Selection for survival : soil grain size preference and body size in wormlion (Vermilio sp.) larvae affect pit trap construction


previous item | next item

Citation
Selection for survival  :  soil grain size preference and body size in wormlion (Vermilio sp.) larvae affect pit trap construction

Material Information

Title:
Selection for survival : soil grain size preference and body size in wormlion (Vermilio sp.) larvae affect pit trap construction
Translated Title:
Selección para la sobrevivencia : preferencia por el tamaño del grano de tierra y el tamaño corporal en las larvas wormlion (sp vermilio.) afectan la construcción de la trampa del hoyo
Creator:
McCarthy, Alice
Publication Date:
Language:
Text in English

Subjects

Subjects / Keywords:
Larvae--Behavior ( lcsh )
Larvas--Comportamiento ( lcsh )
Predator and prey ( lcsh )
Depredador y presa ( lcsh )
Monteverde Biological Station (Costa Rica)
Estacion Biologica de Monteverde (Costa Rica)
CIEE Fall 2007
CIEE Otoño 2007
Genre:
Reports

Notes

Abstract:
Sessile predatory larvae rely on their habitats to provide biotic and abiotic factors needed for sufficient prey capture. I examined the hypothesis that for Vermilio sp. (wormlion) larvae, body size and soil grain size affect pit trap size and prey capture efficiency. At the Estación Biológica de Monteverde in Costa Rica. I measured and compared larva size versus pit trap size, put larvae in containers with half fine grain soil (< 2 mm) and half coarse grain soil (2 mm to 6 mm), tested for preference, and compared size of pit traps constructed in the two soil types. I also dropped ants into pits and measured time to escape and frequency of capture by the larvae. Pit trap size was positively correlated with larva size. Larvae preferred fine grain soil over coarse grain soil ( χ2 = 45.08, df = 1, P < 0.01) and constructed traps less often in coarse grain soil. I found no difference between pit trap sizes in fine and coarse grain soil, yet sample size was small and I noted the trend that ants remained trapped in fine grain soil longer than in coarse grain soil. Preference for fine grain soil indicates habitat selection of larval Vermilio sp. for areas that increase prey capture, therefore promoting the survival of the species. ( ,, )
Abstract:
Las larvas depredadoras sésiles confían en sus hábitats para que provean los factores bióticos y abióticos necesarios para capturar suficientes presas. Yo examiné la hipótesis que en Vermilio spp. (Gusanos león) el tamaño de las larvas y el tamaño del grano de la tierra afectarían el tamaño del hoyo de sus trampas y la eficiencia de la captura de sus presas en la Estación Biológica de Monteverde, Costa Rica.
Biographical:
Student affiliation : Department of zoology, University of Wisconsin - Madison
Acquisition:
Born Digital

Record Information

Source Institution:
Monteverde Institute
Holding Location:
Monteverde Institute
Rights Management:
This item is licensed with the Creative Commons Attribution Non-Commercial No Derivative License. This license allows others to download this work and share them with others as long as they mention the author and link back to the author, but they can’t change them in any way or use them commercially.
Resource Identifier:
M39-00425 ( USFLDC DOI )
m39.425 ( USFLDC Handle )

Postcard Information

Format:
Book

Downloads

This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xlink http:www.w3.org1999xlink xmlns:xsi http:www.w3.org2001XMLSchema-instance
leader 00000nas 2200000Ka 4500
controlfield tag 008 000000c19749999pautr p s 0 0eng d
datafield ind1 8 ind2 024
subfield code a M39-00162
040
FHM
0 041
eng
049
FHmm
1 100
McCarthy, Alice
242
Seleccin para la sobrevivencia: preferencia por el tamao del grano de tierra y el tamao corporal en las larvas wormlion (sp vermilio.) afectan la construccin de la trampa del hoyo.
245
Selection for survival: soil grain size preference and body size in wormlion (Vermilio sp.) larvae affect pit trap construction
260
c 2007-12
500
Born Digital
3 520
Sessile predatory larvae rely on their habitats to provide biotic and abiotic factors needed for sufficient prey capture.
I examined the hypothesis that for Vermilio sp. (wormlion) larvae, body size and soil grain size affect pit trap size
and prey capture efficiency. At the Estacin Biolgica de Monteverde in Costa Rica. I measured and compared larva
size versus pit trap size, put larvae in containers with half fine grain soil (< 2 mm) and half coarse grain soil (2 mm
to 6 mm), tested for preference, and compared size of pit traps constructed in the two soil types. I also dropped ants
into pits and measured time to escape and frequency of capture by the larvae. Pit trap size was positively correlated
with larva size. Larvae preferred fine grain soil over coarse grain soil ( 2 = 45.08, df = 1, P < 0.01) and constructed
traps less often in coarse grain soil. I found no difference between pit trap sizes in fine and coarse grain soil, yet
sample size was small and I noted the trend that ants remained trapped in fine grain soil longer than in coarse grain
soil. Preference for fine grain soil indicates habitat selection of larval Vermilio sp. for areas that increase prey
capture, therefore promoting the survival of the species.
Las larvas depredadoras ssiles confan en sus hbitats para que provean los factores biticos y abiticos necesarios para capturar suficientes presas. Yo examin la hiptesis que en Vermilio spp. (Gusanos len) el tamao de las larvas y el tamao del grano de la tierra afectaran el tamao del hoyo de sus trampas y la eficiencia de la captura de sus presas en la Estacin Biolgica de Monteverde, Costa Rica.
546
Text in English.
650
Larvae--Behavior
Predator & prey
4
Larvas--Comportamiento
Depredador y presa
653
Tropical Ecology 2007
Wormlions
Sessile
Ecologa Tropical 2007
Lombrices
Sessile
655
Reports
720
CIEE
773
t Monteverde Institute : Tropical Ecology
856
u http://digital.lib.usf.edu/?m39.162



PAGE 1

1 Selection for survival: soil grain size preference and body size in wormlion Vermilio sp . larvae affect pit trap construction Alice McCarthy Department of Zoology, University of Wisconsin € Madison ABSTRACT Sessile predatory larvae rely on their habi tats to provide biotic and abiotic factors needed for sufficient prey capture. I examined the hypothesis that for Vermilio sp . worm lion larvae, body size and soil grain size affect pit trap size and prey capture efficiency. At the Estación Biológica de Monteverde in Costa Rica I measured and compared larva size versus pit trap size, put larvae in containers with half fine grain soil < 2 mm and half coarse grain soil 2 mm to 6 mm, tested for preference, and compared size of pit traps constructed in t he two soil types. I also dropped ants into pits and measured time to escape and frequency of capture by the larvae. Pit trap size was positively correlated with larva size. Larvae preferred fine grai n soil over coarse grain soil ðc 2 = 45.08, df = 1, P < 0.01 and constructed traps less often in coarse grain soil. I found no difference between pit trap sizes in fine and coarse grain soil, yet sample size was small and I noted the trend that ants remained trapped in fine grain soil longer than in coarse grain soil. Preference for fine grain soil indicates habitat selection of larval Vermilio sp . for areas that increase prey capture, therefore promot ing the survival of the species . RESUMEN Las larvas depredadoras y sésiles dependen de factores bióticos y abióticos para capturar sus presas. Yo examiné la hipótesis que en Vermilio spp . Gusanos león el tamaño de las larvas y el tamaño del grano del suelo afectarían el tamaño de sus trampas fosoriales cónicas y la eficiencia de la captura de sus presas. Para lograr este objetivo, medí y compare el tamaño de las trampas, puse larvas en recipientes que contenían suelo de grano fino < 2mm y suelo de grano grueso 2 6 mm, luego comparé el tamaño de las trampas que fueron construidas en los dos tipos de suelo. También puse hormigas en las trampas y medí cuanto tiempo tardaban las hormigas en escapar de las trampas y la frecuencia de captura de las larvas. Los tamaños de las trampas se relacionaron positivamente con los tamaños de las larvas. Las larva s tuvieron una preferencia por el suelo de granos finos sobre el suelo de granos ásperos ðc 2 = 45.08, gf = 1, P << 0.01 y con solamente una elección del tipo de tierra, las larvas construyeron trampas con menos frecuencia en el suelo de granos ásperos. N o obtuve ninguna diferencia entre el tamaño de las trampas construidas en el suelo de granos finos y de granos ásperos. No obstante, yo observe diferencia de tipo visual entre ellas y las hormigas se quedaron más tiempo en las trampas construidas en el su elo de granos finos que en las trampas construidas en el suelo de granos ásperos. La preferencia por el suelo de granos finos indica que la selección de hábitat por Vermilio sp . en la etapa larval podría aumentar las posibilidades de capturar presas, aume ntando la supervivencia de los individuos. INTRODUCTION Habitat selection is important for the survival of all species and even more vital for a sessile species. Predatory larvae that are sessile present an interesting opportunity to study the importan ce of habitat selection because the duration of the larval stage and size of the adult depend on food availability in the larval stage Gotelli 1997. Tiger beetles Pseudoxychila spp . , antlions Myrmelion spp . , and wormlions Vermilio spp . are all ses sile, sit and wait predators in the larval stage McClure 1983, Palmer 1983, Zumbado 2006. Habitat selection

PAGE 2

2 has been studied in tiger beetles Pearson and Mury 1979, Mury Meyer 1987 and antlions Farji Brener 2003, Lucas 1989, yet no studies have bee n documented for wormlions. Populations of wormlions Family: Vermilionidae have been found in the United States and Costa Rica, but they are uncommon and so little is known about them. Similar to antlion larvae, wormlion larvae build pit traps in dry d usty soil beneath projecting rocks or other overhanging objects Zumbado 2006. The two have evolved independently but they both use the same mechanism for capturing prey by digging a conical pit trap in the ground to trap ants and other small arthropods Zumbado 2006. Past studies found efficiency of pit traps in ant lions to depend on biotic factors, such as arthropod availability and larvae size Griffiths 1986, as well as abiotic factors, such as soil moisture content McClure 1976 and soil grain s ize Farji Brener 2003. Past experiments looking at Myrmeleon crudelis revealed a positive correlation between larva size and pit trap size Griffiths 1986, a statistical preference for fine grain soil < 2 mm over coarse grain soil 2 to 6 mm, large r pit sizes in fine grain soil, and higher prey retention efficiency after capture Farji Brener 2003. Although antlion larvae differ greatly in morphology from wormlion larvae, the pit traps of these organisms are very similar. This study examines the h ypothesis that for Vermilio sp ., larvae size and soil grain size affect pit trap size and prey capture efficiency. Therefore, I tested to see if wormlions have the same characteristics found in antlions by investigating if: a as larva size increases the pit trap size increases, b larva will build pit traps in fine grain soil more often than in coarse grain soil when exposed to both soil types simultaneously, c pit traps constructed in fine grain soil will be larger than those constructed in coarse gra in soil, and d pit traps in fine grain soil will be more efficient at preventing trapped prey from escaping than coarse grain soil pit traps. METHODS I collected Vermilionidae larvae, soil, and ants at the Estación Biológica in Monteverde, Costa Rica 1500 m elevation. Using screen sieves, I separated the dry sandy soil into < 2 mm soil grains, which I refer to as fine grain soil, and 2 to 6 mm soil grains, or coarse grain soil Farji Brener 2003. I used plastic containers 13 cm in diameter, filled 4 cm deep with soil for experiments. They were covered with plastic wrap to prevent disturbance and possible food sources from entering. These containers of soil were left undisturbed for at least two days before experimentation. This allowed the wormlion larvae to construct pits; the larvae were then removed from the containers. Larva size and trap size I found 50 wormlion pit traps in the field and measured pit diameter and depth before collecting the larvae. Pit traps were on an incline so, using ca lipers, I measured trap dimensions both parallel and perpendicular to the incline and averaged the measurements. I measured mass, to the nearest thousandth of a gram, and length, to the nearest millimeter, of the wormlions and tested for a significant reg ression between larva length and pit angle, larva length and pit diameter, larva mass and pit angle, and larva mass and pit diameter using linear regression analyses. I also repeated these steps for the 50 wormlion larvae that I placed in experimental con ditions of fine or coarse grain sand for five days.

PAGE 3

3 diameter height Grain size preference To test soil size preference for building pit traps, I filled 49 containers with soil collected from the wormlion habitat. In each container one half of the soil was fine graine d, and the other half was coarse grained. I placed one larva in each of the containers on the line where fine grain meets coarse grain soil. After five days I recorded in which soil type each larva created a trap and tested for preference of soil size fo r trap construction using a goodness of fit Chi square test. Grain size versus trap size To analyze the size differences in traps constructed in fine grain soil and traps constructed in coarse grain soil I measured the traps that were constructed in f ine grain soil in the preference experiment. Then I removed each larva, measured its length and mass, confirmed that it was still alive, and then placed it in its own container filled with only course grain soil. After five days I measured diameter and d epth of the new traps, and calculated pit trap angle as ðq = tan 1 diameter/ 2* depth in degrees Fig.1. I compared diameter and depth for traps built in coarse grain soil and tested for significant difference using a Mann Whitney U test. Grain size and trap efficiency In order to examine the efficiency of prey capture for pit traps in fine versus coarse grain soil, I collected small ants from the perimeter of the wormlion habitat. All ants were the same species and ranged from 2 mm to 4 mm long. For traps in fine grain soil, I dropped an ant into each trap and noted the time it stayed in the trap and whether it was caught by the larva. There were very few traps in coarse grain soil, and so I dropped three ants, one at a time, into each pit and measured time remaining in the trap and whether or not it was caught. If an ant remained in a trap for ten minutes I recorded time as 10+ minutes. RESULTS Linear regression analysis showed that wormlion larva length related positively wi th pit trap angle Fig. 2 a . There was a positive correlation between wormlion larvae length and mass R 2 = 0.64, p<<0.01, n=46, and between pit trap diameter and pit angle R 2 = 1.0, p<<0.01, n=46. For this reason larva mass and trap diameter were posi tively related Fig. 2b, as was larva mass and trap angle R 2 = 0.29, F = 17.674, p value << 0.01, df = 1, 44, and larva length and trap diameter was positively related R 2 = 0.40, F = 29.503, p value << 0.01, df = 1, 44. The same trends were apparent for larvae and pit traps in the field but they were more prone to outside disturbances; thus I concentrated on experimental larvae in the fine grain soil experiments. ðq FIGURE 1. Measurements of pit traps. Includes diameter, height, and calculated angle ðq = ta n 1 diameter/ 2* depth.

PAGE 4

4 0 50 100 150 200 250 0 0.5 1 1.5 2 2.5 Larva length cm Pit angle degrees 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.01 0.02 0.03 0.04 0.05 Larva mass g Pit diameter cm The wormlions preferred fi ne grain soil for their pit traps compared to course grain soil Fig. 3. When larvae were exposed to only one soil type, the number of traps built in fine grain soil over a five day time period was also higher than that in coarse grain soil goodness of fit, ðc 2 = 43.49, df = 1, p<< 0.01. Along with lower frequency of pit traps constructed, I noted that the of the course grain traps appeared to be parti ally lined with fine grain soil . FIGURE 2. Increase in pit trap size with increase in larva size. Traps were measured for larvae in fine grain soil after fi ve days. a Positive relation between wormlion pit trap angle and wormlion larva length y = 63.209x + 42.302. Linear regression analysis shows statistical significance R 2 = 0.46, F = 29.503, p<<0.01, df = 1, 44. b Positive relation between wormlion pit trap diameter and wormlion larva mass. Linear regression analysis shows statistical significance R 2 = 0.29, F = 17.674, p value << 0.01, df = 1, 44. a b y = 63.209x + 42.302 y = 24.84x + 1.7342

PAGE 5

5 0 10 20 30 40 50 60 Fine Coarse Soil grain type Number of pits Although pit traps in fine versus co arse grain soil were not different in diameter Mann Whitney U, U = 112.50, P = 0.32, n 1 = 50, n 2 = 6 or pit trap angle Mann Whitney U, U = 112.50, P = 0.32, n 1 = 50, n 2 = 6, pits in coarse grain appeared to have larger angles observation. There was al so an apparent difference in efficiency of trapping ants for the two soils. All ants in fine grain, 23 out of 23 100%, soil pits remained in the pit for 10+ minutes, while only five of 18 33 % of the ants in coarse grain soil remained in the pit for o ver 10 minutes; the other thirteen were trapped from 0.17 to 6 minutes. Larvae showed a trend of trapping the prey, squeezing it for several minutes, releasing it, and then trapping it again. This process was sometimes repeated. Larvae captured ants by b ending their anterior, or non foot like end, in half, and in effect trapping and squeezing its prey. The posterior foot like end remained anchored in the soil. DISCUSSION Habitat selection for the sit and wait predator, Vermilio spp . , must be import ant for effectively building a pit trap and capturing prey. My hypothesis, that larva size and soil grain size affect pit trap size and prey capture efficiency, was partially supported. This study demonstrated that, similar to antlion larvae Griffiths 1 986, increase in wormlion size relates positively with pit trap size increase. Also, like antlion larvae, wormlion larvae showed a preference for constructing pits in fine grain soil < 2 mm over coarse grain soil 2 6 mm. Wormlions may choose fin e grain soil for pit construction because it is more energy efficient; possibly costing less energy to construct and maintain pits, resulting in higher efficiency of prey capture Lucas 1982, Farji Brener 2003. There was no difference in angle size of th e pits between the two soil grain types, which is important because it affects prey capture in antlions Farji Brener 2003 and may do the same for worm lions. . However, there was a trend that showed that the traps in coarse grain soil appeared to have g reater angles. Had I been able to increase the sample size I may have found a difference. Soil grain size might also affect how easily an arthropod can escape in other ways. Fine grain soil is more prone to FIGURE 3. Soil grain size preference in fine versus coarse. Larvae in containers with fine and c oarse grain soil showed statistical preference for building pit traps in fine grain soil ðc 2 test, ðc 2 = 45.08, df = 1, P << 0.01.

PAGE 6

6 landslides, making it more difficult for the pr ey to leave Lucas 1982. Traps in coarse grain soil did appear to be partially lined with fine grain soil, but less so than fine grain soil traps. When I dropped small ants into pit traps a few escaped from coarse grain soil traps while no ants escaped from fine grain soil traps. This could indicate that fine grain soil traps are more efficient at trapping small arthropods. The greater efficiency of prey trapping is a likely explanation for the apparent tendency to choose fine grain soil for pit trap c onstruction. The wormlion larvae captured ants by moving the anterior end of its body up from below the bottom of the pit, and bending the anterior end in half enclosing the ant and squeezing it, this is sometimes called a boa technique. The larvae squee zed the prey for several minutes, let go, and then trapped it again; sometimes this process was repeated. Therefore, it is important that the prey remain in the trap long enough for the larva to sense and capture it, and then recapture it after release. This study supports that wormlion larvae prefer to construct pit traps in specific soil types. It also reveals that these larvae have habitat preferences, which affect survival to adulthood and therefore the species survival. They share the same preferenc es for fine grain soil as antlions. Therefore, these two similar organisms independently evolved the same method of constructing a pit for prey capture Zumbado 2006. Other similarities to antlions are likely to be found, as this is just the beginning of exploring the abilities and preferences of Vermilio sp . . Future studies will add to what I have found about the habitat selection of wormlions, and may help explain more about this species natural history. ACKNOWLEDGEMENTS This study was made possibl e because of the help and advice of Tania Chavarría, Pablo Allen, and Karen Masters. Thank you Taegan McMahon for comments along the way and to my colleagues, Nathan Ebert, Nicole Williams, Drew Moore, Sarah Green, and Zachary Sheff for your work during o ur earlier experimentation with Vermilio sp., which helped pave the way. Also, I appreciated being able to complete this experiment at the Estación Biológica de Monteverde in Costa Rica. LITERATURE CITED Fafji Brener, A. G. 2003. Microhabitat select ion by antlion larvae, Myrmeleon crudelis : effect of soil particle size on pit trap design and prey capture. Journal of Insect Behavior 16: 783 796. Gotelli, N. J. 1997. Competition and coexistence of larval ant lions. Ecology 786: 1761 1773. Griff iths, D. 1986. Pit construction by ant lion larvae: a cost benefit analysis. Journal of Animal Ecology 55: 37 59. Lucas, J. 1982. The biophysics of pit construction by ant lion larvae Neuroptera: Myrmeleontidae. Animal Behavior 30: 651 664.

PAGE 7

7 Lucas , J. R. 1989. Differences in habitat use between two pit building antlion species: causes and consequences. American Midland Naturalist 121: 84 98. McClure, M. S. 1976. Spatial distribution of it making ant lion larvae Neuroptera: Myrmeleontidae: density effects. Biotropica 8: 179 183. McClure, M. S. 1983. Myrmeleon Hormiga Leon, Ant Lions. In: Costa Rican Natural History , D. H. Janzen ed. The University of Chicago Press, Chicago, IL, pp. 742. Mury Meyer, E. J. 1987. Asymmetric resour ce use in two syntopic species of larval tiger beetles Cicindelidae. Oikos 50: 167 175. Palmer, M. K. 1983. Pseudoxychilia tarsalis Abejon Tigre, Tiger Beetle. In: Costa Rican Natural History . D. H. Janzen ed. The University of Chicago Press, C hicago, IL, pp. 742. Pearson, D. L. and Mury E. J. 1979. Character divergence and convergence among tiger beetles Coleoptera: Cicindelidae. Ecology 60: 557 566. Zumbado, M. A. 2006. Diptera of Costa Rica and the New World tropics. Instituto Nacio nal de Biodiversidad. Vermileondidae. Santo Domingo de Heredia, Costa Rica, pp. 92 93.


printinsert_linkshareget_appmore_horiz

Download Options

close

Download PDF

Images

Choose Size
Choose file type



Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.