The world karst aquifer mapping project: concept, mapping procedure and map of Europe

Citation
The world karst aquifer mapping project: concept, mapping procedure and map of Europe

Material Information

Title:
The world karst aquifer mapping project: concept, mapping procedure and map of Europe
Series Title:
Hydrogeology journal
Creator:
Chen, Zhao
Auler, Augusto S.
Bakalowicz, Michel
Publisher:
Springer
Publication Date:
Language:
English
Physical Description:
1 online resource

Subjects

Subjects / Keywords:
Karst ( lcsh )
Water-supply ( lcsh )
Genre:
serial ( sobekcm )
Location:
Europe

Notes

Abstract:
Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
K26-05278 ( USFLDC DOI )
k26.5278 ( USFLDC handle )

USFLDC Membership

Aggregations:
Added automatically
Karst Information Portal

Postcard Information

Format:
serial

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

PAPERTheWorldKarstAquiferMappingproject:concept, mappingprocedureandmapofEuropeZhaoChen1&AugustoS.Auler2&MichelBakalowicz3&DavidDrew4&FranziskaGriger1&JensHartmann5&GuanghuiJiang6&NilsMoosdorf7&AndreaRichts8&ZoranStevanovic9&GeorgeVeni10&NicoGoldscheider1Received:27June2016/Accepted:10December2016 # TheAuthor(s)2017.ThisarticleispublishedwithopenaccessatSpringerlink.comAbstract Karstaquiferscontributesubstantiallytofreshwatersuppliesinmanyregionsoftheworld,butarevulnerabletocontaminationanddifficulttomanagebecause oftheiruniquehydrogeolog icalcharacter istics.Many karstsystemsarehydraulicallyconnectedoverwideareas andrequiretransboundaryexploration,protectionand management.Inordertoobtainabetterglobaloverview ofkarstaquifers,tocreateab asisforsustainableinternationalwater-resourcesmanagement,andtoincreasethe awarenessinthepublicandamongdecisionmakers,the WorldKarstAquiferMapping(WOKAM)projectwas established.Thegoalistocreateaworldmapanddatabaseofkarstaquifers,asafurtherdevelopmentofearlier maps.Thispaperpresentsthebasicconceptsandthedetailedmappingprocedure,usingFranceasanexampleto illustratethestep-by-stepw orkflow,whichincludesgeneralization,differentiationofcontinuousanddiscontinuouscarbonateandevaporiterockareas,andtheidentificationofnon-exposedkarstaquifers.Themapalsoshows selectedcavesandkarstsprings,whicharecollectedinan associatedglobaldatabase.Thedraftkarstaquifermapof Europeshowsthat21.6%oftheEuropeanlandsurfaceis characterizedbythepresenceof(continuousordiscontinuous)carbonaterocks;about13.8%ofthelandsurfaceis carbonaterockoutcrop. Keywords Hydrogeologicalmapping Globalwater resourcesmanagement Carbonaterock Karst Europe ThisarticledescribesaprojectsupportedbytheInternationalAssociation ofHydrogeologists(IAH)CommissiononKarstHydrogeology( www. iah.org/karst ) DavidDrewisretiredfromTrinityCollegeDublin NicoGoldscheider nico.goldscheider@kit.edu1InstituteofAppliedGeosciences,DivisionofHydrogeology, KarlsruheInstituteofTechnology(KIT),Kaiserstr.12, 76131Karlsruhe,Germany2InstitutodoCarste,RuaBarcelona240/302,Belo Horizonte,MG30360-260,Brazil3HydroSciences,UniversityofMontpellier,UMR5569-CC0057, 163rueAugusteBroussonet,34090Montpellier,France4Moheraroon,Kilfenora,Co.Clare,Ireland5InstituteforGeology,CenterforEarthSystemResearchand Sustainability(CEN),UniversityofHamburg,Bundesstr.55, 20146Hamburg,Germany6InternationalResearchCenteronKarst(IRCK)undertheAuspicesof UNESCOandKeyLaboratoryofKarstDynamics,InstituteofKarst Geology,Guilin541004,China7DepartmentofBiogeochemistry/Geology,LeibnizCenterfor TropicalMarineEcology(ZMT),Fahrenheitstr.6, 28359Bremen,Germany8FederalInstituteforGeosciencesandNaturalResources, Sub-Department,InternationalCooperation,Stilleweg2, 30655Hannover,Germany9DepartmentofHydrogeology,CentreforKarstHydrogeology, FacultyofMining&Geology,UniversityofBelgrade,Djusina7, 11000Belgrade,Serbia10NationalCaveandKarstResearchInstitute,400-1CascadesAvenue, Carlsbad,NewMexico88220-6215,USA HydrogeolJ DOI10.1007/s10040-016-1519-3

PAGE 2

IntroductionAccordingtoanoften-citedestimationbyFordandWilliams ( 2007 ),approximately20 – 25%oftheglobalpopulationdependslargelyorentirelyongroundwaterobtainedfromkarst aquifers.InsomecountriesandregionssuchasAustria,the Dinaricregion(Europe)andSouthwestChina,karstwater contributes50%ormoretoregionalfreshwatersupplies (Hartmannetal. 2014 ;Wuetal. 2009 ).Severallargecities relyentirelyorpredominantlyonkarstaquiferssuchasSan AntonioinTexas,USA(1.4millioninhabitants),Viennain Austria(1.8million),RomeinItaly(2.9million)orDamascus inSyria(6 – 7million;Al-Charideh 2012;Kresicand Stevanovic 2010 ). Karstaquifersforminsolublerocksbyflowinggroundwaterandarecharacterizedbysolutionallyenlargedfractures, beddingplanesandconduits,whichformahydraulicallyconnecteddrainagenetwork(GoldscheiderandDrew 2007). Carbonatesedimentaryformationsincludingmorethan75% ofcarbonatemineralssuchaslimestoneanddolomite,arethe mostimportantkarstifiablerocks(FordandWilliams 2007 ). Karstalsooccursinotherrocktypeswithpredominantly carbonaticcomposition,includingcarbonaticconglomerates (Goeppertetal. 2011)andcarbonaticmetamorphicrocks (marble,calciteschist;SkoglundandLauritzen 2011 ). Evaporiticformations,suchasgypsumandanhydrite,arealso highlykarstifiable.Underexceptionalhydro-climaticconditions,karstphenomenacanalsoforminotherrocktypessuch asquartzsandstoneorquartzite(PicciniandMecchia 2009 ). Becauseoftheiruniquehydrogeologicalcharacteristics, karstaquifersareparticularlyvulnerabletohumanimpacts (DrewandHtzl 1999)andaredifficulttomanage (Stevanovic 2015 ).Inexposedkarstsystems,contaminants caneasilyenterthesubsurface,oftenviathinsoilsandopen fractures,andrapidlyspreadintheconduitnetwork.Nonexposedkarstaquifers(i.e.concealed,confinedorartesian aquifers)arebetterprotectedagainstdirectcontamination fromthelandsurface.However,contaminantreleasesfrom deepersourcescanalsoresultinwidespreadcontamination ofthesevaluablefreshwaterorthermal-mineralwaterresources(Goldscheideretal. 2010 ).Becauseoftheir hydrogeologicheterogeneity,karstaquifersaredifficulttoexploitbymeansofdrillingwells,whichareoftenunproductive iftheydonotsucceedinencounteringwater-bearingfractures, beddingplanesorconduits.Historically,karstspringshave beenmorefavorableforfreshwaterabstraction,buttheyshow highfluctuationsofbothdischargeandwaterquality (Bakalowicz 2005 ;KresicandStevanovic 2010 ). Manykarstaquifersareconnectedoverlargeareasand oftenconstitutetransboundaryaquifersystems.TheDinaric KarstSystemissharedbetweennortheastItaly,Slovenia, Croatia,Serbia,BosniaandHerzegovina,Montenegro, MacedoniaandAlbania(Bonacci 1987;UNESCO-IHP 2013 ).TheMt.Hermonkarstaquifersystem,whichissituated intheborderregionbetweenSyria,LebanonandIsrael,feeds thespringsoftheJordanRiver(RimmerandSalingar 2006 ). Oneoftheworld ’ slargestkarstregionsinSouthwestChina, coveringabout540,000km2,issharedbetweensevenChinese provincesandextendsacrossthebordertoVietnam(Guoetal. 2013 ).Theseexampleshighlighttheneedforfullyintegrating water-resourcesmaps. Inthecontextofinternationalwatermanagementunderthe conditionsofclimatechangeandpopulationgrowth,theneed ofwaterresourcesmapsattheglobalscalebecomeseven moreevident.Forexample,somepreviouslypublishedmaps focusonprecipitationandth eatmosphericwatercycle (Kubotaetal. 2007 ),rivernetworks(Yamazakietal. 2009 ), damsandreservoirs(Lehneretal. 2011 )orotherrelevant aspects.Amapof B GroundwaterResourcesoftheWorld ^ (Richtsetal. 2011 ;WHYMAP 2008 )hasbeenpreparedwithintheframeworkoftheWorld-wideHydrogeological MappingandAssessmentProgramme(WHYMAP)coordinatedbyUNESCO-IHP(BGR 2016 ).Thismapdifferentiates majorgroundwaterbasins,areaswithlocalandshallowaquifers,andareaswithcomplexhydrogeologicalstructure,but doesnotincludeexplicitinformationonkarstaquifers. ThefirstrelevantworldmapofcarbonaterockswaspublishedbyFordandWilliams( 1989 ).Arevisedversionwas preparedbyWilliamsandFord( 2006 )andusedinFordand Williams( 2007 ).Version3.0ofthismapisavailableonline (WilliamsandFong 2016 ).Thismapdifferentiatesbetween continuousanddiscontinuouscarbonaterockareas.Thetotal globaldistributionofevaporiterocks,mostofwhichareconfinedbyoverlyingsedimentaryformations,wasmappedby Kozaryetal.( 1968 ).Hollingsworth( 2009 )preparedacomprehensivemapanddatabaseonKarstRegionsoftheWorld (KROW)thatincludesdifferenttypesofkarst(carbonate karst,evaporitekarstandpseudokarst),alongwithotherrelevantinformation. Insummary,theexistingglobalgroundwaterresources mapdoesnotdisplaykarstaquifers,whereasexistingkarst mapsdonotpresentdetailedinformationonaquifersand groundwaterresources,andarealsonotsufficientlydetailed tobepresentedatthescaleofWHYMAPproducts.Therefore, theWorldKarstAquiferMapping(WOKAM)projectwas establishedin2012andthemapwillbeprintedin2017.The goalofthisprojectistoprepareaworldmapofkarstaquifers thathelpstoaddressglobalwater-resourcesmanagementand toincreasetheawarenessofthesevaluablebutvulnerable freshwatersupplies.TheWorldKarstAquiferMap(theacronymWOKAMisusedbothfortheprojectandthemap)shall becompatibleandcomplementarytoothermapsofthe WHYMAPseries,inparticulartheGroundwaterResources oftheWorldmap(Richtsetal. 2011).Aswithother WHYMAPproducts,thefinalmapshallbeprintedattwo differentscales,1:25millionand1:40million,butwillalso HydrogeolJ

PAGE 3

beavailableindigitalformforfurtherusagesuchashydrologicalmodellingattemptsataglobalscale.Asinother WHYMAPproducts,WOKAMusestheSphereRobinson projection,whichwasalsousedforallmapsinthismanuscript.ThedigitalGlobalLithologicalMap(GLiM)by HartmannandMoosdorf( 2012 )servedasanimportantbasis forWOKAM.GLiMisalsoavailableasaprintedmap (MoosdorfandHartmann 2015 ). WOKAMisaprojectoftheInternationalAssociationof Hydrogeologists Â’ (IAH)KarstCommissionandisfinancially supportedbyIAHandUNESCO,intheframeworkofthe WHYMAPprogramme,withspecialcooperationofthe WHYMAPteamattheGerma nFederalInstitutefor GeosciencesandNaturalResources(BGR).Theprojectis coordinatedandprocessedattheKarlsruheInstituteof Technology(KIT).Aninternationalscientificadvisoryboard (SAB),composedoftheco-authorsofthispaper,metthree timestodefinethemappingprocedureandevaluatetheprogressoftheproject.TheSABalsocontributedtotheglobal collectionofdataonspringsandcaves,withthesupportof numerouscolleaguesinmanydifferentcountries(seeacknowledgements).Theprojectwasimplementedusingageographicalinformationsystem(GIS),butalsorequiredmany manualworksteps.BasicmappingapproachandlegendTheWorldKarstAquiferMapisintendedtofocusongroundwaterresourcesinkarstaquifers,whichdevelopprimarilyin carbonaterocks.Evaporitesalsoconstituteimportantkarst systemsinsomeregions,althoughhighsulfateconcentrations oftenhampertheirdirectutilizationasdrinking-watersources. Basedonhydrogeologicobservationsinternationallyanda broadsupportingliterature,rocksthatcontainatleast75% ofcarbonatemineralsaretypi callykarstifiable(Fordand Williams 2007 ).Inthispaper,theterm B carbonaterocks ^ is exclusivelyusedforsuch B pure ^ carbonaterocks.GLiMand othergloballyavailabledatasourcesdonotprovideexplicit informationonthepercentageofcarbonateminerals;however,lithologicalterms,suchaslimestone,dolomiteorchalk, usuallyindicate B pure ^ carbonaterocks.Althoughtheactual degreeofkarstificationcanvarygreatlyasafunctionofdifferentgeologicalandclimatologicalfactors(Goldscheiderand Drew 2007 ),itissafetoassumethatexposedcarbonaterocks arekarstifiedatleasttosomedegree,unlessprovenotherwise. Thefollowingfourprincipalmappingunitsweredefined (Fig. 1 ): & Carbonaterocks(sedimentaryormetamorphic) & Evaporites & Othersedimentaryformations & Othermetamorphicrocksandigneousrocks Carbonateandevaporiterocksarefurthersubdividedinto continuousanddiscontinuous;theunderlyingrationaleand detailsofthissubdivisionaredescribedbelow.Areasformed bymixedcarbonateandevaporiterocks(morethan15%of eachrocktype)arealsodisplayedonthemap. Themappingunits B carbonaterocks ^ and B evaporites ^ representpotentialkarstaquifers.Theiractualdegreeof karstificationandhydraulicpropertiescannotbedetermined consistentlyataglobalscale;however,itisadefensibleapproachtoassumethatmostexposedcarbonateandevaporitic rocksrepresentkarstaquifers.Biochemicalsedimentaryformations,suchaslimestoneanddolomite,arethemostwidespreadcarbonaterocks.Chalkisapurebutfine-grainedbiogeniccarbonaterockandoftennotconsideredtobe karstifiable;however,manychalkaquifersareactually karstified,althoughkarstfeaturesarelessprominentthanin classicallimestonekarst.Inmanyregions,chalkaquiferscontributesubstantiallytofreshwatersupplies(Mauriceetal. 2006 ).Metamorphiccarbonaterockssuchasmarbleandcalciteschist,alsoconstituteimportantkarstaquifersinsome regionsoftheworld.Thereisasmoothtransitionbetween diagenesisandmetamorphosisandthusbetweensedimentary andmetamorphicrocks.Therefore,thismappingunitincludes thewholerangeofcarbonaterocks,asdefinedinthepreceding(i.e.morethan75%carbonateminerals). Themappingunit B othersedimentaryformations ^ includes bothconsolidatedandunconsolidatedrocks,mostlynoncarbonatesiliciclasticformationssuchasalluvialsediments andsandstone,butalsomixedrocktypes(typicallywithless than75%carbonateminerals)suchasmarl.ThisgeneralizationwasdonetokeepthemapsimpleandtoovercomeinconsistenciesatnationalbordersontheGLiMmap.Areaswhere othersedimentaryformationsoutcropatthelandsurfacemay includekarstaquifersatgreaterdepth.Zoneswhereexposed carbonaterocksplungeunderadjacentothersedimentaryformationsarehighlightedbyalineofredtrianglespointingto thedirectionofnon-exposedcarbonaterocks(Fig. 2 ).No Fig.1 DraftlegendoftheWorldKarstAquiferMap,displaying signaturesforlithologicalunits.Thedefinitionandrepresentationof exposedandnon-exposedkarstaquifersisillustratedinFig. 2 HydrogeolJ

PAGE 4

attemptismadetocharacterizethoseareas,beyondidentifyingtheirpresence,whichmayincludedeeporartesiankarst aquiferswithfreshorthermal-mineralwater.Exposedcarbonaterocksusuallyformkarstlandscapeswithmoreorless developedkarstlandformssuchasdolines,andintensesurface – groundwaterinteraction,whichisusuallynotthecase fornon-exposedcarbonaterocks,unlesstheoverlyingformationsareverythin. Crystallinerockscompriseigneousrocksandmetamorphic rocks,whichcanbesubdividedintometasedimentsand metaigneousrocks.Metasedimentsincludekarstifiablemetamorphiccarbonaterocks,whichbelongtothemappingunit B carbonaterocks, ^ asdescribedinthepreceding.Therefore, thelastmappingunitincludes B othermetamorphicrocks ^ suchasgneiss,amphiboliteanddifferenttypesofschist;and igneousrocks,whichencompassplutonicrockssuchasgraniteanddiorite;andvolcanicrockssuchasbasalt,andesiteand rhyolite.Somevolcanicrocks,particularlybasalticlavaflows withcoolingfracturesandlavatubes,showsimilarhydraulic propertiestocarbonaterocks(Kauahikauaetal. 1998 ),but theyareusuallynotclassifiedaskarstaquifersandnotdelineatedonWOKAM.Thedetailedwork-stepsfromGLiMto WOKAMaredescribedfurtherinthefollowing. AstheWorldKarstAquiferMapisintendedtoprovide relevantinformationforwaterresourcesmanagement,selectedimportantkarstsprings,wellsandotherwaterabstraction structuresarealsopresentedonthemap.Thepresenceofsuch springsandotherkarstwatersourcesisalsoclearevidencefor theexistenceofhigh-yieldingkarstaquifers.Therefore,the presentationofspringsonthemapisalsoanindirectwayof indicatingthehydraulicpropertiesofthekarstaquifers. Additionally,themapdisplaysselectedcaves,becausecaves arecharacteristicofkarstandgenerallyrepresentthedegreeof karstification,whichcannotbemappedotherwiseataglobal scale.Theselectioncriteriaforcavesconsiderstheirhydrologicalimportance,i.e.cavesrelatedtorelevantwaterresourcesarepreferentiallypresentedonthemap.Thedetailed selectioncriteriaandthestructureofthespringandcavedatabasearedescribedfurtherinthefollowing.DetailedmappingprocedureDatabaseandworkflow ThemajorchallengeinpreparingtheWorldKarstAquifer Mapistheextremelyheterogeneouscartographicdatabases. TheGlobalLithologicalMap(GLiM)byHartmannand Moosdorf( 2012 )wasassembledfrom92regionalgeological maps(typicallynationalmaps)withdifferentscalesandmappingunits,whichweremergedinageographicalinformation system(GIS).GLiMachievedaconsistentlegendby regroupingandreclassifyingthenumerousmappingunitsof theregionalmaps,whilekeepingmuchofthemoredetailed basicinformationintheassociateddatabase,whichincludes threelevelsofinformation.However,asGLiMwasinitially notintendedtobepublishedasaprintedmap,itdoesnothave adefinedandconsistentscale,andthemapwasnotgeneralized;furthermore,theauthorsofGLiMdidnotattemptto correcttheavailablemaps,whichalsomeansthatthereare someinconsistenciesatstatebordersintermsofspatialdelineationofpolygonsandtheirgeologicattribution.Inorderto achieveagloballyconsistentworldkarstaquifermapsuitable forprintingatdefinedscales(1:25millionand1:40million),a well-definedworkflowataconsistentworkingscaleof1:10 millionwasestablishedandimplemented(Fig. 3 ). Reclassificationofmappingunits Figure 4 displaysthegloballithologicalmapswithits13lithologicalfirst-ordermappingunitsandadetailofthemapthat isusedasanexampleareatoillustratethedetailedworksteps fromGLiMtoWOKAM.Thefirststep(illustratedinFig. 4c ) isthereclassificationofthe13GLiMunitsintothefourprincipalWOKAMmappingunits,asfollows(thesymbolsare explainedinthecaptionofFig. 4 ): & SCreferstocarbonaterocks & EVreferstoevaporites & SU,SS,SMandPYrefertoothersedimentaryformations & MT,PA,PI,PB,VA,VIandVBrefertoothermetamorphicrocksandigneousrocks Asafirstapproximation,theresultingmapnicely displayedthedistributionofcarbonaterocks(Fig. 4c )butstill includedseveralproblems:(1)someimportantcarbonaterock andkarstareaswerenotdisplayed,astheywerehiddeninthe GLiMmappingunit B mixedsedimentaryrocks ^ (SM);(2) someregionallyimportantmetamorphiccarbonaterockswere entirelymissing;(3)therewasnouniformscaleandno Fig.2 Illustrationofnon-exposedkarstaquifers: a cross-section; b plan view;the lineofredtriangles pointstothedirectionofnon-exposed carbonaterocks,buttheplanvie wmapdoesnotprovidedetailed informationconcerningthearealextentordepthofthesedeepaquifers; forlegendseeFig. 1 HydrogeolJ

PAGE 5

consistentgeneralization;therefore,additionalworksteps wererequired. Differentiationandgeneralizationofcontinuous anddiscontinuouscarbonates heevaluationofavailableGISoptionsrevealedthata hydrogeologicallymeaningfulgeneralizationcouldnotbe doneinanautomatizedwaybutrequiredhydrogeological expertiseandmanualprocessing.Inordertoachieveaspatial frameworkforgeneralization,themapwasdividedintoregionalgeo-systemsbasedontheUSGeologicalSurvey (USGS)mapofGeologicProvincesoftheWorld(USGS 2016 ;Fig. 5 ).Ageo-systemisdefinedasaspatialentitywith commongeologicandgeomorphologicattributes. Integrativegeneralizationofthemapwasdonemanually,at aconsistentworkingscaleof1:10million.Aninherentproblemingeneralizationistheexistenceofoutcropsthataretoo smalltobedisplayedindividually,buttooimportanttobe ignored.Toovercomethisproblem,carbonate(andevaporite) areasweresubdividedintocontinuousanddiscontinuous, basedonanarea Â’ sshareoftherespectiverocktype. Whereverpossible,themappingunit B continuous ^ wasapplied,evenforsmallpolygons,becausethisisstraightforward andreadilyunderstood.Polygonsclassifiedas B continuous ^ oftenincludesmallpatchesorthinstripsofnon-karstsurfaces thataretoosmalltobedisplayedonthegeneralizedmap.By comparingtheoriginal,non-generalizedpolygonswiththe generalizedones,itturnedoutthattheshareofcarbonate rockswasgenerallylargerthan65%,sothisthresholdwas takenaslowerlimitfor B continuous ^ carbonaterocks.Some areascontainmanytiny,scatteredorramifiedcarbonaterock polygonsthatcannotbedisplayedindividuallyonthegeneralizedmap;therefore,themappingunit B discontinuous ^ was introduced.Bytestingthisapproachinseveralregions,it turnedoutthatthelimitsof15and65%resultinameaningfulgeneralization,bothscientificallyandintermsof graphicalpresentation;thus,areaswithmorethan65% ofcarbonate(orevaporite)rockweremappedas B continuous,^ whereasareasbetween15and65%were mappedas B discontinuous. ^ However,becauseoftheheterogeneityoftheunderlyingdatabase,andduetothediversityandcomplexityofdifferentgeologicalprovinces, thisgeneralrulehadtobeadaptedindividuallyduringthe processofmanualgeneralization,whileconsultingavailablegeologicalandhydrogeologicalliteraturefortherespectiveregions.Figure 6 illustratesthedifferentiationof areasof B continuous ^ and B discontinuous ^ carbonaterock duringgeneralization;someofthehydrogeologicallyimportantbutgeologicallycomplexandspatiallycompartmentalizedkarstsystemsinsouthernFrancearemapped asaregionofdiscontinuouskarst. Fig.3 Workflowofthemapping procedurefromthe Global LithologicalMap(GLiM) tothe WorldKarstAquiferMap (WOKAM) HydrogeolJ

PAGE 6

Identificationofnon-exposedcarbonaterocks Thenextstepwastheidentificationandpresentationofnonexposedcarbonaterocks,whichconstitutepotentialdeepand confinedaquifers,asillustratedinFig. 2 .Asthisworkstep requiresthree-dimensionalgeologicalanalysis,itcouldnotbe implementedautomaticallyonthebasisoftwo-dimensional informationavailableintheGLiMdatabase.Therefore,the geologicalsettingofallrelevantkarstareaswasassessedmanuallyonthebasisofthegeo-systemapproachillustratedin Fig. 5 .Regionalgeologicalmaps,profilesandliteraturewere consultedforallgeo-systemsinordertoidentifyregionally Fig.4a OriginalGLiMmapandmappingunits( ND nodata, SC carbonatesedimentaryrocks, EV evaporites, SU unconsolidated sediments, SS siliciclasticsedimentaryrocks, SM mixedsedimentary rocks, PY pyroclasticrocks, MT metamorphicrocks, PA acidplutonic rocks, PI intermediateplutonicrocks, PB basicplutonicrocks, VA acid volcanicrocks, VI intermediatevolcanicrocks, VB basicvolcanicrocks, IG iceandglaciersand WB waterbodies); b DetailofGLiMforthe examplearea; c ReclassificationintoWOKAMmappingunits;for legendseeFig. 1 HydrogeolJ

PAGE 7

Fig.5 Identificationofregionalgeo-systemsbasedonUSGS( 2016 ),whichareusedasabasisforhydrogeologicallymeaningfulgeneralization;for legendseeFig. 1 Fig.6 Differentiationofcontinuousanddiscontinuouscarbonaterocks duringtheprocessofmanualgeneralizationataworkingscaleof1:10 million: a Originalpolygonswith redandgreenlines thatwereusedto delineateareasofcontinuousanddiscontinuouscarbonaterocks; b Generalizedpolygons;forlegendseeFig. 1 HydrogeolJ

PAGE 8

importantnon-exposedkarstsystems,suchastheParisBasin (France)highlightedinFig. 7 Evaluationanditerativeimprovementofthemap Atdifferentstagesofthemappingprocedure,theintermediate resultswerediscussedbytheSABandsenttoregionalexperts forevaluationandcorrection.Inthecaseofnegativeevaluations,themapwasfurtherimprovedbysearchingandconsultingadditionalandmoreaccuratemapsandinformation sourcesfortherespectiveregionuntilasatisfactoryresult wasachieved(Fig. 3 ).Itturnedoutthatmanypolygonsneededtobereclassifiedandrearranged.Inparticular,theinitial delineationofcarbonaterockareaswasofteninsufficient,becausemanyimportantkarstareaswerehiddenunder B mixed sedimentaryrocks ^ (SM),andsomeareasconsistingof B metamorphicrocks ^ (MT)alsoincludelargeareasof carbonaticmeta-sediments.Formostcountriesandregions, itwaspossibletomakethesecorrectionsbasedonGLiM. Forothercountries,GLiMwaslargelyreplacedbyinformationobtainedfromregionalornationalmaps.Thiswasthe caseforBulgaria(Beronetal. 2006 ),Hungary(Hungarian MinistryofInterior 2016),Italy(SivelliandDeWaele 2013 ),Moldova(Duscheretal. 2015 ),Portugal(Almeida etal. 1995),Romania(Or eanuandIurkiewicz 2010 ), Serbia(StevanovicandJemcov 1996 ),Slovenia(Ravbarand — ebela 2015),Spain(Ayala-Carcedo 1986 ),Switzerland (Jeannin 2016),andUkraine(A.Klimchouk,Instituteof GeologicalSciences,NationalAcademyofSciencesof Ukraine,personalcommunication,2016).KarstwatersourcesandcavedatabaseKarstwatersourcesdatabase Severaltextbooksincludetablesorotherinformationonmajor karstspringsintheworld(e.g.FordandWilliams 2007 ; KresicandStevanovic 2010 )orinspecificregionsorcountries.However,forthepreparationofaworldkarstaquifer map,theavailableinformationwasinsufficient;therefore,a systematicglobaldatabaseonspringsandotherkarstwater sourceswasestablishedintheframeworkoftheWOKAM project.Themajorinherentchallengesincreatingthisdatabasewere: 1. Theamountandqualityofavailabledataandinformation fordifferentcountriesisextremelyvariable(e.g.excellent dataforSwitzerland,almostnodataforAfrica). 2. Thefrequencyandsize-rangeofspringsisalsoextremely unevenlydistributed(e.g.manylargespringsinthe DinaricKarst,veryfewlargespringsinSouthAmerica andAfrica). Onlyalimitedamountofinformationcanbedisplayedona globalmap,whereasitispossibleandusefultoestablisha Fig.7 Identificationandpresentationofnon-exposedkarstaquiferson themap,exemplifiedbytheParisBasin: a KarstaquifermapofFrance, wherethe redtriangles pointtowardnon-exposedcarbonaterocks,illustratingthebasinstructureinthisregionallyimportantmulti-karst-aquifer system; b GeologicprofileacrosstheParisBasin(afterBeccalettoetal. 2011)thatwasusedtoidentifynon-exposedkarstaquifersinthis geoprovince HydrogeolJ

PAGE 9

detailedglobaldatabaseofkarstwatersources.Therefore,a pragmaticapproachwasfollowed:(1)detaileddatacollection forthedatabase(inprogress);(2)generalizedpresentationof selectedkarstwatersourcesonthemap.Atemplatefordata collectionwasdesignedandsenttoSABmembersandregionalexperts.Thetemplateallowsinclusionofthefollowing information:nameandtypeofobject(e.g.normalkarstspring, thermalspring,submarinespring,waterwell),countryand region,coordinatesandelevation,relevantdischargedata,informationonwaterchemistryandtemperature,informationon aquifergeology,regionalsignificance,comments,references. Manykarstspringsarecharacterizedbyhighvariationsindischarge;somespringsrundryduringdroughts buthaveextremelyhighmaximumdischarges(often> 100m3/s)followingperiodsofhighprecipitation;however,intermsofwaterresources,thepermanent(i.e. minimum)springdischargeisthemostrelevantquantity.Insomeremoteandhumidkarstregions,manylarge karstspringsareoftennotused(andsometimesnot evenknown),whereasarelativelysmallkarstspring inanaridregionmightbeextremelyimportantandwell known(e.g.thespringsoftheJordanRiver). Basedontheseconsiderations,twomaincriteriawere appliedforinclusionofaparticularkarstwatersource onthemap:thelow-flowdischargeofthespring(or pumpingrateofthewell),anditsregionalsignificance. Thelow-flowdischargeisideallycalculatedastheaverageannualminimumdischarge,basedonlong-term dataseries;however,inmostcases,suchtimeseries arenotavailable.Formanysprings(e.g.inChinaand SouthAmerica),onlyasinglevalueisavailable,often measuredduringthedryseason.Inthesecases,thedry Table1 Ratingsystemforcave dataevaluation:5outof10points arerelatedtothedimensionsofa cave,whichalwaysreflectsthe degreeofexploration;the remaining5pointsareassigned fordifferentaspectsdescribing thesignificanceofthecaveandits associatedwaterresources. Touristicorarchaeologicalvalues arenotconsidered RatingsectionRating points Ratingcriterion Length0<10km 110 – 50km 250 – 100km 3>100km Depth0<500m 1500 – 1,000m 2>1,000m Hydrologicalsignificance0Noparticularhydrologicalrelevance(mostlydrycave) 1Associatedwithrelevantsprings,swallowholesorcavestreams 2Associatedwithmajorspring,sinkingstreamorundergroundriver Significanceforhumanuse andecosystems 0Noparticularimportance 1Cavewater(spring/stream)hasmajorimportanceforhumanuse and/orecosystems Regionalsignificance0Lowtomoderateregionalsignificance 1High(e.g.deepestcaveintheAlps) 2Veryhigh(e.g.longestcaveinAfrica,deepestcaveintheworld,only availablewaterresourceinalargeregion) Table2 ApplicationoftheratingsysteminTable 1 ,exemplifiedbyfiveimportantcavesinEurope,theUSAandAfrica NameCountryLength [km] Depth [m] Weightedratingsystemforevaluation LengthDepthHydrological significance Humanuseand ecosystems Regional significance SUM 0 – 3 pts 0 – 2 pts 0 – 2pts0 – 1pts0 – 2pts0 – 10 pts Blauhhle Germany10.5130102 0 1 4 Riesending Germany19.21,148121 0 1 5 MammothCave USA643.7124302 1 2 8 Siebenhengste-Hohgant CaveSystem Switzerland157.01,340321 0 1 7 SofOmarCave Ethiopia15.115102 1 2 6 HydrogeolJ

PAGE 10

seasondischargeistakenaslow-flowdischarge.The regionalsignificancewasdeterminedbymeansofexpertjudgement,takingintoaccountacombinationof objectiveandsubjectivecriteria.Thisprioritizationby regionalexpertshelpedtodecidewhetherornotaparticularspringwouldbeincludedinthefinalmap. Thefinalmapwillincludethefollowingtypesof springs:selectedkarstspringswithlow-flowdischarge 2m3/s,selectedspringswithlow-flowdischarge<2 m3/s,selectedwaterwellsandotherabstractionstructures,selectedsubmarinesprings,selectedthermaland mineralsprings. Dependingontheprintingscale,thefinalselectionof springsandwellswillbeadapted.Forspecialmapsthatmight bepublishedlater(e.g.karstmapofaparticularcontinent, countryorregion;thematicspecialmaps),theexistingdetaileddatabasecanbeusedandcomplemented,andthecriteria forinclusiononthemapcanbeadaptedaccordingly — for example,basedontheWOKAMspringdatabase, Stevanovicetal.( 2016 )havepublishedregionalkarstwater sourcesmapsforSouthEastEurope,NearandMiddleEast, andEasternAfrica. Cavedatabase Severalbooks(e.g.PalmerandPalmer 2009 ;Courbon 1989 ; Laumanns 2002 )andInternetresources(Gulden 2016) presentusefulinformationonthelongestanddeepestcaves intheworldorinparticularregionsorcountries.Althoughthe focusofWOKAMisnotoncavesbutonwaterresources, caveswillalsobedisplayedonthefinalmap,insofarascaves Fig.8 Draftkarstmapoftheexamplearea(France)withpresentationof selectedspringsandcaves,whicharesummarizedinTables 3 and 4 Table3 Summaryofselectedspringsintheexamplearea(Franceand neighboringregions),shownonthemapinFig. 8 .Quantitative estimationsforlow-flowandhigh-flowdischarge(m3/s)areindicated IDNameofspringLow[m3/s]High[m3/s] 1Vauclusespring4.0150 2Touvrespring6.040 3Louespring0.975 4Bouillonspring2.520 5FouxdelaVisspring1.2245 6Port-Miousubmarinespring3.050 7FontaineL ’ Evquespring2.319 8Lisonspring0.491 9Gillardesspring3.060 10Chartreuxspring1.050 11Arboisspring1.740 12Bzespring0.925 13SourceBleueandrelatedsprings2.05 14Ouyssespring0.6200 15Fontestorbesspring0.615 16Groinspring0.0104 17FontdeChampdamoyspring0.218 18Douixspring0.63 19Lezspring0.516 20Arcierspring0.210 21FontEstramarspring0.825 22Doubsspring0.219 23Durzonspring1.020 24Archianespring0.121 25FontainedeNmesspring0.018 26Aliouspring0.032 27Areusespring(Switzerland)0.739 28Orbespring(Switzerland)2.080 Table4 SummaryofselectedcavesinFrance,shownonthemapin Fig. 8 .Cavesarecharacterizedbylength(km)anddepth(m) IDNameofcaveLength[km]Depth[m] 1Saint-Marceld ’ Ardchecave51.2233 2DentdeCrollescavesystem50.1673 3CoumeOuarndecavesystem105.8975 4JeanBernardcavesystem20.51,602 5Clotd ’ Asprescavesystem40.01,066 6PierreSaint-Martincavesystem80.21,408 HydrogeolJ

PAGE 11

Fig.9 DraftkarstaquifermapofEurope,asa nexampleoftheWorldKarstAquiferMap HydrogeolJ

PAGE 12

deliverinformationonthedegreeofkarstification,although thereisnosimpleandstraightforwardrelationbetweencave developmentandkarstaquiferproperties(Palmer 1991 ).The globaldistributionofcavesisevenmoreheterogeneous thanthedistributionofsprings,becausetheregional frequency,lengthanddepthofcavesalsoreflectthe degreeofexploration,whichvarieshugelybetween countries.InsomesmallEuropeancountriessuchas SwitzerlandorSlovenia,therearethousandsofmapped caves,includinglargeones,whereaslargecarbonate rockareasinsomeremoteregionsofourplanethave almostnoknowncaves.Thisunevenspatialdistribution anddegreeofinformationmakesitverydifficultto definestrictlyobjectiveandapplicablecriteriaforthe Table5 Estimateddistributionof carbonaterocksinallEuropean countries,differentiatedin continuous(>65%)and discontinuous(15 – 65%) carbonaterock,aspresentedon themapinFig. 9 .Theareaof actualcarbonateoutcrops (derivedfromthenon-generalized polygons)isalsopresented. Uncertaindataaremarkedin italics CountryCarbonaterockareas Name1,000 km2ContinuousDiscontinuousSum(CC+DC)Outcrops 1,000 km2%1,000 km2%1,000 km2%1,000 km2%Albania 28.79.934.64.114.414.149.09.834.3 Andorra 0.50.00.00.00.00.00.00.00.0 Austria 83.923.728.20.00.023.728.220.925.0 Belarus 207.366.131.90.00.066.131.952.125.1 Belgium 30.63.511.66.019.69.531.23.812.4 Bosniaand Herzegovina 51.539.977.50.00.039.977.531.260.5 Bulgaria 111.130.227.20.20.230.427.430.127.1 Croatia 55.923.542.04.78.528.250.522.840.9 CzechRepublic78.70.00.015.019.015.019.07.29.2 Denmark 42.60.00.00.00.00.00.00.00.1 Estonia 45.80.51.24.39.44.910.61.12.4 Finland 333.90.20.10.00.00.20.10.20.1 France 547.9227.841.644.08.0271.849.6191.935.0 Germany 356.735.710.040.711.476.421.437.610.5 Greece 130.230.023.023.418.053.441.035.327.1 Hungary 92.98.89.50.40.49.29.93.94.2 Iceland 102.50.00.00.00.00.00.00.00.0 Ireland(Republic)69.532.446.60.00.032.446.623.934.4 Italy 300.278.626.25.81.984.428.157.419.1 Latvia 64.58.613.30.00.08.613.37.712.0 Liechtenstein0.20.296.50.00.00.296.50.151.1 Lithuania 64.918.628.60.00.018.628.615.724.1 Luxembourg2.61.765.10.00.01.765.11.661.1 Malta 0.30.393.80.00.00.393.80.393.8 Montenegro13.811.785.30.00.011.785.311.080.1 Netherlands34.90.00.00.30.80.30.80.10.2 Norway(incl. Svalbard) 382.112.13.21.00.313.13.510.02.6 Poland 311.215.85.130.69.846.414.921.66.9 Portugal 91.33.53.80.40.43.84.23.74.0 Republicof Macedonia 25.52.28.63.011.85.220.43.212.4 Republicof Moldova 33.70.00.016.549.116.549.16.017.8 Romania 237.36.32.721.08.827.311.55.52.3 Russia(Europ.part) 4,002.0495.712.4193.24.8688.817.2454.311.4 SerbiaandKosovo88.216.919.20.81.017.820.215.817.9 Slovakia 48.90.20.510.220.810.421.34.38.9 Slovenia 20.410.350.65.828.516.279.110.149.5 Spain 499.196.319.349.59.9145.729.270.614.1 Sweden 444.314.73.30.00.014.73.312.42.8 Switzerland41.514.835.71.12.615.938.37.919.0 Turkey 23.81.77.20.00.01.77.21.77.2 UK(incl.N. Ireland) 243.864.226.33.51.567.727.851.121.0 Ukraine 597.090.115.1156.626.2246.741.3123.420.7 Europetotal9,941.71,497.015.1642.16.52,139.121.61,367.413.8 HydrogeolJ

PAGE 13

selectionofcavesfortheworldkarstaquifermap; therefore,apragmaticweightingandratingapproach wasestablished,takingintoaccountthedimensionsof thecave(mappedlengthanddepth),anditshydrologicalsignificance,roleforhumanuseandecosystems, andregionalsignificance(Table 1 ). Dependingonthescaleofthefinalmap,differentthresholdscanbedefinedforincludingcavesfromthedatabase,e.g. sixpointscouldbetheminimumvalueforinclusiononthe 1:25millionmap.Table 2 illustratesthispoint-countsystem bymeansoffiveexamples.Somecaves(e.g.SiebenhengsteHohgantSysteminSwitzerland)areprimarilyincludedonthe mapbecauseoftheirdimensions(>100kmlongand>1,000 mdeep);othercaves(e.g.SofOmarCaveinEthiopia)are includedbecauseoftheirregionalsignificance(longestcave inAfrica),hydrologicalsignificance(ariverflowsthrough thiscave)anditsimportanceforhumanuseandecosystems (Asrat 2015 ). KarstaquifermapofFrancewithspringsandcaves Theselectionandcartographicpresentationofsignificant springsandcavesisillustratedfortheexampleregion (France)inFig. 8 ;Tables 3 and 4 presentasummaryofthese selectedobjects.Springsarecharacterizedbytheirlow-flow andhigh-flowdischarge(m3/s);forcaves,thesurveyed lengths(km)anddepths(m)areindicated.DraftkarstaquifermapofEuropeFigure 9 presentsthedraftkarstaquifermapofEuropeinthe preliminarydesignofWOKAMatascaleof1:25million, usingtheSphereRobinsonprojection.Themapispresented withoutspringsandcaves,asthedatabasehasnotyetbeen completedforallEuropeancountries.Basedonthestatistical evaluationofthismap,itispossibletodeterminetheareasof carbonaterocks.Forthisanalysis,themapprojectionwas changedtoEckertIV(equalarea).Table 5 presentstheabsolutesurfaces(in1,000km2)andthepercentageofcarbonate rockareasinallEuropeancountriesandinEuropeasawhole. Thetabledifferentiatesbetween B continuous ^ and B discontinuous ^ carbonaterockareas,asdefinedinWOKAM, andalsopresentsthesumofboth,i.e.thetotalareacharacterized bythepresenceof(continuousordiscontinuous)carbonate rocks.Thesurfaceofactualcarbon ateoutcropsisalsopresented andwasobtainedfromthenon-generalizedpolygons. Accordingtothisanalysis,15.1%ofthelandsurfaceconsists of B continuouscarbonaterocks^ and6.5%consistsof B discontinuouscarbonaterocks. ^ Accordingly,21.6%ofthe Europeanlandsurfaceischaracterizedbythepresenceofcarbonaterock,mostofwhichiskarstifiedandformskarstaquifers. Thetotalareashareofactualcarbonaterockoutcrops(generally derivedfromthenon-generalizedpolygons)isabout13.8%.The areasofnon-exposedkarstaquiferscannotbedelineatedprecisely,butthemapallowsidentifica tionoftheirlocations.These numbersincludealluncertaintiesi nvolvedintheentireprocess ofgeneratingthemap — fromtheinitialmappinginthefieldto thefinalclassificationandgeneralizationinWOKAM. In1995,theEuropeanCooperationinScienceand Technology(COST)Action65preparedadraftmapofcarbonaterockoutcropsinEuropeandestimatedthat35%ofthe Europeanlandsurfaceconsistsofcarbonaterocks(COST Action65 1995 ).Themainreasonforthediscrepancyisthat WOKAMisbasedonamuchbettercartographicdatabaseand differentiatesbetweenareasofdiscontinuousandcontinuous carbonaterocks,takingintoaccounttheactualsurfaceareasof carbonaterocks.ConclusionsKarstisanexpansiveterrainthatoccursonallcontinents.Its aquifersproducetheworld ’ slargestspringswhilebeingthemost vulnerabletocontamination.Karstaquifersoftencrossinternationalboundariesbutuntilrecently,theboundariesofkarstwere oftenpoorlydefined.BuildingontheGlobalLithologicalMap (HartmannandMoosdorf 2012 )andgrowingdatabasesandexplorationofkarst,andthroughtheuseofversatileGIStechnology,thefirstWorldKarstAquiferMap(WOKAM)isnearing completion.Thispaperdescribesthebasicconceptsandprocedureofthisworld-widemapping effortandexaminesasubsetof theWorldKarstAquiferMapbyfocusingonEurope. WOKAMispreparedataconsistentworkingscaleof1:10 millionanddifferentiatesbetweenareasof B continuouscarbonaterocks ^ (typically>65%carbonaterockoutcrops)and B discontinuouscarbonaterocks ^ (typically15 – 65%outcrops).Theupdipboundariesofnon-exposedkarstaquifers arealsodelineatedonWOKAM.Themapandassociated databaseincludeselectedkarstsprings,wellsandotherfreshwaterabstractionstructures,andselectedcaves. Asawell-studiedcontinentwithrichsourcesofinformation, Europewasanidealregiontotest,refine,andprovethemapping conceptsforWOKAM.Priorestimatesthatcarbonaterockoutcropscover35%ofEuropewerefoundtobeoverestimatesby themoreaccurateWOKAMprocess.Itwasfoundthatabout 21.6%oftheEuropeanlandsurfaceischaracterizedbythepresenceofcarbonaterock,including15.1%of B continuous ^ and 6.5%of B discontinuouscarbonaterocks ^ .Thetotalareaofactual carbonaterockoutcropsisabout13.8%.Muchofthisoccurs beneathsomeofthecontinent ’ smostdenselypopulatedregions whereeffectivewater-resourcemanagementisespeciallycritical, suchasEngland(UK),northernandsouthernFrance,partsof Germany,centralItaly,andeasternSpain. ThegeoreferencedGISstructureofWOKAMandtheassociateddatabasewillallowitsrelativelyeasyupdatingand HydrogeolJ

PAGE 14

willmakeitpossibletopreparespecificmapsbycombining informationpresentedonWOKAMwithotherrelevantinformationsuchasclimateandglobalchange,agricultureand irrigation,populationdensityandwaterdemand,orbiodiversity.WOKAMandthesubsequentspecialmapswillmakeit possibletobetterdefine,understandandproperlymanagethe world ’ skarstaquifersandtheirassociatednaturalresources.Acknowledgements TheWOKAMprojectispartoftheWorld-wide HydrogeologicalMappingandAssessmentProgramme(WHYMAP)executedundertheumbrellaoftheUNESCOInternationalHydrological Programme(UNESCO-IHP).Theprojectwasfinanciallysupportedby IAHandUNESCOandelaboratedincooperationwiththeWHYMAP teamatBGR.WethankWilhelmStruckmeier(IAHPastPresident)for initiatingthisproject.WethankAliceAureliandAurlienDumont (UNESCO)andStefanBroda(BGR)forfriendlysupportandcooperation.PaulWilliams,AlexanderKlimchoukandYuanDaoxiancontributedasremoteadvisors,bydiscussionsandsuggestions.Manyregional expertsdelivereddataorhelpedtoevaluatethemapfordifferentregions inEurope:RomeoEftimi(Albania),BobanJolovi (Bosniaand Herzegovina),AlekseyBenderev(Bulgaria), ™ elimirPeka  (Croatia), JuditMdl-Sz ny(Hungary),JoDeWaele,FrancescoFiorillo(Italy), MilanRadulovi (Montenegro),JacekRzkowski(Poland),Costa Almeida,AntnioChambel(Portugal),IancuOr eanu(Romania), AlexanderOsintsev,GennadyAmelichev,NikolayMaksimovich, AndreyOstapenko,VladimirRezvan,EugenyZakharovandAndrei Filippov(Russia),PeterMalik(Slovakia),Nata  aRavbar(Slovenia) andJuanJoseDuranandBartolomAndreoNavarro(Spain).Andreas Tide(KIT)contributedasastudentassistant.Colleagueswhodelivered datafromothercontinentswillbeacknowledgedwhenwepresentthe finalWorldKarstAquiferMap. OpenAccess ThisarticleisdistributedunderthetermsoftheCreative CommonsAttribution4.0InternationalLicense(http:// creativecommons.org/licenses/by/4.0/),whichpermitsunrestricteduse, distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktothe CreativeCommonslicense,andindicateifchangesweremade.ReferencesAl-CharidehA(2012)Rechargerateestimationinthemountain karstaquifersystemofFigehspring,Syria.EnvironEarth Sci65:1169 – 1178 AlmeidaC,SilvaML,CrispimJA(1995)NationalreportforPortugal. In:FinalreportCOSTaction65,Hydrogeologicalaspectsof groundwaterprotectioninkarsticareas.Dir-GeneralScience, ResearchandDevelopment,Lisbon,pp211 – 220 AsratA(2015)Geology,geomorphology,geodiversityand geoconservationoftheSofOma rCaveSystem,southeastern Ethiopia.JAfrEarthSci108:47 – 63 Ayala-CarcedoFJ(1986)MapadelkarstdeEspaa[KarstmapofSpain]. InstitutoGeolgicoyMinerodeEspaa,Madrid BakalowiczM(2005)Karstgroundwater:achallengefornewresources. HydrogeolJ13:148 – 160 BeccalettoL,HanotF,SerranoO,MarcS(2011)OverviewofthesubsurfacestructuralpatternoftheParisBasin(France):insightsfrom thereprocessingandinterpretationofregionalseismiclines.Marine PetroleumGeol28(4):861 – 879 BeronP,DaalievT,JalovA(2006)CavesandSpeleologyinBulgaria, PenSoft,BulgarianFederationofSpeleologyandNationalMuseum ofNaturalHistory,Sofia,Bulgaria,507pp BonacciO(1987)KarstHydrologywithspecialreferencestotheDinaric Karst.Springer,Berlin BGR(2016)World-wideHydrogeologicalMappingandAssessment Programme(WHYMAP). http://www.whymap.org .Accessedon June24,2016 COSTAction65(1995)Karstgroundwaterprotection.FinalreportEUR 16547,EuropeanCommission,Brussels,446pp CourbonP(1989)Atlasofthegreatcavesoftheworld.Cave Books,St.Louis,MO DrewD,HtzlH(1999)Karsthydrogeologyandhumanactivities:impacts,consequencesandimplications.IAHInternational ContributionstoHydrogeology20,TaylorandFrancis,London DuscherK,GuntherA,RichtsA,ClosP,PhilippU,Struckmeier W(2015)TheGISlayersofthe B International HydrogeologicalMapofEurope1:1,500,000 ^ inavector format.HydrogeolJ23:1867 – 1875 FordD,WilliamsDW(1989)Karstgeomorphologyandhydrology. Hyman,Boston FordD,WilliamsP(2007)Karsthydrogeologyandgeomorphology. Wiley,Chichester,UK GoeppertN,GoldscheiderN,ScholzH(2011)Karstgeomorphologyof carbonaticconglomeratesinth eFoldedMolassezoneofthe NorthernAlps(Austria/Germany).Geomorphology130:289 – 298 GoldscheiderN,DrewD(2007)Methodsinkarsthydrogeology.Taylor andFrancis,London GoldscheiderN,Madl-SzonyiJ,ErossA,SchillE(2010)Review: Thermalwaterresourcesincarbonaterockaquifers.HydrogeolJ 18:1303 – 1318 GuldenB(2016)Listsoflongestan ddeepestcavesintheworld. http://www.caverbob.com .AccessedJune24,2016 GuoF,JiangG,YuanD,PolkJS(2013)EvolutionofmajorenvironmentalgeologicalproblemsinkarstareasofsouthwesternChina. EnvironEarthSci69:2427 – 2435 HartmannA,GoldscheiderN,WagenerT,LangeJ,WeilerM (2014)Karstwaterresourcesinachangingworld:review ofhydrologicalmodelingapproaches.RevGeophys52:218 – 242 HartmannJ,MoosdorfN(2012)ThenewgloballithologicalmapdatabaseGLiM:arepresentationofrockpropertiesattheEarthsurface. GeochemGeophysGeosyst13(12).doi: 10.1029/2012GC004370 HollingsworthE(2009)Karstr egionsoftheworld(KROW): populatingglobalkarstdatasetsandgeneratingmapstoadvancetheunderstandingofkarstoccurrenceandprotectionof karstspeciesandhabitatsworldwide.UniversityofArkansas, LittleRock,AK,139pp HungarianMinistryofInterior(2016)Onlinegeoinformationsystemfor Hungary. www.vizugy.hu .AccessedonJune24,2016 JeanninP-Y(2016)MainkarstandcavesofSwitzerland.BolGeolMin 127(1):45 – 46 KauahikauaJ,CashmanKV,MattoxTN,HelikerCC,HonKA,Mangan M T,ThornberCR(1998)Observationsonbasalticlavastreamsin tubesfromKilaueaVolcano,islandofHawai ’ i.JGeophysResSolid Earth103:27303 – 27323 KozaryMT,DunlapJC,HumphreyWE(1968)Incidenceofsalinedepositsingeologictime.GeolSocAmSpecPap88:43 – 57 KresicN,StevanovicZ(2010)Groundwaterhydrologyofsprings:engineering,theory,management,andsustainability.ButterworthHeinemann,Oxford,UK KubotaT,ShigeS,HashizurneH,AonashiK,TakahashiN,Seto S,HiroseM,TakayabuYN,UshioT,NakagawaK,Wanami K,KachiM,OkamotoKi(2007)Globalprecipitationmap usingsatellite-bornemicrowaveradiometersbytheGSMaP HydrogeolJ

PAGE 15

project:productionandvali dation.IEEETransGeosci RemoteSens45:2259 – 2275 LaumannsM(2002)AtlasofthegreatcavesandthekarstofAfrica,1st edn.BerlinerHhlenkundlicheBerichte,vols7 – 9,Speloclub Berlin,Berlin LehnerB,LiermannCR,RevengaC,VoeroesmartyC,FeketeB,Crouzet P,DoellP,EndejanM,FrenkenK,MagomeJ,NilssonC,Robertson JC,RoedelR,SindorfN,WisserD(2011)High-resolutionmapping oftheworld ’ sreservoirsanddamsforsustainableriver-flowmanagement.FrontEcolEnviron9:494 – 502 MauriceLD,AtkinsonTC,BarkerJA,BloomfieldJP,FarrantAR, WilliamsAT(2006)Karsticbehaviourofgroundwaterinthe EnglishChalk.JHydrol330:63 – 70 MoosdorfN,HartmannJ(2015)LithologicalmapoftheWorld. CommissionoftheGeologicalMapoftheWorld(CGMW),Paris Or eanuI,IurkiewiczA(2010)Ka rsthydrogeologyofRomania, Oradea,Romania PalmerAN(1991)Originandmorphologyoflimestonecaves.GeolSoc AmBull103:1 – 21 PalmerAN,PalmerMV(2009)CavesandkarstoftheUSA.National SpeleologicalSociety,Huntsville,AL PicciniL,MecchiaM(2009)Solutionweatheringrateandoriginofkarst landformsandcavesinthequartziteofAuyan-tepui(GranSabana, Venezuela).Geomorphology106:15 – 25 RavbarN, — ebelaS(2015)Theeffectivenessofprotectionpolicies andlegislativeframeworkwithspecialregardtokarstlandscapes:insightsfromSlovenia.EnvironSciPol51:106 – 116 RichtsA,StruckmeierW,ZaepkeM(2011)WHYMAPandthegroundwaterresourcesmapoftheworld1:25,000,000.In:AnthonyJ, JonesA(eds)Sustaininggroundwaterresources:acriticalelement intheglobalwatercrisis.InternationalYearofPlanetEarth, Springer,Heidelberg,Germany,pp159 – 173 RimmerA,SalingarY(2006)Modellingprecipitation-streamflowprocessesinkarstbasin:thecaseoftheJordanRiversources,Israel.J Hydrol331:524 – 542 SivelliM,DeWaeleJ(eds)(2013)AjourneyacrossspeleologicalItaly. Mapinscale1:1.500,000.SupplementtoSpeleologia68,Societ SpeleologicaItaliana,Bologna,Italy SkoglundRO,LauritzenS-E(2011)Subglacialmazeoriginin low-dipmarblestripekarst:examplesfromNorway.JCave KarstStud73:31 – 43 StevanovicZ(2015)Karstaquifers:characterizationandengineering. ProfessionalPracticeinEarthSc iences,Springer,Heidelberg, Germany,692pp StevanovicZ,JemcovI(1996)Digitalhydrogeologicalmapof Yugoslavia(inSerbian).ProceedingsoftheXIYugoslavian Symposiumonhydrogeologyandengineeringgeology,vol1, Budva,Montenegro,pp163 – 170 StevanovicZ,GoldscheiderN,ChenZandtheWOKAMTeam(2016) WOKAM:theworldkarstaquifermappingproject,examplesfrom SouthEastEurope,NearandMiddleEastandEasternAfrica.In: StevanovicZ,KresicN,KukuricN(eds)Karstwithoutboundaries. CRC,BocaRaton,FL,pp39 – 51 UNESCO-IHP(2013)ProtectionandsustainableuseoftheDinaricKarst TransboundaryAquiferSystem,transboundarydiagnosticanalysis. UNESCO-IHP,Paris USGeologicalSurvey(2016)Geologicprovincesoftheworld. http://certmapper.cr.usgs.gov/ data/wep/dds60/wep_prv.htm AccessedonJune24,2016 WHYMAP(2008)Groundwaterresourcesoftheworld,1:25,000, 000.World-wideHydrogeologicalMappingandAssessment Programme(WHYMAP)Consortium.BGR,Hannoverand UNESCO,Paris WilliamsP,FongYT(2016)Worldmapofcarbonaterockoutcropsv3.0. http://web.env.auckland.ac.nz/our_research/karst .Accessedon June24,2016 WilliamsPW,FordDC(2006)Globaldistributionofcarbonaterocks. ZeitschriftfrGeomorphologie147(Suppl):1 – 2 WuP,TangC,ZhuL,LiuC,ChaX,TaoX(2009)Hydrogeochemical c haracteristicsofsurfacewaterandgroundwaterinthekarstbasin, SouthwestChina.HydrolProcess23:2012 – 2022 YamazakiD,OkiT,KanaeS(2009)Derivingaglobalrivernetworkmap anditssub-gridtopographiccharacteristicsfromafine-resolution flowdirectionmap.HydrolEarthSystSci13:2241 – 2251 HydrogeolJ


printinsert_linkshareget_appmore_horiz

Download Options

close
No images are available for this item.
Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.