Mammalian mitochondrial capture, a tool for rapid screening of DNA preservation in faunal and undiagnostic remains, and its application to Middle Pleistocene specimens from Qesem Cave (Israel)


Material Information

Mammalian mitochondrial capture, a tool for rapid screening of DNA preservation in faunal and undiagnostic remains, and its application to Middle Pleistocene specimens from Qesem Cave (Israel)
Series Title:
Quaternary International
Slon, Viviane
Glocke, Isabelle
Barkai, Ran
Gopher, Avi
Hershkovitz, Israel
Meyer, Matthias
Publication Date:


Subjects / Keywords:
Ancient DNA ( local )
Middle Pleistocene ( local )
Screening Method ( local )
Mitochondrial Enrichment ( local )
Nucleotide Substitutions ( local )
Faunal Remains ( local )
serial ( sobekcm )


Faunal skeletal remains from prehistoric sites are often too fragmentary to enable identification at the species level based on morphology, complicating attempts to recover ancient DNA sequences from these remains. We designed a novel approach that enables large-scale screening of undiagnostic remains for the preservation of ancient mitochondrial DNA. Following DNA extraction and DNA library preparations, libraries are enriched for mitochondrial DNA using a set of probes, which cover the entire mitochondrial genomes of 242 mammalian species. We show that the efficiency of mitochondrial enrichment using mammalian capture probes is not substantially lower compared to enrichment using species-specific probes. Excavations at Qesem Cave (Israel), dated to 420–200 ka, have yielded a large assemblage of skeletal and dental remains, including a small number of hominin teeth. As recent developments in ancient DNA extraction and library preparation methods have enabled the generation of sequencing data from Middle Pleistocene samples, we aimed to investigate the feasibility of recovering ancient DNA molecules from specimens originating in Qesem Cave. The current research was carried out using forty-two faunal remains from six different areas of the cave, as a preliminary study which could then be used to select hominin remains for further genetic analysis. Unfortunately, DNA libraries from Qesem Cave samples yielded few sequences which could be mapped to a mammalian mitochondrial genome. These sequences do not exhibit the patterns of ancient DNA damage expected from endogenous sequences of that age. Thus, we could not detect the presence of ancient endogenous DNA molecules in the faunal remains from Qesem Cave.
Original Version:
Quaternary International, Vol. 398 (2016-04-04).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

University of South Florida
Karst Information Portal

Postcard Information



Download Options


No images or PDF downloads are available for this resource.

Cite this item close


Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.


Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.


Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.


Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.