Enhancement of bedrock permeability by weathering

Citation

Material Information

Title:
Enhancement of bedrock permeability by weathering
Series Title:
Earth-Science Reviews
Creator:
Worthington, Stephen R.H.
Davies, Gareth J.
Alexander Jr., E. Calvin
Publisher:
Elsevier
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Permeability ( local )
Weathering ( local )
Dissolution ( local )
Self-Organization ( local )
Lithology ( local )
Conceptual Model ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
The permeability of bedrock aquifers varies by more than four orders of magnitude between different lithologies, but the reasons for this large range remain unexplained. In this review, we examine the role that weathering plays in enhancing the permeability of the five major hydrolithologies, represented by limestone, basalt, granite, sandstone and shale. In limestone aquifers, rapid dissolution kinetics and congruent dissolution result in widespread permeability enhancement. Weathering is usually focused along fractures, and feedbacks between flow and dissolution result in self-organization into networks of channels that discharge at springs. Caves represent prominent examples of weathering. In silicate aquifers, slower dissolution kinetics and incongruent dissolution make it more difficult to predict permeability enhancement. However, positive correlations between permeability and both the solute concentrations and the dissolution rates of the five major lithologies suggest that weathering is a major factor that enhances permeability in silicate as well as in carbonate aquifers. This explains why the largest springs occur in the most permeable lithologies, why groundwater velocities > 10 m/d are common, and why microbial contamination is more common in bedrock aquifers than in unconsolidated sediments. Differences in weathering rates explain why limestone is much more permeable than shale, and why mafic igneous rocks such as basalt have higher permeabilities than felsic igneous rocks such as granite. Weathering appears to play an important role in enhancing permeability in most bedrock aquifers.
Original Version:
Earth-Science Reviews, Vol. 160 (2016-09).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.