MICROBIAL METABOLIC STRUCTURE IN A SULFIDIC CAVE HOT SPRING: POTENTIAL MECHANISMS OF BIOSPELEOGENESIS

Citation

Material Information

Title:
MICROBIAL METABOLIC STRUCTURE IN A SULFIDIC CAVE HOT SPRING: POTENTIAL MECHANISMS OF BIOSPELEOGENESIS
Series Title:
Journal of Cave and Karst Studies
Creator:
Barton, Hazel
Luiszer, Frederick
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Speleogenesis ( local )
Fairy Cave System ( local )
Microbial Community ( local )
Biospeleogenesis ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Glenwood Hot Springs, Colorado, is a sulfidic hot-spring that issues from numerous sites. These waters are partially responsible for speleogenesis of the nearby Fairy Cave system, through hypogenic sulfuric-acid dissolution. To examine whether there may have been microbial involvement in the dissolution of this cave system we examined the present-day microbial flora of a cave created by the hot spring. Using molecular phylogenetic analysis of the 16S small subunit ribosomal RNA gene and scanning electron microscopy, we examined the microbial community structure within the spring. The microbial community displayed a high level of microbial diversity, with 25 unique phylotypes representing nine divisions of the Bacteria and a division of the Archaea previously not identified under the conditions of temperature and pH found in the spring. By determining a putative metabolic network for the microbial species found in the spring, it appears that the community is carrying out both sulfate reduction and sulfide oxidation. Significantly, the sulfate reduction in the spring appears to be generating numerous organic acids as well as reactive sulfur species, such as sulfite. Even in the absence of oxygen, this sulfite can interact with water directly to produce sulfuric acid. Consequently, such metabolic activity may represent a mechanism by which biospeleogenesis can lead to passage enlargement through sulfuric acid production without the influx of oxygen or oxygen-rich waters. Such activity may lead to higher levels of sulfuric acid production than could be accounted for by inorganic hydrogen sulfide oxidation. Therefore, rather than generating localized pockets of speleogenesis within cave systems, such biogenic sulfuric acid production may have a regional impact on water chemistry and subsequent speleogenesis of large cave systems.
Original Version:
Journal of Cave and Karst Studies, Vol. 67, no. 1 (2005-04).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.