates a high runoff deficit (6.6 lfsec sq.kms for the hydrologic year X .1982-IX.1983), owing to. the karst capture in the basin of the Poiana and Surducel tributaries, captures which direct surface waterR to the underground towards the spring at Substantial water infiltrations in the carbonate rocks are also r e gi stered in the thalweg of the Tapa valley between the confluences with the Copil valley and the Magura valley, a sector that is completely dr y during droughtyperiods. 'Ihe diffluence surface in the upper basin of the Topa brook, which is situated upstream of the confluence with the Magurii brook, extends on 66 s q :kms, an area which contributes roughly 60 p e r c ent of its available water to the supply of underground aquifers (478 lf sec in the hydrologic year X.1982-IX.1983), an amount only partially found in the discharge

PAGE 114

15 Hydrogeological map of the PAdurea Craiului Mountains ---------100 .:/ 100 .e ... -400 0 C) 0 100 ./ _,o f tw ... sv. luaaJ tO t$ Figure 5-The relation bet ween the speific annual mean discharge and the mean altitude of hydrographic basins in X.1982-IX.1983 time interval : a -brook at gauging section (g.s.); b Chljic brook at Copilcel g s ; c Valca lui Vasile brook at g.s.; d -brook at Moara Darului altitude fmJ 600 500 Q (tis I 30 20 to g.s. ; e -Bratcuta brook upstream Rusu brook :l.s Fanului spring I I I o 'I r I I I I I I o I I I I I I saddiP distance lkml 20 111 FigUJ e s -Long profile of Mniera brook and .variation of flow along 1 he riverbed 11t 26.X.1982.

PAGE 115

_1_12_ -------------_ _I. ___ __ 10 of the spring at Figure 8 the monthly variation of the specific mean runoff of the brook at the hydrometric station at Virciorog .. ... ::; .. 1 C; a Figure 8 Mean monthly discharge distribution of Vi(ja brook in Luncasprie gauging station (a) and (b) .and of Topa brook in Virt:iorog gauging station (b), in X.l 982 -IX.1983 hydrologic year. !16 IS ID IS .. -.. Figure 7 Mean monthly discharge di stribution of Mnicra brook in gauging station in 1957-1974 (a) and X.1982-IX.1983 (b) time intervals II J!l IV L-, L ., J 9 81 The Vida brook is 21.5 km l ong and h as a r e c evtion basin extending on 28 sq. kms and a h ydrogeologic b asin stretching on roughly 55.5 sq. kms, to t h e Luncasprie station, a device located upstrea m of Vida lake. The hydrometric data regi s t ered by tha t station do not indicate the presence of widesco p e hydrologic relationships with. n e ighbouring basins. Figure 8 Ehows the monthly variation of the mean specific discharge. P ermanent wate r losses through the thalweg are recorded in the upper section of the Vida brook, situated upstream of Pel}tera cu .Apa cave in the L e tea valley. During periods of drought these los ses amount to 10-H> 1 /sec down stream of the .Apa. de s ub Stan s pring. We belive the infiltrated w aters are drained towards t .he spring, thus generating a difflu ence surface extending on roughly 2.5 sq. kms. The brook; in its uppe r cour se known as the Luncilor valley, shows part i a l flow loss es in t h e section situate d upstream of t h e Filii spring l1nd total tempol;::try lo sses in 1he . section inbetwee n t h e Moanei cave and the confluence with the brook. 'l'rac e r iabellings Ehow

PAGE 116

17 Hydrogeological map of the Pad urea Craiului Mountains ----------------that the infiltrated waters were caught by the Bratcani spring, a diffluenc-e surface extending on 12.5 sq.kms thus distingui shing itself Downstr ea m of the conflu e nce with the S es ii brook, the brook boast a t emporary flow as a probable outcome of its drainage by the underground course in the Vintului cave. Karstic capture phenomena also oc cur in the case of the Boiu brook, a tributary of the Cril}ul Repe de river. Uppe r-course infiltration gen erate a 5 sq. kms diffluence area. The fact is noteworthy that the underground course in the Sincuta cave belonging to the hydroge ological karst system of the Pel}tera cu A pa de la 'Bulz cave, runs below the surf a ce flow of the Boiu brook. 'l 'he Cutilor Valley, a tributary of the Rof?ia brook, boast a temporary flow regime on the lower section, iri between the spring of Cioroiul Vilii andCioroiul, the massive infiltrations being directed underground towards the Toplita de s pring. In this way, a diffluence surface extending on 4 sq. kms o. s. is formed. -In the upstream sector formed of Anisian and. L adinian dolomites and limestones, structuraly belonging to the Remeti graben, the Soimul}ul Drept. features total temporary infiltrations through the alluvia in the bed. The infiltrated water reappear in the Firez spring and in the permanent source below Pel}tera cu Apa din valea Lel}nlui cave; sources situated in the lad Valley basin. The diffluence surface area extends on roughly.-1.5 sq. kms. The value of the infiltrated specific animal mean discharge i s of 2.5 1/s sq. kms (Tabl e 3) in the brook bas in, which lies upstream of the confluence with the Toplicioara brook, in X.1982-IX.l983 hydrologic year. Infiltrations occur both in the previously mentioned. diffluence area and in the basin of the Valea Seaca tributary and on the section of t h e Soimul}uri brook situated immediately down stream. Infiltrations a re probably towards the Izbuneala sprirg in the S c h o dol brook ba:>.in. -The wil,teJ: of .the Birti n brook, immediately downstream of the spring area under the Hill, infiltrate diffu sely in the carbonate underlayer, the distance they manage to cover the epigene route being directly proportional to the vo lume of precipitations. 'Ihe infiltrated waters proba_bly contribute to the supply of the Vadu resurgence cav-e Tb.e diffluence surface extends on 2.5 !>q. kms o. s. 7. A HYDROGEOLOGIC CHARACTERIZATION OF THE P ADUREA CRAIULID MOUNTAINS Owing to 'the great lithologic variety and the different tectonization degree of the deposits making up the lithologic structure of the Pad urea Craiului Mountains, five types of formations, boasting different modes of supply, circulation, storage arid discharge of groundwater, were h ydro geologically individualized : 7 ;1. Carbonate mesozoi c series (limestones, dolomites) of large thickri.ess, highly fractured and karstified, exhibiting larg e infiltration

PAGE 117

114 I. OrA!Ieanu 18 capacity and storage groundwater flow. Numerous springs with flow rate up to 500 1/sec, and elevated variability index. Important resources stored below the discharge level of the spring. 7.2. Detritic deposits of Volhynian-Quaternary age (sands, gravels, boulders, shales), with reduced thickness and extension, hosting important pores-flow. They store limited aquifer accumulation, generally with water table. Local importance. 7 .3. Mostly detritic deposits of Permo-Mesozoic age conglomerates and less frequently shists), with permeability of fisure'l and pores with discontinuous distribution and development. The groundwater flow is mostly confined to the fissured areas, which may supply springs with flow rate up to 5 lfsec. They frequently act as the bed and/or the essentialy impervious caprock for aquifer accumulations occuring in the adjoining carbonate deposits. 7 .4. Subsequent alpine magmatites (banatites) and metamorphites, with permeability of figures with discontinous distribution and intensity. The groundwater flow confined to the weathered surficial strata and to the fractured areas, supply springs with reduced flow rate (up to 1 1/sec.). 7 .5. Marly and shaly deposits, devoid of groundwater flow and flysch-like series including rock-complexes of variable permeability (shales, Hhistes, marls, sandstones, limestones), hosting occasionnary discontinuous aquifers accumulations occuring in the more permeable terms. The attached hydrogeological map these five types of forma tions, as well as their detailed lithologic structure. 8. THE HYDROGEOLOGY OF KARSTIC TERRAINS The karstie aquiferous accumulations in the Padurea Craiului Mounta, ins are relatively scattered and of variable expanses, as prompted by the development of karstic terrains. They make up a gigantic aquiferous complex, lithologicaly constituted by the three aforesaid carbonate series (Triassic, Jurassic-Cretaceous and Cretaceous), separated by two imper mea-ble streaks (Eojurassie quartzitic sandstones an Aptian Ecleja marls). On a regional scale, due to the intense cracking; consequence of the tectonic action on the rock-massif, the water-bodies from the above-mentioned carbonate series are interconnected. Yet on restricted areas these carbonate series may include isolated aquiferes, thus allowing distinction between triassic, jurassic-cretaceous and cretaceous aquifer-complexes. On its entire expanse, the impermeable bed of the aquiferous complex is chiefly made up of Permo-Werfenian detritic deposits. They crop out on the eastern side of the Padurea Craiulu'i Mountains and slowly sink to the West, together with the structure as a whole. The sinking is broken by numerous, prevailingly inverse,vertical faults of relatively low heights, which are not enought to bring the impermeable bed above ground. Aquiferous accumulations are located in the channels and fissures of the carbonate. rocks and they are supplied both by the that fall on the outcropping area of limestones and dolomites, and by

PAGE 118

19 Hydrogeological map of the Padurea Craiului Mountains 115 surface flow s developing on the non-karstic terrains in the vicinity Entering the karstic terrains, the water of the epigene flows penetrates into the underground in a concentrated manner (ponors or inflow caves ) or diffusely totally or partially) through a lluvia in karsticcatchment areRs The aquifero u s aecumulations in the carbonate deposits discharge through spring s that sensibly differ in point of supply, discharge and flow conditions. Most of the spring s in the massif, which a re called ,izbucuri" on the local plane, discharge aquiferous accumulations supplied by both precipitations and ponors well-deliniated in the relief Bratcani, Moara Jurjii, a.o.). Springs exclu!')ively supplied by the diffuse infiltrations of precipitations are rare and their flow rate are low ( the spring in Poiana Fintina lui Onut. Pisnita spring, a.o.). The springs are either permanent or temporary and their discharges directly depend on precipitations. In broad lines; the springs on t h e northern flank of t h e Padurea Craiului Mmmtains are gravitational (.Af}til eu, Vadu Bratcani, a .o.) and those at the foot of the southern s lope are li t hologic-contact springs The latter are to be found in the contact zone between karstic terrains and the Senonian deposits of the Rof}ia depr ess ion (Toplita de Izbuneali:L) or the Permian depo sits of the Nappe (Toplita de Vida). Karstic sp rings and even caves are to be found on the terrains covered by the Senonian deposits of the Rof}ia depresion, in calcareous streak s They develops on a limited area and do not modify the generally imper meable character of those deposits, a character lent by the broad de ve lop ment of marls and clays. 8 1. TRACER LABELLINGS. So far 78 tracer labe lling s have been performed in the Pad urea Craiului Mountains and their t echnical features are given in Tabl e 4. The average apparent ve locity of these labellings stood at 46 m/h. The r e lati vely high value of that ve locity and the interpretation of the curves s howing the passage of tracers through monitoring sections a mixed circulation -through channe l s and fissur es The mainly conductive role o f t h e karstic channels and the mainly capacitive role of the fi ssures arc obvious. 8 2. HYDROGEOLOGICAL FEATURES OF KARSTIC SOURCES. The outflow cave at Vadu Crif}ului is the only karstic source in t h e Padmea Craiului Mountains included in the national hydrometric moni-toring network. Measurements of this source have been conducted uninterruptedly even since 1950. O ver 1957-1974, the mean discharge stood at 0 .22 0 cu.mfsec Figure 9 s h::>ws the annual distribution of mean monthly discharg es recorded in that cave. With a v i ew to understand hydrologic conditions of the major karstic sources in the Padurea Craiului Mountains, 13 main sources were

PAGE 119

116 Number of drainage on lbe map 1 1 2 il 4 6 7 8 I) 10 11 13 14 15 16 17 18 *) \9 :w 21 22 25 27 2R 2\l :10 :ll :32 :13 *) :H 3!i *) :16 :17 *) :31> *) ::19 *) 40 4 t 42 43 H 45 46 47 48 4\l 50 I. 20 Table RESULTS OF THACING OPERATIONS ON l'ADUREA h1surgcnce (number on the map) 2 Potriva cave Losses of PoiePii valley Pqii.'lului valley ponor Ticlului cave ( 88) Losses of G roapa lcranilor (97) Groapa Popii ponor (105) cave (7) Losses of Mnicra valley (3) Biitrlnului cave Tomii valley ponor (15) Ponor of Groapa li (16) B r ezului ponor (17) Olfului ponor (18) Biriiului ponor (19) Losses of Recca Valley (23) Losses of Luncilor valley Mocra valley ponor (2 6) Ponors of (29) Hutii valley ponor (28) Ponor of Seciitura BriHcanilor (32) Toaia ponor-Pe!ileruta ponor (44) Munau cave (42) Losses of Gruapa Rilii Sincuta ponor Ponorului valley ponor (57) BradqtilOJ valley ponor (58) Ponor of Ses (59) Sliopului valley ponor (60) Los s es of Iadului valley (67) Losses of Caprei valley (65) Loss es of valley Losses or Ptrtul eu Socl valley (72) Loss es of Izvorului valley (73) Loss e s or Hca valley (76) Losses of Daica valley Losses of Strivinoasu valley (77) Losses of Si'ili'ilrucului valley (82) Acre ponor Ftnllnele p onor (197). Runqorului valley ponor (194) I-flrlopul Bonchii ponor '(204) Losses of Bare valley (192) Bolului v a lley ponor ( l 90) Iezcre valley pono r (198) Jurcanilor cave (188) Fiului valley ponor (1 99) Los ses or Cu 1 -ilor valley I f(m) Resurgence (number on \he map) 3 347 390 325 373 520 555 39 0 500 574 639 729 645 635 1 600 600 I 470 5 83 604 620 485 675 687 705 583 725 625 640 680 690 450 662 56 2 625 600 662 625 562 550 815 679 570 455 615 550 550 545 510 360 4 spring Pc!i Lcra de sub Stan ca vc (87) Aurica mine (luO) Cioroaiele Tircului spring (103) Brusttiri mine (104) Groapa Motului spring (6) Moara Jurjii spring (8) Vadu cave Izblndilj spring Spring of Poiana Frlnlurii (38) Briitcanilor spring Moanei cav e BriHcanilor spring Dil.miljenilor spring -' Moara Dedi! spri11g (62) cu Apa de Ia Bulz cave Til.ul f:1rii Fund spring (Toplet) La Izvoara spring (66) Turii ca\e (70) Springs of Lunca Pizlii (71) Davelii spring Pe!ilera de I a Fata Apei cave (7!>) Pc!itera cu Apa din Valca Daica (80) Dumiter spring (78) Ciuhandru spring (83) cu Apii din \'alca (85) Fi1 ez sp1 ing (84) Toplicioara spring Gruie\ ului cave (205) spring Toplita de spring

PAGE 120

21 Hydrogeological map of the Padurea Cra'iului Mountains 117 {:HAIULUI i\'IOUNTAI!\S KARSTIC AREA ----------H\M) L(m) Tracer usscd t v !late of Authors of tracing hours m /hour Iahelling operations --5 7 8 9 10 11 12 13 --I I 2f>O 2620 107 Pluoresceine 10 262,2 44.04.1966 T. Husu ,. 8350 140 In-EDT A 768 11 ,3 15.10.1983 I. ct a!. 11550 75 2040 5,6 4. 06.1983 I. ct a!. 26:1 900 10 8 Fluorcsceinc 1!5 20,2 22.07.1972 T. Husu -17[> 300 45 Iod-131, NaCI 7 43,::l ::3.10.1980 I. ct a!. 490 1270 65 122 10,4 ., 460 180 95 105 l ,9 " 295 1750 95 Fluorcsccinc 13 134,8 19.06. 1 969 T. Husu -100 4350 100 Hhodaminc B 24 181,3 9.12.1982 L 305 4250 269 Fluoresccine 89 47,8 16.05.1962 T. Rusu :no 5400 269 In-EDT A 168 7,0 25.05.198::3 L ct a!. ,. 3400 359 Fluorcsccinc 63 54,3 23.10.1964 T. Husu 5650 275 80 70,1 18. 06.1970 " 5320 265 73 'i3,0 17.08. 1971 " 5100 230 62 82,3 2.07.1974 :305 3185 295 lod-131 260 12,3 2.10.1980 I. ct a!. :w; 4800 125 R, In-EDT A 114 42,2 19.09. I. c t a!. -H)5 500 98 Fluoresccine 45 11,3 8.06.1975 T. Rusu 34:1 4800 250 35 137,3 10.10.1969 " 5700 27 211,2 19.06.1969 " 1700 140 27 63,0 7.07.1970 ) 3550 255 90 39,5 12.07.1968 " 5060 267 Hhodamine B 96 52,8 05.1983 I. Or:it;;canu et a!. 2770 285 Fluorcsceine 12 230,9 6.07.1970 T Husu :F,o 1850 233 168 11 '1 07.1971 D. Grigorescu :17!1 6000 355 Hhodami n c B 77 78,0 12.07.1981 I. A .Jurkiewicz ,. 2950 2-12 Pluoresc('inc 38 77 ,!J 11.10.1966 T Rusu .. 31(,0 270 29 106,9 15.05. 1966 ., 2750 310 I 20 138,4 13.05.1966 2560 320 I 17 150,6 II 05. 1966 435 6 00 1 5 I 220 ') 1964 E Jd,dius '' 540 700 122 .. 114 6,2 15 .06.1972 T. 470 ;;oo 92 ,, 23 21 ,8 18.07.1972 .. 170 700 !55 I 68 10,3 16.08.1980 I 900 120 78 11 6 8 .07.1972 700 1R2 94 7,5 15. ()(j. 1972 580 300 45 12 25,0 9.07.1972 500 I 72 50 10,0 15. Ofi .1972 5 t(i I 500 3 .. 25 20,0 30.10.1980 (i50 1550 1 65 102 15,2 14.06.1972 :">45 2520 300 185 17,0 14.06. 1 972 -1:10 I :1070 249 220 -3,6 26.05.1983 I. ct a!. I 950 140 11 86.4 10.07.1966 T Husu :120 1200 135 22 54,6 19.09. 1970 2\l(l 5700 325 In-EDT A 624 9,1 25.05.1983 I. c t al. 5050 260 Fluorcscrinc 146 34,6 5 .07.1966 T Husu 3400 260 350 9,7 13. 06.1967 " 5110 255 Hhodaminc B 168 30,4 26.05.1983 I. 2100 220 Fluoresce inc 300 I 7,0 21 .09.1970 T. Husu 275 1000 85 17 59,0 20.09.1970

PAGE 121

liB 1 51 52 *) 53 *) 54 55 56 57 58 59 60 61 62 63 64 65 *) 66 *) 67 J 68 60 70 J 71 72 J 73 *) 74 *) 75 76 77 78 I. 2 Tinoasa valley ponor (184) Ponor of Groapa Ciurului (182) Losses of Ciur Izbuc cave (183) cave (181) Albioara valley ponor (178) ponor (153) Fintina Rece ponor (156) ponor (157) Bichi ponor (161) Baia Nitului ponor (162) Poiana Prie ponor (185) Ponors of Prislop (140) Ponor of Fundiilura (125) Ponor of Hirloapele Hododii (123) Gropilor valley ponor (211) Losses of valley, (213) Cave of Bliroaia Blitrinii (186) Iacoboaia ponor (136) Ponor of Groapa Ponor of Tinoasa de Vida valley (126) Perje ponor (187) Ponor of Fin tina cu Soci (171) Ponor of Cioroi (172) Groapa ponor (213) Groapa Dcalului ponor (214) Losses of Drcpt valley (222) 3 539 480 535 467 430 510 456 458 458 458 455 666 640 620 520 470 529 680 615 574 485 400 390 715 635 660 22 condinued Table 4 Toplila de Vida spring ';pring (131) Springs of Gura Ursului (122) Meziad cave resurgence (214) Downstream ;pring of (130) spring Spring of valley PeLera cu Apli din Valea Vida (129} spring Cave of Strimtura valley (173) Spring of Cailii valley (174) Cave of Strimtura valley (173) Izbunealli spring Spring of cu Ap:'l din valt-a (85) Firez spring (84) H Elevation above the mean sea leYel ; L Horizontal distance between losses and spring; t.H Vertical drop; t Time of first arrival of 'racer; V Apparent velocity. *) Drainage direction Is not drown on the hydrogeological map. Note : The tracing operations were perforrr.ed by the author in cooperation with : E Gapar 72, 73, 74), A. Jurkiewicz, E. Nicolle I. Pop (drainages no. 17, 56, T. Rusu (drainage no. 61 ) .. ... 0.1 ' d : -, I '--.J II lll II II! Figure 9 Mean monthly discharge distribution of Petcra de Ia Vadu cave in 1957-1974 (a) and X.1982-IX.1983 (b) time intervals.

PAGE 122

119 Hydrogeological map of the Padurea Craiului Mountains 5 " .. :.!1;} .. .. " 4\lO 450 405 470 :no 47;} 458 290 325 320 :125 :325 640 515 6 7 8 9 10 11 12 3000 2fl4 I 78 I 4 .05.1968 2400 205 93 25,8 5.07' 1968 2800 260 70 40,0 4 '05' 1968 1600 192 Rhoadminc B 22 72,8 4 '08' 1981 L A. Jurkiewicz 155 Fluorcsceinc 89 28,1 20.07. 197!! T. Rusu 31CO 265 168 20,6 24.05.1982 L ct aL 3370 211 Iod-131 552 6,1 " 4320 NaCI 276 15,6 21.05.1982 48CO 213 In-EDT A 1224 3,9 6.08.1982 45f0 213 1536 3,0 21.12.1983 6800 210 48 141,7 21.05.1986 2300 176 Fluoresccine 120 1R,2 26.08.1971 T. Rusu 13 f 0 190 K2Cr909 16R 8,2 22.09.198 3 L ct al. 12CO I 130 Rhodamine B 192 6 2 " 600 115 Fl uorescei ne 42 6.02.1974 T. Rusu 4CO I 65 25 16,0 29.02.1974 130 0 59 Rhodamine B 50 26,0 24.09.1983 I. 58 CO 330 Fluorcsceine 72 80,0 12.04.1986 C. Lascu, G. Diaconu 210 4,3 12.04.1986 I. Povara, C. Lascu s::o 116 39 21,0 ,. 4020 1 95 --13.04' 1986 450 75 Fluoresceinc 40 11,2 20.07.1987 J. ct a!. 360 70 In-EDT A 10 36,0 20.07.1987 7 3 0 65 20 36,5 " 195 0 390 Hhodamine B 220 8,8 8.07.1987 I. P. Brijan 840 310 Fluoresceine 50 16,8 " 21CO 20 In-EDT A 144 14,5 16.07' 1987 I. E. 2700 115 168 16,1 " Nicolic L Pop, T. Tiinaso (drainages 110. fi, 6, 7, 11, 23, 42, 45, 63, 64, 57, 58, 59), E. Nicolle (drainages no. 2, 3 16, 60) and E. hydromt:trically monitoring the hydrologic year spa .nning October 1826-Septemter 1983 (Fig. 10). The da.ta obtained by processing on the Rpot measurements are given in table 5. Noteworthy is the fact that the afo r esaid h)-drologic year was a droughty year, the last in a se rie s of three, when diRcharge of the r;ources were ever lower owing to scarce precipitations. The discharges registered that hydrologic year account for roughly one h::l;lf of the value of the discharges recorded in a mean hydrologic year. Figure 10 s hows the variation of the cumulated mean monthly discharge of the 13 sources in the mentioned hydrologic year. 48.4 per cont of the value of the underground runoff occured in winter, 27.0 per cent in Rpring, 13. 1 p e r cent in autumn and 11.5 per in summer.

PAGE 123

120 I. 24 ------------------------------Disc h arge variability indices boas t Y er y different, generally high values r anging from 183 in case of the spring to 23 in case of the Toplet spring at Remeti. They bespeak the high hydra ulic conductivity If If/ XII 1 II 1/1 IV V VI -..It Vfll IX I., I r J I Figure 10-1\Tcan monthly di scharge distribution of main springs of Padurea Craiului l'vlountains (Table 5) in X.1982-lX.198. 3 time intevral. of the karstic aquifer. The fact should also be underscored that the monitoring section of the Rof?ia and Toplicioara springs were located roughly 2 and respectively 3 kms downstream, the o: di sc h arge of the sourcP-, No. 1 2 3 4 5 6 7 8 9 10 11 12 13 Table FLOW RATE OF .MAIN Sl'RINGS IN X.t!J82-Source Lileu Moara Jurjii spring Vadu ca ;e spring Briilcani spring spring lbanul spring (62) Lera cu Apa de Ja Buiz Toplet spring Toplita de Vida spring Toplita de ia spring spring Toplicioara spring I 213 86 61 133 139 46 50 125 70 54 230 119 n, = Tlle discharge variability index; 1982 1 841 63 27 142 124 30 14 56 126 28 29 1:.:9 90 196 92 74 327 280 54 34 96 147 52 65 185 359 185 142 580 402 85 60 240 175 1.67 133 9Hl 397 546 ti40 259 1114 585 141 1 0 8 445 237 4 8 4 196 '69.:. 794 667 240 267 601 576 144 113 240 171 357 174 989 624 1!lR3 789 216 232 369 447 127 93 148 152 246 97 643 443

PAGE 124

?5 Hydrogeological map of the Padurea Cra'iului Mountains 121 as given in Table 4, being greater than the real one. Furthermore, the value assigned to the variability index is higher than the real one, as it is increased by the large water contributions from the hydrogeographic basin in time intervals with rich precipitations. The recession curve discharge coefficient (given in Table 5) boast a maximum value in the case of the source in the cave of Vadu which indicates preferential water storage and circulation through karstic channels This statement i s supported by the result of s p eo logical investi gations, which put the expanse of the cave at Vadu at 1,000 m and that of the Batrinului cave, the major supply point of that karst hydrogeologic system, at 1,633 m. Drainage coefficients in case of the other karst sources boas t valueR of 0.001-0.003 and point to the prevailing character of fissures and small channels in tho underground water accumulation. 8.3. HYDROGEOLOGICAL KARST SYSTEMS. The hydrogeological kan:t systems include kn,rstic teHains, hosting groundwater flow of karstic type, as well as non-karstic terrains, the flow rif which, both surfic i a l and takes part integrally or only with a fraction of itse lf (diffluence areas) to the supply of the same spring or interconnected group of sp ring s, during a given period. On the hydrogeological DJap, detail A, indicates the approximate boundariu ; of the hydrogeological k a rst systems associated to t h e main SJ:.riJ: gs from the mountains a r a as, drafted according to the tracing experim ents and to the analy:, i s of the water-budge t The overal hydrogeo lo gica l picture of the Padurea Craiu lui Mountains, without Remeti graben i s characterized by the presence of a, unitary karstic aquifer in which there i s a deep circulation from the E as t to the 5 IX.1983 HYDROLOGIC YEAR (lf sec) -198J I I I VIII I Q Q Q n v CL v Yl VII IX mean min max 504 1 327 211 153 I 108 3 5 6 74 3410 46 0 0 OU2GO 00-1:1 124 9 1 135 120 70 163 1 8 1070 59.0 139 103 124 55 38 127 22 1270 58 0 0.008 0.012!'i 263 270 211 87 59 346 49 3980 Ri .0 0 .00:.:.00.UO:n 289 282 259 146 128 305 68 2412 35 0 0.0024 148 !l6 77 43 35 83 28 5 1 9 19.0 59 45 54 26 19 55 12 410 34 0 105 108 84 35 24 13 6 20 1600 80.0 140 141 134 120 117 150 112 25 5 2 .:J t:l4 270 !\3 40 3 1 161 22 3l!'i0 143 0 0.00 17 0 .001 !l ,:: I 34 27 1 7 1 3 74 11 965 88.0 o.oo22o .oo:Jo 429 330 126 10 5 522 78 143 0 0 18:1.0 I 0 0017 0 0020 312 233 229 93 70 299 66 3200 48.0 -------CL = The recession curve di schurgt coeffic ient.

PAGE 125

122 I. OrAijeanu 28 West overlay by numerous underground (epidermic) ones which discharge at the periphery of the massif, by sources with overflow meaning, the water excess resulting from the rainfall on its surface and which can't be involved in deep circulation. The karst waters with deep circulation, while moving westwardH are thermalized as a consequence of the hyperthermal regime of the area adjacent to the Pannonian Basin and are partially discharged by the sources in the Felix -Oradea -1 Mai zone, which is part of the vas i karstic aquifer. 9. THE CHEMICAL COMPOSITION OF SURFACE .AND UNDERGROUND WATERS In 1981, C. Marin brought out a detailed study on the chemical composition of the carbonate waters in the Padurea Craiului Mountain s. L. Valena* and A. Jurkiewicz (1980-1981) outline -in a work dedicated to the area -a number of chemical analyses of the wate r s in that zone. In 1979-1983 time interval, as many as 123 samples were taken and analysed. in IPGG laboratories in Bucharest with a view to chemically characterizing the s urface and underground waters in the Padurea Craiului Mountains. Those analyses show that the water in this mass if is calciumcarbonate and calcium-magnesimn-carbonate water, with the exception of the area of the lower course of the where calcium-sulfate water is also to be found. Table 6 shows the mean, minimal and maximal concentration of the major ionic species in the carbonate waters of the karst sources -both those emerging from limestones and those springing from dolomite s The table also s hows the same data for the water of Mir;;id area with calc ium sulfate water. The sources emerging from dolomit es are hydrochemically individualized, owing to their magnesium content, which i s richer than that of the sources springing from limestones. 'l'he acid, calcium-sulfate water (with a pH values of up to 3) in the lower basin of the Mif?id brook (Iz vorul cu Lapte spring, wate r of undergroupd courses of Ungurului, Izvor and Vintului caves, the surficial course of Hodoabe and Tare brooks) are aresult of the oxidation of the pyTites in the Lower Jurassic deposits, which locally cover the Triassic limestones and dolomites ; where from these waterS' spring off, by infiltration water. 9.1. SPRING WITH GAS O UTFLOWS. Several springs from Padurea Craiului Mountains, the Fipring on the de Vida brook, the spring from Vida forest range the spring Taul Fierbintea of the spring ,La salcii" and the travertine spring on valley, display gas outflows. The water of these springs is calcium-carbonate or calcium-magnesium-carbonate type, similar to the water of the other springs of the karstic aquifer complex. The chemical composition of the outflown gases (Table 7) is close, if not identical, to that of the atmosphere. As compared to the atmospheric

PAGE 126

Table tl VARIATION RAi'VGE OF CHEMICAL COMPOSITION FOR THE WATERS SAMPLED IN PADUREA CRAIULUI MOUNTAINS Source n TDS CJ-I S04 ;_I HC03 I Na+ I K+ I ca++ I Mg++ Springs from limestones nveragc 403.8 5 .66 15 3 215 3 13 .09 1.03 81.93 2.61 rnln. 65 158 7 3.50 1.0 85.4 0 2 0 4 28.8 0 7 max. 6:.05. 4 28.3 36.4 400.6 58. 1 2 5 125 8 36 5 Springs from dolomites av. eragc 369.2 7 2 8 .0R 237 5 13 6 1.:. 61.07 14 3 min. 42 254.0 7 0 1.9 134 2 I 0.4 0 4 29.6 0 5 max. 732.1 21.3 30.7 518 8 71.9 3 0 106 6 49.1 Sprijigs from are11 aYe rage 591. 6 8.7 245.6 47.5 29. 6 2.4 52.7 20 9 min. 10 207 6 2.7 86.4 0 3 3.9 1 2 40 1 9 2 max. 856.6 21.3 415.9 109 8 57.4 3.8 50.1 39. 4 Surface stream water AVerage 255 1 8 2 13. 0 147. 4 18 5 1.5 35.7 3 5 min. 6 100.7 7.0 6 4 36.6 1.5 0.7 12 0 0 1 max. 555 1 14. 1 25.0 341. 6 48.5 2.4 86.5 I 20.9 I --n = number of samples analysed : TDS = calculated total disolved splids. Note : Analysis perlormed in the laboratories of IPGG i 1 0 '\9. e. i! '"C J [ i ....

PAGE 127

CHEl\IICAL CO}IPOSITION OF THE GAS OUTFLOWII\"G FROM SPniNGS Compound (% ol.) ** SOURCE* T Q I I ( c C) (lis) CH4 C03 Oa de Vida sublhern.al spring (141) 20 5 4 I 0.000606 0.00 12 146 IoJ:ilila de Vida sublhermnl spring (141) 19.5 5 O.OOC9 6 .98 12.1 !l Tau! Fierbinlca spring (175) 18.0 7 0.0 0.11 19.58 ,La Siilcii" spring (34) 11 .2 8 0.0045 0 0 20.7 IzYorul en lraYcrtin spring (37) 10. 3 5 0.000706 0.0 20 3 Spring from Yida forest range (119) 12.9 I 1 0.0 0.87 I 12.42 I *) In brackets number of spring on h y drogeological map; **') Other compounds for which the gases were analysed, C2H2 C31 18 He, l 12 are lacking. !'\ole : performed in the laboratories of IPG G Bucharest. I 1'\ 2 I 87 225 80 18 79.31 77.0 75. 50 86 03 I Table 7 Date of Ar collectiw 0.538 XII.Hl81 0.543 Xl..t 982 0.915 111.1984 0.916 VJII.1981 0.900 VIII.1981 0 55 V.1989 ..... "' 0 ..., II>< ll) a "' 00

PAGE 128

Hydrogeological map of the Padurea Cra1ului Mountains 125 gas, the cop.centration in oxygen is diminished, due to the biochemical and oxidation processes. Corresponding to the consumed oxygen fraction, the nitrogen concentration increas es accordingly. The water of the subthermal spring de Vida originates in the hydrogeo logical karst system de Vida and as a consequance of a deep flow it undergoes an increase in temperature. The emergence oecurs on the tectonic contact plane between the permian sandstones of the Nappe and the cretaceous limestones of the Bihcir Unit. ACKN OW LED GEMENTS 1 wish to expresR my sinee r e thanks to geologistR S. Bordea, Josefina Bordea and Gh. Mantea for their worh, which they were kind eno ugh to plaee at my dispoRal, as well as for their s uggestions in working out the geologic bal:Oe of the map. At the same time I wiRh to thank to dr. ing. E. for hi s permanent and competrnt wpport to the tracing experiments performed with iadioactiYe and activable tracers. :Fmtheimore, I should like to thank geograplwr T. n ,usu for our numerous talks in the fie ld, concerning the morphologic and hydrologic complexity of this area. -HEFEHENCES ALBOIU riaricta, N riL;LESCU Marcela, PADUHAR L; Aneta (1962), Sec area riurilor in ba:itrul Cri$urilor. Studii d e hidrologie lll, pp. 15-24, Ed. C.S.A., BABOS H. (1981), Pqlera cu Apci de fa Hulz. Carst 1, pp. 14-21, Cluj-Napoca. BAGMERI B., COMAN D., TOTH lC (1961), S:elek barlangja (l'e$f era Vinlului). Edit. Tincretului BADESCU D. (Hl85), Geologia i condifionarea leclonicii a Ciur-Ponor (M. Piidurea Craiului ) -Bul. Sprologic 9 pp. 1:-J-26, BERJNDEI I. 0., MAI -IAHA Gh., POP P. Gr., POSEA Aurora (1977) Cimpia Cri$urilor Cri!jul R epcde, Tara Beiu!ju/ui. 371 pp., Ed .)tiintificii Encidoprdicii, BLEAHU l\1. (1957), Caplarea cars tica !ji imporlanta c i pentm euolufia morfolugi n i a regiunilor carslice. Probl. Geogr., V, pp. 55-100, BLEAHU l\1. (1974), Mor{ulogia ca r sticii. Ed. 590 p., BLEAJIU l\1., D EC.ti V., NEGHEA St.. C., POVARA I. VIEHJ\IAN _1. (1976) l'c$leri dirr Romania. Ed. $Liintiflca Enciclopedi<:a 399 p ., BLEAHlJ M., LUPU M., PATHULIUS D., BORDEA S., A., PANIN (1981), Tir e structure o{ tJre ./tpuscni 1 W ounlains. Guide to Excursion B3 Xll Congres of Carpato-Balcan geological association, 107 p., Bucharest. BOHDEA S. (1978), Munfii Piidurea Craiu/ui (Girid Turilic ) Ed. Sport-Turism, 96 p. Bucuresti. BORDEA s.,'BOHDEA Joscfina, MANTEA Gh. (1986), 1 -larta geologica a RSll, scarn I :.>o,ooo,{oaia Zecc Holarc. Ed. IGG, BONJ C., BONO P., FCNICIELLO H., PAHOTTO M., PHATUHJ.ON ,\., FANELLI !\!., Coila delle mani{csta:ioni l crmoli e d c i conrplessi id rogcu l ogici d'llalia. Consiglio Nazionalc Delle Ricerclle, Roma. CIBOTARU T., BRUSTUH T. (1980), Consideration a Ia connaissance de Ia geologie de Ia zone de Meziad ( IV!onts Piidurea Craiidui) aucc considerations specialcs sur Ia bauxite. Rev. Roum: Geol., Geoplly s. et Geogr., Geologie, tome 24, pp. 127-137, COCEAN P. (1984), Polenfialul economic a/ carsiului din Munfii Apuseni. Ed. Acad. HSI\, 156 p., COCEAN P. (1988), Clrei $i dc{ilee in ;uun(ii Apuseni. Ed. Acad. HSH-, 166 p.,

PAGE 129

126 I. Orii.)eanu 30 ----------------------------------COMAN D., CRACIUN V. (1978), Pe$tera Vintului. Ed. Sport-Turism, 50 p., 81 photos, Bucuresti. DIACONU M: (1967), Haria geologica a Munfilor Pddurea Craiului (zona Bulan-Valea Neagrd de Cri$-RemeJi-Ro$ia). Arh. DROGUE C., LATY A.M., PALOC H. (198:-l), Les eaux souterraines des kqrsts mt!dilerraneens. Exemple de La region (France meridionale). Hy-Geol. de l'ing. 4/1983, pp. 293-316, 6 fig., France. FESNIC V. (1970), Unele aspecte privind relie{ul carslic dinjurullocalitafii Tdad (jud. Bihar). Lucr. Inst. Pedag., serla A, pp. 217-223, Oradea. E. (1987)-Modern Trends in Tracer Hydrology. CRC -Press, Boca Raton, Florida, USA. E., I., POP 1., Nicolle (1983), Cercrtari cu trasori pentm precizarea condifiilor hidrogeologice Ia cxploal
PAGE 130

31 Hydrogeological map of the Plldurea Craiului Mountains 127 PALOC H. (1967), Carte hydrogeologique de Ia France. Region karstique Nord-Montpe/licrainc. Memoire BRGM 50, Paris. PALOC H. (1972), Carte hydrogeologique des Grands Gausses. BRGM, France. PATRULIUS D., BORDEA S (1981), ,Haria geologicd a Mli.nfilor Pddurea Craiului, sectorul central. Ea. IGG PATRULIUS D., BORDEA S., BORDEA Joseffna, MANTEA Gh. (1983), Haria geologica a Munfilor Ptid urea Craiului, sectoru/ sudic. Ed. IGG PATRULIUS D., POPA Elena, CIMPEANU St., ORA$ANU Th. (1973), Haria geologic1l a RSR, scara I :5 0,000, (oaia RemeJi. Ed. IGG POPA Elena (1981), Forma/ions mesozoiques de Ia partie orientale de Ptidurea Craiului. An. IGG, LVII I, Bucure5ti. POVARA I., RUSU T., MARIN C., DIACONU G., VIEHMAN I. (1983), E/emente hidro metrice hidrochimice ale unor emergenJe carslice din masivul Pddurea Craiu/ui, Arh. lnst. Speol. ,Emil Racoviti\", PREDA I. (1962), Studiul geologic a/ regiunii ( Munfii Pad urea Craiuiui ). Ed. Acad. RPR, PREDA I. (1968), Fenomene carstice $i apeie subterane din partea de sud-vest a ll.funJi/or Pc'fdurea Craiului. An. IGG, XVII, 2, pp. 35-54, PREDA I. (1975), Hydrogeologie des Monts Pddurea Craiului, 32 Convengo Internazionalc sulle acque sotterranee, 4p., Palermo 1-5 XI 1975 RUSU T (1 968), Cercettiri de mor(o/ogie $i hidrogra(ie carslicd in ba:inul superior a/ vciii (Mun(ii Ptidurea Craiului ). Lucr. Inst. de speol. ,Emil Racovita", t. VII, pp. 11-44, RUSU T. (1978), Considerations generales _scr /es depressions de capture karslique des monls Pddurea Craiu/ui. Trav. Inst. Speol. ,Emile Racovitza", t. XVII, pp. 157-164, Bucarest. RUSU T. (1981), Les drainages soule rrains de Monts Pddurea Craiu/ui. Jbidem, t. XX, pp. 187-205, Bucarest. HUSU T. (1988), Carslu/ din iHun(ii Padurea Craiu/ui. Ed. Dacia, 254 p., Clnj Nnpoca RUSU T., RACOVITA Gh., CRACH.JN V. (1974), La Grotte du 111eziad. Aspects physico geo.qraphyqucs, genese et evolution de Ia cavite. Trav. Inst. Speol. ,Emile Racovit.za t. XIII, pp. 147-173, Bucarest. SORITAU D., NICOARA D. SILVESTRU E., DEMETER I., POPA C., VIEHl\!AN J. (1984), Avenu/ din Stanui Foncii. 1, pp. 79-88, Cluj Napoca. SZILAGYI A. (1976), Conlribujie Ia cunoa$terea regiunii cars/ice Va/ea Bralcufii-Valea Sohodo/u/ui Ro$ia (Mun(ii Ptidurea Craiu/ui ) Bul. CSER, pp. 128-141, TEODORESCU Felicia, TEODORESClJ G. (1980), Sinteza lucrtiri/or geo/ogice c(ecluale pen lru argile r e (racl a r e in cimpul minie r Arh. lPGG TODIRITA MIHAILESCU V. (1966), Sludiul geologic a/ bazinu/ui (Muntii Pddurea Craiu/ui ). St. Tehn. Ec., J, 3, 111 p., VALENAS L. (1980-1981), Noi cercetari de speo logie (i:icd in Munjii Pac!ur e a Craiuiui. Nymphaea, VIII-IX, pp. 265-310, Oradea. VALENAS L., DHAMBA Gh. (1978), Cerce/dri de speologie (izicd in Mun{ii Pddurea Craiului. Ibidem, VI, pp. 279-328, Oradca. VALENAS L., JL'RKJEWICZ A. (1980-1981), Studiul complex a/ carstulw din wna Mi$id (Munfii Pddurea Craiu/ui). Ibid!!m, VIII-IX, pp. 311-378, Oradea. VIEHMAN I., PLE$A C., RUSU T. (1 96:4), Perera .de (a Vadu Lucr. In st. de Speol. ,Emil Racovita", t. III, pp. 49-81, * Monor;ra(ia geogra(icti a RP R uo/. I, Geogra(ia (izicci, 742 p., Ed. Acad. RPR, 1960. 111onogra(ia hidro/ogicii a ba:inu/ui hidrogra{ic Studii de hidrolrgie, XXIV, 235 p., Ed. CNA, 1968. * Riurile Romtinici-m o nogra(ie hidrologica. Ed. Il\1H, 752 p., 1971. At/aszz/ cadastru/ui ape/or din RSR, vol. III, 659 p., 1972. * Enciclopcdia geogra(icti a Romtini ei Ed. Encidcp., 1 982. Speoie/ex. Ed. Comisia Centralii de Speo logie Sportivii, colcclia 1982-1 988 J.Ylanuscript receiued 12 lvfay 1988 Address o(lhe author: Jancu ORA';>EANU -, ,Prospectiuni S.A. '', Str. 1, 78768 Romania.

PAGE 132

Theoretical and Applied Karstology. Vol /,(11191), pp. 11!9 to 141!. THREE KARSTIC SYSTEMS (RO$IA, TOPLITA DE RO$IA AND VADUL CRI$ULUI) IN THE PADUREA CRAIULUI MOUNTAINS (ROMANIA) BY G. PONTA, N. TERTELEAC, E. The paper presents data regarding three karstic aquifers: Toplita de and Vadul whose hydrogeo l og ical basins were outlined by survelng the subterranean cavities. and the tracers experiments. Complete infor mations are given concerning the experiments with in-EDTA, La-EDTA and fl.hodamlne B, carried out In Valea Perjii, Birtin and Pintiuca sinkholes. These tracers appeared in Spring respectively Vadul There i s also a presentation of the Ciur Ponor cave and a structural characterization of the three karstlc systems. 1. GENERAL DATA Rol}ia and Toplita de karstic systems are situate d in the southern part of the Padurea Craiului Mountains, around Rof?ia village Fig. 1. The position of figures number 2, 4, 6, on the map of Pl\durea Craiului Mountains. 0 10 2QI
PAGE 133

J30 @. Ponta et al. 2 The Padurea Craiului Mountains presents the largest karstifiable surface in the North-Western Carpathians with different morphological the main being the levelling surface The karstic pattern is represented by the various forms of the karstic plateau such as : lim estone pavement, sink-holes, uvalas, closed depressions, caves, potholes. On the other hand the tributaries to Cril}ul Negru and Cri!}ul Repede rivers penetrated into this limestone mass, deeping to 200-300 m under the leve l of the plateaus, generating gorges, in whose cliffs the slope karst is represented by fossil caves and rockslides (e.g. Albioara, Cutilor and Cril}ul Repede Valleys). The limestone pavement are the subcutaneous type and outcrop in the bauxite quarries in the Runcuri area. But the most frequent karstic forms in the limestone plateau are the sinkholes. Their largest number is found in the Jurassic limestones, a fewer of these being in NeocomianAptian limestones, while in the Anisian ones they appear sporadically and have smaller dimensions. The connection of more sinkho le s brings morpho logically closed basins. Some of them are situated at the boundary between the karstifiable and the unkarstifiable formations and are crossed by short rive rs, which in their lowest point are going underground, through either a cave or an impenetrable swa llow-hole. In the Padurea Craiului Mountains more than 850 caves and potholes are known. Among them there is the longest in Romania, the Wind Cave (Pe!}tera Vintului) and the deepest pothole Stann Foncii (-334m). 2. GEOLOGICAL DATA In the area, the Bihar unit and posttectonic cover formations outcrop from the Paleozoic to the Neogen age (Bordea et al., 1986). There will be presented only the carbonate formations belonging to the Bihar unit and to the posttectonic cover. 2.1. Upper Sinemudan-Lower Callovian These deposits are formed in the basement by encrinite lim estones, which are tramgressively dispo se d over the subjacent ones (Bordea, 1986). They are 3-4 m wide. Above, in continuity of sedimentation, there is a marly sequence, with marly lim es tones and limestones intercalations having reduced widths reaching 20m. Limestones bearing ferric oolites, hav ing an average width between 5-10 m, are disposed transg res s iv e ly. Th e whole block rarely surpasses 50-60 m, and the surfaces on which it outcrops are small and unevetly spread in the area (Bordea, 1986). 2.2. Upper Jurassic These deposits are disposed in continuity of sedimentation over the earlier ones. As part of these the folloyving terms have been separated: the Vad limestones, the Galal}eni lim estones, Farcu limestones, the Cornet limestones and the Albioara li mestones, with a total width of 200m.

PAGE 134

3 Karstic systems in the Padurea Cra'iului Montains 131 ----------------------At the end of the Jurassic stage, an: emersion movement took place, and the raised platform latter underwent an intense erosion (Bordea, 1986"). 2.3. N eocomian The N eocomian is represented by bauxite. In the paleokarst excava tions bauxite silts were deposited forming bauxite rocks, which have lens-like forms and variable dimensions (max. 12 m wide, 1.30 m in diameter, Bordea, 1986). 2.4. Neocomian-Lower Aptian Transgressively over earlier deposits limestones bearing Oharacee appear, followed by limestones bearing pachyodontes. They are between 35-500 m wide. 2.5. The post-tectonic cover. The Senonian (Santonian and Lower Campanian) in Codru facies is developing in the depression in the southern part of the area. It is made up of limestones in plates and limestones bearing rudists, which in the lower part have a gritty sequence, and are covered above by breccias and sandstonef!. TECTONIC AND STRUCTURAL DATA Within the Alpine cycle in the North of Western Carparthians there are two over lapped structural units, namely : the Bihor Autochthonous and the system of Codru nappes. The Autochthonous does not present outstanding structural units (duplicates), only horsts and grabens, where the formations are monoclinal and widely folded. This partitioning is the result of diastrophisms that took place from the Cretaceous to the Pliocene and that affected both the crystalline basement, and the sedimentary cover. In the Padurea Craiului Mountains the sedimentary formations generally outlin e a vast monocline with a daily appearance, in the southeastern part of the crystalline basement and that north -westwards are overlappe d by ever newer formations, up to Cretaceous deposits. Before the emplacement of the Codru layers, the structural edifice of the Padurea Craiului Mountains, was to a great extent made up and presented systems of displacements that preferentially have a NE-S W orientation. After the emplacement of the Codru layer (having a layer of shearing nature) appears systems of fractures with a prevailingly NWSE direction. Laramie diastrophis m stresses the disjunctive tectonics where NWSE directions are predominant again. In the Neogene, laramie fractures were reactivated, but there are also E-N and N -S orientated secondary fractures.

PAGE 135

132 G. Ponta et al. 4 4. HYDROGEOLOGICAL DATA Quartz sandstones b earing Werfenian red clay schists make np the impermeable basement for karstic aquifers in the area. From the Anisian to the Low e r Carnian more limestone and dolomite rocks d epos its were form e d that have a total width up to 900 m repre senting the Lower Aquiferous Series of the Padurea Craiului Mountain!\ From the Hettangian to the Lower Sinemmian the area is ma.rke<.l by a prevailingly gritty sedimentation.The r esulted formation is 1 50m wide and m ake up the impermeabl e foundation for the Middle Aquiferous Series. In the Middle Aquiferous Sen:es carbonate rocks prevail about 220m wide and include s from the Upper Sinemurian to the Cretaceous bas is formations. At the end of the Jurass ic, unde r the effect of a strong e mergence7 bauxite l e n ses are d eve loping. Impermeable bauxite rocks and the discordant surface between the Jurass ic and the Cretaceous make up the impermeable screen b etwee n the Middle Aquif e rous Seri es and the Upper Aqui ferous S eries The tightness of this surface is partial, es pecially due to the discontinuity both of the bauxite rGcks and fractures, which allows an i:p.tercommunication between the two aquifers, being preferentially directed from the Jurass ic to the Cretaceous. The deposits in which the Upper Aquife rou s S eries li es belong t o th. e N eo com ian-Barremian and the Senonian (Santonia n-Campa,nian). 4 1. THE ROSIA KARSTIC SYSTEM The spring appears on a NE-SW fracture, which separates the Jurassic formations from the Triasic ones . The minimum regist ered discharge was 66 1 /s (Oral}eanu, 1983) The multi-annual average discha rge i s 425 1/s (Fig. 2). The supply area of the Rol}ia spring extends northwards, the wateTs going underground through the s wallow holes of Bare, Botului, Stann Foncii, Jurcanilor cave Orzenif}te arid Fiului Valley sinkhole (Pietre l e Albe). All these points lie in Trias ic deposits, and a part of them were checked by tracing experiments (Table 1). On the 28-th of August 19 85 a t1acing experiment with In-EDTA was made in the Perjii V alle y sinkhole The Toplita de Vida, Toplita de and the springs were established as main points of w aiting the tracer. The tracer was pointed out only Jn the Rol}ia spring. On t h e bas i s of measured values the variation curve of the tracer concentration was drawn according to the time, shown in Fig. 3 Analyzing the C(t ) curve, we can say that the tracer probably appeared between 4 and 5 of September 1985, because the value of the maximurri concentration wa s obtained for the sample take n on the 5-th of September 1985, name l y 8 d ays after the 'njection d a y. The test was made in a low discharg e p erio d. Immediately after the injection date, several rains fell that determined an increase of t h e Rol}ia sprin g di sc harge. This wa .ter supply caused quicker flowing of the trace r towards the spring

PAGE 136

\21 -1 14J .. --:-l 1s1 1 21m 22CIJ 16CIJ 1SU] c 1>10>100 C1 Z4c:J K E Y NON KARSTIC KARSTIC HIOROGEO'.WGYE DEPOSITS DEPOSITS 1EJ t s0J 6 9 10jw)apif 11E22} G} Upper Aquiferous r::-::-::-1 S erie rn} M i ddle Aquiferous Seria c:-::1 } lower Aquiferous Serl 0 1 2 kra Fig. 2 llydrogcologieal map of the area :I. Quaternary ; aliuYial deposits; 2. Quaternary; old coll u vial deposits; 3.a. Senonian; sandston es and conglomerat es, b Senonian; limeston es in plates; 4. Neocomian-Lowcr Aptian; limestones with : Characce; 5. Neocomian; b auxi t es ; o. Upper .Jura ssic; F nreu and Albioara limes I ones; 7. tpper Sinemurian-Lowcr Callovian ; sandy and marly lim estones: 8. Hettangian-S in emuria n ; quarlzitic sandstones; 9. Anisian-Lowe r Carnian; Wettcrstein limestones; 10. Werfenian-Lowc r Anisian; quurtzilic and schists; 11. Permian; hchlsts and sandstones; 12. G e ological limit; 13 Litholog ical limit; 14. Di sco rrlan ce limit; 1 5. Faull; !G. Oullet cave: 17. Inletl ave; 1 8. Fossil caYe: 19. Pothole; 20. CaYe passages: 21. Shallow hole; 22. Temporary s hall ow hole; 23. Direc tion of groundwater flow ; 2 -number of expcriJ'"1cnts fr om the Table 1 ; 24. Sinkhole; 25. Spring; discharge in 1 /s; 26. Min e gallery ; 27. 1\lulti -annual aYerage discharge in m j s. C>o ill ... ... ;:; (; ::; 0. Ill g, 8. f at g .... (.0 (.0

PAGE 137

THE RESULTES OF T RACT I NG EXPERIENCES I Nr. Injection point Alt. Q 1 /s Data Author Appearance I A It Q point m 1 /s 1 Bare 615 0,8 1983 I. Oraseanu 290 1 05 2 Boiu lui valley 525 -1966 T 290 -3 Iezere val ley 550 -1 967 T Rusu 290 100 4 Jurcanilor cave 545 1,5 1983 I. I 290 J C O 5 Pietrele Albe valley 515 -1970 T Rusu 290 -6 Perjii valey 486 0,1 1985 G Ponta 290 250 7 Sohodol II pothole --GSA Cluj Rol)ia 290 -8 Prii valley 415 4,2 1986 T Rusu Toplita 275 52 9 Cutilor valley 360 5,0 1970 T. R usu Toplita 275 22 Cut-ilor valley 360 -1981 I. Toplita 275 -1 0 Tinoasa valley 535 -1968 T. Rusu Toplita 27 5 -11 Ciur Panor cave 480 -19b8 T. Rusu Toplita -1 2 Ciur lzbuc ca ve 515 -1968 T Rusu Topli\a 27 5 -13 Dobos cave 485 0,5 1981 I. Toplita 27G 50 1 4 Albioara 420 0,7 1968 T. Rusu Toplita 275 22 15 Biitrtnului cave 574 0,3 1966 T. Rusu Vadu 305 102 1 6 P intiuca 604 0,1 1 G. Ponta Vadu 305 -1 7 Pintiuca 604 0,1 1986 G Ponta Vadu 305 -Birtin 550 0,1 1986 G. Ponta Vadu 305 -18 Tomnatic school 640 0,1 1986 G.' Poi1ta --F = F l uores ceine; R = Rodamin e ; I n = I n di um; La = Lanthanu m D i s -Dist. lev Transit km t ime m 6,38 325 624 5,10 235 146 2,40 260 350 5,10 255 -2,10 255 300 4,40 196 168 ---140 -1,0 85 13,3 1,0 --3,0 260 78,0 2,4 205 93,0 2 ',8 240 70,0 1,6 210 22,0 2,5 145 89,0 4,2 269 89,0 4,4 299 ---4,5 245 270,0 ----Table nr. 1 Speed Tracer m/h type 10,2 I n 35 F 68 F -R 7,0 F 26,1 In -F 33,0 F 59,0 F 27,5 H 38,0 F 26,0' F 40,0 F 72,0 R 29,0 F 47,0 F 20,3 In -R 59,0 I n -L a .... !tl "C 0 1:1 it a>

PAGE 138

7 Karstic systems in the Padurea Craiului Montains 135 The test allowed the tracing of the watershed between the de Rol}ia and basins. 4.2. THE TOPLIT A DE KARSTIC SYSTEM The d13 spring lies in the basin of the valley and constitutes the main outlet of the Runcuri karstic plateau, which is Fig. 3. The transfer curve of the lnEDTA concentratfon detected in the Rosia spring. 40 3') 30 E 25 X c 0 l'S 10 "' 5 0 lJ Injection potnt: September 1 g 8 5 Days after injection situated in Neocomian-Barremian limestones. The registered mmmmm discharge was 11 1/s 1983), while the multi-annual average discharge is 105 1/s. During long periods without rains the ma.in spring that appears through the entrance of the cave runs completely dry, and only the downstream one remains active. The supply of the system is afsured by the Albioara swallow-hole, the Ciur Ponor cave, the Tinoasa cave, the Runcuri swallow-hole, the Prii valley swallow-hole, the leEs in the valley, that js completely drained only during periods of low flow rates (Fig. 4). The swallow-holes belonging to the suppJy area of the Toplita de Rof}ia spring were checked by 7 tracing experiments (Table 1). The results of these experiments allowed the outlining of the hydrogeological basin of the spring. The main collector of the de Rol}ia spring is given by the Ciur Ponor cave. 4.2.1 . Description of the Ciur Ponor Toplita de cave The entrance of the Ciur Ponor cave is 5 x 5 m, lying at the absolute altitude of 483 m. The downstream entrance, Toplita de R.of}ia is 6 x 5 m and lies at an absolute altitude of 280 m The cave starts with a entrance chamber, 10m in diameter, where the river bed is covered by gravel and a clay beach. At the end of it a narrow passage opens, which is 0.8-1.5 m wide, with waterfall-like s lope

PAGE 139

136 G. Ponta et al. 8 breaches, the highest being 10 m. At its basis there is a relatively round chamber 5 m in diameter, that divides the cave in two distinct sections, the downstream system and the upstream system. The downstream system begins with a narrow passage similar to the entrance one which does not change its shape up to the duck-under named by the cavers ,Sifonullui After this restriction the gallery enlarges step by step reaching 2.5 X 2 .5 rn at the point of confluence with the first side tributary. The first left side tributary is 1460 m long and the end of it is at + 30 m from the jonction point. The passages are disposed on two levels, an active one and a fossil one. In the middle part of the side gallery, the two levels are present and form a labyrinthic maze. Downstream the jonction point, the caye gallery has large dimensions (2 x 5 m). On the right side it is running in the water of the third tributary. At 1300 m from the entrance there are two chambers that are morphologically linked, known under the name of ,Sala Tatilor de Familie". 100 m later, the fourth left side river appears, with a total length of 1 km. A new chamber follows on the the main gallery, that has a clay beach on the right side, crossed by a water course. From this point the gallery gets a winding aspect due to meanders and flowing levels. The gallery forks into an active field and a subfossil one, the ,Marmitelor Gallery" becoming one again after 50 m. In the mentioned active field affluent 5 bis inlets. At the terminal point, named BH the water is lost in a sump, that can be overtaken, through a short dry field comunicating with the river through a 4 m shaft-pit. The gallery of the active field suddenly enlarges in the biggest chamber of the cave named ,Paragina Chamber". The area has a chaotic aspect of fallen blocks coming up to more than 25 m high, through which the river penetrates with difficulty to ,The Meanders Passage1 It is a wide gallery (4-6 m) with flowing levels on walls, quite well decorated. Its terminal point is a lake, 18 m in diameter, that being the first sump, of the cave. A succession of three short sumps follows, disposed on 100 m, beyond which a gallery with the same shape like Meanders Passage begins having a length of 1540 m. In the central part of this passage, two left side tributaries are coming in. .At the jonction point a chamber with a large collapse of blocks is present. The section between 4 to 8 number sumps is 140 m long, the 8-th sump being in the entnmce of the Toplita de Cave. The Upstream system It has a total length of more than 3000 m. The main gallery is about 1000 m long, with a stream to a greatest extent. Here, the widths of the galleries are smaller the height are 20 m, having a general aspect of diaclases. On the walls, flowing levels are present. The end presents a labyrinthic maze, where the dry and streamy passages alternates. The river appears in the cave at 0.5 m relative altitude from the entrance. It represents the northern part of the c ave, where the river is coming in diffusely from narrow passages, through blocks of stone. Three inlets on the left side were descovered, being supplied probably by the Ciur Izbuc stream. The stream from the northern end of the cave

PAGE 140

9 K:arstic systems i n the P adurea Craiului Montains H't'DROGEOLOGICAL MAP OF TOPLIT A DE ROSft \ CIUR PONOR KARSTIC AREA G 0 '00 GEIOLOl-Y S J BOrtOFA, G'-1. \ MIt ROTE C 1'0 N: C S N 137 Folia Jot1 / 500 400 300 200 1()() 0 -100 -200 TERRAIN: @ M / 1 GEOLOGICAl SECTION N TERTE LEAC J a n2-csl s N lsw 2 / --lzbucul Topli!O de -a.i'.. .... -... ne + br =-"---:-=-=""'t--w -= r -.. ..., ---------st, ..--. ---<:::::;:.> bx ::.Cl1 'lleS Alb10ara ltmestones 1 Farcu ltmestones(Olf-t1 v 2Vad l1mestoneslcl-kmt M1ddle AQUtfer 2 OOI1I1CS limestones marly 11 mestones sandy and marly l1mestones Sere cjuartziles sandstones Wetters+e,n l1me stones} V1d0 lrnestones Lower Aquuer upper do torn,! Ser e Buceo 11 rnes fanes Nt 3 10+00 .. ne + s1 ant'cr1 an2-cr1 ___________ ._ ______ ends ands .... .. .... ............ anb . anb

PAGE 141

9 iK!arstic systems in the Padurea Craiului Montalins 137 are supplied by diffused losses at the contact between limestone and the impermeable rocks (the main swallow hall is the Prii valley), the main ground course being formed at the joining point of four water penetrations. We can see that the entrance gallery and the upstream system of the cave present a different morphology from the downstream one. In the first case the narrow galleries prevail, and have a diaclases aspect, in whose walls flowing levels appear. The downstream system is characterized by wide high galleries and large chambers. This differenciation i s cau se d by the lithology of the deposits crossed by the ground river. The upstream system i s generally situated in a gritty, marly oolitic carbonate rocks belonging from the Lower Sinemurian to the Callovian, while the down stream one is de velopped in Tithonian and Neocomian-Barremian limestones. On the geological sect ion in Fig. 4 the direction of the main stream of the area is shown. The caves survey and the tracing experiments clarify the ground drainages dispo se d on a 200-300 m difference of level and are helpful for calculating the water dynamic reserve. The information of the static reserve of the carbonate deposits, disposed ori other 400 m wide are less known and will be completed by hydrochemical studies, environment isotopes and hydrogeological drillings. 4.2 .2 .Structural characterization The area is part of the tectonic compartment situated in the southern and eastern part of the H1durea Craiului Mountains, named the area of antithetic steps. The structural assemblage is generally orientated east--wes wards, strata falling to the south and south-west, bordered to the north by the raising of the Jofi compartment. The major tectonic accidents (faults) in the area are mainly orientated NE-SW, secondly NW-SE and the third one is E-W orientated (the Jofi an Tarina fault) (Fig 4). The microtecto:nic measurements pointed out the following main systems of fissures in the area : -the microtectonic profile made near the entrance of the Ciur Ponor cave presents a main system orientated, with bendings oscillating around 90 and a NW -SE orientated system with bendings close to the vertical line. -the microtectonic profile made next to the main shallow-bole of the .Albioara valley pointed out the presence of a NE-SW orientated fissure system, with bendings close to the vertical line and a NW -SE fissure system The orientation of the development directions of the galleries in the Ciur Ponor cave presents a main maximum point on the NW -SW direction and a secondary one NW-SE. Fracturing statistic study The rectilinear parts of the faults, by length and azimuth were separated on the geological map 1 : 50000, by means of a

PAGE 142

138 . Ponta et al. 10 compass, then numerically treated by a programme that unitary and cumulated lenghts of the faults on angular sectwns of Out of comparing the lengths of cumulated faults on angular sectwns of 10 on the one hand, and the number of fissures on the other, the folio w-ing coefficients of correlation resulted; . for the interval between oo and 100 ; r = 0.55 w1th the equatlon of the regre ss ion right line y = 3.91 + 0.28 X (Fig. 5) Pestero Cii.T-Pmor Xi Faults "Yi -Fissures Fig. 5. The relation between the lengths of cumulated faults on angular sections of 10 and the number of fissure s in Ciur Ponor cave area. for the interval between 9r and 180 ; r = 0.689; and the equation of the regression right line is y = 2.82 + 0.33 x -for the interval between lOr and 130; r = 0 839 -for the interval between 11-40, r = 0.750 the other intervals of correlation being insignificant The comparison between the lengths of the faults and the rectilinear parts of the galleries in the Ciur Ponor cave on angular fields of 10 gives the following coefficients of correlation ; -for the interval 0-180,0 r = 0,14 for the interval 31 o -60 r = 0. 788 -for the interval 61-90 r = 0.998 -for the interval 90 -120 r 0.990 -for the interval 121-150, r = 0.986 For the other intervals the correlations are very weak. Out of the statis tic analysis it results that the orientation of the faults, fissures and rectilinear parts of the galleries in the Ciur Ponor cave develop on two main NE-SW and NW-SE orientated directions.

PAGE 143

11 Kaostic systems in the Padurea Craiului Montains 139 -------------------4 .3. THE VADU CRI!?ULUI CAVE .KARSTIC SYSTEM The Vadu cave resurgence is situated on the left side of Repede valley. The multi-annual average discharge i s 186 lfs. The first experiment with tracers in the area was carried out by Theodor Rusu, who proved the underground connection between the Batrinului cave inlet and the Vadu cave outlet. (Ftg. 6). On the June the 4-th 1986, 3 testing experiences were made in the same time, as follows : In-EDTA (20 g) in the Batrinului swallow hole, LaEDTA (40 g) in the Tom .natic swallow hole and 3,5 kg B Rhodamine in the Pintiuca swallow hole. The tracers were waited for in six springs dispo sed along the left side of Repede river, but it appeared only In-EDTA in the Vadu spring. The transfer curve presented in Fig. 7, shows that the .. .... '--' I in]ectim D:rte G ---- I \ I \ I \ lr!cticn f'llif't PintlJOG Stwollet Appeorcr.ce Point lk:ldU (.risuUj "'jectlcn Rlirf Brtn S...OUet Appeot'CJ'Oe Pore (.riQ&J r.g 1986 Fig 7. The tra n sfer curve of ln-EDTA concentration detected in Vadu s p r ing; a. spring discharge curve ; b. In-EDT A curve

PAGE 144

140
PAGE 145

__ o HYDROGEOLOGICAL MAP OF PESTERA ,.,. BATR1NULUI-VAOU KARS TIC G.PONTA 0 AREA N l'ERTELEAC 1 km GEOLOGY S .BOROEA JBORDEA MICROTEC TONICS N .TERTEl EAC sw '700 I '6CQ 500 40.,CJ oco rzoo 400 I I / P Batrinur GEOL-OGICAL SECTION tz:v P Vodu NE v Repede 5 Cro!?Uiuo I \ ' \ I I . , I K E Y, .NON KARS TIC S TRA TtGRAPI-fttt liTHOlOGIE; HYOROGEOLOGYf DEPOSITS ;--8 J,,_ . l OE POSITS thC ECB 2 Hotocen Pleoslocero Sarmatoan Barremian Neocomian T o thonic T1thonoc 1nf Caltovoan \ t:Jituvial deposits delluviol deposits .Sands. gravels lomestones lupper Aquifer J Serie 'boux ites .Cornet limestones 'Po laseni limestones I bj-ct1! Callovian onf Bajocian Aalen1an Toarc1an Comerian Snemunan sup. Smemunan 1nf. Hettang1an Carn1an 1nf. An1S1an sup Vod Middle sandstones. marly ard Aquifer oolitics l imestones marlstones and t ltoaa I marly @ Anisian Anis1an onf. Werten1an -----geotog:cal limit sandy and marly lmestones -quartzrt1c and plastic c l ays Wetterstein li mestone1 V1da limestones Lower upper dolomit Aquifer 8ucea l 1 mestones Serie lo("er dolomit quartiitic scndStones ond shales .,_. -diSCordance limit --fault 0 outlet cave Q inlet cave Q) swallet s_pnng discharge 1/s -..!_?_direCtiOn of groundwater flow 15-number at test in Tah l e 1 of ground.,..,ater flow on the geological sect iOn g mcrotecton1cS d iagrams 1 ;:;:;-gorges ( 41-f 5 pozitio. r of the geologit
PAGE 146

K!arstic systems in the Padure\l Craiului Montains 141 For the other intervals the correlations are insignificant. The compaI"ison between the lengths of the faults and the rectilinear parts of the j : i g R. The relation bet w een the cumulated lengths o f the faults on angular sections of 10 and the number of fissures in the Batrinului c a \ c area. gallery in the Batrinului and Vadu caves gives the following coc Hicientt> of corre lation ,r" : a. the Batrinului cave: for the interval oo -30, r = 0.662 -for the interval 31-60, r = 0.957 -for the interval 91-120 r = 0.860 for the interval 151-180 r = 0.619 b. the Vadu cave; -for the interval 0 -30 l" = 0.663 -the for interval 31 60 r = 0.689 -for the interval 61 -90 r = 0.943 for the interval 9r -120 r ...,.. 0.785 -for the interval 121-150 -for the interval UW-180 r = -0.759 Analysing these data it results that the of the Batrinului cave are well and directly correlated on the 0 -30 91 -120 and 151 -1800 intervals and very well, but well enough on the 31 -60 interval. The rectilinear parts of the galleries in the Vadu cave are well correlated to the faults in the area on the 0-30 and 31 -60 intervals and very well, but conversely, on the 91 -120 and 151-180 intervals. It can be concluded that the transversa l rectilinear line s of drainage adjust themselves to the same distribution of the fault network and one orientated according to the preferrential direction s of the microfracturing, together with the local hydraulic gradient.

PAGE 147

142 S. Ponta et al. 14 REr'ERENCES BADESCU D. (1986), Le Karst des Monts Piidurea Craiului et le reseau Tinoasa-CiurToplifa de Ro,,ia ( Roumanie ). Karstologia 7, pp. 41-48. Paris -France. BORDEA S., BOHDEA JOSEFINA, MANTEA GH., COSTEA C. (1986), Geological map 1 :5000, sheet Zece liotare. DODGE E D. (19 83 ), Hydrogeologie des aquiferes Karsliques du Gausses Comptal (Aveyron, France), Universite Libre de Bruxelles. HALA.)l G. (1984), Explorarea si{oanelor izbucului Toplifei de Stix nr. 1. HALA01 G., S1HBU S., (1985), Jonc{iunea izbucului Toplifei-pe$tera Ciur Ponor, Stix nr. 2. JAMIEH D., SIMEON I G. (1979), Etude stalistiq ue de la distribution spatia/e d e s elements structuraux dans d eux massifs des Alpes Helvetiques Consequence pour /'hydrogeologie kwstique Bulletin du Centre D'hydrogcologie No 3, Neuchatel, Suisse. JURKIEWICZ A., MITHOFAN H. (1984), On karstic cavities vertical distribution regularities in Southern and Sou lhWest e rn Piidurea Craiului .Mountains. T.A.K. 1, p. 77-82. ORA:;;EANU I., JUHKIEWICZ A., GASPAR, E., POP, I. (1984), Sur lescondilionslrydro-. geo/ogiques des accumulations de bauxite du plateau karslique de Riica$ Sclavul Pie$ (Monts Pcldurea Craiului). T.A.K. 1, p. 147-152. ORA:;;EANU I., JUHKIEWICZ A. (1987), Hydrogeological karst systems in Piidurea Craiului Mountains T.A.K. 3, p. 215-222. ORA:;;EANU I. (1985), Partial captures and diffluence surfaces. Examples {rom the northern karst area of Piidurea Craiului Mountains. T.A. K 2, p. 211-216. PONTA G. (1984), Ciur Izbuc-Ciur Ponor. Speologia nr. 10, Milano, Italia. RUSU T. (1968), Cerce tiiri de mor{ologie $i hidrogeogra{ie carstica in bazinul superor a[ vaii Ro$ia ( Munfii Pad ur e a Craiului ). Lucr. Inst. de Speol. ,Emil Racovita" t. VII, p. 1-44, RUSU T., RACOVITA GH., CRACIUN V. (1970), Le systeme karstique Toplifa-CiurTinoasa (Mounts Piidurea Craiului ). Livre de centenaire, ,Emilie G. Hacovitza'' 1868-1968 Buc. Manuscript received 14 April 1988 Addresses of the authors : George PONT A and Neculai TERTELEAC -Institutul de Geologic Geofizica, Str. 1, Romania. Dr. Emilian GA.)PAH -Institutul de Fizica si Inginerie Nncleara, 5026 Miigurele, Romania

PAGE 148

Theoretical and Applied I\.arslology. Vol. 4 ( 1991 ), pp. 143 to 157. LES EAUX THERMOMINERALES KARST! QUES DE LA ZONE DE MANGALIA (ROUMANIE) PAR M. U. FERU, ANA CAPOTA 1. INTRODUCTION La zone de Mangalia, qui inclut aussi bien le territoire de la ville de Mangalia, situee sur les ruines de l'antique cite de Callatis, que le collie, de stations du littoral de lamer Noire s'etendant au nord de la ville (Saturnr Venus, Jupiter, Neptun et Olimp), beneficie de nombreuses sources d'eaue thermominerales, les sources se trouvant sur le rivage nord du lac dx Mangalia, au sud-ouest de la ville, ayant ete utilisees pour les bains, des 1 'epoque des Romains. Leur exploitation, a des buts balneaires, selon des criteres scientifi ques, ne commence qu'en 1927, lorsque de nouveaux etablissements balneaires sont construits au bord du lac de Mangalia, et surtout apres 1934, lorsque l 'on entreprend les premieres recherches pharmacodynamiques. A pres 1955, ala suite des amenagements portuaires dans la zone du lac de Mangalia, justement sur la place oil se trouvaient aussi bien les principales sources d'eaux minerales que les etablissements balneaires, a ete entame un programme de forages bydrogeologiques pour decouvrir de nouvelles sources d'eaux thermominerales . Les premiers forages ont ete executes dans l 'intervalle 1962-1967 dans la zone sud de la ville et dans la zone du marecage de Mangalia, du nord de la ville; a cette ocP-asion-la, ont ete signalees d'importantes ressources d'eaux mesothermales sulfureuses, aussi bien dans les calcaires sarmatiens qui affleurent dans la zone, que dans les calcaires cretaces et jurassiques interceptes en profondeur. Le programme de forage a ete continue dans l'intervalle 1969-1972 par l'Institut de medecine physique, balneol?gie et recuperation 1p.edicale I.M.F.B.R.M.) qui a execute trois forages dans la zone de la ville de Mangalia et un forage dans la station de Neptun; les forages qui ont mis en evidence de nouvelles reserves d'eaux mesothermales capables d'assurer le debit necessaire a toutes les installations balneaires qui fonctionnent a present sur le territoire de la ville.

PAGE 149

144 M. U. Feru, Ana Capotli Parallelement, la meme institution a effectue des etudes dans la zone du marecage de au:x fins d'etablir les poss ibilites de mettre en valeur le s importantes re s erve s de boue de turbe situees au fond du marecage, ou 1 on a identifie aussi 21 s ources mesothermales submergees. L'annee suivante, le s etudes hydrogeologiques effectw 3 es par l'auteur aux fin s
PAGE 150

t -I / I " /.,. I I I I I I l'e,/ .. mvl DutcestJ .., +12,0 La captage Comorova 1 O' ,._fo-\'. r F6 ISLI. .-_: l .. I 1,1, F7 ISLGC ; ;:::. 10,54 I G) .. :: ,25 y l\fPTUN :;J::::_:' I \ \ \ F1 ISLGC 012,90 +12,0 11BF 0 \li 1 ::. ...... 1: .... r .. .. \ \ \ , G) I r--,I"): Obanul lUI Boncu O ;Kara ObanW / . VENUS (;) I I ._W__j F.2 ... 1 0 I I I.. ,IIJ74 1 4!J731tJM f.. I :Y I. 1 .: F. 3 ISLGC I j Harrgatia l '.,.. J lw/+076 I. ,.1.,., 10 I -. t -II F:' \.A '}. ...,. . .. Bos qP . [S(it -:_.'; -JUPITER Q:y ........ 0 < I I (I L Q:-I I I I I I I ft ---. LEGEN os I) Y!Oo I -1 11111111 E.au x s ulfu reu>es 4 '.. 0 l3f 9 + SfCT!ON OMIS I.A ZONf OE Eaua taL'!ihQaes dDilCI5 0 "Allfi.MJA 1!1 Cr sm -r-..... liD .. 16 Atl t PES 9CijliSI 166_ D t2---tt 1111 t I -f u .. u.CJ 'l'\1', Iii t. f u '0) r rorage ll>l. e 0 a e ..: rn::f CD GD D Jurasslque m PaleozoLQu-e i 16614 profondeur f1nate , Fig. 1. La carte hydrogeologique de I a zone Mangalia. t. Couches aquiferes independentes, localisce dans des depOts quaternaires (lo ess et sabl es dc plage). 2 Coucfoe .. quifhe Jocalisee dana calcaires sarmatiens karstifies a niveau librc ( sa ns communication avec le complexc aquifere inferieur, des depllts e oc e nes et mesozoiques). omplexc aquife re karstiquc lo calise d ans des calc a ir es sa rm aliens, c ocenes ct m esozo iqu es, a nivcau ascensionne l ou artesien 4. Forages 6D oitation ou en conservation. 5 Forage abandonne ( c imente) 6 Forage artesicn cote (m)/niveau h ydrostatique (m). 7. Source. 8 Emergence Forage. 10. Ligne de forages. 11 Source. 12. Fal aises. 13. Point d'insurgence. 14 Dolines et excavations iutificielles. 15. Merecage.

PAGE 151

3 Les eaux karstiques de la zone de Mangalia 145 Nous devons mentionner que lors du forage 5083, execute au sud de la localite 2 Mai, jusqu'a 2513 m de profondeur, a ete intercepte aussi les ilurien, la limite Devonien-Silurien etant placee a une profondeur de 1.564 m. Par ailleurs, le forage 1-I.S.L.G.C., execute dans la partie ouest de la station de Neptun, a rencontre le paleozoique a IIDe profondeur de 505 m. Les donnees fournies par le forage 5082 effectue dans l a p artie sud, de meme que le F1-I.S.L.G.C. dans l a partie nord, montrent que le s depots paleozoiques a mince degre de fissuration et pas uniform s permettent d'un compl exe aquifere a d ebits reduits, qui s e manife ste de fa
PAGE 152

146 M. U Feru, Ana Capota 4 de marno-calcaires. La partie superieure du cretace est constituee par des sables fins et moyens en general incohe s ifs, oil l'on peut rencontrer dans la partie superieure, des horizons minces de sables argileux, des gres glauco nitiques calcaires et des calcaires friables. 2.4. L'EOCENE Traverse par de nombreux forages executes dans la zone de Mangalia, 1 'eocene est represente au fondement par des gres calcaires, glauconiti ques, aux nummulites, au-dessus desquels on peut rencontrer des calcaires nummulitiques. Dans la partie superieure, les calcaires presentent des insertions d 'argile a des epaisseurs reduites. L'epaisseur de l'eocene varie entre 24 et 98 m, a !'exception d'un forage pour les hydrocarbures, situe au sud du lac de Mangalia, oil il atteint 182 m. Il n'existe pas d'horizons impermeables continuels entre les depots jurassiques, cretacees et eocenes; c'est pourquoi ils abritent dans les roches carbonatiques un seul complexe aquifere karstique, a 1 'eau sulfureuse, a des temperatures de 18 a 26C et a de grands debits. En effet, les forages hydrogeologiques executes dans la zone prouvent que ce complexe aquifere a un potential eleve, debitant de maniere artesienne plus de 50 1/s. Le niveau piezometrique se situe autour de la cote de +16 m. En ce qui concerne les debits du complexe aquifere accumule dans les depots eocenes, cretaces et jurassiques, les experiences ont indique pour la partie superieure du complexe aquifere des debits entre 26 et 52 1/s pour des denivellations de 13,8-14,5 m, resultant des debits 1'1pecifiques de 1,8-3,7 1/sfm. Quant aux depots jurassiques, a des profondeurs depassant 400 m, on constate des debits de 0,6-3,0 1/s seulement, pour des denivellations de 13,8-14,5 m, les debits specifiques resultant etant de 0,3-1,3 m3f 24 hetiresjm. Cette situation est due a des vitesses de circuation beaucoup plus reduites par les fissures existantes initialei:nent et implicitement a une vitesse de dissolution beaucop plus diminuee des calcaires jurassiques inferieurs, qui n'ont pas conduit a une karstification importante sur cpaisseur totale du paquet de calcaires. 2.5. LE SARMATIEN Les depots sarmatiens, appartenant au bessarabian et au kersonien, dont la partie superieure affleure au long de la falaise de la zone de la ville de Mangalia, sur le versant ouest du marecage de Mangalia, ainsi que sur les versants des lacs de Tatlageac et Mangalia, presente a la base, ainsi qu'il resulte des forages, une couche d'argile et des marnes argileuses compactes. Cette couche qui a, dans la zone de la ville de Mangalia, une epaisseur de 25 ou 26 m, s'amincit graduellement vers le nord, pour disparaitre definitivement, depuis la zone du marecage de Mangalia!

PAGE 153

M. U. Feru, Ana Capota 147 -------------------------Ensuite, le sarmatien est constitue de calcaires fossiliferes a de rares insertions de couches minces de marnes, parfois calcaire s ainsi que de gres faiblement friables et de sables moyens, generalement calcaires, inco hesifs. On a pu constater parfois la prese nce d'horizon s de calcaires a l'aspect oolithique. Toutle paquet de calcaires est affecte par maintes diacla 8es; parfois on y a s ignale la presence de cavernes, de dimens ion s variables. L es etudes hydrogeologiques et electrometriques entrepri 8 es dans la zone uu lac de Tatlageac (E .Avramescu, 1967) ont prouve que, par endroits, le s calcaires sarmatiens et eocenes sont se n s ibl ement karstifies et riches en eaux souterraines La karstification n'es t pas uniform e vari ant a la surface et en profondeur, direction vers laquell e ai n s i qu'il r esulte de s donnee s pre s entees anterieurement, la karst i f ication decroit graduel lemen t L a couche aquifere accumulee dans les d epots sarmatiens a une capacite tres s ignificati ve, avec certaines variations, en fonction d u degre de fis suration et de k a r stification des c a lcaires, comme nous 1 'avons deja mentionne .A l'ancien captage pour !'alimentation e n eau potable d e l a ville de Mangalia sont exploites quatre forage s debitant, chacun, presque 1 5 1 / s alors qu'au captage de Tatlageac, se trouvant au bout du lac du meme nom, on peut extraire 40 1/s d'un seul puits. Lors du mesurage de debits et des pompages e xperimentaux effectues dans la zone de la ville et du marecage de M a ngalia, ont ete obten us des debits de 8 a 21 1/s pour des denivellations de 0,48-2,42 m, c'est-a-dire des debits s pecifique s variant entre 7,8 et 15 1/sf m. Le s s ource s d'eaux sulfureus es, qui jailli s sent des calcaire s s arma tiens dans l a zone du mareca ge de Mangalia et de s nommee s ,oba n es'' dans 1 'ouest du marecage, presentent nne situation a part. Sur le rivage oue st du marecage de Mang a .lia nne s ource a un debit de quelque 20 1/s et 20 autres e m er gence s ascen s ionnelles sur le fond du lac. Dans le but de maintenir un niveau d'ea u constant dans le marecage, on a creuse un canal collecteur de ces eaux qui sont evacue es dans l a mer. Une serie de mes urage s de debits, faits sur ce cana l (I. Nita, 1971) ont indique de s debits variant entre 211 et 250 1 / s Da,n s la zone situe a l'ouest d e Ja route Mang alia-Con stantza, depui s le mareca ge de Mangalia jusqu'a u bout N -0 d e la ville, il y a maintes forme s morphologiques d epress ionnaires, representant de vieilles carrieres de calcaire et des dollines (,oba ne s d a n s la toponymie loc a le). Dans cinq de ce s forme s apparaissent ega lement de s source s asce n s ion nelle s de fond, dont le debit cumule depasse 3 00 1/s (rien qu'au point ,Kara Oban" l es mesurages executes en meme temps que ceux dans la zone du marecage de Mangalia, ont identifie de s debits dep assant 200 1 /s). La couche aquifere accumulee dans le s calcaires sarmatien s presente un niveau hydrostatique libre variant entre 0,5 et 3 m d a n s l e secteur compri s entre le s lacs de Tatlageac et Mangalia, sur une bande d e rivage de 4 on 5 km. Le niveau plus e leve de s eaux mine r a le s de s ,obanes"

PAGE 154

_1_4_R __________ M_. Cap_;_o_:_tl!. _______ ____ 6 (jusqu'a 12,7 m), qui sont alimentees directement par le complexe aquifere d<'s depots eocenes, CI'etaces et jmassiques, representent un cas special. niveau libre des eaux souterraines des calcaires sarmatiens, qui presente certaines oscillations saisonnieres en fonction des conditions climatiques, ainsi que I 'absence d'accumulations d'eaux dans les depots superieurs de loess, font que cette couche aquifere se comporte comme une couche phreatique. Il faut egalement mentionner que si dans le secteur sud de la zone de Mangalia il existe une separation distincte entre la couche aquifere accumulee dans les calcaires sarmatiens et le complexe aquifere des caloaires eocenes, cretaces et jurassiques, dans le secteur nord ils communiquent ente par des depots de turbe (turbe et boue de turbe), des argiles aleuri Liques et, plus rarement, des sables argileux. L'(lpaisseur de ces depots augmente vers l'interieur du marecage et du cordon littoral, oi1 elle atteint 38 m (forage 4076). La presence de l 'horizon d 'argiles rouges dans la partie inferieure dtoa dep6ts de loess pourrait permettre la formation d'accumulations d'eaux souterraines au caractere phreatique. Mais, grace au caractere discontinu de cet horizon, les eaux infiltrees dans les depots de loess sont drainces eu profondeur par les calcaires sarmatiens, fait qui ne nous permet pas de parler de !'existence d'une couche aquifere liee aux depots loessoides. Les puits existants dans la partie NO de la ville de Mangalia, qui ont ete pour la plupart creuses jusqu 'aux calcaires sarmatiens et qui exploitent la couche aquifere liee a ceux-ci, sont une preuve en ce sens. Une seule exception, les deux zones restreintes aupres du littoral (Olimp-N de Neptun et Mangalia-Vama Veche), ou l'on a signale !'existence d 'tme couche phreatique dans les depots loesso'ides, determinee par l 'existence des argiles rouges basales.

PAGE 155

7 I:.es eaux karstiques de la zone de Mangalia 149 -------------------------3. LES E.AUX THERMOMINEH,.ALES La prese nce de l'hydrogene sulfure dans les eaux de la couche aquifere accumulee dans les calcaires sarmatiens de la zone littorale, sur une largeur de plusieurs kilometres, a partir de la station d'Olimp jusqu'au sud du h tc de Mangalia, conferent a celle s -ci la qualite d'eaux minerale s Ce qui leur temperature, qui varie entre 20 et 26C, determine leur integ ration dans la categoric d'eaux hypothermales. Les memes caracteristiques se retrouvent au complexe aquifere qui s'est developpe dans le s depots eocenefl, cretaces et jurassiques, ains i qu'au complexe cantonne danS leS depots a la difference que celui-ci semanifeste sur une aire bien plus etendue, depassant la !attitude de la station de au nord, et celle de la localite 2 Mai, au sud. 3 1. CARACTERISTI QUES CRIMI QUES Un examen des resultats des analyses chimiques des eaux minerales d e b zone de Mangalia, reunis dans le Tableau No 1, releve qu'elles sont, sans exception, des eaux sulfureuses, chlorurees sodiques, bromoiodurees a concentration tres basse .A ce caractere predominant s'ajoute celui de bicarbonate magnesien calcique. On observe en meme temps qu'il n'y a pas de difference entre l es de la couche aquifere accumulee dans les calcaires sarmatiens et les eaux du complexe aquifere des calcaires eocenes, cretaces et jurassiques, a l 'exception des sulfates, qui se trouvent en des quantites plus reduites thtns 1 es dernieres. Le caractere chloro-sodique apparait plus pregnant dam; le cas des eaux accumulees dans le s depots paleozoiques, dont la mineralisation totale varie entre 2,3 g/1 et 3,7 g/1, tandis que les eaux du comp1exe aquifere situe au-dessus et 1es eaux des calcaires sarmatiens n e (lepat'sent pas 1,5 g/1. 3 2. LA THERMALITE L'un des traits caracteristiques des eaux minerales de la zone de Mangalia est aussi la temperature de celles-ci (20-26C) fait qui leur cottfere la qualite d'eaux hypothermales. .Apres un examen du Tableau No 1, oil figurent aussi les temperatuxes des eaux minerales que nous avons mesurees, on peut constater que, meme s'il y a une faib1e difference de temperature entre les eaux des sources qui apparaissent dans la zone des ,obanes" et du marecage de Mangalia par rapport a ce lle des eaux des sondes (qui atteint 25,8C), on ne peut pourtant faire aucune distinction entre les eaux de 1a couche aquifere des calcaires sarmatiens et celles du complexe aquifere deB depots eocenes et mesozoiques, et done qu'il n'y a pas de re}a .tion entre la thermalite et la profondeur oil elles ont ete captees .A partir des donnees du meme tableau, on peut observer qu'il u'y a pas de relation directe entre la temperature et le degre de minentlisation, ou entre la temperature et la teneur en hydrogene sulfure.

PAGE 156

No. 1 2 3 4 ;) 6 7 8 9 10 11 12 1 3 14 1 5 16 17 18 19 Tableau no I LES I'RINCIPALES CARACTERISTIQUES CHBIIQUES DES EAUX .!\111\'ERALES DE LA ZONE DE .!\IANGALIA Min r r. ANIONS CATIONS Sourc e d'eau anal yscc tot al e H2S I I I I SOi I 1-ICO:l I KHt I ca++ I Mg++ I Fe++ Temp. lllg/l J,J g / 1 C J -I-' C N02 I S.5G82 IS Ei\ I 2399,4 5,0 904,2 10,0 1,0 abs 38,4 585,71 745 .1 trs. 18,4 37,4 0,4 20.5 S.4 073IS E M 1188,1 9,7 375,9 9,0 0,5 abs. 21,1 3 78,3 255,0 5,0 44,0 48,6 0,1 25,0 S.407 4 ISEi\'1 1281,0 8 ,3 361,7 10,0 0,7 abs. 42,2 439 3 278,2 4, 5 ,,8, 1 47,2 trs 20,5 S .4076 IS Ei\I 1140,0 8,0 453,9 8,0 1 ,5 abs. 3 0,-7 244,0 273, 9 5,5 47,3 38,9 0' 1 25,8 S.2 I. B F. 1169,1 2,0 468,1 3,0 1,0 abs tr s. 292,8 2!l0 ,9 2,5 36 ,1 44, 2 0,3 23,8 S.3 -1.1:3.F. 1 338,2 11, 0 446 ; 8 8,0 1,0 abs. 28,8 3 !l0,5 33 1 ,0 2 ,5 48 '1 3tl,5 1 ,0 2 5 ,7 1 '.4 -ISL G C 12 07,5 11,0 397,1 2,0 1,2 abs. 26,8 358,8 276 ,8 3.0 I "' 3 8 ,4 0 1 24,0 f 3 I SLGC 1111 ,7 11 ,6 347,6 2,0 0,9 ab s 11,5 366,0 238,9 5,0 48, 1 38,9 0,1 24,8 F.2 ISLGC 1159,6 13,1 354,6 3,0 0,5 abs. 40,3 3 66, 0 276 ,2 1 ,5 47,3 3 1 6 0,8 26,0 F.1 S LGC 101(1,8 2,6 276 6 t r s. 0,3 abs 42,2 353,8 200 ,8 2,0 52,9 38,4 0,8 2:J,5 F 6 I SLC C 1030,5 16,9 290,7 0,5 0 abs 10,6 386,4 213,1 0 1"4 5 20 5 0,7 24,0 f.7I S LGC 8:15,4 0,5 290,7 lrs. 0,3 0 23,0 305 0 161 ,4 1 ,0 33,6 34,0 0,1 24,0 1'.5-I S LGC 110 0 6 29,5 23 4 ,2 --6,1 439,2 178,0 -100,0 64,0 -18,0 Fab r i que l in 122 9,7 4,2 290,7 trs. 1,0 abs 42,2 488,0 230,5 2 0 77,7 39,8 0 ,3 -S ource Eara-Oban 1146,6 9,0 326,2 1 ,5 1 0 abs. 38,4 390,4 220,1 3,o 75,3 I 36,9 0,3 22,1 Soure r !\far ce. clc !IIangalia 1233 7 9,7 361 7 8,0 0,5 -48,0 402,7 264,0 2,8 53,7 46,2 trs 21 ,3 :;our cc-la c clc Yenus 1282,8 'I 453,9 1 ,5 0,6 abs. 40,3 341 6 321,5 1,5 5 2,1 34,0 --Captation Como rova 1133,5 5,5 290,7 I 1,5 0,5 abs. 36,4 427,0 224,7 2,0 60,9 38,4 -Source li ll o rale Olimp 1259,2 3,1 347,5 1,0 0,6 as b 59,5 439,3 247,5 1 ,0 72, 9 48,6 -18,0 I .... '-" 0 I r ::l () 0 .... ll>< 00

PAGE 157

9 Les eaux karstiques de la zone de Mangalia 151 3.3. DESCRIPTION DES SOUHCES D'EAU X THERi\IOMINERALES Pour connaitre toutes les ress ource s hydrominerales de la zone, nou s rasserons e n revue tant les forage s a l'eau minerale qui peut etre utilis ee dans la cure balneaire, que les sources d'eau thermominera le s de b zone du marecage de Mangalia, ues ,obanes" et du littoral. 3.3:1. Eaux thermominerales exploitables par forage s NouR presentons dans l e Tableau No 2 une synthese des donnees princip a le s sur le s forage s exploitables a d es fin s balneaires excluant le s forag es cimentes ou abandonnes Dans la meme categoric d'eaux mineraleR on pourrait integrer les eaux exploitables par la captation ,Comorova", comportant 9 forage s aux profondeurs d'environ 100m, situes tres pl'es a l'ouest de la route verf-\ C orstanta, a 3 kilometref-\ environ au sud dulac de Tatlage ac. Mais puisque l'eau exploitee e s t utilisee a la suite d'un proce ss u s de desulfuri sation comme eau potable pour le s stations de la cote de lamer Noire, le cas respectif n'a plus ete inclu s d a n s le tableau. 3.3.2. Sources d'eaux thermominerales N ous integrons auss i dans cette categoric, aux cotes des s ources de la zone, le s e mergenc es s ubmergee s a s avoir celles situees au-deRsous du niveau de la mer et du niveau des lacs. 3.3.2.1. La zone des ,obanes" du nord Les principaux jaillissement s naturels d'eaux thermominerales de la zon e de Mang alia sont les emergences des dites ,obanes" situees a environ 1 km NO du marecage de Mangalia. ll s'agit de quat.re petits lacs aux eaux sulfureuses, installees dans rles anciennes excavations et doline s regroupee s autour de celui nomme Karaoba n, utilis ees jadis pour le roui ss age du lin. Le s principale s emergend'eaux thermominerales apparaissent au fond des ,obanes", mais il y a quelques s ources s ituees a une cote superieure au niveau de l'eau. I s'agit des s ource s situees sur le versant occidental du marai::; de Karaoban. Leur temperature est de 22,1-22,3. Il convient de mentionner que !'apparition de ce s s ource s et l'exif'. tence meme des ,obanes", ou le niveau de l'eau e s t a 10m environ au-dess u s du ui veau hydrostatique du systeme karstique, sont dues a 1 'exi s tence d'une fracture structurelle majeure qui favori s e !'as cen s ion des eaux sulfuremes de profond e ur. Grace a ce phenomene, a partir d e ce point, 1 'eau dilfuse se lon une configuration r a diale, de versant de s ,obanes" une quantite d'eau se montant a 300 1 /s ce qui con stitue e n fai t comme l'ont demontre le s injection s a et le s traceurs radioacti fs (openttions e ffectu ees par l'Institut de meteorologic et d hydrologic en co ll a boration avec l'IF .A (In stitut de Physique .Atomique et I 'I.S.P.I.F. (Institut d'etudeR et de projets pour l es bonification s foncieres) dans le s annees 1967 et 1968) la source principale d'alimentation de tousles autres d'eaux thermomine rale s de la zone: le m a r eca ge de Mangalia, l ',obane" Ciucur Bo stan, la zone du quartie r tata re, le quai sulfureux du port, le lac de Ccmorova, le lac de Venus et, eventuellement, certaines emergences submergees.

PAGE 158

No I 1 2 3 4 5 6 7 8 9 10 PRIN CIP ALES C ARACTERIS TIQ UES DES FORAGES EXPLOIT ABLES D E LA ZONE DE 1\IANGALIA Forage I S. 5082-ISEM Fl ISLGC Fz -ISLGC F s -ISLGC F,-ISLGC S.3 -I.B.F. S.4 -I. B. F S.4073 -ISEM S.2 -I. B. F. Ca llatis S ISEM Emplacement Mangal!a Sud Neptun, 500 111 a !'ouest du village de vacance ,Zodiac" S-Venus, a 50 m des bai ns mczoler-maux N O llmp a 100 m au nor d du camping Neptun, a 100 m au nord de 'hotel Doina Sur Ia plage en face de sanatoi re ba lncaire de 1\langaI ia Dans 'enceinte de l'hotel ,Mangalla" Ouest du n :ar( cage de Manglia Devant Ia Poly-clinique de Mangalia La plage entre Ven u s et Saturn Cole m 1,25 12,90 2,30 6,8 10,54 1,91 6,69 2,48 5,07 1 ,81 Formation g e ologique jurassique paleozoique jurassique cretace -jurassique cretac e -jurassique cretace-jnrassique eo cene-juras. -cretace eoc.ene-cretace sarmalien-eocene eo cimc sarniatien lnterv. ouverte 111 --520-1203,8 303-530 145-200 206-300,5 206-302,5 117--231,5 201-220 19,05-40,65 125-173 38,6-39,4 I I 683,8 227 5 5 94,5 96,5 114,5 1 9 21,6 48 0,8 NH Ill + 1 ,43 +12 +16 +11 ,25 + 16 +0,54 +9,03 +11 ,5 I Q I I 1 / s 0,2 30 55 35 48 50 40 11 ,2 1 ,4 25 s 111 arlc s ien artes ien artcsien artesien arU: slen artcsien art esien 1 64 artcsien arte si e n Tableau no 2 / Observations I usage m enagcr en conserva-lion ulilis e es p a r l es bains n: e zother-n ;aux de Venus en conser-Yation e n conse rYa -ion u tilise e cia n s I a cure ext. utilise dans Ia cur e ext. et inleriorc -de t eriore uti Iisee dans Ia cure int. ut ilis e e pour l e s solariums ..... CJ "' "i F > :J Ol () Ol '0 .... 0

PAGE 159

1_l _______ de la zone de Ma'ngalia 153 3.3.2.2 La zone du marecage de M angalia Le marecage de Mangalia, qui s'etalait sur quelque 110 ha, superficie reduite actuellement a environ 90 ha du fait de l'amenagement de la plage entre les stations de Saturn et de Venus, et de la route qui, les relie, est alimente par 21 emergences dont la plupart ascensionnelles, situees au fond du marecage, etudiees par l'Institut de balneologie et de physiotherapie en 1969, lorsque, a la suite de creusement de canaux de drainage de l'eau danR lamer, le niveau de l'ea u etait plus bas A present, toutes le s emergences se trouvent au-dessous du niveau de l'eau du mare cage, a !'exception de l a source qui parait dans une ouverture de calcaires sarmatiens situee dans la partie nord ouest du marais, a proximite du s ie ge de l'IAS (Entreprise agricole d'Etat) et de forage 4073. La source, qui deverse par plusieurs embouchures situee!') immediatement au-dessus du niveau de l'eau du marecage a une 1emperature de 21,3 et un debit d'environ 20 1/s. Il faut preciRer que pendant 1 'intervalle OU les eaux du marecage ctaient drainees directeruent danR la mer, le s mes urages ant indique un debit de 270 lfs. Si l 'on tient compte que dans h meme peri ode trois autres motopompes pour !'irrigation des jardins potagers etaient en service et que leur debit etait d'environ 200 1 /s sans affecter le d ebit du canal eollecteur, nouR avons admettre que le debit total de s emergences d'eau :mlfureuse, hypothermale de la zone du marecage de Mangali a est d'au nwins 400 1/s. Oomme nous l'avons deja montre, une bonne partie de ce d ebit e::;t du au dra inag e des de s ,oba ne s du groupe de Karaoban (dans la : ource mentionnee on a recupcre une quantite de 2 % du traceur verse dans l' ,obane" de Bonciu), mai s nous devons admettre qu'a u mains un tien; d e ce ll e -ci est fourni par de::; w urces propres liee s a la meme fracture majeure qui alimente a u ss i le s ,obanes". 3.3.2.3. La zone de la Fabrique de lin Dans !'enceinte de l a Fabrique de lin situee au nord-oue st de la ville, il y a un puits a l 'eau sulfureuRe abandonne, et a 300 m nord-ouest de la fabrique, il y a l',oba nelt Oiucur-Bostan alimentee notamment par une s ource situee a l'extnlmite nord de .l',oba ne" qui a un debit considerable (environ 20 1/R). L'eau a une temperature de 21 et une teneur en hydrog{me sulfure de 4, 0 mg/1. Une autre s ource, a un debit beaucoup plus reduit, se trouve sur la riYe est du marais. Now; considerons que les eaux thermomine rales de la zone de la Fabrique de lin proviennent presque en exclu sivite de la zoue Kara-oban. A cet egard, nous mentionnons qu'a ce point, situe a une distance de 2,5 km du point d'injection une quantite de traceur repre:'\entant 25 pour cent de la. quantite introduite dans l',obane" Bonciu a ete n 3 cuperee. I.Je centre de pesenteur du nuage de traceur a ete s igna.le au bout de 28 h 30 minutes depui s !'injection, resultant une apparente de 89 mfh. 3.3.2.4. La zone du port de .Llfangal ia Sur la rive nord du lac de Mangalia, des l'epoque de s R.omains, il y avait deux s ources pour le s bains A pres ent, ala suite d'amenagementR, ces sources Ront inclu ses dans le port de Mangalia (le quai i:iulfureux).

PAGE 160

_t5_4 _____________________ M __ ._u _._F_e __ ru, Ana __ _____________________ t_2 L'eau a une temperature de 24 et une mineralisation totale de 1815,8 mg/1, dont 20 mg/1 d'hydrogime sulfure. Le debit de ces sources, qui se monte a 50 1/s, peut s'expliquer aussi grace a l'eau des ,obanes" situees dans la zone du marecage de Mangalia. ll faut dire a cet egard que le traceur a parcouru la distance de 5 km en 30 heures (vitesse apparente de 161 m/h) et que la quantite recuperee de traceur a ete de 18%. 3.3.2.5. zone du quartier tatare Les puits creuses jusqu'aux calcaires sarmatiens existants dans la zone de quartier tatare ont intercepte quelque 40% de l'eau sulfureuse, phenomene que l'on peut facilement expliquer si l'on tient compte qu'ils se trouvent a pen pres entre l'obane Ciucur Bostan et le port, se lon la direction sud du drainage des eaux sulfurem:es provenant de Kara-oban. 3.3.2.6. La zone de la station de Venus Dans la station de Venus, sur les lieux ou s'etaient jadis un marecage, on a amenage un lac d'agrement ou l'on peut observer deux emergences submergees qui alimentent le lac : la premiere a environ 10m par rapport a l'extremite nord dulac, et la deuxieme pres du milieu dulac, les deux accompagnees aussi d'emanations de gaz libres. 3.3.2. 7. La zone des lacs de la station de N eptun Sur le territoire de la station de Neptun se trouvait autrefois, avant lcs travaux d'amenagement du littoral, le marecage de Comorova, sur le fond duquel il y avait de nombi'euses emergences d'eau sulfureuse, hypothermale. Lors des travaux d'amenagement (a present, le marecage est nettoye et transforme en trois lacs d'agrement), le lac a ete vide et l'on a pu constater que le s plus nombreuses source s comportant aussi les plus grands debits, apparaissaient sur sa rive occidentale .Apres l'emplis sage des trois lacs, les sources ont ete couvertes d 'eau, mais on peut ob server a present, surtout dans le lac du nord et dans celui du sud, des zones oi1 l'on sent l'hydrogene sulfure et des emergences d'eaux et de gaz libres. Les injections aux traceurs radioactifs de l',obane" de Bonciu ont prouve (fait atteste anterieurement au moyen de la fluoresceine que ces eaux sulfureuses aussi sont tributaires a celles de la zone des obanes. Le traceur est apparu apres 22 heures (distance aerienne entre le s points de 3,5-3,8 km, resultant nne vitesse apparente de 154-172 mjh). Compte tenu du fait que lor s du bilan de marquage radio-actif, on n'avait recupcre qu'une quantite de 60% du tota l injecte, nons devons admettre qu'une partie de s emergences du fond des marecages de Mangalia et de Comorova et, eventuellement, nne partie des emergences sous-marines de la zone littorale, proviennent du meme point de diffluence des eau:x tbermominerales des obane s 3.3.2.8. Les emergences sulfure uses sous-marines Le long clu littoral, entre la ville de Mangalia et la station d'Olimp, ce qui corre spond ala zone caracteri s ee par le presence des eaux sulfureuses dans les calcaires sarmatiens, il y a de nomb1euses emergences d 'eaux sulfureuses thermominerales tant a u-d e F s ous du niveau de lamer, qu'immediatement au-des sus de celle s -ci -au sud, dans la zone du sanatoire de T.B.C. il y a nne premiere source suus-marine. La-bas, plusieurs emergences d'eaux sulfureuses

PAGE 161

Les eaux karstiques de la zone de Ma:ngalia 155 jaillissent des calcaires sarmatiens. Un echantillon d'eau preleve ala mer, immediatement au-dessus de celles-ci, indique une teneur en hydrogene sulfure de 2,6 g/1. -a environ 160 m au nord, il y a une autre emergence importante d'eau sulfureuse provenant des memes calcaires. Des jaillissements intermittents s'etalent encore vers le nord, sur environ 250m; la, l'eau de la mer est laiteus e et elle sent l'odeur de l'hydrog(me sulfure. -en face de la plage, entre les stations de Saturn et de Mangalia, a environ 80 m du rivage, nous avons identifie d'autres emergences accompagnees de gaz libre s dont l'analys e chimique indique une compo sition chimique similaire a celle de s gaz qui accompagnent les eaux thermominerales des forage s le s quels sont constitues presque exclusivement de methane et d'azote, le methane predominant toujours, pouvant atteindre quelque 60% du total des gaz libre s -au nord de la plage su s mentionnee, au sud de la station de Venu s a 100 m de la conduite d'evacuation des eaux du marecage de Mangalia, sur la rive, il y a des calc a ires sarmatiens dont surgi ssent des eaux s ulfu reuses. L'une des sources, dont la temperature e s t de 19, s e trouve juste sur la rive, a quelques centimetres a u-des sus de l'eau. -au nord de Ia station de Venu s a peu pres en face du bar ,Calypso", sur la plate-forme d'abra sion cre u s ee dans de s calc a ire s sarmatiens qui s'etend sur environ 15 m, a 10-20 em an-de s sous du niveau de la mer, on a identifie une zone d'emergences sons-marines sulfureusefl, a uDe temperature de 19,5 0 et une teneur en H2S de 10,7 mg/1, qui l'e pro lange au large. L'eau de la mer presente a ce point une mineralisation de 3,3 g/1 seulement, comme on peut le voir du chimi sme de l'echantillon que nous avons preleve, contre 15,7 g/1 contenus par l'eau de mer preleve e a l'extremite de la digue de Mangalia. On peut conclure done que les s ources sou s ma rines faiblement minerali s ees engendrent une dilution accentuee d'environ 80% des eaux marines -au sud du Cap d'Aurora, approximativement en face des hotels ,Topaz" et ,Opal", on a identifie plusieurs emergence s sulfure u s c s issues des calcaires sarmatiens, tant dans la mer que sur le littoral. Leur teneur en bydrogeue sulfure atteint 13,6 mg/1, v a l ent maximale dans le cas des echantillons que nous avons preleve s de s emergences sulfureu s es s on s -marines ont ete s ign a leei\ auss i dans la zone de la station d e Jupiter, a savoir dans le s fis sures d e s c<1lca ires qui se trouvant approxinmLivement en face de l'botel ,Olimpic". Les s urgis sements d'eaux sulfureu:;:es se poursuivent vers le nord jusqu'a la proximite du bar ,Paradis". -nous avons identifie !'emergence sulfureus e situee le plus au nord de la station d'Olimp, a savoir au pied de l a falaise entre le s hotels ,Muntenia" et ,Moldova", oil arJparait une s ource a environ 5 em aude s su:; du niveau de la mer. La temperature de l'eau est de 18 et la teneur en H2S est 3,1 mg/1. Nous avons ob serve aus;Si de f a ible s appartitions d'eaux s ulfureuses en pleine mer, pres de la digue situcc en face de l'h6tel ,Belvedere". Les recherches sons-marines effect u ees dans la zone de l\'Iangalia par le Musee de la marine de Constantza ont mis au jour d'autres emergen-

PAGE 162

1_5_6 __________ 'M. U Ana Ca-'-p_o_ta ___________ 14 ces sulfureuses sou8-marines, sur la plate-forme continentale oil, selon Ia ligne orientee du NO au SE, a partir du f:>Ud du marecage de MangaJia et presque jusqu 'en face du lac de Mangalia, on a pu compter plus de 30 apparitions de ce genre. Ces emergence ,jaillissent des grands blocs de caJmdre sous la forme et de ma1ne:,; compactes. Au nord de la fitat ion de Venus on peut parler d 'un seu l complexes aquifere ka.rstique dans des depot::; d'age quc, cretace, eocene et 8armatien, qui a, dans ce secteur, nne de 450-500 rrt. L e de kars tifie?.tion depots carbonati(ruei:l diminuc a pm-tir de:-; sarmatiens de surface ven:; eeux jurassiques de profondeur. Le paleozoi:que comporte un degre reduit de fis:mration et done une <1 i minuee de
PAGE 163

15 Les eaux karstiques de la zone de Mangalia 15 7 Nous considerons que le phenomene de diffluence decri t et l 'e xistence de plusieurs so u::;-marines sur la plate-forme continentale, orientees selon l a direction NO-SE, sont dus a l'ex i stence d 'une ligne de dis location importante qui a ffecte l es depots preeoc e ne s du fondement, le long de laquelle le s eaux thermales sulfmeuses sont vehiculees Yer s la surface. Nous apprec ion s que 'interce p t ion de cette ligne de dislocation p a r un for age a u niveau du cretfLCC OU du jurasHique Huperieur permettrait d'obtenir des eaux aux temperatmes plus e l evees .A cet effet, recherches hydrogeologiqu es souR-marines accom p ag nees cventue ll ement aussi de m esurages biometrique s, qui d evraiNtL etablir la direction et flurtout le plan de disloca t ion, pourraient contribuer a un emplacement judicieux d e cc forage. DIHLIOGRAI'HIE AVHAMESCU E., CADERE H., M IHAI V. (1967), Considerafii hidrogeo / ogice In zona lal'llilli Tal/ageac penlru preci;arca rcsurselor d e apa s ubl era nii. C.S.A.-!.S.C. H St. de hidrogcologic vol. 5 -CHASU V l\IANOI.E V., H. Apelc minc ra/e din R.P.R. parlea \ a (rl'!J. Conslanfa). \.c;m. Gcol. St. tehn. cc. B 38, Bucurq ti FLOH IAN l\1., POI'ESCC-DU\!ITHESClJ GAllHI EI.A (19/:l), Sludii $ i c:rp / rmir i hidrogeo /ogice penlru punerea inna/onre de noi {aclori h idromin e rali in zona Jtangoli a in peri oat/a 1969-1972. Haport, Arh. !.B. F. NITA I. (1971), Ccrceldri hidrogeo / ogice prinin d carslu/ zonc i Mongolia. Haport. .-\rh. 1.'\1.11. PASCU R (1928), Cariercle $i apcle minr,ra/c din H omanin, Dobrogca St. T elL Econ., Geol. Rom. Vl/1, B nc. PRlCA.JAN /'.. (1972), :ipe l e mineral<: lermale din Homrini a. E d Tehn. Bncme.)ti. SCARLAT C. (1971), Lana sulnnarin(t d e Ia capullv fidi a I a \'ama V e che. Terra. :\n. Ill, nr. :2, S T E F V. et a l. ( 1971), Fac/nrii lerapwlic i din Mangalia de .\'ord va/ori{icarc a lor balnwnl. Comunicarc l a a l III-lea simpozinn d e ape mineral c de la Biiile I-h rculnnr. TENU A., NEAC.)I' Georgeta (196R ), Jlidrogco l og i a zonei dinlrc / acu / Manualia $ i \anw Veche. C.S.A.l.S.C.ll. St. d e hiclrogeo logie, \ o l. VI, VASli.ESClJ Gh. lilA TEl S ilvia (19671, Cerctl5, secto r 2, Romania.

PAGE 165

Theoretical and Applied Karstology. Vol. 4 (1991 ). pp. 159 to 112. TRACERS EXPERIMENTS IN THE KARST AREA OF BIHOR MOUNTAINS (ROMANIA) BY I. E. GA$PAR, I. POP, T. The complex geo logical evolution of Bihor Mountains led to the grooth of karstifiable and unkarstifiable rocks mosaic. This evolution is hydrogeologically reflected by the presence of numerous karstic aquifers having different extensions and being charged by precipitations and surface streams, karstically trapped either total of partial. In order to find out the main running water directions of some karstic aquifers, the authors carried out a number of 36 labellings with rhodamine, fluoresceine, stralex 1>, radicactive tracers (I-131, Br-82) and activable tracers (In-EDTA, Dy-EDTA, 1-) On the whole, the tracers labellings accomplished up to now in the karst area of Bihor Mountains showed an average running speed of the unc.crground waters of 45 mfhour. The longest course was found betwee n the pothole of Hoanca C rzicarului and Piluleasa spring {4800 m), while the maximum level difference was b etween the Muncclu cave and Blidaru spring (665 m). 1. GEOGRAPHICAL AND GEOLOGICAL FRAME. Bihor are considered on the first place in the hierarchy of karstic domains in Romania through the vatiety and amplitude of karstic phenomena and forms The karstic terrains developed in the north ern half of Bihor Mountain::;, in the North Bihor, a massif characteris e d by the pre:,;ence of 1 he most important hydrographic knot of A pu:'ieni Muuntains. From here originate the hydrographic bas i ns of Negru, Cald and Mare rivers The endorheic basin Ponorului is located at the intersection of the three great hydrographic basins. It i s smrounded by a girdle of cres1s which prevent it from epigeal hydrographic affiliation to one of the three basins mentioned above. The large majority of the carbonate d epoPits in Bihor Mountains belong from the s truc1 ural standpoint, to the Bihor Autochton. This tectonic unit. cro s out in theN orth-Eastern half of the massif, borde r ed northely by the faults syr:;tem Bulz-Valea Rea and South-Westerly-between Girda and fntre Ape-by the overthrust of Girda and nappes. 1 ) Romanian optical brightener.

PAGE 166

I. et al. 'l'he s e tectonic units consist of sandstones, conglomerateR and subordinatedly, of sc hi s t s The carbonate deposits of Bihor Autochton have a thickness of about 1200 m and they generally form a monoclinal structure with South-West Rlopes, intensively fractured. These have at the baR .YR Triass ic limestones and dolomite:;;, followed by Low e r Jurass ic detrital se ries and further on hy Middl e and Upper ,Jurass ic lim estonm; and Lower Cr etaceous limes tones. The prac ti c all y imperviouR bed of thr aquiferous a ccumulatiom; located in the carbonate d eposits of Eilw r Au loch ton, eonsist of Penni anW crfe n ia n d etrital deposits and, locally, of c r istallin e sehists. On the terrains from the W es tern ;-;ide of the mass if, ge ologically and :>tructura\ly a s signed to the sysLe m cf Coclm Nappes, t h e limestones and dolomites crop out on quite limited an: as (Ferice, Tataro::J.ia , The complex geological comtitution as w e ll as the intem;ive degree of tcctonization antf'rior, contemporary and posterior to the setting in place of Codru Nappes, led to the formation of a r oc k s mosaic, pr<"dominated b y limestones and dolomites followed by sands tones, conglomcraLe;;, eruptive rocks and cri stalline Rehists. This situation i s r eflected both in the relief configuration and in t h e smface and groundwater flow mode. The ample d e v elopment of carbonate
PAGE 167

!J a nt:ll t!Ldrogeologico.f mo.p of lhe Bihar Moifnto.ins Fig. 1 -Legend : 1 -Karstic deposits; 2 -Nonkarstic depo sits (a sandstones, conglomerates, shales; b -crystalline schists; c .sands, gravels, clays; d -banatites); 3 Perennial course; 4 -Temporary. course; 5 -Ponor; 6 Los se s in flow along the rinrbed; 7-Inflow cave; 8-Outflow cave; 9-Pothole; 10-Underground flow direction established by tracer experiments; 11-Geological boundary; 12-Fault; 13-Overthrust front; 14-Quarry; 15-Summit; 16-Mine galery; 17-Mine snaft; .18 Surficial watershed between Negru, Cald and Mare rivers; 19-Spring with flow from 1 to 5 lfs ; 20 -Spring with flow from 50 1 o 100 lfs ; 21 :.... Spring with flow from 100 to 600 lfs. Denomination of points numbered on the map : 1 -Spring and cave of Ferice ; 2 -Groapa ponor; 3-Cerbasca spring; 4-Spring of cave; 5-Spring of and Micula cave; 6 -Fagul galery; 7 -Hidra spring; 8 -Spring of Camenita: g -Blidaru spring; 10 -cave; 11. -Spring of Coliboaia cave; 1 2 Losses of Pietrele brook ; 13 Losses of Secatura brook; 14-Muncelul ca ve ; 15 Losses of Preluca brook; 16 Losses of Sodolul brook ; 17 Losses of Cri'iciune brook : 18 J oo ; prmg o nate ; :sprm gs of Toplita (bulz) brook; 21-Poarta Biborului caye; 22-Losses of Hoanca Codreanuiui brook; 23 Los ses of uri brook; 24 Elena ponor; 25-Iz vorul spring: 26 Losses of Corlatu brook; 27-Loss es of brook; 28 Losses of Hoanca Motului brook : 29-Pothole of Hoanca Urzlcarului ; 30 Losses of brook under Tlrnlcioara ; 31 Losses of brook ; 32 -Louei d: ) U)----2 t::a!!lfA:a n----3 -12---4 .. -.... .....-. .-.--5 .r 6 t/ JS 7 Q 8 D a .lO@ 21 0 of Valea Seaeii brook ; 33 Losses of Tiganu brook ; 34 -Piiruleasa spring ; 35 Galbella spring; 36-Cetiitile Ponorului; '37-Losses of Barsa Cohanului; 38-Losses of Pirlul Sec brook; 39-of Iezere; 40-Izbucul Ursului spring ; 41 Izvorul Rece spring; 4 2 -Caput cave; 43-Losses of Po1ana Ponor; 44-Izbucul Ponotului spring; 45-Ponor of Stevia Lupii; 46-Ponor near Tau! Negru ; 4?Ghetarul de Ia Barsa cave; 48 -Springs of Bulbuci Valley; 49 -spring; 50 Boga sprmg; 51 -Ponor of 52 -Ponor of Valley; 53 -Ponor or Renghii 54-: Ponor of Arsura Valley; 55 -Ponor or Valley ; 56 -Izbucul Mic spring; 57 -sprmg; 58.Ponor of Calineasa ; 59 -Spring of Hoanca Seacii ; 60 -Apa Caldii spring; 01 -Sprmg of ; 62-Gura Apei spring; 63 -Spring of Coliba Ghiobului; 64 Coiba Mica cave; 65-Spring of Vulturul brook; 66 Tiiu?: spring (spring of l\'loara lui Filea); 67 -Corobana spring; 68 Losses of Ocoale brook 69 -Pothole of Sesuri 70 -Cave of Cotetul Dobrestilor and Izvorul Morii spring; 71 Losses of Ordlncusa brook ? ' ; 75-Losses of brook; 76 -Alunu Mare spring; 77-Pepi (Gordan) cave; 78-Plrhil Sec river mouth ; 79 Mic brook (C) ; 80 -Alunu Mlc @---Ponor x of Ponorul Valley; @3_)-Diaclazli Lucu pothole; 84-Ponoful cu Pod -Ponoc _pf VlrtoE__; 86 -Sprmgs of Surile din Firea ; 87 -Pojaru Politei spring; 88 Tre1 li!VOQ.re 89 -;-Gem11nata pothwle ( ... ; ,, .

PAGE 168

3 Tracers experiments in Bihor Mountains 161 ascertain of onl y 6 flow direction of these waters, two of them being a ssigned to Viehman a.o (1958, 1961), and one to each of t h e folowing authors: $erban a.o (19. 57), Rusu a.o (1970), (1974), and Ponta (1984) Since 1983 there were made by t h e a uthors 36 experiments with rhodamine B, fluore s ceine, stral ex, radioactive t racers (1-131, Br-82) and activable tracers (In-EDTA, D y-EDTA) -in the frame of a complex hydrogeo logical research programme of Bihar Mountains karst, initiated by Enterprise for Geologica l and Geopbi s ical Prospecting. Dming t h e accomp li shment of different labelling works we've benefited by the aid of Brijan P Catilina R Stanca C Mato9 P Popa C and Onac B. At s ome injection of tracer s w e wete helped by S ., H a,nd by the members of ,Poli tehnica" Spo l ogic Club from C luj N apoca. The water samples processing and measurement in v i ew of detecting the activabl e tracer was carried out by Sttmesc u P. from IFIN A s a bas i s for t h e hydrogeological maps annexed we have u s ed the following: the geologic map of Romania on a sca l e of 1 : 50, 000, the sl,eets of Pietroasa, Poiana Horea and Avram Iancu drafted by Bleahu a.o. (19 85 1980), res pectivel y by Dumitresc u a.o (1977) a s well as t h e geologic map of Ca l d graben drew up by Mantea (1986) and the structural map of Wes t Bihar Mountains made l)y Bordea a.o (1975). 3. THE HESULTS OF THE THACER EXPERIMENT S The results of tracer:; labelling, p e rform.ed up to the present in Bihar Mountains karst, are synthetiz e d in table J while the ideal flow directions of ground,,aters, as resulted from cxperiments, are found on the h yclrogeo lo g ieal maps annexPd. 3. 1. TATAHOAL\ ZOJ'\E This area i s shaped i n dolomite s an d Ladinian lim es tone s dev<'lOJ1pin g in the form of a strip bet\Yec-n Craia,.. 8 J and Ga lbena Val l eys T he area of 'l'at a roaia i s mostl y SU]Jerposecl to the hydrogeological karst of (fig. 1, 5) c ha,rged a lmost exc lu sively by i ons and d eprived of an nonkarst.ic basin. By diggin g a geological r esea r c h gallery into the upper ba,-in of Fagul brook (fig 1, 6) a n acti ,-e cav e w as intercepted its underground :-:tren,m dra ins through the spring from as praY ed by the rhoda mine B expe rinwnt accomplished. In addition to thi;.; :source, t he system i:-; probabl.v chm ge d 1uo b? the los;.;es from IiYerb e d, a s well as by ilw infiltrat ion:-;, re:-:nlti11g f rom the preci pitation:-; in Tiltilroai a peak zone In case of great rainfall:; t h e fi smes and channel::; network of Giul e9ti spring i s inadequate for dra inin g t.he whole quantity of ,,,ater, so that, a part of it bailR out through Micula cav-e entrance, which ac.ts as the overflow of the system. 4 -c 38 1

PAGE 169

162 I. et al. 4 ------------------------------I 1 Insurgence RESULTS OF Ol'EHATIONS ON H (m) ) Hcsurgencc (number on the map) 4 : 0 [-----(number the map) -----+---------------------+----7------------1 2 3 4*) 5 6 7 8 9 10**) 11 **) l2**) l::l 14 15 16**) il7 18**) 19 20**) 21 22 23 24 25*) 26*) 27 28 29 30 31 32*) 33 34*) 35*) 36 37 38 Ponor of Groapa (2) Fagului cave (6) Lo sses of Pietrclc Hosii brook (J 2) of Seci\lura brook (1 :J) Los ses of Sedlura brook (13) i\luncelu can (11) o r Prcluca brook (15) Losse s of Sohodolul br. (16) Losses of Crliciunc brook (17) Los ses of 1 -loanca Codi canului (22) Losses of uri brook (2:1) 1E i cna po1wr (2 '1) I Loss es of Coria l11 brook (26) Losses or \'aka Scac:" 1 hroo k (:l2) Losses of brook (27) Losses of Hoanca lllo!ilor brook (28) Loss es of Tiganu hrook (3:3) Losses of brook (30) Pothole of Hoanca Urzicurului (29) Losses of Lunqoara brook (:31) Ponor of (51) Ponor of C u( .ilor brook (52) Ponor of Renghii brook Ponor of Arsura b1ook (54) Ponor of brook (55) Ponor of Poiana Ponor (45) Ponor of Trlnghel)li brook (55) Course of Ghctarul de Ia Barsa cave (47) Ponor of Stevia Lupii (45) Losses of Plriul Sec brook (38) !Ponor of Barsa Cohanului (37) Course of cave of Flntlna (fig. 3) Course of Coiba Mica (64) Pothole of Sesuri (69) Losses of Ocoale brook (68) Losses of brook (71) Losses of Ple9ii brook (74) Losses of Ponorul brook (81) 875 8fi5 80() 925 111)1} :il5 5ii0 S50 751l 10-111 1100 1150 925 820 975 11fi 5 700 1290 1260 1235 1245 1270 1060 1260 1100 1125 1205 950 960 1134 1160 745 875 1130 C crbasc a spring (:l) spring (:'>) can (10) Coliboaia sprin g (11) Blidaru sprilg (9) J -lidra spring (7) Colihoaia spring (11) Coliboaia spring (11) Fllidaru spring (9) Blidarn spring (\1) Blidarn spring (9) I lidra spring (7) II idra spring ('i") Poaita 13ihornlui l'aYC (21) l 'ndcrgrounrl works of 1\Iolibdcn n1inc Poarta Bihnrului ca ye (21) Jzvond spring (25) L:vowl spring (25) lzvorul spring (25) Jzvorul spring (25) Trci fzvoarc spring (88) l'iiulcasa spring (:34)) PCndcasa spring (:H) Piiulcasa spring (:H P:"wlcasa spring Boga spring (50) Bog a spring (50) Boga spring (50) lzbuc ul Ponor spring (44) Galbcna spring (35) Izbucul Ponor spring (44) Galbcna spring (85) Izbucul Ponor spring ( 44 ) Galbena spring (35) Galbcna spring (:35) Galbena sprln g (35) Gemiina ta pothole (fig. 3) Ponorului (36) Cetiitile Ponorului (:36) Bulbuci spring (48) Tauz spring (66) Izbucul Politci spring (87) Cotetul spring (70) Izbucul Morii spring (70) Izvorul Mic spring (74) Izvorul Mare spring (73) Alunul Mic spring (80)

PAGE 170

Tracers experiments in Bihor Mountains DIIIOR llOUNTAINS KARSTIC AHEA H (m) L(m) IOH(m)l Trnoo' ""' --5----6--1 7 !----8---0 57 50 50 51 43 39 5 0 3 5 0 15 5 4 4 4 : 3 :l 6 35 35 35 90 90 40 6 7 7 7 7 7 .'1 ;) 5 5 6 6 6 40 00 00 00 00 75 70 70 70 70 75 75 75 1 1 8 11 8 00 11 8 8 8 9 9 15 00 15 00 15 15 15 50 50 50 20 7 7 70 60 7 30 7 25 11 no I -----750 1900 1600 1240 2330 3950 1700 3070 3880 2770 1350 2550 600 8 5 0 175 0 3600 2150 1300 550 2000 3075 4600 1900 2170 2560 2500 2100 5120 2000 :1000 1950 5320 '2775 1925 650 2950 900 2650 880 2800 2880 I 1000 I 2620 I 1400 I I 305 ln-EDTA 360 Rhodamine B 300 in-EDTA 287 365 410 '' Rhodamine B 410 Rhodam inc-13 490 ,, 665 1-13 1 380 Fluoresccinc 160 Fluoresccinc 490 ln-EDTA 210 Br-82 K2Cr202 205 1-131 340 In-EDT A 400 In-EDT A 450 Fluoresceinc 225 1-131 :100 250 In-EDT A 405 Rhodamine B 595 In-EDT A 130 Stralcx 615 Rhodamine B 585 Stralcx 560 In-EDT A 145 Rhodamine B 430 170 Fluorcsccine 245 Fluoresccine 160 Dy-EDTA 445 285 In-EDT A 310 KI Rhodamine A 255 '' 145 Fluorcsccinr 110 Rhodamine 13 214 Fluoresceinc : 3 90 Fluorcsceine 300 '' 15 In-EDT A 150 Hhodamine B 3 0 Rhodamine B I I houts v m/hour 9 1ol .--192 3.9 85 22.3 100 16.0 100 12.4 100 23.3 100 39.5 168 10. 1 240 12.8 147 26 3 96 28.9 70 19.3 310 8.2 48 12.5 288 96 14.1 20 87.5 1344 2.7 288 7.5 30 43.3 10 55.0 24 83 3 95 32.4 300 15.3 24 79.1 15 144.6 I 20 128.0 24 104.1 15 140.0 171. 0 66 38.0 66 45.0 12 162.5 24 221.6 190 14.6 40 48.1 40 16.2 70 42 1 14 64.3 322 8 2 3 8 73.7 I 38 75 0 36 27.8 I 65 I 40 3 I 108 13.0 I I 163 Table 1 Date of labelling 11 6.10.1985 7 10.1984 23.09. 1987 " 1984 21. 09.1984 17. 05 1985 21.09.1984 28.09.1984 24.09.1989 17.05.198 4 4 .11. 1983 18.05. 1984 3. 11.1983 7. 08. 1984 23. 11. 1983 19.09.1985 21.05. 1985 27.05.1985 17 .12. 1984 27.05.1985 13.06. 1985 13.06. 1985 14.06.1985 22 09. 1985 1958 1961 22 09. 1985 .. 10.07. 1987 6 .09.1986 10.08. 1986 10.08. 1986 12.1974 19.10.1985 1957 04.196 4 26.08.1985 26. 08 19 8 5 27.10. 1985

PAGE 171

164 39 40 41 42 I. et al. 6 2 3 4 '. I lcourse of Diaclaza cave (82) 1230. Alunnl Mic spring (80)' / Course of Pothole of Lucii (83) 1160 Alunul l\lic spring (80) Ponor of Poiana Virtopului (85) 1 322 Surile din Firea spring (86) Ponoru I cu Pod ponor (84) 1315 Snrile din Fir ea sprftog (86) H = Elevation above the mean sea level ; L = Horizontal distance between losses and springs; *) operations performed by other authors: Halasi, Ponta .(nr. 4), Viehman et al. **) Drainage. direction is not drown on the hydrogeological. map (fig. 1); Note 1 : The following tracer operations were pr.rformed by the authors in C()operation with : Slanca C. (nr. 6, 10, 12, 16), Popa C., Onac B. (nr. 41, 42). Note 2 : In the followin g tracer operations, the injection of tracer were performed with parti-Napoca speological club (nr. 38, 39, 40). Note 3: In tracer operations nr. 10, 12, 13, 14, 16, the tracers were identified also in waters 3.2. ZONE hydrographic basin represent the karstic area with the greatest density of caves in the country. This i s due to the tithonic-oxfordian lime stones propWons to an intensiYe karsting and (mostly) to the presence of the detrital depo sits on the limitrophe crest, deposits which facilitate the concentration and the conduct of surface flows towards the karstic fields. In table 1 we present the result obtained in the six labellings carried out in this zone. Among these we mention two. Thus, the surface waters infiltr.?..tcd through the thalweg of Sedi,tura brook (fig. 1, 13) .had mostly abandun(ld their old point of di scharge through Colihoaia cave (fig. 1, 11) in favor of Blidaru spring (fig. 1 9). By labelling the waters of Pietrele brook from the hydrographic basin of Craia::;a Valley, it wa.:,; shown their participation to the supply of all the main sources from brook (the spting beneath Coliboaia' cave, cave, Blidaru and Hidra spring), with an increaserl weight on Blidaru spting (fig. 2). We menUori that r y,stematic gauging accomplished in the. whole path of brook did not reveal the presence of any infiltration in riverbed -therefore t}?.e impossibility of contaminating the downstream wurces by the tracers reaching the brook water th1ough the upstream sources. Con sidering the groundwater circulation in the basin on a whole, one may a ssert that we find in the pref!euce of a well developed karstic aquife r, supplied by precipitations and by numerom surface cour:::. es with reduced water disc harge. The diwhaTge of the aquifer is mainly accomplisheO. through Blidaru spring, with the fossilization tendency of the upstream di scharge points (cav es of Coliboaia and as well as the. actiyation of Hidra spring placed down stream. The result:; s how :1 typical example as reglud s the karstic drainages evolution, the down stream migration of the aqui.fms di fcharge points with the aba.ndoriing of old upstream s ources.

PAGE 172

7 Tracers experiments in Bihar Mountai ns 165 Table 1 (continuation) (\ I 7 8 !l 10 11 1100 1200 1 ln-EDTA 230 I 5.2 I 27.10.1985 1100 1100 60 Flunresceine 44 I 25. (J 27.10.1985 1070 2610 252 ln-EI)Ti\ 120 21.7 I 12.06.1988 1070 I 2920 245 Hhodaminc H 90 32.4 I 12.06.1988 I I I til-l = drop; t =Time of first arrival of tracer; v = Apparent velocity (nr. 25, 26), et al. (nr. 34), Rusu et al. (nr. 35) and (32) Brija n P. (nr. 3, 8, 9), P. (nr. 3 0 31), Matyas i S. (nr. 28), Catilina R., eip:.tion of: Brijan P., Matyasi S. (nr. 19) R (nr. 29), ,Politehnica" Cluj-of underground works of Molibclen mine. Fig. 2 -The time behaviour or In-EDT A used as a tracer in J>ietrclc experiment na Ia of labelling : 23.09 19!l7. 200U 1000 E ..... "' N T c 0 0 c "' ,. c 0 u _..;..._ Coliboala o-o I I I I I \ P Blidaru Hidra r: f \ l \ ! i j \ I : / l . : r \ / \\.,I I \I I I i \ I o I I ,' \.'. / I I i .p..._ \,', I I fl -...... ,!> 20 Tl.m ollw lnjecHon. days 5 3.3. THE l 'PPER BASIN OF BAlTA BROOJZ This basin develope mostly on karstie tcnaim, the a .rea wh ich overlaps the polimctallic sulfides ore ,Molibden". The ore i..; horizontally aud vertically open t .hrough numerous workings ( Stoif'i, l 983 ), and its exploit if) difficult h eca u s c of the ka.n;tic waters. The .tracer labelling carried out indicate a of groundwaters from their e:-;cape points represen ted l>y the effluent CaYeR of Izvorul (fig, 1, 25) and Poarta Bihorului (fig 1, 2) towards the underground 'vorkingfl of nMolil..>de mine. Conducting the grouudwaters to these, cause d a substantial diminution of Izvorul flow

PAGE 173

166 I. et al. 8 ---------------------------------------------------well as a transition of Poarta. Bihorului spring to a temporary flow regime. Among the numerous labellings accomplished in this area, we mention the one made in the diffuse losses in riverbed of Valea Seaca brook, down Ktream of Groapa Ruginoasa (fig. 1, 32). The In-EDTA tracer used for t;his experiment was detected in the Izvorul spring as in the waten; inflowR from the underground workings of ,Molibden" mine. This proves a continuity of carbonate deposits under the detrital deposits of Nappe from Tapu crest and 1987). 3.4. THE UPPER BASIN OF GALBENA VALLEY The karstic aquiferous from the upper basin of Galbena brook discharge mostly through Pauleasa spring (fig. 1, 34 and fig. 3), excepting the waters infiltrated from the upper course of Valea Seaca brook which arc Southerly led in Baita basin. Most of brook waters, diffusely infiltrated through the limestone fissures and haleR in thalweg (fig. 1, 31), participate to the charge of Pauleas a spring. In addition to these there are the waters of figannl (fig. 1, 33) and (fig. 1, 30) brooks, as well as the groundwn.ters from the deepest pothole in Bihar Mountains (280m) -Hoanca Urziearului (fig. 1, 29). The underground was labelled in Jderilor gallery with the aid of Brijan P. and S. 3 5. THE CETATI!.E PONORULUI BASIN The endorheic basin has an area of 37.2 km2 Itq genesis h; cloRely connected with the geological constitution of the :wne, with the alternation of karstifyable and nonkarstifyable beds. The worfenian detrital deposits from Magura VinrLU, the hettangian-sinemurian oneR from the alignment Valea Pla.iului -Groapa de la Barsa -Izvorul UrRului brook and the permian ones from Bortigu GHi.voiu crest, favour the forming of a smface flo'"' which infiltrate underground, when entering in carbonate terraines and contributes to the supply of some wide aquifers. In tracers labellings made for detecting the affiliation of the waters infiltrated through numerous ponors from -Ponorului basin 1 and fig. pointed out the underground conduct of the waters belonging to sub-basin and to Cutilor and R.enghii brooks from the Northern part of Padil} sub-basin towards to Boga spring (fig. 1, 50). The reduced transit time of the tracers through the carbonate deposits ma'ls show the presence of a preferential circulation on the karstic holes widely developed, and implicitely the possible existence of a cavernament acce s sible to speologists. The difference of level between""Vara!}oaia ponor and Boga spring is of 615 m, the second in value among the hydrogeological connections established by our experiments carried out in Bihar Mountains. The greatest difference of level of 665 m appears in the drainage Mnncelu cave -Blidaru spring. The surface waters from the Southern half of sub-basin (Arsura, and Girjoaba brooks) are drained underground in a fin;t stage up to the Ponorului spring (fig. 1, 44), from where following an epigeal

PAGE 174

Tracers experiments in Bihor Mountains 1ti7 l oncu Or-Ci?eonu H ydrogeological map of t h e Galbena Pad is I area 0 1 2 l.'. / / / / vf Bisericl .. \ ... \ l I \ \ vf. 1/t:;r--, I 1 I I \I 1 an1-cr1 I ./_ I I vf.GIIdonu .. ,' .... __ \ d Parag1na ;,./'" /,... ____ \ / -\ ..... _____ ........ .. ... .... 14765 Ursului.. \ .... ./ \ -\ \ \ \ \ \ \ I Saddle ; 28 -Karst depression ; 29 Wl3lterfall ; 30 -Hydrometric gauging section. Denomina tion of points nl.!mbered on -the map: !1.-cave; 2-.cu Apii; 3 -Tl\.l.One:l f rom Galbena VaaJley; 4 -Ponor cave from Lunc\'alley ; 5 Losses of brook under Tirnicioara ; 6 -Fintina Rece spring. ; 7 -Cave .of Fi.ntina Rece ; 8 -Ponor o.f:1 Paiana Zapodte ; 9 -Ponor of ZaRodie \ial. ley ; 10 -Ponar and cave Ghetarul de la BCill'Sa ; 1 1 -Ponor near Tiiul Kegru : i2 -Ponor "D" ail Gr.oopa de la Bansa ; ol3 -Neagrii cave; 14 -Ponorul A r&:ilei ponor : 15 -Ponor of Stevia Lupii ; 16 -Ponor o f Poiana Ponor. Note ; Can' passages of Groare de la Parsa after Viilenas (1977) and of Cetatile Ponorului afte r Viehman et al. (1978).

PAGE 175

9 Tracers experiments in Bihor Mountains 167 path of about 1 km they re-enter underground through a ponor, unacceHible for man. They re-appear at Cetatile Ponorului through the spring near the Northern sinkhole 2 ) (Viehman, 1966) in order to appear again in the Galbena spring (fig. 1, 35) after another underground passage. JJumea Pierduta sub-basin consi s t of a homonimous little karstic plateau and of hydrographic basin of the brooks Piriul Sec and Izvonil Ursului enclosing it Northely and Southerly. The former brook has a temp.orar character while the latter is p ermanent on the mos t of its course, being mainly charged by the waters of Izvorul Ursului spring (fig. 1, 40) and Fintina Rece (fig. 1, 41) s prings. Both of them comfluence before penetrating in the cave from Caput (fig. 1, 42). In order to reveal the running direction of ground waters from Lumea Pierduta plateau, a rhodamine B labelling was performed in the water of the Northern affluent of Piriul Sec, which infiltrate diffu s ely into the riverbed when leaving the Liassic sandstones (fig. 1, 38). The tracer wa& detected in the underground course from Gemanata pothole (fig. 3) and in the water which emerges from Caput gallery at Cetatile Ponorului. The waters infiltrating through the ponor from the Bana Cohanului sub-basin (fig. 1, 37) participate al s o to the flow of Ciiput gallery, which was proved b y a fluoresceine experiment. The speologic researches carried out in Groapa de la Barsa by (1977) pointed out the presence of a cavernament which a remarkable lenght (14,880 m) named Zapodie -Barsa System. It centres its elf broadly along the two underground courses, Northern Course and Southern Course, both of them ending by siphons. In addition tD thes e there are some independent courses charged by the ponors from Poiana Za podie, Zapodie Valley, Argila Valley and tha. t from Stevia Lupii (fig. 3). The ponors and the underground courses are charged by numerous small brooks arising on the Liassic terrains at the North and Eas t of Groapa de la Barf'a. Northern Course was coloured with fluore s ceine by ,Focul Viu" Spological Club, the authors indicating the appearance of the trace1 in some weak springs from Liassic sandstones of Poiana Florilor 1977). Our works did not confirm that. On 61 h of september 1986, the \Vater of the ponor from Stevia Lupii was labelled withKI, the presence of I-activable tracer being detected in Galbena spring, two days after launching (fig. 4). On 101 h .Julli 1987 the course from Sala Mare in Ghetarul de Ia Barsa cave, belonging to the Northern Cour s e was labelled with In-EDTA. The tracer was drawn into the Galbena spring, crossing this point from 18. 07 till 28.07.1987 (fig. 5). The samples taken from Boga (10-26.07. 1987) and (10-20.07.1987) springs had not indium. We mention 2 In C c Uitilc Ponorului, right in the proximity of the entrance, there arc two water supplies which join the temporary course of Valea Cehltilor brook in order to form the grouncl course. The first source is situated upstream the portal on the left side anil appears from a siphon lake placed at the end of a 90 m long asceding cave passage. The secona one appears through two close channels situated at about 1m above the minimum water level, in the right wall or Cetlitile Ponorului cave, upstream the inlier facing the Northern sinkhole.

PAGE 176

lfl8 I. et al. 10 F ::. 1 0110 I 0 = Q c= .. u c ._, 1000 Fig. 4 The output curve of a 1 -tracer after labellin g Slevi n Lupii -lzbncnl r;a llJe nl'i spring undl'l"f(fO!Illd fO!Ill' a l 6.09.1986. I I t O t2 Fig. 5 -Con<:cnlralion-lill!C vari a lion of I n-EIJTA as a lracc1 in Ghe(arul clc Ia Barsa-Izbucul Gali>Pnc i "Pring <'X p crimenl. s a -.. rrer i njecti on, E 0 n <:> I ;:, c I : I \ c 0 I I 0 \ I \ \, ) 5 10 15 2 0 Time at ter dtys

PAGE 177

11 'l'racers experiments in B!hor Mountains 169 -------------------that in all our the from Galbena spring were taken from its brook at the br-idgc situate d at the confluence with Valley. At the previous labelling eomiderable quantities of In-EDTA were noted in Galbena brook water at tile point 1ntre Ape. \Ve may not state whether the tracer carne s exclusiv ely from Galbena spring or from the springs below too, bc cau;;e we lack both systematic discharge mea!-;urernent. s A SEi\C.\ VALLEY By l abelling with rhodamine H of brook it wa:-; mean t.o specify t h e dynamics of the groundwater.;.; between Coiba Mica inlet cave lfig. 1, 64) and spring (fig. 1, 66). Thes e points are situated at an aerial distance of 26;)0 m having a level diff erence of 110 m. The tracer the underground in 12 days trave liiug through the cor!trol :-;pel iou 7 days long unde r a unique clas si(;al maximum s p ecif ic tu a ,pi ston type" flow 1987). The inte r ;;t ream area between the Vall e y s of Girda Seaca and Ordindominate d by O coale-Glwt.ar endorheic ba:-;in, >nt.s the object of Humerous speologiealres earehe:-;, stimulatwl by the presence of Ulac.ier. There wer e simultane omdy acco mplisheojarul spring (fig. 1, 87, a.o ., 19;::;';") a.nd the one between the lo,o;ses of O coale Valley (fig. 1, 68) auu the springs from Cotet. ul (fig. 1, 70) and lzYorul l\Iorii (Rwm a.o., 1970), hy means of fluore::;ceine lahe lliug:;;. The Southern terminal of the limestones of Girda Scaci'i Valley ba;::in i .-; dominate d lJy the preseuce of tPrnporary total lo sses from the ] 0\;e r bas in of brook. The waters diffu,eJy infilt.ra t.ed through tlw of t he valley are p a rha. lly found in Izhn<'nl l\Iie (fig. 1, 74). They prnh
PAGE 178

170 Fig. 6 -Transrc,. curve or h -EDTA in th Valley -Izvorul Mare spring experimen 1()0 eo bO T ;. 200P R 0..002 lJ,OOOL t'\ I I I I I I I I I I I 0 \J. I I I I I I \ I. Or!:;eanu et al. r. I \ \ \ ,. ..... I I I I '" 0 .... .... 12 'lr-.,.._ -o--v-0 \ \ \ \ .J,...-&ooQ,o Tim llfh.r injection. Lu< rothol p lil of Po,or V<1llry !I'll Occ!o:o tr. '"'tOTAl ll Fig. 7 -Multitracing experiment in Cald area. i\ J o-o,. j 10 I o" I .... o o -o-o-'0 J) _!_---_.;::_ 2 e. 8 10 T1mE> nJE""t.t;on. days. _,.. 3.7. THE GRABEN AREA OF CALD RIVER The tracer labellingR were made in t .hiR zone in order to ascertain the hydrogeologic baRin extension of Alunul Mic spring, as well as the source of Humpleu cave stream Mare din valea Firii). The explored cavernament of thiR cave uevelops in lower Cretaceous limestones of the homonymous plateau, starting from the springs from Surile din Firea (fig. 1, 86) up to the _proximity of Ponorului Valley.

PAGE 179

13 Tracers experiments in Bihor Mountains 171 In a first stage three tracer labellings were carried out in the total losses of Ponorului Valley (fig. 1, 81) and in ground streams nom D'aclaza cave (fig. 1, 82) and Lucii pothole (fig. 1, 83). The tracers were exclu8i vely directed towards the .Alunul Mic spring (fig. 7). The tracer labelling of the water!.' infiltrated through Ponorul cu Pod ponor (fig. 1, 84) and the ponor from Poiana Virtop (fig. 1, 85), that were made in collaboration of Popa C. and Onac B., pointed out the affiUation of these streams to the groundwaters of Humpleu eave. In all 42 tracer labellings accomplished up to the prer;ent in the karst of Bihor Mountains, an average running speed of the groundwater about 45 m Jhour was recorded. The longest path was found between the pothole from Hoanca Urzicarului and PaulcaPa spring (4600 m) and the maximum level difference (665 m) between Muncelu cave and Blidaru spring. REFERENCES BLEAHU M. (1957), Cap/area carslicd imporlanfa ri penlru evtJ/u(ia morfo/ogicd a Jegiuni/or cars/ice. Problemc de geografb, vol. V, pp. 55-99, Hucure5li. BLEAHU M., DECU V NEGREA S., C., POVARA I., VIEHMAN I. (1976), din Romdnia. Ed .Stiinpficii Enciclopediea, 409 pp. BLEAHU M., DUMITRESCV R., BORDEA S BORDEA JOSEFJNA, MANTEA G. (198u), Haria geologica a Roml'miei, scara 1 :50,000, foaia Poiana Horea. Ed. IGG BLEAHU M., BORDEA S. (1 081), Mun(ii BihorV/cldeasa. Ed. Sport-Turism, 496 pp. BLEAHU M., BORDEA S., BORDEA JOSEFINA, MANTEA G POPESCU AGAPLt\, MARINESCU Fl., CIOFLICA G., A. (1985), Haria geologica a Romdniei, scara 1 :50,000, foaia Pietroasa. Ed. UGG BHIJAN P (1978), A/Jenul lndependenfa din Hoanca Urzicaru/ui. Bul. lnformativ 2, pp. 20 23, FRTA-CCSS, BHIJAN P. (1982), F e nomene endocarslice in zona Valea Bu/:u/ui-Fina(e (Bihar). Carst 2, J.l!J 1i4-60, Cluj-Napoca. BORDEA JOSEFINA, BORDEA S., POP Gr. (1975), Date noi stratigraficqi st ructural osupra Bilwrului d e vest; Unilalea de Urmtit $i Unilatea de Vetre. D.S. IGG, LXI/5, DUJ'vliTRESCU R., BLEAHU M., LUPU l\I. (1977), Haria geologica a Romaniei, scarc1 1 :5 0,000, foaia Avram /ancu. Ed. IGG E. (1987), Modern Trends in Tracer Hydrology. vol. 2, CRC-Press, Boca Halon, Florida, USA. E., ORA,SEANU I. (1987), Nalural and arl!ficial tracers i n the study of the hydrodynamics of karst. Theoretical and Applied Karstology, vol. 3, pp. 31-107, GLIGAN M (1987), Dre naje subterane fn zona de iz11oare a Some$ului Ca/d. Bul. Speo!ogic, 11, pp. 25-32, FHTA-CCSS. GORAN C (1981), Cata/ogul sistematica/ pe$ferilor din Romllnia. CNEFS, 496 pp., Bucurc.5ti, HALAS! G., PONTA Gh. (1984), Subter ranean drainage in 1/;e uppe r part of th e S i ghi$ f r I Valley ( Apuseni Mountains). Theoretical and Applied Karstology, vol. 1, pp. 239 -24:.!. MANTEA Gh. (1 985), Geological studie s in the uppe r basin of the Some$111 Cald Valley and the Va/ea Seacd Valley region ( Hihor-V/lid e asa Mountains). An. IGG, 66, pp. 5-90, OHGHIDAN T., NEGREA St., HACOVITA Gh., I.ASCU C. (1984), Pe$teri din Romrinia. Ghid luristic, 454 pp. Ed. Sport-Turism, RUSU T., RACOVITA G., COMAN D. (1970), Contribution a /'etude du complexe karslique de Ann. Speol., tome 25, fasc. 2, pp. 383-408, Moulis-Ariege, France.

PAGE 180

172 r. et al. 14 -----------------------------------M., COMAN D., V !EHMANN I. (1957), speologiques dans lcs Mon/3 Apuserzi -Zvlastni otisk z cesopis Ceskoslov cnsky Kras Rocnik 10, cislo 1, pp. 1-1-25. STOIC! S.D. (1984), Dislriclu/ melalogenelic Baifa Bilwrului. 189 pp. Ed:Academiei vol. I\', pp. 21-58, Oradea. VALE!\'A$ L. (1976), Priuire de ansam/Jlu asupra carslului din lUunlii Bihorului. Nymphaea, vol. I Y, pp. 21-58, Orad ca. VAL EN A$ L. (1977), Prob/eme de mor{o/og ie wrslicii in Groapa d e I a Bar3a ( Muntii JJihorului ) Nymphaca, V, pp. 157-199, Oradea. \'ALENA$ L. (1984), Sludiu complex a/ ca r slului din :ona J:uorul Urszlui-Plriul S ec. Crlsia, pp. ii59-580, Oradea. VALENA$ 1 .. llLEAI-!U M 11T-\TJAl'\ P., HALAST G. (1077), Jr wcnlaru/ speologic al Mun{ilc>r Dihor. '\imphaca, V, pp. :209 Oradca. V ]. (1966), Col u rtiril c c11 {luorcsc eind i n h;drogra{ici carslu[ui. l-lidrotchniea, Gospodiirirc a apclor, i\Ictcorologia, 11, 1, pp. 37--42, 2, pp. i vfan11scripl rccr-i11cd 2 7 Oclobcr !989 Addr ess e s o f the authors : l ancu OHA)EANU -,, Prospcctiuni S. A.', Str. Caran1 787fl8 Romania. Dr. Ernilian anct Tudor TANASE. -Inslitutul de Fizici\ Ingincric Nudcarii, 5206, M iigurclc, Romania. Dr. Iuliu POP-Institulul de lnYapmtnt Superio r !bia Marc, Slr. Dr. V. 62 /A, Uaia l\lnre, Homania.

PAGE 181

Theoretical and Applied K a r s lolor;y . Vol. 4 (1991 ), pp. 113 to 1 82. OVERALL WATER BALANCE COMPUTATION IN THE KARST ZONE .. IZVOARE RECI", SCROPOASA (ROMANIA) UY EUGENIA plnvA:n::-;cu and A. PIR\'A i \'ESt:U TlJl' paper presents tlJc manne r of halancc clements assessment and the computation of the overall water b alance in the karst U"''a ,. 7 Izvuare Hcci" Scropoasa proposed for valorisation as export "flat waters'. Tho main purpose of this c empu t a l ion was to establish the feed zones of the source with a view to implement protection system s against polluling agents. Kar;;:.t as compared to the g e neral aquifer conditions o[ gruuwiwaten; in porou,; media, re\eah specific particularities determitwd hy i Ls fonnaticnt. The clh;:-;ol ving action of water upo n calcareous roc k s a nonn11ifonn network throughout the rock thus enabling the flow bet\Veen 1 he charge area and the i.li,;cllarge area. Therefore, n.Jthough we can speak of groundwater flow in kant y;one:-;, Uti .'> does not imply the of a well t1efined eontinuoui'i aquifPr. The equipot.entiallines of the aquifer cannot be determined by hydrogeological mapping neithe r can they be rendered on a contour line map in the case of grained water bearing rock,.;. Karstic hytlrogeo l fltrnetures generally ren:al high heterogene i t.v and anisotropy, thus making the ext.rapolation of parame t eri'i determirwd at one point. to error. For these rea,.;on s, specific d ct.cnniuations of groun
PAGE 182

17.( Eugenia Pirvanescu, A. PlrvAnescu 2 The prevent.ion of possible accidental pollutions requires the determination of the source ebarging conditions, with a view to establisl1 r;trictly protected GEOLOGICAL COSIDERATIONS. The spring group known as ,7 IzYoare Heei" is located on the right of the valley, at the base of the Dichiu mountain which is markedly ka.rstic in nature, at an altitude of 1250 m. The geologica l composition of the area ineludes metamorphic and sedimentary fmmations (Fig. 1). 'rhe metamorphic formationr.; occur in the \Vest of the area, and arc represented by the epimetamorphic crystalline schists of the Leaota l!eries, which are impervious. The sedimentary formations a .re represented by : -jurass ic occuring on the right of the Scropoasa valley and along the Ialomita valley, which are affected by exokar:;:tic and endophenomena greatly facillitat.ing the flow of water; Bucegi cong lomerates, occuring both on the right and on the len of the Ialomita river, which also reveal permC'ability due to cracks. They cover the wrface of the ESTIMATION OF OVERALL W A'l'ER BALANCE ELEMEN'l'S. The hydrogeologie basin determined in accordance with and geologic eriteria has a surface area of 7. 73 sq.km out of which 2.03sq.l\m represent the active karst wne. The overall water ba.lance mainly aims at establishing the relatiouships bet ween the inflow s (contributions) anrl outflows (lo sses) in a limited area on the bas is of whieh the water reserves variation i:-; studied. 'l'he equation employed for wa.terbalance eomputa.tion (according to I. Castany) i s : P = E + Q dW (I) where: P -rainfall (mm) E -actual evapotranspiration (mm) C! -runoff (mm) rl W -ref\erve Yariation It is known from literature that, in a closed hydrologic haflin, hydraulically isolated, where no exchanges with neighbouring unitl' occured, the variation (dw) equa-ls the effeetive see pa,ge (Icf) and (.an he computed from I. Caxtany's eqmttion : 1000. t. d"\\ ? = Icr == Q sour<:e > < -------A (2)

PAGE 183

3 Water bla'nce computation r-....._ .. .__ __ __.gs Km ( 0 ,' 0 0'.: 0 0 0 0 0 0 ,._ :r=:z: _zz=, c 0 o Fig. 1 -The geological map of the Scropoasa area : 1. Massif limeslones (Upper Jurasic); 2. Bucegi conglomerates (Cretaceous); 3. Chrystallin schists (Precambrian); 4. Limes!one wall; 5. Limit of the karstifled area; 6. Ka
PAGE 184

176 Eugenia Pirviinescu, A. 'Piivanescu where: Q source average flow of the r-ources t time in seconds (31.53 6 sce.jyr) A surface area of the baf'in (f-:q.m) Applying the equation to the Scropoasa. basin where: Q average = 0.450 cu.mfsec (Scropoas a + Dichiu springs) dV = 0.450 31 53 106 = 1818 mm 7.86 The annual precipitation average oYer the past 50 yr. at the Scropoasa meteorologic station is 1,135 mm. The value obtained, 1818 mm, reveals that the reserve variation is greater than the value of the average multianual Tainfull (1,135 mm), considering that the latter would entirely contribute to the aquifer recharge, without taking into consideration the losses due tu evapotranspiration and surface runoff. This goes to show that we have to deal with an open hydrologic basin; therefore the equations (1) and (2) do not apply to the situation. It follows that local amount of seepage water does not cover the measured flow of the spring:;; Scropoasa and Diehiu of about 0.450 cu.mj sec., which obviously leadf;l cpnchlF.ion that there exists an additional charg1ng from outside the basin. We resorted to the general equation of balance : }:; Q ioput = h (l OUt]?llt I. INFJ.OWING WATER : 1. Rainfall (P) .=l,l35 rom (multianual average over 50 yrr.) 2. Unflow from the Ialomita river .808 rnm ( 200 lj:;;ec.) -( Q Ialomita river) value computed on the basis of flow measur-ements carried out over the Fame period at the permanent ob!'icrvation points (Fig. 2) between 1953-1956 by I.S.P.E. I The flow measurements were lJCrformcd by Jnstilutul dr Studii) Ccrcetiiri Hidrotehnice, ]nstitutul
PAGE 185

177 5 Water blance computation 3 .Allochtonous (Value obtaine d by diff erence from the ( q .Allocht.) overaYI water balance C(juation). II. OUTFLOWING W.A'l'gR (lor;sc!:i) are: 1. .Actual evapotrampiration (E) = 358 mm It was computed .from L. 'l'ure s equation : ., p J 135 'H u E = ---= -----= 111m V . v 113:)2 0 9 0 5 + + L2 37(j2 L = 300 + 25T + 0,.1)'1'3 = T = 3 (multianual a.vmage) 2. Runoff ( Q5 ) (-!) Runoff (Q5 ) e quals surface rmJof (Q :-:mface) plus unde r ground runoff (Q underground). This balance element was determined by two methods : a) The average specific multiannual flow method. b) The direct hydrologic measurements method. a) The average specific multiannua.l flow method. The average multiannua.l flow of the Scropoasa river was deduced using the indirect method of the analogy with the Ialomita riYer at H. S. Scropoasa, considering that between the two hydrographic basins there is a relatively satisfactory phys iographic similitude. Knowing that: Q average multiammal Ialomita river = 1.58 cu.n fsec. Surface area. of the Ialomit_a receiving bas in = 65.3 sq.km. f 1580 2 2 l/ k q averarre speCl 1c = --= '.t:. l:'ec.sq. m 0 6ti.3 By analogy: Surface area of the Scropoasa basin= 7.75 sq.km. q averagemultiannual Scropoasa = 24.21/ sec.sq.km x 7.75 sq.km = = 187.5 1/s ec. It is known from literature that in the Scropoasa area, uue to the karst occurrence, a ,ut ni the nmoff amount, about 150 mm (37 1/s ec.) seep through the kan;t (according to M. PaRcu -1983). Therefore: Q surface= 187 -37 = 150 1/sec. (606 mm). b) The direct hydrologicmcasurementsmethod, a llo wed the estimation of runoff on the bas i s of direct flow measurements carried out on the Scropoasa at the two measurement point:,; set up upstream and downstream of ,7 lzvoare Heci" oYer the p er iod 1953-1956. Considering t.hat flow measurements cover only three years, in order to obtain a conect value of q med. multiannual at the Scropoasa river, both the average flow (q. m e d.} and the multiannual average flow (q med. 12-Ci 381

PAGE 186

178 Eugenia Ptrvanescu, A Pirvanescu 6 multiannual) have been determined on the Ialomita river at H. S. Scropo'3>sa dming the periods of obse,.vation 1953-1956 and 1940-1980 respectively. Table I THE AXl\'UAL A VERGE FLOWS (cu mfsec.) RECORDED AT mE MEASURE}IENT l'OINTS TAKEN INTO CO}IPUTATION Year of observation Qmed. Mea surement River 1953,1954,1955 1953-points 1956 Scropoasa o. 10 I -upsteeam-Scropoasa -0 .07 0.085 ---=I Scropoasa downstream Scropoasa 0 50 0 :42 0 480 ----Scropoasa I -screen I alomi!a 1. 86 1. 57 1. 90 1. 770 The following ratio has been obtained : Q(1940-1980) Q(1953 -1956) 1.58 = 0.89 1.77 Q med. Q med. JOlUitian multiannual 1940-coree ted 1980 I -0.075 -0.428 1 570 -With this coefficient the average multiannual values have been corrected for the three observation years at the two points of measurement (up stream and downstream) on the Scropoasa river (Table 1). The value of the average multiannual flow -0.428 cu.mfs ec. repre sents the total runoff in the Scropoasa basin. In order to find the surface runoff, we substract from this value the flow of the Scropoa s a springs which represents underground runoff. Therefore: Q surface = Q s -Q underground Q surface = 0.428 -0.250 = 0.178 cu.mf sec. (719 mm) Surface runoff in the Scropoasa basin was obtained by ave raging t:hc values obtained by the two method. So, Q surface = 150 + 178 = 164 1 /s (662 mm) 2 a verage OVER.AL WATER BAL.AC:Ij} COMPUTATION Based upon the balance elements determined for average values a primary overall water balance computation was attempted to enable the orientative of the participation of each element to the feeding of the s ource in question.

PAGE 187

b la:nce camp Water utation 2 3 -,1Km ' Ialomita I r (in the upper (in the 11 __ ...;... _______ -:=-. d groundwate ? Local f the l surfaee an g points; 5 Lim1t 0 The exc a basin ; h nge between 1 measurm 4 Springs ; Ftg. 2) 1 Simultaneous3 Losses m tho al basin. 'bazin I n value ; hydrologic gorge) -mea 179

PAGE 188

180 Eugenia Pirvanescu, A. Pirvanescu R.ESER.VE V .AR.I.ATION (dW) = 1,818 (450 1 /sec.) Group of contribution in the basin : Precipitations (P) = 1,135 mm (281 1/sec.) Contribution from the Ialomita river = 808 mm (200 1/sec.) (Q Ialomita river) Contribution from the Rurface runoff = 150 mm (37 1/s ec.) ( Q seepage) .Allocbtonous contribution = ? (Q allocht. ) Group of lo sses from the basin: Actu a l evapotranl'pimtion (E) = 358 mm (89 1/se c ) Surface s unoff = 662 mm (164 ( Q smface) dW = (P + Q river Ialomita + Q s e epage+ Q allocht.) -(E + Q surface) 1,818 = (1135 + 808 + 150 + Q allocht.)-(358 + 662) Q allocht. = 1,818 -1,073 = 74 5 mm (185 1/sec.). 8 Computations are revealed in the scheme of balance elements carried out for the area of the Scropoasa (Fig 3) AUUAI SURfMl EVAPOIRANSf'IR RllNOf f liON 352mm 189 lis I 652mmlloW' NAlURAL KARS I OU 7 spr rnQ ',t: ropof!' n S'r'''"q OrU,ull I l l if B "'"' 1 < )0 lis I v :11tt,:\JI rnJhovo) 19nnm I 'io
PAGE 189

9 Water bla'nce computation 181 the allochtonous flow coming from neighbouring areas, who s e values are large enough, about 185 1/sec. We advance the hypothesis that a substantial contribution-in this geologically complicated hydrostructure -is due to the large calca reous rocks occuring in the superior basin of the Ialomita river, such as : calcarous karst rocks upstream of the Tatarului gorge, the large calca erous rocks in the Padina basin. The paper is considered u seful to those interested in turning to account the high quality water resources in the Scropoasa basin repre senting, at the same time, a first step towards increasing re search which a view to solving some problems whose credibility is not yet satisfactory. REFERENCES GASTANY, C (1972), Prospcc(iuneG. $1 exploalarea apclor sublcranc. Ed. Tehnidl, PASCU, M., (1983), Apele sublerane din Romdnia. Ed. Tchnid\, ,Ha11uscripf received 16 Febarua !T J9S S Address of the Ing. Eugenia PlRVANESCU and A PlRVANESGUJnstitutul de Cercetari Proicctari pcntru Apclor, Splaiul Independcntei 294, Romania.

PAGE 191

Theoretieal and Applied Karstology. Yo/. 4 (1991), pp. 183 to 187. CONSIDERATIONS CONCERNING THE GYPS OCCURENCE IN THE CIUR-IZBUC CAVE (PADUREA CRAIULUI MOUNTAINS, ROMANIA) BY GEORGETA IONESCU anti C. IONESCU The Ciur Izbuc Cave as a part of the Toplita-Ciur-Tinoas a karstic system, lying in the South-eastern slope of Pad urea Craiului Mountains in the karstic plateau Runcuri. The sy stem was investigated since 1965-1970 by a collective consi sting of T. Rusu, Gh. Racovita and v. Craciun. From geological point of view this region i s made of sedimentary depo sits belonging to the Bihar Autochtonous Unit and mainly of Jurass ic formations (Fig. 1). Significant in the Ciur-Izbuc cave evolution was the pres ence of the Liassic deposits that involve a complete s equence in typical Gresten facies that content three distinctive formations : a detritial formation equivalent with the Gresten sandstone con s i sting of coars e grif stone, a s econd one is limy -equivalent with Gre sten limestone and a third one con s isting mainly of marly beds (Fig. 2). 'l'he c arbonate depo sits takes a l arge development in this region up to 35 m thick and con s i s t of sandy s p athic limestones of grey yellowish colour, rich in f auna of Gryphaeas l>e llemnites, c rinoid es briozoars and bra chiopod es that could b e found along the entire gallerie s line The marly depo s its have reduce d d e v e lopment, up to 5 m iJitiii.., area, and con s i sts of grey blacki s h m arls limy marls and s ilitic marls rich in pyrite and conta ining a fauna mainly of bellemnites and rare ammonites and bivalves The sandstone form ation and the marly one are limiting the vertica.l e xtension of the cavernament in the carbonatic complex bounda ry. Al s o present in region are the Dogger's deposit s con s i sting of sandy, marly and silitic limestones, having ferriferrou s oolites and the Malm ones repres en ted by mass ive limestone s in Stramberg facies and Albioara limestone s The latter i s responsible for the typica l karstic plateau aspect of Runcuri region, ch a racterised by dolines and gorges (Fig. 1).

PAGE 192

1 84 Georgeta Ionescu, C. Ionescu '-------------------------Fig. 1. -Geological sketch of RuncuriCiur-Tinoasa zone: 1. Pleist ocen sands and gravels: 2. Bauxite; 3. Tithonic limestone ; 4 Callo-vian lirnestone; 5. Dogger marly, ooidic limestone ; G. Toarcian marls: 7. Pliensbachian spathk limestone; 8. Sinemurian sandstones ; 9. Hettangian sandstones ; 10. Fault; 11. Dolina ; 12. Swallct ; 1 Karstic springs ; 14. Geological boundary. 0o0 I 6 nC) 2 m 7rn 12 .......... 5 .... 9 B 10--7 rt-t '7. 0 100rn ..______....

PAGE 193

The gypsocureiice tn the Clur-Izbuc cave -----------' ---------185 3 The Ciur-Izbuc cave develops in the Liassic limy complexs and take a NE-SW direction almost conform with the main tectonic lines that affects the karstic plateau. The tectonical conditioning is evident in the 0 5 10 I I I 2 0 I 30 40 50m I I J 2-31',;: ;it 4-sl9.".J1?66J a I A 8 Fig. 3 -Geological sketch of Ciur -Izbuc cave: 1. Water flow; 2. Toarcian marls, alternated marls with gyps; e. Plientbachian limestone; 4. Sinemurlan sandstones; 5. Alluvial deposits 1 a) line fragments; b) rough fragments; A. Inferior floor; B. Superior floor. thix moment the ferri c h ydroxide h: :ua s oluble f'ettleR do>vn af\ a gel precipitate and, in t,ime, dming dehydratation give s mineials o f lin,onite type.

PAGE 194

3 The gyps ocurence in the Ciur-lzbuc cave 185 ------------------------The CiuT-lzbuc cave developR in t.he Liassic limy complexs and take a NE-SW direction almost conform with the main tectonic line!:\ that affects the ka. n ;tic plateau. The tectonical conditioning i s evident in t .he o7l (,1 Cl c .;, 0 0 0 _a_oo c 6 "' o o 2 Fig. 2. -Sccvencc in I .iuss ic deposits : 1. Conglomerates, quartzitie sandstones: 2 Sandstones: 3. Sand\ spathie limestone with Gryphaeas and Hellemnites" : 4. Black marl s and marly limestones. first part of the Ce interflecte d with the two, facilitated important phenomena of diagenese with implication in the gyps crystals bearing. 'J'hese inarlc; of Toarcian age, as a result of sedi mentation of one material initially rich in organic matter in high reducing eonditiom are containing iron-pyrites diseminat.ed or in packet. Due to the weathering and hydrolysis processes, these ma.rls are l oosing their carhonitic components but they enriched in compounds of aluminium with s ilica iron and }JOtassium, re:-;ulting c lay-marls and clay. Their rontgenodifradoruetric and thermal reveals a content. of 40 -45% Q, 30-35% caolinite, 10-14% illite, micas and hydromica::>, 6% calcite a .nd l ess then 5% pyrite. On own, 1iyrit.e initial gets into ferrous wlphate that i s unF-table in presence of free oxigene and passes in ferric sulphate. The wit h a weak acid character is hydrolysing and g-et-R H2S04 and Pe2(0Hh At. this moment the ferric hydroxide hard soluble FettlrR down n:;; a gel }H"Peipitate and, in time, during dehydratation give::: miuerals o f lin,onite type.

PAGE 195

_I8_ 6 ___________________ & __ Ion $CU C.I o n_e_sc_ u _____________________ 4 f I ,1 (<];( 1: I r''' I' I,, r. .I I .;) \I Iii I ;'1 1 0 :; : i I,! 1 ; : ( i i :: i I d.' I i 1 \ : 1 ,1, !.i i i 1! 1 ,: I' I ' t I!, IIi I l \ I I I I ; 1 ('u fi) .Jf ' ) ,_ b c Fig, 4-Gyps crystal s aspects; a-ldiomorphcs crystals: b Impurities disposition inside the crystals ; c Concrescent maclas.

PAGE 196

5 _________________ __ oc _ur __ e nce m _th_ e __ C_iur __ -_Iz_ b u c __ ca _v_e ________________ 1H7 The H2S04 on his one gets reaction with the CaC03 in the water presence conducing to gypt> : 1'he forming can also take place directly from the ferrous sulphate : Where this gyps had enough to develop it conducted to idiomorphic crystals with eollumnal prismatic. habitus due to predominantgrowing on the ,c" :txit> of the cryRtalf-l (Fig. 4). They can also apear a!:' made of tabular cryf\tals, where thefie growth condition were more restrictive. The idiomorphic crystals presents striations parallel with the minerals extension due to repeating of some neighboring face s, very narrow. They are tram;parent and colomleRR, but >ome of the m l J re sents phenomena zonal pseudoc hromatiHm, because of impurities included such a s clay material. TheRe impuritieH have an angle disposition up to 20-30 against the main optic axis of the cry:
PAGE 198

Thtorelical and 1 p p/iec/ ] (arslo/ogy. V o l. 4 ( 7 99 1 ) pp. 1 8 9 t o 191 LA PYRITE BACTERIENNE DE Rl$CULUITADEPARTEMENT DE HUNEDOARA ROUMANIE PAH M. NEDOPACA La pyrite d'origin e b acte rienn e apparait, dans une grotte fossile, l:lous forme de glomerulet> en ass ociation avec la goethite, !'hydrogoethite et la p s ylomelane. L'apparit ion de la pyrite e st c onditionnee genetiquemen1! par certaines particularites g e ologiqu es, cbimiques et d y riamique s de s eaux souterraines Les calcaire s tithoniques du ver sant gauche de l a valle c d e au nord-ouest de Brad, departement de Hunedoara, sont constitue s d e roches massi v es, 1 ecif a l es, g ri s -bl anchatres. Elles sont inte n sement' k a r stifiees en surface et l'on y trouve de nombreu s es d9lin es et de s l a pi e z A la carriere de lor s de s travau x d'e;pl c it::-"tion du calcaire, a cte mise a jour, en s ection tra n sve r s al e une grotte fo s sile (Fi g 1 ), completement obturee par de s sediments a lluvionnaire s Cette s ection a c onfirmc un developpement initiale sou s pres s ion, ensuite un a pprofon dis -sement gravitationnel e t un el a rgissement par. ecoulement a niveau libre. Fig. 1 -La grotte tossile ; s\!ction transversale. Q 1 Le profil decouvert a fait ressortir de s speleother;nes carbonatiques composes de dmpei ie s ecoulements parie.taux et de pla nchers stalagmi tiques.

PAGE 199

190 N. Nedopaca 2 --------------------------Le s roches detritiques qui ont colmate l a grotte: argiles, sable s et graviers, sont constituees de quartzites, paleo-basaltes, calcaires, morceaux roules de spe l eothemes corrodees et fragments osteologiques. La couche de sable se trouvant ala base de la sect ion est comprise entre
PAGE 200

pyrite bacterienne l!ll Dans lf'R r,onditiom a,ctuelles ln, pyrite er:;t r:;ubstit uee par les hydroxydes impozion Cnrst, Cluj-Napoc:.J. Manuscript rrccived 3 A pri I 198 7 Address o { the rwllwr: Mircca NEDOPACA -Str. Libert:11ii, Blrc A7, .Ap. 22, 2775, Brad, Judeptl Huncdoara, Homania.

PAGE 202

The o retical and Applied /{ar., tol o gy V ol. 4 (199 1 ) flfl 1 9 3 l o 2 0.1. ASPECTS OF THE KARSTIFICATION IN THE CORNILOR SPRING AREA (PADUREA CRAIULUI MOUNTAINS) (ROMANIA) BY H. FflATIL .\ and S. CONSTANTIN The paper presents the researches accomplished in a karst a re a with a s li ght surface (2.6 km2 ) which bide a great cave, Cornilor Cave, with a length or 10.14 kms. The k arst morphology study, together with the geo lo gical and tcctonical observations are used for realising the karst map of this area. The factors wich conditioned the genesis of the cavity are analised : lithology, tectonics and h ydrochemical conditioning. Finally, based on this analys is, the authors proposes a h ypothesis on the endokarstic drainages succession and the ge nesi s of the cavern 1. GENERAL DATA The area under study is located in the South-easternmos t part of the Padurea Craiului Mountains at the boundary between this mountains, Bihor Mountains and the hills leading on to the Depress ion, North of the Cresuia village (Budureasa commune, Bihor county} (se e Pig. 1, a). It extends on roughly 2.6 s q. kms. and it i s cut by valley s flowin g {)ll North-South direction and which separate low -altitude ridge s. Here a r e the respective ridge s from the Wes t to the East: the Sovarului Hill (380m), following by the Piatra Hill (550 m) -a hill that, owing to the C ornilor wall and the Piatra s teep, tower s ove r the and, respectively, the IJunc a valley s It streches on to the South with the Zmeuretului Hill through a saddl e (Fig 1). The and Lunca brooks belong s to the hydrographic b as in of the Negru River and springs from the Hidg e wich i s situated North of this area. Upstream of the extreme northern s ide of the Piatra \ Vall we may note a p artia l bed water-lo ss in the Lunca brook (5 1 /s o. s.). On the l efth and s lope of the Valley there are thre e s prings of wich one (the Cornilor Spring) provides tho access in the Cornilor Cave Its discharge is of s ome 20 1 / s Th. e other two springs boasts lower discharges (roughly 2-3 1 /s) and are situate d 20 m downstream. IJ -c. 381

PAGE 203

194 R. Fratila, S. Constantin 2 2. GEOLOGY From a structural point of view, the formation that crop out into the area at issue belongs to the Bihar and Codru units. 2 .1. THE BIHOR uNIT The depo sits belonging to the Bihar Autochton date back to the ladinia n and the Barremian. The Ladinian is responsible for the Guttenstein-type black limestones which are bedded in highly fractured decimetric strips cemented by calcite. The Barremian limestones, called by some researchers (MUTIHAC, 1982) aR ,lower limestones with pachiodontes" are milky-white in appearance and massi ve. They are sometimes bedded in thick patches. The samples taken by us from both the inside of Cornilor Cave and from the su r face, pinpoint to at least two distinct micro-facies of the respective limestoneR : a) micrite with bioclastes (biomicrite); with oxidation zones, wich often include macrocrystalline aggregates (recrystallization). Locally biotite crystals proves a slight terrigenous contribution. Sometimes we can ob serve pressure dissolution structures (sthylolithic structures). b) intraclastic limestones with partially chloritized biotite and with sparite ,crowns" that develops along the contour of the intraclastes This variety emerges on a stratigraphic level that is superior to the micritic limestones. 2.2. THE CODRU t ;NIT The oldest depo sits cropping up within this sub-unit are the Permian Werjenian ones. They are represented by conglomerates, quartzitic sandstones and shales With the continue sedimentation, they were coYered by grey Anisian dolomitic limestones, without any visible bedding a -nd with parallelipipedic breakes. 2.3. THE POST-TECTONIC COVER Upper Cretaceous is represented by polymictic conglomerates with rolled elements, in a liillly cement and by sandstones with l arge size elements. Di scordantly, they sustain the Pliocene deposits, represented by blue sandy clays that alternate with yello w micaceous sands. The Q1taternary depo sits are represente d by clays with limy and ferruginc J.S concretions and alluvial chad. 2.1. IGNEOUS ROCKS The Cretaceous sandstones that c1op out on the brook contain a rhyolitic vein wich, in the wake of a thermic metamorphis m process, created a relatively thin area of hornfels with epidote.

PAGE 204

:\ The karstification in the Cornilor Spring a rea 1 95 2. 5. TECTO:--.: I CS B IXHAREST UNIVERSITY CAVING CLUB -IZYDRUL CD R RRER Nil (B!HOR DISTRICT ROMANIA) KARST MAP .,.. SURVE Y B Y R,\ O U FRA TIL A SILviU CONSTANTIN ., ">{ / /y--> I I / I I Ill I ,1' ( / : //d I \-../ /!' I y I I j ,' I ) K2 / \ \ I I \ I l / I / 1 ,/ / .. T-;.;'"f" !"' y I ; N2 I \ \ ( l \ \ j I I I I I -J 3 ...J ::> ;!' (). VJ I \\1,/) )l /(()/ I I: . ,'1'' / / : \ / / Y L , ( /'-''ip \ ...._l I i .I / o..Y v?-J / ,;>!/ --------I y9/ _y .. ,. --.... / / ,. X O:z / \ .. I / / \ // ' K2 / ...r..' / ft-!EURETULUI --. .. ,:-,,, :, !' I I ; I \ ' sao I ( / I 'Oo 1"\ \ \ \ -/ 7. .... t; ,; \ \ \ \ KEY MAP ,o '2553 ......... a [] k b r===la 5 t:::::::::::J b s(:[ J 7 aB g0 lO !2o " I 12.( < r:=====l a FL.::.:.S::J b SECTIONS 1SUJ 0 16. 200 0 0 0 0 0 17. 1 :....:..:..: j':--::.)21 O n 023. 550rtrn SW SOVARJLUI HILL I ORAGOESTI VALL fY I PIATRA SOIMULUI HIL( I 'LUNCA VALLEY I NE : ;; 500 4:-il l[JJ 3.XJ NNW DIATRA SOIMULUI HIL L SOJ 4 5 0 400 I I I I I I I I vALL EV SSE 0 100 I I I I I I 200m .. ;;;-a;; .... f.'ig. 1 -CORNILOR SPRING AREA -KARST l\!AP: 1 -nonknr slifiable ro c ks; 2 -l\nrstifiable roc ks; 3 geo logical limit: n -normal: b -transgress ive; 4 : u position; b -point of m i crotcctonic measurements; 5 : a -fault : b -overtilrust front ; (i -kurre n ; 7-cave; 8-direction of waters [low; 9 springs; 10-vcrtieul walls; 11-dejection cone; 1 2 -quarry; 13 -valleys: a -permanent; b -temporary; 14 geo lo gical sections position; 15.,... limestones 16 -qual'tzitic (P-w); 17 -cong lomerates, sandst o n es (K2 ) ; 18 sanely c lays, micaceous sands (N2 ) ; 19-clays with limy and f erruginous concr etions ( Q); 20-swallct. a) SITUATION OF TilE COII.N JLO H SPH!NG AHEA: 21-mountain aren; 22 -hills area; :!3 d epress i o n u r e u ; 24 -village s, citi es Notes: Geol ogica l situation Jcroruing to J.P. E.G. with modifications. Cornilor Cave map from BRJAN, 1 987, simplified. Longitudinal sections tllrough tile cave are

PAGE 205

The karstification in the Corruilor Spring area 195 2.5. TECTONICS The Codru Nappe thru:,;ted over the Bihor Autochton in the Cenomanian (PREDA, 1962). The depo sits of the Autochton appears in nappe inliers on the I.Junca brook, in the North-eastern corner and in the central part of the region, where they are bordered by the Piatra and the Cornilor faults. They fiink to the We:,;t, a long the Cornilor fault, s o that only the deposits of the Autochton crop out on the s urface. In their turn, these sink to the S outh-Wefit a long a longitudina l fault and they are covered by the post-tectonic cover (see Fig. 1). 3. KAH.ST MORPHOLOGY 3.1. THE EXOh:AHST The small surface of karstifiable depo sits in the area under study wa.s detrimental to the development of a significant exokars t. J{arre n a .ppears sporadically in the Piatra Hill and they crop out on the Barremian limestones in small isolated patches. Their di sposition is a, quasi-parallel one and they are preferentia lly oriented in the direction of the l ayers. They belong to the ,half-exposed" type (BOGLI, 19 80) The two major, faults (the Piatra Fault-N l5 E and the C'ornilor Fault N 34W), where the limestones comes into contact wit.h the Permian-\erfenian Q.eposits, generated a number of joint planes where corrosion and distension proces ses determined the emergence of veJU:eal walls, up to 50 m in height. The correlation between the main development lin e and t he line of the aforesaid faults i s obvious (see Fig. 1). :l.2. THE ENDOKARST The area under study contains only one cavity, the Cornilor Cave (the Crefiuia Cave), with a remarkable lenght: 10.14 kms. (level difference: + 112 m) (BRIJAN, 1987). The whole cave develops on the Barremia, n lime stones of the Bihor Unit. The cavity i s active and cente1ed on an underground flow who se discharge stands at roughly 15-20 1 /s and which cro sse s a strongly meandring gallery that develops on diaclases It i s of relatively low width::; (1-4m) and heights than often top 15 m. In several points, large s ize Iabyrinthic systems of galleries are linked to this ,major" gallery. The entrance of the cave is situated at the base of the Corn ilor \ Va ll and leads to s ome s malls ize galleries wich are a lmo s t circ ul a r in sec tion and wich boasts frequent corrosion forms (floor, lateral and roof septums), wich attest to the genesis of the cave in phreatic conditions. The section of the main gallery changes upstream, where it b ecome::> triangular in shape and. remains relatively small in size up to the Curtain Room (::ee Fig. 2). It.s heights do not exceed 2m. Beyond that room the gaJlery grows in size to be more than 20 m high and 4-5 m wide in between 7-th and 1-st sump. The typical section i s that with erosion levels

PAGE 206

19l5 R. Fratila, S. Constantin 4 -------------. ---generated by the succesive lateral displacements of the underground river bed wich translates into a meandring course of the gallery. In some places the meandres are ,cuted" by suspended fossil galleries. Roughly 220 m "NORTH COURSE .., (,. EN PAGODA ROCXV! 0 100
PAGE 207

5 The karstification in the CornUor Spring area 197 ------4. 'l'HE FACTORS THAT CONDITIONED THE DEVELOPMENT OF THE CAVE The development of the cavern in the sector under investigation was from two points of view On the one hand, our interest was in the general background behind the formation of the drainages and, on the other hand, in the way in wich various factors that influence karst formation interconditioned each other to lead to the detail morphology of the respective cave. 4.1. LITHOLOGICAL CONDITIONING .Althought there are no chemical analyses conducted on the Barremian limestones in the respective cave at our the samples that were taken and studied in thin sections pointed. to thtir preponderant. calcitic composition (over 80%), as well as to a s lighly magne sian character and a relatively low amount of clayey residue. Under those circum stances, we considered that we have to do with a slighly karstifiable depo sit, a sine-qua-non condition for the establi shment of an endokarstic drainage. With a view to study a possible correl'pondance between the detail structure of the calcareous depo sits and the development of the cave galleries, samples from the underground were taken and studied in thin sections .A banding of the respective two micro-facial varieties (biomicrite and intraclastic limestones) could be thus noted (Fig. 2). In connection with the respective banding there are two conclu s ions that we can draw: 1) The intraclastic limestones are to be found only in the fossil 1 ooms and the galleries above the Eastern Course and, stratigraphically and altimetrically, they occupy a po sition that is superior to that of the biomicrites in the galleries of the main course. 2) The galle rie s deve loped in t.he intraclas ti c limestone s h::;.ve l a rger sizes than those formed in 'uio micritt:s. Natturaly, we don't have enough reasonr-to uphold that lithology was the univocu,l reason behind the different development of the cave ; however, we must point out that the fi1st petn, gra.phic variety i s certainly favourable to the development of large spaces. Indee d, the marked porosity of the intraclastic limestone s implie s the existence of a better contact between the aggressive wa,ter and the carbonaceous p n rticles and the dissolution of the micritic c ement leads to a faster removal of the non carbonaceous intraclastes (owing to both ero s ive and gravitational proces s e s ) wich generated, at an equal time, a larger hole than in the cas e of a biomicrite Therefore, without m:cribing for the lithological el ement a decisive role in the gene s i s of the cavity, we s hould agree to its certain influence on the morphology of the g a lleries. 4.2. TECTONIC CONDITIOJ\JNG What one finds wbe!l t2.ki n g a glance at the plan of the Cornilor Cave is the obviou s l y orthogonal dis position of the g a llerie s wich suggests a direct dependance between the development of the joint systems

PAGE 208

198 R. S. Constantin 6 and the en
PAGE 209

_7 ________ in the Corruilor _______ l9_9 corrosion in all diTection R The galleries boasting a N 4 7 W and a N 52E direction (Fig. 3 b) are prevalent, however. To correlate the development directions of the galleries with the directions of the joint planes, microtectonic measurements were effected in two points on the smface (t:e e Fig. 1). They resulted in two Schmidttype tectonograms (Fig. 4 ). The first tectonogram (Fig. 4 a) showing tension joints, highlighted the existence of two Rets of corresponding to two major planes : F1 = N 2rWj20NE and F 2 = N 48E / 90. The second tector..ogram I I I()Qm .tt-\ \ \ Fig. 5 -The repartition of the fi5sure planes, of the maximal muin stress and the position of the strain elipsoide in the Corm lor sprmg : 1 ---: faults; 2 terlSlon fissures; 3 -shearing fi ssu res; 4 -direction of the maxrmal mam stress.

PAGE 210

:!00 R. Frii.tilii., S. Constantin 8 -------------------------(Pig. 4 b) s howing shearing j oints, p oints to the ex i stence of the sets of fisfmres F3 = N 37 W/50 SW and :b\ = N 13 E/84SE. Both t h e fault.R ann the respective Rystems of fissures were created under the impact of a tria. xial stress. According to Coulomb crite ri : .m, the direction of the plane in whi e h t h e maximal m ain stress worked c a n be put at N 9 \-V (Fi g 5). The implication s of these obse rvations on the gene s i s of the cave are ob Yiou s The tectonic stress gener ated the a for esaid systems of fi s sures which, in t heir turn, f avoured t h e drainage of surface waters through the calc a reou s m a ss both from the Vall ey (in the F3 general direc tio n) and fro m t h e Lunca Valley (F2). The g enerally known fact that t e n s ion j oints appear i n the direction of the tectonic stress does not exclude the possibility of the ex i stence of a previous direction o f stress approxi mate ly oriented in the F2 direction; however, field observations do not a.llow u s to as 8 ess the relative a : ge of fissures F1 and F 2 Nevertheless considering the entire development and morphology of the gall e rieR, we may set for t h a h ypotexi s according to wich the drainage in the Lunca Valle y Corn ilor Spring direction dates p rior to that from the Valley towards the same emergent point, wich would imply a longer period of ,process in g o f the system of fissures F2 and, con sequently, itR older age and that of the original 8treRs. 4. 3. HYDROCHEMICAL CONDITIONING The study of the proces ses that contributed to the formation of the karst drai nage s and to the gene s i s of the cave was completed with ob servations on the variations in the chemism of the water after their interaction with the Barremian limestones. To thl.s end, water samples wer e taken from the foll owing points (Tabl e 1) : LOCATION t ti valley, at lhe sa uds contact :! Lunca valley, a t emer gence :I Cornilor Spring 4 Cornilor Spring \ Datollt z I I 07 1987 lt I 7.8 07 .1987 11 7 6 07.1987 9 7.4 02. 1972 9 7.2 ca+ + Mg'' (mg/1) (illg/1) 5 4.5 9 .82 44.4 8.03 48. l 16.07 44.0 29 08 Table 1 CaCO (mgjl ) 1.80.61 150.5:1 190. G:l 110 0 S ample 1 from the brook, from the contact point llet ween t h e Permian-\Verfe nian sandstones and limestones S ample 2 from the Lunca broo k at the swallet Sample 3 from the C ornilor Hpring -the resurge nce of the water J m ; t from the Lunca brook and pass in g through the cave (the Eastern C ourse). The three samples were taken in July 1987

PAGE 211

\) The karstification in the Cori1Jilor Spring area 201 ------------------Furthermore, we had at our dispo sal data on a sample taken in February 1972 from the same point wherefrom we collected Sample 3, whose results were published by BLEAHU (1974). (Sample 4) The low number of samples available does not allow us to formulate c a tegorical conclu s ions on the variations of the water chemism at different t.emp eratures. However, we will make a number of general remarks: Of concern in all samples were temperature, the pH, Ca2+ and Mg2+ion coucentration, as well ar; the amount of di s solved CaC03 The analyseR a relatively large Mg2+-ion concentratiou, wich may be accounted for lhe ievigation of the Ladinian dolomitic limestones. Moreover, a double Mg2+ -ion concentration may be noted in the resurgence of the Cornilor ing, as compared with the emergence of the Lunca Brook, an aspect that could be correlated with the slightly magnesian nature of the Barre-nlian limestones. As for the amount of CaC03 charging the water after itH course, we could say it maintains within normal limits and iL iR comparable with that encountered in several other karst areas throughout the country. Putting down the results on a Trombe diagram (Fig. 6) one may nnt:e that brook is saturated in a temperature of 7.5-8 (the normal average of this area) Both the Lunca brook and the Corni Jor sprirg contains anaggressive water with a normal drop in the aggressivefor the Sample 3. The Sample 4 indicates greater which might be accounted for by the lower temperature in the respective 14eason. As for the aggressiveness of the water of the resurgence, it should be not surprising if we considered the fact that they are the result of the mixture of two waters of different aggressiveness (Sample 1 and Sample 2), wich, according to the principle of mixing corrosion (BOGLI, 1980), generates a solution of higher aggressivity 5. GENETIC CONSIDERATIONS The study of the aforesaid factors might lead to a number of conclu::;iont' on the evolution of the endokarst in the Cornilor Spring area : 1) Structural-tectonic considerations allows us to state that the, first endokarst drainage was formed at the level of the Lunca brook oriented towards the Valley. In this way the sy stem of fossil galleries on the Eastern Couree was formed, the paleo-exurgeilce being probahly situated a t the level of the fossil galleries near the 7-th sump (Sepia Gallery a .o. ). In the first stage, the water circulated on bedding planes and then sank down on diaclases with the interception of t.ension fissures (System F 2). 2) Latter on, a water-catchement in the brook was produced at the level of the Great Labyrinth. In that stage, the level" for the water of the respective swallet is the drain born in the first stage, wich is situated on a lower level. 3) The underground catchement of the water of the brook is of special importan ce as the aggressivnees of the water increases as a result of the mixing corrosion phenomenon. An intense corrosion

PAGE 212

202 R. S Constantin 10 activity is in progres and its results is the deepening of the underground course and the formation of the current meanders, as an outcome of the interception of all the fissure systems that have already been enlarged by percolation waters. The emergence of the water to the surface occurs along the Cornilor Fault, at the contact with the Permian-Werfenian impermeable depo sits, through a typical chain of fault springs 1 july 1987 1-+ 2-l1 3-e february 1972. 4 -o (acco rding to BLEAHU.1974) 0 50 150 200 7.5 6 100 400 Fig. 6 -The projection of the waters samples on a trombe-type diagram (for the sample's numben, see Table 1) I l) The authors thanks to PETRU BRIJ.AN (tlte Speol og ical Club "Speodava" in Dr. Petrn Gro z a) and to all the members of the 'Labirint'' Speological Club (Bucharest University) wh()> took part in the two research campaigns, for their support during the field research work (the author's note).

PAGE 213

11 The karstification in the Cornlilor Spring area 203 REFERENCES BLEAIIU, M., (197 1), carslicii Ed . )tiintificii, I B0GLI, A (1980), Karst Hydrology and Phisical Spe /eo logy. Springer Verlag, Berlin, Heidelberg, New York. BHIJAN, P., (1987), Pc$1erile din zona Cresuia (M-(ii Piidurea Craiului). Bul. Speol., 11, F.R.T.A. C.C S .S., MUTIHAC, V., (1982), Unitc(ile geologice s t ructurale $i distribu(ia su/Jslan( e o r minrrnle utile I n Roml'inia. Ed. Didacticll. Pedagogica, PREDA, J., (1962), Studiul geological regiu11ii Ed. Academiei, Manuscript received 5 Septembe r 1988 Addresses of the authors: R. FRATILA-,. Prospecpuni S.A. Str. 1, 78678 Romania. Silviu CONSTANTIN -Institutul de Speolo gie "Emil Racovita", Str. Frumoasll. 11, 78114 12, Romania.

PAGE 215

T!teote/icul and Applie d Kurslo/ugy. Yo/. 1 ( /991 ), pfJ. 205 !o 2 10 EXCAVATION AT THE GROTTE DES CEDRES (LE PLAN D'AUPS, VAR, FRANCE), 1987. EVIDENCE FOR A LATE RISSIAN EPISODE JJY A. UEFUWR, EVEL YNE CHEGUT-BONNOURE and t:. HADULESCU A brief aecount is given nf ncrnt cxcavaticn at the Gro t tc Lies C t 'urcs (Lc Plan d'A11ps, \ "ar, France). l'leistc c ene deposits yielde d lithic assembla ges associated with ahundnnt m::ur.maiiun rcmnins inuicaUvc o f a Late russian age (isot o 1 ic stage () of uc c p sea c<'rcs). 1. J;\TRODUCT[()N The Grotto de s Ccdrci; it' locate and the identification of H e m itrarrus wa s met with Recent ox.canttion of the Ple i s to cene Ae<.J.uenc.C', carried out by one of u;; (A.D.), supplied a rela,iively poor lithic :k;;;oeiated with numerous rrmmmalian remains. U sing tllieving and teehniqu.e :
PAGE 216

:206 A. Defleur., Evelyne Cregut-Bonnoure, C Radulescu 2 2. STR.ATIGR.APHY The deposits eonsisted of a Holocene leve l (layer 1) containing an abundant archaeological material dating from the end of the Neolithie and the beginning of the Metal .Ages (Deflem et Barge-Mahleu, 1988) overlying a sequence of Pleistocene lev e l s (iayerH II-V). The Pleistocene stratigraphy, in desc ending order, is as follow8: Layer II, 15-20 em. Cryoclastic weathered lime stone fragmEnb in a c layey mati ix .Abundant lithic industry and faunal remains. Layer Ill, 20 em. ClayE-y deposit with few cryoclasti c limestone fmgments. Poor lithic industry; abundant fauna well preserved. 1. Contin-uous ind1trated level, 2-3 em. Layer IV, 10-15 em. Clayey containing a high amount of ill-sorted sands. Poor faunal remains. ? Continuou,s indurated level 2-3 em. La7;e r V, 25-50 em. Red plastic cla, y without lime stone Sterile. The Pleistocene sequence may be subdiYided two major geo logical units separated by the fint continuous indurated level whieh marks a c le a r boundary between the two Eedimentary asEemblages. Thi::; subdivir;ion i x also supported by a se1ies of analyses (granulometry, caleimetry, clay mineralogy, quartz morphoscopy) \Vhich indicate that the upper geologica l unit (layers II-III) was laid dmvn under prevailing cold climatic conditions (pr esence of cryoclastic limestone fragmentl:i, presence of primary clay minerals illite and chlorite, high amount of carbonatation, high amount of crystallization of illite), whereas the lower geological unit (la yers IV-V) was forming under temperate climate (lack of cryocl astic lim ePtone fragments, high amount of Fmectite, lo w amount of carbonatation etc.). The indurated level betweEn the layers IV and V fihows an interruption in the sed imeJ ',tation of t}1e low e r unit 3. THE .AHCHA EOLOGIC.AL ASSEMBLAGE The lithic industry iR represented by 103 collected for the most part in the layer II. The layer III yielded only a few Etone fla.keli at itx top. The under l y in g layers (IVV ) weTe d eprived of lithic indmtry .Ar-; a whole, the lithi c assemblage i s h omogeneo u s as to the raw material, technique and typology. The main wurce of flint for the prehistoric occupants of the cave was i n the local exposures of .Albian limestone. The technique i s distinguished by a ve1y low (IL=2.9). 'The facet-index is also very lo'v (IF= 16.3; IFs = 4.1). Typo logicall y, the Mom;terian group, the best repreo.ented, consists exclusively of scrapen; (IR, = 48.6) There i s an abundance of oneside d scrapers including a high proportion of tools obtained through reverse retouchs. Tools with eonvergent retouche d sideH as w e ll as tools \viOl thinned back or base are absent. The Upper Palaeolithic group, with a low includes ?. g1eat majority of backed knives obtained from laminar flakes retaining

PAGE 217

Exe2vation at the Grotte des Cedres 207 --------the natura. cortex. Some. examples of type a r e transformed into se r a p e ri'. Tool s belonging to the notched-and denticulated group are numerous (more than one third of the whole tool assemblage). Handaxes and handaxe flakes are abEent. Although including a rather low amount of tools, the lithic assemblage of the Grotte des CCdres may be defined as a Mousterian of non-levalloi sian technique of flake production containing a high percentage of scrapers and denticulate formR as well as backed knive:-;. The lithic industry under com:ideration, taking into account the lack of handaxeR and the lac k of both Tayac and Quinson points, >eems to have no relationR hip with the cultun.l,} facie s containing handaxes (Tayacian, Epiacheulian and Late Aclwuli a n of the Late Middle Pleistocene) (Lumley, 1976). At tl10 same time, the lithie from the Grotte d es Cedres ir; di s tinr L a s compared with the Mow ;terian of Rissian age from the layer X at the Grotto de Rigabe (Artigue, Var) (Bonifay, 1965 ) and from the layers 26 to 23 at the Baume d e s Peyrards (Buoux, Vaucluse) (Lumley-Woodyear, 1969). At the present state of knowledge, on t h e bas is of both typology and t echnology, a connexion can be establi shed only with some t:ypical Mousterian seri es from wulheastern Franc(. Unfortunately, the l ow number of tool s recovered hom the Grotte deR prevents a r e liablr ccmpariwn to b e made. 4. FAUNA In a preliminary r eport, C h r l c s (19:32) identified the following Rpec ieR : Ursus ardoil, Canis l-uptt s, Lynx p anlirw va,r spclaea Lutra lutra., (htlo b u realis, 1->os taun. ts, Ovibos moschal1t8, O vis at ies, Gapnr acgagrHs, Capm ibex, Hem1 :t ragus jemlahic11s, Apode m1tS sylvaticus, OryGtolag us < nnimtlus, L e p us van'abil1:8. The list includiug a number of domestic s peci e s a mixture o f fauuas coming at l e a s t from two different laye rs. Rub scquent faunal studie:o (J) e f 1 e u r et al. 1989, C reg u tB on no u r e 1989) confirmed the prese nce of Hernitmgus in the P l eixtoof the Grot ;te d e s Cedres Rewaim; of Gapm ibe:v \\ere found only in the Hol0cene JcyeJ (layer I). At preflent, the general faunal list includes the follo\\ing i f .ragus cedrens1:s (De f leur et al., 1989; n e f leur et C reg u tBonnoure 1990; Cregut-Bonnoure, 1989). A bri ef systematic aeeount i s ghen here only of the mammalx whieh are significant in the establif:'hment of the age of the depo sitH. In some

PAGE 218

208 A. Defleur, Evelyne Cregut-Bonnoure, C Radulescu 4 --------------. ----------cases, the allowed the definition of ne'Y taxa : H emitragus cedrensiH (C r 6 gut-Bonn our e, 1989), Microtus brecciensis defleuri and An, icul t' attpsensis (R ad u l esc u, 1989). Canis lupus -The wolf is represented by R r;pecimens (3 indi\'iduals). One of these, an upper carnassial is 23 wm long measured on tlw external wall. The remains indicate of a rather r,:iz e ...,rhieh findfi its counterpart in the material from 1 he Abimes de l a Fa.ge (Noaill<'fl, Correze) and from the Grotte de l a Niche at Montmaurin (Hautf-Garonne) a ,st:igned to the R.is:-ian coldstage (T avos o et al., 1990) Capreolus capreoltts -The roe-dee r iR doeumentPd through 2:1 :->JWcimem belonging to at 5 individualP The tooth-row i:> htrger a s compared with corresponding specimens of vViirmian a ge It i:-; worth noting that larger dimen::;ion s are characteristic of the Hi:::. s ian roe-dee1. Rnpicapra rvpicapra -The chamoiR is rcpreH'nted by !) (.3 The lack of horn-cores doeR not aHow a compari f'on with R. rupicapra occitania of Hissian age to be made a .nd prt>clude::; subs pcciJic identifications. It is interesting to note that a metacarpal bone agrees i11 s iz e and morphology with a :o:pecimen from the Grotte de l a :Niehe (layer C3) asFdgned to the Middle or La.te Rissian (T avos o et al., 1990). Jlemitra.gus cedrensis -The collection iuelude:-:; a n abundaucc of Jl emilragus remain:-; (149 :-pecimens belonging to 10 individuals). 'l'he tahr from the Grotte des Cer morphological comparison i ndicatef.; that this :mrvi vor from earlier t.imes is distinguiRhed by more progressive feature:-; (enamel strongly differentiated, a larger cnmmunication between the anterim-cap and the fifth triangle (T5), buccal reentmnt anglPs Ptrongly cm,cd forvmnl at apices, high degree of hypsodonty). Mt"crotus !Jrecciensis rlefleuri -Teeth of the mt>dit erranean vole arc the mos t common in the faycr III (57 M1). 'rhis i s sign ificantly larger (:R ad 11 l esc u, 1989) than M. breCC1ensis or gna censis frmn Orgnac 3, tentatively assigned to the Middle Rissian by C h a 1 inc (1972). I;a. tcr, .Tea nne t (1981) r;uggested a Mindel-RiRs age for the association containi ug tbis taxon (palaeoecological phase III of Orgnac 3). .A rm:cula sap1"clt1S aupsensis -This taxon iR bar,;ed on a, man
PAGE 219

Excavation at the Grotte des Cedres 5. CHRONOLOGY The association of a rather emall wolf with a larger roe-deer and a particular form of Hemitragus (H. cedrensis) suggests an ante-Wiirmian age for the faunal assemblage recovered from the Grotte del> Cedres (layers II, III and IV) (De fIe u r et al., 1989, De fIe u r et C reg u tB on no u r e, 1990). It is worth remembering that H. cedrensis seem R to make itR appearance in southern France during the Late Htage (Riss III) (C r c gut-Bonn our e, 1989). On the other hand, the mediterranean vole Microtus brecciensis defleuri is indicative of an age later than the lying down of the fos s iliferom: sequence of Orgnac 3 (layers 4b, 6, 7 and 8) which supplied the smaller JJ1. brecciensis orgnacensis (C hal in e, 1972; Jeanne t., 1981). It i s of interest to note that the end of the main phase of sedimentation at Orgnac 3 was dated to about 300,000 years B.P. (as indicated by the study of pyroclastic minerals ) (Debar d et Past r c, 1988). On the bas is of the evolutionary stage of the species present, the PleiRtocene fos F iliferous layers (II -IV) of the Grotte des CedreR are considered to date from the penultimate glacial, more precisely from Late Rissian episode characterized by a shift from temperate to c.col ancl drier conditions (isotopic Ftage 6 of ueep R ea cores). REFERENCES llON 1 FAY r::. (I rl65), M'lusl erie n r l prernntsterie11 de Ia _qnlt e de Rigabe. Quarb r, 1:1Hi. 61-17, !l fig., Bonn. Cl I.ALJNE J. (1972), Les Ron!J curs du PU!; !ocen e moye n e l .EFLEl! H A. et BAHGE-l\fAHlEU H. (1!'!88\, Nowld/e s pu!cisio11s sur it. 11iueau:r r ecent.< de Ia _qrolte d e s C e rires Trav du L A .P.l\1.0., 1:=!9-146, Aix-Pn-Provcncc. DEFLElJH A et CREGUT-BONNOURE E. (1990), La grotte des (;edres, commune du 1'/on d'Aups (Var ). BSPF, 87, 9, Le Mans. DEFLEUR A., CREGUT-BONNOURE E. c t RADULESCU C (1989), Nouvelle s donnee3 stralig1aphiques et sur /r" grotte des Cedres (Le Plan d'Aups, Var ). U11 tw;weau gisement t) Hemitragus d'flge rissirn. C R A cad. Sc. Paris, 308, (II\, 259-265, Paris. JEANNET M (1 981 ). L e s rong erJrs du aclrw/ec n d Orgnac 3 ( Ardeclw ). Es sai d e Pa!eoeco/ogi e tL de Clrron slrdigraplrie Bull. Soc. Linnecnnc Lyon, 50, :!, 4 9 71, Lyor:. I.IJMLEY-WOODYEAR H de (1969), L e Palca/ithique ancien ct moye n du Midi mediterraneen clans cadre geo/ogigue. V suppl. Gallia Prehistoire, I, Ligurie-Provcncc, 4 64 p Paris. L1 H. de (1976), Les civilisations du Pa/eolitlriqll e in{erieur en Prooence. ] a Prehis / aire (rancaise 12. J.es ciuili.wtions pa/eolithiqll e s ct mcsclithiqllcs. Ed. du CNHS, 819851 Paris. H A OULESCU C. (1 989), Preliminary note on the rod ent fauna {rom "La Grott e des Ci>drcs" (I.e Plan d'Atzps, Var, France:. Misc. spcol. Rom., I, 327-333, I -c.SSI

PAGE 220

110 A. Defleur, Evelyne Cregut-Bonnoure, C RAdulescu 6 TA VOSO A., CHEGUT-BONNOURE E., GUERIN C., PERNAUD-ORLIAC J. et CAMMAS R. (1990), La Grolle de Ia Niche a Monfmaurin (Haute Garonne, France). NouoPlles d onm!es bi ostratigraphiques ef approche taphonomir;ue. C. H. Acad. Sc. Paris, :no, (II), 95 1 00, Pads. Manuscript r erciued 23 February 1 991 Addresses of /h e authors: Alhan DEFLEUH -L.A.P.M.O., U.R.A. 164 C.N.R.S., t ;niversilc de Provence, 13621 Aix-cn-Provcnce, Cedcx, France. Evclyne CREGVT-BONPrnct, 84000 Avignon, France. Coslin H.ADULESCU-ln<;litutul de Speologie "Emil Racovip" Str. Frumoasa 11, 78114 Bucure. 5ti 1:2, Hurnania.

PAGE 221

Theoretical and App/ird l{fJrslo/ogy. rot. / ( 1091 ) Pfl 211 to 2 1 2. TRACERS INVESTIGATIONS IN POIANA-TECURI AREA ($UREAN MONTAINS, ROMANIA) BY I. R. VENTEL, E. On the xouthern side of the upper course of Strei river the zone Poiana-Tecmi, characterized by a remarkable speleological potential, from which the caves of Tecuri, Clenjii and Sipot sump are mentioned a:;; well as the pothole Ri'ichiteaua. The researched. area i s Rloped into a plate of Upper Jurasic limestones with a slight sinuous r e lief, h anging up at 600-800 m aboYe the Strei river and laying on a crystalline schi sts relief. The karstic terra ins are deprived of a s uperficial flow, the water co m ses whi c h forms on the limitrophe ctistalline areals, infilttating completely underground, when pass ing through lime stones. The underground water from the lirne stonefl di sc h arge westwanh; through 2 m ain somceR : the Siphon's cave from Sipot with a mean dischmge of abou t 200 1 / s and the right side R pring from Sipot. haYing a mean flow of a.bout 40 l fs. Both of them eme r ge from the near the limi t with 1 he crystalline schi s t s in 1!!6 :'5, V. canie d out two i nYest igations with flu o r eceine in oruer to defone s om e flowing clir ec t ion s of the undcrg10u n transit time of the water between in surgences and resmgencer:. (tahl e J ) '!'\YO of e expel iments repeated the ones can i ed out by The 1 esult of thcf e wm point out two main aspects : 1 We i n the p1 eFence of an underground flow with a 1 elatiYel} siow SJJCetalline sc hists appean> at the R mfn,ce aud 1 he Sipot 1 iv er The rai sing of the CJ ysta llin e basement forms a waten;he
PAGE 222

21 I. Orii!lecinu et al. Fig. 1 -Hydrogeological sketch of Polana-Tecuri area : a -Karslic terrains; b -Nonkarslic terrains; c -Underground flo''f direction established by trace r experiments ; d Abrupt ; 1 -Siphon's cave of Sipot; 2 -Right side spring of Sipot; 3 -Teiui Lung (La Tau! Lung) ponor ; 4 -Poncr of Poiana ; 5 -Ponor of Sllna Trilznitii; 6 -Girla Vacii ponor; 7 -C lenjii cave; 8 -Ponorlci 2 ponor; 9 -Ponorici 1 ponor; 10 -Rilchiteaua pothole: 11 -Bojita ranger chalet Resul ts of t.rac lng operations on Polana-Tccurl area 2 Table 1 --.----------------No., Insurgence (H) I Resurgence (H) Tracer used Date l Ponorlci ponor (900) !Siphon' s cave on 1800,340,In-EDTA Sipot (560) 144 12.5 5.10. 1986 2 Cienjil cave (906) I 1909 346 Rhodamine B 132 14.5 3 Teiul lung ponor (868) I Hight side spring on Sipot (560) 1850 308 Dy-EDTA 96 19.3 13.09.1987 4 Ponor of Poiana (1027) 2400 4671Hhodamine B 72,33.3 .. I = Elevation; L = Horizontal distance b etween and resurgence; H = Vertical drop; T =Time of first arivai of tracer; V =Velocity. Rllli'ERENCES t. GlUHGIU I., LASCU V. {1985) -si(onu / ui de /a Sipol (Munfii Styx, 2, pp. 25-31. 2 TRUFAS V. (1986)-S urean11. Ghld turis!ic, Co lectia Muntil Ed. Sport-Turism, I ,i p Bucure.5ti. i\fanttscripl r ccrivr d 15 1991 Addre ss e s o( the authors : Ianeu ORA-5Ef\NU s .a. ", Str. Carau1, 78i68 Romania. Dr. Emilian GASPAR -Institutul de Fizic:'i Inginerie. Nuclear:'\, 5206, 1\Vgurclc, Romania, Romulus VENTEL .:.... Ccrcul Spcologic Piatra Vale a .liului, R.omQnia.