Styles and rates of long-term denudation in carbonate terrains under a Mediterranean to hyper-arid climatic gradient

Citation

Material Information

Title:
Styles and rates of long-term denudation in carbonate terrains under a Mediterranean to hyper-arid climatic gradient
Series Title:
Earth and Planetary Science Letters
Creator:
Ryb, U.
Matmon, A.
Erel, Y.
Haviv, I.
Benedetti, L.
Hidy, A. J.
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Denudation ( local )
Chemical Weathering ( local )
Erosion ( local )
Carbonate Terrains ( local )
Climatic Gradient ( local )
36Cl ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Carbonate minerals, unlike silicates, have the potential to dissolve almost completely and with high efficiency. Thus, in carbonate terrains denudation rate and style (the governing process of denudation, mechanical or chemical) should be more sensitive to climatic forcing. Using 36Cl measurements in 39 carbonate bedrock and sediment samples, we calculate long-term denudation rates across a sharp climatic gradient from Mediterranean to hyper-arid conditions. Our samples were collected along the Arugot watershed, which drains the eastern flank of the Judea Range (central Israel) to the Dead Sea and is characterized by a pronounced rain shadow. Denudation rates of flat-lying bedrock outcrops sampled along interfluves differ by an order of magnitude from ∼20 mm ka−1 in the Mediterranean zone to 1–3 mm ka−1 in the hyper-arid zone. These rates are strongly correlated with precipitation, and thus reflect the importance of carbonate mineral dissolution in the overall denudation process. In contrast, denudation rates of steep bedrock surfaces depend on the hillslope gradient, but in the hyper-arid climate zone, indicating that mechanical processes dominate the overall hillslope denudation within this zone. The dominance of slope-dependent mechanical erosion in the hyper-arid zone is also reflected by an increase in spatially-average denudation rates from 17–19 mm ka−1 in the Mediterranean–semi-arid zones to 21–25 mm ka−1 in the hyper-arid zone. These higher rates are attributed to clast contribution from steep slopes under arid climate. This suggests an increased importance of mechanical processes to the overall denudation in the hyper-arid zone. We demonstrate that the transition between chemically-dominated denudation to mechanically-dominated denudation occurs between 100 and 200 mm of mean annual precipitation. Long-term denudation rates across the Judea Range indicate that between Mediterranean and hyper-arid climates, chemical weathering rates are limited by precipitation. Nevertheless, in more humid climates, che
Original Version:
Earth and Planetary Science Letters, Vol. 406 (2014-11-15).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.