Activity patterns of damselflies and dragonflies (Odonata) in Monteverde, Costa Rica


previous item | next item

Citation
Activity patterns of damselflies and dragonflies (Odonata) in Monteverde, Costa Rica

Material Information

Title:
Activity patterns of damselflies and dragonflies (Odonata) in Monteverde, Costa Rica
Translated Title:
Patrones de actividad de las libelulas (Odonata) en Monteverde, Costa Rica
Creator:
Gaynor, Jenny
Publication Date:
Language:
Text in English

Subjects

Subjects / Keywords:
Dragonflies ( lcsh )
Libelulas ( lcsh )
Damselflies ( lcsh )
Libelulas ( lcsh )
Costa Rica--Puntarenas--Monteverde Zone--San Luis
Costa Rica--Puntarenas--Zona de Monteverde
CIEE Summer 2008
CIEE Verano 2008
Genre:
Reports

Notes

Abstract:
Daily periods of activity tend to vary across different species of dragonflies and damselflies of the order Odonata. The purpose of this study was to investigate the activity patterns of five different behaviors for five different species of odonates. Observations were made at the Estación Biológica de Monteverde over a weeklong period in late July. Results showed that there were variations in behavior compared with time both within and across the five species. However, each species did not display every behavior, and behaviors were not evenly distributed across different species. This may be a result of variance in population sizes or that observations were not conducted at peak times of activity for certain species. ( ,,,,,,, )
Abstract:
Los periodos diarios de actividad tienden a variar a través de las diferentes especies de libélulas del orden Odonata. El propósito de este estudio fue investigar los patrones de actividad de los cinco diferentes comportamientos de las cinco especies diferentes de odonatos. Las observaciones se realizaron en la Estación Biológica de Monteverde por un periodo de una semana a finales de julio.
Biographical:
Student Affiliation : Department of Biology, University of Wisconsin – Madison
Acquisition:
Born Digital

Record Information

Source Institution:
|Monteverde Institute
Holding Location:
|Monteverde Institute
Rights Management:
This item is licensed with the Creative Commons Attribution Non-Commercial No Derivative License. This license allows others to download this work and share them with others as long as they mention the author and link back to the author, but they can’t change them in any way or use them commercially.
Resource Identifier:
M39-00472 ( USFLDC DOI )
m39.472 ( USFLDC Handle )

Postcard Information

Format:
Book

Downloads

This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xlink http:www.w3.org1999xlink xmlns:xsi http:www.w3.org2001XMLSchema-instance
leader 00000nas 2200000Ka 4500
controlfield tag 008 000000c19749999pautr p s 0 0eng d
datafield ind1 8 ind2 024
subfield code a M39-00003
040
FHM
0 041
eng
049
FHmm
1 100
Gaynor, Jenny
242
Patrones de actividad de las liblulas (Odonata) en Monteverde, Costa Rica
245
Activity patterns of damselflies and dragonflies (Odonata) in Monteverde, Costa Rica
260
c 2008-08
500
Born Digital
3 520
Daily periods of activity tend to vary across different species of dragonflies and damselflies of the order Odonata. The purpose of this study was to investigate the activity patterns of five different behaviors for five different species of odonates. Observations were made at the Estacin Biolgica de Monteverde over a
weeklong period in late July. Results showed that there were variations in behavior compared with time both within and across the five species. However, each species did not display every behavior, and behaviors were not evenly distributed across different species. This may be a result of variance in
population sizes or that observations were not conducted at peak times of activity for certain species.
Los periodos diarios de actividad tienden a variar a travs de las diferentes especies de liblulas del orden Odonata. El propsito de este estudio fue investigar los patrones de actividad de los cinco diferentes comportamientos de las cinco especies diferentes de odonatos. Las observaciones se realizaron en la Estacin Biolgica de Monteverde por un periodo de una semana a finales de julio.
546
Text in English.
650
Dragonflies--Animal behavior--Costa Rica--Puntarenas--Monteverde Zone
Damselflies--Animal behavior--Costa Rica--Puntarenas--Monteverde Zone
4
Liblulas--Comportamiento animal--Costa Rica--Puntarenas--Zona de Monteverde
653
Tropical Ecology Summer 2008
Ecologa Tropical Verano 2008
655
Reports
720
CIEE
773
t Monteverde Institute : Tropical Ecology
856
u http://digital.lib.usf.edu/?m39.3



PAGE 1

Activity patterns of damselflies and dragonflies Odonata in Monteverde, Costa Rica Jenny Gaynor Department of Biology, University of Wisconsin € Madison ABSTRACT Daily periods of activity tend to vary across diffe r ent species of dragonflies and damselflies of the order Odonata. The purpose of this study was to investigate the activity patterns of five different behaviors for five different species of odonates. Observations were made at the Estación Biológica de M onteverde over a weeklong period in late July. Results showed that there were variations in behavior compared with time both within and across the five species. However, each species did not display every behavior, and behaviors were not evenly distribut ed across different species. This may be a result of variance in population sizes or that observations were not conducted at peak times of activity for certain species. RESUMEN Los períodos diarios de actividad tienden a variar en las diferentes especie s de libélulas y gallitos del diablo. El objetivo de este estudio fue investigar los patrones de actividad de cinco especies de odonatos en cuanto a cinco diferentes comportamientos. Las observaciones se realizaron en la Estación Biológica de Monteverde du rante una semana a finales de julio. Los resultados mostraron que existen variaciones en el comportamiento a lo largo del tiempo, tanto dentro como entre las cinco especies. Sin embargo, cada especie no mostró cada conducta, y no se distribuye uniformement e en las diferentes especies. Esto puede ser el resultado de la varianza en los tamaños de población o que las observaciones no se llevó a cabo en las horas pico d e actividad de algunas especies. INTRODUCTION Most dragonflies Anisoptera and damselflies Zygoptera of the order Odonata spend the majority of their adult life near some kind of water source Esquivel 2006. However, daily periods of activity tend to vary across different species and also greatly depend on the amount of sunlight available. Furthermore, periods of activity also fluctuate between males and females. Females tend to only make brief visits to aquatic sites in order to mate and lay their eggs. Males, on the other hand, will spend most of their time near a water source, waiting for females to arrive Esquivel 2006. In a study by Bick and Bick 1965, it was found that within the species A. apicalis , females were at a water source for only 20% of their lives, but mated 89% of their days there. Males, on the other hand, spent 44 % of their lives at water and only mated during 20% of their days there. Male odonates are known to be territorial at the water s edge. The defense of areas around oviposition sites is critical for dragonflies and damselflies to have reproductive success Switzer 2002. It has been found that there is a positive correlation between quality of oviposition substrate and both female densities and rates of males

PAGE 2

intruding into territories Wolf et al. 1997. Males guard their territory by making patrol flig hts or by perching on a prominent place. In a study by Kirkton and Schultz 2001, it was found that during 25% of total observation time, males performed intraspecific interactive behaviors such as patrol flights, courtship displays, mate guarding, and m ale male aerial dogfights. In another study it was found that for the dragonfly Perithemis tenera , individual males defended a single territory for about half of the time that the aquatic site was occupied Switzer 2002. When a female enters the territo ry of a male, the male has unrestricted access to the female for reproduction. However, females only arrive intermittently and male individuals will fight each other when one invades another s territory Esquivel 2006. Males of different species living in the same habitat tend to avoid competition for space. They can accomplish this by mating at different times, perching at different heights, using different types of perches, or using different areas of the site Esquivel 2006. This study aims to exp lore behavioral activity patterns of multiple species in a single area. It was hypothesized that different species would have distinct and differing times of peak activity in order to avoid competition for resources . METHODS Study Site The study was conducted near the Estación Biológica de Monteverde, Costa Rica at a waterfall of the Quebrada Máquina about 100 m down from the lower lab. The site is at an elevation of 1,465 m, and is surrounded by steep hills on either side that are inhabited by many tall canopy trees. Because of this, sun rarely struck the entire area. In the morning, the sun generally only hit the hill on the west bank. Sun exposure over the water was most intense at noon, and in the afternoon the sun traveled up the opposite bank . Study subjects Four species within the suborder Zygoptera and one within Anisoptera were studied. The identification of these species occurred during preliminary observations with the use of electronic field guides Haber 2004. Argia anceps Coenagr ionidae, Argia underwoodi Coenagrionidae, Hetaerina majuscula Calopterigidae, and Palaemnema sp. Platystictidae are damselfly species and Brechmorhoga rapax Libelullidae is a dragonfly species. Argia anceps averages 38 mm in length. The males b odies are almost completely blue and females are mostly brown. The species stays active for most of the day, but becomes inactive during cloudy periods. Argia underwoodi is very similar to A. anceps , but males do not have quite as much blue on their bodi es. It averages 40 mm in length, has small black spots on the wing tips, and is very abundant on vegetation near water sources. Hetaerina majuscula is a much larger damselfly and ranges between 56 58 mm long. It is black in color and males have bright r ed spots on the base of their wings, which gives it its common name, Rubyspots. Palaemnema sp. is brownish black and has yellow bands at each segment of its abdomen. Males are 56 58 mm long

PAGE 3

while females are usually 48 50 mm long. Little is known abou t the habits of Palaemnema sp. and it is rarely seen because it spends the majority of its time in dark environments and has little activity. The dragonfly B. rapax has turquoise green eyes, a dark brown thorax, and a black abdomen with a bright yellow ri ng around segment seven. It ranges from 45 55 mm in length, and the males and females are very similar in appearance. Brechmorhoga rapax is the most common species of Brechmorhoga in Mesoamerica. Behaviors After preliminary observations, five behaviors to investigate of the aforementioned species were determined. The first of which is aggressive behavior. This was defined as any aggressive interaction or fight between two or more individuals. This included when one individual would chase an intruder out of his territory. Also, the dragonfly B. rapax exhibited aggressive behavior when two individuals engaged in energetic circular flight patterns at very high speeds. The second behavior was a patrolling behavior. This occurred when a dragonfly or dam selfly would act territorially and stay in the same small area when there was no individual in close proximity. Dragonflies would generally patrol an area by hovering close to the water within an area of about one square meter. Damselflies tended to patr ol by leaving their perching site to survey the area for only a second before returning to the exact same spot. The third behavior observed was denoted a hopping behavior. This occurred when odonates would fly in an up and down motion about a half a me ter above the water s surface. This flight pattern made it appear that the individuals were repeatedly bouncing or hopping a few inches up and down. The fourth observed behavior was mating and was counted as any time a male and female were seen in tandem . Finally, the fifth behavior observed was perching. A perching behavior was counted when the individual was seen performing the act of landing on its perching site. An individual that was already perched without seeing it land was not counted. Further more, patrolling behavior of damselflies was not counted as perching. Methodology Data were collected during a weeklong period in late July between the hours of 9:30 a.m. and 2 p.m. When any of the aforementioned behaviors were observed, I marked down w hich behavior it was, as well as the time and which species performed it. Weather conditions were also noted. I generally stayed in areas where there was sunlight; therefore, in the morning I would begin my observations on the west slope. As the day pro gressed I moved down the hill to the water, and then slightly up the slope on the other side of the water in the afternoon. The data were analyzed using half hour time slots between 9:30 am and 2 p.m. I made analyses of behaviors based on time performed by each individual species, and also looked at behavior times across different species. Statistical analyses were performed using the chi squared test to determine if the behaviors varied depending on the time of day within and across species.

PAGE 4

RESUL TS I found that A. anceps exhibited only aggressive, mating, and perching behaviors Fig. 1. Peak aggressive activity for A. anceps was observed between 12:00 and 12:29 p.m., and peak activity for both mating and perching was seen between 12:30 and 12:5 9 p.m. Argia underwoodi exhibited aggressive, patrolling, and perching behaviors Fig. 2 . All three behaviors showed peak activity between 10:30 and 10:59 a.m. Brechmorhoga rapax showed aggressive, patrolling, mating, and perching behaviors Fig. 3 . Patrolling and perching were both most frequent between 11:00 and 11:29 a.m., peak aggressive activity was between 12:30 and 12:59 p.m., and mating behavior was only seen between 1:00 and 1:29 p.m. Hetaerina majuscula showed aggressive, patrolling, hoppin g, and perching behaviors Fig. 4. Aggressive, patrolling, and perching behaviors were most frequent between 10:30 and 10:59 a.m., and peak activity for hopping behavior was between 11:00 and 11:29 a.m. Palaemnema sp. only showed mating and perching beh aviors, and peak activity for both was observed between 1:00 and 1:29 p.m. Fig. 5. Argia underwoodi showed the highest number of aggressive behaviors for a specific time period Fig. 6. Across all species, B. rapax displayed the most total patrolling behaviors, but for a single time period A. underwoodi patrolled most frequently Fig. 7. Hetaerina majuscula was the only species to perform the hopping behavior. Argia anceps showed the highest frequency of mating behaviors Fig. 8. Finally, both A. underwoodi and H. majuscula showed very high frequencies of perching behaviors between 10:30 and 10:59 a.m. The chi squared analyses showed statistical significance for the distribution of all behaviors within and across species except for perching behavi or of B. rapax ðl 2 = 11; df = 8; P = 0.2. DISCUSSION The data demonstrate that different species at the same site have different and distinct periods of activity for various behaviors. Within the same species, distribution of behaviors was not constant throughout the entire duration of observation. There were peak time periods when behaviors were observed, and different behaviors of the same species did not always peak at the same time. Across different species, it was found that the temporal distribu tion of specific behaviors also varied. This agrees with the hypothesis that different species would perform different behaviors at different times of the day. Behaviors were not evenly distributed across all the species. No species displayed every beha vior, and some behaviors were very seldomly displayed. For instance, the hopping behavior was only observed 14 times, and only performed by H. majuscula . The unequal distributions of behaviors may indicate that there is a lot of variation between

PAGE 5

populat ion sizes of the different species at the waterfall site. Another explanation for the unequal distribution of behaviors could be that observations were not conducted at optimal times for certain species. However, due to weather conditions and time constr aints it was not possible to make more observations later in the afternoon. Around 2:00 p.m. the sun had traveled too far up the bank for it to be possible to see substantial odonate activity. Furthermore, frequent rains in the afternoon worsened the con ditions for observation. This may have also caused discrepancies in the results because weather conditions were much more favorable for observation of odonate behavior in the morning. In a study on the behavior of Argia apicalis , it was found that peak a ctivity occurred around noon Bick and Bick 1965. In the results from this study it was found that A. anceps displayed peak activities between 12:00 and 1:00 p.m. while A. underwoodi showed peak activity between 10:30 and 10:59 a.m. In the study by Bick and Bick 1965 it was also found that aggressive activity drove off 87% of all intruders and that the most important kinds of aggressive activity were both strong flights towards intruders without physical contact and patrolling flights of an area. This correlates with the high amounts of aggressive behaviors observed by A. underwoodi . It s possible that the number of aggressive behaviors as well as patrolling behaviors could be indicators of a hierarchy of dominance among the five observed species. Ar gia underwoodi and B. rapax displayed the most combined frequencies of aggressive and patrolling behaviors; however, they had differing peak periods of activity. Argia underwoodi did have similar peak periods of activity to H. majuscula . Hetaerina majusc ula had much less combined aggressive and patrolling behaviors, indicating that A. underwoodi may be a more territorial species. It was also observed that A. underwoodi and H. majuscula often had aggressive interspecies encounters, and also used very simi lar perches; therefore, it is likely that there exists territoriality between these two species. Similarly, B. rapax and A. anceps had similar periods of peak activity for combined aggressive and patrolling behaviors. They also occupied similar areas and were observed performing aggressive behaviors, so it is likely that territoriality exists between these two species as well. Not only did the species A. underwoodi display higher frequencies of aggressive and patrolling behaviors than H. majuscula , it is also much smaller in size. In a study by Marden and Waage 1990, it was found that the amount of energy reserves that males had at the end of aggressive contests had stronger correlations with winning these contests than size or physical attributes rela ted to flight ability. However, if A. underwoodi is indeed more territorial than H. majuscula , then it is curious that more mating behaviors were not seen of A. underwoodi . One might expect that greater reproductive success would usually follow higher te rritoriality. Recommendations for future studies involving behavior analysis of odonates would be to make observations over a longer time period. Starting earlier in the morning and ending later in the afternoon would be beneficial if species were more a ctive during those times. Another suggestion would be to choose a study site that receives sun over its entire area for the whole duration of observations. The waterfall site created problems because different areas were not sunny at the same time. It w ould also be interesting to observe how weather conditions affect activity across different species.

PAGE 6

ACKNOWLEDGEMENTS I would first like to thank Tania Chavarria for all her help when the weather presented problems for my initial project. I wouldn t hav e had any data without you. Also, big thanks to Pablo Allen Monge and Luke Hillman for helping me catch and mark dragonflies and damselflies &even though I ended up not needing that data in the least when my project changed. Thank you to Karen Masters for showing me what I want to be like when I grow up. Thank you, Izzy Place, for your sweatshirt. Also, thank you for going to the same school as me. Finally, thanks to all my fellow students for keeping me on my toes and making this an incredible AND in credibly fun experience. You guys are neat. LITERATURE CITED Bick, G. H. and J. C. Bick. 1965. Demography and Behavior of the Damselfly, Argia apicalis Say, Odonata: Coenagriidae. Ecology 464: 461 472. Corbet, P. S. 1980. Biology of Odonata. Annual Review of Entomology 25: 189 217. Esquivel, C. 2006. Dragonflies and damselflies of Middle America and the Caribbean . Instituto Nacional de Biodiversidad INBio, Santo Domingo de Heredia, Costa Rica. Haber, W. A. 2004. Electronic Field Guide Project. UMass Boston. Kirkton, S. D. and T. D. Schultz. 2001. Age Specific Behavior and Habitat Selection of Adult Male Damselflies, Calopteryx maculata Odonata: Calopterygidae. Journal of Insect Behavior 144: 545 556. Marden, J. H. and J. K. Wa age. 1990. Escalated damselfly territorial contests are energetic wars of attrition. Animal Behavior 39: 954 959. Switzer, P. V. 2002. Individual Variation in the Duration of Territory Occupation by Males of the Dragonfly Perithemis tenera Odonata: Libellulidae. Annals of the Entomological Society of America 955: 628 636. Wolf, L. L., E. C. Waltz, D. Klockowski, and K. Wakeley. 1997. Influences on Variation in Territorial Tenures of Male White Faced Dragonflies Leucorrhinia intacta Odon ata: Libellulidae. Journal of Insect Behavior 101: 31 47.

PAGE 7

Fig. 1. Distribution of behaviors for A. anceps . Significant results were found for aggressive € 2 = 40.3; df = 8; P < 0.0001, mating € 2 = 87.8; df = 8; P < 0.0001, and perching € 2 = 60; df = 8; P < 0.0001 behaviors. Fig. 2. Distribution of behaviors for A. underwoodi . Significant results were found for aggressive € 2 = 366.1; df = 8; P < 0.0001, patrolling € 2 = 111.3; df = 8; P < 0.0001, and perching € 2 = 176.7; df = 8; P < 0.0001 behaviors.

PAGE 8

Fig. 3. Distribution of behaviors for B. rapax . Significant results were found for aggressive € 2 = 68.6; df = 8; P < 0.0001, patrolling € 2 = 33.4; df = 8; P < 0.0001, and mating € 2 = 15.8; df = 8; P < 0.05 behaviors. Perching behavior was insignificant € 2 = 11; df = 8; P = 0.2. Fig. 4. Distribution of behaviors for H. majuscula . Significant results were found for aggressive € 2 = 32.7; df = 8; P < 0.0001, patrolling € 2 = 16.4; df = 8; P < 0.05, hopping € 2 = 34.6; df = 8; P < 0.0001, and perching € 2 = 127.5; df = 8; P < 0.0001 behaviors.

PAGE 9

Fig. 5. Distribution of behaviors for Palaemnema sp. Significant results were found for mating € 2 = 72.7; df = 8; P < 0.0001 and perching € 2 = 106.1; df = 8; P < 0.0001 behaviors. Fig. 6. Distribution of aggressive behaviors across species. Results were found to be significant € 2 = 310.9; df = 32; P < 0.0001.

PAGE 10

Fig. 7. Distribution of patrolling behaviors across species. Results were found to be significant € 2 = 92.3; df = 24; P < 0.0001 Fig. 8. Distribution of mating behaviors across species. Results were found to be significant € 2 = 46.9; df = 24; P < 0.005

PAGE 11

Fig. 9. Distribution of perching behaviors across species. Results were found to be significant € 2 = 299.6; df = 40; P < 0.0001


printinsert_linkshareget_appmore_horiz

Download Options

close

Download PDF

Images

Choose Size
Choose file type



Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.