Physics-based fine-scale numerical model of a karst system (Milandre Cave, Switzerland)

Citation

Material Information

Title:
Physics-based fine-scale numerical model of a karst system (Milandre Cave, Switzerland)
Series Title:
Hydrogeology Journal
Creator:
Vuilleumier, Cécile
Jeannin, Pierre-Yves
Perrochet, Pierre
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Groundwater Hydraulics ( local )
Karst ( local )
Numerical Modeling ( local )
Switzerland ( local )
Tracer Tests ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
In karst aquifers, groundwater flow is often turbulent and occurs in variably saturated conduits. This implies a nonlinear response to recharge events which cannot be reproduced with the tools commonly used for groundwater flow modeling. Recent studies have shown the usefulness of using conduit flow models to simulate flow in karst systems. However existing models are built on abstract representations of the actual conduit network or at a rather coarse resolution. Such models cannot provide information on local flow conditions in the conduits or be used to simulate mass transport. In the catchment of the Milandre Cave, in the Jura Mountains of Switzerland, a good portion of the active drainage network is accessible by caving, which opens the possibility for a distributed fine-scale numerical model. This report presents the development of a hydraulic model of the downstream part of this system (1.5 km × 0.5 km) using EPA SWMM 5. The network geometry is based on a detailed cave survey. Calibration is achieved by fitting the observed hydraulic head vs. flow-rate curves. The model performs well when compared against the hydraulic heads that were monitored throughout the system. Simulated transit times are also in line with tracer test results. This confirms that the model reproduces well the physics of flow in this karst system, while being spatially distributed at a fine scale (median element size of 6 m). It can thus provide information on local flow conditions in the conduits at various water stages and be used to address mass transport problems.
Original Version:
Hydrogeology Journal, Vol. 27, no. 7 (2019-07-29).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.