xml version 1.0 encoding UTF-8 standalone no
record xmlns http:www.loc.govMARC21slim xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmarcxmlschemaMARC21slim.xsd
leader nam 22 Ka 4500
controlfield tag 007 cr-bnu---uuuuu
008 s2011 flu ob 000 0 eng d
datafield ind1 8 ind2 024
subfield code a E14-SFE0004894
035
(OCoLC)
040
FHM
c FHM
049
FHMM
090
XX9999 (Online)
1 100
Guzelgoz, Sabih
0 245
Characterizing wireless and powerline communication channels with applications to smart grid networks
h [electronic resource] /
by Sabih Guzelgoz.
260
[Tampa, Fla] :
b University of South Florida,
2011.
500
Title from PDF of title page.
Document formatted into pages; contains 142 pages.
Includes vita.
502
Disseration
(Ph.D.)--University of South Florida, 2011.
504
Includes bibliographical references.
516
Text (Electronic dissertation) in PDF format.
520
ABSTRACT: Smart grid aims at improving the efficiency, reliability, security, and quality of service (QoS) of the current electricity grid by exploiting the advances in communication and information technology. In parallel to size of the electricity grid, smart grid communication infrastructure should cover a very large geographical area that may extend from remote generation sites to densely populated residential regions and inside buildings, homes, and electricity-power-system environments. In such an extensive communication network, different communication technologies operating on different communication medium are likely to coexist. Among the communication technologies available, wireless and power line communication (PLC) based solutions are comparatively attractive especially considering cost of the initial investment required for the realization of a communication network with such an immense size. In this dissertation, a detailed investigation of wireless and PLC channel characteristics of the smart grid networks is presented. Among the topics discussed are the time variation characteristics of wireless channels, root-mean-squared (RMS) delay spread and path amplitude statistics of PLC channels, and the impact of impulsive noise on orthogonal frequency division multiplexing (OFDM) systems.
538
Mode of access: World Wide Web.
System requirements: World Wide Web browser and PDF reader.
590
Advisor:
Arslan, Huseyin .
653
Impulsive Noise
Ofdm
Powerline Communication Channel Characterization
Smart Grid Communication Environments
Wireless Communication Channel Characterization
690
Dissertations, Academic
z USF
x Electrical Engineering
Doctoral.
773
t USF Electronic Theses and Dissertations.
4 856
u http://digital.lib.usf.edu/?e14.4894
PAGE 3
Iowemuchtomyfriendsandseniors:Dr.MustafaEminSahin,Dr.HishamMah-moud,Dr.SerhanYarkan,Dr.HasariCelebi,Dr.TevkYucek,Dr.IsmailGuvenc,IbrahimDemirdo~gen,HasanBasriCelebi,TayyarGuzel,MuradKhalid,OmarZakaria,Is-mailButun,JamalHaque,SadiaAhmed,AliGorcin,EvrenTerzi,Dr.BahattinKarakaya,Dr.CelalCeken,Dr.BilalBabayi~git,AliRzaEkti,OzgurYurur,Ca~gatayTalay,HazarAk,AlphanSahin,MemhetBahadrCelebi,MuratKarabacak,AhmedH.Mehanna,EmreSeyyal,KosolSon,LokmanAkbay,SalihErdem,SalimErdem,SenerGultekinandMustafaCenkErturk.Ilearnedsomanyvirtuesfromthem.Sincerefriendshiptostartwith,un-selshness,tolerance,andhelpfulness. Mysincereappreciationgoestomyparentsandmyyoungersisterfortheirsacriceandunconditionalsupportaswellasmyparentsinlawandsistersinlaw.Iwillalwaysbeindebtedtothemthroughoutmylife. Last,butbynomeansleast,mydeepestgratitudefrommyheartgoestomywife,Ozden,forherlove,allthesacricesshemade,herrmsupport,hervastpatience,andhersteadyencouragementforalmostfouryearsnow.Finally,IliketoextendmygratitudetomyunbornkidforaddingexcitementtothenalyearofmyPhDprogram.
PAGE 4
LISTOFFIGURESv ABSTRACTviii CHAPTER1INTRODUCTION1 1.1DissertationOutline4 1.1.1Chapter2:WirelessandPLCPropagationChannelCharacteristicsforSmartGridEnvironments5 1.1.2Chapter3:InvestigationofTimeSelectivityofWire-lessChannelsThroughtheUseofRVC6 1.1.3Chapter4:ArticulatingFactorsDeningRMSDelaySpreadinLVPLCNetworks7 1.1.4Chapter5:StatisticalCharacterizationofthePathsinMultipathPLCChannels7 1.1.5Chapter6:HandlingBurstyImpulsiveNoiseinOFDM8 1.1.6OtherWorksDone8 1.1.6.1AnalysisofaMulti-ChannelReceiver:Wire-lessandPLCReception9 1.1.6.2TimeFrequencyAnalysisofNoiseGener-atedbyElectricalLoadsinPLC10 1.1.6.3DemandCharacterizationandEstimationforElectricVehicleChargingStations11 CHAPTER2WIRELESSANDPLCPROPAGATIONCHANNELCHARACTER-ISTICSFORSMARTGRIDENVIRONMENTS13 2.1Introduction13 2.2PropagationMechanism18 2.3WirelessChannelCharacteristics19 2.3.1MultipathCharacteristics22 2.3.1.1TimeDispersion22 2.3.1.2TimeSelectivity23 2.3.1.3AmplitudeStatistics24 2.3.2NoiseCharacteristics24 2.4PLCChannelCharacteristics26 2.4.1MultipathCharacteristics26i
PAGE 5
2.4.1.2TimeSelectivity28 2.4.1.3AmplitudeStatistics28 2.4.2NoiseCharacteristics29 2.5ConcludingRemarks30 CHAPTER3INVESTIGATIONOFTIMESELECTIVITYOFWIRELESSCHAN-NELSTHROUGHTHEUSEOFRVC34 3.1Introduction34 3.2WirelessChannelModel,DopplerSpectrum,andMotionScenarios36 3.2.1WirelessChannelModelandDopplerSpectrum36 3.2.2MotionScenarios37 3.2.2.1MotionofTransmitter/Receiver37 3.2.2.2MotionofSurroundingObjects40 3.3MeasurementSystemandProcedure42 3.4MeasurementResults45 3.4.1ImpactofFrequencyofOperationandSpeed45 3.4.2ImpactofMotionIntensityonDopplerSpectrum48 3.4.3ImpactofAOAStatisticsonDopplerSpectrum48 3.5Discussion50 3.5.1EectiveFactorsonDopplerSpectrum51 3.5.2RealizationofTheoreticalDopplerSpectruminRVCs51 3.6ConcludingRemarks54 CHAPTER4ARTICULATINGFACTORSDEFININGRMSDELAYSPREADINLVPLCNETWORKS56 4.1Introduction56 4.2PLCMultipathChannelModelandRMSDelaySpread59 4.2.1Reection/TransmissionCoecientatBranching60 4.2.2Reection/TransmissionCoecientatTerminationPoints61 4.3ImpactofAttenuationandLoadingonRMSDelaySpread62 4.4ImpactofthePhysicalCharacteristicsofthePLCChannelonRMSDelaySpread70 4.5ConcludingRemarks73 CHAPTER5STATISTICALCHARACTERIZATIONOFTHEPATHSINMUL-TIPATHPLCCHANNELS75 5.1Introduction75 5.2MultipathPropagationandAnalysisoftheFirstArrivingPath77 5.2.1MultipathinPLCChannels77 5.2.2AnalysisoftheFirstArrivingPath78 5.3Discussion89 5.4ConcludingRemarks92ii
PAGE 6
6.1Introduction94 6.2SystemModel97 6.3AnalysisoftheNullingOperationattheReceiver99 6.4OFDMReceiverStagesAfterNulling105 6.4.1SampleReplacementBasedIterativeCancellationTechnique105 6.4.2SuccessiveCancellationTechnique107 6.5NumericalResults108 6.6ConcludingRemarks113 CHAPTER7CONCLUSIONANDFUTUREWORK116 7.1ListofSpecicContributions116 7.2FinalCommentsandFutureWork118 REFERENCES119 ABOUTTHEAUTHOREndPageiii
PAGE 8
Figure1.2Measurementresults:I-dimmerandII-drill.11 Figure2.1Integratingcustomerwithsmartgrid.16 Figure2.2PropagationmechanismsforwirelessandPLCchannels.19 Figure3.1Geometryofmovingreceivercase.38 Figure3.2Dopplerspectrumformovingreceivercase.39 Figure3.3Geometryformovingobjectscase.40 Figure3.4Dopplerspectrumwithmovingobjectscasefordierentvaluesofm.42 Figure3.5Pictorialdescriptionofthemeasurementsetup.43 Figure3.6MappingbetweenfactorsaectingDopplerinphysicalenvi-ronmentandstimuliconditionsforRVCexperiments.46 Figure3.7Dopplerspectrogramofthemeasurements.47 Figure3.8ImpactofoperatingfrequencyandspeedonDopplerspectrum.47 Figure3.9ImpactofmotionintensityonDopplerspectrum.49 Figure3.10ImpactofabsorbersonDopplerspectrumat910MHz.50 Figure3.11Ellipticmotionofascatterer.52 Figure3.12TheoreticalapproximationofclassicalJakes'Dopplerspec-trumwithinRVCs.52 Figure3.13ObtainingJakes'classicalDopplerspectrumwithxedreceiverconguration.54 Figure4.1Reection/Transmissioncoecientsatbranchingandtermination.60 Figure4.2T-networktopology.63v
PAGE 9
Figure4.4PDFoftheRMSdelayspreadofT-networktopologywhennodeCisrandomlyloaded.69 Figure4.5CDFoftheRMSdelayspreadofT-networktopologywhennodeCisrandomlyloaded.69 Figure4.6GraphicalillustrationofthePLCnetworktopologyconsideredinthestudy.72 Figure4.7DependencyofRMSdelayspread(rms)onthenumberofnodes(b)betweentransmitterandreceiverwhenseparationdistancebetweentransmitterandreceiveris150mandbranchlengthsareassumedtobeuniformlydistributedover[10m-30m].72 Figure4.8DependencyofRMSdelayspread(rms)ontheseparationdistance(d)betweentransmitterandreceiverwhennumberofnodesbetweentransmitterandreceiveris4andbranchlengthsareassumedtobeuniformlydistributedover[10m-30m].73 Figure4.9DependencyofRMSdelayspread(rms)onthelengthstatis-ticsofbrancheswhennumberofnodesbetweentransmitterandreceiveris4andseparationdistancebetweentransmitterandreceiveris150m.74 Figure5.1Analysisoftherstarrivingpath.79 Figure5.2Reectionatabranchingnode.80 Figure5.3MeanofYwithdierentvaluesofx.82 Figure5.4VarianceofYwithdierentvaluesofx.83 Figure5.5ResultsofKStestforthevericationofGaussianityassump-tionwithZ0=50andde=U[1,1].86 Figure5.6MeanofYwithZ0=50andde=U[25,25].87 Figure5.7VarianceofYwithZ0=50andde=U[25,25].88 Figure5.8MeanofYwithZ0=50andde=U[25,25]whenthenum-berofbranchesareU[3,xaxis]andthenumberofnodes(x)isassumedtobe10.89 Figure5.9VarianceofYwithZ0=50andde=U[25,25]whenthenumberofbranchesareU[3,xaxis]andthenumberofnodes(x)isassumedtobe10.90vi
PAGE 10
Figure6.2ICIpowercontributionversuscarrierindexforN=64withnormalizedunitypowervalue.102 Figure6.3BERperformanceforN=256andK=25whenreplacementbasediterativedecodingisemployed.110 Figure6.4BERperformanceforN=256andK=25whensuccessivesymboldetectionisemployed.111 Figure6.5BERperformanceforN=256anddierentvaluesofKatSNR=30dB.112 Figure6.6BERperformanceforN=256andK=50whenreplacementbasediterativeandsuccessivesymboldetectiontechniquesareemployedwith3iterations.113 Figure6.7BERperformanceforN=256andK=50whenreplacementbasediterativedecodingwithproposedtransmissionschemeisemployed.114 Figure6.8BERperformanceforN=256andK=50whensuccessivesymboldetectionwithproposedtransmissionschemeisemployed.115 Figure6.9BERperformanceforN=256withdierentvaluesofKandnormalizeddelayspreadvaluesatSNR=30dB.115vii
PAGE 11
Inthisdissertation,adetailedinvestigationofwirelessandPLCchannelcharacteristicsofthesmartgridnetworksispresented.Amongthetopicsdiscussedarethetimevariationcharacteristicsofwirelesschannels,root-mean-squared(RMS)delayspreadandpathampli-tudestatisticsofPLCchannels,andtheimpactofimpulsivenoiseonorthogonalfrequencydivisionmultiplexing(OFDM)systems.viii
PAGE 13
AtransmitsignalgoesthroughvariousdistortionsonitswaytoreceiverinbothwirelessandPLCchannels.Avarietyofparametersisemployedwhilequantifyingthesedistortionsincommunicationchannels.Inwirelesscommunications,theconceptofpathlossisusedtocapturehowthepowerofthetransmitsignalvariesasafunctionofdistance.ItisdenedasthedB(decibel)valueoftheratioofthetransmitpowertothereceivedpower.Presenceoftheobstaclesbetweentransmitterandreceivergivesrisetorandomuctuationsofpathlosscalledshadowingthatisusuallydenedwithlog-Normalprobabilitydensityfunction(PDF)asveriedbymeasurementcampaignsovertheyears.Sincevariationsduetopathlossandshadowingtakeplaceoverrelativelylargedistances,thesetwovariationsaretradi-tionallyreferredtoaslarge-scalepropagationeectsbywirelesscommunicationcommunity.Inaddition,thedrasticchangesinthereceivedsignalpowerforshortdisplacements,whichareontheorderoffewwavelengths,areknowntobeconsequencesofsmall-scaleeects.Theunderlyingreasonbehindthesedrasticchanges,whicharecapturedbythenotionofpathamplitudestatistics,isrelatedtothemultipathphenomenonandtimevariationofthewirelesscommunicationchannel,duetomotioningeneral.Quanticationofthesmallscaleeectsisachievedwithtwodierentparametersthatarecloselyrelatedtomultipathpropagationandtimevariationofthewirelesschannels:delayspreadandDopplerspread.Atransmitsignalcantraveltothereceiverbyfollowingdierentpathsthatmayinvolveavarietyofpropagationmechanismssuchasreection,diraction,andscattering.Thus,multiplereplicasoftheoriginaltransmitsignalarriveatthereceiverwithdierentdelays.Delayspreaddescribestheextentofthetimedispersionofthewirelesschannel.Incon-nectionwiththedelayspreadparameterintimedomain,coherencebandwidth,whichisinverselyproportionaltodelayspread,isusedtodescribethechannelinthefrequencydomainrevealingthechannel'sfrequencyselectivitycharacteristics.Inthisrespect,timedispersionandfrequencyselectivitycharacteristicsofacommunicationchannelareanalo-2
PAGE 14
InPLCdomain,aslightlydierentterminologyisusedfordeningcommunicationchannelcharacteristics.Therelationshipbetweentransmitpowerandreceivedpoweriscapturedthroughtheconceptofattenuation.Similartowirelesschannels,atransmitsig-nalarrivesatthereceiverbyfollowingdierentpathsleadingtotimedispersionthataremainlygovernedbyasinglepropagationmechanism,whichisreectionmostlyasaresultofimpedancemismatchesinthenetworksseenbythetransmitsignalalongitspropagationpath.Delayspreadandcoherencebandwidthareusedtodescribetheextentoftimedisper-sionandfrequencyselectivitycharacteristicsofPLCchannels,respectively.TimevariationisalsoanimportantattributeofPLCchannels.Unlikewirelesschannelsinwhichtimevariationisrelatedtomotioningeneral,timevariationinPLCchannelsisclassiedaslongtermandshorttermvariationsandstemsmainlyfromthevaryingimpedanceconditionsinthepowerlinenetwork(PLN).Longtermvariationisrelatedtothecontinuouslyvary-ingimpedanceconditionsatterminationpointsasthedevicesconnectedtothePLNareswitchedon/o,whereasshorttermtimevariationofthePLCchannelstemsfromthefactthatimpedanceofmostelectricalloadsisdependentonAlternatingCurrent(AC)mainscycle. Besidesdistortionscausedbythefrequencyandtimeselectivitynatureofcommuni-cationchannels,noisecharacteristicsarealsoofparamountimportanceconsideringtheperformanceofcommunicationsystems.Inwirelesscommunicationchannels,noiseisas-sumedtobeadditivewhiteGaussianwithaatpowerspectrummainlyduetomathemat-icaltractability.However,interferencewithimpulsivenaturewhichismostlyreferredto3
PAGE 15
Ascanbeseenfromthedissertationstructure,somechaptersfocussolelyoneitherwirelesschannelorPLCchannel(Chapters3-4-5),whereasdiscussionsinsomeotherchap-4
PAGE 19
Asapartofwirelesscommunicationchannelcharacterizationeorts,radiopropagationcharacteristicsofundergroundminesarediscussedin[6{8].InlinewithPLCchannelchar-
PAGE 20
Scarcityofspectrumandinterferencealongwiththenewconceptsintroducedsuchascognitiveradio(CR)[20]arethemainmotivationsbehindthisstudy.Forinstance,CRsaresupposedtosensethespectrumanddetectwhitespacesbeforecommencingtransmissioninordertomakesurethattheydonotcauseanyharmfulinterferencetoprimaryusers.ConsideringscarcityofavailablewhitespacesandtheabundanceofsecondaryusersforbothwirelessandPLCenvironmentsforfuturecommunicationapplications,thecapabilityofaccessingbothmediumcouldbeofgreatvalueforthecontinuityofreliablecommunica-tion.Incaseofthesuitabilityofbothmediumsforcommunication,CRsmaychangetheirstrategiesandstartusingbothcommunicationchannelsinordertobecomemorerobustto9
PAGE 21
EachdeviceconnectedtothePLNhasauniquenoisestructure.Thisuniquenesscanbeemployedforseveralsmartgridapplications.Forexample,providingstatisticsofthedevicestohouseholdisverycrucialfromtheperspectiveofenergymonitoring.Inthissense,asmartmeterthatisdesignedtoprocessthesenoisesignaturesandmapthemintocorrespondingdevicetypemightbeofgreathelpwhileinformingtheusersabouttheirenergyusestatistics.10
PAGE 22
ArticulationofstatisticalcharacteristicsofpowerdemandattheCSsisbasedonunder-standingtheactivitiesoftheEVsattheCSs.EachEVislikelytooccupyaCSforacertaindurationoftime.EVsmaycontinuouslydrawpowerfromthegridovertheentiredurationoftheirparkingtimeortheymightbeidle(stopdrawingpowerfromthegrid)foracertain11
PAGE 24
Understandingofthesmartnessintheterm\smartgrid"hasbeenrapidlyexpandedbytheindustryfromsmartmeteringthatismorefocusedonadvancedmeteringinfrastructure(AMI)1totruesmartgrid[21].Withthisrecentlyendorseddenition,objectivesofthesmartgridcanbesummarizedasfollows[22]:
PAGE 25
Objectivesofthesmartgridrequirethecollectionofvarioustypesofinformationre-gardingelectricitygeneration,consumption,storage,transmission,anddistributionthroughitscommunicationinfrastructure.Consideringthisrequirement,smartgridcommunicationinfrastructureshouldcoveraverylargegeographicalareathatmayextendfromremotegenerationsitestodenselypopulatedresidentialregionsandinsidebuildings,homes,andelectricity-power-systemenvironments.Indeed,supervisorycontrolanddataacquisition(SCADA)systemshavebeenimplementedtomonitorandcontrolelectricitygridtosomeextentforsometime[23].However,denitionofsmartgridclearlynecessitatesthede-velopmentofamorecomplicatedtwo-waycommunicationarchitecturebeyondcurrentlyemployedrelativelyinsecureSCADAsystemsforalargerscalemonitoringandcontrol. Inordertobetterunderstandthecommunicationneedsofthesmartgrid,itmightbeagoodstrategytonarrowdownthescopeandfocusonlyononeofitsobjectives\integratingcustomersintothegrid"whichreceivesthemostattentionintermsofplanningandinvest-ment.Theunderlyingreasonforcustomerintegrationistomaximizetheeciencyofthedistributionnetworkbyencouragingthecustomertoreacttosometypeofstimulicomingfromtheutility.Theopportunitieswiththecustomerintegrationincludes:1.providingcus-tomerswithnewpricingoptions,2.detectingpoweroutageswithautomaticvericationofrestoration,3.enablingcustomerstorespondtopricingandloadcontrolsignals,4.enablingcustomerstomonitor,control,andschedulelocalenergyconsumptionformaximizingthebenetsregardingcostofelectricityusageandutilizationofthedistributionnetwork. Itisobviousthatcommunicationinabroaderperspectiveliesinthecoreofthecus-tomerintegration.First,acommunicationinfrastructurebetweenhomedevicesand\smartmeter"shouldbesetupsothat\smartmeter"cancollectinformationfromthedevicesandtakeinitiativetoadjustthelocalconsumptionconsideringthecustomerpreferences.Sec-ond,acommunicationlinkbetween\smartmeters"andtheutilityshouldbeestablishedso14
PAGE 26
Wirelessandpowerlinecommunication(PLC)basedsolutionsareverypromisingandattractivecomparedtotheotheroptionsconsideringthecostofinitialinvestmentrequiredforthesmartgridcommunicationinfrastructure[27].Whileaddressingthecommunica-tionneedsofsmartgrid,twostrategiescanbefollowed.Oneoftheapproachesisbasedonintegratingexistingcommunicationstandards(e.g.IEEE802.11,IEEE802.15.1,IEEE
PAGE 28
Inspiteofbeingcosteectivesolutionsforsmartgridapplications,wirelessandPLCenvironmentsareveryharshposinggreatchallengestoreliabilityandperformanceofcom-municationsystems.Inthisrespect,objectiveofthisstudyistoarticulatethechannelcharacteristicsofbothwirelessandPLCchannelsinsmartgridenvironmentsintermsofseveralfactorsincluding: Theremainderofthechapterisorganizedasfollows.Section2.2providesareviewofpropagationmechanismseectiveinwirelessandPLCenvironments.Section2.3givesthedetailsofwirelesscommunicationcharacteristicsofsmartgridenvironments.DetailsregardingPLCchannelsarediscussedinSection2.4.Finally,theconcludingremarksaregiveninSection2.5.
PAGE 29
ThepropagationinPLCchannelsismostlygovernedbyreections.InPLCsys-tems,atransmitsignalpropagatingfromonelocationtoanothersuersfromreectionsatimpedancediscontinuitiesalongitspath.Branchingandimpedanceappearingattheterminationpointsarethemainsourceofimpedancediscontinuityinpowerlinenetworks(PLNs)givingrisetoreections.ThesemechanismsareillustratedinFig.2.2. Duetothepropagationmechanismseectiveinbothenvironments,whenasignalisemittedbyatransmitter,thesignalreceivedatthereceiverconsistsofattenuated,delayed,andphase-shiftedreplicasofthetransmitsignalleadingtotimedispersion.Incommu-nicationscommunity,signicanceoftimedispersionisquantiedbyaparametercalledroot-mean-squared(RMS)delayspread.RMSdelayspreadforbothcommunicationmedi-umsistobediscussedinamoredetailedwayinthesubsequentsections.Besidestimedispersioncharacteristic,bothwirelessandPLCchannelsaretimeselectiveaswell.Mo-bility(orrelativemotionbetweentransmitterandreceiverfromabroaderperspective)isthemainreasonbehindtimeselectivityofwirelesschannels,whereasthereasonfortimeselectivityinPLCchannelsisrelatedtothevaryingimpedanceconditionsinthePLNespe-18
PAGE 30
Figure2.2PropagationmechanismsforwirelessandPLCchannels.2.3WirelessChannelCharacteristics
PAGE 31
whered0isthereferencedistanceinthefareldofthetransmitantenna,nisthepathlossexponent,andXdenotesarealzeromeanGaussianrandomvariable(RV)withaparticularstandarddeviation.Xisreferredtoasshadowingandaccountsfortheimpactoftheterrainproleonthetransmitsignal.Notethatpossessionofknowledgeregardingtwoparameters,whicharenand,whilecharacterizing(2.1)isessential.Bothnandareenvironmentaldependentparametersandmaychangesignicantlydependinguponcommunicationmediumprole.Smartgridcommunicationinfrastructureislikelytobedeployedinavarietyofcommunicationenvironments.Amongthesedeploymentoptionsare: Notethatadistinctionbetweenindoorandelectric-power-systemfacilityhasbeenmadeintheclassicationgivenabove.Thisisduetothefactthatelectric-power-systemenviron-mentshaveverydiscriminativefeaturescomparedtoregularindoorenvironmentssuchasprevalenceofmetallicstructure,dierentnoisecharacteristicsthatmaystemfromcoronaeectorswitchingoperations,hostilityintermsoftemperatureandhumidity,etc.Stem-mingfromthesedierences,furtherdiscussionisbuiltupontheclassicationgivenabove. Mostoftheresultsreportedintheliteratureregardingindoorcommunicationenviron-mentsarebasedonmeasurementscarriedoutataround900MHzand1:9GHz.Pathlossexponent(n)foravarietyofindoorpropagationenvironmentsrangefrom1:2to6[43{46].20
PAGE 32
Thetypicalvaluesforpathlossexponent(n)foroutdoorenvironmentsrangesfrom2:7to6:5dependingupontheenvironmentalcharacteristics[50].Forinstance,recommendedvalueofpathlossexponentbyITUis4forbothurbanandsuburbanareas[49].Itisalsoworthmentioningthatruralareaswithatterrainshouldassumelowervaluesofn.Shadowingforurbanenvironmentsistypically810dB[51].ITUconsidersastandarddeviationvalueof10dBasappropriateforbothurbanandsuburbanareas[49]. Thenumberofstudiesforcharacterizingtheradiopropagationmediumwithinelectric-power-systemenvironmentsisverylimitedintheliterature.Anexperimentalstudyindierentelectric{power{systemenvironmentsincludinga500kVsubstation,anindustrialpowercontrolroom,andanundergroundnetworktransformervaultreportsthatpathlossexponentnvariesfrom1:45to3:55dependinguponline-of-sight(LOS)and(NLOS)conditionsbetweentransmitterandreceiver[52].Shadowingvaluesintheseenvironmentsarefoundtobebetween2:25dBand3:29dB.21
PAGE 33
whereN(t)representsthenumberofresolvablemultipathcomponentsattimet,ar(t)istheamplitudeofther-thmultipathcomponent,r(t)denotesthephase,r(t)representsthearrivaltime,and()istheDiracdeltafunction.2.3.1.1TimeDispersion
PAGE 36
Intheliterature,timedomainsamplesoftheentirenoiseprocess(backgroundnoisecorruptedwithimpulsivenoise)isveryfrequentlyrepresentedbyamixtureofzeromeancomplexGaussianvariableswithdierentvariancesandoccurrenceprobabilitiesasfollows:f(n)=LXl=0pIg(nj2I);(2.3) wherepI'sdenotemodelparameterswhosesumshouldequalunityandg(nj2I)isthePDFofthecomplexGaussianvariablewithzeromeanand2Ivariance.Notethat(2.3)isageneralizationofBernoulli{GaussianandMiddletonClass-Amodelsasnotedin[66].Inspiteofbeingwidelyusedforthepurposeofanalysis,thismodelismemorylessandlacksrepresentingtheburstynatureofimpulsivenoise[67].Inordertoincorporateitsburstynatureintoanalysis,Markovmodeliscommonlyemployed[67,68].EmployingMarkovmodelalongwithapersistenceparameterwhichsigniesmemoryofthechannelmayturnthismemorylessmodelintoaburstymodelformingamorerealisticanalysisplatform.25
PAGE 37
wherefanddcorrespondtofrequencyofthesignalandthedistancecovered,respectively.a0,a1,andkareallcabledependentparametersandaremostlyextractedbyempiricalmeasurements[69].2.4.1MultipathCharacteristics whereandTcorrespondtothereectionandtransmissioncoecientsalongthepropaga-tionpath,respectively,A(f;di)meansthefrequency{and{distancedependentattenuationstemmingfromthephysicalcharacteristicsofthecable,andexp(j2fi)referstothephaseoftheithcomponentduetothetimedelay.KandMrepresentthenumberofreectionandtransmissioncoecientsexperiencedbythepropagatingsignalalongapar-ticularpathdenotedbythesubscripti.Finally,itisworthmentioningthatmultiplicationof'sandT'sin(2.5)isreferredasthereectionfactor(jrijeji)ofaparticularpropaga-tionpath.Notethati,thetimedelay,isrelatedtothespeedofpropagationwithinthecommunicationmedium,powerlinecablesinourconsiderationasfollows:i=dip
PAGE 38
InspiteofconfusionandunclarityinRMSdelayspreadcomputationinPLCliterature,valuesreportedin[73,74]showthatitismostlyontheorderof23swithafewexceptionsashighas56sforafrequencyrangeupto30MHz.Anotherveryextensivestudythatconsidersthesitemeasurementsof120channelsinthe1:830MHzrangerevealsthattheRMSdelayspreadismostlybelow1:31swithonlytwoexceptionsofchannelresponsesthatexhibitahighervalue1:73sand1:81s[75].Similarly,RMSdelayspreadvaluesreportedoverthesamefrequencyrangerevealsthatitissmallerthan0:5sfor99%ofthestudiedchannels[76].Also,asimilarstudyconductedoverafrequencyrangeupto30MHzreportsthat95%ofthechannelshaveanRMSdelayspreadvaluebetween240nsand2:5s[77].Anotherstudywhichconsidersalargerfrequencybandupto100MHzndsoutthat80%ofthechannelsexhibitRMSdelayspreadvaluesbetween0:06sand0:78swithameanvalueof0:413suponconductingextensivemeasurementcampaignsbyobtaining144transferfunctionscollectedfrom7sites[78].Inconclusion,typicalRMSdelayspreadvaluesinLVPLCchannelsareontheorderoffewmicroseconds.27
PAGE 40
Modelsproposedregardingthenoisecategoriesmentionedaboveareallbasedonem-piricalmeasurementcampaigns.Themainapproachundertakenwhilemodelingtheback-groundnoiseisbasedonitsfrequencydomaincharacterization.OneofthemethodstocharacterizethebackgroundnoiseistoexpressitasafunctionoffrequencybyusingitsttedPSD[87].Themajordownsideofthisapproachisthattherandombehaviorofthenoiseprocessisnotconsideredatall.Inordertoincorporateitsrandomnatureintoanal-29
PAGE 41
Asanalnote,noticethatmostoftheprecedingdiscussionsarededicatedtotheLVPLCchannels.However,thisdoesnotnecessarilyimplythatothersegmentsofthePLNcannotbeconsideredforthepurposeofcommunicationinspiteofsomereliabilityrelatedconcerns9[93{95].However,althoughHVpowerlinesserveasacommunicationmediumforvoiceforalongtimedatingbackto1920s[96],theliteraturedeningitschannelcharacteristicsisalmostinexistent.RegardingthecommunicationchannelcharacteristicsofMVchannels,althoughthereisnotmuchstudyintheliterature,somegeneralconclusionscanstillbedrawn.SimilartoLVPLCchannels,MVlinesexhibittimedispersion.RMSdelayspreadvaluesofMVPLCchannelsareontheorderof10s.TimevariationofthechannelisveryweakandtheamplitudestatisticsobeyNakagami-mdistribution[97].Inadditiontothesemultipathrelatedparameters,noisecomponentsofMVpowerlinesareusuallyverysimilartothoseofLVpowerlineswithsomediscriminativefeaturessuchasthedominanceofcoronadischargesinthebackgroundnoise[98].2.5ConcludingRemarks
PAGE 42
Wireless Powerline Highlydependentonthepropagationenvironmentofinterestswithextensiveresultsreportedintheliterature DependentonthecharacteristicsofcableusedinthePLN Timedispersion/Freq.selectivity Governedbyreection,diraction,andscattering Governedbyreectionsmainlyduetoimpedancediscontinuitiesalongthepropagationpath Timeselectivity/Freq.dispersion Mobilityoftransmitter/receiverpairsormotionofsurroundingobjects Impedancevariationsoverbothlongandshortterm PathAmplitudes MostlyassumedRayleighorRiceandependingonNLOS/LOScondition Merelyresemblesshadowingeectinwirelesschannelsandmostlyassumedtoobeylog-NormalPDF Noise MostlyassumedAWGN,presenceofimpulsivenoiseincertainenvironments Morecomplicatednoisestructure:coloredbackgroundnoise,narrowbandnoiseandimpulsivenoiseveryeective sideringthecostofinitialinvestment.Beingcosteectivesolutions,twoapproachesarelikelytoemerge:integrationofalreadyexistingPLCandwirelesstechnologiesintothegridwithsomemodicationsregardingQoS,latency,reliability,powerconsumption,etcordevel-opingnovelcommunicationprotocolsparticularlyaddressingthesmartgridcommunicationneeds.Nomatterwhatapproachistaken,adeepunderstandingofthecommunicationchan-nelcharacteristicsofsmartgridenvironmentsisessential.Inthisstudy,communicationcharacteristicsofbothPLCandwirelessenvironmentswerediscussedindetail.Smartgridwirelessdeploymentoptionswereclassiedroughlyasindoor,outdoorandelectric-power-systemenvironments.SimilarmethodologywasfollowedinPLCenvironmentsaswellbyclassifyingthemasLV,MV,andHV. Amongthecommunicationchannelcharacteristicsdiscussedwerepathlossandattenua-tion,timedispersion,timeselectivity,pathamplitudesandnoisecharacteristicsasoutlined31
PAGE 44
Itisworthmentioningthatsomeaspectsofthesmartgridneedsfurtherinvestigationintermsofcommunicationchannelcharacteristics.Forinstance,amorein-depthunder-standingoftheradiopropagationcharacteristicsinelectric-power-systemenvironmentsisessentialforthedesignofreliablewirelesscommunicationsystemsinthesmartgrid.Simi-larly,mostoftheresearcheortsinPLCchannelsarededicatedtotheLVsideofthePLNandlackofliteratureinMVandHVPLCchannelssuggestsamorecomprehensivelookattheseenvironments.33
PAGE 45
Selectivityisastatisticaltoolthatisusedforcharacterizingwirelesschannels.Formally,selectivityisdenedinbothtimeandfrequencydomains.Timeselectivityisusedtocharacterizetheconsequencesofmotion[99].TimeselectivitymanifestsitselfintransformdomainasaspectralbroadeningwhichisknownasDopplerspread.ImpactofthespreadisgenerallyevaluatedthroughtheobservationofDopplerspectrum. Itisknownthatdierentpropagationenvironmentsandmotionbehaviorsleadtodier-entDopplerspectrumcharacteristics.Inordertoachieveareliablewirelesscommunicationssystem,itisrequiredthatallsortsofpropagationcharacteristicsshouldbewellunderstood.Furthermore,theentirecommunicationsystemmustbeevaluatedundervarioustransmis-sionconditionswhosecharacteristicshavebeenderivedbasedonarduousexperimentaleldtests.Amongthesepropagationcharacteristics,Dopplerphenomenonisoneofthemost34
PAGE 46
TheRVCisaclosedcavitywhichisgenerallyofmetallicstructure.Whenitisexcitedempty,ithasmanywell-behavedpropagationmodeswhichleadtogreatelectromagnetic(EM)eldvariations[100].AstirrerisrotatedtorandomizethemaximaandminimalocationsoftheEMeldmagnitudesgivingrisetoamoreuniformeldmagnitudedistri-butionthroughoutthechamber.RotationofthestirrerinsidetheRVCcausesalsoDopplerspreadinthereceivedsignal.AlthoughtherearenotmanyDopplerrelatedRVCstudiesintheliterature,someresearchcanstillbefoundintheframeworkofabroaderperspective.In[101]whichcanbeconsideredtorelateDopplerdirectlytoRVC,theauthorsderivearelationbetweenthespeedofstirrerandmaximumobservedDopplerfrequency.AnotherDopplerrelatedstudyforRVCscanbefoundin[102]whichcomparestheexperimentalresultswiththeJakesspectrum.Theauthorsclaimthatthereisadiscrepancybetweenthemodelandtheexperimentalresultsstemmingfromthedimensionalassumptionsinsig-nalpropagation.Incontrasttothepreviousstudies,anindirectrelationbetweenDopplerandRVCisestablishedin[103]fromthetimedomainperspective.Similarly,in[104],multiple-inputmultiple-output(MIMO)performanceanalysisfornonisotropicpropagationenvironmentsisperformedinanRVC.However,asconcludedbytheauthors,nonisotropicpropagationenvironmentsneedtobefurtherinvestigatedespeciallyintermsofmotionrelatedparameters. ThestudypresentsthendingsofthemeasurementcampaignswithinanRVCthatareperformedtomakeacompletecharacterizationoftheDopplerbehavior.Theobjectivescanbesummarizedasfollows:
PAGE 47
Theremainderofthechapterisorganizedasfollows.Section3.2givestheanalyti-calbackgroundforwirelesschannelmodelandDopplerspectruminthelightofspecicmotionscenarios.Section3.3providesthedetailsofmeasurementsystemandprocedureemployedinthestudy.Section3.4elaboratestheoutcomesoftheexperimentsconducted.Section3.5discussestheeectivefactorsonDopplerspectrumandtherealizationoftheo-reticalDopplerspectrainRVCssuchasJakes'model.Finally,theconcludingremarksaregiveninSection3.6.3.2WirelessChannelModel,DopplerSpectrum,andMotionScenarios
PAGE 48
In(3.1),theimpactofthemobilitymanifestsitselfinthephaseterm,namelyr(t),foreachtap(delay).Dopplerspreadinthereceivedwaveformsiscausedbytheinstantaneouschangesinr(t)stemmingfromthedierencesinthepathdistancebetweenreceiverandtransmitterantennasoveraverysmalldurationoftime.Inordertocharacterizetheprop-agationchannel,thestatisticalbehaviorofthetaps(delays)in(3.1)overtimeshouldbeinvestigated.Channelcorrelationfunctionisusedasatoolinordertoevaluatethisstatis-ticalbehavior.TransformdomaincounterpartofchannelcorrelationfunctionisknownasDopplerspectrum.SincedierentmotionscenariosleadtodierentDopplerspectra,itisappropriatetoinvestigatethemindividually.Subsequently,thefollowingfundamentalmo-tionscenarioswillbethefocus:motionoftransmitter/receiverandmotionofsurroundingobjects.3.2.2MotionScenarios3.2.2.1MotionofTransmitter/Receiver AreceivermovingwithaparticularspeedofvisconsideredintheanalysisasdepictedinFigure3.1.Althoughthereceivertravelsveryshortdistanceovertheintervaloft,phasesoftheraysarrivingthereceiverfromdierentangleschangedrastically.Theassumptions37
PAGE 49
Forthesakeofsimplicityandeaseofanalysis,milderassumptionscanbeemployedsuchasconstantarrivingraypowerlevels,uniformlydistributedrayarrivalangles,omni-directionalantennapattern,andsoon.NotethatallthesesimpliedassumptionscanbeformallyexpressedbythefollowingzerothorderBesselfunctionoftherstkindwhenthechannelcorrelationfunctionisconsideredfortherthtap:Efh(t;r)h(t+t;r)g=Rh(t)=J0(2fDt);(3.2) Figure3.1Geometryofmovingreceivercase. whereEfgisthestatisticalexpectationoperator,()denotesthecomplexconjugateofitsinput,tisthetimeshiftinthecorrelationoperation,andfDismaximumDopplerfrequency.MaximumDopplerfrequency,namelyfD,isrelatedtothecarrierfrequencyofthetransmitsignalandtothespeedofthemobileas(vfc)=cwherecisthespeedoflight.TheFouriertransformof(3.2)whichcorrespondstoDopplerspectrumisknownasJakes'38
PAGE 50
Whenaparticularreceivervelocityisassumed,graphicalrepresentationoftheDopplerspectrumremindsofthefamousbathtub-likeshapeasdepictedinFigure3.2.NotethatfrequencyaxisisnormalizedbythemaximumDopplerfrequencyfDwherethecarrierfrequencyfcisrepresentedwithf=0.Intheliterature,severalmeasurementsperformedwiththistransmitter-receivercongurationapproximatethisDopplerbehavior[56,105].ItisworthmentioningthattheassumptionsconsideredintheanalysisofJakes'modelareverystrongandnotapplicableinmostofthepropagationenvironments.However,Jakes'Dopplerspectrumisvastlyusedintheliteratureforcomparisonpurposesoftheexperimentaldataorofsomeothertheoreticalmodels[102]. Figure3.2Dopplerspectrumformovingreceivercase.39
PAGE 51
Figure3.3Geometryformovingobjectscase. CorrespondingDopplerspectrumwhichistheFouriertransformof(3.4)canbecomputedas:RH(f)=8>>>><>>>>:2 whereK()impliesthecompleteellipticintegral.Dopplerspectrumindicatedby(3.5)isvalidifalltherayscomeacrossamovingobjectbeforearrivingthereceiver.Thisisnot40
PAGE 52
Theabove-mentionedideacandirectlybeincorporatedintothechannelcorrelationfunctionaswell.Ifafactor,namelym,denotestherayscomingfromthemovingobjectswithvariousvelocitiesthatcanbedenedbyaprobabilitydensityfunction(PDF)and1mtheraysreectedfromstationaryobjects,thechannelcorrelationfunctiontakesthefollowingform[58]:Rh(t)=(1m)+mEfJ20(2fcVt=c)g(3.6) Notethat(3.6)stillincludesastatisticalexpectationtakenoverVwhichistherandomvariablecharacterizingthespeedofsurroundingobjects.Inordertoexemplifythis,consideratypicalresidentialenvironment.Insuchenvironments,mostofthetimemotioniscausedbypedestrianswhosespeedisof3m/s.InordertoemphasizetherandomnessofVandincorporatetheeectofthemotionofotherpossibleobjects,itisreasonabletoassumethatithasaPDFwhichisdistributedover(0;3]m/s.Notethatin(3.6)thisrandomnessisweightedbythefactormwhichiscalledmotionintensity. Motionintensityarticulatesthesignicanceofmotioninaparticularenvironment.ItformsaplatforminwhichDopplerspectrumcharacteristicsofdierentmotionscenarioscanberelatedtoeachother.Forinstance,thescenariogiveninSection3.2.2.1correspondstothecasewheremotionintensityisequaltounity,whereasthescenariogiveninSec-tion3.2.2.2correspondstoamotionintensityfactoroflowerthanunity.Thisreasoningstemsfromthefactthatm=1representsabsolutemotionwhichcanbeinterpretedaseachrayarrivesatthereceiverfromasourceinmotion.Furthermore,thecasewherem=0impliesanabsolutestationaryenvironmentinwhichthereexistsnomotionatall.41
PAGE 53
DierentDopplerspectrumshapesstemmingfromdierentmotionintensityfactorsmaregiveninFigure3.4.WhilederivingtheplotinFigure3.4,thespeedofthesurroundingobjectsareallassumedtobethesame.Itcanbenoticedthatasthemotionintensityoftheoperatingenvironmentdecreasesmeaningthatthelessamountofraysbeingreectedbymovingobjects,thespectrumsignicantlychanges.Recallthatasthemotionintensityapproachestozero,theDopplerspectrumconvergestoaDiracdelta.Thisisveryintuitivesinceitisexpectedthatnospreadisobservedinanabsolutestationaryenvironmentasmentionedearlier. Figure3.4Dopplerspectrumwithmovingobjectscasefordierentvaluesofm. UponintroductiononthenatureofDopplerspreadexaminedwithdierentscenarios,subsequentsectionsdealwithitscharacterizationintheRVCs.3.3MeasurementSystemandProcedure
PAGE 54
Figure3.5Pictorialdescriptionofthemeasurementsetup. InordertoextracttheDopplercharacteristicsofthewirelesspropagationchannelbetweentransmitterandreceiverantennaswithintheRVC,twotonesat910MHzand2410MHzweretransmittedviaAgilentE4438CESGVSG.AgilentE4440APSAseriesVSA43
PAGE 55
whereWdenotesthespanofthebandwidthtobecapturedbythedeviceandfscorre-spondstothedesiredsamplingrate.Inallofthemeasurements,thespanoftheVSAwassettoW=8kHzcorrespondingtofs=10:24kHzofsamplingrate. CapturedwaveformwhichisprovidedbyAgilentE4440APSAseriesVSAasI/Qcom-plexdatasamplesneedstobeprocessedsothattheDopplerspectrumisrevealed.Thepost-processingstagestepsareasfollows:
PAGE 57
TheeectofoperatingfrequencyandthespeedofthestirreronDopplerspectrumcanbeseenbyobservingthespectrogramofthereceivedsignalasshowninFigure3.7,namelythrough(a)-(d).Ifthegureisinvestigatedeitheralongthehorizontalaxisoralongtheverticalaxis,itisclearthatanexpansionoccursinthefrequencyspectrumoftransmittedsignal.Thisexpansionisemphasizedbythedashedrectangularboxesplacedontheright-handsideofeachsubgure.2Notethat,thesizeofeachrectangularboxexpandsbothinthedirectionofoperatingfrequencyandinthedirectionofstirrerspeed.ThisshowsthatanincreaseinoperatingfrequencyorstirrerspeedgivesrisetoanexpansioninDopplerspectrum.Notealsothattheamountofexpansioncausedeitherbytheoperatingfrequencyorbythestirrerspeedevolveslinearly.Thisisnotsurprisingsincetheverywell-knownDopplershiftequation(vfc)=cisalinearfunctionofbothoperatingfrequencyandspeed. Inordertobetterseetheeectofspeed,timefrequencyanalysis(TFA)canbeprojectedontosolelyfrequencydomainyieldingtheDopplerspectrum.Figure3.8(a)and3.8(b)plottheresultsfor910MHzand2410MHzoftwodierentstirrerspeeds,respectively.Ascanbeclearlyseenfromthegures,thetendencyofthecurvesindicatesthattheenergyspreads
PAGE 58
Figure3.7Dopplerspectrogramofthemeasurements. Inlightofthemeasurementresultspresentedinthissection,itisconcludedthattheenvironmentinsideanRVCisseentoyieldaDopplerspectrumthatissimilartothemotionscenariooutlinedin3.2.2.2. (b)f=2410MHzFigure3.8ImpactofoperatingfrequencyandspeedonDopplerspectrum.47
PAGE 60
(b)f=2410MHzFigure3.9ImpactofmotionintensityonDopplerspectrum.thereceiverhavingcontributionsonlyfromsomeparticularanglesisexpectedtoyieldadierentDopplerspectrum(usuallymoreasymmetric)fromthetraditionalones. ItisworthmentioningthatthespeedofthestirrerissettoitshighestvalueduringtheexperimentspresentedinthissubsectionsincethepurposeisonlytoseethechangeintheDopplerspectrumwithregardtotheAOA.Dopplerspectrumwasanalyzedbeforeandaftertheintroductionoftheabsorberssothattheireectcouldbecomparativelyseen.Intheexperiments,absorberswerelocatedaroundthereceiverantennainawaythatitremindsacubicshape.OnlyonesideofthecubicshapewasopeninsidetheRVCallowingthewirelesssignaltoarriveatthereceiverantennafromthisparticularangle. Theresultoftheexperimentat910MHzisshowninFigure3.10.ItisseenthattheDopplerspectrumappearstohaveamoresymmetricstructurepriortoplacingtheab-sorbers.Notethatthegurehasbeenzoomedinsothattheasymmetrycanbeobservedinaclearerway.Introducingtheabsorbersinordertoblockwirelesssignalpropagatingfromcertainanglesdestroyedthesymmetricstructureofthespectrumtosomeextent.Atthispoint,itisessentialtomentionthatuseoftheabsorberstohaveasymmetricDopplerspectrumdoesnotseemtobetheonlysolution.Basedupontheexperienceoftheauthors,itwasseenthatthelocationoftheantennaandthestirrerwithintheRVCplayarole49
PAGE 61
Figure3.10ImpactofabsorbersonDopplerspectrumat910MHz.3.5Discussion
PAGE 63
Figure3.11Ellipticmotionofascatterer. ConsiderthecaseinwhichascatteringobjectismovinginaparticulardirectionasshowninFigure3.12.IfananalysissimilartotheonepresentedinSection3.2.2.2isper-formed,itisseenthatthedelayonaparticularpropagationpathduetothemovementofthereector,andthecorrespondingphasechangebecome2Vtcos=cand4fcVtcos=c,respectively.Assumingthatthereceiverantennaisomnidirectionalandisuniformlydis-tributedover(,],thefollowingchannelcorrelationisobtainedasafunctionoftimeosett:Rh(t)=1 2Zej4fcVtcos=c=J0(4fDt)(3.8) Figure3.12TheoreticalapproximationofclassicalJakes'DopplerspectrumwithinRVCs. NotethatthisisverysimilartothechannelcorrelationfunctionobtainedinJakes'modelgivenby(3.2).However,itisworthmentioningthatthespeedofmobilemustbehalvedinordertoachievethesamemaximumDopplerfrequencyastheclassicalJakes'model.This52
PAGE 64
2Zej4fcVtcos=c=(1m)+mJ0(4fDt)(3.9) Itispracticallyverydiculttodesignanenvironmentwithmequalsonewithxedreceiverandsurroundingobjectsinmotion.However,themotionintensityofthewirelesspropagationenvironmentwithintheRVCcanbeincreasedbyplacingmoremovingobjectsinsideasshowninSection3.4.2. Figure3.13showstheclassicalDopplerspectrumandtheDopplerspectrumwhichisobtainedfromthemodeldepictedinFigure3.12withthesameconstantspeedvalue.Itisseenthatbyintentionallyaligningthedirectionofthemovingobjectswithrespecttothetransmitandreceiverantennas,classicalJakes'spectrummaybeapproximated.However,animpulseatthezerofrequencyisalwaysobservedduetotherayscomingfromstationaryobjects.Thepowerofthisimpulsemaybereducedbyincreasingthemotionintensityoftheenvironment,i.e.introducingmoremovingobjects.ItisalsoseenthatthemaximumDopplerfrequencyobtainedduetothemotionofthesurroundingobjectsistwicetheclassicalJakes'shapewiththesamespeedvalue. ItistheoreticallyshownthatitispossibletoapproximateclassicalJakes'spectrum;however,thepracticalvericationneedssometechnicalcapability.Insummary,itiscon-cludedthattheclassicalJakes'spectrumcanbegeneratedwithinanRVCbyintelligentlyadjustingthemotionpatternaswellasthelocationofthetransmitter-receiverantennapairs.3
PAGE 65
Inthisstudy,DopplerphenomenoncausedbymotionisinvestigatedinRVCsbyelabo-ratingthekeyfactorssuchasoperatingfrequency,speed,AOA.Inaddition,motionintensitywhichcanbeconsideredasaformalgeneralizationofwirelesschannelmobilitycharacter-isticsisintroducedanditsconsequencesarediscussed. Also,averywell-knownJakes'Dopplermodeliscomparedwiththeexperimentalnd-ings.ItisobservedthatthereisasignicantdiscrepancybetweenJakes'modelandthe54
PAGE 66
Althoughitisobviousthattheeldtestsyieldthemostreliableresultsregardingtheperformanceofwirelesscommunicationsystems,concernsincludingcostandtimeconsump-tionwhileperformingthesetestsforcetohavealternativeapproaches.RVCsarepromisingcandidatesinthisaspect.However,themainhurdleforRVCstobeareliablereplacementtoeldtestsliesintheirdesign.Therefore,RVCdesignshouldbeimprovedinasensethatitiscapableofemulatingvariousmotionscenarioswithminormodications.55
PAGE 67
FuturePLCbasedsystemsareenvisionedtoprovideveryhighdataratesrequiringwidebandtosupporthigh{qualitymultimedia.ThepopularityofwidebandPLCespeciallyinlowvoltage(LV)networksforlast{inchapplicationsisgrowing[109,110].Inwidebandcommunicationchannels,multipathinducedinter-symbolinterference(ISI)isoneofthephenomenathatleadstoperformancedegradation.Incommunicationscommunity,signif-icanceofISIisquantiedbyaparametercalledroot-mean-squared(RMS)delayspread.Inanutshell,theRMSdelayspreadindicatesthecapabilityofthecommunicationchannelofsupportinghighdataratecommunicationsbyimplyingtheprobabilityofperformancedegradationwhichmayoccurduetotheISIasaresultofmultipathsignalpropagation.56
PAGE 68
TheaimofthischapteristoinvestigateandexplainstatisticallytheimpactofthesefactorsontheRMSdelayspreadvalueofLVPLCnetworks. Basedonextensivemeasurements,frequency{distancedependentattenuationinLVPLCnetworksisdenedas[69]A(f;d)=exp(a0a1fk)d;(4.1) wherefanddcorrespondtofrequencyofthesignalandthedistancecovered,respectively.a0,a1,andkareallcabledependentparametersandaremostlyextractedbyempiricalmeasurements[69].a0,a1,andkareconsideredtobetimeinvariant,i.e.xedparametersforaPLCnetwork.Hence,attenuationdenedby(4.1)doesnotcauseanytimevariationintheRMSdelayspreadforagiventopology.Unliketherstfactorlistedabove,load-inginLVPLCnetworksistimevarying.Branchesinthenetworkareterminatedwithvariouselectricalloadswithdierentimpedancecharacteristics.Theloadingconditionof57
PAGE 69
Theremainderofthechapterisorganizedasfollows.Section4.2givestheanalyticalbackgroundforthemultipathpropagationmodelinPLCchannelsanddenesRMSdelayspread.Section4.3discusesimpactofattenuationandloadingontheRMSdelayspreadinPLCchannels.Section4.4providesthedetailsontherelationbetweenthephysical58
PAGE 70
whereandTcorrespondtothereectionandtransmissioncoecientsalongtheprop-agationpath,respectively,A(f;di)meansthefrequency{distancedependentattenuationstemmingfromthephysicalcharacteristicsofthecableusedinthenetworkandgivenby(4.1),andexp(j2fi)referstothephaseoftheithcomponentduetothetimede-lay.Finally,KandMrepresentthenumberofreectionandtransmissioncoecientsexperiencedbyapropagatingsignalalongaparticularpathdenotedbythesubscripti.Multiplicationofreection()andtransmission(T)coecientsleadstoaparameterwhichiscalledreectionfactorintheliterature.Reectionfactor,denotedasjrijexp(ji)foracertainpathimpliedbythesubscripti,isusuallybutnotnecessarilyacomplexnumber.ItaccountsforthelossesinicteduponthetransmitsignalduetophysicalcharacteristicsofthePLCenvironment.Itisclearfrom(4.2)thattheaccuratecomputationofthereectionfactors(reectionandtransmissioncoecients)isessentialforatruecharacterizationofthePLCchannel.InPLCsystems,atransmitsignalpropagatingfromonelocationtoanothersuersreectionsatimpedancediscontinuitiesalongitspathtothereceiver.Duetotheseimpedancemismatches,somepartofthesignalisreectedbacktowardsthesource,whereassomeproceedstothedestination.Reectioncoecientarticulatestheamplitude/phaseratiobetweenthereectedsignalandtheincidentsignal,whereastransmissioncoecientT59
PAGE 71
whereZLreferstotheimpedancethatthesignalseesatadiscontinuity.SincebranchingandimpedanceappearingattheterminationpointsarethemainreasonbehindtheimpedancediscontinuityforhomogeneousPLNswhicharetobeconsideredinourstudy,itisworthtakingacloserlookatthecalculationofthereectionandtransmissioncoecientsattheseinstantsasillustratedinFig.4.1. Figure4.1Reection/Transmissioncoecientsatbranchingandtermination.4.2.1Reection/TransmissionCoecientatBranching
PAGE 72
wherenisthetotalnumberofbranchesextendingfromanodeincludingthebranchonwhichtheincidentsignalpropagates.1Byusing(4.3),itcanbeeasilyshownthatreectionandtransmissioncoecientsaregivenby,=ZtotalZ0 nandT=+1=2 whereZDdenotestheimpedanceseenbytheincidentsignalattheterminationpoint.Notethattheincidentwaveisfullyreectedincasetheterminationpointisopenorshortwiththesameamplitudebut180ofphasedierence.Incaseadeviceisconnectedtotheterminationpoint,thenimpedanceofthecorrespondingdevicemustbetakenintoconsid-erationwhilecomputingreection/transmissioncoecients.SignalpassesthroughmanyimpedancediscontinuesandexperiencesmultiplereectionsonitswaytothereceiverinaPLCnetwork.Reectionfactor,thatwaspreviouslymentionedwhileintroducingthemultipathcharacteristicsofPLCchannels,representsthetotaleectofallthesereec-tion/transmissioncoecientsonthepropagatingsignal.
PAGE 73
RMSdelayspreadisderivedfromtheCIRanddenedas:[47]rms=vuut PRj=02jjhjj2 whereRisthenumberofpathsconsideredinthecalculationandusuallydeterminedbythresholdingaswillbeclearintheforthcomingsections.Itisworthmentioningthatdelayoftherstarrivingpath,whichisdenotedas0,isalignedtozerobeforecomputation. Sofar,signalpropagationandmultipathcharacteristicsofPLCchannelsaswellasthecomputationoftheRMSdelayspreadareelaborated.Theseconceptsareimportantinasensethattheyformabasisforourfuturediscussions.Fromthispointon,ourdiscussionwillbeextendedtotheRMSdelayspreadandthefactorsthatcharacterizeitinPLNs.4.3ImpactofAttenuationandLoadingonRMSDelaySpread
PAGE 74
T-networktopologyisdepictedinFig.4.2.ItiscomposedofthreebranchesconnectedtonodeBwiththelengthofd1,d2,andd3.Adenotesthepointwherethesignalisinjectedintothenetwork,andDisthepointwherethesignalisreceived.ConsiderationofthehomogeneousnetworkstructureinwhichallthebrancheshavethesamecharacteristicimpedanceZ0isoneoftheassumptionsmadefortheeaseofanalysis.Inaddition,AandDareassumedtobematchedtoZ0forthesakeofsimplicity,henceBandCaretheonlysourcesofreectioninthetopology. Figure4.2T-networktopology. ReectionandtransmissioncoecientsatnodeB(b,Tb)andC(c,Tc)forthisparticularnetworktopologyaregivenby(4.5)and(4.6)forn=3.NotethatZDin(4.6)referstoimpedanceoftheelectricalloadconnectedtonodeC. FollowingthediscussiononPLCchannelandRMSdelayspreadgiveninSection4.2,itisnowconvenienttoarticulatewhythersttwofactors(attenuationandloading)thatarelistedinthebeginningofthechapterplayaroleintheRMSdelayspreadofPLCchannels.RecallthattheRMSdelayspreadofacommunicationchanneliscomputedbyaligningtherstarrivingpathtozerodelay.Uponthisalignment,thenumberofpathstobeincludedintheRMSdelayspreadcomputation,whichisRascanbeseenin(4.8),isdeterminedbyapplyingathresholdconsideringthemaximumpowervalueinthedelayprole.Withthisthresholdsodetermined,thepathswiththepowervaluesbelowareconsideredtobenoiseandexcludedfromtheanalysis.Withtheexplanationgiven,theimpactofattenuationon63
PAGE 75
Thesecondfactorgiveninthebeginningofthechapter,whichistheloading,determines'sandT'sin(4.2).Therefore,anychangeintheloadingconditionleadstoachangein'sandT'sinthenetworkandresultsinachangeintheRMSdelayspread.Recallalsothateveniftheloadingconditionisnotaltered,thedependencyoftheloadimpedancesontheACmainscycle[80]givesrisetoacyclicchangeintheRMSdelayspreadofPLCchannels.Iftheterm,A(f;d)in(4.2)isignoredinordertoisolateourselvesfromtheeectofattenuationandsolelyfocusontheimpactofloading,(4.2)reducestothefollowingform:H(f)=NXi=0hKYk=1ikMYm=1Timiexp(j2fi);(4.9) IfIFFToperationisappliedtotheCFR,CIRisobtainedasfollows:h()=NXi=0hKYk=1ikMYm=1Timi(ti);(4.10) Notethatthereectionfactorofthedirectpath(A-B-D)iscomposedofonlyonetermwhichisthetransmissioncoecientatB,namelyTb.Thereectionfactorsofotherpathsconsistofc,b,andTb.Baseduponthisobservation,theCIRofT-networktopology64
PAGE 76
ngj1(c)j(j);(4.11) whereRreferstothenumberofreectionsconsideredbetweenBandC. Thegraphicalillustrationoftheamplitudeof(4.11)isgiveninFig.4.3.Ascanbeseen,amplitudeofthesignalcomponentsdecreaseswithincreasingdelay.Thisisduetothefactthatpowerofthesignalreducesasitpassesthroughmorereectionpointsonitswaytothereceivereventhoughtheattenuationeectisnotaccountedfor.Takingtheattenuationintoconsideration,amplitudeofeachcomponentshouldbeevensmaller.Therefore,theRMSdelayspreadvaluesobtainedfromFig.4.3arepessimisticsincetheeectofattenuationespeciallyforlatearrivingpathsisnotaccountedfor.However,thiswillnotaectourconclusionssinceourfocusisontheimpactofloadingratherthanattenuation. Figure4.3GraphicalrepresentationoftheCIRforT-networktopology. Forthepurposeofmathematicaltractability,iftwoofthedelays(0and1)alongthedelayaxisareconsidered(R=1)inFig.4.3,using(4.8)and(4.11)theRMSdelayspreadrmstakesthefollowingform:rms=12njcj
PAGE 77
whereristhedielectricconstantoftheinsulationmaterialandc0isthespeedoflightinvacuum. Referringbackto(4.3),cbeingthereectioncoecientatnodeCdependsontheimpedanceoftheelectricaldeviceZDconnectedtothenetworkwhichisregardedasarandomvariable(RV)inthisstudyforgeneralizationsothatvariousloadingconditionscanbetakenintoaccount.IfCisassumedtobeleftopen(ZD=1),cbecomes1.cbecomes1ifashortcircuitassumption(ZD=0)isconsideredatnodeC.Thesetwoscenarioscorrespondtotwoextremecases.Therefore,itisexpectedthatanyelectricaldeviceconnectedtonodeCyieldsareectioncoecientbetweenthevaluesgeneratedbytheseextremecases,1and1.ThesetwovaluesarealsothemaximumandminimumvaluesofcduringanACcycledurationeveniftheelectricalloadconnectedtonodeCisunchanged. InordertounderstandtheimpactofloadingontheRMSdelayspreadrms,wehavetoderivetheprobabilitydensityfunction(PDF)ofthevariable=6jcj Beforeproceedingwiththestatisticalcharacterizationof,someimportantobservationsshouldbemaderegardingitsbehavior.hasthefollowingcharacteristics:
PAGE 78
Thederivativeofwithrespecttocisgivenbyd dc=5424(c)2 Sinced dc>0for0
PAGE 79
Referringbacktothestatisticsof,severalPDFscanbeoeredinordertocharacterizethestatisticalbehaviorofc.ExtractingthestatisticsofdeviceimpedancesthatarewidelyusedinLVnetworksandbuildingastatisticalmodelwouldbeverydesirable.Sincenosuchastudyisavailableintheliterature,cisassumedtobeuniformlydistributedover[1,1].Byusingthefundamentaltheoremforfunctionsofonerandomvariable[114]andemployingchangeofvariablesY=jcj,thePDFof(4.14)canbeexpressedasfollows:f()=362+(33p 13(4.18) Integrating(4.18)leadstothecumulativedistributionfunctions(CDF)of.CDFcanbecalculatedbychangingthevariablecos()=p 2tanarcsin(2) 2;0<<6 13(4.19) Figures4.4and4.5showthePDFandCDFof.Itisclearlyseenthatanalyticalderivationsandsimulationresultsareingoodagreement.Curvesarealsoseentobeingoodagreementwiththelemmaprovided.Forinstance,pluggingjcj=1into(4.14)forthepurposeofmaximizationyields6=13.Duetothemaximization,mustneverexceed6=13anditisseenfromFig.4.5thatthisobservationissatised.68
PAGE 80
Figure4.5CDFoftheRMSdelayspreadofT-networktopologywhennodeCisrandomlyloaded. ImpactofattenuationandloadingontheRMSdelayspreadisdetailedinthissection.Subsequently,impactofthephysicalcharacteristicsofthePLCoperatingenvironmentwillbeourfocus.69
PAGE 81
ItisobviousthattheanalysisthatweplantoperforminthissectionrequirestheestablishmentofmorecomplicatedPLCnetworksthantheT-networktopologyutilizedinSection4.3.ModelingPLCsystemsandbuildingsimulationtechniquesforthemhavebeenthefocusofseveralstudiesearlierintheliterature.ThemodelwhichconsidersthePLCchannelasamultipathcommunicationenvironmentwasrstintroducedin[69]asmentionedearlier.Baseduponthismultipathconsideration,analyticalcalculationofthemultipathcomponentsbydescribingthePLCchannelviaasetofmatricesisproposedin[115,116].PLCmodelsthatarebasedontreatingthetransmissionlineasatwo-portdeviceareavailableintheliteratureaswell[117,118].Achannelmodelandasimulationplatformalongwiththeresultsofvariouschannelmeasurementcampaignsarediscussedin[79,119].AstatisticalPLCchannelcharacterizationregardingattenuation,multipathrelatedparameters,etc.ispresentedin[78,120].Inouranalysis,thematrixbasedPLCsimulationtechniqueproposedin[115]willbeconsideredasthebasis.However,matricesintroducedin[115]aretobemodiedinawaythatthesimulationmoduleletsuseasilygeneratePLCnetworkswithdierentphysicalcharacteristics.Inlinewiththeproceduredescribedin[115],generatedPLCnetworktopology,whichisillustratedinFig.4.6,is70
PAGE 82
wheretandbcorrespondtothenumberofterminationpointsandbranchingpoints(referredtoasinternalnodesin[115]),respectively.CCisthesubmatrixwhichdescribestheinter-connectionsamongbranchingnodes.CTshowstheconnectionsbetweenbranchingnodesandterminationpoints.Thecorrespondinglengthofeachinterconnectionandimpedancesatterminationpointsarekeptinseparatematrices.InordertoisolateouranalysisfromtheimpactofimpedancevariationthatwasdiscussedinSection4.3andfocussolelyontheimpactofphysicalcharacteristicsoftheenvironment,itisassumedthattheterminationpointsareopencircuit.Inaddition,numberofbranchesextendingfromeachbranchingnodeisconsideredtobeuniformlydistributedover[3,6]inthesimulations.SimilartotheanalysisperformedinSection4.3,transmitterandreceiverarealsoassumedtobematchedtothecharacteristicimpedanceofthehomogeneousPLCnetwork.Impactofphysicalat-tributesisstatisticallyinvestigatedbygenerating20000realizationsofPLCnetworkforeachcasetakenintoconsideration.PLCtopologieswithdierentphysicalattributesaregeneratedbymanipulatingthevaluesoft,b,andthelengthmatrixwhoseelementsarecomposedofthevalueslijshowninFig.4.6.NotethatachangeinthetopologygivesrisetoachangeinthevaluesoftandbwhichresultsinachangeinthedimensionsofthesubmatricesdenotedasCCandCT.Foreachrealization,CIRwascalculatedbytakingtheIFFTofCFRgivenby(4.2).AfterCIRisobtained,proceduredescribedinSection4.2isfollowedwiththethresholdvalueof20dBwhilecomputingtheRMSdelayspread. TheimpactofnumberofnodesbetweentransmitterandreceiverontheRMSdelayspreadcanbeseeninFig.4.7.Whilederivingthisgure,transmitter{receiverseparationdistanceandlengthstatisticsofthebranchesareconsideredtobe150mandU[10m-30m]2,respectively.Upontheanalysisperformed,itisconcludedthatanincreaseinthenumber
PAGE 83
Figure4.7DependencyofRMSdelayspread(rms)onthenumberofnodes(b)betweentransmitterandreceiverwhenseparationdistancebetweentransmitterandreceiveris150mandbranchlengthsareassumedtobeuniformlydistributedover[10m-30m].ofnodeswhilekeepingalltheothereectivephysicalattributesofthePLCnetworkthesamegivesrisetoanincreaseinitsRMSdelayspreadvalue.Thisbehaviorcanberelatedtothemultipathcomponentsarrivingatlargerdelaysasbisincreased.Thisrelationwaspreviouslynoticedin[70]byconsideringsomespecicPLCnetworktopologies.OurndingsverifytheresultsofthisearlierstudybytakingmoregeneralPLCnetworkscenariosintoaccount.Fig.4.8showstheimpactoftransmitter{receiverseparationdistanceonrms.Similartothepreviouscaseanalyzed,increasingseparationdistancebetweentransmitterandreceiverleadstothereceptionofmultipathcomponentsatlargerdelaysleadingtoan72
PAGE 86
ThemultipathcharacteristicsofthePLCcommunicationenvironmenthavebeenthefocusofseveralpublicationsearlierintheliterature.MultipathmodelforPLCchannelsisrstelaboratedin[69].Amatrixbasedalgorithmforthecalculationofmultipathcom-ponentsinPLCnetworksisgivenin[115,121,122].ChannelcharacterizationofindoorPLNswithvariousloadingconditionsisinvestigatedin[70].Similarly,theimpactofloadimpedanceswhichareclassiedashighresistive,lowresistive,andinductive,linelengthandbranchingtothemultipathcharacteristicsofthePLCchannelisanalyzedin[123,124]bystudyingcertainscenarios.PLCchannelmodelsthatarebasedontreatingthetrans-missionlineasatwo-portnetworkareavailableintheliteratureaswell[117,118,125,126].AllofthesestudiespresentedasthepriorartformananalysisplatformforPLCenvironmentswithexactlyknowncharacteristicsleadingtosite-specicinformation.Our75
PAGE 87
Inlinewithourobjective,althoughnotsomanypapersareavailableintheliterature,someotherstudiesaimatmodelingthePLCchannelsstatisticallybasedupontheresultsderivedfrommeasurementcampaigns[78].Patharrivaltimesandamplitudesareinves-tigatedparticularlyfornarrowbandchannelsin[72].TheauthorsapproachisbasedondeningthepatharrivaltimesasNormallydistributed.Thisdenitionforpatharrivaltimesleadstothecharacterizationofpathamplitudesaslog-NormallydistributedalthoughitsrelationtothePLCnetworktopologyisnotarticulated. Asstatedearlier,impedancediscontinuitiesinthePLNsleadtothemultipathprop-agationphenomenon.ImpedanceoftheelectricalloadsandthebranchingarethemaincausesofimpedancediscontinuitiesinPLCnetworks.Thesignicanceoftheimpactoftheimpedancediscontinuityonthetransmitsignalmayonlyberevealedbyhavinganexactknowledgeoftheimpedancesatthecorrespondingdiscontinuitylocations.PossessionofthisinformationisveryunlikelyconsideringthevarietyofelectricalloadswithdierentimpedancecharacteristicsthatcanbeconnectedtothemediumaswellasthedierencesinPLCnetworktopologiesleadingtodierentbranchingstructures.Therefore,consideringthesetwoparametersasthehigh-levelattributesofthePLCcommunicationmediumandapproachingtheproblembyemployingstatisticaltoolsseemtobeappropriate.Asmen-tionedearlier,thiswillhelpusreachmoregeneralconclusionsregardingtheperformanceofcommunicationsystemsbyavoidingnetwork-specicanalysis. Asaresultofthemultipathpropagation,receivedsignalinpowerlinecommunicationsystemsconsistsofthereplicasofthetransmitsignal.Amongthesereceivedreplicas,knowledgeontherstarrivingpathbehaviorisimportantsinceitreachesthereceiverwith76
PAGE 89
IfthetermA(f;d)isignoredinordertosolelyfocusonthecharacteristicsofthephysicaloperatingenvironmentofthePLCsystems,(5.1)reducestothefollowingform:H(f)=NXi=0hKYk=1ikMYm=1Timiexp(j2fi);(5.2) IffastFouriertransform(FFT)operationisappliedtotheCFR,channelimpulsere-sponse(CIR)isobtainedasfollows:h()=NXi=0hKYk=1ikMYm=1Timi(ti);(5.3) wheremultiplicationofandTin(5.3)isreferredasthereectionfactor(jrijeji)ofaparticularpropagationpath.Ascanbeseenclearly,computationofreectionfactorplaysanimportantroleinthecharacterizationofPLCchannels.Withthisobservation,itscharacterizationalongthedirectpath(i=0)isessentialforunderstandingtherstarrivingpath.AmoredetailedlookatthereectionfactorinPLNscanbefoundin[113].5.2.2AnalysisoftheFirstArrivingPath Ascanbeseen,thedirectpropagationpathbetweentransmitterandreceiveroperatingonaPLCsystemconsistsofseveralbranchingnodesthatarerepresentedbytheletternin78
PAGE 90
Notethatthereectionfactoroftherstarrivingpath(jr0jej0)iscomposedofonlythetransmissioncoecients(T0s)experiencedalongthedirectpathstemmingfromtheimpedancediscontinuitiesatthebranchingnodes.So,calculatingT0sissucientinordertocharacterizethereectionfactoroftherstarrivingpath. AbranchingnodeisdepictedinFig.5.2inwhichthecharacteristicimpedanceofthebranchesarelabeledwiththeletterZ0s.Accordingtotransmissionlinetheory,reectionandtransmissioncoecientsatabranchingnodeareexpressedbyconsideringparallelconnectionsofextendedbranchesasfollows[112]:=(Z1==Z2==:::==Zz)Z0 Incasetheimpedanceofallthebranchesareequaltoeachother(Z0),then(5.4)becomes=2z zandT=2 wherezreferstothetotalnumberofbranchesextendingfromaparticularbranchingnode. ReferringbacktoFig.5.1,assumingthatthetransmitterandreceiverarematchedtotheimpedanceofthecorrespondingcharacteristicimpedanceofthecableforthesakeof79
PAGE 91
whereni(i=1;2;:::;x)1isthenumberofpathsextendingfromabranchingnodeincludingthepathonwhichtheincidentsignalpropagates.Notethatthephasetermofthereectionfactoris0forthisparticularcasesincenicannotbeacomplexnumber,i.e.jr0jej0=jr0j. Inlightofthediscussionpresentedinthebeginningofthechapter,ni'sandxcanbeconsideredasthetwoofthehigh-levelattributesofthePLCchannel.Stemmingfromthisfact,jr0jgivenby(5.6)isindeedarandomvariable(RV).OurinitialobservationswillbeontherstandsecondorderstatisticsofthisRV.Ifthenaturallogarithmofbothsidesof(5.6)isconsideredY=ln(jr0j)=xln2xXi=1lnni(5.7) Uponthismathematicalmanipulation,itiseasytoseethatYisanRVwiththefollowingmean,andvariance,2:=xln2xXi=1E[ln(ni)]and2=xXi=1Var[ln(ni)](5.8)
PAGE 92
ba+1lnb! (a1)!+xln2(5.9)2=xVar[ln(n)]=xE[(ln(n))2]xE[(ln(n))]2(5.10) Someimportantobservationscanbemaderegardingand2atthispoint. Proofoftheobservationscanbegivenasfollows.Thederivativeofwithrespecttoxisgivenbyd dx=1 (a1)!+ln2(5.11) Inordertomakesurethatabranchingexistsatabranchingnodeaandbmustbeequaltoorgreaterthan3.Consideringthisfactitiseasytoseethatb! (a1)!1 Reasoningin(5.12)naturallyproposesthat(5.11)mustbenegative.Sinced dx<0fora;b3,isamonotonicallydecreasingfunctionofx.
PAGE 93
(5.13)isequaltothevarianceoftheRVln(n).VarianceofanRVisalwayspositive.Sinced2 MeanandvariancevaluesofYwhichwereobtainedthroughsimulationandanalyticalderivationarepresentedinFigures5.3and5.4ifnisassumedtobeuniformlydistributedover[3,6].Ascanbeseenclearly,themeanvalueofYdecreaseswithincreasingx,whereasitsvarianceincreasesasxisincreasedwhichisingoodagreementwiththeclaimsproposedabove. Figure5.3MeanofYwithdierentvaluesofx. Notethatthedenominatorof(5.6)iscomposedofthemultiplicationofRVs.Multi-plicationofRVscanbeapproximatedwithlog-NormalPDFaccordingtothecentrallimittheoremforproductsofRVs[114].However,eachoftheni'sappearinginthedenominatorcanonlytakediscretevaluescomingfromadiscretedistributionduetothehomogeneousnetworkstructureassumption.Thelog-Normalapproximation,hencetheuseofcentral82
PAGE 94
HavingahomogeneousPLCmediumisphysicallyverydiculteventhoughthesametypeofcableisusedthroughoutthenetworkduetothevarietyoffactorsthataectthecharacteristicimpedance.Ifweweretocontinuewiththehomogeneityassumption,adeviationtermwhichimpliestheminorchangesofimpedancesacrossthebranchingnodescanbeconsideredtobemorepractical.Thisway,theimpedanceofabranchwhichwasassumedtoequalZ0cannowbeassumedtobeZ0+de,wherededenotesthedeviationfromZ0.Similartothepreviouscase,severalassumptionscanbemaderegardingthe83
PAGE 95
whererecallthatTi'sarethetransmissioncoecientsatcorrespondingbranchingnodesandYisanRVcharacterizedwiththeNormalPDF. Priortotheinvestigationoftherstandsecondorderstatisticsofjr0j,KolmogorovS-mirnov(KS)testwillbeperformedinordertoverifytheGaussianityassumptionpresentedin(5.14).Inordertoverifythisassumption,asimulationhasbeenperformedbyassumingZ0anddetobe50andauniformlydistributedRVover[1,1],respectively.InKSgoodness-of-ttest,thefollowingdistancemeasureistakenintoconsiderationD=maxxjF(x)FN(x)j(5.15) whereF(x)andFN(x)aretheCDFoftheempiricaldataandtheCDFofthetheoreticalNormaldistribution,respectively. Inordertoquantifythestatisticsoftheunderlyingprocess,thefollowinghypothesestestwasperformed: and84
PAGE 96
recallthatYisdenedasthelogarithmofthemultiplicationofthecorrespondingtrans-missioncoecientsTi'sasoutlinedby(4.7)and(5.14)Y=ln(jr0j)=ln(xYi=1Ti)(5.16) ResultsoftheKSgoodness-of-tforYareshowninFig.5.5withthesignicancelevelequals0:05.Notethattheverticalandhorizontalaxesrefertothep-valueobtainedfromthetestandthenumberofbranchingnodes(x),respectively.ThevaluesofpshowninFig.5.5wereobtainedbyaveragingtheresultsof100trails,eachwith10000samples. Beingatwo-tailedtest,thefollowingconditionp>=2mustbesatisedinordertoacceptH1.Ascanbeclearlyseenfromthegure,xaslowas7issucientfortheacceptanceofH1. Asmentionedpreviously,theoreticalderivationofthemeanandvarianceofYfornet-workswhosecableimpedanceisdenedasZ0+deisnotasimpletask.However,MonteCarlosimulationscanbeemployedinordertoovercomethisdiculty.Indeed,thissamereasoningcanbeappliedtonetworkswithheterogeneousstructureifthecableimpedancescanbecharacterizedwithaparticularPDF.Thisheterogeneitywillbeintroducedbyma-nipulatingthestatisticsofdeinthisstudybyassumingittobeuniformlydistributedoveralargerrangethanthepreviouscase.Figures5.6and5.7showthemeanandvarianceofY(logarithmofthereectionfactor)whenZ0anddeareassumedtobe50anduni-formlydistributedover[25,25],respectively.ThiscorrespondstoaPLNinwhichthecharacteristicimpedanceofthecablestakessomevaluebetween25and75accordingto85
PAGE 97
Althoughtherstandthesecondorderstatisticscannotbeexpressedinthesamewayasin(5.9)and(5.10),claimspresentedaboveregardingand2stillhold.Resultspresentedin(5.17)and(5.18)carriessignicantimportanceconsideringthesimulationofPLCchannelswithunknownnetworkstructure.IfthePLCcommunicationenvironmentisnotknownexceptforsomehigh-levelattributes,theamplitudeoftherstarrivingpathcanbecharacterizedwiththelog-NormaldistributionasshowninFig.5.5.Themean86
PAGE 98
Intheaboveexample,thesetwoparametersareextractedforaparticularcase;however,thismethodologyalongwiththelog-NormalapproximationmaybeeasilyusedforothercasesinwhichcharacteristicimpedancesassumedierentPDFsaswell.Themoststrikingoutcomeofthislog-Normalapproximationistheavoidanceofnetworkspecicresults.Uponthisapproximation,allnetworkswhoseattributesaredenedwiththeabove-mentionedstatisticscanbeincorporatedintotheperformanceanalysiswhichcanbecarriedoutpriortosystemdeploymentprocess.87
PAGE 99
OurnextobjectivewillbeinvestigatingtherelationbetweenthenumberofbranchesextendingfromabranchingnodeandthemeanandvarianceofY.Thisinvestigationwillbebasedonincreasingthemaximumnumberofbranchthatmayextendoutabranchingnodewhilekeepingthenumberofbranchingnodes(x)xed.Recallfrom(5.9)thatthisnumberisdenotedasb.Theresultsofthesimulationswhenbisvariedfrom6to10areshowninFigures5.8and5.9.Similartox,increaseinbgivesrisetoadecreaseinthemeanandanincreaseinthevarianceofY.ThisproposesthatwhentwodierentPLCenvironmentstructuresareconsideredwiththesamenumberofbranchingnodes(x),theenvironmentinwhichmorebranchesareexpectedtoextendoutfromeachbranchingnodesyieldslowermeanandhighervarianceforthelog-Normalapproximation.88
PAGE 100
UponarticulatingtherelationbetweenattributesofPLCnetworktopologyandstatis-ticsoftherstarrivingpath,statisticsregardingotherpathsaswellastheassumptionsconsideredintheanalysiswillbeclearlypresentedinthesubsequentsection.5.3Discussion
PAGE 101
Sofar,statisticsofthestrongestpathinPLCenvironmenthasbeenthefocalpointofthediscussion.Inadditiontothereceptionoftherstpath,anumberofpathsfromotherreectionpointsisreceivedbythereceiverasindicatedby(5.3).Thelog-Normalityassumptiontodenethestatisticsofthesepathsshouldholdaswellespeciallywhenthe90
PAGE 102
ThenalremarkthatisworthmentioningatthispointisregardingthebandwidthassumptionortimeresolutionoftheCIR.Itmustbenotedthatinouranalysis,theband-widthwasassumedtobeinnitewhichledtotheresolutionofeachandeverymultipathcomponentindividuallyalongthedelayaxisofCIR.Ifthesymboldurationisconsideredtobelimitedwithanitevalue(nitebandwidth),thereceiverobservesthevectorialad-ditionofthemultipathcomponentsthatfallintoonesymbolduration[47].Thenumberofmultipathcomponentsthatarevectoriallyaddedatthereceiverdependsonboththebandwidthandthenetworktopology.Asanextremecase,ifthedelayofthelatestarrivingmultipathcomponent,whichisNin(5.3),issmallcomparedtothedurationofasym-bol,theresultantreceivedsignalisthevectorialcombinationofNmultipathcomponentswhosestatisticsaredenedwithlog-NormalPDFs.Fortunately,somemethodsarealreadypresentintheliteraturetoapproximateadditionofcorrelatedlog-NormalRVsbyanotherlog-NormalRV[127,128].
PAGE 103
MeanandvariancearethetwoparametersthataresucienttocharacterizeaNormal,hencealog-NormalRV.TherelationbetweenthesetwoparametersofYandthehigh-levelattributesofthePLCenvironmentwaselaboratedbyconsideringtherstarrivingpathasacasestudy.Uponinvestigation,followingconclusionswerereached: Asanalnote,ouranalysiswasperformedbyassumingtheavailabilityofinnitebandwidth.However,itwaspointedoutthatndingsconcludedwiththisassumption92
PAGE 106
Consideringthecurrentcommunicationtrend,itisobviousthatrobustnessofOFDMsystemsagainstimpulsiveinterferenceshouldbemaintained.ThereareseveralpublicationsintheliteratureproposingsolutionsformitigatingimpactofimpulsivenoiseonOFDM.Adecisiondirectedimpulsivenoisemitigationtechniqueisproposedin[132].Acompensa-tiontechniquebasedonsomeoperationsperformedinthefrequencydomainisintroducedin[135].Animpulsivenoisecancellationtechniquethatexploitsthepresenceofpilottonesisgivenin[136].Iterativedecodingbasedsolutionsareavailableaswell[137{140].Re-gardlessoftheimpulsivenoisemodelconsidered,itisawell-knownfactthatimpactofimpulsivenoiseonOFDMcouldbedetrimentalonceitspowerexceedsacertainthresh-oldsinceFFToperationatthereceiverspreadsitseectovertheentireOFDMsymbolblock[130].Detectingandblanking(ornulling)thesamplescorruptedwithimpulsivenoiseatthereceiverpriortoFFToperationisoneofthestraightforwardsolutionstodiminishitsadverseimpact[66,andreferencestherein].Althoughthisfactisbroughttotheattentionofthereaderinmostoftheseaforementionedstudies,itsrelationtotheOFDMreceiverandalgorithmperformanceisnotdiscussedanyfurther.Inadditiontothis,theemphasisinmostofthesestudiesisgivenonmemorylessimpulsivenoisemodels. ThischapterdealswiththeanalyticalevaluationandmitigationofburstyimpulsivenoiseeectsonOFDMsignalsundertheinuenceoffrequencyselectivecommunicationchannelassumingthatthereceiverperformsnullingpriortoFFT.Notethatnullingproce-dureimplementedatthereceiverdistortsorthogonalityamongthesubcarriersandgivesrisetointer-carrierinterference(ICI).Inbrevity,harmfulimpactofimpulsivenoiseisavoidedatthecostofICI.FurtherprocessingstagesmayberequiredinordertocopewiththeemergingICIandenhancetheOFDMreceiverperformance.Beforethesestages,theim-95
PAGE 107
Samplereplacementbasediterativetechniqueisoneoftheproposedsolutionsforhan-dlingimpulsivenoiseinOFDM[138{140].Weanalyticallyanalyzethistechniqueinrelationtothenullingoperationforthersttimeintheliterature.Inaddition,wepresentasucces-sivedetectiontechniqueforcompensatingtheimpactofburstyimpulsivenoiseonOFDMsignals.Performanceofthesetechniquesistobearticulatedbyobservingbiterrorrate(BER)guresalongwiththeircomputationalcomplexities.Thekeycontributionsanddistinctionsofthischapteraresummarizedasfollows:
PAGE 108
Thischapterisorganizedasfollows:Section6.2givesthesystemmodel.ImpactofnullingonOFDMsignalsthatsuerfromfrequencyselectivecommunicationchannelisanalyzedinSection6.3.Section6.4.1providesthedetailsofreplacementbasediterativetechnique.SuccessivedetectiontechniqueisintroducedinSection6.4.2.Section6.5presentsthenumericalresults.Finally,theconcludingremarksaregiveninSection6.6.6.2SystemModel whereNisthenumberofsubcarriers,NGisthelengthofcyclicprex(CP),S(k)cor-respondstotheinformation-bearingsymbolonthekthcarrier.ItisassumedthatS(k),k2[0,N-1],arecomplexrandomvariables(RVs)withE[S(k)]=0andE[S(k)S?(m)]=(km).HereE[]istheexpectationoperatorand()denotestheKronecker'sdeltafunction. TimedomainOFDMsymbolpassesthroughcommunicationchannelandsuersfromimpulsivenoisewithburstynature.Receivedsignalsamples,r(n),canbeexpressedasr(n)=h(l;n)?s(n)+n(n);(6.2) whereh(l;n)isthetimevaryingcommunicationchannelimpulseresponse,n(n)correspondstotheimpulsivenoiseprocess,and?referstotheconvolutionprocess.Thesameexpression97
PAGE 109
whereListhenumberofchanneltaps.Samplesthatarecorruptedwiththeimpulsiveinterferenceinthereceivedsignal,r(n),aredetectedandnulledbeforeFFToperationatthereceiversothatimpulsivenoisepowerbeingspreadoverallfrequencydomainsymbolsisavoided.Assumethaty(n)isobtaineduponnullingoperation,y(n)=8><>:r(n)n=2Z0n2Z(6.4) whereZreferstoasetthatholdssampleindexescorruptedwithimpulsivenoise.AsadirectconsequenceoftheIFFToperationatthetransmitter,demodulationatthereceiverisrealizedbyapplyingFFTony(n).SelectinglengthoftheCP,NG,largerthanthemaximumexcessdelayofthecommunicationchannelavoidsISI.Assumingperfecttime98
PAGE 110
Aroughdescriptionofthesystemmodelisgiveninthissectionwithoutgoingintodetailsoftheoperationsperformedatthereceiversideinordertoavoidthedetrimentalimpactofimpulsivenoise.Thesedetailsaretobediscussedsubsequently.6.3AnalysisoftheNullingOperationattheReceiver
PAGE 111
NS(m)H(m)1 IfKconsecutivesamplesstartingwiththesampleindexx0arenulledatthereceiverasgiveninthesystemmodeldescribedinSection6.2,thenitispossibletowritetheobtainedsignaluponnullinginamoreclearexpressionthan(6.7)byusinggeometricseriesexpansion:Y(m)=NK NS(m)H(m)1 sin((km)=N)ej(km)(K1+2x0)=N=NK NS(m)H(m)1 whereI(x)=sin(xK=N) sin(x=N)ejx(K1+2x0)=N. RemarkI:NotethatnullingsomeofthesamplesofthereceivedOFDMsymbolgivesrisetothefollowingtwophenomena:reductioninthepoweroftheusefulsymbolandthelossofsubcarrierorthogonality,henceICIeachweightedwiththeircorrespondingchannelfrequencyresponse(CFR)coecients.Intheanalysisgivenabove,noiseisconsideredtobe100
PAGE 112
NH(m)2 sin((km)=N)2+NK NN0(6.9) Asaspecialcase,forAWGNchannelinwhichallchannelcoecientsareequaltounity,SINRatthemthsubcarrierisgivenbySINRm=NK N2 NN0=NK K+NN0(6.10) RemarkII:AnotherobservationisthattheneighboringcarriersareexpectedtoplaythemajorroleintheICIthataparticularsymbolsuersfromespeciallyforlargevaluesofK=N.ThiscanbeveriedbylookingintoaveragepowerpercarriercontributedtothetotalICIthatcanbecomputedbyaveragingtheinstantaneousICIpowervaluesoverchannelrealizations.So,thecontributioncomingfromkthsubcarriertothemthsubcarriercanbeexpressedas:P(k)=1 sin2((km)=N)usin2((km)K=N) Fig.6.2showstheICIcontributioncomingfromsubcarrierswithinanOFDMsymbolblockforaparticularvalueofm.Ascanbeclearlyseen,contributioncomingfromtheneighboringsubcarriersbecomesmoredominantasKincreases.Forinstance,morethan70%oftotalICIpowerstemsfromtheadjacentsubcarriersforK=25whentotalnumberofsubcarriersNisconsideredtobe64.ItmustbeemphasizedthattheratioK=Nplaysa101
PAGE 113
Figure6.2ICIpowercontributionversuscarrierindexforN=64withnormalizedunitypowervalue. RemarkIII:Employingmatrixrepresentation,(6.8)canbealternativelyexpressedas:Y=HS;(6.12) whereYisanNx1vectorrepresentingthefrequencydomainsymbolsobtaineduponnulling,SdenotestheNx1vectoroffrequencydomaintransmitsymbols,andHisannon{diagonalNxNmatrixaccountingfortheimpactofnullingatthereceiveraswellasthewirelesscommunicationchannelonS.TherstrowofHisgivenbelowasanexample:H(1;:)=NK NH(0)I(1)H(1)I(N1)H(N1)102
PAGE 114
where()yand()Harethepseudoinverseandcomplexconjugateoperators,respectively.IfHisafullrankmatrix,then(6.13)iscorrect. Withthematrixnotationemployedforourcase,HisanoninvertibleandrankdecientmatrixwiththerankequaltoNK,hencedoesnotsatisfy(6.13).InspiteofthefactthatHisrankdecient,eachandeverysymbolS(k),k2[0,N-1],canstillbeuniquelydemodulated. WewillrstshowwhyHisrankdecientandthenexplainwhyeachsymbolisstilluniquelyidentiable.WeadoptAWGNassumptionintheremainderofdiscussioninwhichH(k)=1,k2[0,N-1];however,frequencyselectivechannelcaseisalsoapplicable.Ex-pressing(6.12)inamoreexplicitway:Y=HS=FFHzS;(6.14) whereFistheFouriermatrixandFHzreferstotheinverseFouriermatrixwhoseKrowsarenulledinordertorejectimpulsivenoisepowerintotheOFDMdemodulator.Notethatifnoimpulsivenoiseispresentintheenvironment,FHz=FHmakingHanidentitymatrix.SinceFHzhasKnumberofitsrowsequalto0,ithasNKnonzerosingularvalues,hencearankofNK.ThefollowingequalitymustholdsinceFisafullrankmatrix:Rank(H)=Rank(FFHz)=Rank(FHz)(6.15) ThisprovesthatHisarankdecientmatrix,hencenoninvertiblewitharankvalueofNK.However,thisfactdoesnotimplytheidentiabilityofonlyNKsymbolsinS.LetussplitHintotwomatrices,H1andH2.H1holdsthediagonalvaluesofHinitsdiagonalwithallotherremainingelementsequal0,whereasH2hastheremainingvalues103
PAGE 115
notethatthersttermholdstheinformationregardingthedesiredterm,whereasthesecondtermintheequationreferstotheundesiredterm,i.e.ICI.ICItermin(6.16)whichisseenasasumofRVsisusuallyassumedasGaussianintheliteratureconsideringthevalidityofcentrallimittheoremforlargeclassesofvariablesespeciallyforlargeN.ItisalsoworthmentioningthatGaussianassumptionasadditivenoisecorrespondstotheworstcasescenariofromchannelcapacitystandpoint[144,page337].Withthisassumptionadopted,H2Scanbethoughtofanerrorterm,,denedwithzeromeanGaussianRVwhosevarianceisequaltoK(NK)=N2ascanbeseenfrom(6.10).So,ourproblemturnsintoidentifyingNsymbolsinanAWGNchannelasfollows:Y=H1S+;(6.17) sinceH1isinvertibleandsatisesequalizabilitycondition,eachandeveryS(k),k2[0,N-1]canbeuniquelydemodulatedwithacertainprobabilitythatdependsonthemodulationorderandK.Thisisanimportantobservationconsideringtheapplicabilityofthetechniquesthataretobediscussedsubsequently.Asanalnoteforfrequencyselectivechannel,symbolidentiabilityisstillapplicablegiventheconditionthatH(k)6=0,k2[0,N-1].Obviously,thisconditionisnotrelatedtothenullingoperationandmustbesatisedforanyconventionalOFDMreceiveraspointedoutin[145].Indeed,thisobservationthatrelatesrankdeciencytouniquesymbolidentiabilitywasdiscussedearlierinadierentcontextintheliteratureaswell[146]. ThebottomlineinthisremarkisthatnosymbolislostatthereceiverduetothenullingoperationalthoughnullinggivesrisetotheappearanceofarankdecientchannelmatrixwitharankvalueofNK.InspiteofthefactthatchannelmatrixHhastherankvalueofNK,allsymbolscanstillbeuniquelydemodulated.Althoughzeroforcingequalizercan104
PAGE 116
Inthisrespect,remainderofthesectionisdedicatedtothediscussionoftechniquesthatareusedtotackletheemergingICIasaresultofburstyimpulsivenoiseeect.First,wewillarticulateatechniquenamed\samplereplacementbasediterativecancellationtechnique"thatwaspreviouslyproposedintheliterature(notinthisdetailthough),nextwewilldiscussourproposedscheme.6.4OFDMReceiverStagesAfterNulling6.4.1SampleReplacementBasedIterativeCancellationTechnique
PAGE 117
NS(m)H(m)1 Intheiterativedecodingtechniqueconsidered,ri'saresupposedtocorrespondtosomeparticularsamples(whoseindexesareindicatedbyzi's)ofIFFTofthefrequencydomainsymbolsestimatedfromthenulledreceivedwaveformandconvolvedwiththechannelre-sponse.So,ri=1 Afterpluggingthisinto(6.19),Y(m)becomesY(m)=NK NS(m)H(m)+K N^S(m)H(m)1 NotethattheICItermin(6.21)vanishesforthecase^S(m)=S(m)whichimpliesthatallthesymbolsareestimatedcorrectly.Notealsothat(6.7)isaspecialcaseof(6.21)for^S(m)=0.SimilartotheanalysisperformedinSection6.3,iftheimpulsivenoisehasaburstynatureoccupyingacertainamountofsamplesovertheOFDMsymbol(Ksamplesstartingwiththesampleindexx0),Y(m)intheiterationscanbealternativelyexpressedasY(m)=S(m)H(m)K NE(m)H(m)1
PAGE 118
NH(m)j2 sin((km)=N)j2(6.23) SupposethatY(m)hasthebestSIRandtherstsymboltobedetectedwiththecorrespondingestimatedsymbol^S(m).Aftermakingharddecision,thereceivedvectorYisupdatedasYnew=YoldH^S(6.24)107
PAGE 119
Inordertofurtherimprovetheperformanceofsuccessivetechnique,PICcanbeem-ployedandthenalsymbolvectorwhichholdsthetentativehardsymbolinformationcanbesubtractedfromtheinitialreceivedvectorafterbeingmultipliedwiththecorrespondingcoecientsgivenby(6.8).ThisprocedurecanbeiteratedmorethanonceforenhancingtheBERperformance.ThecomputationalburdenthatisintroducedbythePICprocedurerequiresadditionalO(N2)operationsateachiteration.ThereplacementbasedtechniquedescribedinSection6.4.1canalsobeemployedinsteadofPICforlesscomputationalbur-den.6.5NumericalResults
PAGE 120
Thecomparativeperformanceanalysisofthesetechniquescanbeclearlyseenbyob-servingFig.6.5.Fig.6.5comparestheperformanceofthesetwotechniquesforavarietyofKvaluesataspecicsignal-to-noiseratio(SNR)valueof30dB.Itisclearlyseenthattheperformanceofthetechniquethatisbasedonsuccessivesymboldetectionalwaysout-performstheotherespeciallyasK=Ngoeshigher.AsinglecycleofsuccessivedetectionissucienttokeeptheBERbelow103uptoK40,whereasthesimilarperformanceisobservedwithsamplereplacementbasediterativetechniqueafter3iterationsatK30.Asnotedearlier,thecontributionofneighboringcarrierstotheICIpowerisexpectedtobecomemoredominantasK=Ngoeslarger.Thisbehaviorbringsuptheimportanceofor-deringinthedetectionprocessespeciallyforhighK=Nvalues.Byorderingthesubcarriersandemployingsuccessivedetection,theICIcontributioncomingfromestimatedsymbolsonlowSIRcarriersareseenimmediatelyleadingtoabetterperformancecomparedtothe
PAGE 121
Itshouldalsobekeptinmindthattheperformanceofbothtechniquescannotbesatisfactoryevenafteraparticularnumberofiterationsareperformedduetotheerrorpropagationphenomenon.Inordertoseethis,lookatFig.6.6whichshowstheBERper-formanceofbothdetectiontechniquescomparativelywhenK(henceK=NforxedN)isdoubled.ItisseenfromFig.6.6thatevenafter3iterations3,bothtechniquesdonoteasilyconvergetothelowerbound,noICIcase.NoteagainthatsuccessivedetectionprovidesuswithabetterBERperformance;however,thismaynotbesucientforcertaincom-municationapplications.Inordertoovercomethisconvergenceproblem,ICIthatemergesuponnullingneedstobediminished.So,oneshouldaskwhatmeasuretakenbeforetrans-
PAGE 124
Figure6.6BERperformanceforN=256andK=50whenreplacementbasediterativeandsuccessivesymboldetectiontechniquesareemployedwith3iterations.6.6ConcludingRemarks
PAGE 126
Figure6.9BERperformanceforN=256withdierentvaluesofKandnormalizeddelayspreadvaluesatSNR=30dB.115
PAGE 127
WirelessandPLCchannelcharacteristicsofsmartgridenvironmentswerepresentedinaverydetailedway.Amongthecommunicationchannelcharacteristicsdiscussedwerepathlossandattenuation,timedispersion,timeselectivity,pathamplitudesandnoisecharacteristics. Dopplerspectrumcharacteristicsofwirelesschannelsaswellasthefactorswhichdeneitsbehaviorwereinvestigatedthroughtheuseofanreverberationchamber(RVC).Operatingfrequency,speed,andangleofarrival(AOA)wereamongthefactorsstudied.Inconjunctionwiththesefactors,anewperspectiveofmobilityinwireless116
PAGE 128
Impactofthephysicalattributesandloadingofthepowerlinenetwork(PLN)ontheRMSdelayspreadstatisticsofthecommunicationchannelwasinvestigatedindetail. StatisticsofthepathamplitudesinPLCchannelswerestudiedanditwasshownthatitcanbeconsideredtofollowalog-Normaldistribution.TherelationshipbetweenthephysicalattributesofthePLNandthemeanandvarianceoftheapproximatinglog-Normaldistributionwasarticulated. AdetailedanalysisoftheICIthatemergesuponnullinginOFDMreceiversop-eratinginimpulsivenoiseenvironmentsundertheinuenceoffrequencyselectivechannelwasgiven.AdetailedperformanceanalysisofthesubsequentstagesoftheOFDMreceiveruponnullingwascarriedout.Mathematicalevaluationofthesamplereplacementbasediterativetechniqueinrelationtothenullingoperationwasper-formed.Alternativetothesamplereplacementbasediterativetechnique,successivesymboldetectiontechniquewasappliedalongwithrelevantdiscussions.Incasebothtechniquesfailtoprovidesatisfactoryperformance,anewtransmissionschemethatisbasedonICIreductionwasintroducedattheexpenseofreduceddatarate(orspectralunderutilization).117
PAGE 129
Smartgridinfrastructurecannotbeisolatedfromtheadvancesintheradiotechnol-ogy.Inthisrespect,cognitiveradio(CR)anditsrelationtothesmartgridapplicationsshouldbeestablishedinastrongermanner.Besides,emergenceofelectricvehicles(EVs)andtheircommunicationandnetworkingrequirementsintermsofelectricitybillchargingandtheutilizationasabackupsourceofpowerwhenneededislikelytoleadtoveryexcitingresearchissuesfrommanyaspects.Inaddition,theirimpactonthepowergridshouldbegivenspecialattentionfordevelopingoptimumdemandschedulingandresourcemanagementalgorithms.Therearealsosomeimportantresearchopportunitiesconsideringtheintegrationofcustomerstothesmartgridnetwork.Forinstance,statisticsregardingtheuseofelectricaldevicesisverycrucialforthehouseholdstomonitortheirenergyus-age.Oneofthemosteconomicallyconvenientwaysofcollectingthesestatisticscouldbetoprocessthenoisethatthesedevicesemitintothepowerlineconductors.Communicationandnetworkingrequirementsinalternativegenerationandstoragesitesarelikelytogiverisetogoodresearchopportunities.Eachofthesesiteswillhaveitsuniquecharacteristicsaectingthecommunicationsystemsdeployedindierentways.Asaspecicexample,oneofthequestionsrequiringfurtherinvestigationishowthewirelesscommunicationisaectedbythewindturbinebladesinwindpowergenerationstationsorwhatcouldbethemainsourcesofdataerrorsintheseenvironmentsforvariouscommunicationoptions.Finally,OFDMbeingthemostpopulartechnologyforfuturecommunicationsystemswasconsid-eredinourstudy.Findingsofthisdissertationcanalsobeeasilyextendedtosomeotherpromisingtechnologiessuchassinglecarrierfrequencydomainequalization(SC-FDE).Alloftheseabove-mentionedresearchissuescanleadtoanotherPhDdissertation.118
PAGE 130
S.Guzelgoz,H.Arslan,A.Islam,andA.Domijan,\Wirelessandplcpropagationchannelcharacteristicsforsmartgridenvironments,"IEEETransactionsonSmartGrid,underreview.[2] S.Guzelgoz,S.Yarkan,andH.Arslan,\Investigationoftimeselectivityofwirelesschannelsthroughtheuseofrvc,"JournalofMeasurement(byElsevier),vol.43,no.10,pp.1532{1541,December2010.[3] S.Guzelgoz,H.Celebi,andH.Arslan,\Articulatingfactorsdeningrmsdelayspreadinlvplcnetworks,"JournalofComputerSystems,Networks,andCommunications(byHindawi),vol.2010,2010,doi:10.1155/2010/802826.[4] ||,\Statisticalcharacterizationofthepathsinmultipathplcchannels,"IEEETransactionsonPowerDelivery,vol.26,no.1,pp.181{187,January2011.[5] S.GuzelgozandH.Arslan,\Handlingburstyimpulsivenoiseinofdm,"IEEECom-municationsLetters,underreview.[6] S.Yarkan,S.Guzelgoz,H.Arslan,andR.Murphy,\Undergroundminecommunica-tions:Asurvey,"IEEECommunicationsSurveysTutorials,vol.11,no.3,pp.125{142,2009.[7] S.Yarkan,S.Guzelgoz,andH.Arslan,\Statisticalwirelesschannelpropagationchar-acteristicsinundergroundminesat900mhz:Acomparativeanalysiswithindoorchannels,"IEEETransactionsonInstrumentationandMeasurement,underreview.[8] ||,\Wirelesschannelpropagationcharacteristicsinundergroundmines:Astatis-ticalanalysisandaradiocontrolledrobotexperiment,"inIEEEICWCUCA,ValdOr,Canada,August2008,acceptedforpublication.[9] S.Guzelgoz,H.Celebi,T.Guzel,H.Arslan,andK.Mihcak,\Timefrequencyanalysisofnoisegeneratedbyelectricalloadsinplc,"inIEEEICT,April2010.[10] H.Celebi,S.Guzelgoz,T.Guzel,H.Arslan,andK.Mihcak,\Noiseandchannelstatisticsofindoorpowerlinenetworks,"inIEEEICT,May2011,acceptedforpub-lication.[11] S.Guzelgoz,H.Celebi,andH.Arslan,\Analysisofamulti-channelreceiver:Wirelessandplcreception,"inEUSIPCO,Aalborg,Denmark,August2010.119
PAGE 131
S.GuzelgozandH.Arslan,\Awirelesscommunicationssystemslaboratorycourse,"IEEETransactionsonEducation,vol.53,no.4,pp.532{541,November2010.[13] ||,\Modeling,simulation,testing,andmeasurementsofwirelesscommunicationsystems:Alaboratorybasedapproach,"inIEEEWAMICON,Clearwater,FL,April2009.[14] S.Guzelgoz,A.Hesham,O.Zakaria,andH.Arslan,\Ansdrbasedwirelesslaboratory:Introducingmulti-dimensionalsignalanalysis,"inSDRForum,WashingtonD.C.,June2008.[15] M.Kuhn,S.Berger,I.Hammerstrom,andA.Wittneben,\Powerlineenhancedcooperativewirelesscommunications,"IEEEJournalonSelectedAreasinCommu-nications,vol.24,no.7,pp.1401{1410,July2006.[16] W.Peng,G.Markarian,andG.Kolev,\Anovelhybridnetworkforhospitalenvi-ronmentincorporatingieee802.16andhomeplugavstandards,"inConferenceonWireless,MobileandSensorNetworks,December2007,pp.1029{1032.[17] J.Y.Ha,J.Jeon,K.Lee,J.Heo,N.Kim,S.M.Kim,W.H.Kwon,andB.jinJung,\Designandimplementationofconvergencesub{layerforaheterogeneoushomenetwork,"inIEEEInternationalSymposiumonPowerLineCommunicationsandItsApplications,March2007,pp.252{256.[18] H.Kuriyama,H.Mineno,andT.Mizuno,\Evaluationofmutuallycomplementarymultichannelsensornetworkforwirelessandpowerlines,"inIEEEInternationalSymposiumonPowerLineCommunicationsandItsApplications,April12009,pp.223{227.[19] K.Lee,J.Park,andK.Moon,\Convergenceofhigh-speedpowerlinecommunicationandwimediauwbformultimediahomenetworks,"inIEEEInternationalSymposiumonPowerLineCommunicationsandItsApplications,April2008,pp.147{151.[20] J.Mitola,\Cognitiveradio:anintegratedagentarchitectureforsoftware-denedradio,"Ph.D.dissertation,RoyalInstituteofTechnology(KTH),Stockholm,Sweden,May2000.[21] H.TaiandE.Hogain,\Behindthebuzz[inmyview],"IEEEPowerandEnergyMagazine,vol.7,no.2,pp.92{96,March2009.[22] H.Farhangi,\Thepathofthesmartgrid,"IEEEPowerandEnergyMagazine,vol.8,no.1,pp.18{28,January2010.[23] C.Hauser,D.Bakken,andA.Bose,\Afailuretocommunicate:nextgenerationcommunicationrequirements,technologies,andarchitecturefortheelectricpowergrid,"IEEEPowerandEnergyMagazine,vol.3,no.2,pp.47{55,March2005.[24] T.SauterandM.Lobashov,\End-to-endcommunicationarchitectureforsmartgrids,"IEEETransactionsonIndustrialElectronics,vol.PP,no.99,pp.1{1,2010.120
PAGE 132
V.Sood,D.Fischer,J.Eklund,andT.Brown,\Developingacommunicationinfras-tructureforthesmartgrid,"inIEEEElectricalPowerEnergyConference,October2009,pp.1{7.[26] W.CHUandD.J.H.LIN,\Communicationstrategiesinenablingsmartgriddevelop-ment,"inInternationalConferenceonAdvancesinPowerSystemControl,OperationandManagement,November2009,pp.1{6.[27] V.GungorandF.Lambert,\Asurveyoncommunicationnetworksforelectricsystemautomation,"ComputerNetworks,vol.50,no.7,pp.877{897,May2006.[28] M.Qureshi,A.Raza,D.Kumar,S.-S.Kim,U.-S.Song,M.-W.Park,H.-S.Jang,H.-S.Yang,andB.-S.Park,\Asurveyofcommunicationnetworkparadigmsforsubstationautomation,"inIEEEInternationalSymposiumonPowerLineCommunicationsandItsApplications,April2008,pp.310{315.[29] A.Sara,G.Tsiropoulos,andP.Cottis,\Hybridwireless{broadbandoverpowerlines:Apromisingbroadbandsolutioninruralareas,"IEEECommunicationsMagazine,vol.47,no.11,pp.140{147,November2009.[30] A.Aggarwal,S.Kunta,andP.Verma,\Aproposedcommunicationsinfrastructureforthesmartgrid,"inInnovativeSmartGridTechnologies,January2010,pp.1{5.[31] http://smartgrid.ieee.org/standards/approved-ieee-smartgridstandards.[32] D.GuandJ.Zhang,\Qosenhancementinieee802.11wirelesslocalareanetworks,"IEEECommunicationsMagazine,vol.41,no.6,pp.120{124,June2003.[33] D.Chen,D.Gu,andJ.Zbang,\Supportingreal-timetracwithqosinieee802.11ebasedhomenetworks,"inIEEEConsumerCommunicationsandNetworkingConfer-ence,January2004,pp.205{209.[34] A.Mehta,G.Bhatti,Z.Sahinoglu,R.Viswanathan,andJ.Zhang,\Performanceanalysisofbeacon-enabledieee802.15.4macforemergencyresponseapplications,"inInternationalSymposiumonAdvancedNetworksandTelecommunicationSystems,December2009,pp.1{3.[35] ||,\Amodiedbeacon-enabledieee802.15.4macemergencyresponseapplica-tions,"inIEEESymposiumonComputersandCommunications,June2010,pp.261{267.[36] I.F.Akyildiz,X.Wang,andW.Wang,\Wirelessmeshnetworks:Asurvey,"Com-puterNetworks,vol.47,no.4,pp.445{487,January2005.[37] http://www.ieee802.org/15/pub/TG4g.html.[38] F.KojimaandH.Harada,\Studyonmultipathcharacteristicsforieee802.15.4gsunapplicationsinthefrequencybandusedinjapan,"inIEEEInternationalConferenceonCommunicationsWorkshops,May2010,pp.1{5.121
PAGE 133
||,\Long-livedsmartutilitynetworkmanagementusingmodiedieee802.15.4mac,"inIEEEInternationalConferenceonCommunicationsWorkshops,May2010,pp.1{5.[40] http://www.homeplug.org.[41] DOE,\Communicationsrequirementsofsmartgridtechnologies,"DepartmentofEnergy,Tech.Rep.,October2010.[42] O.Fatemieh,R.Chandra,andC.A.Gunter,\Lowcostandsecuresmartmetercommunicationsusingthetvwhitespaces,"inInternationalSymposiumonResilientControlSystems,August2010,pp.37{42.[43] A.Neskovic,N.Neskovic,andG.Paunovic,\Modernapproachesinmodelingofmobileradiosystemspropagationenvironment,"IEEECommunicationsSurveysTu-torials,vol.3,no.3,pp.2{12,2000.[44] A.MicrowavesandD.Propagation,\Reviewonradiopropagationintoandwithinbuildings,"IEEProceedingsMicrowaves,AntennasandPropagation,vol.138,no.1,pp.61{73,February1991.[45] S.Alexander,\Characterisingbuildingsforpropagationat900mhz,"ElectronicsLetters,vol.19,no.20,p.860,September1983.[46] A.Committee,\231:Digitalmobileradiotowardsfuturegenerationsystemsnalreport,"Tech.Rep.,1999.[47] T.S.Rappaport,WirelessCommunications:PrinciplesandPractice.UpperSaddleRiver,NJ:Prentice-Hall,1996.[48] J.Andersen,T.Rappaport,andS.Yoshida,\Propagationmeasurementsandmodelsforwirelesscommunicationschannels,"IEEECommunicationsMagazine,vol.33,no.1,pp.42{49,January1995.[49] ITU{RRec.ITU{RM.1225,\Guidelinesforevaluationofradiotransmissiontech-nologyforimt{2000,"Tech.Rep.,1997.[50] A.Goldsmith,WirelessCommunications.CambridgeUniversityPress,2005.[51] W.C.Jakes,MicrowaveMobileCommunications.NewYork:IEEEPress,1993.[52] V.C.Gungor,B.Lu,andG.P.Hancke,\Opportunitiesandchallengesofwirelesssensornetworksinsmartgrid,"IEEETransactionsonIndustrialElectronics,vol.57,no.10,pp.3557{3564,October2010.[53] M.Ibnkahla,SignalProcessingforMobileCommunicationsHandbook.CRCPress,2005.[54] A.H.KempandE.B.Bryant,\Channelsoundingofindustrialsitesinthe2.4ghzismband,"WirelessPersonalCommunications,vol.31,pp.235{248,2004.122
PAGE 134
R.ClarkeandW.L.Khoo,\3-dmobileradiochannelstatistics,"IEEETransactionsonVehicularTechnology,vol.46,no.3,pp.798{799,August1997.[56] X.Zhao,J.Kivinen,P.Vainikainen,andK.Skog,\Characterizationofdopplerspectraformobilecommunicationsat5.3ghz,"IEEETransactionsonVehicularTechnology,vol.52,no.1,pp.14{23,January2003.[57] D.Baum,D.Gore,R.Nabar,S.Panchanathan,K.Hari,V.Erceg,andA.Paulraj,\Measurementandcharacterizationofbroadbandmimoxedwirelesschannelsat2.5ghz,"inInternationalConferenceonPersonalWirelessCommunications,2000,pp.203{206.[58] S.Thoen,L.VanderPerre,andM.Engels,\Modelingthechanneltime-varianceforxedwirelesscommunications,"IEEECommunicationsLetters,vol.6,no.8,pp.331{333,August2002.[59] G.L.Stuber,PrinciplesofMobileCommunication,2nded.Boston,MA:Kluwer,1996.[60] M.DaoudYacoub,\Fadingdistributionsandco-channelinterferenceinwirelesssys-tems,"IEEEAntennasandPropagationMagazine,vol.42,no.1,pp.150{160,Febru-ary2000.[61] H.Hashemi,\Theindoorradiopropagationchannel,"inProceedingsoftheIEEE,vol.81,no.7,July1993,pp.943{968.[62] K.Blackard,T.Rappaport,andC.Bostian,\Measurementsandmodelsofradiofrequencyimpulsivenoiseforindoorwirelesscommunications,"IEEEJournalonSe-lectedAreasinCommunications,vol.11,no.7,pp.991{1001,September1993.[63] O.Batur,M.Koca,andG.Dundar,\Measurementsofimpulsivenoiseinbroad-bandwirelesscommunicationchannels,"inPRIMEResearchinMicroelectronicsandElectronics,April2008,pp.233{236.[64] Q.Shan,S.Bhatti,I.Glover,R.Atkinson,R.Portugues,P.Moore,andR.Ruther-ford,\Characteristicsofimpulsivenoiseinelectricitysubstations,"inEuropeanSignalProcessingConference,August2009.[65] A.ShapouryandM.Kezunovic,\Noiseproleofwirelesschannelsinhighvoltagesubstations,"inIEEEPowerEngineeringSocietyGeneralMeeting,June2007,pp.1{8.[66] S.Zhidkov,\Analysisandcomparisonofseveralsimpleimpulsivenoisemitigationschemesforofdmreceivers,"IEEETransactionsonCommunications,vol.56,no.1,pp.5{9,January2008.[67] D.FertonaniandG.Colavolpe,\Onreliablecommunicationsoverchannelsimpairedbyburstyimpulsenoise,"IEEETransactionsonCommunications,vol.57,no.7,pp.2024{2030,July2009.123
PAGE 135
M.ZimmermannandK.Dostert,\Analysisandmodelingofimpulsivenoiseinbroad-bandpowerlinecommunications,"IEEETransactionsonElectromagneticCompati-bility,vol.44,no.1,pp.249{258,February2002.[69] ||,\Amultipathmodelforthepowerlinechannel,"IEEETransactionsonCom-munications,vol.50,no.4,pp.553{559,April2002.[70] J.Anatory,N.Theethayi,andR.Thottappillil,\Channelcharacterizationforindoorpower-linenetworks,"IEEETransactionsonPowerDelivery,vol.24,no.4,pp.1883{1888,October2009.[71] J.Anatory,N.Theethayi,R.Thottappillil,andN.Mvungi,\Abroadbandpower{linecommunicationsystemdesignschemefortypicaltanzanianlow{voltagenetwork,"IEEETransactionsonPowerDelivery,vol.24,no.3,pp.1218{1224,July2009.[72] I.Papaleonidopoulos,C.Capsalis,C.Karagiannopoulos,andN.Theodorou,\Sta-tisticalanalysisandsimulationofindoorsingle-phaselowvoltagepower-linecom-municationchannelsonthebasisofmultipathpropagation,"IEEETransactionsonConsumerElectronics,vol.49,no.1,pp.89{99,February2003.[73] Y.-H.Kim,H.-H.Song,J.-H.Lee,andS.-C.Kim,\Widebandchannelmeasurementsandmodelingforin{housepowerlinecommunication,"inInternationalSymposiumonPowerLineCommunicationsandItsApplications,March2002.[74] K.Afkhamie,H.Latchman,L.Yonge,T.Davidson,andR.Newman,\Jointoptimiza-tionoftransmitpulseshaping,guardintervallength,andreceiversidenarrow-bandinterferencemitigationinthehomeplugavofdmsystem,"inIEEEWorkshoponSignalProcessingAdvancesinWirelessCommunications,June2005,pp.996{1000.[75] S.Galli,\Asimpliedmodelfortheindoorpowerlinechannel,"inIEEEInternationalSymposiumonPowerLineCommunicationsandItsApplications,April2009,pp.13{19.[76] T.Esmailian,F.R.Kschischang,andP.G.Gulak,\In-buildingpowerlinesashigh-speedcommunicationchannels:Channelcharacterizationandatestchannelensem-ble,"InternationalJournalofCommunicationSystems,2009.[77] H.Philipps,\Developmentofastatisticalmodelforpowerlinecom-municationchan-nels,"inInternationalSymposiumonPowerLineCommunicationsandItsApplica-tions,2000,pp.153{162.[78] M.Tlich,A.Zeddam,F.Moulin,andF.Gauthier,\Indoorpower-linecommunica-tionschannelcharacterizationupto100mhzpartii:Time-frequencyanalysis,"IEEETransactionsonPowerDelivery,vol.23,no.3,pp.1402{1409,July2008.[79] F.Canete,L.Diez,J.Cortes,andJ.Entrambasaguas,\Broadbandmodellingofindoorpower-linechannels,"IEEETransactionsonConsumerElectronics,vol.48,no.1,pp.175{183,February2002.124
PAGE 136
F.Corripio,J.Arrabal,L.delRio,andJ.Munoz,\Analysisofthecyclicshort-termvariationofindoorpowerlinechannels,"IEEEJournalonSelectedAreasinCommunications,vol.24,no.7,pp.1327{1338,July2006.[81] S.Barmada,A.Musolino,andM.Tucci,\Responseboundsofindoorpower-linecommunicationsystemswithcyclostationaryloads,"IEEETransactionsonPowerDelivery,vol.24,no.2,pp.596{603,April2009.[82] S.GalliandT.Banwell,\Anovelapproachtothemodelingoftheindoorpowerlinechannel-partii:transferfunctionanditsproperties,"IEEETransactionsonPowerDelivery,vol.20,no.3,pp.1869{1878,July2005.[83] S.Aghajeri,H.Shaee,andJ.Mohammadpour-Velni,\Designofanofdmsystemforhighratecommunicationoverlowvoltagepowerlines,"inMediterraneanConferenceonControlandAutomation,July2002.[84] I.Papaleonidopoulos,C.loannou,C.Karagiannopoulos,andN.Theodorou,\Branched{bushfpower{delay{proleapproachofindoorplcchannels,"inInterna-tionalSymposiumonPowerLineCommunicationsandItsApplications,April2005,pp.147{151.[85] K.Hoque,L.Debiasi,andF.DeNatale,\Performanceanalysisofmc-cdmapowerlinecommunicationsystem,"inInternationalConferenceonWirelessandOpticalCommunicationsNetworks,July2007,pp.1{5.[86] J.-h.Lee,J.-h.Park,H.-S.Lee,G.-W.Lee,andS.-C.Kim,\Measurement,modelingandsimulationofpowerlinechannelforindoorhigh-speeddatacommunications,"inInternationalSymposiumonPower-LineCommunicationsandItsApplications,April2001,pp.143{148.[87] O.Hooijen,\Onthechannelcapacityoftheresidentialpowercircuitusedasadigitalcommunicationsmedium,"IEEECommunicationsLetters,vol.2,no.10,pp.267{268,October1998.[88] M.Arzberger,T.Waldeck,andM.Zimmermann,\Fundamentalpropertiesofthelowvoltagepowerdistributiongrid,"inInt.Symp.Power{LineCommunicationsanditsApplications(ISPLC),March1997,pp.45{50.[89] A.Burr,D.Reed,andP.Brown,\Eectofhfbroadcastinterferenceonpowerlinetelecommunicationsabove1mhz,"inIEEEGlobalTelecommunicationsConference,vol.5,1998,pp.2870{2875.[90] H.Meng,Y.Guan,andS.Chen,\Modelingandanalysisofnoiseeectsonbroadbandpower{linecommunications,"IEEETransactionsonPowerDelivery,vol.20,no.2,pp.630{637,April2005.[91] V.Degardin,M.Lienard,A.Zeddam,F.Gauthier,andP.Degauquel,\Classicationandcharacterizationofimpulsivenoiseonindoorpowerlineusedfordatacommuni-cations,"IEEETransactionsonConsumerElectronics,vol.48,no.4,pp.913{918,November2002.125
PAGE 137
M.ChanandR.Donaldson,\Amplitude,width,andinterarrivaldistributionsfornoiseimpulsesonintrabuildingpowerlinecommunicationnetworks,"IEEETransac-tionsonElectromagneticCompatibility,vol.31,no.3,pp.320{323,August1989.[93] J.Abad,A.Badenes,J.Blasco,J.Carreras,V.Dominguez,C.Gomez,S.Iranzo,J.Riveiro,D.Ruiz,L.Torres,andJ.Comabella,\Extendingthepowerlinelanuptotheneighborhoodtransformer,"IEEECommunicationsMagazine,vol.41,no.4,pp.64{70,April2003.[94] G.Jee,C.Edison,R.DasRao,andY.Cern,\Demonstrationofthetechnicalvia-bilityofplcsystemsonmedium-andlow-voltagelinesintheunitedstates,"IEEECommunicationsMagazine,vol.41,no.5,pp.108{112,Ma.2003.[95] D.-E.Lee,D.-S.In,J.-J.Lee,Y.-J.Park,K.-H.Kim,J.-T.Kim,andS.-G.Shon,\Aeldtrialofmediumvoltagepowerlinecommunicationsystemforamranddas,"inAsiaandPacicTransmissionDistributionConferenceExposition,October2009,pp.1{4.[96] M.Schwartz,\Theoriginsofcarriermultiplexing:Majorgeorgeowensquierandat&t,"IEEECommunicationsMagazine,vol.46,no.5,pp.20{24,May2008.[97] Y.Xiaoxian,Z.Tao,Z.Baohui,N.Xu,W.Guojun,andD.Jiandong,\Investigationoftransmissionpropertieson10-kvmediumvoltagepowerlinesmdash;parti:Generalproperties,"IEEETransactionsonPowerDelivery,vol.22,no.3,pp.1446{1454,July2007.[98] Z.Tao,Y.Xiaoxian,Z.Baohui,C.Jian,Y.Zhi,andT.Zhihong,\Researchofnoisecharacteristicsfor10-kvmedium-voltagepowerlines,"IEEETransactionsonPowerDelivery,vol.22,no.1,pp.142{150,January2007.[99] S.YarkanandH.Arslan,\Exploitinglocationawarenesstowardimprovedwirelesssystemdesignincognitiveradio,"IEEECommunicationsMagazine,vol.46,no.1,pp.128{136,January2008.[100] D.WuandD.Chang,\Theeectofanelectricallylargestirrerinamode{stirredchamber,"IEEETransactionsonElectromagneticCompatibility,vol.31,no.2,pp.164{169,May1989.[101] P.HallbjornerandA.Rydberg,\Maximumdopplerfrequencyinreverberationcham-berwithcontinuouslymovingstirrer,"inAntennasandPropagationConference,April2007,pp.229{232.[102] A.Khaleghi,J.Bolomey,andA.Azoulay,\Onthestatisticsofreverberationcham-bersandapplicationsforwirelessantennatest,"inIEEEAntennasandPropagationSocietyInternationalSymposium,July2006,pp.3561{3564.[103] K.Madsen,P.Hallbjorner,andC.Orlenius,\Modelsforthenumberofindepen-dentsamplesinreverberationchambermeasurementswithmechanical,frequency,andcombinedstirring,"IEEEAntennasandWirelessPropagationLetters,vol.3,pp.48{51,2004.126
PAGE 138
J.Valenzuela-Valdes,A.Martinez-Gonzalez,andD.Sanchez-Hernandez,\Diversitygainandmimocapacityfornonisotropicenvironmentsusingareverberationcham-ber,"EEEAntennasandWirelessPropagationLetters,vol.8,pp.112{115,2009.[105] P.Hoeher,\Astatisticaldiscrete-timemodelforthewssusmultipathchannel,"IEEETransactionsonVehicularTechnology,vol.41,no.4,pp.461{468,November1992.[106] C.L.Holloway,D.A.Hill,J.M.Ladbury,P.F.Wilson,G.Koepke,andJ.Coder,\Ontheuseofreverberationchamberstosimulatearicianradioenvironmentforthetestingofwirelessdevices,"IEEETransactionsonAntennasandPropagation,vol.54,no.11,pp.3167{3177,November2006.[107] E.Genender,C.Holloway,K.Remley,J.Ladbury,G.Koepke,andH.Garbe,\Useofreverberationchambertosimulatethepowerdelayproleofawirelessenvironment,"inInternationalSymposiumonElectromagneticCompatibility,September2008,pp.1{6.[108] N.Pavlidou,A.HanVinck,J.Yazdani,andB.Honary,\Powerlinecommunications:stateoftheartandfuturetrends,"IEEECommunicationsMagazine,vol.41,no.4,pp.34{40,April2003.[109] S.Galli,A.Scaglione,andK.Dostert,\Broadbandispower:internetaccessthroughthepowerlinenetwork,"IEEECommunicationsMagazine,vol.41,no.5,pp.82{83,May2003.[110] Y.-J.Lin,H.Latchman,M.Lee,andS.Katar,\Apowerlinecommunicationnetworkinfrastructureforthesmarthome,"IEEEWirelessCommunicationsMagazine,vol.9,no.6,pp.104{111,Dec.2002.[111] H.SchulzeandC.Luders,TheoryandApplicationsofOFDMandCDMA:WidebandWirelessCommunications.Wiley,2005.[112] D.M.Pozar,MicrowaveEngineering.Toronto:JohnWiley&Sons,,1998.[113] H.He,S.Cheng,Y.Zhang,andJ.Nguimbis,\Analysisofreectionofsignaltrans-mittedinlow-voltagepowerlinewithcomplexwavelet,"IEEETransactionsonPowerDelivery,vol.19,no.1,pp.86{91,January2004.[114] A.Papoulis,Probability,randomvariables,andstochasticprocesses,3rded.NewYork:McGraw-HillInc.,1991.[115] D.AnastasiadouandT.Antonakopoulos,\Multipathcharacterizationofindoorpower-linenetworks,"IEEETransactionsonPowerDelivery,vol.20,no.1,pp.90{99,January2005.[116] X.DingandJ.Meng,\Channelestimationandsimulationofanindoorpower{linenetworkviaarecursivetime{domainsolution,"IEEETransactionsonPowerDeliv-ery,vol.24,no.1,pp.144{152,January2009.127
PAGE 139
S.Barmada,A.Musolino,andM.Raugi,\Innovativemodelfortime-varyingpowerlinecommunicationchannelresponseevaluation,"IEEEJournalonSelectedAreasinCommunications,vol.24,no.7,pp.1317{1326,July2006.[118] H.Meng,S.Chen,Y.Guan,C.Law,P.So,E.Gunawan,andT.Lie,\Modelingoftransfercharacteristicsforthebroadbandpowerlinecommunicationchannel,"IEEETransactionsonPowerDelivery,vol.19,no.3,pp.1057{1064,July2004.[119] L.Tang,P.So,E.Gunawan,Y.Guan,S.Chen,andT.Lie,\Characterizationandmodelingofin-buildingpowerlinesforhigh-speeddatatransmission,"IEEETrans-actionsonPowerDelivery,vol.18,no.1,pp.69{77,Jan2003.[120] M.Tlich,A.Zeddam,F.Moulin,andF.Gauthier,\Indoorpower-linecommunicationschannelcharacterizationupto100mhzparti:One-parameterdeterministicmodel,"IEEETransactionsonPowerDelivery,vol.23,no.3,pp.1392{1401,July2008.[121] X.DingandJ.Meng,\Channelestimationandsimulationofanindoorpower-linenetworkviaarecursivetime-domainsolution,"IEEETransactionsonPowerDelivery,vol.24,no.1,pp.144{152,Jan.2009.[122] ||,\Characterizationandmodelingofindoorpower{linecommunicationchannels,"inSecondCanadianSolarBuildingsConference,June2007.[123] J.Anatory,N.Theethayi,R.Thottappillil,M.Kissaka,andN.Mvungi,\Theeectsofloadimpedance,linelength,andbranchesinthebplctransmission-lineanalysisforindoorvoltagechannel,"IEEETransactionsonPowerDelivery,vol.22,no.4,pp.2150{2155,October2007.[124] ||,\Theeectsofloadimpedance,linelength,andbranchesintypicallow-voltagechannelsofthebplcsystemsofdevelopingcountries:Transmission-lineanalyses,"IEEETransactionsonPowerDelivery,vol.24,no.2,pp.621{629,April2009.[125] S.GalliandT.Banwell,\Anovelapproachtothemodelingoftheindoorpowerlinechannel-partii:transferfunctionanditsproperties,"IEEETransactionsonPowerDelivery,vol.20,no.3,pp.1869{1878,July2005.[126] D.Sabolic,A.Bazant,andR.Malaric,\Signalpropagationmodelinginpower-linecommunicationnetworks,"IEEETransactionsonPowerDelivery,vol.20,no.4,pp.2429{2436,October2005.[127] N.Mehta,A.Molisch,J.Wu,andJ.Zhang,\Approximatingthesumofcorrelatedlognormalor,lognormal-ricerandomvariables,"inIEEEInternationalConferenceonCommunications,vol.4,June2006,pp.1605{1610.[128] A.SafakandM.Safak,\Momentsofthesumofcorrelatedlog{normalrandomvari-ables,"inIEEE44thVehicularTechnologyConference,vol.1,June1994,pp.140{144.[129] M.Sanchez,L.deHaro,M.Ramon,A.Mansilla,C.Ortega,andD.Oliver,\Im-pulsivenoisemeasurementsandcharacterizationinauhfdigitaltvchannel,"IEEETransactionsonElectromagneticCompatibility,vol.41,no.2,pp.124{136,may1999.128
PAGE 140
M.Ghosh,\Analysisoftheeectofimpulsenoiseonmulticarrierandsinglecarrierqamsystems,"IEEETransactionsonCommunications,vol.44,no.2,pp.145{147,February1996.[131] D.Middleton,\Statistical-physicalmodelsofelectromagneticinterference,"IEEETransactionsonElectromagneticCompatibility,vol.19,no.3,pp.106{127,August1977.[132] J.ArmstrongandH.Suraweera,\Decisiondirectedimpulsenoisemitigationforofdminfrequencyselectivefadingchannels[dvb-texample],"inIEEEGlobalTelecommu-nicationsConference,vol.6,november2004,pp.3536{3540.[133] J.Lago-FernandezandJ.Salter,\Modelingimpulsiveinterferenceindvb{t{statis-ticalanalysis,testwaveforms,andreceiverperformance,"BBCResearchandDevel-opment,Tech.Rep.,July2004.[134] H.SuraweeraandJ.Armstrong,\Noisebucketeectforimpulsenoiseinofdm,"ElectronicsLetters,vol.40,no.18,September2004.[135] S.Zhidkov,\Impulsivenoisesuppressioninofdm{basedcommunicationsystems,"IEEETransactionsonConsumerElectronics,vol.49,no.4,pp.944{948,November2003.[136] F.Abdelke,P.Duhamel,andF.Alberge,\Impulsivenoisecancellationinmulticar-riertransmission,"IEEETransactionsonCommunications,vol.53,no.1,pp.94{106,January2005.[137] J.HaringandA.Vinck,\Iterativedecodingofcodesovercomplexnumbersforim-pulsivenoisechannels,"IEEETransactionsonInformationTheory,vol.49,no.5,pp.1251{1260,May2003.[138] H.Matsuo,D.Umehara,M.Kawai,andY.Morihiro,\Aniterativedetectionforofdmoverimpulsivenoisechannel,"inInternationalSymposiumonPowerLineCommu-nicationsandItsApplications,2002,pp.213{217.[139] T.Hirakawa,M.Fujii,M.Itami,andK.Itoh,\Astudyoniterativeimpulsenoisereductioninofdmsignalbyrecoveringtimedomainsamples,"inIEEEInternationalSymposiumonPowerLineCommunicationsandItsApplications,2006,pp.325{330.[140] J.RadicandN.Rozic,\Reconstructionofthesamplescorruptedwithimpulsenoiseinmulticarriersystems,"inIEEEWirelessCommunicationsandNetworkingConfer-ence,5{82009,pp.1{5.[141] S.Zhidkov,\Performanceanalysisandoptimizationofofdmreceiverwithblankingnonlinearityinimpulsivenoiseenvironment,"IEEETransactionsonVehicularTech-nology,vol.55,no.1,pp.234{242,January2006.[142] K.Seo,H.Latchman,andK.Afkhamie,\Improvedimpulsedetectioninpowerlinecommunicationsystems,"inIEEEInternationalSymposiumonPowerLineCommu-nicationsandItsApplications,April2008,pp.374{379.129
PAGE 141
G.Ndo,P.Siohan,andM.-H.Hamon,\Adaptivenoisemitigationinimpulsiveenvi-ronment:Applicationtopower-linecommunications,"IEEETransactionsonPowerDelivery,vol.25,no.2,pp.647{656,April2010.[144] R.G.Gallager,InformationTheoryandReliableCommunication.NewYork:Wiley,1968.[145] B.Muquet,Z.Wang,G.Giannakis,M.deCourville,andP.Duhamel,\Cyclicprex-ingorzeropaddingforwirelessmulticarriertransmissions?"IEEETransactionsonCommunications,vol.50,no.12,pp.2136{2148,December2002.[146] J.ShenandZ.Ding,\Zero-forcingblindequalizationbasedonsubspaceestimationformultiusersystems,"IEEETransactionsonCommunications,vol.49,no.2,pp.262{271,February2001.[147] A.Molisch,M.Toeltsch,andS.Vermani,\Iterativemethodsforcancellationofinter-carrierinterferenceinofdmsystems,"IEEETransactionsonVehicularTechnology,vol.56,no.4,pp.2158{2167,July2007.[148] P.Wolniansky,G.Foschini,G.Golden,andR.Valenzuela,\V-blast:anarchitec-tureforrealizingveryhighdataratesovertherich-scatteringwirelesschannel,"inInternationalSymposiumonSignals,Systems,andElectronic,September1998,pp.295{300.[149] Y.-S.Choi,P.Voltz,andF.Cassara,\Onchannelestimationanddetectionformul-ticarriersignalsinfastandselectiverayleighfadingchannels,"IEEETransactionsonCommunications,vol.49,no.8,pp.1375{1387,August2001.[150] X.CaiandG.Giannakis,\Boundingperformanceandsuppressingintercarrierinter-ferenceinwirelessmobileofdm,"IEEETransactionsonCommunications,vol.51,no.12,pp.2047{2056,December2003.130
|