Surface Dissolution and the Development of Scallops


Material Information

Surface Dissolution and the Development of Scallops
Series Title:
Chemical Engineering Communications
Villien, Benoit
Zheng, Ying
Lister, Derek
Publication Date:


Subjects / Keywords:
Scalloping ( local )
Corrosion ( local )
Dissolution ( local )
Mass Transfer ( local )
serial ( sobekcm )


Flow-assisted corrosion (FAC) is a significant problem with carbon steel components exposed to rapidly moving water or water/steam mixtures. Such components often develop distinctive patterns of surface damage called scalloping, so to gain further insight into FAC it is of interest to understand the formation and significance of scallops. Experiments were carried out on the dissolution of pipes made of plaster of Paris (CaSO4.½H2O) to study the evolution of scalloping patterns as well as to explore the link between scalloping and hydrodynamics and scalloping and dissolution rate. The conductivity and pH of water flowing through the test sections were recorded and posttest examination was carried out. Scallops were observed along the plaster surface at the end of the tests. Their characteristics are strongly related to the flow rate; scallop size decreases with increasing flow rate whereas surface density of scallops increases with increasing flow rate. Imperfections such as voids on embedded particles seem necessary for scallops to develop at all.
Original Version:
Chemical Engineering Communications, Vol. 192, no. 1 (2002-06-17).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

University of South Florida
Karst Information Portal

Postcard Information



Download Options


No images or PDF downloads are available for this resource.

Cite this item close


Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.


Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.


Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.


Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.