Rapid entrenchment of stream profiles in the salt caves of Mount Sedom, Israel

Citation

Material Information

Title:
Rapid entrenchment of stream profiles in the salt caves of Mount Sedom, Israel
Series Title:
Earth Surface Processes and Landform
Creator:
Frumkin, Amos
Ford, Derek C.
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Allogeneic Karst ( local )
Salt Caves ( local )
Stream Profile Downcutting Rate ( local )
Salt Diapir ( local )
Dead Sea ( local )
Israel ( local )
Radiocarbon Dates ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Rock salt is approximately 1000 times more soluble than limestone and thus displays high rates of geomorphic evolution. Cave stream channel profiles and downcutting rates were studied in the Mount Sedom salt diapir, Dead Sea rift valley, Israel. Although the area is very arid (mean annual rainfall ≈ 50 mm), the diapir contains extensive karst systems of Holocene age. In the standard cave profile a vertical shaft at the upstream end diverts water from a surface channel in anhydrite or clastic cap rocks into the subsurface route in the salt. Mass balance calculations in a sample cave passage yielded downcutting rates of 0–2 mm s−1 during peak flood conditions, or about eight orders of magnitude higher than reported rates in any limestone cave streams. However, in the arid climate of Mount Sedom floods have a low recurrence interval with the consequence that long‐term mean downcutting rates are lower: an average rate of 8·8 mm a−1 was measured for the period 1986–1991 in the same sample passage. Quite independently, long‐term mean rates of 6·2mm a−1 are deduced from 14C ages of driftwood found in upper levels of 12 cave passages. These are at least three orders of magnitude higher than rates established for limestone caves. Salt cave passages develop in two main stages: (1) an early stage characterized by high downcutting rates into the rock salt bed, and steep passage gradients; (2) a mature stage characterized by lower downcutting rates, with establishment of a subhorizontal stream bed armoured with alluvial detritus. In this mature stage downcutting rates are controlled by the uplift rate of the Mount Sedom diapir and changes of the level of the Dead Sea. Passages may also aggrade. These fast‐developing salt stream channels may serve as full‐scale models for slower developing systems such as limestone canyons.
Original Version:
Earth Surface Processes and Landform, Vol. 20, no. 2 (1995-03-01).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.