Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications

Citation

Material Information

Title:
Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications
Series Title:
FEMS Microbiology Ecology
Creator:
Wilhartitz, Inés C.
Kirschner, Alexander K.T.
Stadler, Hermann
Herndl, Gerhard J.
Dietzel, Martin
Latal, Christine
Mach, Robert L.
Farnleitner, Andreas H.
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Groundwater ( local )
Heterotrophic Prokaryotic Production ( local )
Karst Spring Water ( local )
Clastic Sediments ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Spring waters from alpine karst aquifers are important drinking water resources. To investigate in situ heterotrophic prokaryotic production and its controlling factors, two different alpine karst springs were studied over two annual cycles. Heterotrophic production in spring water, as determined by [3H]leucine incorporation, was extremely low ranging from 0.06 to 6.83 pmol C L−1 h−1 (DKAS1, dolomitic-karst-spring) and from 0.50 to 75.6 pmol C L−1 h−1 (LKAS2, limestone-karst-spring). Microautoradiography combined with catalyzed reporter deposition-FISH showed that only about 7% of the picoplankton community took up [3H]leucine, resulting in generation times of 3–684 days. Principal component analysis, applying hydrological, chemical and biological parameters demonstrated that planktonic heterotrophic production in LKAS2 was governed by the respective hydrological conditions, whereas variations in DKAS1 changed seemingly independent from discharge. Measurements in sediments recovered from LKAS2, DKAS1 and similar alpine karst aquifers (n=12) revealed a 106-fold higher heterotrophic production (average 19 μmol C dm−3 h−1) with significantly lower generation times as compared with the planktonic fraction, highlighting the potential of surface-associated communities to add to self-purification processes. Estimates of the microbially mediated CO2 in this compartment indicated a possible contribution to karstification.
Original Version:
FEMS Microbiology Ecology, Vol. 68, no. 3 (2009-06-01).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.