Cryogenic Minerals in Hawaiian Lava Tubes: A Geochemical and Microbiological Exploration

Citation

Material Information

Title:
Cryogenic Minerals in Hawaiian Lava Tubes: A Geochemical and Microbiological Exploration
Series Title:
Transboundary and Emerging Diseases
Creator:
Teehera, Kimberly B.
Jungbluth, Sean P.
Onac, Bogdan P.
Acosta-Maeda, Tayro E.
Hellebrand, Eric
Misra, Anupam K.
Pflitsch, Andreas
Rappé, Michael S.
Smith, Stephen M.
Telus, Myriam
Schorghofer, Norbert
Publisher:
Taylor & Francis
Publication Date:
Language:
English
Physical Description:
1 online resource

Subjects

Subjects / Keywords:
Exobiology ( lcsh )
Lava ( lcsh )
Genre:
serial ( sobekcm )
Location:
North and Central America -- United States -- Hawaii

Notes

Abstract:
The Mauna Loa volcano, on the Island of Hawaii, has numerous young lava tubes. Among them, two at high altitudes are known to contain ice year-round: Mauna Loa Icecave (MLIC) and the Arsia Cave. These unusual caves harbor cold, humid, dark, and biologically restricted environments. Secondary minerals and ice were sampled from both caves to explore their geochemical and microbiological characteristics. The minerals sampled from the deep parts of the caves, where near freezing temperatures prevail, are all multi-phase and consist mainly of secondary amorphous silica SiO2, cryptocrystalline calcite CaCO3, and gypsum CaSO4·2H2O. Based on carbon and oxygen stable isotope ratios, all sampled calcite is cryogenic. The isotopic composition of falls on the global meteoric line, indicating that little evaporation has occurred. The microbial diversity of a silica and calcite deposit in the MLIC and from ice pond water in the Arsia Cave was explored by analysis of ∼50,000 small subunit ribosomal RNA gene fragments via amplicon sequencing. Analyses reveal that the Hawaiian ice caves harbor unique microbial diversity distinct from other environments, including cave environments, in Hawaii and worldwide. Actinobacteria and Proteobacteria were the most abundant microbial phyla detected, which is largely consistent with studies of other oligotrophic cave environments. The cold, isolated, oligotrophic basaltic lava cave environment in Hawaii provides a unique opportunity to understand microbial biogeography not only on Earth but also on other planets.

Record Information

Source Institution:
University of South Florida
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
K26-05353 ( USFLDC DOI )
k26.5353 ( USFLDC Handle )

USFLDC Membership

Aggregations:
Added automatically
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close
No images are available for this item.
Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.