Determinants of Pseudogymnoascus destructans within bat hibernacula: Implications for surveillance and management of white‐nose syndrome


Material Information

Determinants of Pseudogymnoascus destructans within bat hibernacula: Implications for surveillance and management of white‐nose syndrome
Series Title:
Journal of Applied Ecology
Verant, Michelle L.
Bohuski, Elizabeth A.
Richgels, Katherine L. D.
Olival, Kevin J.
Epstein, Jonathan H.
Blehert, David S.
Publication Date:


Subjects / Keywords:
White-Nose Syndrome ( local )
Wns ( local )
Myotis Lucifugus ( local )
Pseudomnoascus Destructans ( local )
Pd ( local )
serial ( sobekcm )


Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management. White‐nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans (Pd), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pd within these reservoirs are unknown. We used model selection on longitudinally collected field data to test multiple hypotheses describing presence–absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS. First detection of Pd in the environment lagged up to 1 year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd. For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS. Synthesis and applications. Our results indicate that distribution of Pseudogymnoascus destructans (Pd) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus, or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long‐term persistence of Pd in sediment suggests that disease management for white‐nose syndrome should address risks of sustained transmission from environmental reservoirs.
Original Version:
Journal of Applied Ecology, Vol. 55, no. 2 (2018-01-15).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

University of South Florida
Karst Information Portal

Postcard Information



Download Options


No images or PDF downloads are available for this resource.

Cite this item close


Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.


Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.


Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.


Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.