Molecular Systematics of Bats of the Genus Myotis (Vespertilionidae) Suggests Deterministic Ecomorphological Convergences


Material Information

Molecular Systematics of Bats of the Genus Myotis (Vespertilionidae) Suggests Deterministic Ecomorphological Convergences
Series Title:
Molecular Phylogenetics and Evolution
Ruedi, Manuel
Mayer, Frieder


Subjects / Keywords:
Myotis ( local )
Chiroptera ( local )
Cytochrome B ( local )
Nd1 ( local )
Adaptive Radiations ( local )
Phylogeny ( local )
Fossils ( local )
serial ( sobekcm )


Based on extensive phenetic analyses, bats of the genus Myotis have been classically subdivided into four major subgenera each of which comprise many species with similar morphological and ecological adaptations. Each subgenus thus corresponds to a distinct “ecomorph” encompassing bat species exploiting their environment in a similar fashion. As three of these subgenera are cosmopolitan, regional species assemblages of Myotis usually include sympatric representatives of each ecomorph. If species within these ecomorphs are monophyletic, such assemblages would suggest extensive secondary dispersal across geographic areas. Conversely, these ecomorphological adaptations may have evolved independently through deterministic processes, such as adaptive radiation. In this case, phylogenetic reconstructions are not expected to sort species of the same ecomorph into monophyletic clades. To test these predictions, we reconstructed the phylogenetic history of 13 American, 11 Palaearctic, and 6 other Myotis species, using sequence data obtained from nearly 2 kb of mitochondrial genes (cytochrome b and nd1). Separate or combined analyses of these sequences clearly demonstrate the existence of several pairs of morphologically very similar species (i.e., sibling species) which are phylogenetically not closely related. None of the three tested subgenera constitute monophyletic units. For instance, Nearctic and Neotropical species currently classified into the three subgenera were clustered in a single, well-supported monophyletic clade. These species thus evolved independently of their ecological equivalents from the Palaearctic region. Independent adaptive radiations among species of the genus Myotis therefore produced strikingly similar evolutionary solutions in different parts of the world. Furthermore, all phylogenetic reconstructions based on mtDNA strongly supported the existence of an unsuspected monophyletic clade which included all assayed New World species plus M. brandtii (from the Palaearctic Region). This “American”
Original Version:
Molecular Phylogenetics and Evolution, Vol. 21, no. 3.

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

University of South Florida
Karst Information Portal

Postcard Information



Download Options


No images or PDF downloads are available for this resource.

Cite this item close


Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.


Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.


Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.


Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.