Karst aquifer evolution in fractured, porous rock.

Citation

Material Information

Title:
Karst aquifer evolution in fractured, porous rock.
Series Title:
Water Resources Research
Creator:
Kaufmann, George
Braun, Jean
Publisher:
American Geophysical Union
Publication Date:
Language:
English

Subjects

Genre:
serial ( sobekcm )

Notes

Abstract:
The evolution of flow in a fractured, porous karst aquifer is studied by means of the finite element method on a two‐dimensional mesh of irregularly spaced nodal points. Flow within the karst aquifer is driven by surface recharge from the entire region, simulating a precipitation pattern, and is directed toward an entrenched river as a base level. During the early phase of karstification both the permeable rock matrix, modeled as triangular elements, and fractures within the rock matrix, modeled as linear elements, carry the flow. As the fractures are enlarged with time by chemical dissolution within the system calcite–carbon dioxide–water, flow becomes more confined to the fractures. This selective enlargement of fractures increases the fracture conductivity by several orders of magnitude during the early phase of karstification. Thus flow characteristics change from more homogeneous, pore‐controlled flow to strongly heterogeneous, fracture‐controlled flow. We study several scenarios for pure limestone aquifers, mixed sandstone‐limestone aquifers, and various surface recharge conditions as well as the effect of faulting on the aquifer evolution. Our results are sensitive to initial fracture width, faulting of the region, and recharge rate.
Original Version:
Water Resources Research, Vol. 36, no. 6 (2000-02-01).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.