Home Is Where the Hearth Is: Anthracological and Microstratigraphic Analyses of Pleistocene and Holocene Combustion Features, Riwi Cave (Kimberley, Western Australia)


previous item | next item

Citation
Home Is Where the Hearth Is: Anthracological and Microstratigraphic Analyses of Pleistocene and Holocene Combustion Features, Riwi Cave (Kimberley, Western Australia)

Material Information

Title:
Home Is Where the Hearth Is: Anthracological and Microstratigraphic Analyses of Pleistocene and Holocene Combustion Features, Riwi Cave (Kimberley, Western Australia)
Series Title:
Journal of Archaeological Method and Theory
Creator:
Whitau, Rose
Vannieuwenhuyse, Dorcas
Dotte-Sarout, Emilie
Balme, Jane
O’Connor, Sue
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Hearths ( local )
Combustion Features ( local )
Anthracology ( local )
Micromorphology ( local )
Fuel Wood Management ( local )
Australian Archaeology ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
The manipulation of fire is a technological act. The identification of the archaeological signatures of the controlled use of fire has important implications not only for the estimations of the origins and functions of the first fireplaces but also for our understanding of prehistoric technological development and resource use. At Riwi (Kimberley region, Western Australia), excavations over two field seasons have revealed a discontinuous occupation sequence over the past 45 ka, showing numerous, different combustion features interspersed within the deposit. Anthracological and micromorphological investigations at Riwi Cave indicate that the combustion features at the site can be categorised into three types: flat combustion features (type A), dug combustion features (type B) and thick accumulations of mixed combustion residues (type C). These provide evidence for two kinds of combustion practice: (i) fires lit directly on the ground and most likely not re-used and (ii) ground ovens, the latter appearing some 10,000 years after the first evidence for occupation of the site. A comparison of the wood species identified within these combustion features with those from equivalent scattered context levels, enables an exploration of the potential factors influencing wood selection and fire use through time at the site. A detailed understanding of the relationship between wood charcoal remains and archaeological context yields significant information on changes to environmental context and site occupation patterns over time.
Original Version:
Journal of Archaeological Method and Theory, Vol. 25 (2017-10-26).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This item is licensed with the Creative Commons Attribution License. This license lets others distribute, remix, tweak, and build upon this work, even commercially, as long as they credit the author for the original creation.
Resource Identifier:
K26-05080 ( USFLDC: LOCAL DOI )
k26.5080 ( USFLDC: LOCAL Handle )

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

HomeIsWheretheHearthIs:Anthracological andMicrostratigraphicAnalysesofPleistocene andHoloceneCombustionFeatures,RiwiCave (Kimberley,WesternAustralia)RoseWhitau1 &DorcasVannieuwenhuyse2&EmilieDotte-Sarout2,3&JaneBalme2&SueO ’ Connor1Publishedonline:26October2017 # TheAuthor(s)2017.ThisarticleisanopenaccesspublicationAbstract Themanipulationoffireisatechnologicalact.Theidentificationofthe archaeologicalsignaturesofthecontrolleduseoffirehasimportantimplicationsnot onlyfortheestimationsoftheoriginsandfunctionsofthefirstfireplacesbutalsofor ourunderstandingofprehistorictechnologicaldevelopmentandresourceuse.AtRiwi (Kimberleyregion,WesternAustralia),excavationsovertwofieldseasonshaverevealedadiscontinuousoccupationsequenceoverthepast45ka,showingnumerous, differentcombustionfeaturesinterspersedwithinthedeposit.Anthracologicaland micromorphologicalinvestigationsatRiwiCaveindicatethatthecombustionfeatures atthesitecanbecategorisedintothreetypes:flatcombustionfeatures(typeA),dug combustionfeatures(typeB)andthickaccumulationsofmixedcombustionresidues (typeC).Theseprovideevidencefortwokindsofcombustionpractice:(i)fireslit directlyonthegroundandmostlikelynotre-usedand(ii)groundovens,thelatter appearingsome10,000yearsafterthefirstevidenceforoccupationofthesite.A comparisonofthewoodspeciesidentifiedwithinthesecombustionfeatureswiththose fromequivalentscatteredcontextlevels,enablesanexplorationofthepotentialfactors influencingwoodselectionandfireusethroughtimeatthesite.AdetailedJArchaeolMethodTheory(2018)25:739 – 776 https://doi.org/10.1007/s10816-017-9354-y Electronicsupplementarymaterial Theonlineversionofthisarticle( https://doi.org/10.1007/s10816-0179354-y )containssupplementarymaterial,whichisavailabletoauthorizedusers.* RoseWhitau rose.whitau@anu.edu.au1ArchaeologyandNaturalHistory,SchoolofCultureHistoryandLanguage,CollegeofAsiaand thePacific,AustralianNationalUniversity,Canberra,Australia2ArchaeologyM257,UniversityofWesternAustralia,35StirlingHighway,Crawley, WA6009,Australia3SchoolofArchaeologyandAnthropology,CollegeofSocialSciences,AustralianNational University,Canberra,Australia

PAGE 2

understandingoftherelationshipbetweenwoodcharcoalremainsandarchaeological contextyieldssignificantinformationonchangestoenvironmentalcontextandsite occupationpatternsovertime. Keywords Hearths . Combustionfeatures . Anthracology . Micromorphology . Fuel woodmanagement . AustralianarchaeologyIntroductionAnessentialcomponentofthehunter-gatherertool-kit,fireisasourceoflight,warmth, protectionandaninstrumentforcooking,manufacturingequipmentandalteringthe environment.TheoriginsandfunctionsofthefirstfireplaceshaveimportantimplicationsforhomininevolutionandformakeydebateinPalaeolithicarchaeology( e.g. Alperson-AfilandGoren-Inbar 2010 ;deLumley 2006 ;Goudsblom 1986 ;Gowlett 2006 ;GowlettandWrangham 2013 ;James etal. 1989 ;RoebroeksandVilla 2011 ; Sandgathe etal. 2011 ;Wrangham 2009 ),withthefirsthabitual,controlledusesoffire linkedtoincreasesinbrainsizeandcognition(Brain 1981 ;Gowlett2006 ;Pruetzand LaDuke 2010 ;Rolland 2004 ;Wrangham 2009 )andthecolonisationofthenorthern latitudes(Brace etal. 1987 ;Gowlett2006 ;Oakley 1956 ;Preece etal. 2006 ;Rolland 2004 ;Stratus 1989 ;Weiner etal. 1998 ;Wrangham etal. 1999 ).Evidenceforanthropogenicfirecanbecontextuallyvariableand,inthecaseoftheearliestexamples, highlycontentious( e.g. Berna etal. 2012 ;forarecentreviewontheevidenceofhuman useandcontroloffire,seeGoldberg etal. 2017 ;Stahlschmidt etal. 2015 ,pp.181 – 183).Themostunambiguoussignatureforthehabitual,controlleduseoffireisthe structuredhearth,withtheearliestevidencefoundinQesemCaveinIsrael,dated approximatelyto400ka(Karkanas etal. 2007 ;Shahack-Gross etal. 2014 ). Theidentificationofthearchaeologicalsignaturesofhearth-buildingprocesseshas importantimplicationsnotonlyfortheestimationofthefirstcontrolledusesoffirebut alsoforunderstandingofprehistorictechnologicaldevelopmentandresourceuse.A suiteoftechniquesforboththemacro-andmicro-scaleanalysesofcombustion structuresarecurrentlyemployed,rangingfromthe insitu descriptionofhearth structures( e.g. MetcalfeandHeath 1990 ;Solé etal. 2013 ;VaqueroandPastó 2001 ), tothephysicalandchemicalanalysisofcharredcomponentsandsedimentswiththe applicationofgeophysical( e.g. Barbetti 1986 ;Bellomo 1991 , 1993 ),geochemical( e.g. Karkanas etal. 2002 ;RudnerandSumegi 2002 ),micromorphological( e.g. Mallol etal. 2013a ;Mentzer 2014 ;Schiegl etal. 2004 ;Wattez 1992 ; cf. reviewinAldeias 2017 )and anthracologicalanalyses( e.g. Beauclair etal. 2009 ;HenryandThéry-Parisot 2014 ; Scheel-Ybert etal. 2014 ;Vidal-Matutano 2016 ).Thestudypresentedinthispaper combinesthelattertwoapproaches,anthracologyandmicromorphology,toexplore buildingprocessesofhearthsfromanAustralianIndigenousarchaeologicalcontext. Microstratigraphicinvestigationsofcombustionfeaturescanhelpdocumenttheanthropogenicactivitiesassociatedwiththeirformationandalsoassesstheirdegreeof preservationoralteration(Mallol etal. 2013a;Mentzer 2014;Wattez 1992),byidentifyingtheircomponents(Estévez etal. 2014 ;March etal. 2014;Mentzer 2014;Stiner etal. 1995 ;Wattez 1988;Weiner etal. 1995),decipheringwhethertheyareintactordisturbed (Goldberg etal. 2009;Mallol etal. 2013a;Mentzer 2014 ;MillerandSievers 2012;Miller 740 Whitauetal.

PAGE 3

etal. 2010),documentinghowtheyhaveaffectedthesubstrate(Aldeias etal. 2016;Canti andLinford 2000;Malloletal. 2013b)andtowhatextenttheyhavebeenaffectedbypostdepositionalprocesses(Karkanas 2010;Karkanas etal. 2000;Karkanas etal. 2002; Mentzer 2014 ).Soilmorphologyexperimentsandethnoarchaeologicalinvestigations haveidentifiedvariouscharacteristicsofcombustionfeatures(Courty etal. 1989 ; Macphail etal. 2004;Mallol etal. 2007;Wattez 1992;Miller etal. 2013)thathavebeen appliedtoarchaeologicalcontexts.Theseincludedistinguishingsinglefrommultiphase hearthuse(Meignen etal. 1989, 2007),discriminatinghearthsfromsecondaryashdumps (Schiegl etal. 2003)anddetectingburnedstablelayers(Macphail etal. 2004). Anthracologicalinvestigationsofwoodcharcoalassemblagesfollowthepremise thathearthfeaturesandconcentrationsofdensecharcoalareepisodicarchaeological contexts.Theyaretheprimaryrefuseofthelastfewfiringevents,whereasdispersed woodcharcoalfromscatteredcontextsaresecondaryrefuse,potentiallyaccruedovera moreprotractedperiodoftime(AsoutiandAustin 2005 ;Byrne etal. 2013 ;Chabal 1990 , 1992 ;Chabal etal. 1999 ;Dotte-Sarout etal. 2015 ;Théry-Parisot etal. 2010 ). Wherewoodcharcoalanalysesareemployedforpalaeoenvironmentalreconstruction, hearthsandconcentratedcharcoalfeaturesmustbeavoided,andscatteredcharcoal fromoccupationcontextsmustbeexaminedinordertorepresenttheaccumulationof multiplefuelwoodcollectionevents,sothatmoreofthesite ’ ssurroundingenvironmentwillberepresented(Badal-García etal. 2012 ;Chabal etal. 1999 ;Dufraisse 2012 , 2014 ;Théry-Parisot etal. 2010 ;Scheel-Ybert 2002 ).Concentratedfeatures,suchas charcoallensesandhearths,shouldbeanalysedinconjunctionwithscatteredcontexts toteaseouttheculturalfactorsthatinfluencethecreationofacharcoalassemblageata site(AsoutiandAustin 2005 ;Byrne etal. 2013 ;Théry-Parisot et al. 2010 ).However, inspiteofthispremisewhichisessentialtothediscipline,veryfewanthracological studieshaveexplicitlyemployedmicro-scaletechniquestodefinethecombustion contextofasiteinordertounderstandcombustionprocessesbetter( e.g. Allué etal. 2017 ;Damblon etal. 1996 ;DamblonandHaesaerts 2002 ;Vidal-Matutano 2016 ). IntheAustralianarchaeologicalcontext,variousgeoarchaeologicalandarchaeologicalanalyseshaveexploredtheformationandpost-depositionalalterationsofhearth featuresatopensites,particularlyatSturtNationalParkinaridwesternNewSouthWales (Fig. 1 ;FanningandHoldaway 2001 ;Fanning etal. 2008 , 2009 ;Holdaway etal. 2017 ) andOlympicDaminnortheasternSouthAustralia(Fig. 1 ;Sullivan etal. 2012 ;Sullivan andHughes 2013 ).AnalysisofsedimentaryprocesseswithinAustralianrockshelters hasconcentratedlargelyonpreservationpotential(Ward 2004 ;WardandLarcombe 2003 ;Ward etal. 2006 )andtheverticalmovementofartefacts(AllenandO ’ Connell 2003 ;Bird etal. 2002 ;Hiscock 1985 , 1990 ).Withtheexceptionofmicromorphological analysesconductedatCarpentersGap1rockshelter(Fig. 1 ;Vannieuwenhuyse 2016 ; Vannieuwenhuyse etal. 2017 ),whichrevealedthepresenceofcombustionfeatures ’ rake-outzonesintheLatePleistoceneandHolocenearchaeologicallevels,fewattempts havebeenmadeinAustralianarchaeologytounderstandhowfireplaceswerebuilt, maintainedandusedbyIndigenoushunter-gathererpopulations.Similarly,veryfew anthracologicalinvestigationshavebeenconductedinAustraliancontexts,althoughthe numberofstatisticallyviableanalysesisstartingtoimprove(seeByrne etal. 2013 ; Carah 2010 ;Dotte-Sarout etal. 2015 ;King 2015 ;Whitau etal. 2016a ). Inthispaper,wepresenttheresultsfromcombinedanthracologicalandmicromorphologicalanalysesofcombustionfeaturesatRiwiCaveinthesouthernKimberley HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 741

PAGE 4

regionofnorthernWesternAustralia.AtRiwi,excavationshaverevealedadiscontinuousoccupationsequenceoverthepast45kashowingnumerousdifferentcombustion featuresinterspersedwithinthedeposit(Balme 2000 ;Vannieuwenhuyse 2016 ;Whitau etal. 2016a ;Wood etal. 2016 ).Thissequencerepresentsanexceptionalopportunityto undertakeacombinedanddetailedgeo-anthracologicalanalysisinordertoexplorethe depositionalandpost-depositionalfactorsthathaveaffectedthecreationandpreservationofhearths.Weproposeatypologyofthesefeaturesbasedontheirsedimentologicalandanthracologicalcharacteristics.Thewoodspeciesidentifiedwithinthehearths arecomparedwiththespectrumofcharcoalidentifiedfromcontemporaneousscattered contexts,whicharemorerepresentativeofthebroadvegetationchangesinthevicinity ofthesite(seeanthracologicalanalysisinWhitau etal. 2016a ).Thecombined anthracologicalandmicromorphologicalapproachesenableaninvestigationofthe possiblefactorsinfluencingwoodselection,fire-useanddeep-timecombustionfeatures relatedpracticesinanAustralianarchaeologicalcontext. SiteDescription,ContextandAntiquity RiwiCaveislocatedinthesouthernKimberleyregionofWesternAustralia(Fig. 1 ), withinthetraditionallandsoftheIndigenousGooniyandipeople,onthenorthernedge oftheGreatSandyDesert.LocatedintheSouthLawfordRangeandformedwithin DevonianPillaraandSadlerlimestonefacies(Playford etal. 2009 ,p.251),thecaveis situatedwithinavalleyenclosedbylow-rangeoutcrops,throughwhichanephemeral creekflowsduringthewetseason.Receivingasub-tropicaltosemi-aridclimatewithin Fig.1 NorthernWesternAustraliawithinsetofAustraliaandsitesmentionedinthetext(CAD:CartoGIS, AustralianNationalUniversity) 742 Whitauetal.

PAGE 5

the500-mmisohyetoftheAustralianSummerMonsoon(BureauofMeteorology 2015 ),theskeletalsoilsoftheRiwivalleysupportalowtreesteppe:hummock grassland( Triodiabitextura )withscatteredbloodwood( Corymbiadicromophloia/ Corymbiaopaca )andsnappygum( Eucalyptusbrevifolia ).Avarietyofdryrainforest associatedtaxa,including Celtisstrychnoides , Dodonaeapolyzyga and Flueggea virosa growalongthelimestonerangeandoutliers(Whitau etal. 2016a ).Thecave iscomposedoftwochambers,andachannelrunningthroughthenorth-westsideofthe frontchamber,whereayellowballflowertree( Mallotusnesophilus )grows,signifies watercirculationinthecaveduringthewetseason(forsitereviewandplan,see Vannieuwenhuyse 2016 ;Wood etal. 2016 ;Whitau etal. 2016a ).Vestigialevidenceof pasthumanoccupationincludesrockartonthecavewallsandlithicartefactsscattered acrossthefloorofthecave ’ sentrance. RiwiCavewasfirstexcavatedin1999(Balme 2000 ).In2013,theoriginal1m2test pit(square1)wasemptiedandtheexcavationareaexpanded,withtheadditionof 2×1m2testpitsinsidethecave(squares3and4)andone1m2testpitattheentranceof thecave(square5).Allsquaresweretakentobedrockin50cmquadrantsinarbitrary 2cmunits,reachinganapproximatemaximumdepthof115cminsquares1,3and4 (Figs. 2 and 3 ).Withtheexceptionofcertainfeatures,whichwereremovedseparately, andbulksedimentsamples,whichwerecollectedforeachexcavationunit,allexcavated materialsweresievedthoughnested5and1.5mmscreens.BecausetheHoloceneunits weredesiccated,flotationwasavoided.Adetaileddescriptionofboththecaveandthe excavationspecificscanbefoundinWhitau etal. ( 2016a )andWood etal. ( 2016 ). Apreciseradiocarbonchronology,coupledw ithadetailedopticallystimulatedluminescence(OSL)chronology,providesoneofthemostaccuratelydatedarchaeologicalsequencesinAustralia(Wood etal. 2016).Thetwochronologiesarelargelyconsistent throughoutthesequence,bo thidentifyearliestoccupationofthesitearound46.4 – 44.6ka Fig.2 Riwisquare3sectionandphotosshowingtheprovenienceofcombustionfeaturesandscattered charcoalassemblagesusedfortheanthracologicalanalysis.RefertotextandFig. 4 forcombustionfeatures typology(photosandCAD:DorcasVannieuwenhuyse) HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 743

PAGE 6

calBP(95.4%probabilityrange)atthetop ofSU12,andbothconfirmthepresenceof severalchrono-stratigraphichiatusesintheupperlevelsofthesequence(Vannieuwenhuyse 2016;Wood etal. 2016).Theradiocarbonchronologywasmainlybasedoncharcoal sampledfromthenumerouscombustionfeature sinterspersedwithintheRiwiarchaeological levels(Figs. 2 and 3 ).Detailedinformationaboutthepro venanceandstratigraphiccontextof thedatedcharcoalwasgatheredbythegeoarchaeologicalobservationsundertakeninthe field.Theanthracologicalanalysisprovidedbackgroundinformationoncharcoalwood speciesandthecontextofcharcoalproduction(seeTable 1 ).Thesedataareusuallylimited ornotavailableintheconstructionofradiocarb onchronologiesinAustralianarchaeological contexts(Ward etal. 2016 ),whichareoftenonlybasedontheageofcharcoalfragments withlittlereferencetothecontextofthatcharcoal Â’ sproduction(Wood 2015 ;Wood etal. 2016 ).Thelimitedreportingofthe sedataisinspiteofrecentworkconductedelsewherethat characterisesthespatialrelationshipbetweencharcoalandcharredseedsselectedfor radiocarbonanalysisandassociatedarchaeologicalmaterialsandfeatures(Asscher etal. 2015 ;Boaretto 2015 ;Boaretto etal. 2009 ;Rebollo etal. 2011 ;Toffolo etal. 2012 ).MaterialsandMethodsSampling TheRiwianthracologicalandmicromorphologicalsampleswerecollectedfromthe July2013excavationsandfromthearchaeologicalmaterialrecoveredandsortedinthe Fig.3 Riwisquare1sectionsandphotosshowingcombustionfeaturessampledforthemicromorphological analysis.RefertotextandFig. 4 forcombustionfeaturestypology(photosandCAD:Dorcas Vannieuwenhuyse) 744 Whitauetal.

PAGE 7

Table1 CombustionfeaturesfromRiwisquares1,3and4analysedforthestudyFeatures — details Radiocarbondatesassociated FeatureFeaturedescriptionTypeSUSQXU/ Quad Microm sample Lab.codeSampling context WoodspeciesRadiocarbon age Modelledcalibrated agerange2 F1-CBrowngreylayer(mixofvery finesandwithabundant leaflitter,charcoalandash) C132B,3CSANU-43337Fromsieve Grevillea/Hakea sp.670±20655– 555 F2-CGrey-brownashylayerwith charcoalandfewleaves C236C SANU-39505Fromsieve Corymbia sp.6385±30N/D 1D R509;R508top D-AMS004061Fromfeature(wall)Notdetermined6250±357245 – 7010 F3-AGreytoblackfinetoveryfine ashwithabundantcharcoal inclusions A334D,5D S-ANU38226Fromfeature (excavation) Corymbia sp.16,930±5020,620 – 20,040 SANU-38814Fromfeature (excavation) Corymbia sp.16,850±10020,620 – 20,040 F4-BCompactwhiteashwith abundantcharcoal inclusionsinconcavepit B636B S-ANU35920Fromfeature(wall) Corymbia sp.30,110±20034,380 – 33,720 D-AMS004070Fromfeature(wall)Notdetermined30,154±14134,370 – 33,780 F5-BHearthwithpackedchunksof charcoalinlargeconcave pit,interspacesfilledby ashes,verysharpboundary withSU7 B638D SANU-39506Fromfeature(wall) Corymbia sp.29,050±18034,040 – 33,170 F6-BHearthwithpackedchunksof charcoalinlargeconcave pit,interspacesfilledby ashes,verysharpboundary withSU7 B61D R508bottom, R507top S-ANU35907Fromfeature(wall) Corymbia sp.29,790±19034,180 – 33,580 F7-BCompactashwithahigh densityofburntboneand charcoalinthesoutheast corner B7310D BetweenendofSU7 (36,040 – 34,130) andstartofSU6 (34,920– 33,850) F8-AAshysedimentwithcharcoal inclusions,diffuse boundarywithburntred sediment A7311D BetweenendofSU7 (36,040 – 34,130) andstartofSU6 (34,920– 33,85 0) F9-A A7313A HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 745

PAGE 8

Table1 (continued)Features — details Radiocarbondatesassociated FeatureFeaturedescriptionTypeSUSQXU/ Quad Microm sample Lab.codeSampling context WoodspeciesRadiocarbon age Modelledcalibrated agerange2 Smallhearthwithburnt sand,ashandabundant charcoal BetweenendofSU8 (38,130 – 36,010 andstartofSU7 (37,670– 35,590 37,934 – 35,807) F10-ABlack,compact,fine sediment,withgypsum nodules(2– 5mm) A9/10316B,17B S-ANU35919Fromfeature(wall)Unidentifiable34,000±31038,850 – 37,740 F11-ACompactdarksediment withcharcoalinclusions A10/11323B BetweenendofSU11 (45,080 – 42,110) andstartofSU10 (44,060– 40,490) 1 R504 F12-AWell-definedblack,compact sedimentwithcharcoal inclusionsandgypsum nodules(2– 5mm) A10/11323A BetweenendofSU11 (41,692 – 38,671) andstartofSU10 (40,018– 37,932) F13-AWell-definedblack,compact sedimentwithcharcoal inclusionsandgypsum nodules(2– 5mm) A11325B WithinSU11, between45,420 – 43,900and45,080 – 42,110 1 R503 ANUA-13005Fromlevel (excavation) Notdetermined41,300±102045,180 – 43,410 F14-A A11/121 R502 SANU-35909Fromfeature(wall) Corymbia sp. (typeR01) 41,590±76045,900 – 44,470Ashortdescriptionisgivenforeachfeaturewithassociatedcombustionfe aturestypes,stratigraph iccontext(SU)andrelatedexcavationunits(XU)fromwhereanthracological(A)and micromorphological(M)sampleswerecollected.Whenavailable,radiocarbondatesdirectlyassociatedwiththefeatureorsamestratigraphicleve laregiven.Radiocarbondatesare mentionedcalibratedagainstSHCal13(Hogg etal. 2013)inOxCalv.4.2(BronkRamsey, 2009)followingradiocarbonchronologydoneforthesitebyWood etal. ( 2016) 746 Whitauetal.

PAGE 9

laboratory.Twelvecombustionfeatur esfromRiwisquare3wereselectedfor anthracologicalanalysis(Fig. 2 )inconjunctionwiththeanalysisofscatteredcontexts fromsquares3and4presentedinWhitau etal. ( 2016a ).Sixmicromorphological samplestargetingcombustionfeatureswereextractedfromtheeasternsectionsof square1(Fig. 3 ).Theproximityofthesamplingandthesimilaritiesintypeof combustionfeaturesobservedbetweenthetwosquaresallowsthecomparisonand incorporationofbothanthracologicalandmicromorphologicalresultstobuildour analysis.Table 1 presentsanoverviewofthedifferentcombustionfeaturesand scatteredcharcoalassemblagesanalysedforthestudy,theirstratigraphicand samplingcontext,theirtypologyandtheirantiquity.Radiocarbonagesfollowthose ofWood etal. ( 2016 )andaregivenasmodelledcalibratedvaluescalculatedusing OxCal4.2,usingSHCal13orMarine13calibrationcurves(BronkRamsey 2013 ; RamseyandLee 2013 ;Ramsey etal. 2013 ;Reimer etal. 2013 ). MicrostratigraphicMethods Orientedmicromorphologicalsedimentsampleswereextractedusingplasterbandages (GoldbergandMacphail 2003 , 2005 ),whichwerethenpreparedfollowingthestandard fabricationprocessesforsoilthinsections(CamutiandMcGuire 1999 ;Courty etal. 1989 ;FitzPatrick 1984).Resinimpregnationofthesemonolithswasundertakenatthe geotechnicalfacilitiesoftheSchoolofEarthandEnvironmentattheUniversityof WesternAustralia.Smallpre-cutchips(54×63×10mm)weresenttoSpectrum Petrographics(Vancouver,Washington,USA)forthinsectioning.Thinsectionswere digitallyscannedforarchivalandpublicationpurposes(Arpin etal. 2002 ;DeKeyser 1999 ).ThinsectionobservationsandmicrophotographywerecarriedoutusingaNikon polarisingpetrographicmicroscopeintheSchoolofEarthandEnvironmentatthe UniversityofWesternAustralia.Observationsweremadeunderdifferentmagnifications (×10,×25,×50,×100,×500)usingbothplanepolarised(PPL)andcrosspolarisedlight (XPL).DescriptionsfollowtheterminologystandardisedbyStoops etal. ( 2010 ).Identificationandinterpretationofcomponentsandpedofeaturesarebasedontheavailable micromorphologyliterature(primarilyBullock etal. 1985 ;Courty etal. 1989;Goldberg andMacphail 2005;Stoops etal. 2010 )andcasestudiesascitedinthetext. AnthracologicalMethods AllanthracologicalanalysiswasconductedattheDepartmentofArchaeologyand NaturalHistoryattheAustralianNationalUniversity.Charcoalwasidentifiedby snappingfragmentsalongthetransverse,radialandtangentiallongitudinalsections, withtheaidofascalpelwherenecessary(followingLeneyandCasteel 1975 ).An OlympusBH-2reflectedlightfield/darkfieldmicroscopewasusedtoexamineexposed sectionsatmagnificationsof×20 – 500.Raretypesandarchetypalexamplesoftaxa wereselectedforfurtherobservationandimagingwithaJEOLJCM-6000Neoscope scanningelectronmicroscope(SEM).FollowingChabal( 1990 , 1992 )andThéryParisot etal. ( 2010 ),quantificationwasconductedbycount,ratherthanweight.All ofthecharcoalfragmentsover2mmwereexaminedfromeachfeature(seefeaturelist inTable 1 ),exceptF1-CandF2-C,whichareRiwi ’ stwoHolocenestratigraphicunits (SU1andSU2inWhitau etal. 2016a ). F1-CandF2-Carecomposedofan HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 747

PAGE 10

accumulationofcombustionfeaturesmixedwithothernaturalinputs,whereinfeatures couldnotbesampledseparatelyduetotheirthinmorphologyandthepalimpsestnature oftheirdeposition.AlloftheexcavatedsedimentfromF1-CandF2-Cwascollected duringexcavationwithinsquares3and4,withallofthe>1.5mmcharcoalfragments transportedtothelaboratoryforanthracologicalanalysis.Aminimumof300identifiablefragmentswassampledfortheHoloceneunits,andariffle-boxwasusedtosplit thesamplestoensureanunbiasedcoverageofsizedifferentiation. FollowingWhitau etal. ( 2016a),charcoalfragmentsaredescribedasindeterminate whentype-levelidentificationcannotbepos itivelyassignedandindeterminablewhere fragmentscannotbepositivelyidentifiedduetodegradation.Archaeologicalmaterialwas comparedwiththereferencematerialhousedattheAustralianNationalUniversitydescribedbyWhitau etal. ( 2016a).WoodidentificationkeysincludingHope( 1998),Ilic ( 1991)andtwoonlinedatabases:InsideWood( http://insidewood.lib.ncsu.edu/ )andthe UniversityofQueenslandOnlineArchaeologyCollections( http://uqarchaeologyreference. metadata.net/archaeobotany/list )werealsoemployedtoaididentification.ResultsBasedonexcavation,sedimentandanthracologicalobservations,combustionfeaturesinthe Riwisequencehavebeengroupedintothreedifferenttypes(Fig. 4 ;Table 1 ):flatcombustionfeatures(typeA),dugcombustionfeatures(typeB)andpalimpsestofcombustion features(typeC).Thefeaturesanalysedinthisstudyarenumberedfromtoptobottom,with asuffixforthecombustionfeaturetype.Forexample,F1-Cisthehighestfeatureinthe sequenceandatypeCcombustionfeature.Thesedimentaryandanthracologicalcharacteristicsofeachtypeofcombustionfeaturearedetailedandcomparedinthefollowing sections.Eachtype,withtheexceptionofF3-A,appearstobefoundinsubsequentchronostratigraphicallevels,asdemonstratedbythesite Â’ ssequence(Figs. 2 and 3 ). DescriptionofCombustionFeaturesinRiwiSequence InterdisciplinaryanalysesconductedonthesitehavedemonstratedthatRiwiwasoccupied onaregularbasisfrom45kauptotheEuropeancontactperiod,despiteavisibly Fig.4 CombustionfeaturetypesfoundinRiwi(modifiedfromVannieuwenhuyse 2016 ) 748 Whitauetal.

PAGE 11

discontinuousstratigraphicrecord(Vannieuwenhuyse 2016;Wood etal. 2016).Thecombustionfeaturescomprisethemainnon-materialevidenceforanthropogenicinputswithin theRiwisequence,andassuch,provideexceptionalinsightsintopastbehavioursovertime. ThePleistocenelayers(SU12toSU5,fromthebottomtoapproximately20cmbelow thesurface)haveanexcellentintegrityandrevealthepresenceofnumerousflat combustionfeatures(typeA;F8toF14)appearingatthetopofSU12,approximately 40cmfromthebedrock(Figs. 2 and 3 ).Severaldugcombustionfeatures(typeB;F4to F7)arevisibleatthetopofthePleistocenesequenceandatthebottomoftheHolocene layers.Inmostoftheobservedsections,asharpdisconformityplacesHoloceneash-rich deposit(typeC;F1andF2)directlyabovetheorangePleistocenelayersdatedto34 – 31ka.However,discreteepisodesofsedimentationhavebeenpreservedinsomeplaces, inparticular,SU3,whichincludescharcoalandhearths(F3-A)datedtotheLastGlacial Maximum(LGM,twocharcoaldatedat20620 – 20040calBP,seeTable 1 )andisonly visibleinthesouth-eastcornerofsquare3(Fig. 2 ,seealsofiguresinVannieuwenhuyse 2016 ;Wood etal. 2016 ).TheHolocenelayers(F1-CandF2-C)aredatedto7kaand 0.8 – 0.7kaandaremainlycomposedofanash-richaccumulation(typeC)thatencompassescompactedcombustionresidues(ash,charcoal)andothervegetalorganicremains.Preservationoforganicmaterial via desiccationwithintheHolocenelayersis exceptionalandincludesseeds,fruitfragments,paperbarkfragments( Melaleuca spp. barkthathadandstillhasamyriadofusesacrossAboriginalgroupsofAustralia, e.g. Wynjorrotj etal. 2005 ;Yunupingu etal. 1995 ),woodshavingsandtwowoodenartefact fragments(Dilkes-Hall 2014 ;Langley etal. 2016 ;Whitau etal. 2016b ). MicrostratigraphicResults TheRiwinaturalsequenceiscomposedofamixofgeogenic,botanicalandanimalbone fragmentsinvariousproportions(detailedresultsoftheRiwiarchaeo-stratigraphical sequencegeoarchaeologicalanalysisandafulldescriptionofthemicromorphological thinsectionsanalysedcanbefoundinVannieuwenhuyse 2016 ).WhilethePleistocene layersarepredominantlycomposedofgeogenicparticles,givingthesedimentastrong orangehuewithinwhichcombustionfeaturesa reeasilydistinguishable,theHolocene depositisgreybecauseofthepredominantproportionofcombustedbotanicalresidues (Figs. 2 and 3 ).Acrossthefivecombustionfeaturessampledformicromorphology(three typeA:F11-A,F13-A,F14-A;onetypeB:F6-B;andonetypeC:F2-C,seeTable 1 ;Fig. 3 ),themaincombustionby-productsobservedarevegetalresidues(phytoliths,ash,seeds, woodcharcoal)andsomeanimalbonefragments(Fig. 5 ),observedatvariousburning stages(partiallyburnt,charred,turnedtoash)andinvaryingstatesofpreservation (dependingonsyn-andpost-depositionalmodifications, e.g. decomposition,alterations). AnthracologicalResults Acrossthefeaturessampled(seventypeA:F3-A,F8-A,F9-A,F10-A,F11-A,F12-A,F13A;threetypeB:F4-B,F5-B,F7-B;andtwotypeC:F1-C,F2-C,seeTable 1 ;Fig. 2 ),atotal of2824charcoalfragmentswereanalysed,1861ofwhichwerepositivelyidentifiedto varyingtaxonomicranks.Table 2 liststhepositivelyidentifie dtaxa,withtheirrelative frequenciesforeachfeatureexpressedintermsofabsolutefragmentcountsandthe percentagesofthetotalnumberoffragmentsanalysed.Atotalof19taxa,including HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 749

PAGE 12

twofamilylevelidentifications(Lamiac eaesp.andMyrtaceaesp.),weredetermined fromninefamilygroups.Afulldescriptionofthearchaeologicalcharcoaltypesis presentedinWhitau etal. ( 2016a,Appendix1 ).Resultsarediscussedinmoredetail in ‘ TypesofCombustionFeatures — MicromorphologicalandAnthracological Characteristics ’ . SaturationcurvesarepresentedinFig. 6 ,whichplotthenumberofidentifiablecharcoal fragmentsagainstthenumberofidentifiabletaxaforeachfeature.Eachplateauindicates Fig.5 Microphotographsofcombustionby-productsobservedinRiwithinsections(reproducedfrom Vannieuwenhuyse 2016 ). a Burntbonedisplayingbrownishcolour(R515B,PPL,scale100 m); b inflorescencefragmentcharredbyheatofcombustionfeaturesandmicrocharcoalsmixedingeogenicsediments(F14A,thinsectionR502B,PPL,scale500 m); c , d charcoalfragmentsandashparticles,notetheashcalcitic crystal(bright)highinterferencecolours(F6-B,R507C,PPLandXPL,scale1000 m); e non-disturbedashes showingcolourvariationfromyellowishtogreyandthepresenceofphytolithsintheouterparts(F2-C, R509A,PPL,scales500and1000 m); f articulatedashparticleswithtypicalprismaticshapeathigh magnification(F2-C,R508B,XPL,scale100 m) 750 Whitauetal.

PAGE 13

Table2 AnthracologicalresultsfromRiwisquare3forcombustionfeaturestypesA,BandC,expressedinbothabsolutefragmentcountsandaspercentagesoft hetotalnumberof analysedfragmentsTypeContextEuphorbiaceaeFabaceae Lamiaceae Moraceae Myrtaceae Mallotus sp. Bauhinia sp. Erythrophleum sp. Vachellia sp. Vitex sp. Lamiaceae sp. Ficus sp.type A Ficus sp.type B Ficus indeterminate Corymbia sp. Eucalyptus sp.typeA Absolutefragmentcounts CF1-C45 0 22 0266 13 8 0 16320 CF2-C6 4 5 6239 23 6 2 163 1 AF3-A1 1 6 2 61 2 3 0 4414 BF4-B3 7 21 3 92 7 4 0 13813 BF5-B1 6 26 7 10 0 0 0 15655 BF7-B0 6 22 2 04 1 0 0 16334 AF8-A003 000000 20 AF9-A0 2 92 28 38 0 0 0 12 7 AF10-A0 0 0 0 00 0 0 0 0 0 AF11-A000 000000 01 AF12-A0 0 0 0 00 0 0 0 0 3 AF13-A0 0 0 0 00 0 0 0 1 1 Proportionoftotalnumberofanalysedfragments CF1-C8.7 0.0 4.2 0.05.01.2 2.5 1.5 0.0 31.53.9 CF2-C1.5 1.0 1.2 1.55.62.2 5.6 1.5 0.5 39.70.2 AF3-A0.5 0.5 3.0 1.03.00.5 1.0 1.5 0.0 22.17.0 BF4-B0.7 1.6 4.8 0.72.10.5 1.6 0.9 0.0 31.43.0 BF5-B0.2 1.3 5.4 1.50.20.0 0.0 0.0 0.0 32.611.5 BF7-B0.0 1.3 4.6 0.40.00.8 0.2 0.0 0.0 34.07.1 AF8-A0.0 0.013.0 0.00.00.0 0.0 0.0 0.0 8.70.0 AF9-A0.0 0.939.8 12.11.33.5 0.0 0.0 0.0 5.23.0 AF10-A0.0 0.0 0.0 0.00.00.0 0.0 0.0 0.0 0.00.0 HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 751

PAGE 14

Table2 (continued)TypeContextEuphorbiaceaeFabaceae Lamiaceae Moraceae Myrtaceae Mallotus sp. Bauhinia sp. Erythrophleum sp. Vachellia sp. Vitex sp. Lamiaceae sp. Ficus sp.type A Ficus sp.type B Ficus indeterminate Corymbia sp. Eucalyptus sp.typeA AF11-A0.0 0.0 0.0 0.00.00.0 0.0 0.0 0.0 0.06.7 AF12-A0.0 0.0 0.0 0.00.00.0 0.0 0.0 0.0 0.027.3 AF13-A0.0 0.0 0.0 0.00.00.0 0.0 0.0 0.0 7.77.7 TypeMyrtaceae PhyllanthaceaeProteaceaeSimaroubaceaeUlmaceaeNumberof Identifiable Fragments IndeterminableTotalnumber ofanalysed fragments Eucaltptus sp.typeB Eucalyptus sp. indeterminate Melaleuca sp. Myrtaceae sp Fluegge a sp. Grevillea/ Hakea sp. Brucea sp. Celtis sp. Absolutefragmentcounts C1 5 18 0 34 2 7 3373 145 518 C1 1 22 1 27 0 5 23328 83 411 A1 0 0 0 3 0 17 0101 98 199 B1 3 7 0 22 0 10 10260 179 439 B18 11 25 3 2 0 3 3317 162 479 B19 20 8 5 4 0 16 5309 170 479 A00 0010006 1723 A0 2 2 1 0 0 0 1158 73 231 A00 0000000 66 A01 1000003 1215 A00 0100004 711 A00 0000002 1113 Proportionoftotalnumberofanalysedfragments C0.2 1.0 3.50.0 6.6 0.4 1.4 0.672.0 28.0 100 C0.2 0.2 5.40.2 6.6 0.0 1.2 5.679.8 20.2 100 752 Whitauetal.

PAGE 15

Table2 (continued)TypeMyrtaceae PhyllanthaceaeProtea ceaeSimaroubaceaeUlmaceaeNumberof Identifiable Fragments IndeterminableTotalnumber ofanalysed fragments Eucaltptus sp.typeB Eucalyptus sp. indeterminate Melaleuca sp. Myrtaceae sp Fluegge a sp. Grevillea / Hakea sp. Brucea sp. Celtis sp. A0.5 0.0 0.00.0 1.5 0.0 8.5 0.050.8 49.2 100 B0.2 0.7 1.60.0 5.0 0.0 2.3 2.359.2 40.8 100 B3.8 2.3 5.20.6 0.4 0.0 0.6 0.666.2 33.8 100 B4.0 4.2 1.71.0 0.8 0.0 3.3 1.064.5 35.5 100 A0.0 0.0 0.00.0 4.3 0.0 0.0 0.026.1 73.9 100 A0.0 0.9 0.90.4 0.0 0.0 0.0 0.468.4 31.6 100 A0.0 0.0 0.00.0 0.0 0.0 0.0 0.00.0 100.0 100 A0.0 6.7 6.70.0 0.0 0.0 0.0 0.020.0 80.0 100 A0.0 0.0 0.09.1 0.0 0.0 0.0 0.036.4 63.6 100 A0.0 0.0 0.00.0 0.0 0.0 0.0 0.015.4 84.6 100ResultsforF1-CandF2-C(SU1andSU2)arereproducedfromWhitau etal. ( 2016a ) HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 753

PAGE 16

thenumberoffragmentsthatneedtobeidentifiedinorderforthediversityofthe archaeologicalassemblagetobeappropriatelyrepresented(Byrne etal. 2013 ;Chabal etal. 1999 ;Dotte-Sarout etal. 2015 ;Scheel-Ybert 2002 ).Acrossthe12contextsanalysed, sevensaturationcurves(F1-C,F2-C,F4-B,F5-B,F7-B,F8-A,F9-A)reachplateaux, illustratingthatthesecontextsprovideviabler epresentationsoftheassemblagediversity. TheF3-A,F10-A,F11-A,F12-AandF13-Acurvesdonotstabilise.WhiletheF10-A, F11-A,F12-A,F13-A,SU11andSU12assemblagescompriseatotalof67identifiable fragmentsandareexcludedfrom ‘ FuelWoodManagement:ComparingConcentratedand ScatteredCharcoalContexts ’ ,theF3-Aassemblage,with101identifiablefragments,isof areasonablesize,almostreachingthemeanpla teaupointoftheotherviablesamplesizes, andiscautiouslyincludedincomp arisonswithscatteredcontexts. TypesofCombustionFeatures — MicromorphologicalandAnthracological Characteristics Thefollowingsectionsdescribethesedimentarycharacteristicsandwoodcharcoal assemblagesidentifiedforeachofthecombustionfeaturetypes. TypeaFlatCombustionFeatures(F3-A,F8-A,F9-A,F10-A,F11-A,F12-A,F13-A) AbundantthroughoutthePleistoceneunitsdatedfrom45to34ka(SU11toSU7),type Acombustionfeaturesareflatlensesthatshowacomplexlayering(Fig. 4 ).Four differentmicrofacieswereidentifiedintypeAcombustionfeatures(illustratedby Fig.6 SaturationcurvesforcombustionfeaturestypesAandB(CAD:CartoGIS,AustralianNationalUniversity) 754 Whitauetal.

PAGE 17

micromorphologicalobservationsundertakenforF12-AandF13-A,Fig. 7 ,seealso Appendix 1 formicromorphologicaldescriptionsofthemicrostratigraphicunitsand microfacies),withfrombottomtotop: & (1)Darkbrownlayer(concaveshapesvisibleinstratigraphy)composedofgeogenic sands,withahighproportionofmicrocharco alandcarbonisedvegetalparticles(Fig. 7 c). & (2)Orange-pinkishlayercomposedofgeogenicsandsandashparticles(Fig. 7 b). & (3)Layerwithcharcoalchunksembeddedwithinthegeogenicsands(Fig. 7 a). & (4)Whitishlayer(Fig. 7 c)mostlycomposedofashparticles(pseudomorphsofplant calciumoxalate)andphytolith sthatareoftenstillinanatomicconnection(articulated). WiththeexceptionofF3-AandF9-A,charcoalpreservationfromeachoftheanalysed typeAfeaturesisverypoor.ThefewcharcoalrecoveredfromF10-A,F11-A,F12-Aand F13-Aaresoftandrounded,withalloftheindeterminablefragmentsunabletobeexamined duetobrittleness,disintegratingtoashparticlesandprovidingnocleansections.Ofthe45 Fig.7 MicrofaciestypesinPleistocenetypeAflatcombustionfeatures(modifiedfromVannieuwenhuyse 2016).Left,detailedviewofflatcombustionfeaturesF13-AandF14-AinRiwisquare1easternsection showinglocationofmicromorphologicalsamples.Middle,scanofthinsectionsR502andR503with microstratigraphicunitsidentifiedineachthinsection,microphotoslocationandhearthmicrofaciestypes (M1toM4).Right,microphotographsoftypeAflatcombustionfeaturesmicrofaciestypes(numberingin referencetoFig. 4 andin-textdescription). a Toplayerwithcharcoalfragments(microfacies3)(F13-A,R503G, PPL,scale1000 m); b orange-pinkish(microfacies2)andwhitishlayers(microfacies4)(F14-A,R503A/B, PPL,scale1000 m); c darkcarbonisedorganic-richlayer(microfacies1)(F14-A,R502B,PPL,scale100 m) HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 755

PAGE 18

charcoalrecoveredfromacrossthesefourfeatures,only9wereidentifiable,predominantly Eucalyptus sp.typeA,andalloftheMyrtaceaefamily.Bycontrast,intermsofboth compositionandpreservation,theF8-Afeatureproducedsixidentifiablefragments,three wereidentified Erythrophleum sp.,two Corymbia sp.andone Flueggea sp.,whileelevenof theindeterminablefragmentsweretoobrittleandsixweretoovitrified. ThetwotypeAfeatureswhichproducedreasonableanthracologicalassemblagesareF9A( Ni=158)andF3-A( Ni=101).F9-A,whichislocatedatthebottomofSU7(Fig. 2 )isthe onlyRiwianthracologicalassemblagethatisnotdominatedbyMyrtaceae: Erythrophleum sp.(39.8%)dominateswithsubsidiary Vachellia sp.(12.1%), Corymbia sp.(5.2%)and Eucalyptus sp.(3.8%).F9-AisalsoanomalousinthatitistheonlyPleistoceneunitto produceanassemblagewithoneindividualtaxoncount( Erythrophleum sp., Ni=92)thatis higherthantheindeterminablecount(72fra gments)forthatunit.ObservedwithinSU3 — a stratigraphiclayerdatedfromtheLGMtiming(Table 1 )thatshowsevidenceofpostdepositionalbioturbation(Fig. 2 ) — F3-AistheyoungesttypeAfeatureanalysedandsits abovethetypeBcontextsdevelopedinthenextsection.Thedominanttaxonforthisunitis Corymbia sp.,withsubsidiary Brucea sp.and Eucalyptus sp.charcoal.Comprising8.5%of thetotalcharcoalexaminedwithintheF3-Aunit, Brucea sp.charcoalwereidentifiedherein theirhighestproportionoftheRiwianthracologicalassemblage. TypeBDugCombustionFeatures(F4-B,F5-B,F6-B,F7-B) Around34ka,typeBcombustionfeaturesareobservedinsection(Figs. 2 and 3 ). Thesedugfeaturessometimescutthroughtheflatcombustionfeaturesimmediately below,disturbingtheorientationofparticles(Fig. 8 b).TypeBcombustionfeatures containlargefragmentsofcharcoalembeddedwithinafinematrixofgeogenicsands and/orrandomorientedashparticles(Fig. 8 a). ThethreetypeBfeaturesselectedforwoodcharcoalanalysis(F4-B,F5-B,F7-B)each havearelativelylowpercentageofindeterm inablefragments,rangingfrom33.8%forF5Bto40.8%forF4-B. Corymbia sp.isthedominanttaxonacrossthethreetypeBfeatures, withsubsidiary Eucalyptus sp.and Erythrophleum sp.ThefeatureF4-B,whichhasthe lowestproportionof Eucalyptus sp.(3.9%)comparedwithF5-BandF7-B(17.6and 15.3%,respectively),alsohasahigherproportionof Flueggea sp.(5.0%)thantheseother typeBfeatures,aproportionwhichisnotduplicatedintheotherPleistocenecontexts. TypeCPalimpsestCombustionFeatures(F1-C,F2-C) TypeCfeaturesareonlypresentintheHolocenedepositsandareaccumulationscomposed mainlyofby-productsofcombustion(predominantlyashandcharcoal),alongwithamixof non-burntvegetalpartsandaminorproportionofgeogenicsands(Fig. 9 ).Thehighproportion ofcombustionresiduesgivestheHolocenedepositsitsgreycolour(Figs. 2 and 3 ).Undera microscope,themicrofaciesshowaverybrightcal citiccrystallicb-fabricasaresultofthehigh proportionofashparticles(pseudomorphsofplanttissues)(Fig. 9 b,d).Theseparticlesare foundbothinanatomicconnection(Fig. 9 c,d)anddisturbed(Fig. 9 a,b),whichindicatessome mixinginthislevel,resultingfrommaintenan ceactivitiessuchasreworking(cleaningrake-out ofhearthsbutalsohumanandanimaltramplingandturbation,seeFig. 4 ). Yieldingexceptionalpreservationoforganics,Riwi ’ stwoexcavatedHoloceneunits,F1CandF2-C,producedthelowestproportionsofindeterminablecharcoalofallanalysed 756 Whitauetal.

PAGE 19

contexts(28.0and20.2%,respectively).Dominatedby Corymbia sp.(39.7%),with subsidiary Flueggea sp.andotherdryrainforesttaxa,F2-Cisthemostdiverseunit anthracologically(14taxa).F1-CisbroadlysimilartoF2-C; Corymbia sp.(31.5%) dominateswithsubsidiary Mallotus sp.(8.7%)and Flueggea sp.(6.6%).Thehighproportionof Mallotus sp.isnotduplicatedelsewhereintheRiwianthracologicalrecord.Discussion:FireManagementatRiwiCaveTheBuildingProcessesofCombustionFeaturesandTheirHypothetical Functions TypeAFlatCombustionFeatures(F3-A,F8-A,F9-A,F10-A,F11-A,F12-A,F13-A) Themicromorphologicalevidencedemonstratesthattheflatcombustionfeaturesfound inthePleistocenelayerswereconstructedinthesameway,wherethefirewaslit Fig.8 MicrofaciestypesinPleistocenetypeBdugcombustionfeatures(modifiedfromVannieuwenhuyse 2016).Topleft,detailedviewofcombustionfeatureF6-BinRiwisquare1eastsectionshowinglocationof micromorphologicalsample.Bottomleft,scanofthinsectionR507showingthedifferentmicrostratigraphic unitsidentified.Right,microphotographsoftwodifferentmicrofaciesidentified. a Mixedcharcoalfragments, ashparticlesandgeogenicsands(R507C,PPL,scale100 m); b beddedorganicparticlesbelowthe combustionfeaturethatcouldindicatedigging,theparticlesbeingorientedinthesamedirectiondueto sloping(R507A,PPL,scale1000 m) HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 757

PAGE 20

directlyontothegroundsurface(Fig. 4 ).Theunderlyingsubstrateisaffectedbyheatin twoways.Thedarkcolouroftheconcavedarkbrownlayer(1)istheresultofthe carbonisationofvegetalorganicsalreadypresentinthegeogenicmatrix.Their carbonisationwasinducedbytheheatradiancefromthefirelitonthegroundsurface abovethesediments.Theorange-pinkishlayer(2)correspondstothesurfacewherethe firewaslitandwheretemperatureswerehighenoughtoinduceboththetotal combustionoforganicsalreadypresentinthesedimentandthetypicalreddeningof thesedimentresultingfromtheoxidationofironcomponents(Aldeias etal. 2016 ; CantiandLinford 2000 ).Incomparisonwithlayer1,thelighterhueoflayer2isalsoa resultofthepresenceofashfromthelayersabove. Thetopoflayers1and2aretheremnantsofa ‘ pastoccupationsurface ’ wherethe firewaslit(asformulatedbyMallol etal. 2013b ),wherepeoplewalkedandlivedinthe caveatacertaintimeinthepast.Thelayerwithcharcoal(3)correspondstothe combustionitselfandcontainsbigcharcoalfragmentsandcarbonisedorganics.Observationofthecharcoalsampledfortheanthracologyanalysisshowsthattheytendtobe roundedandbrittleinalloftheanalysedPleistocenetypeAflatcombustionfeatures (withtheexceptionofthetwoyoungestfeaturesF3-AandF9-A).Thepoorpreservationofthecharcoalstructureismainlyexplainedbythepropertiesofthewoodcharcoal itself(differentialpreservationdependingonspecies,useofwetordrywood)as alreadysuggestedbyThéry-Parisot etal. ( 2010 ).Thetopwhitishlayer(4)iscomposed ofashparticlesthataremostlystillinanatomicconnection.Theanatomicconnectionof theashparticlesindicatesthatthefiringeventwas insitu ,andthatthesestructureswere notusedrepeatedly(Mentzer 2014 ;Miller etal. 2010 ).Theexcellentpreservationof thesestructureswaspermittedbyarelativelyrapidburialbyaeoliannaturalsedimentationaftereachfiringepisodewithevidenceofonlyminorpost-depositionalprocesses,asdemonstratedbythesteadysedimentdepositionrateofPleistocenelevels(Wood etal. 2016 )andthegeoarchaeologicalanalysisofthesequence(Vannieuwenhuyse Fig.9 MicrofaciestypesinHolocenetypeCcombustionfeature(modifiedfromVannieuwenhuyse 2016). Left:thinsectionR509sampledinSU2(F2-C)showingmicrofaciesidentified. a , b Mixedfaciesofnonarticulatedashparticlesandgeogenicsands(PPLandXPL,scale100 m); c , d accumulationofnon-disturbed ashesincludingcalciticcrystalpseudomorphsofplantcalciumoxalate(brightandwhiteinXPL)andisotropic phytoliths(appeardarkinXPLbecauseopticallyisotropic)(PPLandXPL,scale1cm) 758 Whitauetal.

PAGE 21

2016 ).Aeoliansedimentation,inconjunctionwiththepost-depositionalprocesses observedinthesequence,inparticulartheformationofpedogenicgypsum,pointsto relativelydryconditionsoverthePleistoceneperiod.Ashparticleswerenotaffectedby dissolution,whichindicatesarelativedrynessofthesequencethroughtime (Vannieuwenhuyse 2016 ). ThefactthatonlyfewcharcoalfragmentsarefoundinmosttypeAcombustion features(F8-A,F10-A,F11-A,F12-A,F13-A,seeTable 2 ),andthatthecombustion by-productsassociatedaremostlyashseemsalsotoindicatethatthewoodburnedin thesecontextswasmostlycompletelycombusted.Assuch,thistypeofcombustion featureprobablyindicatesshortlivedactivitiesorshortvisitstothecave,wherethe openairfirewaslefttoburnuntilthefiredied( cf. Chabal etal. 1999 ).TwotypeA featuresyieldedmorethan11identifiablecharcoalfragments:F3-AandF9-A(see saturationcurvesinFig. 6 ).IfthetypeAfeaturesrepresentshort-lived,episodic combustionevents,thentheseassemblageswouldbeexpectedtohavealowerdiversity thantheircoincidentscatteredcontexts,sincetheformerarehypothesisedtorepresent oneortwofuelwoodcollectiontrips,thelattermany(AsoutiandAustin 2005 ;Byrne etal. 2013 ;Chabal 1990 , 1992 ;Chabal etal. 1999 ;Dotte-Sarout etal. 2015 ;ThéryParisot etal. 2010 ).TheF9-Afeature,whichyielded158fragmentsofidentifiable charcoal,hasalowtaxadiversity(8taxa).Thislowdiversityiscoupledwiththelowest proportionofindeterminablecharcoal(31.6%)ofanyofthePleistoceneunits,indicatingthatthislowdiversityisnotaneffectoftaphonomicfactorsactingonthe assemblage;supportingthehypothesisthatthetypeAhearthstructuresareepisodic archaeologicalcontexts.TheF3-Afeature,whichsitsabovethetypeBfeaturesin betweenthePleistoceneandHolocenesediments,isanexceptiontothispatternasit yieldsarelativelyhighnumberofidentifiablefragments( Ni=101)foratypeAfeature andadiverseassemblage(12taxa).Thisfeatureisdiscussedinfurtherdetailin ‘ Fuel WoodManagement:ComparingConcentratedandScatteredCharcoalContexts ’ in relationtoitscontext. Altogether,themicromorphologicalandanthracologicalanalysesofthetypeA featuresindicatethatthesecouldhavebeensmallopen-airhearthstypicallyusedas single-firingepisodes,forheating,lightingandcookingpurposesduringshortterm visitstothesite,wherethefirewaslefttoburnuntilthefuelwoodwastotally combusted.ThetypeAcombustionfeatures(excludingLGMF3-Athatshowsa differentpatternandisdiscussedinfurtherdetailin ‘ FuelWoodManagement:ComparingConcentratedandScatteredCharcoalContexts ’ inrelationtoitscontext)were allrapidlyandsuccessivelyburiedbyaeoliansedimentation(Vannieuwenhuyse 2016 ) overaperiodof14,000years(fromthefirstoccupationleveldatedaround45katothe topofSU5around31ka),indicatingthatvisitationtothesitewasepisodicand recurrentovermanygenerations. TypeBDugCombustionFeatures(F4-B,F5-B,F6-B,F7-B) ThetypeBdugcombustionfeatures,whicharefoundintheupperPleistocenelevels (SU7)anddatetoaround34ka(Table 1 ;Wood etal. 2016 ),presentcompletely differentsedimentarycharacteristicstotheflattypeAcombustionfeatures.ThetypeB featurescontainmanymorecharcoalthanthetypeAflathearths(Table 1 ;Fig. 5 c,d), indicatingamoreincompletecombustionprocess.Atthemicromorphologicalscale, HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 759

PAGE 22

theashparticlesaregenerallynotobservedinanatomicconnection,whichindicates thatthecombustionresidueshavebeendisplaced.Geogenicsandisintimatelymixed withthecombustionby-products(Fig. 8 a)withinthestructuresandcouldberelatedto thecoveringofthefirewithsediment(Fig. 4 ).Bakingfoodingroundovensisa cookingpracticefrequentlyrecordedethnographicallyamongstsomeAboriginal groups( e.g. Gould 1968 ;Harney 1951 )andwasexperiencedbyoneoftheauthors (RW)duringherfieldworkwithGooniyanditraditionalowners.Thesedimentaryfacies observedinthestructurereflectanearthovenfunctioning,fromthescrapingpreparationsteptotheabandonmentofthestructureinadisruptedstate.Indeed,ifthetypeB featureswereusedascookingpits,whichwerecoveredwithearthasagroundoven, boththerestrictedexposuretooxygenandtheextinctionofthefireattheexpected cookingtimemightexplainwhycombustionofthefuelwasincomplete(Antaland Grønli 2003 ).Suchconditionswouldtypicallyproducelarger,moresolidcharcoalthan thetypeAhearths,whichwereexposedtooxygenandlefttoburnuntilresultingin completecombustionofthewood.Similardenseanddugfeatureshavebeen interpretedaspossiblecookingpitsinHoloceneandterminalPleistocenelayersof rockshelterexcavationsinwesternandcentralAustralia(Byrne etal. 2013 ;Smith etal. 1995 ),buthere,ourinterpretationissupportedbybothmicromorphologicaland anthracologicallinesofevidence. TypeCPalimpsestofCombustionFeatures(F1-C,F2-C) TheHolocenelayersaremainlycomposedofacompactash-richdeposit,which representsapalimpsestof insitu fireplacesandsecondarycontextsofashaccumulations(hearthrake-outandashdumps)inconjunctionwithmaterialevidencefordiverse activitiestakingplaceinthecave(botanicalremainsandartefacts).Oftenindividual featuresaredifficulttodistinguishbutremnantsoftypesAandBcombustionfeatures werebothobservedthroughouttheselevels.Thisabsenceofclearlayeringisalso observedatthemicroscale,withmostoftheparticlesintheHolocenedeposits observedinrandompatterns,withbothfreshandcarbonisedorganicmattermixed withgeogenicsandsandvegetalorganicdebris,freshorcarbonised(Fig. 9 a,b).These observationsconfirmthatintenseprocessessuchastrampling,mixingandbioturbation duetothepresenceofhumansandanimalsinthecavehavedisturbedtheprimary organisationoftheupperlevelsofthedeposit(Fig. 4 ). Basedonthemicrostratigraphicandanthracologicalanalysesaswellasarchaeologicalmaterialevidencefromthesite(Balme 2000 ;Vannieuwenhuyse 2016 ;Whitau etal. 2016a , b ;Wood etal. 2016 ),theHoloceneunitsseemtoreflectamoreconsistent occupationatRiwithantheearlierPleistocenelayers.InotherAboriginalarchaeologicalsitesaroundAustralia,theMid-toLateHoloceneisoftendescribedasaperiodof intensification,withvariousinterpretationsofchangesobservedinthearchaeological recordextrapolatedfromsinglesitecontextstoencompassregionalandpan-continental spatio-temporalnarratives(seesummariesinLangley etal. 2011 ;Ulm 2013 ).Inthe Kimberleyregion,increasedabundanceincharcoalandlithicartefactshasbeenargued tosignifyamoreintenseoccupationduringtheHolocene( e.g. DortchandRoberts 1996 ;O ’ Connor 1995 , 1999 ;Veitch 1996 ).Intermsoflithicartefacts,recentreductionbasedanalyses( e.g. MaloneyandO ’ Connor 2014 ;Maloney etal. 2014 )havedemonstratedthatpeaksinlithicartefactdiscarddirectlycorrelatetodistincttechnological 760 Whitauetal.

PAGE 23

innovations,inlinewithobservationsofotherassemblagesinnorthernAustralia( e.g. Clarkson 2008 ). FuelWoodManagement:ComparingConcentratedandScatteredCharcoal Contexts Table 3 andFig. 10 presenttheanthracologicalresultsfromsevencombustionfeatures (F1-C,F2-C,F3-A,F4-B,F5-B,F7-BandF9-A)alongsidethestratigraphiccontexts SU7,SU8,SU9andSU10(reproducedfromWhitau etal. 2016a )inrelationto vegetationtype,wheretaxahavebeengroupedintofivecategories:bloodwood/ eucalyptsavanna,non-eucalyptsavanna,dryrainforest,riparianandindeterminable (Fig. 11 ).Bloodwood/eucalyptsavannaiscomprisedofalltheMyrtaceaeexceptfor Melaleuca sp.,whichisthesolecharcoaltypeintheripariancategory( e.g. Fig 11 f). Non-eucalyptsavannaiscomposedofthosearid-adapted,sclerophylltaxathatcolonise thevalleyfloor( e.g. Fig. 11 g),andthedryrainforesttaxa,traditionallyassociatedwith monsoonalvinethicket,arethosewhichinhabitthelimestonerangeandoutliers (Fig. 11 b).ThedryrainforestcomponentiscomprisedofIndo-Malayantaxa,which varyconsiderablyatthefamilylevel,incomparisonwiththedeep-timeAustralianflora (asrepresentedbytheothervegetationtypes)thatcompriselowfamilialandhigh species-leveldiversity.Thedryrainforesttaxaareimportanteconomicallytohuntergathererpopulations(Dilkes-Hall 2014 ;Whitau etal. 2016a ). InWhitau etal. ( 2016a ),wearguethatfirewoodwaspredominantlycollectedfrom thevalleyfloorthroughouttheoccupationsequence(Fig. 11 a),wheretheopen vegetationwouldhaveallowedforeasycollectionincloseproximitytothecave, followingthePrincipleofLeastEffort(ShackletonandPrins 1993 ).Acrossallfeatures, withtheexceptionofF9-A,firewoodwasmostcommonlycollectedfromthe bloodwood/eucalyptsavannaspeciesofthevalleyfloor(Fig. 11 a,f),whichwas dominatedby Eucalyptus species,untilthetimeofSU7deposition,whenthevegetationshiftedto Corymbia sp.dominance,coupledwithanincreaseinshrubby,noneucalyptsavannataxa( Erythrophleum sp.and Vachellia sp.)(Fig. 11 g)(Whitau etal. 2016a ).FromSU7onwards, Corymbia sp.maintainsitsdominanceinthe anthracologicalrecordthroughouttypeBandtheanomalousF3-Afeatureuntilthe EarlyHolocene.TheF1-CandF2-CHoloceneunitsrevealthatRiwi ’ shighestcharcoal diversity(13and14taxarespectively,seeTable 1 )ismostlycreatedbylarger proportionsofdryrainforesttaxaandmightreflectadifferentfirewoodcollection strategy,withmorefuelcollectedfromthedryrainforesttaxaofthelimestoneoutcrops (Fig. 11 b).Thishighercharcoaldiversitycouldalsobetheresultofbetterpreservation ofdryrainforesttaxaintheupperunitsofthesequence.Thelatterseemslikelytohave beenasignificantcontributingfactor,withtheexceptionalorganicpreservationofthe Holoceneunitsproducingthelowestproportionsofindeterminablecharcoal(F1C=28.0%andF2-C=20.2%,Table 2 ). AtRiwi,F9-Aisthesolecontextwherenon-eucalyptsavannataxadominatethe anthracologicalassemblage,inthiscaseprincipallyrepresentedby Erythrophleum sp . (Fig. 11 g).EventheninecharcoalidentifiedfromtheF10-A,F11-A,F12-AandF13A,typeAfeaturesareallMyrtaceae(Fig. 11 c,f)andpredominantly Eucalyptus sp., whichreflects,albeitwithverypoorassemblagenumbers,thecompositionofthe Pleistoceneunits(SU8 – SU10)inwhichthesefeatureswerelocated.TheF9-Ahearth HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 761

PAGE 24

Table3 AnthracologicalresultsexpressedinpercentagesofnumberofanalysedfragmentsfromcombustionfeaturesF1-C,F2-C,F3-A,F4-B,F5-B,F7-BandF9 -Acomparedwith thoseofscatteredcontextsSU7,SU8,SU9andSU10;thelatter(andF1-CandF2-C)reproducedfromWhitau etal. ( 2016a )TypeFeatureBloodwood/eucalyptsavanna Non-eucalyptsavannah Dry rainforest Corymbia sp. Eucalyptus sp.TypeA Eucaltptus sp.TypeB Eucalyptus sp. Indeterminate Myrtaceae sp Total bloodwood/ eucalypt savanna Bauhinia sp. Erythrophleum sp. Vachellia sp. Grevillea / Hakea sp. Total non-eucalypt savanna Celtis sp. Mallotus sp. CF1-C31.53.90.21 036.604.2 00.413.90.68.7 CF2-C39.70.20.20.2 0.240.511.2 1.5010.85.61.5 AF3-A22.170.50 029.60.53 105 00.5 BF4-B31.430.20.7 035.31.64.9 0.7010.22.30.7 BF5-B32.611.53.82.3 0.650.81.35.4 1.509 0.60.2 BF7-B347.144.2 150.31.34.6 0.407.310 AF9-A5.2300.8 0.49.40.839.8 12.1053.10.40 SUSU726.93.601.3 0.432.2014.7 8.4028.12.12.9 SUSU84.612.83.19.7 0.8310.35.6 0.306.200 SUSU913.416.94.35.4 0.840.801.9 001.900 SUSU103.210.12.74.3 1.221.500.5 000.500 TypeDry rainforest RiparianIndeterminable Vitex sp.Lamiaceaesp. Ficus sp.TypeA Ficus sp.TypeB Ficus indeterminate Fluegge asp. Brucea sp.Totaldry rainforest Melaleuca sp. C51.2 2.5 1.5 0 6.6 1.4 27.53.5 27.8 C5.62.2 5.6 1.5 0.5 6.6 1.2 30.35.4 20.1 A30.5 1 1.5 0 1.5 8.5 16.50 49.4 B2.10.5 1.6 1 0 5 2.3 15.51.6 40.4 B0.20 0 0 0 0.4 0.6 2 5.2 33.8 762 Whitauetal.

PAGE 25

Table3 (continued)TypeDry rainforest RiparianIndeterminable Vitex sp.Lamiaceaesp. Ficus sp.TypeA Ficus sp.TypeB Ficus indeterminate Fluegge asp. Brucea sp.Totaldry rainforest Melaleuca sp. B00.8 0.2 0 0 0.8 3.3 6.11.7 35.6 A1.23.5 0 0 0 0 0 5.10.8 32 SU00.4 1.7 0 0.2 0.4 1 8.71.1 34.9 SU00 0 0.3 0 0.3 1 1.61.5 59.7 SU00 0 0 0 0 0.3 0.31.3 55.7 SU0.30.1 0.1 0 0 0.3 0 0.80.9 76.3 HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 763

PAGE 26

ispositionedatthelimitbetweenSU8andSU7,whereashiftintaxaranksisvisible (Fig. 10 ).SU7showsanincreasein Corymbia sp.,while Eucalyptus sp.typesdecrease inbothabundanceanddiversity,and Erythrophleum sp.and Vachellia sp.increaseto proportionsthatarenotreplicatedelsewhereamongstthescatteredcharcoalassemblages(Whitau etal. 2016a ).ThefuelwoodthatcomprisestheF9-Aanthracological assemblagewascollectedbeforeorduringtheecologicalshiftobservedintheSU7 assemblage,anditisinterestingtonotethatthedominanceof Erythrophleum inthe featureclearlyechoesthetaxonomiccompositionshiftrepresentedinSU7(Fig. 10 ). F9-AisatypeAhearthstructure,whichwasnotre-usedandsothedominanceof Erythrophleum sp.ismostlikelyaneffectofasinglefiringepisode.Itcouldbethat Erythrophleum sp.wascollectedinrelationtoitsincreasedavailabilityinthesurroundinglandscapewherenon-eucalyptsavannanewlydominatedorthatitwasspecifically targetedasafuelwood,withoutthesehypothesesneedingbemutuallyexclusive. The Erythrophleum genusiscomposedofsomeeight(Ross 1998 )ornine(Dunlop etal. 1995)taxa,oneofwhich, Erythrophleumchlorostachys orironwood,isendemicto Australia,whereitgrowsfromnortheasternQueenslandtotheKimberleyregionofWestern Australia.AboriginalgroupsinQueenslandandtheNorthernTerritoryarerecordedusing ironwoodinavarietyofways:aninfusionofthebarkisusedtotreatstomachpains,root infusionsforcutsandleafinfusionsforscabies;smokefromthewoodandleavesisusedto relieveconstipationandsmokefromthebarktoproducesterilityinwomen;resinfromthe rootsisanadhesiveandgumfromthebarkisedibleandproducesareddye;andthewoodis Fig.10 ComparisonofwoodcharcoalassemblagecompositionbetweencombustionfeaturestypesA,Band C,andtheRiwiscatteredcontextspresentedinWhitau etal. ( 2016a )(CAD:CartoGIS,AustralianNational University) 764 Whitauetal.

PAGE 27

usedforcarvings,spears,musicandcookingsticks(Brock 1988;Dunlop etal. 1995; Woinarski etal. 2002).Whiletherearenoethnographicaccountsofironwooduseinthe Kimberleyregion,attheveryleast,ironwoodisoneofthedensestofAustralia ’ snative timbers(1200kg/m3)(Boland etal. 1984;Woinarski etal. 2002)andmightprovidea differenttypeoffirefromthebloodwood/eucalyptspecies. TheflorarepresentedinthetypeBfeaturesarebroadlycomparablewiththosein SU7intermsoftaxonomicdiversity,relativefrequencyandrankoftaxa,whichis contrarytotheexpectationthatcombustioneventshavelowtaxonomicdiversity,since theyrepresentthelastfewfiringevents(Chabal etal. 1999 ;Dotte-Sarout etal. 2015 ; Théry-Parisot etal. 2010 ).ThemorelikelyexplanationforthesimilaritybetweenSU7 andthetypeBdugfeatures(Fig. 10 )isthatbothwereusedseveraltimesandthe assemblagesrepresentmultiplecollectingtrips(Whitau etal. 2016a ).Indeed,F5-Bisa seriesofdenselypackedcombustionfeaturesshowingconcavepits,ashandabundant charcoal;therefore,itsecurelyrepresentsseveralfiringepisodes.Suchanexplanation wouldalsomakesensewiththeproposedidentificationofthesefeaturesasgroundor earthovens,withfeaturesbeingre-usedseveraltimesduringanoccupationperiod. Moreover,thevoluntarycessationofthecombustionprocessinvolvedinearthoven cookingisanadditionalfactorforabetterrepresentationoftheoriginalfuelwood taxonomicdiversityincomparisonwithopen-airhearthfeatures. BetweenthetypesBandCfeaturessitstheF3-AtypeAhearth.Unliketheother typeAcontexts,F3-Ahasahighdiversity(12taxa)inadditiontoahighproportionof indeterminablecharcoal(49.2%)(Table 3 ).Bloodwoodsavannadominatestheassemblage,withthehighproportionofdryrainforesttaxacomprisedlargelyof Brucea sp. Fig.11 Vegetationtypesandtheircommoncharcoals.Left,lowtreesteppeoftheRiwivalleyfloor( a ),dry rainforesttaxacolonisethelimestoneoutcrop(b);centre,referenceSEMimagesof Corymbiadampieri ( c ), Vachelliasuberosa ( d ), Bruceajavanica ;right: Corymbia sp.( f )andVachelliasuberosa ( g )(photosandSEM byR.Whitau) HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 765

PAGE 28

(8.5%)(Figs. 10 and 11 e).ThesolespeciesofthegenusendemictoAustralia, Brucea javanica preferssecondaryforest,sandydunesandlimestonerock.Generallygrowing asasmallshrubortree, B . javanica producesediblerootsandfruitthatcanaidinthe treatmentofdysenteryandfever(KulipandWong 1995 ).Itsrelativelyhighabundance inF3-Aisnotreadilyexplicableandcouldrelatetosocio-environmentalchanges affectedbytheLGM.ThepositionoftheF3-AhearthshowsthattypeAhearth structurescontinuedtobebuiltaftertheappearanceoftypeBhearthsintherecord. WhiletheindividualfeaturesofthetypeCunitsaremoredifficulttodistinguish, bothtypesAandBcombustionstructureswereproducedduringthistime,whichis characterisedbyanincreasedtaxonomicdiversityandrepresentationofdryrainforest taxa(Fig. 11 b)inthearchaeobotanicalrecord,includingnon-woodyremains(DilkesHall 2014 ;Whitau etal. 2016a ). AllanthracologicallyanalysedcontextsfromRiwicaveshowthatfirewoodwas typicallycollectedfromthevalleyfloorand,withtheexceptionofF9-A,bloodwood/ eucalyptsavannataxawerethefavouredfuels,supportingargumentspresentedby Whitau etal. ( 2016a ).Theshiftintaxondominancefromeucalypttobloodwood observedinthescatteredcontexts,whichislikelyassociatedtoenvironmentalchanges ataround34ka(Whitau etal. 2016a ),isreflectedinthecompositionofallthefeatures analysedinthispaper. MethodologicalandArchaeologicalImplications Thestudypresentedhereclearlysupportsimportanttaphonomicstudies( e.g. Dussol etal. 2017 ;Théry-Parisot etal. 2010 )inshowingthatthefactorsaffectingcharcoal preservationarecomplex.Table 4 summarisestheanthracologicalandmicromorphologicaldataalongsideasummaryofthediscussionpresentedabove.Fireswhichwerelit directlyonthegroundsurface,likethetypeAhearthstructures,arefarlesslikelyto producequantifiablecharcoalwithinthestructureitself,asthedirectexposuretooxygen willoftencombustthefuelentirely.Increaseincharcoalabundanceinitselfshouldnot thennecessarilybecorrelatedwithanintensificationofoccupation(Ward etal. 2016 ),as theprevalenttypeofcombustionstructure,itsformationandlengthofuseaswellasits degreeofpreservationmustalsobeconsidered.Similarly,changesindeposition dynamics( e.g. deficitofnaturalsedimentation)canleadtothecreationofpalimpsest typedepositsinarchaeologicalsequences(BaileyandGalanidou 2009 ;Malloland Mentzer 2015 ;Vannieuwenhuyse 2016 ).AtRiwi,thechangesobservedbetween combustionfeatures,theincreasedabundanceofcharcoaldensefeatureswithinF1-C andF2-Candthehightramplingofsurfacedepositsallpointtowardsachangeinsite useduringthedepositionoftheHoloceneunits,whereoccupationofthecavewas intensifiedintermsofthenumberofsitevisits,coupledwithareductionoftimebetween visitsandlesseraccumulationofnaturalinputsaspointedoutinseveralAustralian archaeologicalstudies( cf. Ulm 2013 ;Ward 2004 ;Vannieuwenhuyse etal. 2017 ). Thisstudyalsosignifiestheimportanceofunderstandingsiteformationprocesses; asalreadystatedbyseveralAustralianresearchers(Holdaway etal. 2008 ;Langley etal. 2011 ;Vannieuwenhuyse etal. 2017 ;WardandLarcombe 2003 ;Ward etal. 2016 ).TheexceptionalpreservationofflattypeAhearthsinRiwiprovideanarchaeologicalcasestudyforhowheatingcanimpactunderlyingsedimentsinthistypeoffine sandsubstrate,intheRiwiexample:severalcentimetresbelowthesurfacewherethe 766 Whitauetal.

PAGE 29

Table4 Summaryofanthracologicalandmicromorphologicalresults TypeATypeBTypeC FlatcombustionfeaturesDugco mbustionfeaturesPalimpsest Combustionfeature description Fourdifferentmicrofa cieswereidentifiedin typeAcombustio nfeatures(Fig.7 ,see Appendix 1 .0),withfrombottomtotop: (1)Darkbrownlayer(concaveshapes visibleinstratigraphy)composedof geogenicsands,with ahighproportion ofmicrocharcoalandcarbonisedvegetal particles(Fig. 7 c). (2)Orange-pinkishlayercomposedof geogenicsandsa ndashparticles (Fig. 7 b). (3)Layerwithcharcoalchunksembedded withinthegeogenicsands(Fig. 7 a). (4)Whitishlayer(Fig. 7 c)mostlycomposed ofashparticles(pseudomorphsofplant calciumoxalate)andphytolithsthatare oftenstillinanatomicconnection (articulated). TypeBcombustionfeaturesarecharacterisedby thediggingofapitordepressionwhere thefirewaslitandfrequentlyreused.These dugfeaturessometimescutthroughtheflat combustionfeaturesi mmediatelybelow, disturbingtheorientationofparticles (Fig. 8 b).TypeBcombustionfeatures containlargefragmentsofcharcoalembedded withinafinematrixofgeogenicsands and/orrandomorientedashparticles(Fig. 8 a). TypeCfeaturesareaccumulationscomposed mainlyofby-productsofcombustion (predominantlyashandcharcoal),along withamixofnon-burntvegetalpartsand aminorproportionofgeogenicsands (Fig. 9 ).Thehighproportionofcombustion residuesgivestheHolocenedepositsitsgrey colour(Figs. 2 and 3 ).Underthemicroscope, themicrofaciesshowaverybrightcalcitic crystallicb-fabricasaresultofthehigh proportionofashparticles(pseudomorphs ofplanttissues)(Fig. 9 b,d).Theseparticles arefoundbothinanatomicconnection (Fig. 9 c,d)anddisturbed(Fig. 9 a,b) whichindicatessomemixinginthislevel. Hypothesisedfunctio nSmall,open-air,single-usehearthswhich werelitdirectlyonto thegroundsurface andusedforheating,lighting,orcooking purposesduringshorttermvisitstothesite. Earthorgroundovenswhichwereconstructed bydiggingapitordepressionintothe substrate.Afirewaslitwithinthedepression andsubsequentlyburiedduringa hypothesisedundergroundcookingprocess. ApalimpsestofnumeroustypeAandB featurescoupledwithanincreaseof combustionresiduesresultingfrom maintenanceactivitiessuchasreworking (cleaningrake-outofhearthsbutalsohuman andanimaltramplingandturbation,seeFig. 4 ). EconomyofwoodThecharcoalwithinthetypeAcombustion featuresismostlycompletelycombusted withtheexceptionoftheF3-AandF9-A assemblages.F9-Aistheonly anthracologicalsamplefromRiwiCave whichwasnotdominatedby ThetaxonomicdiversityofthetypeBdug featuresissimilartotheassociatedscattered contextsandmightindicatere-useofthe combustionfeatures.Thedominanceof bloodwoodsavannataxaindicatesthat firewoodwascollectedpredominantlyfrom Thesavannataxaofthevalleyfloorcontinueto bewellrepresenteda longsideahigher proportionofdryrainforesttaxa,which indicatesapotentially moreextensiveuseof thesurroundinglandscapeanditsvarious ecologicalniches. HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 767

PAGE 30

Table4 (continued)TypeA TypeB TypeC Flatcombustionfeatures Dugcombustionfeatures Palimpsest bloodwood/eucalypt;thedominanceof Erythrophleum sp.,coupledwiththelow diversityofF9-Ataxa,isindicativeofa singlefiringepisode.Taxawerecollected predominantlyfromthevalleyflooras pertheassociatedscatteredPleistocene contexts. thevalleyfloor,withaminorpresenceof dryrainforesttaxa,whichareassociated withthelimestoneoutcrop. Inferenceofhunter gathererstrategies Occupationwasintermittentfrom47to 34ka,withenoughtimebetweensite visitstoallowforth eseflat,open-air, single-usehearthstobecoveredbynatural, rapidaeoliandeposition. Morefrequentand/orlongeroccupationatthe siteduringthistime(c.34ka). Frequentoccupationoflongerdurationduring theHolocenesequenceproducingapalimpsest ofarchaeologicalde position,whichforms thistypeCsecondarycontext. 768 Whitauetal.

PAGE 31

firewaslit.Thisdepthofeffecthasseveralimplicationsinhowtosamplesuchfeatures andhowtointerpretthearchaeologicalmaterial(botanicalremains,bones,lithic artefacts,ochrepigments,butalsosedimentsamplesforluminescencedating)from theaffectedunderlyingsubstrate,asalreadypointedoutbymicrostratigraphicexperimentalstudiesbyAldeias etal. ( 2016 )andMallol etal. ( 2013b ).ConclusionsStarting45kayearsagoandforover14,000years,PleistoceneoccupationatRiwiwas intermittentandpotentiallyepisodic.Thecavewouldbevisitedforshortperiods:afire litdirectlyontheground(typeA),fuelledbywoodcollectedfromtheeucalyptsavanna ofthevalleyfloor,andabandoned,withthesehearthstructuresmostlikelynotre-used. Occupationwasintermittent,withenoughtimebetweensitevisitstoallowforthese flat,open-air,singleusehearthstobecoveredbynatural,rapidaeoliandeposition. Fromaround34katotheonsetoftheLGM,anewcombustionfeature(typeB)is observed,whichpotentiallyreflectsadifferenttypeofoccupationatthesite.Insteadof lightingthefiredirectlyontheground,thefirewaslitinadugpit,coveredwithearth duringcombustionandextinguishedpriortothecompletionofthecombustionprocess; inapatternsimilartoagroundoven.TheanthracologicalcompositionofthesetypeB structuresismostsimilartothescatteredcontextofSU7,demonstratingthecollection offuelwoodfromthebloodwood-dominatedsavannanewlyestablishedonthevalley floor.ThetaxonomicdiversityofthetypeBdugfeaturesmightillustratethatthese groundovenswerere-usedmultipletimesandpotentiallysignifymorefrequentand/or longeroccupationatthesiteduringthistime. TypeAandBcombustionfeaturescontinuedtobeproducedduringtheLGMand throughtotheHolocene,whenthesiteseemstohavebeenvisitedmorefrequently. Changeindepositionpatternsandhigherfrequencyofoccupationproducedapalimpsestofarchaeologicaldeposition,whichformsthetypeCsecondarycontexts.This periodalsorecordsanincreaseinuseofvegetationresourceslocatedinthedry rainforestareas.Thesavannataxaofthevalleyfloorcontinuetobewellrepresented, indicatingapotentiallymoreextensiveuseofthesurroundinglandscapeinitsvarious ecologicalniches.Thisalignswithanintensificationofoccupation,whereintensificationreferstoanincreaseinthenumberofsitevisitsandthedurationofthesevisits. Combinedanthracologicalandmicromorphol ogicalanalysesofcombustionfeaturesat Riwihaveallowedustoproposeatypologyoffeatures,todefinethechronologyoftheir appearanceintherecordandtodocumentchangesinsiteoccupationpatternsand landscapeuseovertime.Ourresultsshowthatinterpretationsofanthracologicalspectra shouldbeadaptedtothetypeofcombustionstructurerecovered;therelationshipbetween charcoalpreservationandcontextisfartoocomplextowarrantthedirectassociationof charcoalabundancewithintensificationofsiteuseand/orpopulationincrease. Futureexperimentalstudieswhichexplorebothhearthbuildingprocessesandfuel woodselectionstrategiesusingtraditionalAboriginalmethodswillenableadeeper understandingofhowfirewasmanipulatedinthepastandstrengthenthefunctional interpretationofthedifferenttypesofcombustionfeaturesidentifiedinourstudy. Preciseandmultiproxystudiesallowafewtangibleglimpsesintothelivesofasite ’ s pastinhabitants,buildingahome ‘ wherethehearthis ’ . HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 769

PAGE 32

Acknowledgements TheauthorswouldliketoacknowledgetheMimbicommunity,inparticularRosemary Nugget,fortheirassistanceduringfieldwork.Theauthorswouldliketothanktheanonymousreviewersfor theirconsideredandinsightfulfeedback.ThisresearchwasfundedbytheARCLinkageGrantLP100200415, withcontributionsfromtheKimberleyFoundationAustraliaandtheDepartmentofSustainability,Water, PopulationsandCommunities.Figures 1 , 6 , 10 and 11 wereproducedbytheAustralianNationalUniversity ’ s CartoGISdepartment. OpenAccess ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.0International License(http://creativecommons.org/licenses/by/4.0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providea linktotheCreativeCommonslicense,andindicateifchangesweremade.ReferencesAldeias,V.(2017).Experimentalapproachestoarchaeologicalfirefeaturesandtheirbehavioralrelevance. CurrentAnthropology,58 (S16). Aldeias,V.,Dibble,H.L.,Sandgathe,D.,Goldberg,P.,&McPherron,S.J.(2016).Howheataltersunderlying depositsandimplicationsforarchaeologicalfirefeatures:acontrolledexperiment. Journalof ArchaeologicalScience,67 (6),64– 79. Allen,J.,&O’ Connell,J.(2003).Thelongandtheshortofit:archaeologicalapproachestodeterminingwhen humansfirstcolonisedAustraliaandNewGuinea. AustralianArchaeology,57 (1),5 – 19. Allué,E.,Solé,A.,&Burguet-Coca,A.(2017).FuelexploitationamongNeanderthalsbasedonthe anthracologicalrecordfromAbricRomaní(Capellades,NESpain). QuaternaryInternational,431 ,6 – 15. Alperson-Afil,N.,&Goren-Inbar,N.(2010). TheAcheuliansiteofGesherBenotYa ’ aqov(volumeII):Ancient flamesandcontrolleduseoffire .Netherlands:Springer. Antal,M.J.,&Grønli,M.(2003).Theart,science,andtechnologyofcharcoalproduction. Industrial& EngineeringChemistryResearch,42 (8),1619 – 1640. Arpin,T.L.,Mallol,C.,&Goldberg,P.(2002).Shortcontribution:anewmethodofanalyzingand documentingmicromorphologicalthinsectionsusingflatbedscanners:applicationsingeoarchaeological studies. Geoarchaeology,17 (3),305 – 313. Asouti,E.,&Austin,P.(2005).Reconstructingwoodlandvegetationanditsexploitationbypastsocieties, basedontheanalysisandinterpretationofarchaeologicalwoodcharcoalmacro-remains. Environmental Archaeology,10 (1),1 – 18. Asscher,Y.,Cabanes,D.,Hitchcock,L.A.,Maeir,A.M.,Weiner,S.,&Boaretto,E.(2015).Radiocarbon datingshowsanearlyappearanceofPhilistinematerialcultureinTelles-Safi/Gath,Philistia. Radiocarbon,57 (5),825 – 850. Badal-García,E.,Carrión-Marco,Y.,Macías-Enguídanos,M.,&Ntinou,M.(2012). Woodandcharcoal evidenceforhumanandnaturalhistory.SaguntumNúmeroExtraordinario13 .Valencia:Universitatde València. Bailey,G.,&Galanidou,N.(2009).Caves,palimpsestsanddwellingspaces:examplesfromtheUpper Palaeolithicofsouth-eastEurope. WorldArchaeology,41 (2),215 – 241. Balme,J.(2000).Excavationsrevealing40,000yearsofoccupationatMimbiCaves,SouthCentral Kimberley,WesternAustralia. AustralianArchaeology,51 (1),1 – 5. Barbetti,M.(1986).Tracesoffireinthearchaeologicalrecord,beforeonemillionyearsago? Journalof HumanEvolution,15 (8),771 – 781. Beauclair,M.,Scheel-Ybert,R.,Bianchini,G.F.,&Buarque,A.(2009).Fireandritual:barkhearthsinSouthAmericanTupiguaranimortuaryrites. JournalofArchaeologicalScience,36 (7),1409 – 1415. Bellomo,R.V.(1991).Identifyingtracesofnaturalandhumanly-controlledfireinthearchaeologicalrecord: theroleofactualisticstudies. ArchaeologyinMontana,32 (2),75– 93. Bellomo,R.V.(1993).Amethodologicalapproachforidentifyingarchaeologicalevidenceoffireresulting fromhumanactivities. JournalofArchaeologicalScience,20 (5),525 – 553. Berna,F.,Goldberg,P.,Horwitz,L.K.,Brink,J.,Holt,S.,Bamford,M.,&Chazan,M.(2012). MicrostratigraphicevidenceofinsitufireintheAcheuleanstrataofWonderwerkCave,NorthernCape province,SouthAfrica. ProceedingsoftheNationalAcademyofSciences,109 (20),1215 – 1220. Bird,M.I.,Turney,C.S.M.,Fifield,L.,Jones,R.,Ayliffe,L.,Palmer,A.,Cresswell,R.,&Robertson,S. (2002).RadiocarbonanalysisoftheearlyarchaeologicalsiteofNauwalabilaI,ArnhemLand,Australia: 770 Whitauetal.

PAGE 33

implicationsforsamplesuitabilityandstratigraphicintegrity. QuaternaryScienceReviews,21 (8),1061 – 1075. Boaretto,E.(2015).Radiocarbonandthearchaeologicalrecord:anintegrativeapproachforbuildingan absolutechronologyfortheLateBronzeandIronAgesofIsrael. Radiocarbon,57 (2),207 – 216. Boaretto,E.,Wu,X.,Yuan,J.,Bar-Yosef,O.,Chu,V.,Pan,Y.,&Gu,H.(2009).Radiocarbondatingof charcoalandbonecollagenassociatedwithearlypotteryatYuchanyanCave,HunanProvince,China. ProceedingsoftheNationalAcademyofSciences,106 (24),9595 – 9600. Boland,D.J.,Brooker,M.I.H.,Chippendale,G.M.,Hall,N.,Hyland,B.P.M.,Johnston,R.D.,Kleinig,D. A.,&Turner,J.D.(1984). ForesttreesofAustralia (4thed.).Melbourne:ThomasNelsonandCSIRO. Brace,C.L.,Rosenberg,K.R.,&Hunt,K.D.(1987).Gradualchangeinhumantoothsizeinthelate Pleistoceneandpost-Pleistocene. Evolution,41 (4),705 – 720. Brain,C.K.(1981). Thehuntersorthehunted?:anintroductiontoAfricancavetaphonomy .Chicago: UniversityofChicagoPress. Brock,J.(1988). TopEndNativePlants .Darwin:JohnBrock. BronkRamsey,C.(2009).Bayesiananalysisofradiocarbondates. Radiocarbon,51(1),337 – 360. BronkRamsey,C.(2013).OxCal4.2.WebInterfaceBuildRamseyCB.Bayesiananalysisofradiocarbon dates. Radiocarbon,51 (1),337 – 60(78). Bullock,P.,Fedoroff,N.,Jongerius,A.,Stoops,G.,Tursina,T.,&Babel,U.(1985). Handbookforsoilthin sectionsdescription .Wolverhampton:WaineResearchPublications. BureauofMeteorology.(2015). Climatedataonline .AustralianGovernment.Retrieved22April2015from http://www.bom.gov.au/climate/data/ . Byrne,C.,Dotte-Sarout,E.,&Winton,V.(2013).Charcoalsasindicatorsofancienttreeandfuelstrategies:an applicationofanthracologyintheAustralianMidwest. AustralianArchaeology,77 (1),94– 106. Camuti,K.S.,&McGuire,P.T.(1999).Preparationofpolishedthinsectionsfrompoorlyconsolidated regolithandsedimentmaterials. SedimentaryGeology,128 (1),171 – 178. Canti,M.G.,&Linford,N.(2000).Theeffectsoffireonarchaeologicalsoilsandsediments:temperatureand colourrelationships. ProceedingsofthePrehistoricSociety,66 ,385 – 396. Carah,X.(2010).Corridorsandcallitris:examiningthechanginguseofenvironment,throughtheGledswood Shelter1woodcharcoalassemblage.UnpublishedHonoursthesis,TheUniversityofQueensland,St Lucia. Chabal,L.(1990).L ’ étudepaléo-écologiquedesitesprotohistoriquesàpartirdescharbonsdebois:laquestion del ’ unitédemesure.Dénombrementdefragmentsoupesées?InT.Hackens,A.V.Munaut,&C.Till (Eds.), Boisetarchéologie,FirstEuropeanConference,Louvain-la-Neuve,October2nd – 3rd1987 (pp. 189 – 205).Belgique:PACT. Chabal,L.(1992).Lareprésentativitépaléo-écologiquedescharbonsdeboisarchéologiquesissusduboisde feu.BulletindelasociétébotaniquedeFrance. ActualitésBotaniques,139 (2 – 4),213 – 236. Chabal,L.,Fabre,L.,Terral,J.-F.,&Théry-Parisot,I.(1999).L ’ anthracologie.InA.Ferdière(Ed.), La BotaniqueCollection«Archéologiques» (pp.43 – 104).Paris:Errance. Clarkson,C.(2008).Changingreductionintensity,settlementandsubsistenceinWardamanCountry,northern Australia.InW.Andrefsky(Ed.), LithicTechnology (pp.286 – 316).NewYork:CambridgeUniversity Press. Courty,M.-A.,Goldberg,P.,&Macphail,R.I.(1989). Soilsandmicromorphologyinarchaeology. Cambridgemanualsinarchaeology .Cambridge:CambridgeUniversityPress. Damblon,F.,&Haesaerts,P.(2002).AnthracologyandradiochronologyoftheUpperPleistoceneinthe loessicareasofEurasia. BARInternationalSeries,1063 ,65 – 72. Damblon,F.,Haesaerts,P.,&VanDerPlicht,J.(1996).Newdatingsandconsiderationsonthechronologyof UpperPalaeolithicsitesintheGreatEurasiaticPlain. Préhistoireeuropéenne,9 ,177 – 231. DeKeyser,T.L.(1999).Digitalscanningofthinsectionsandpeels. JournalofSedimentaryResearch,69 (4), 962 – 964. deLumley,H.(2006).Ilya400000ans:ladomesticationdufeu,unformidablemoteurd'hominisation. ComptesRendusPalevol,5 (1),149 – 154. Dilkes-Hall,I.(2014).AnarchaeobotanicalanalysisofmacrobotanicalremainsatRiwiCaveinthesouthcentralKimberleyregion,WA.UnpublishedHonoursthesis,Archaeology,SchoolofSocialScience, UniversityofWesternAustralia,Crawley. Dortch,C.E.,&Roberts,R.G.(1996).AnevaluationofradiocarbonchronologiesatMiriwunrockshelter andtheMonsmontsite,Ordvalley,eastKimberley,WesternAustralia. AustralianArchaeology,42 (1), 24 – 34. Dotte-Sarout,E.,Carah,X.,&Byrne,C.(2015).Notjustcarbon:assessmentandprospectsfortheapplication ofanthracologyinOceania. ArchaeologyinOceania,50 (1),1– 22. HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 771

PAGE 34

Dufraisse,A.(2012).Firewoodandwoodlandmanagementintheirsocial,economicandecologicaldimensions.Newperspectives.InE.Badal,Y.Carrión,M.MacíasandM.Ntinou(Eds.),Woodandcharcoal: evidenceforhumanandnaturalhistory(pp.65 — 73).5thInternationalMeetingofCharcoalAnalysis, Saguntum,Extra-13. Dufraisse,A.(2014).Relationentremodesdecollecteduboisdefeuetétatdumilieuxforestier:essai d'applicationduprincipedumoindreeffort.InR.-M.Arbogast&A.Grefier-Richard(Eds.), Entre archéologieetécologie,unePréhistoiredetouslesmilieux.MélangesoffertsàPierrePétrequin (pp. 493 – 504).Besançon:PressesuniversitairesdeFranche-Comté. Dunlop,C.R.,Leach,G.J.,&Cowie,I.D.(1995). FloraoftheDarwinregion(volume2) .Darwin: ConservationCommissionoftheNorthernTerritory. Dussol,L.,Elliott,M.,&Théry-Parisot,I.(2017).Experimentalanthracology:evaluatingtheroleof combustionprocessesintherepresentivityofarchaeologicalcharcoalrecordsintropicalforests,acase studyfromtheMayaLowlands. JournalofArchaeologicalScience:Reports,12 ,480 – 490. Estévez,J.,Villagran,X.S.,Balbo,A.L.,&Hardy,K.(2014).Microtaphonomyinarchaeologicalsites:the useofsoilmicromorphologytobetterunderstandbonetaphonomyinarchaeologicalcontexts. QuaternaryInternational,330 (1e7),3 – 9. Fanning,P.C.,&Holdaway,S.J.(2001).StoneartifactscattersinwesternNSW,Australia:geomorphic controlsonartifactsizeanddistribution. Geoarchaeology,16 (6),667 – 686. Fanning,P.C.,Holdaway,S.J.,&Rhodes,E.J.(2008).AnewgeoarchaeologyofAboriginalartefactdeposits inwesternNSW,Australia:establishingspatialandtemporalgeomorphiccontrolsonthesurface archaeologicalrecord. Geomorphology,101 (3),524 – 532. Fanning,P.C.,Holdaway,S.J.,Rhodes,E.J.,&Bryant,T.G.(2009).Thesurfacearchaeologicalrecordin aridAustralia:geomorphiccontrolsonpreservation,exposure,andvisibility. Geoarchaeology,24 (2), 121 – 146. FitzPatrick,E.A.(1984). Themicromorphologyofsoils .London:ChapmanandHall. Goldberg,P.,&Macphail,R.I.(2003).Shortcontribution:strategiesandtechniquesincollectingmicromorphologysamples. Geoarchaeology,18(5),571 – 578. Goldberg,P.,&Macphail,R.I.(2005). Practicalandtheoreticalgeoarchaeology .Padstow:Blackwell Science. Goldberg,P.,Miller,C.E.,Schiegl,S.,Ligouis,B.,Berna,F.,Conard,N.J.,&Wadley,L.(2009).Bedding, hearths,andsitemaintenanceintheMiddleStoneageofSibuducave,KwaZulu-Natal,SouthAfrica. ArchaeologicalandAnthropologicalSciences,1 (2),95– 122. Goldberg,P.,Miller,C.E.,&Mentzer,S.M.(2017).RecognizingfireinthePaleolithicarchaeologicalrecord. CurrentAnthropology,58 (S16). Goudsblom,J.(1986).Thehumanmonopolyontheuseoffire:itsoriginsandconditions. HumanEvolution, 1 (6),517 – 523. Gould,R.A.(1968).Livingarchaeology:theNgatatjaraofwesternAustralia. SouthwesternJournalof Anthropology,24 (2),101 – 122. Gowlett,J.A.(2006).TheearlysettlementofnorthernEurope:firehistoryinthecontextofclimatechange andthesocialbrain. ComptesRendusPalevol,5(1),299 – 310. Gowlett,J.A.,&Wrangham,R.W.(2013).EarliestfireinAfrica:towardstheconvergenceofarchaeological evidenceandthecookinghypothesis. Azania:ArchaeologicalResearchinAfrica,48 (1),5 – 30. Harney,W.E.(1951).AustralianAboriginalcookingmethods. TheAustralianJournalofAnthropology,4 (6), 242 – 246. Henry,A.,&Théry-Parisot,I.(2014).FromEvenkcampfirestoprehistorichearths:charcoalanalysisasatool foridentifyingtheuseofrottenwoodasfuel. JournalofArchaeologicalScience,52 ,321 – 336. Hiscock,P.(1985).Theneedforataphonomicperspectiveinstoneartefactanalysis. Queensland ArchaeologicalResearch,2 ,82 – 97. Hiscock,P.(1990).Astudyinscarlet:taphonomyandinorganicartifacts.InS.Solomon,I.Davidson,&D. Watson(Eds.), Problemsolvingintaphonomy:archaeologicalandpalaeontologicalstudiesfromEurope, AfricaandOceania (pp.39 – 49).Brisbane:AnthropologyMuseum,UniversityofQueensland. Hogg,A.G.,Hua,Q.,Blackwell,P.G.,Niu,M.,Buck,C.E.,Guilderson,T.P.,&Turney,C.S.(2013). SHCal13SouthernHemispherecalibration,0 – 50,000yearscalBP. Radiocarbon,55(4),1889 – 1903. Holdaway,S.,Fanning,P.,&Rhodes,E.(2008).Challengingintensification:human – environmentinteractions intheHolocenegeoarchaeologicalrecordfromwesternNewSouthWales,Australia. TheHolocene, 18 (3),403 – 412. Holdaway,S.J.,Davies,B.,&Fanning,P.C.(2017).Aboriginaluseoffireinalandscapecontext: investigatingpresenceandabsenceofheat-retainerhearthsinwesternNewSouthWales,Australia. CurrentAnthropology,58 (S16). 772 Whitauetal.

PAGE 35

Hope,G.S.(1998). Identifyingwoodcharcoalremainsaspalaeoevidenceforregionsofcentraland northeastAustralia .Canberra:ANHPublications,RSPAS,AustralianNationalUniversity. Ilic,J.(1991). CSIROatlasofhardwoods .Bathurst:CrawfordHouse. James,S.R.,Dennell,R.,Gilbert,A.S.,Lewis,H.T.,Gowlett,J.,Lynch,T.F.,McGrew,W.,Peters,C.R., Pope,G.G.,&Stahl,A.B.(1989).HominiduseoffireintheLowerandMiddlePleistocene:Areviewof theevidence[andcommentsandreplies]. CurrentAnthropology,30 (1),1 – 26. Karkanas,P.(2010).Preservationofanthropogenicmaterialsunderdifferentgeochemicalprocesses:a mineralogicalapproach. QuaternaryInternational,214 (1),63 – 69. Karkanas,P.,Bar-Yosef,O.,Goldberg,P.,&Weiner,S.(2000).Diagenesisinprehistoriccaves:theuseof mineralsthatforminsitutoassessthecompletenessofthearchaeologicalrecord. Journalof ArchaeologicalScience,27 (10),915 – 929. Karkanas,P.,Rigaud,J.-P.,Simek,J.F.,Albert,R.M.,&Weiner,S.(2002).Ash,bonesandguano:astudyof themineralsandphytolithsinthesedimentsofGrotteXVI,Dordogne,France. JournalofArchaeological Science,29(7),721 – 732. Karkanas,P.,Shahack-Gross,R.,Ayalon,A.,Bar-Matthews,M.,Barkai,R.,Frumkin,A.,Gopher,A.,& Stiner,M.C.(2007).EvidenceforhabitualuseoffireattheendoftheLowerPaleolithic:siteformation processesatQesemCave,Israel. JournalofHumanEvolution,53 (2),197 – 212. King,F.(2015)RainforestAboriginalfirewoodstrategies:investigatingpalaeovegetationandfirewoodusing charcoalanalysisintropicalrainforestofthewettropicsinnortheastQueensland.UnpublishedBA (Hons)thesis,LaTrobeUniversity,Melbourne. Kulip,J.,&Wong,K.M.(1995).Simaroubaceae.InE.Soepadmo,L.G.Saw,&R.C.K.Chung(Eds.), Tree floraofSabahandSarawak(Volume2) (pp.421 – 442).KualaLumpur:ForestResearchInstitute Malaysia. Langley,M.C.,Clarkson,C.,&Ulm,S.(2011).Fromsmallholestograndnarratives:theimpactof taphonomyandsamplesizeonthemodernitydebateinAustraliaandNewGuinea. JournalofHuman Evolution,61 (2),197 – 208. Langley,M.C.,Dilkes-Hall,I.E.,Balme,J.,&O ’ Connor,S.(2016).A600-year-oldBoomerangfragment fromRiwiCave(SouthCentralKimberley,WesternAustralia). AustralianArchaeology,82 (2),106 – 122. Leney,L.,&Casteel,R.W.(1975).Simplifiedprocedureforexaminingcharcoalspecimensforidentification. JournalofArchaeologicalScience,2 (2),153 – 159. Macphail,R.I.,Cruisea,G.M.,Allen,M.J.,Linderholm,B.J.,&Reynolds,P.(2004).Archaeologicalsoil andpollenanalysisofexperimentalfloordeposits;withspecialreferencetoButserAncientFarm, Hampshire,UK. JournalofArchaeologicalScience,31 (2),175 – 191. Mallol,C.,&Mentzer,S.M.(2015).Contactsunderthelens:perspectivesontheroleofmicrostratigraphyin archaeologicalresearch. ArchaeologicalandAnthropologicalSciences,x ,1 – 25. Mallol,C.,Marlowe,F.W.,Wood,B.M.,&Porter,C.C.(2007).Earth,wind,andfire:ethnoarchaeological signalsofHadzafires. JournalofArchaeologicalScience,34 (12),2035 – 2052. Mallol,C.,Hernández,C.M.,Cabanes,D.,Machado,J.,Sistiaga,A.,Pérez,L.,&Galván,B.(2013a).Human actionsperformedonsimplecombustionstructures:anexperimentalapproachtothestudyofMiddle Palaeolithicfire. QuaternaryInternational,315 ,3 – 15. Mallol,C.,Hernández,C.M.,Cabanes,D.,Sistiaga,A.,Machado,J.,Rodríguez,Á.,Pérez,L.,&Galván,B. (2013b).TheblacklayerofMiddlePalaeolithic combustionstructures.Interpretationand archaeostratigraphicimplications. JournalofArchaeologicalScience,40 (5),2515 – 2537. Maloney,T.,&O ’ C onnor,S.(2014).BackedpointsintheKimberley:Revisitingthenorth-southdivisionfor backedartefactproductioninAustralia. AustralianArchaeology,79 (1),146 – 155. Maloney,T.,O ’ Connor,S.,&Balme,J.(2014).NewdatesforpointtechnologyintheKimberley. ArchaeologyinOceania,49 (3),137 – 147. March,R.J.,Lucquin,A.,Joly,D.,Ferreri,J.C.,&Muhieddine,M.(2014).Processesofformationand alterationofarchaeologicalfirestructures:complexityviewedinthelightofexperimentalapproaches. JournalofArchaeologicalMethodandTheory,21 (1),1 – 45. Meignen,L.,Bar-Yosef,O.,&Goldberg,P.(1989).Lesstructuresdecombustionmoustériennesdelagrotte deKébara(MontCarmel,Israël).NatureetFonctiondesFoyersPréhistoriques.Nemours:Mémoiresdu MuséedePréhistoired ’ IledeFrance,2,141 — 146. Meignen,L.,Goldberg,P.,&Bar-Yosef,O.(2007).ThehearthsatKebaraCaveandtheirroleinsiteformation processes.InO.Bar-Yosef,L.Meignen,&R.M.Albert(Eds.), KebaraCave,MtCarmel,Israel:the MiddleandUpperPaleolithicArchaeology,partI (pp.91– 122).Cambridge:PeabodyMuseum,Harvard UniversityPress. HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 773

PAGE 36

Mentzer,S.M.(2014).Microarchaeologicalapproachestotheidentificationandinterpretationofcombustion featuresinprehistoricarchaeologicalsites. JournalofArchaeologicalMethodandTheory,21 (3),616 – 668. Metcalfe,D.,&Heath,K.M.(1990).Microrefuseandsitestructure:thehearthsandfloorsoftheHeartbreak Hotel. AmericanAntiquity,55 (4),781 – 796. Miller,C.E.,&Sievers,C.(2012).AnexperimentalmicromorphologicalinvestigationofbeddingconstructionintheMiddleStoneAgeofSibudu,SouthAfrica. JournalofArchaeologicalScience,39 (10),3039 – 3051. Miller,C.E.,Conard,N.J.,Goldberg,P.,&Berna,F.(2010).Analysemicromorphologiquedestructuresde combustionexpérimentalesanthropiquementremaniées.InTaphonomiedelacombustiondesrésidus organiquesetdesstructuresdecombustionencontextearchéologique.ActesdelaTableRondedu27au 29mai2008(pp.25 – 37).Valbonne:Palethnology. Miller,C.E.,Goldberg,P.,&Berna,F.(2013).GeoarchaeologicalinvestigationsatDiepkloofRockShelter, WesternCape,SouthAfrica. JournalofArchaeologicalScience,40 (9),3432 – 3452. O ’ Connor,S.(1995).Carpenter ’ sgapRockshelter1:40,000yearsofAboriginaloccupationintheNapier Ranges,Kimberley,WA. AustralianArchaeology,40 (1),58 – 59. O ’ Connor,S.(1999). 30,000yearsofaboriginaloccupation,Kimberly,northwestAustralia.TerraAustralis (Volume14) .Canberra:ANHPublications. Oakley,K.(1956).Fireaspalaeolithictoolandweapon. ProceedingsofthePrehistoricSociety(NewSeries), 21 ,36 – 48. Playford,P.E.,Hocking,R.M.,&Cockbain,A.E.(2009). DevonianreefcomplexesoftheCanningBasin, WesternAustralia.GeologicalSurveyofWesternAustralia.Bulletin145 .Perth:GovernmentofWestern Australia. Preece,R.,Gowlett,J.A.,Parfitt,S.A.,Bridgland,D.,&Lewis,S.(2006).HumansintheHoxnian:habitat, contextandfireuseatBeechesPit,WestStow,Suffolk,UK. JournalofQuaternaryScience,21 (5),485 – 496. Pruetz,J.D.,&LaDuke,T.C.(2010).Briefcommunication:reactiontofirebySavannachimpanzees(Pan troglodytesverus)atFongoli,Senegal:conceptualizationof B firebehavior ^ andthecaseforachimpanzee model. AmericanJournalofPhysicalAnthropology,141 (4),646 – 650. Ramsey,C.B.,&Lee,S.(2013).RecentandplanneddevelopmentsoftheprogramOxCal. Radiocarbon, 55 (2 – 3),720– 730. Ramsey,C.B.,Scott,M.,&vanderPlicht,H.(2013).Calibrationforarchaeologicalandenvironmental terrestrialsamplesinthetimerange26 – 50kacalBP. Radiocarbon,55 (4),2029 – 2034. Rebollo,N.R.,Weiner,S.,Brock,F.,Meignen,L.,Goldberg,P.,Belfer-Cohen,A.,&Boaretto,E.(2011). NewradiocarbondatingofthetransitionfromtheMiddletotheUpperPaleolithicinKebaraCave,Israel. JournalofArchaeologicalScience,38 (9),2424 – 2433. Reimer,P.J.,Bard,E.,Bayliss,A.,Beck,J.W.,Blackwell,P.G.,BronkRamsey,C.,Buck,C.E.,Cheng,H., Edwards,R.L.,&Friedrich,M.(2013).IntCal13andMarine13radiocarbonagecalibrationcurves0-50, 000yearscalBP. Radiocarbon,55 (4),1869 – 1887. Roebroeks,W.,&Villa,P.(2011).OntheearliestevidenceforhabitualuseoffireinEurope. Proceedingsof th eNationalAcademyofSciences,108 (13),5209 – 5214. Rolland,N.(2004).Wastheemergenceofhomebasesanddomesticfireapunctuatedevent?Areviewofthe MiddlePleistocenerecordinEurasia. AsianPerspectives,43 (2),248 – 280. Ross,J.H.(1998).Erythrophleum.InW.R.Sykes(Ed.), FloraofAustralia(Volume12).Mimosaceae(excl. Acacia),Caesalpiniaceae .Melbourne:CSIRO. Rudner,E.,&Sumegi,P.(2002).Charcoalasremainofnaturalandhuman-setfiresofpalaeolithictimes — casestudyfromHungary. BARInternationalSeries,1089 ,11 – 18. Sandgathe,D.M.,Dibble,H.L.,Goldberg,P.,McPherron,S.P.,Turq,A.,Niven,L.,&Hodgkins,J.(2011). OntheroleoffireinNeandertaladaptationsinwesternEurope:evidencefromPechdel ’ AzéIVandRoc deMarsal,France. PaleoAnthropology ,216 – 242. Scheel-Ybert,R.(2002). Evaluationofsamplereliabilityinextantandfossilassemblages , BarInternational Series1063 (pp.9– 16).Oxford:Archaeopress. Scheel-Ybert,R.,Beauclair,M.,&Buarque,A.(2014).Theforestpeople:landscapeandfirewooduseinthe Araruamaregion,southeasternBrazil,duringthelateHolocene. VegetationHistoryandArchaeobotany, 23 (2),97– 111. Schiegl,S.,Goldberg,P.,Pfretzschner,H.-U.,&Conard,N.J.(2003).Paleolithicburntbonehorizonsfromthe SwabianJura:distinguishingbetweeninsitufireplacesanddumpingareas. Geoarchaeology,18 (5),541 – 565. 774 Whitauetal.

PAGE 37

Schiegl,S.,Stockhammer,P.,Scott,C.,&Wadley,L.(2004).Amineralogicalandphytolithstudyofthe MiddleStoneAgehearthsinSibuduCave,KwaZulu-Natal,SouthAfrica. SouthAfricanJournalof Science,100 (3 – 4),185 – 194. Shackleton,C.M.,&Prins,F.(1993).Charcoalyieldsfromdrywoodsamplesoftensavannatrees. TheSouth AfricanArchaeologicalBulletin ,42 – 44. Shahack-Gross,R.,Berna,F.,Karkanas,P.,Lemorini,C.,Gopher,A.,&Barkai,R.(2014).Evidenceforthe repeateduseofacentralhearthatMiddlePleistocene(300kyago)QesemCave,Israel. Journalof ArchaeologicalScience,44 (1),12– 21. Smith,M.,Vellen,L.,&Pask,J.(1995).VegetationhistoryfromarchaeologicalcharcoalsincentralAustralia: ThelateQuaternaryrecordfromPuritjarrarockshelter. VegetationHistoryandArchaeobotany,4 (3),171 – 177. Solé,A.,Allué,E.,&Carbonell,E.(2013).Hearth-relatedwoodremainsfromAbricRomaníLayerM (Capellades,Spain). JournalofAnthropologicalResearch,69 (4),535 – 559. Stahlschmidt,M.C.,Miller,C.E.,Ligouis,B.,Hambach,U.,Goldberg,P.,Berna,F.,Richter,D.,Urban,B., Serangeli,J.,&Conard,N.J.(2015).OntheevidenceforhumanuseandcontroloffireatSchöningen. JournalofHumanEvolution,89 ,181 – 201. Stiner,M.C.,Khun,S.L.,Weiner,S.,&Bar-Yosef,O.(1995).Differentialburning,recrystallization,and fragmentationofarchaeologicalbone. JournalofArchaeologicalScience,22 ,223 – 237. Stoops,G.,Marcelino,V.,&Mees,F.(Eds.).(2010). Interpretationofmicromorphologicalfeaturesofsoils andregoliths .Amsterdam:Elsevier. Stratus,L.G.(1989). Onearlyhominiduseoffire .Chicago:UniversityofChicagoPress. Sullivan,M.E.,&Hughes,P.J.(2013).QuaternarygeoarchaeologyintheOlympicDamdesertarea — a programoverview. QuaternaryAustralasia,30 (2),21– 23. Sullivan,M.,Field,T.L.,Hughes,P.,Marwick,B.,Przystupa,P.,&Feathers,J.K.(2012).OSLagesthat informlatephasesofduneformationandhumanoccupationnearOlympicDaminnortheasternSouth Australia. QuaternaryAustralasia,29 (1),4 – 11. Théry-Parisot,I.,Chabal,L.,&Chrzavzez,J.(2010).Anthracologyandtaphonomy,fromwoodgatheringto charcoalanalysis.Areviewofthetaphonomicprocessesmodifyingcharcoalassemblages,inarchaeologicalcontexts. Palaeogeography,Palaeoclimatology,Palaeoecology,291 (1),142 – 153. Toffolo,M.,Maeir,A.M.,Chadwick,J.R.,&Boaretto,E.(2012).Characterizationofcontextsfor radiocarbondating:resultsfromtheearlyIronAgeatTelles-Safi/Gath,Israel. Radiocarbon,54 (3 – 4), 371 – 390. Ulm,S.(2013). ‘ Complexity ’ andtheAustraliancontinentalnarrative:themesinthearchaeologyofHolocene Australia. QuaternaryInternational,285 ,182 – 192. Vannieuwenhuyse,D.(2016).Mindthegap:Geoarchaeologyandmicromorphologyofcaveandrockshelter sequencesfromtheKimberley,north-westAustralia.UnpublishedPhDthesis,UniversityofWestern Australia,Crawley. Vannieuwenhuyse,D.,O ’ Connor,S.,&Balme,J.(2017).SettlinginSahul:investigatingenvironmentaland humanhistoryinteractionsthroughmicromorphologicalanalysesintropicalsemi-aridnorth-west Australia. JournalofArchaeologicalScience,77 (GeoarchaeologyintheHumidTropics:Practice, Problems,Prospects,172 – 193. V aquero,M.,&Pastó,I.(2001).ThedefinitionofspatialunitsinMiddlePalaeolithicsites:thehearth-related assemblages. JournalofArchaeologicalScience,28 (11),1209 – 1220. Veitch,B.(1996).Evidenceformid-HolocenechangeintheMitchellPlateau,northwestKimberley,Western Australia.InP.Veth&P.Hiscock(Eds.), ArchaeologyofNorthernAustralia,Tempus (Vol.4,pp.66– 89). Brisbane:AnthropologyMuseum,UniversityofQueensland. Vidal-Matutano,P.(2016).Firewoodandhearths:MiddlePalaeolithicwoodytaxadistributionfromElSalt, stratigraphicunitXb(EasternIberia). QuaternaryInternational . https://doi.org/10.1016/j. quaint.2016.07.040 . Ward,I.A.K.(2004).ComparativerecordsofoccupationintheKeepRiverregionoftheeasternKimberley, northwesternAustralia. AustralianArchaeology,59 (1),1 – 9. Ward,I.A.K.,&Larcombe,P.(2003).Aprocess-orientatedapproachtoarchaeologicalsiteformation: applicationtosemi-aridNorthernAustralia. JournalofArchaeologicalScience,30 (10),1223 – 1236. Ward,I.A.K.,Fullagar,R.,BoerMah,T.,Head,L.M.,Taçon,P.S.C.,&Mulvaney,K.(2006).Comparison ofsedimentationandoccupationhistoriesinsideandoutsiderockshelters,KeepRiverregion,northwesternAustralia. Geoarchaeology,21 (1),1 – 27. Ward,I.A.K.,Winter,S.,&Dotte-Sarout,E.(2016).TheLostArtofStratigraphy?Aconsiderationof excavationstrategiesinAustralianIndigenousarchaeology. AustralianArchaeology,82 (3),263 – 274. HomeIsWheretheHearthIs:AnthracologicalandMicrostratigraphic... 775

PAGE 38

Wattez,J.(1988).Contributionàlaconnaissancedesfoyerspréhistoriquesparl'étudedescendres. Bulletinde laSociétéPréhistoriqueFrançaise,85 ,352 – 366. Wattez,J.(1992).DynamiquedeformationdesstructuresdecombustiondelafinduPaléolithiquemoyenau Néolithiquemoyen:approcheméthodologiqueetimplicationsculturelles.UnpublishedPhDthesis, UniversitédeParis1,Paris. Weiner,S.,Schiegl,S.,&Bar-Yosef,O.(1995).Recognizingashdepositsinthearchaeologicalrecord. Acta AnthropologicaSinica,14 ,340 – 351. Weiner,S.,Xu,Q.,Goldberg,P.,Liu,J.,&Bar-Yosef,O.(1998).EvidencefortheuseoffireatZhoukoudian, China. Science,281 (5374),251 – 253. Whitau,R.,Balme,J.,O ’ Connor,S.,&Wood,R.(2016a).WoodcharcoalanalysisatRiwiCave,Gooniyandi country,WesternAustralia. QuaternaryInternational(WoodCharcoalScience) . https://doi.org/10.1016/j. quaint.2016.07.046 . Whitau,R.,Dilkes-Hall,I.E.,Dotte-Sarout,E.,Langley,M.C.,Balme,J.,&O ’ Connor,S.(2016b).X-ray computedmicrotomographyandtheidentificationofwoodtaxaselectedforarchaeologicalartefact manufacture:rareexamplesfromAustraliancontexts. JournalofArchaeologicalScience:Reports,6 , 536 – 546. Woinarski,J.,Beggs,K.,Hempel,C.,Price,O.,&Fisher,A.(2002).Ironwood:anecologicalsummary.InR. Taylor(Ed.), IronwoodErythrophleumchlorostachysintheNorthernTerritory:aspectsofitsecologyin relationtotimberharvesting (pp.10 – 21).Palmerston:ParksandWildlifeNorthernTerritoryReporttothe DepartmentofAgriculture,FisheriesandForestryAustralia. Wood,R.(2015).Fromrevolutiontoconvention:thepast,presentandfutureofradiocarbondating. Journalof ArchaeologicalScience . https://doi.org/10.1016/j.jas.2015.02.019 . Wood,R.,Jacobs,Z.,Vannieuwenhuyse,D.,Balme,J.,O ’ Connor,S.,&Whitau,R.(2016).Towardsan accurateandprecisechronologyforthecolonizationofAustralia:theexampleofRiwi,Kimberley, WesternAustralia. PLoSOne,11 (9),e0160123. Wrangham,R.(2009).Catchingfire:Howcookingmadeushuman .NewYork:Basicbooks. Wrangham,R.W.,Jones,J.H.,Laden,G.,Pilbeam,D.,Conklin-Brittain,N.,Brace,C.L.,Bunn,H.T.,Roura, E.C.,Hawkes,K.,&O ’ Connell,J.(1999).Therawandthestolen:cookingandtheecologyofhuman origins1. CurrentAnthropology,40 (5),567 – 594. Wynjorrotj,P.,Flora,S.,Brown,N.,Jatbula,P.,Galmur,J.,Katherine,M.,&Wightmann,G.M.(2005). Jawoynplantsandanimals. NorthernTerritoryBotanicalBulletin,29 . Yunupingu,B.,Yunupingu-Marika,L.,Marika,D.,Marika,B.,Marika,B.,Marika,R.,&Wightman,G.M. (1995).Rirratjinguethnobotany:AboriginalplantusefromYirrkala,ArnhemLand,Australia. Northern TerritoryBotanicalBulletin,21 ,1 – 112. 776 Whitauetal.


printinsert_linkshareget_appmore_horiz

Download Options

close


  • info Info

    There are only PDFs associated with this resource.

  • link PDF(s)



Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.