Zooplankton morphospecies and abundance in relation with tide in mangroves of Cuajiniquil, Costa Rica

Citation
Zooplankton morphospecies and abundance in relation with tide in mangroves of Cuajiniquil, Costa Rica

Material Information

Title:
Zooplankton morphospecies and abundance in relation with tide in mangroves of Cuajiniquil, Costa Rica
Translated Title:
Morfoespecies y abundancia del zooplancton en relación con la marea en los manglares de Cuajiniquil, Costa Rica
Creator:
Li, Stephanie
Publication Date:
Language:
Text in English

Subjects

Subjects / Keywords:
Marine zooplankton ( lcsh )
Zooplancton marino ( lcsh )
EAP Fall 2017
EAP Otoño 2017
Costa Rica--Guanacaste--Cuajiniquil
Costa Rica--Guanacaste--Cuajiniquil
Genre:
Reports

Notes

Abstract:
In two decades, at least 35% of the world’s mangroves have been lost, which is more than both tropical rain forests and coral reefs (Valiela et al. 2001). Mangroves act as an important habitat and feeding grounds for fish (Sasekumar et al. 1992). Zooplankton are abundant in the mangroves and are important organisms to study to get an understanding of the foundation of ecosystem’s food chain. Zooplankton eat phytoplankton and get eaten by small fish and other sea animals, providing a food source and extending the food chain. I aimed to ask and answer the following question: is there a difference in the abundance and morphospecies of zooplankton present in the mangroves of Cuajiniquil, Costa Rica, depending on the tide? Using a student plankton net, I collected a total of fifteen samples at varying tides between 17 November and 21 November 2017, all during the daytime. After collecting a sample, I looked through each sample in its entirety under a dissecting microscope, separated zooplankton by morphospecies, and recorded the quantity of each morphospecies. I found 36 morphospecies with copepods and crustaceans being the most abundant. More zooplankton morphospecies were present during incoming tide rather than outgoing tide. The greatest abundance of morphospecies were present during middle tide with shrimp being most abundant at low tide, but zooplankton excluding shrimp being most abundant at middle tide. I found a positive correlation between zooplankton abundance and morphospecies versus salinity. Future studies could look at the zooplankton’s tolerance for change in salinity to determine whether the zooplankton specialize in a certain salinity or if they are physically brought in and out of the mangrove estuary with the tide. ( , )
Abstract:
En dos décadas, se ha perdido al menos el 35% de los manglares a nivel mundial, que es más que bosques pluviales tropicales y arrecifes de coral (Valiela et al., 2001). Los manglares actúan como un importante hábitat y lugar de alimentación para los peces (Sasekumar et al., 1992). El zooplancton abunda en los manglares y son organismos importantes para estudiar la cadena alimentaria del ecosistema. El zooplancton se alimenta de fitoplancton y es comido por peces pequeños y otros animales marinos, proporcionando una fuente de alimento y extendiendo la cadena alimentaria. Quise plantear y responder la siguiente pregunta: ¿existe una diferencia en la abundancia y las morfoespecies de zooplancton presentes en los manglares de Cuajiniquil, Costa Rica, dependiendo de la marea? Utilizando una red de plancton estudiantil, recolecté un total de quince muestras en distintas mareas entre el 17 de noviembre y el 21 de noviembre de 2017, todo durante el día. Después de recolectar una muestra, la examiné en su totalidad bajo un microscopio de disección, separé los zooplancton por morfoespecies y registré la cantidad de cada morfoespecie. Encontré 36 morfoespecies, los copépodos y los crustáceos siendo las más abundantes. Más morfoespecies de zooplancton estuvieron presentes durante la marea entrante que durante la marea saliente. La mayor abundancia de morfoespecies estuvo presente durante la marea media. El camarón fue más abundante durante la marea baja, pero el zooplancton (excluyendo el camarón) fue más abundante en la marea media. Encontré una correlación positiva entre la abundancia de zooplancton y el número de morfoespecies con la salinidad. Los estudios futuros podrían considerar la tolerancia del zooplancton a los cambio de salinidad para determinar si los zooplancton se especializan en ciertos rangos de salinidad o si son arrastrados físicamente por el estero del manglar con la marea.
Biographical:
Student affiliation: Division of Biological Sciences, University of California, San Diego

Record Information

Source Institution:
Monteverde Institute
Holding Location:
Monteverde Institute
Rights Management:
This item is licensed with the Creative Commons Attribution Non-Commercial No Derivative License. This license allows others to download this work and share them with others as long as they mention the author and link back to the author, but they can’t change them in any way or use them commercially.
Resource Identifier:
M39-00649 ( USFLDC DOI )
m39.649 ( USFLDC Handle )

Postcard Information

Format:
Book

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

1 Zooplankton morphospecies and abundance in relation with tide in m angroves of Cuajiniquil, Costa Rica Stephanie S. Li Division of Biological Sciences University of California, San Diego EAP Tropical Biology and Conservation, Fall 2017 15 December 2017 ABSTRACT In two decades, at least 35% of the world's mangroves have been lost which is more than both tropical rain forests and coral reefs (Valiela et al. 2001). Mangroves act as an important habitat and feeding grounds fo r fish (Sasekumar et al. 1992). Zooplankton are abundant in the mangroves and are important organisms to study to get an understanding of the foundation of ecosystem's food chain Zooplankton eat phytoplankton an d get eaten by small fish and other sea animals, providing a food source and extending the food chain. I aimed to ask and answer the following question: is there a difference in the abundance and morphospecies of zooplankton present in the mangroves of Cua jiniquil, Costa Rica, depending on the tide? Using a student plankton net, I collected a total of fifteen samples at varying tides between 17 November and 21 November 2017, all during the daytime. After collecting a sample, I looked through each sample in its entirety u nder a dissecting microscope, separated zooplankton by morphospecies and recorded the quantity of each morphospecies. I found 36 morphospecies with copepods and crustaceans being the most abundant. M ore zooplankton morphospecies were present during incoming tide rather than outgoing tide. The greatest abundance of morphospecies were present during middle tide with shrimp being most abundant at low tide, but zooplankton excluding shrimp being most abundant at middle tide. I found a positive co rrelation between zooplankton abundance and morphospecies versus salinity. Future studies could look at the zooplankton's tolerance for change in salinity to determine whether the zooplankton specialize in a certain salinity or if they are physically broug ht in and out of the mangrove estuary with the tide. Morfoespecies y abundancia del zooplancton en relaci—n con la marea en los manglares de Cuajiniquil, Costa Rica Stephanie Li Resumen En dos dŽcadas, se ha perdido al menos e l 35% de los manglares a nivel mundial que es m‡s que bosques pluviales tropicales y arrecifes de coral (Valiela et al., 2001). Los manglares actœan como un importante h‡bitat y lugar de alimentaci—n para los peces (Sasekumar et al., 1992). El zooplancton abunda en los manglares y son organismos importantes para estudiar la cadena alimentaria del ecosistema. El zooplancton se alimenta de fitoplancton y es comido por peces peque–os y otros animales marinos, proporcionando una fuente de alimento y extendi endo la cadena alimentaria. Quise plantear y responder la siguiente pregunta: existe una diferencia en la abundancia y las morfoespecies de zooplancton presente s en los manglares de Cuajiniquil, Costa Rica, dependiendo de la marea? Utilizando una red de plancton estudiantil, recolec tŽ un total de quince muestras en distintas mareas entre el 17 de noviembre y el 21 de noviembre de

PAGE 2

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 2 2017, todo durante el d’a. DespuŽs de recolect ar una muestra, la examinŽ en su totalidad bajo un microscopio de disecci—n, separŽ los zooplancton por morfoe species y registrŽ la cantidad de cada morfoespecie. EncontrŽ 36 morfoespecies los copŽpodos y los crust‡ceos siendo la s m‡s abundantes. M‡s morfoespecies de zooplancton estuvieron presentes du rante la marea entrante que durante la marea saliente. La mayo r abundancia de morfoespecies estuvo presente durante la marea media. El camar—n fue m‡s abundante durante la marea baja, pero el zooplancton ( excluyendo el camar—n ) fue m‡s abundante en la marea media. EncontrŽ una correlaci—n positiva entre la abundancia de zoop lancton y el nœmero de morfoespecies con la salinidad. Los estudios futuros podr’an considerar la tolerancia del zooplancton a los cambio de salinidad para determinar si los z ooplancton se especializan en ciertos rangos de sa linidad o si son arrast rados f’sicamente por el ester o del manglar con la marea. INTRODUCTION Mangroves are an important habitat and feeding grounds for fish es (Sasekumar et al 1992) Studies have shown that some fish es rely solely on mangroves as a food source (Vaslet et al 2012). For a few fish es when their habitat is connected to mangroves, their biomass is more than doubled (Mumby et al. 2004). The ecosystem is also used by many reef fishes as a nursery for juvenile fish es (El Regal et al. 2014 Mumby et al. 2004 ). P lankton and mangrove leaf litter are food sources for small fish es and other sea creatures, while the small fish and other sea creatures are food sources for larger fish and other animals Since m angroves are trees that live in the intertidal zone in estuaries, t hey are known to have adapted to saline water and to oxygen depleted soil. The changing tides in the mangroves cause the saline ocean water to be physically brought in and out of the mangroves, changing the salinity of the w ater By studying zooplankton, one can achieve a deeper understanding of mangrove forests because zooplankton help to understand the foundation of the ecosystem's food chain Most eat phytoplankton such as algae, making them primary consumers. Their presence can greatly affect the quality of water. Without zooplankton, phytoplankton could increase their population quickly, causing an oxygen deletion in the water. Zooplankton are also eaten by many small fish and other sea animals, providing a food source and extending the food chain length. These z ooplankton are microorganisms, ranging anywhere between 0.2 !m and 20 cm, that live in either fresh or salt water. Freshwater, rath er than salt water, houses the greatest species richness of zooplankton, with a significant decline at 2.00% salinity (Zorina Sakharova et al. 2014). On the other hand, it has also been shown that salinity promotes zooplankton abundance (Honggang et al. 20 12). I collected zooplankton samples in the Rio Cuajiniquil mangroves in a rural fishing town in Northwest Costa Rica This mangrove forest is home to white red, and black mangroves. Studies have shown that t his specific mangrove forest support s an abundance of copepods (Tan 2017). I aim ed to ask and answer the following question: is there a difference in the abundance and morphospecies of zooplankton present in the mangroves of Cuajiniquil, Costa Rica, depending on the tide? MATERIAL AND METHO DS Fieldwork I collected a total of f ifteen s amples at varying tides betw een 17 November and 21 November 2017 all during the daytime. For each sampling event, I recorded the date, time, an d daily low and high tide times At low tide, I took samples from three shallow water sites: one in

PAGE 3

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 3 "! #""! $""! %""! &""! '""! (""! )*+,+*-.! )/0.123,24.! )52-*3,/24.! 62.1/*+*-.! 7.1/23*-.! 8*/9.! :4;4*<4! =*125!409>,/!*?!@4-@A@-025.!+/,.,41! B**+524;1*4!)21,C*/@,.! the middle of a flowing river, another in fairly stagnant water off a rocky shore, and the last in fairly stagnant water off a sandy shore At high tide, I took samples from three fairly stagnant sites, two of which had shallow water while one had deeper water. To collect samples, I used a student plankton net with a conical tube attached at the end. I dragged a full y submerged plankton net n o more than one foot below the surface of the water for five minutes, keeping the net in motion. I collected si x samples by attaching the net to a string and dragging it by hand. I then collected the other nine samples by attaching the net to a pole to create distance b etween the net and me as to lessen the collection of samples through recently disturbed water. Samples wer e transferred to a specimen cup. Using a Vee Gee Model BTX 1 refractometer, I measured the salinity of the water for four samples. Lab W ork After collecting sample s I looked through each sample in its entirety under a dissecting microscope and separated zooplankton by morphospecies and recorded the quantity of each morphospecies. I also categorized the zooplankton to the lowest taxonomic level I was capable of identifying Zooplankton were labelled as "unknown" if I was unsure of their identification. For data analysis, I used a two tailed t test to analyze data related to tide direction and a one way ANOVA test to an alyze data related to tide stage with a 90% confidence interval I defined i ncoming tide as the tide changing from l ow to high and outgoing tide as the tide changing from high to low. Tide stages were separated into three categories: low, middle, and high. RESULTS Morphospecies I found a total of 36 morphospeci es of zooplankton in the samples (photographs and sketches in the appendix) The majority of these zooplankton were copepods (n = 507) and crustaceans (n= 392) (Fig. 1) I found ten different morphospecies of copepods, the most morphospecies of all the categories. Crustaceans mainly consisted of shrimp and shrimp larvae. D@C0/,! # E!F2/!C/2+G!*?!3*041!*?!@4-@A@-025.!.,+2/21,-!@4!321,C*/@,.!1*!1G,!5*<,.1!12 H*4*9@3!5,A,5

PAGE 4

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 4 "! $! &! (! I! #"! #$! #&! #(! #I! $"! J*04-243,!*?! K*/+G*.+,3@,.! =@-,!N12C,! "! $! &! (! I! #"! #$! #&! O43*9@4C! 701C*@4C! MA,/2C,!M>04-243,!*?! K*/+G*.+,3@,.! =@-,!P@/,3Q*4! Tide Direction I found an average of seven morphospecies in the incoming tide and three morphospecies in the outgoing tide. More morphospecies were present at incoming tide as opposed to outgoing tide, although there was not a statistically significant difference ( two tailed t test, p = 0.1032). ! ! "#$%&'! ( )!*+&!$&+,-!./!0#1'!1#&'20#.3!4'&5%5!+4'&+$'! +6%31+32' !./!7.&,-.5,'2#'5 Tide Stage The average abundance of mo rphospecies was greatest at middle tide while low and high tides had few morphospecies, although there was not a statistically significant difference ( Fig. 3, one way ANOVA test, F = 1.58 28, p = 0.2454). ! ! "#$%&'! 8 )!*+&!$&+,-!./!0#1'! 50+$' !+31!+4'&+$'!+6%31+32'!./!7.&,-.5,'2#'5 I looked at shrimp and shrimp larvae separate ly from other zooplankton since approximately 300 shrimp were found in a single sample. It is likely that I dragged the net into a school of shrimp. Looking at all zooplan kton together, including shrimp, would give a false representation of the zooplankton distribution since it would be heavily influenced by a single sample. Therefore, looking at zooplankton, excluding shrimp, I found the greatest abundance of

PAGE 5

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 5 M!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!F "! '"! #""! #'"! $""! $'"! %""! %'"! "! #! $! %! &! '! (! M>04-243,!*?!NG/@9+! =@-,!N12C,.! "! #""! $""! %""! &""! '""! "! #! $! %! &! '! (! M>04-243,!*?!B**+524;1*4! RH350-@4C!NG/@9+! =@-,!N12C,.! zooplankton a t middle tide, although there was not a statistically significant difference (Fig. 4 A one way ANOVA test, F = 2.7332, p = 0.1052). Looking at the distribution of shrimp only I found an average of 61 individuals in a low tide sample, zero in a middle tide sample, and one in a high tide sample. A large majority of shrimp was found during low tide, even though there was not a statistically significant difference (Fig. 4B, one way ANOVA test, F = 1.1369, p = 0.3530). "#$%&'! 9 ) !:;< !*+&!$&+,-!./!0#1'! 50+$' !+31!+4'&+$'! +6%31+32' ,'&!5+7,='! ./!>..,=+3?0.3!'@2=%1#3$!5-, !A#0-!5#@!5+7,='5!+0! =.A!0#1'B!0-&''!5+7,='5!+0!7#11='!0#1'B!+31!5#@!5+7,='5!+0!-#$-!0#1'C! !:*..,=+3?0.3! :*
PAGE 6

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 6 Morphospecies In the Rio Cuajiniquil mangroves, there were 36 morphospecies in the samples with copepods and crustaceans being the most abundant groups. While some studies corroborate the fact that copepods are the most abundant zooplankton (Krumme and Liang 2004, Primo et al. 2009), others have found that rotifers are the most abundant zooplan kton ( Saunders and Lewis 1988 ). Studies have shown that zooplankton diversity can depend on pH levels of the water (Confer et al. 1983 ). Another study has shown that zooplankton diversity can change based on precipitation patterns (Primo et al. 2009). pH, precipitation, or some other factors may explain why co pepods are the most abundant zooplankton in the Rio Cuajiniquil mangroves. Tide D irection It is known that there is an inverse relationship between zooplankton abundance and water flow rate (Saunders et al 2014). During incoming tide, when the tide is going from low to high, water from the ocean is physically being pulled upstream, against the current of the river. This means that the water flow rate during incoming tide is lower than the ra te during high tide and therefore explains why my study shows zooplankton morphospecies abundance is higher during incoming tide rather than outgoing tide. Tide Stage Zooplankton m orphospecies and zooplankton excluding shrimp were most abundant during middle tide with shrimp only being most abundant at low tide. Studies show that zooplankton populations vary depending on the tide (Lee and McAlice 1979). Some have found that zooplankton abundance is higher during high tide and lower during l ow tid e (Krumme and Liang 2004), but these studies mainly looked at only high and low tide. Looking at the time b etween the tides gives more insight into the zooplankton population. I found that morphospecies and zooplankton excluding shrimp were most abundant at middle tide which may be a result of the zooplankton that are present during high tide, and the zooplankton that are present during low tide, occurring together. Salinity I found a positive correlation between zooplankton abundance and morphospecies versus salinity. There are multiple differing studies done on zooplankton and their relation with salinity. While some studies have found that the two have a positive correlation (Honggang et al. 2012, Krumme and Liang 2004), others have found that the two have a negative correlation (Zorina Sakharova et al. 2014). Also, a study was done where zooplankton richne ss was higher in a slightly saline lake as compared to a low saline lake. The abundance and biomass was similar between the two lakes (Echaniz et al 2012). When abundance increases with salinity, the zooplankton population in that location has evolved to be better adapted to salt water rather than freshwater. This is the case in the mangrove estuaries of Cuajiniquil. A study determined that salinity and vertical stratification are the biggest factors in determining spatial distribution of zooplankton as o pposed to turbidity and temperature (Laprise and Dodson 1994) This shows that salinity is a big factor that should be taken into account when sampling zooplankton. Limitations Using a hand tow plankton net may not have provided a fully comprehensive look at the zooplankton population. More should be collected and analyzed in order to get a complete list of

PAGE 7

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 7 morphospecies and a thorough count of abundance of zooplankton. This study shows a section of what the zooplankton population in the Rio Cuajiniquil mangroves looks like, bu t it is not the entire population. In order to get a more complete idea of the Rio Cuajiniquil zooplankton, I would need to drag the net in the water for longer and cover more area. This could also be done by using a net with a larger volume. Importance and Fut ure Studies In two decades, at least 35% of the world's mangroves have been lost (Valiela et al. 2001). This loss is even more than the loss of tropical rain forests and coral reefs. My study helps to understand mangrove ecosystems bette r by giving better insight on a foundation of the food chain zooplankton. Future studies could look at the zooplankton's tolerance for change in salinity to determine whether the zooplankton specialize in a certain salinity or if they are physically brought in and out of th e mangrove estuary with the tide. A long term study looking at the zooplankton population in the mangroves during different times of year, for multiple years, would give a more extensive list of the zooplankton population of the Rio Cuajiniquil mangroves. ACKNOWLEDGMENTS All the thanks to the man, the myth, the leg end, Frank Joyce for the advice, support stories, growls, and bird calls throughout the program Thank you to Sof’a Arce Flores being an all around awesome person and advisor. Thanks to Brooke Hawkins for bravely reading through a first draft of this paper as a reviewer. Many thanks to Jennay Argiris, Rebecca Ash, Zachory Durall, Brooke Hawkins, Eliot Headley, Nate Howell, John La Bonte, and Eric Medina for the never ending laughter, loving insults, and rejuvenating juice parties We didn't get dengue!! So much thanks to all 30 other students and all staff members in this program for making this experience enjoyable and unforgettable. Gracias to my host family Digno, Griselda Angelica, and Fabiana Vel ‡ squez Blanco for welcoming me into their home and putting up with my horrendous Spanish. Last, but never least, many thanks to my family for their unconditional love and providing me with endless adventures. ( An extra s pecial shoutout to the Simuliidae for eating me alive in the mangroves!) Pura vida! LITERATURE CITED Abu El Regal, M. A., Ibrahim, N. K. (2014), Role of mangroves as a nursery ground for juvenile reef fishes in the southern Egyptian Red Sea. The Egyptian Journa l of Aquatic Research. Confer, J. L., Kaaret, T., Likens, G. E. ( 1983 ), Zooplankton Diversity and Biomass in Recently Acidified Lakes. Canadian Journal of Fisheries and Aquatic Sciences. Echaniz, S. A. Vignatti, A. M. Cabrera, G. C. and Paggi, S. B. J. (2012), Zooplankton richness, abundance and biomass of two hypertrophic shallow lakes with different salinity in central Argentina Biota Neotropica Honggang, Z Baoshan, C. Zhiming Z. and Xiaoyun, F. (2012), Species diversity and distribution for zooplankton in the inter tidal wetlands of the Pearl River estuary, China. Procedia Environmental Sciences

PAGE 8

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 8 Krumme, U., Liang, T. (2004), Tidal Induced Changes in a Copepod Dominated Zooplankton Community in a Macrotidal Mangrove Channel in Northern Brazil. Zoological Studies. Laprise, R., Dodson, J. J. (1994), Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Marine Ecology Progress Series. Lee, W. Y. McAlice, B. J. (1979), Sampling variability of marine zooplankton in a tidal estuary. Estuarine and Coastal Marine Science. Mumby, P. J., Edwards, A. J., Arias Gonz‡lez, J. E., Lindeman, K. C., Blackwell, P. G., Gall, A., Gorczynska, M. I., Harborne, A. R., Pescod, C. L., Renken, H., Wabnitz, C. C. C., and Llewellyn, G. (2004), Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature. Primo, A. L., Azeiteiro, U. M., Marques, S. C., Martinho, F., Pardal, M. A. (2009), Changes in zooplankton diversity and distribution pattern under varying precipitation regimes in a southern temperate estuary. Estuarine, Coastal and Shelf Science. Sasekumar, A., Chong, V. C., Leh, M. U., D'Cruz, R. (1992), Mangroves as a habitat for fish and p rawns. Hydrobiologia. Saunders III, J. F., Lewis, Jr. W. M. (1988), Zooplankton abundance and transport in a tropical white wa ter river. Hydrobiologia Tan, N L. (2017), Copepod dynamics in mangrove and nearshore marine ecosyst ems in Cuajiniquil, Cost a Rica. EAP Tropical Biology and Conservation, Spring 2017 Valiela, I., Bowen, J. L., York, J. K. (2001), Mangrove Forests: One of the World's Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well known threatened environments. BioScience. Vaslet, A., Phillips, D. L., France, C., Feller, I.C., Baldwin, C. C. (2012), The relative importance of mangroves a nd seagrass beds as feeding areas for resident and transient fishes among different mangrove habitats in Florida and Belize: Evidence from dietary and stable isotope analyses. Journal of Experimental Marine Biology and Ecology. Zorina Sakharova, K. Lias henko, A. and Marchenko, I. (2014), Effects of Salinity on the Zooplankton Communities in the Fore Delta of Kyl iya Branch of the Danube River. Acta Zoologica Bulgarica APPENDIX

PAGE 9

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 9 "#$%&'! G)!H+,!./!0-'!I%+J#3#K%#=!+&'+!A#0-!&'1!1.05!,=+2'1!+0!5+7,=#3$!5#0'5C!"&.7!='/0!0.!&#$-0B!0-'!5#0'5!+&'! 3+7'1 !L,=+F+MB!L/.&?! ./!'&MB!+31!L2&.55'1!0&''MC N+6='!G)!N+6='!A#0-!#3/.&7+0#.3!.3!'+2-!5+7,='B!#32=%1#3$!1+0'B!0#7'!./!1+FB!5#0'B!+31!0#1'!#3/.&7+ 0#.3 N29+5, P21, =@9,! *?! -2S O43*9@4C! 1@-, 701C*@4C! 1@-, )5*.,/! 1*!G@CG! 1@-, )5*.,/! 1*!5*,1<,,4 N@1, 1@9,!2?1,/! 5*
PAGE 10

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 10 #V J #V W X*A W #V #'"' H H ! ]0@3;.24-! 2/,2! >,1<,,4! ?*/;!*?!/@A,/! 24-!+52S2 &$$ K #Y W X*A W #V Y%" H ! H 3/*..,-!1/,, ## X #Y W X*A W #V #"'' H ! H ?*/; !*?!/@A,/ Y( 7 #Y W X*A W #V #"#" H ! H +52S2 '# ^ $" W X*A W #V #'&' H H ! 3/*..,-!1/,, %'" $" W X*A W #V #("' H H ! >,?*/,!?*/;! *?!/@A,/ %V" ` $" W X*A W #V #($" H H ! ?*/;!*?!/@A,/ %I' N $# W X*A W #V #%&" H ! H +52S2 #IY = $# W X*A W #V #&"' H ! H ?*/;!*?!/@A,/ $#& : $# W X*A W #V #&$' H ! H 3/*..,-!1/,, $%& N+6='!()!N+6='!A#0-!#3/.&7+0#.3!.3!+==!7.&,-.5,'2#'5B!A-#2-!5+7,='5!0-'F!A'&'!/.%31!#3B!+31!0-'!K%+30#0F K*/+G*.+,3@,. OP!409>,/ N29+5, =*125! 409>,/! *?! @4-@A@-025. X09>,/! *?! .29+5,.! +/,.,41! @4 #V W X*A W $"#V #Y W X*A W #V $" W X*A W #V $# W X*A W #V ! D 6 O Z \ J K X 7 ^ ` N = : ! # ! ! ! ! ! # ! # # $ ! ! % ! # ! ! & $ % ( # ( # ! $ V # ! $& V & ! ! $ ! # ! ! ! % $

PAGE 11

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 11 ! # $ $ ! ! ! ! % ( # %" ! ! %% %"" # ! ! ! %(' V Y # # ! # # $ Y $% I# ## #%Y #" I ! ! ! # ! ! ! ! # # Y # ! ! $ # # ! ! & #" # ! ! # ! ! ! ! $ $ ## ! # ! ! % ! ! ! & $ #$ ! ! % ! % ! ! ! ( $ #% ! ! ! ! # ! % # % #& ! ! ! ! # ! ! ! # # #' ! ! ! ! # ( # VI #" # YV ( #( $ ! ! ! $$ #$ # # # %Y ( #V ! ! ! ! $ ! ! $ # #I ! ! ! ! ( ( $ $% &$ #Y ! ! ! ! #& &" Y # (Y $" ! ! ! ! ! % $ ! $ $# ! ! ! ! # ! ! # # $$ ! ! ! ! ! ## ! #( $ $% ! ! ! ! ! #% #V % %% % $& ! ! ! ! ! # ! ! # # $' ! ! ! ! ! $ ! ! $ # $( ! ! ! ! ! #( & # $# % $V ! ! ! ! ! $ #& ( $$ % $I ! ! ! ! ! # ! ! # # $Y ! ! ! ! ! V I( #' & ##$ & %" ! ! ! ! # ! ! # # %# ! ! ! ! ! ! $ ! $ # %$ ! ! ! ! ! ! # ! # # %% ! ! ! ! ! ! # # # %& ! # ! ! ! ! ! ! # # %' ! # ! ! ! ! ! ! # # %( ! ! # ! ! ! ! ! # # N+6='!8)!N+6='5!A#0-!,#20%&'5!./!'+2-!7.&,-.5,'2#'5B!0-'!7.&,-.5,'2#'5!OP!3%76'&B!1'52&#,0#4'!3+7'B!+31!5+7,='!5',+&+0'1!6F! 2+0'$.&#'5!./!>..,=+3?0.3 Copepods 7/C24@.9 P,.3/@+1@*4 ^/,.,41!@4!N29+5, ^@310/,

PAGE 12

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 12 # 7/C24!+09+@4C!3*+,+*! ` V `,-!RS,!)*+,+*! Da!Oa!Za!Ka!Xa! 7a!^a!_a!Na!=

PAGE 13

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 13 Y N0+,/!?2.1!3*+,+*! Da!Ka!7a!^ #% L2/+231@3*@-!3*+,+*! 7a!Na!= #& J*4C!3*+,+*! 7

PAGE 14

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 14 #' J*4C!12@5!3*+,+*! ^a!_a !`a!Na!=a!:

PAGE 15

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 15 ! #Y N+@;S!3*+,+*! ^a!_a!Na!=a!:

PAGE 16

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 16 $$ F/*<4!3*+,+*! _a!N $( J@4,-!3*+,+*! _a!Na!= $Y J*4C!241,442,!.G*/1!12@5!3*+,+*! _a!Na!=a!:

PAGE 17

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 17 Crustaceans 7/C24@.9 P,.3/@+1@*4 ^/,.,41!@4! N29+5, ^@310/, NG/@9+ Oa!Za!J ( NG/@9+! J2/A2, Da!6a!Ka!Xa!7

PAGE 18

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 18 #" :C5S!3/0.123,2!52/A2, 6a!Ka!N #I `,255S!?2.1!3/0.123,2! 52/A2, ^a!_a!`a!Na!= $V )/0.123,2!52/A2, _a!Na!= Cladocerans

PAGE 19

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 19 7/C24@.9 P,.3/@+1@*4 ^/,.,41!@4!N29+5, ^@310/, $' P2+G4@2!.G2+,! $I L2@/S!-2+G4@2 %# `@>>,-!-2+G4@2 N %% ^2/1S!-2+G4@2 = Gastropods 7/C24@.9 P,.3/@+1@*4 ^/,.,41!@4! N29+5, ^@310/,

PAGE 20

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 20 #( 7/24C,!5@-!.42@5! 6a!^a!_a!`a!Na!= %' F/*<4!.G,55!.42@5 O Ostracods 7/C24@.9 P,.3/@+1@*4 ^/,.,41!@4!N29+5, ^@310/, % 7.1/23*-!.+*11,! \a!6a!Oa !Ja!^a!_a!N

PAGE 21

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 21 & NG,55!* .1/23*! Ja!7 $" `,-!-*1 !*.1/23*! _a!N %$ F,2;,-!*.1/23*! N %& J24;S!*.1/23*! O Worms 7/C24@.9 P,.3/@+1@*4 ^/,.,41!@4!N29+5, ^@310/,

PAGE 22

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 22 $ NG*/1!24-!.1*01!<*/9 Ja!^ I ),41@52/A2, K ## ^@4;!<*/9 Oa!X #$ )5,2/!<*/9 \a!X #V F2S92H!52/A2, ^

PAGE 23

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 23 %( N0+,/!.,C9,41,-!<*/9 \

PAGE 24

Zooplankton morphospecies and abundance in relation with tide in mangroves Li 24 Miscellaneous/Unknown 7/C24@.9 P,.3/@+1@*4 ^/,.,41!@4!N29+5, ^@310/, $# 74,!,S, ^ $% =0>,!4,,-5,. _a!Na!= $& N+23,.G@+!321 %" N@-,!.+*1 ^


printinsert_linkshareget_appmore_horiz

Download Options

close
No images are available for this item.
Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.