Ongoing Deformation of Sinkholes in Wink, Texas, Observed by Time-Series Sentinel-1A SAR Interferometry (Preliminary Results)

Citation
Ongoing Deformation of Sinkholes in Wink, Texas, Observed by Time-Series Sentinel-1A SAR Interferometry (Preliminary Results)

Material Information

Title:
Ongoing Deformation of Sinkholes in Wink, Texas, Observed by Time-Series Sentinel-1A SAR Interferometry (Preliminary Results)
Series Title:
Remote Sensing
Publisher:
MDPI
Publication Date:
Language:
English
Physical Description:
1 online resource

Subjects

Subjects / Keywords:
Sinkholes ( lcsh )
Deformations (Mechanics) ( lcsh )
Genre:
serial ( sobekcm )
Location:
Texas

Notes

Abstract:
Spatiotemporal deformation of existing sinkholes and the surrounding region in Wink, TX are probed using time-series interferometric synthetic aperture radar (InSAR) methods with radar images acquired from the Sentinel-1A satellite launched in April 2014. The two-dimensional deformation maps, calculated using InSAR observations from ascending and descending tracks, reveal that much of the observed deformation is vertical. Our results indicate that the sinkholes are still influenced by ground depression, implying that the sinkholes continue to expand. Particularly, a region 1 km northeast of sinkhole #2 is sinking at a rate of up to 13 cm/year, and its aerial extent has been enlarged in the past eight years when compared with a previous survey. Furthermore, there is a high correlation between groundwater level and surficial subsidence during the summer months, representing the complicated characteristics of sinkhole deformation under the influence of successive roof failures in underlying cavities. We also modeled the sinkhole deformation in a homogenous elastic half-space with two dislocation sources, and the ground depression above cavities could be numerically analyzed. Measurements of ongoing deformation in sinkholes and assessments of the stability of the land surface at sinkhole-prone locations in near real-time, are essential for mitigating the threat posed to people and property by the materialization of sinkholes.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
K26-05049 ( USFLDC DOI )
K26.5049 ( USFLDC handle )

USFLDC Membership

Aggregations:
Added automatically
Karst Information Portal

Postcard Information

Format:
serial

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

Article OngoingDeformationofSinkholesinWink,Texas, ObservedbyTime-SeriesSentinel-1ASAR InterferometryPreliminaryResults Jin-WooKim,ZhongLu*andKimberlyDegrandpre RoyM.HufngtonDepartmentofEarthSciences,SouthernMethodistUniversity,Dallas,TX75275,USA; jinwook@smu.eduJ.-W.K.;kdegrandpre@smu.eduK.D. Correspondence:zhonglu@smu.edu;Tel.:+1-214-768-0101;Fax:+1-214-768-2701 AcademicEditors:SalvatoreStramondo,NormanKerleandPrasadS.Thenkabail Received:17February2016;Accepted:5April2016;Published:8April2016 Abstract:SpatiotemporaldeformationofexistingsinkholesandthesurroundingregioninWink,TXareprobedusingtime-seriesinterferometricsyntheticapertureradarInSARmethodswithradarimagesacquiredfromtheSentinel-1AsatellitelaunchedinApril2014.Thetwo-dimensionaldeformationmaps,calculatedusingInSARobservationsfromascendinganddescendingtracks,revealthatmuchoftheobserveddeformationisvertical.Ourresultsindicatethatthesinkholesarestillinuencedbygrounddepression,implyingthatthesinkholescontinuetoexpand.Particularly,aregion1kmnortheastofsinkhole#2issinkingatarateofupto13cm/year,anditsaerialextenthasbeenenlargedinthepasteightyearswhencomparedwithaprevioussurvey.Furthermore,thereisahighcorrelationbetweengroundwaterlevelandsurcialsubsidenceduringthesummermonths,representingthecomplicatedcharacteristicsofsinkholedeformationundertheinuenceofsuccessiverooffailuresinunderlyingcavities.Wealsomodeledthesinkholedeformationinahomogenouselastichalf-spacewithtwodislocationsources,andthegrounddepressionabovecavitiescouldbenumericallyanalyzed.Measurementsofongoingdeformationinsinkholesandassessmentsofthestabilityofthelandsurfaceatsinkhole-pronelocationsinnearreal-time,areessentialformitigatingthethreatposedtopeopleandpropertybythematerializationofsinkholes. Keywords: Winksinkholes;time-seriesInSARanalysis;deformation 1.IntroductionSinkholes,whichoftenforminkarstenvironmentsunderlainbyevaporiteorcavernouscarbonaterocks,havebeenconsideredahiddenthreattohumanlife,infrastructures,andproperties[1].TheDelawareBasinofWestTexasandSoutheastNewMexico,inthesouthwestpartofthePermianBasin,containsoneofthegreatestaccumulationsofevaporitesintheUnitedStates[2].SinkholesinWestTexashavedevelopedfromthedissolutionofthesesubsurfaceevaporitedepositsthatcomeincontactwithfreshgroundwater[3].Inaddition,anthropogenicactivitiesforoil/gasexplorationbrinewellandsolutionminingsalt,potashhaveacceleratedtheexpansionofundergrounddissolutioncavities[4].TherstsinkholeinWink,Texas,WinkSink#1Figure1,formedon3June1980neartheabandonedHendricksoilwell10-A.ThesecondsinkholeWinkSink#2,Figure1developedon21May2002,centeredonthewater-supplywellGulfWS-8[5]about1500msouthofWinkSink#1.TheSaladoFormation,athicksequenceofinterbeddedhaliteandanhydrite,isabout260mthickbeneaththeWinksinkholes.TheformationhasbeennaturallyinuencedbythedissolutionoftheSaladosaltunits,butthepetroleumactivityfrom1926to1964aroundtheWinksinkholeshasbeensuspectedtobeatriggerthatacceleratedthedissolutionoftheunderlyingsaltbed[4].TheoileldactivityRemoteSens. 2016 8 ,313;doi:10.3390/rs8040313www.mdpi.com/journal/remotesensing

PAGE 2

RemoteSens. 2016 8 ,313 2of11includedtheinjectionofwaterintoboreholesdrilledthroughtheSaladoformationandbecausetheolderdrillingtechnologythatwasuseddidnotpreventwaterfromleakingoutsidethecementedcasting,alargedissolutioncavityinthesubsurfacedeveloped.ThecavitythengrewandmigratedupwardandresultedintheformationoftheWinksinkholesaftersuccessiverooffailures[6]. Figure1.LocationmapofWinksinkholes.WinkislocatedinWestTexasandtheregionintheblackboxisthestudyareaforanalyzingourInSARresults.ThegroundwaterwellNo.4615924closesttosinkholesislocatedtothesouthwestofWinksinkholes,andthenearreal-timegroundwaterlevel,whichisrecordedasdepthtogroundwater,isprovidedbytheTexaswaterdevelopmentboardwaterscienceandconservationgroup.Thesequentialdepressionintheevaporitemightnotbeeasilyspottedatthesurfacebeforecollapseoccurs,and,therefore,sinkholeformationhaspreviouslybeenunpredictable[1].However,identifyingdepressionsinareasunderlainbysolublerockscanhelppredictpotentialsinkholedevelopmentinWink.Aspacebornesolutionisnecessarytocontinuouslymonitorthesepotentiallyhazardousareasthroughdetectionoftheprecursorysurfacedeformationthatleadstosinkholedevelopmentandobservationsofthegrounddepressioninexistingsinkholes.Inourstudy,werstdemonstratedthecapabilityofSentinel-1Adatasetstomapthesinkholedeformationsfrommulti-temporalacquisitions,andanalyzedtwo-dimensionalhorizontal,verticaltime-seriesdeformationfortheWinksinkholesusingsatelliteradarremotesensingtechniquesandcomparingtheresultswithlocalgroundwaterlevelsduringsummermonths. 2.MethodsWedetectedthegroundsubsidenceinWinksinkholes,usingInSARtechniques,e.g.,[7].InSARhasbeenproventobeapowerfultoolformonitoringthesesinkholeprecursorsandpost-eventdeformationintheDeadSea,Israel[811],BayouCorne,Louisiana,USA[12],NewMexico[13],and

PAGE 3

RemoteSens. 2016 8 ,313 3of11EbroValley,Spain[14,15].GroundsubsidencearoundthesinkholesinWink,Texas,wasmeasuredusingasingleInSARimage,alongwitheldgravityobservationsbyPaineetal.[16].Despitethesuccessofthesepreviousstudies,monitoringsinkholedeformationthroughInSARtechniquesisstillchallenging,duetothelowspatialresolutionofsyntheticapertureradarSARsensors.ThesinkholesinWinkareusuallysmall-sized<~100minwidthcomparedtoothergeohazards,suchasearthquakesorvolcanism,sotheyoccupyonlyafewpixelsinaSARimageandcould,therefore,bemisinterpretedasnoiseorerrorsinInSARprocessing.Furthermore,measuringtime-seriesdeformationinsinkhole-proneareasfrommulti-trackspaceborneSARdatahasnotbeenfullyadoptedforunderstandingsinkholeformation.Sentinel-1AisthelatestgenerationofC-bandradarsatellitesfromtheEuropeanSpaceAgencyESA.LaunchedinApril2014,Sentinel-1Abecameoperationalinlate2014andhasextendedthecontinuityofradardatathatbeganwithESA'sERS-1/-2andEnvisat.Sentinel-1A'srevisittimeof12daysisdramaticallyimprovedwithrespecttoERSandEnvisatmissions,whichwillenhanceInSARcoherenceingeneral.Sentinel-1Ahasfourdifferentoperationalmodes:istripmapSM;iiinterferometricwideswathIW;iiiextrawideswathEW;ivwaveWVmodes[17,18].ThebackgroundmodeofSentinel-1Aoperationistheinterferometricwideswathmode,whichprovidesawidecoverageof250kmwithamediumresolutionof5mand20minrangeandazimuthdirections,respectively[17,18].Sentinel-1Aistherstradarmissionthatprovidesdatafreelytouserswithaverylowlatency[18].Forthisstudy,wehaveprocessedveascendingFigure2a,andsixdescendingFigure2b,Sentinel-1AIW-modedatasets,collectedbetweenAprilandAugust2015overtheWinkarea.Tenand15InSARpairsfromascendinganddescendingmodes,whichhaslessthana200mperpendicularbaselineFigure2a,b.TheSentinel-1AimagesallowustomonitortheprogressionoftheWinksinkholeswithdensetemporalacquisitionsof12daysorless.TheSentinel-1Adatafrombothascendinganddescendingtracksofferanopportunitytoobserve2Deast-westandverticaldeformation[19].WeprocesstheSentinel-1AimagesusingthemultidimensionalsmallbaselinesubsetMSBAStechnique,whichhasthecapabilitytocompute2Dtime-seriesdeformationfromascendinganddescendingtracks[20,21].The2Deast-west,up-downtime-seriesdeformationmapsusingmulti-trackInSARdatasetscanbeobtainedfromtheinverseofthefollowingmatrix: cos sin A cos AB p l I V E V U D h F 0 where,,andBparetheazimuthangle12.8ascending,167.2descendingdegrees,theincidenceangle.8degrees,andtheperpendicularbaselineunit:m,seeinFigure2a,b,respectively,AisamatrixconstructedfromthetimeintervalbetweenconsecutiveSARacquisitions,isaregularizationparameter,Iisanidentitymatrix,VEandVUaretheeast-westandverticalcomponentsofthegrounddeformationratevector,Dhisthetopographyerrornotsignicantbecauseourstudyareaisat,andFistheobservedunwrappedinterferometricphasemoredetailscanbefoundin[21].ERS-1/2andEnvisatimageswerealsoexploredtomapprecursoryandongoingdeformationinWink#1and#2sinkholes,buttheInSARcoherencewasnotmaintainedduetogeometricalandtemporaldecorrelationandthetwoC-bandSARdatacouldnotbeemployedforouranalysis.ComparedtoERS-1/2andEnvisat,Sentinel-1Ahastheadvantagetoimagethedeformingareaswithfrequentacquisitionsanddetectthesurfacefeatureswithoutastrongsmoothingalargemulti-lookfactor.

PAGE 4

RemoteSens. 2016 8 ,313 4of11 Figure2.NetworksofInSARpairsfromtheSentinel-1AS-1Ainterferometricwide-swathaascending;andbdescendingmode.FiveascendingandsixdescendingmodeSentinel-1AdatasetswereusedforourInSARanalysis,andtheperpendicularbaselinesofallInSARpairsand15pairsfromascendinganddescendingmode,respectivelyarelessthan200m. 3.ObservationsIfthegrounddeformationneartheWinksinkholesconsistsofapurelyverticalcomponent,theinterferogramscalculatedfromascendinganddescendingtracksshouldbealmostidenticaltothatobservedovertheDeadSeabyBaeretal.[8],assumingthattheincidenceanglesoftwoSARacquisitionmodesarethesame.Incontrast,theinterferogramsfromtwoSentinel-1AtracksoverWinkexhibitadifferenceinfringepattern,indicatingthathorizontaldeformationisaffectingtheobservedline-of-sightLOSdeformationinindividualinterferograms.ResultsfromtheMSBASprocessingindicatethattheverticaldeformationisthemostdominantcomponentingrounddeformationaroundWinksinkholes,~80%ofLOSInSARmeasurements.Time-seriesverticaldeformationateachSARacquisitiondatefrom21Aprilto31AugustFigure3indicatingthattheareaaroundtheexistingsinkholesisnotstable,mostlikelyduetothedissolutionofinterbeddedsaltdeposits.EventhoughWink#1collapsedin1980,itsneighboringareasarestillsubsidingandthesinkholecontinuestoexpand.Wink#2collapsedin2002,andisnotexperiencingsubsidenceaslargeasthatseenatWink#1,butitalsoexhibitsdepressionassociatedwiththeongoingexpansionoftheundergroundcavity.Theregion1kmnortheastofWink#2displaysthemaximumsubsidenceof~4cminfourmonths,butsurcialdepressionhasbeenobservedoveralargeareatothenorthandtheeastofthesinkhole[3,5].

PAGE 5

RemoteSens. 2016 8 ,313 5of11TheongoingexpansionofWinksinkholeshasbeenconrmedandreportedbythelocalauthorities[22],anditcauseddisplacementsaroundsinkholesandslumpsintodevelopedsinkholes. Figure3.Time-seriesverticaldeformationfrom21April2015to31August2015,estimatedbytheMSBASmethod.Fortheperiod,theoval-shapedareanearWink#1,theeasternpartofWink#2,andthearea~500mnorthofWink#2subsidedby~1.3cm.Themostgrounddepression,~4cmforfourmonths,occurred1kmnortheastofWink#2.Whiteandgreenarrowsindicatetheorbitdirectionsascendingordescendingandthelookvectorsofeachdataacquisition,respectively.ThecontourmapFigure4aofestimatedverticaldeformationratecm/yearfromourtime-seriesanalysisdemonstrateswhichareaissubsiding.Theoval-shapeddeformationmwidearoundWink#1binFigure4reachingupto4cm/yearcanberelatedtosuccessiverooffailureoftheunderlyingdissolutioncavity,resultinginthecurrent110m-diametersinkholebeingexpanded.TheWink#2areacinFigure4isrelativelystablecomparedtoWink#1,buttheeasternsideofthesinkholecontinuestosubsideasmuchas~3cm/year.ThemaximumsubsidencehappensindareadinFigure4,atarateofupto~13cm/year.Paineetal.[16]observedthedeformationgreenpolygoninFigure4ainthesameareabetweenJanuaryandJuly,2007.Thedeformingareahassignicantlybeenstretchedindimensions.Theenlargeddeformationcouldbeanalarmingprecursortothepotentialfuturedevelopmentofhazardsinthevicinity.RegioneFigure4400mnorthofWink#2isalsoinuencedby~3cm/yearsubsidencealongtheroadtransportingoileldactivities.PositiveandnegativevaluesinhorizontaldeformationFigure4berepresenteastwardandwestwardmovements,respectively.EstimatedhorizontaldeformationratesinWink#1Figure4banderegionFigure4eareminor<1cm/yearcomparedtothoseofverticaldeformation.However,theeasternsideofWink#2Figure4creaches3cm/yearofwestwardmovement,andthedevelopedsinkholehasbeenlledwithsoilsedimentandslumps.MoreobvioushorizontaldeformationisoccurringindregionFigure4d.Itswesternsidegenerallyismovingeastwardwhiletheeasternpartmovesmostlywestward.TheoppositehorizontalmovementsindregionagreewiththeoverallsubsidencepatternthatpeaksattheboundaryofsignchangesinthehorizontalmotionwhitedashedlineinFigure4d.TheprecursorydeformationinBayouCorne,Louisiana,USA[12]beforecollapsewasprimarilyhorizontalmovementofthesidewallcollapseinthesaltdomecavernandtheverticaldeformationwasinsignicant.Incontrast,eventhoughbothhorizontalandverticaldeformationsareobservedatdregion,theverticalcomponentisthedominantone.Moreover,thesinkholeinLouisianawasactivatedmonthspriortocollapse,butthedeformationindregionhasbeenreported

PAGE 6

RemoteSens. 2016 8 ,313 6of11foryearsatleastsince2009inPaineetal.[16]andthesinkholecollapsehasnotcroppedoutyet.Thissuggestsadifferentmechanismthattakeseffectontheareaunderlainbyadeep-seatedsaltbed. Figure4.aContourmapoflinearly-estimatedverticaldeformationratecm/yearfromourtime-seriesobservation.Thegreenpolygonrepresentsthepreviouslyfoundsubsidenceareafromthe2009ALOSPALSARdataset[16].Time-serieshorizontalandverticaldeformationinpointsa,b,c,anddyellowdiamondsisdepictedinFigure5a.Estimatedhorizontaleast-westdeformationratescm/yearareshowninb,c,d,anderegions.Positiveblueandnegativeredvaluesindicatetheeastwardandwestwardmovement,respectively.ThewhitedashedlineinFigure4drepresentsthemarginalhorizontalgroundmovementsinoppositedirection. 4.DiscussionCumulativetime-serieshorizontaldeformationplotsinpointsa,b,c,anddinFigure4ashowthatalllocations,exceptpointb,aremovingeastwardduringthetimeperiodfromlateApriltoAugust2015Figure5a.Moreover,theirverticaldeformationsareallsubsidencevaryingfrom~4cmat

PAGE 7

RemoteSens. 2016 8 ,313 7of11pointato~1cmatpointsb,c,andd.ProlesofcumulativeverticaldeformationalongalineijFigure5bhighlightthespatiotemporaldevelopmentofgrounddepression.Generally,thedregioncontinuestosubsideby~4cmforfourmonths,butthelargestchangeofgrounddeformationhappenedbetween2Julyand26Julyandthemaximumsubsidenceatthepeakbottomofthedeformedareaoccurredon19August.ComparingourresultswithgroundwaterlevelmeasurementsatwellNo.4,615,924bottominFigure5a,thetimeperiodisjuxtaposedwithdaysoflowgroundwaterlevel.Thegroundwaterwellislocated3kmfromourstudyareaFigure1,sotheseasonalvariationsatthewellarelikelysimilartothoseofthegroundwaterattheWinksinkholes.Thegroundsubsidencecorrelateswiththechangeofgroundwaterlevel,implyingthatthissurcialinstabilityiscloselyrelatedtothegroundwatertablebottominFigure5a.Thisrelationshipbetweengroundwaterandsurcialdepressioninsinkhole-proneareashasbeenobservedinArizonaandNevada[23],wherethegroundwaterdeclineinsinkholesisconsideredtobethepossiblecauseofgrounddepressionduetothesoilconsolidationandthelossofbuoyantsupportofmaterials[1]. Figure5.aHorizontaltopandverticalmiddledeformationatpointsa,b,c,anddinFigure4a,andcomparisonbottomofgroundwaterlevelatwellNo.4615924andverticaldeformationinpointaofFigure4a;and b time-seriesdeformationalonglineijinFigure4a.

PAGE 8

RemoteSens. 2016 8 ,313 8of11TheoilproductionfacilitiesneartheWinksinkholesHendrickswell3-A,GulfwatersupplywellWS-8havebeeninactivefordecades[4],andthecurrentanthropogenicactivities,whichinitiallyacceleratedthedissolution,mightnotbecontributingtothisongoingsubsidence.Instead,thenaturaldepressionduetotheseasonalvariationofgroundwaterisexpectedtobetheprimaryinuenceonthesubsidence,becausethegroundwaterlevelinWink,Texasdeclinesduringthesummerfromhighheatandlowprecipitation.Itisinterestingtonotethat,aftermid-August,thegroundwaterrechargestopreviouslevelsandthebottomandwesternpartofproleijFigure5bisobservedtobeslightlyupliftedfrommid-Augustto31August.Themomentaryupliftcouldbetheresultofincreasedbuoyantsupportofsubsurfacesediments[1],butovertimethisrechargeofthegroundwaterlevelandadditionalinowoffreshwaterduringperiodsofhighprecipitationwinterinWink,TX,USAcanresultintheaccelerationofthesaltdissolution,whichproducessubsidence.Wemodeledthesinkholedeformationtoexplainthesubsurfaceprocessand,thereby,theoverallsubsidencepatternabovetheundergroundcavity,usingtheOkadaformulationformotionsonadistributedsetofrectangulardislocationsourceswithinahomogenouselastichalf-space[24].Thebest-ttingmodelsweresearchedoverthegridandthebestttingparametersweredenedbytherootmeansquareRMSmistfromtheresidualsobserveddatamodel[25].ThenalcumulativeverticaldeformationmapFigure6awasusedtosolvetheinverseproblembasedonthesimpleelasticdisplacementcavityroofdeationmodelwithaplanararrayofclosingcracks[26].Wexedasourcedepthto500m,becauseasaltlayerisbedded[27,28]andthecavitywassupposedtobeopenatthedepth.Althoughasingle-sourcemodelcouldnotndanadequatet,atwo-sourcemodel,assumingthattworectangular-shapedsubsurfacecavitiesweredeveloped,couldbetterdescribethebehaviorofthesinkholedeformation.Onesourcewitharectangulardislocation10mbelowthelargestdeformationisdirectedtoward30counter-clockwisefromnorth,andanothersourcewithadimensionof8010m,180mapartfromrst,isalignedinthedirectionof20clockwisefromnorth.Then,wecouldndthebest-tting3-DsolutionFigure6bwithRMSof0.18cmFigure6c.Consideringmulti-layerswithelasto-plasticitymayimprovethemodelingofsinkholedeformation,butourmodelisbasedonapureelasticdeformationandelaboratestheroofdeationabovetwocavities. Figure6.aCumulativeverticaldeformationin31August2015overthemostdeformingregioninthewhitedashed-lineboxofFigure3;bbest-ttingmodelfromtwodislocationsourcesinelastichalf-space;andcresidualsaftersubtractingthebest-ttingmodelfromthecumulativedeformation.Thesinkholeformationisexplainedwellbytheschematicgure[4,5,27,28]Figure7.AlargedepressionindregionFigure7,detectedbyInSARtechniques,couldbeexplainedbytwotheories.Inonetheory,thecollapseofsinkholesdamagedthestabilityofthegroundsurfaceinthevicinityofWink#2,andweakenedsoilformationthatcouldleadtocontinuingandgrowingsubsidenceinthisregionFigure7.AsthedissolutioncavitybeneathWink#2growsinthesaltbed,thegrounddepressionanditsdeformingareaincreasesduetoweakeningoftheearthsupporting.Inanothertheory,theextensivedissolutionofthesaltbedbeneathWink#2anddregioncouldcause

PAGE 9

RemoteSens. 2016 8 ,313 9of11alargedepressionrelatedtotheformationofacaprock-saggingsinkhole.Progressivedissolutionofevaporitesisaccompaniedbycontinuousexureoftheoverlyingstrata[1].Therefore,inthecaseofcaprock-saggingsinkholes,thecavitiesindregion,associatedwithsinkholecollapse,arenotnecessarilydevelopedbeneaththesaggingrocks,butthesubsidenceprocessduetothedissolutionofevaporitesproducescaprock-saggingsinkholesandthebendingofthestratainvolveshorizontalshorteningthatmaybecounterbalancedthroughthedevelopmentofdiscrepanthorizontaldeformationatmarginsFigure4d[15].ThesaggingwithoutrooffailurecanbeamajordifferencewithnearbyWink#1and#2sinkholes.Thesinkholesdidnotcropoutyet,butthegravitationalloadingwillharmthelocalroads,aswellasoilfacilities,asthelocalnewsarticlereportedcracksinthehighwayandssuresnearoiltanks[29]. Figure7.Schematiceast-westcrosssectioninWinklerCountyshowingthenaturaldissolutionofSaladoFormationsaltsandInSAR-detectedsubsidenceontheeasternedgeoftheDelawareBasinmodiedfrom[4,5,27,28].OilwasextractedfromtheYatesandTansillformationandtheowedwaterintotheSaladoformationforoilproductioncouldcausethedissolutioncavityleadingtotheWinksinkholes. 5.ConclusionsAsinkholecollapsecanbesevereundernaturalconditions,butitcouldbecatastrophicinurbansettingsoratoil/gasexplorationfacilities.Unfortunately,therehavebeenalimitedamountofsolutionstocontinuouslymonitorareasofsinkholeformation,andtomeasuregrounddeformationinthevicinityofexistingsinkholes.Ourtime-seriesInSARtechniquebasedonthenearreal-timeavailabilityofopen-sourceSARdatafromtheSentinel-1satelliteprovidesthecapabilitytoestimatehorizontaleast-westandverticaldeformationoftheWinksinkholesfromascendinganddescendingSentinel-1Adatasets.Thedensespatiotemporalspacebornesolutioncoulddetectthecontinuoussubsidenceandtheenlargementoftheexistingsinkholesduetotheongoingcollapseoftheunderlyingdissolutioncavities.Additionally,duringthisstudythemaximumsubsidence~14cm/yearwasobservedinthenortheasternareaofWink#2,andtheextentofthesubsidencehassignicantlyexpandedsincetheregionwaslaststudiedin2009.

PAGE 10

RemoteSens. 2016 8 ,313 10of11TheoilproductionneartheWinksinkholespeakedfrom1920to1950andthedrilling,completion,andpluggingproceduresweresuggestedtohavecausedtheaccelerationofthedissolutionofthesaltbeds.However,basedonthecomparisonofourtime-seriesmeasurementsandgroundwaterlevels,thegroundwaterdeclineduringsummerlikelycontributedtotheincreasedgroundsubsidenceintheareaeastofWink#2.Thesinkholeformationandsubsidencewereinitiallytriggeredbytheanthropogenicactivities,butthenaturaldissolutionassociatedwiththeseasonalvariationofgroundwaterisconsideredtobetheprimaryinuenceonWinksinkholes.Ourstudysuggeststheexistenceofmarginalhorizontaldeformationinthesubsidingarea.Fromverticalandhorizontaldeformation,theenlargingWinksinkholescouldinuencethegrounddepressionortherecouldbecaprock-saggingsinkholeresultingfromthesaltdissolution.Thesubsidencemaynotbedirectlyrelatedtothesinkholecollapse,buttheexpansionofthesubsidingareacouldbealarmingforfuturesinkholedevelopmentinthevicinityofWink.Furthermore,wemodelledthesinkholedeformationwithtwosetsofdistributeddislocationsources,andconcludedthatthegrounddepressionatsinkholescanbenumericallyandanalyticallyexplainedbytheelasticcontractionofcavities. Armunderstandingofsinkholeformationandgroundsubsidencethroughoutourtime-seriesInSARanalysiscouldplayasignicantroleonevaluatinganyfuturesinkholehazardsandalertingciviliansandoilcompaniesofthepossiblerisks.Moreover,whileourInSARobservationswereobtainedforalimitedperiod,thelong-termmeasurementsfromSentinel-1A,ALOS-2PALSAR-2,andspotlightTerraSAR-XwillallowustocapturetheseasonaldeformationathighresolutionandmonitortheevolutionandprecursorydeformationofWinksinkholes. Acknowledgments:ThisresearchwassupportedbyUSGeologicalSurveyLandRemoteSensingProgramG14AC00153,NASAEarthSurface&InteriorProgram,andtheShuler-FoscueEndowmentatSouthernMethodistUniversity.Sentinel-1AdatawereobtainedfromSentinelsscienticdatahubinCopernicusinitiative.GroundwaterwelldatawereacquiredfromTexaswaterdevelopmentboardTWDBwaterscienceandconservationgroup.GeocodedguresweredrawnbygeneralmappingtoolsGMT. AuthorContributions:Alloftheauthorsparticipatedineditingandreviewingthemanuscript.Jin-WooKimprocessedSentinel-1AdatasetsandanalyzedInSARresultsoverWinksinkholes.ZhongLuandKimberlyDegrandprethoroughlyinterpretedtheresultstobetterunderstandtheongoingdeformationaroundsinkholes.Allcontributedtothewritingofthismanuscript. ConictsofInterest: Theauthorsdeclarenoconictofinterest. References 1.Gutirrez,F.;Parise,M.;DeWaele,K.;Jourde,H.Areviewonnaturalandhuman-inducedgeohazrdsandimpactsinkarst. EarthSci.Rev. 2014 138 ,61.[CrossRef] 2.Dean,W.E.;Johnson,K.S.AnhydriteDepositsoftheUnitedStatesandCharacteristicsofAnhydriteImportantforStorageofRadioactiveWastes;U.S.GeologicalSurveyProfessionalPaper1794;U.S.GeologicalSurvey:Denver,CO,USA,1989;p.132. 3.Johnson,K.S.SubsidencehazardsduetoevaporitedissolutionintheUnitedStates.Environ.Geol.2005,48,395.[CrossRef] 4.Johnson,K.S.DevelopmentoftheWinkSinkinwestTexas,U.S.A.,duetosaltdissolutionandcollapse.Environ.Geol.WaterSci. 1989 14 ,81.[CrossRef] 5.Johnson,K.S.;Collins,E.W.;Seni,S.J.SinkholesandLandSubsidenceDuetoSaltDissolutionnearWink,WestTexas,andOtherSitesinWesternTexasandNewMexico;OklahomaGeologicalSurvey.Circular109;OklahomaGeologicalSurvey:Norman,OK,USA,2003;pp.183. 6.Waltham,T.;Bell,F.;Culshaw,M. SinkholesandSubsidence ;Springer:Chichester,UK,2005;p.382. 7.Lu,Z.;Dzurisin,D.InSARImagingofAleutianVolcanoes:MonitoringaVolcanicArcfromSpace.InSpringerPraxisBooks ;Springer:Chichester,UK,2014;p.390. 8.Baer,G.;Schattner,U.;Wachs,D.;Sandwell,D.;Wdowinski,S.;Frydman,S.ThelowestplaceonEarthissubsidingAnInSARinterferometricsyntheticapertureradarperspective.Geol.Soc.Am.Bull.2002,114,12.[CrossRef]

PAGE 11

RemoteSens. 2016 8 ,313 11of11 9.Closson,D.;Karaki,N.A.;Hansen,H.;Derauw,D.;Barbier,C.;Ozer,A.Space-borneradarinterferometricmappingofprecursorydeformationsofadykecollapse,DeadSeaarea,Jordan.Int.J.RemoteSens.2003,24,843.[CrossRef] 10.Closson,D.;Karaki,N.A.;Klinger,Y.;Hussein,M.J.SubsidenceandsinkholehazardassessmentinthesouthernDeadSeaarea,Jordan. PureAppl.Geophys. 2005 162 ,221.[CrossRef] 11.Nof,R.N.;Baer,G.;Ziv,A.;Raz,E.;Atzori,S.;Salvi,S.SinkholeprecursorsalongtheDeadSea,Israel,revealedbySARinterferometry. Geology 2013 41 ,1019.[CrossRef] 12.Jones,C.E.;Blom,R.G.BayouCorne,Louisiana,sinkhole:Precursorydeformationmeasuredbyradarinterferometry. Geology 2014 42 ,111.[CrossRef] 13.Rucker,M.L.;Panda,B.B.;Meyers,R.A.;Lommler,J.C.UsingInSARtodetectsubsidenceatbrinewells,sinkholesites,andmines. CarbonatesEvaporites 2013 28 ,141.[CrossRef] 14.Castaeda,C.;Gutirrez,F.;Manunta,M.;Galve,J.P.DInSARmeasurementsofgrounddeformationbysinkholes,miningsubsidence,andlandslides,EbroRiver,Spain.EarthSurf.Process.Landf.2009,34,1562.[CrossRef] 15.Gutirrez,F.;Galve,J.P.;Lucha,P.;Cadtaeda,C.Integratinggeomorphologicalmapping,trenching,InSARandGPRfortheidenticationandcharacterizationofsinkholes:AreviewandapplicationinthemantledevaporitekarstoftheEbroValleyNESpain. Geomorphology 2012 134 ,144.[CrossRef] 16.Paine,J.G.;Buckley,S.M.;Collins,E.W.;Wilson,C.R.Assessingcollapseriskinevaporitesinkhole-proneareasusingmicrogravimetryandradarinterferometry.J.Environ.Eng.Geophys.2012,17,75.[CrossRef]17.DeZan,F.;Guarnieri,A.M.TOPSAR:Terrainobservationbyprogressivescans.IEEETrans.Geosci.RemoteSens. 2006 44 ,2352.[CrossRef] 18.EuropeanSpaceAgency.Sentinel-1UserHandbook,September2013:ESAUserGuide;GMES-S1OP-EOPG-TN-13-0001;EuropeanSpaceAgency:Paris,France,2013;p.80. 19.Wright,T.J.;Parsons,B.E.;Lu,Z.TowardmappingsurfacedeformationinthreedimensionsusingInSAR.Geophys.Res.Lett. 2004 31 .[CrossRef] 20.Berardino,P.;Fornaro,G.;Lanari,R.;Sansosti,E.AnewalgorithmforsurfacedeformationmonitoringbasedonsmallbaselinedifferentialSARinterferograms.IEEETrans.Geosci.RemoteSens.2002,40,2375.[CrossRef] 21.Samsonov,S.;d'Oreye,N.Multidimensionaltime-seriesanalysisofgrounddeformationfrommultipleInSARdatasetsappliedtoVirungavolcanicprovince. Geophys.J.Int. 2012 191 ,1095. 22.Newswest9.com.Availableonline:http://www.newswest9.com/story/25269082/wink-sinkhole-growing-sheriff-concerned-about-public-safetyaccessedon2February2016. 23.Kim,J.W.;Lu,Z.;Jia,Y.;Shum,C.K.GroundsubsidenceinTucson,Arizona,monitoredbytime-seriesanalysisusingmulti-sensorInSARdatasetsfrom1993to2011.ISPRSJ.Photogramm.RemoteSens.2015,107,126.[CrossRef] 24.Okada,Y.Surfacedeformationduetoshearandtensilefaultsinahalf-space.Bull.Seismol.Soc.Am.1985,75,1135. 25.Lu,Z.;Wicks,C.,Jr.Characterizing6August2007CrandallCanyonminecollapsefromALOSPALSARInSAR. Geomat.HazardsRisk 2010 1 ,85.[CrossRef] 26.Atzori,S.;Antonioli,A.;Salvi,S.;Baer,G.InSAR-basedmodelingandanalysisofsinkholesalongtheDeadSeacoastline. Geophys.Res.Lett. 2015 42 ,8383.[CrossRef] 27.Baumgardner,R.W.,Jr.;Hoadley,A.D.;Goldstein,A.G.SaltblamedfornewsinkinwestTexas.Geotimes1980 25 ,15. 28.Baumgardner,R.W.;Hoadley,A.D.;Goldstein,A.G.FormationoftheWinkSink,aSaltDissolutionandCollapseFeature,WinklerCounty,Texas;ReportofInvestigations114;BureauofEconomicGeology:Austin,TX,USA,1982;p.38. 29.LubbockAvalanche-Journal.Availableonline:http://lubbockonline.com/texas/2014-02-25/wink-sinkholes-cause-concern-and-wonder#.VrESCMcjlJoaccessedon2February2016. 2016bytheauthors;licenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttributionCC-BYlicensehttp://creativecommons.org/licenses/by/4.0/.


printinsert_linkshareget_appmore_horiz

Download Options

close
No images are available for this item.
Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.