Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy)


previous item | next item

Citation
Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy)

Material Information

Title:
Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy)
Series Title:
NHESS
Creator:
Polemio, M.
Casarano, D.
Limoni, P. P.
Publisher:
Copernicus Publications
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Karst ( local )
Karstic Aquifer ( local )
Apulia, Southern Italy ( local )
Italy ( local )
Groundwater Contamination ( local )
Aquifer Vulnerability Assessment Methods ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Karstic aquifers are well known for their vulnerability to groundwater contamination. This is due to characteristics such as thin soils and point recharge in dolines, shafts, and swallow holes. In karstic areas, groundwater is often the only freshwater source. This is the case of the Apulia region (south-eastern Italy), where a large and deep carbonate aquifer, affected by karstic and fracturing phenomena, is located. Several methods (GOD, DRASTIC, SINTACS, EPIK, PI, and COP) for the assessment of the intrinsic vulnerability (Iv) were selected and applied to an Apulian test site, for which a complete data set was set up. The intrinsic vulnerability maps, produced using a GIS approach, show vulnerability from low to very high. The maximum vulnerability is always due to karstic features. A comparison approach of the maps is proposed. The advantages and disadvantages of each method are discussed. In general terms, three groups can be distinguished. The GOD method is useful for mapping large areas with high vulnerability contrasts. DRASTIC and SINTACS are "any-type aquifer" methods that have some limitations in applications to karstic aquifers, especially in the case of DRASTIC. EPIK, PI, and COP, which were designed to be applied to carbonate or karstic aquifers, supply affordable results, highly coherent with karstic and hydrogeological features, and reliable procedures, especially in the case of PI and COP. The latter appears simpler to apply and more flexible in considering the role of climatic parameters. If Iv of each method is considered, the highest variability is observed in cells in the neighbourhood of karstic features. In these spatial domains, additional efforts to define more reliable and global methods are required.
Original Version:
NHESS, Vol. 9, no. 4 (2009-08-19).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This item is licensed with the Creative Commons Attribution License. This license lets others distribute, remix, tweak, and build upon this work, even commercially, as long as they credit the author for the original creation.
Resource Identifier:
K26-05111 ( USFLDC: LOCAL DOI )
k26.5111 ( USFLDC: LOCAL Handle )

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009www.nat-hazards-earth-syst-sci.net/9/1461/2009/Authors2009.ThisworkisdistributedundertheCreativeCommonsAttribution3.0License. NaturalHazards andEarth SystemSciences KarsticaquifervulnerabilityassessmentmethodsandresultsatatestsiteApulia,southernItaly M.Polemio,D.Casarano,andP.P.LimoniCNR-IRPI,Dept.ofBari,ViaAmendola122/I,70126Bari,ItalyReceived:19November2008–Revised:10August2009–Accepted:10August2009–Published:19August2009 Abstract.Karsticaquifersarewellknownfortheirvulnera-bilitytogroundwatercontamination.Thisisduetocharacter-isticssuchasthinsoilsandpointrechargeindolines,shafts,andswallowholes.Inkarsticareas,groundwaterisoftentheonlyfreshwatersource.ThisisthecaseoftheApuliare-gionsouth-easternItaly,wherealargeanddeepcarbonateaquifer,affectedbykarsticandfracturingphenomena,islo-cated.SeveralmethodsGOD,DRASTIC,SINTACS,EPIK,PI,andCOPfortheassessmentoftheintrinsicvulnerabil-ityIvwereselectedandappliedtoanApuliantestsite,forwhichacompletedatasetwassetup.Theintrinsicvulnera-bilitymaps,producedusingaGISapproach,showvulnera-bilityfromlowtoveryhigh.Themaximumvulnerabilityisalwaysduetokarsticfeatures.Acomparisonapproachofthemapsisproposed.Theadvantagesanddisadvantagesofeachmethodaredis-cussed.Ingeneralterms,threegroupscanbedistinguished.TheGODmethodisusefulformappinglargeareaswithhighvulnerabilitycontrasts.DRASTICandSINTACSare“any-typeaquifer”methodsthathavesomelimitationsinapplica-tionstokarsticaquifers,especiallyinthecaseofDRASTIC.EPIK,PI,andCOP,whichweredesignedtobeappliedtocar-bonateorkarsticaquifers,supplyaffordableresults,highlycoherentwithkarsticandhydrogeologicalfeatures,andreli-ableprocedures,especiallyinthecaseofPIandCOP.Thelatterappearssimplertoapplyandmoreexibleinconsider-ingtheroleofclimaticparameters.IfIvofeachmethodisconsidered,thehighestvariabilityisobservedincellsintheneighbourhoodofkarsticfeatures.Inthesespatialdomains,additionaleffortstodenemorereliableandglobalmethodsarerequired. Correspondenceto:M.Polemiom.polemio@ba.irpi.cnr.it 1IntroductionKarsticaquifersandenvironmentsarehighlyvulnerabletocontaminationandtoanthropogenicmodications.Thevul-nerabilityofkarsticaquiferstocontaminationisduetopar-ticularcharacteristicssuchasthinsoilsandpointrechargeindolines,shafts,andswallowholesCOST,2003.Theres-idencetimeofkarsticgroundwaterisgenerallyshorter,andcontaminationtendstobefasterandsimpler,thanfornon-karsticgroundwaterKacaroglu,1999.Specicmonitoringcriteriashouldbeusedforkarsticgroundwater;samplinginkarstsshouldbemorefrequent,especiallyinthewakeofstorms,rainyperiods,orsnowmelts,ratherthanbeingcar-riedoutonaregularmonthlyorseasonalbasisVrba,1988;Polemio,2005;Polemioetal.,2009.Anthropogenicmodicationstokarstaquifersaregener-allycausedbypopulationincreasesandtheassociatedde-mandsforland,asisthecaseofkarsticareasoftheApu-liaregioninsouth-easternItalyFig.1FordandWilliam,2007;Polemio,2009.Theunplannedenlargementofur-banandruralareasisthemainexampleofthis.Inaddi-tiontotheeffectsofpollutionfromagriculturalactivities,farmingimprovementscanprovokeothernegativeimpacts.Firesandtheclearingofforests,associatedwiththeadventofmachinery,havebeenwidelyemployedtoprovidelandsuitableforfarming,andhavealsoreducedgrazingareas.Quarryingactivitieshavedisruptedthekarsticlandscape,de-stroyingtheepikarstzoneandoftencausingthedestructionofcaves.Othermodicationscanbecausedbythemis-managementofwaterresourcesoroodrisks;theuseofsinkholestoaccommodatethedischargeofoodwaterscantriggertheformationofdolines,suddensubsidence,cavecollapse,andgroundwatercontaminationPariseandPas-cali,2003;PolemioandLimoni,2006.Allthesechangescauseseveredegradationsofthetypicallandscapeandofthe PublishedbyCopernicusPublicationsonbehalfoftheEuropeanGeosciencesUnion.

PAGE 2

1462M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods Fig.1.GeologicalschemeoftheApulianregionLegend:1recentclasticcoverPliocene-Pleistocene,2bioclasticcarbonaterocksPaleogeneandcalcarenitesMiocene,3scarpandbasinchert-carbonaterocksupperJurassic-Cretaceous,4carbonateplatformrocksupperJurassic-Cretaceous. karsticenvironment,theeffectsofwhichareoftensoilero-sion,barekarstonslopes,rockydesertication,andchangesoftheinltrationrates.Groundwatervulnerabilitygenerallyincreasesastheprotectivetopsoilisremovedand,inquarryareas,aswaterdepthisreduced.Theeffectsongroundwateravailabilityarecomplexandgenerallynegative.Thesocioeconomicdevelopmentofaregiondependsalsoontheavailabilityofgoodqualitywater.Forthisreason,inrecentdecadestherehasbeenaworldwideincreaseinthede-mandforwater.InsouthernEurope,waterconsumptionhasclimbedfrom7.1km3/yearin1900tovalues15timeshigherin1995Shiklomanov,1999.Furtherincreasesareexpectedinfutureyears,astheincreasecanbeassessedabout17timesat2002onthebasisofwebdatabasesWorldBank.InmanyEuropeancountries,50%ofthedrinkingwatersupplycomesfromkarsticgroundwater,andinmanyareasitistheonlyavailablesourceCOST,2003,asinthecaseoftheApuliaregionFig.1.Aroundtheworld,runoffyieldisuptotentimesgreaterthangroundwaterowUNESCO,2004exceptinkarsticareas,wherethelatterprevails.ThisisthecaseinMur-giaandSalentoFig.1,wherethegroundwaterdischargeismorethanthedoublethesurfacerunoff,notwithstandingthecurrentoverexploitationbywellsPolemioandLimoni,2006.Themodicationstothequalityandquantityofcur-rentcoastalkarsticgroundwaterdischargecanhavesevereeffectsonthehydrologicalandecologicalequilibriumoftheseaandofwetlandslocatednearthecoastUNESCO,2004.Forallthesereasons,itisimportanttopreserveground-waterquality,andparticularlytopreventcontaminationofkarsticaquifers.Complexbutcosteffectiveproceduresthatarealsosimpleenoughtobeusedbywaterandlandmanagersandstakeholders,withoutspecichydrogeologi-calknowledge,needtobedened.Regionalmappingofin-trinsicgroundwatervulnerabilityisatoolsuitableforthesepurposes,andspecicallyforgroundwaterresourcesman-agementandprotectionzoningCivita,1994;COST,2003.Theassessmentofgroundwatervulnerabilityquantiesthesensitivityofanaquifersystemtogroundwaterdegrada-tionduetohumanactivitiescarriedoutatthegroundsurface.Groundwatervulnerabilitycannotbedirectlymeasuredinsitu;itisacomplexfunctionofhydrogeologicalcharacteris-ticsofthenaturalenvironmentthatactsasaprotectionsys-temfromcontaminationGoguandDassargues,2000Ta-ble1.Theassessmentofgroundwatervulnerabilityshouldac-countforthepeculiaritiesandstrongheterogeneityofkarstsystems,includingpointordiffuserecharge,rapidowthroughhighpermeabilityconduitsandfractures,andslowowinlowpermeabilityvolumesDoerigeretal.,1999.Generalresearchonvulnerabilityassessmentbeganinthe1960sMargat,1968.InrecentyearsithasfocusedontheoptimaladaptationornewdenitionofmethodsforkarstaquifersCOST,2003;Ducci,2007.Arelevantcontribu-tionwasthedenitionoftheso-calledEuropeanapproachCOST,2003.TheEuropeanapproachtovulnerability,haz-ardandriskmapping,basedonanorigin-pathway-targetschematisation,wasdenedtobegeneral,exibleandnon-prescriptive.Itisabasisthatcanbeadaptedtodenemeth-odswhichareappropriateforspecicEuropeankarstareas,fromAlpstolowlands,andfromMediterraneantocontinen-talareas.Thispaperoffersanewcontributiontotheseef-forts,comparingthecharacteristics,procedures,andafford-abilityofseveralmethodsforintrinsicvulnerabilityassess-mentCivita,1994,includingGODFoster,1987,DRAS-TICAlleretal.,1987,SINTACSCivitaandDeMaio,1997,EPIKDoerigerandZwahlen,1997,PIGoldschei-deretal.,2000,andCOP,basedontheEuropeanapproachCOST,2003.WefocusedonmethodsthathavebeenwidelyappliedandadaptedforuseinanykindofaquiferGOD,DRASTIC,andSINTACS,andthathavebeende-nedforkarsticaquifersEPIK,PI,andCOP.Thestudywasperformedinatestarea,locatedinthekarsticMurgiaaquiferFig.1,hydrogeologicallycharac-terisedwithintheframeworkoftheprojectWATER-MAP,whichwassupportedbyEuropeanfundsthroughanINTER-REGIIIBinitiativePolemioetal.,2007;Corbellietal.,2008. Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009www.nat-hazards-earth-syst-sci.net/9/1461/2009/

PAGE 3

M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods1463 Table1.Methodsandusedparametersforthegroundwatervulnerabilityassessment. Method ParameterGODDRASTICSINTACSEPIKPICOP TopogracslopeXXXXXStreamnetworkXXXCharacteristicsofsoilsXXXXXNetrechargeXXXXXCharacteristicsunsaturatedzoneXXXXXXDepthtowaterXXXXHydrogeologicalfeaturesXXXXXAquiferhydraulicconductivityXXAquiferthicknessXLanduseXXXX 2MethodsofassessmentandcomparisonParametricmethodsofdifferenttypeswereselectedGoguandDassargues,2000.GOD,PI,andCOPcanalmostbeconsideredratingsystemmethodsinwhichratings,whicharelinkedtoxedrangesofeachselectedparameter,aresummedormultipliedtodenethevulnerabilityindex.DRASTIC,SINTACS,andEPIKareparameterweightingandratingmethods,astheyintroduceparameterweightsthatexpressthecontributionofeachparametertothevulnerabil-ity.AllthesemethodsassessavulnerabilityindexIvoraprotectionfactor.TherangeofIvgenerallychangesforeachmethod,butinanycaseIvincreasesasthevulnerabilityincreases,whiledecreasesasthevulnerabilityincreases.ThevariabilityofIvisclassiedusingdifferentattributesasanexamplelow,moderate,high,andveryhighonthebasisofadenedsub-range.AllmethodsweredenedorcanbeeasilyadaptedtobeappliedinaGISenvironment.TheGODmethodFoster,1987considersthreeparame-ters:thegroundwateroccurrence,thelithologyofthelayersoverlyingtheaquifer,andthedepthtogroundwaterdistin-guishingunconnedorconnedconditions.Theratingofeachparameterisdenedfrom0to1.Theoverlyinglithol-ogycontributestothevulnerabilityindexonlyinthecaseofunconnedaquifersinotherwords,isequalto1forothertypesofaquifers.Ateachpoint,Ivisobtainedbymultiply-ingtheratingsofthethreeparameters;Ivrangesfrom0to1.TheUSEnvironmentalProtectionAgencydevelopedtheDRASTICmethodAlleretal.,1987.Thismethodconsid-erssevenparameters:depthtowater,netrecharge,aquifermedia,soilmedia,topography,impactofthevadosezone,andhydraulicconductivity.Eachparameterisratedintherange1to10.Ateachpoint,parameterswithavariablecontinuousvaluesuchasdepthtowaterandnetrechargeassumearankingvalueonthebasisofplottedrelationships.Therelationshipsconsiderdifferenttypesofaquifersandsoilmediainwhichtheratingchoicesarebasedonqualitativeat-tributesdescribedbytheauthorsbutassignedbytheoperator.Parameterweightfactorsaredenedtobalanceandenhancethecontributionofeachparametertothewholevulnerability.ThenalIvvalueisaweightedsumofthesevenparameters.DRASTICprovidestwoweightclassications:onefornor-malconditions,usedinthisarticle,forwhichIvrangesfrom23to230,andtheotheroneforconditionswithintenseagri-culturalactivityGoguandDassargues,2000.Theformer,calledthepesticideDRASTICindex,representsaspecicvulnerabilityassessmentapproach.Inaspecicarea,onlyonesetofweightsshouldbeused.TheSINTACSmethodwasdenedinanattempttoim-provetheDRASTICmethod,andusesalmostthesamepa-rametersCivita,1994;CivitaandDeMaio,1997.SIN-TACSwasdenedbyItalianhydrogeologistsonthebasisofnumeroustestsiteslocatedindifferenthydrogeologicalandclimaticconditions.ThemainpurposewastodeneamethodversatileenoughtobehomogeneouslyappliedtoeachItalianenvironmentCivitaandDeMaio,1997.SometestsiteswerealsolocatedinApuliankarsticareasPolemioandRicchetti,2001;Cotecchiaetal.,2002.Themethodpe-culiarityistheuseofvesetofweightsorstringsnormalimpact,relevantimpact,drainage,karst,ssuredaquifertobeusedsimultaneouslyinlargeareas,andalsoifdominatedbydifferentprevalentconditionsasinthecaseofzonesthataredeeplymodiedbyanthropogenicactivities,asinur-banareasorduetointensiveuseofchemicalsinagriculture,andofdifferenttypesofaquiferssuchasporous,ssured,orkarsticaquifers.Weightsareaveryeffectivetoolusedtoadaptthemodeltodifferentscenarios,increasingtheim-portanceofsomeparameterandminimizingothersCucchietal.,2008.Ineachcellinwhichtheareaisdiscretised,thesetofweightsisselectedonthebasisofconditionsthatmainlycontributetothelocalvulnerability.Ivrangesfrom26to260anditisclassiedinsixclasses.SomeauthorsproposedamodicationoftheSINTACSscorecriteriainthecaseofholokarstareas;nevertheless,uptonowthismodi-cationhasonlybeentestedinAlpineenvironmentCucchietal.,2008. www.nat-hazards-earth-syst-sci.net/9/1461/2009/Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009

PAGE 4

1464M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods TheEPIKmethodwasdenedinSwitzerlandtobeap-pliedonlytothevulnerabilityassessmentofkarstaquifersDoerigerandZwahlen,1997;Doerigeretal.,1999.Fourmainparametersareconsideredandmapped:epikarstE/,protectivecoverP/,inltrationconditionsI/,andkarstnetworkdevelopmentK/.TheEparameterconsid-erstheeffectsintermsofwaterstorageduringrainfallorsnowmeltandoftheconcentrationofowtowardverti-calconduits;itisassessedonthebasisofgeomorphologi-calmapsconsideringthreesub-parameters.ThePparam-eterdescribestheprotectivefunctionofthelayersbetweenthegroundsurfaceandthegroundwatertable,mainlysoil,subsoil,non-karstrock,andunsaturatedkarstrock.TheIparameterisassessedbydistinguishingconcentratedinl-trationareasandareasinwhichdiffuseinltrationprevails,wheretheslopeandlandusearethekeysub-factors.Krepresentsthedegreeofkarstnetworkdevelopmentintheaquifer.Thecontributionofeachparametertoisassessedbymultiplyingeachparameterbyaweightingfactorandaddingthefourcontributions.rangesfrom9to34anditisrankedinfourclasses.Theclassescanbelabelledonthebasisofthelogicallowprotection-highvulnerabilitycri-terion:aprotectionfactorof34indicatesthehighestprotec-tionandalsoaveryloworminimumvulnerability.Thevul-nerabilityindexisnotexplicitlydened,butweproposetodeneIv=34)]TJ/F23 9.963 Tf 7.771 0 Td[(.PracticalexperienceshighlightEandIaretheprevalentparametersintheEPIKIvassessmentCOST,2003.ThePImethodwasdenedinaprojectfoundedandre-alisedbyGermanInstitutionsconsideringtheexperienceofEPIKmethodGoldscheideretal.,2000.ThePfactorconsiderstheprotectivefunctionofthelayersbetweenthegroundsurfaceandgroundwater.TheIfactordescribestheinltrationconditions.ThePfactorrangesfrom1to5andcanbecalculatedusingalogicalschemabasedontabledval-uesofconsideredlocalconditions,suchastopsoil,recharge,subsoil,lithology,andfracturingHoltingetal.,1995.TheIfactorrangesfrom0to1anddescribestheinltrationcon-ditions,particularlythedegreetowhichtheprotectivecoverisbypassedasaresultoflateralsurfaceandsubsurfaceowinthecatchmentofswallowholesandsinkingstreams.TheprotectionfactoristheproductofPandI,andrangesfrom0to5.Itissubdividedintoveclassesofprotec-tion/vulnerability.Thevulnerabilityindexisnotdened,butweproposetodeneIv=5)]TJ/F23 9.963 Tf 7.771 0 Td[(.ThemethodisalsousedasbasisforhazardandriskmappingCOST,2003;MimiandAssi,2009.ThePImethodinspiredtheEuropeanap-proachwhichconsidersfourparameters:overlyinglayersO/,concentrationofowC/,precipitationregimeP0/,andKCOST,2003.TheparametersOandCarerespec-tivelysimilartoparametersPandIofthePImethod.TheCOPmethodrepresentsonepossiblewayinwhichtheEu-ropeanapproachmaybeappliedDalyetal.,2002;COST,2003.TheCOPmethodconsidersthespecialhydrogeolog-icalpropertiesofkarsts,andcanbeappliedbyconsideringvariableclimaticconditionsanddifferenttypesofcarbonateaquifers,bothdiffuseandconduitowsystemsVasetal.,2006.TheCOPacronymisjustiedbytheuseofthreeparametersoftheEuropeanapproach:C,O,andP0.Theconceptualbasisofthismethodistoassesstheroleofthenaturalprotectionofgroundwaterdeterminedbytheproper-tiesoftheoverlyingsoilsandtheunsaturatedzonetheOfactor,ofprotectionweakeningduetodiffuseorconcen-tratedinltrationprocessestheCfactor,andofthevariableclimaticconditionstheP0factor.TheP0factorisinnova-tiveasittakesintoaccountnotonlythemeanrainfallbutalsofactorsthatinuencetherateofinltration,i.e.,thefre-quency,temporaldistribution,duration,andintensityofex-tremerainfallevents.Theauthor'snalvulnerabilityindexIaisdeterminedbymultiplyingthescoreofeachparame-ter.IaisaprotectionindexifIaincreases,thevulnerabilitydecreases.Iarangesfrom0to15andisgroupedintovevulnerabilityclasses:0.5,0.5,1,2,and4Dalyetal.,2002;COST,2003.WeproposetheuseofIbvalues,denedfrom0to100,onthebasisofveclasses,bystretch-ingIavaluesofeachclasswithalineartransformationforIa<1,andwithalogarithmictransformationforIa>1.Inordertocomparetheresultsobtainedwiththediffer-entmethods,itwasnecessarytodeneastandardclassica-tion,inwhichtheassessedvulnerabilitycanrangefromtheminimumtothemaximumpredispositionofgroundwatertosuffercontaminationoriginatingfromsurfaceorshallowan-thropogenicactivities.In,thenormalisedvulnerabilityindex,wascalculatedbythenormalisationofIvforeachmodel.Thenormalisationwasrealisedforeachmethodbyattribut-ingIn=0totheminimumIvscoreandIn=100tothehighestIvscore.ThenormalizationintheIrangewasperformedfollowingalinearlawforDRASTIC,SINTACS,EPIK,andPI.InthecaseoftheCOPmethod,InwascalculatedasIn=100)]TJ/F47 9.963 Tf 7.771 0 Td[(Ib.Inwasanalysedfortheentiresetofmethodsusingthreesteps.Thersttwostepsconsideredtheresultsofeachmethod.Therststepwasbasedontheuseofsimplestatis-ticaltools,suchasthecalculationofminimum,mean,maxi-mum,standarddeviation,range,andthespatialoccurrenceoftheInvalues.Thesecondstepwasthequalitativeanalysis,whichutilisedInmapsandthemapsofthemainhydroge-ologicalparameters.Inthiscaseavisualapproach,whichcanbedenedasexpert-eye-scanning,wasused.Themainpurposewastorecognisetheroleoftheconsideredhydro-geologicalparametersonthespatialvariabilityofIn.Thethirdstepwasbasedoncorrelationanalysisbetweenpairsofmethods,andallowedthequanticationofthecorrelationbetweentheInassessmentsineachcellwiththeconsideredmethods. Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009www.nat-hazards-earth-syst-sci.net/9/1461/2009/

PAGE 5

M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods1465 3ThestudyareaTheApuliankarsticareasaremadeupofMesozoicrocksoftheApulianforelandFig.1.TheApulianplatformemergedattheendoftheCretaceousandbecamepartoftheforelandofthesouthernApenninechain.Itwascom-posedofthreestructuraldomains:Gargano,Murgia,whichincludesthestudyarea,andSalento.Thesestructuralhighsweretransformedintoislandsbysubsidenceduringthemid-dlePliocene.Transgressionledtothewidespreaddeposi-tionofTertiary-QuaternaryformationspartiallycoveringthecarbonaticplatformofMurgiaandSalentowiththinstrataofsand,conglomerates,calcarenites,limestones,andclays.FromthemiddlePleistoceneonwards,thewholeregionbe-gantobeupliftedCotecchiaetal.,2005.Apuliahostslargecoastalkarsticaquifersthatformthemainregionalwatersource,whichisveryoftenaffectedbydegradationinqualityduetoseawaterintrusionPolemioetal.,2009.TheApuliankarsticaquifersarehighlypermeableduetofracturinganddissolutionwellbelowthecurrentsealevel,wheregroundwaterowmainlyhappens.TheMurgiamaximumheight680ma.s.l.isalargeasymmetrichorstaffectedbytwoneotectonicfaultsystemsNW-SEandNE-SW.Becauseofthesefaults,themorpho-logicalstructureslopesdowntowardstheAdriaticSeaandtowardstheadjoiningregions,bymeansofasuccessionofstep-shapedledgesboundedbysmallfaultthrows.ThekarstenvironmentconsistsofplatformCretaceouslimestoneanddolostonecoveredwiththinlayersofPliocene-Quaternaryrocksandsoils.Thecarbonaterockisbedded,jointed,andsubjecttokarstphenomenaPolemio,2005.ThetestsiteFig.2,aslargeportionsofMurgia,ischaracterisedbydevelopedkarstlandformsthatformanetworkduetothechemicaldissolutionoflimestoneGrassi,1983.Asare-sult,anundergroundnetworkofcavities,caves,andcon-duitshasdeveloped,someofwhichareverylargeRegionePugliaa/.Thelandscapeistypicallylow-reliefkarst,charac-terisedbymanydolinesandbyveryat-bottomvalleyslo-callycalledlamelledwiththinalluvialdeposits;mainlyresidualclayeydepositsfromkarstprocessestheso-calledterrerosseanddetritus.Outsidethetestsiteinthesouth-westernMurgiasector,typicaldeepcanyonvalleys,calledgravine,canbeobservedPariseandPascali,2003.Valleysandwaterlinesaretheremnantsoftheoriginalhydrographicnetwork,whichisdiscontinuousatpresent.ThehighMur-giaplateauhigherthan300ma.s.l.isdominatedbyclearkarsticfeaturesandbytheexistenceofdiscontinuousandthintopsoillayerslessthan50cm,mainlyresidualclayeysoilsandlimestonepebbles.MovingfromtheinlandtotheAdriaticcoastanddecreasinginaltitude,theshallowkarsticfeaturesarelessevidentduetotheprogressivelymorecon-tinuousandoftenthickertopsoilcoverProvinciadiBari;RegionePuglia,1999. Fig.2.GeologicalmapofthetestsiteLegend:1Cave,2Do-line/Sinkhole,3Drainagepattern,4Limitofareas,indicatedbyhachure,dischargingoutsidethekarstregion,5Fault,6Piezo-metriccounturlinema.s.l.,7Road,8Urbanarea,9AlluvialdepositsMidlleandUpperPleistocene-Olocene,10CarbonatesuccessionsoftheCretaceousformationstheCalcareofAltamuraFormation–LateTuronian-MaastrichtianandtheCalcareofBariFormation–Valanginian-LowerTuronian. TestsiteanddataTheselectedtestsiteFig.2is78.2km2wide,andisapor-tionoftheMurgiaaquifer.Allkindsofgeological,hydro-geological,andclimaticfactorswereinvestigated.Themainsourcesofdataarebrieydescribed.Geological,hydrogeological,andchemical-physicalgroundwaterdatawerecollectedfrom250boreholes.Theinformationwasextractedfromavastarrayofsourcesfrompublicsourcesorinstitutionsandsecondlyfromprivatecompaniesanddatesbacktovariousperiodsoftime.Hydrogeologicaldata,wellpumpingtests,andpiezometricheadmeasurementswerecheckedandupgradedwithauthor'ssurveys.Thequalityofthehistoricaldatawascarefullyevaluatedconsideringthelocation,diameter,depthandscreenpositionofwells,date,typeofparameter,andmethodofmeasurementJousmaetal.,2006;Polemioetal.,2009.Afterthevalidationprocesswascompleted,lowqualitydataweredeletedfromthedataset.AllthedatacollectedforthisstudywereconvertedintodigitalformattobeimplementedinaGISforthevulnera-bilityassessment.Arelationalgeo-databasewasdesignedtopermitthesimultaneousanalysisofalltypesofdata. www.nat-hazards-earth-syst-sci.net/9/1461/2009/Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009

PAGE 6

1466M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods Table2.Statisticsofspatialvaluesofmorphological,climateandhydrogeologicalparametersinthetestsite.InltrationassessedonthebasisoftheSINTACSmethod;wetyears,denedasyearsinwhichtheprecipitationis15%aboveannualmeanvalue,areconsideredintheCOPmethodCOST,2003. Min.MeanMaximumStd Altitudema.s.l.90.3223.9330.044.4Slope0.01.822.71.9AnnualTemperatureC14.815.416.20.3Annualrainfallmm599.9643.5657.310.4Annualnetrainfallmm105.1139.8156.29.2Annualinltration.1/mm13.4105.3154.825.1Annualrainfallofwetyears.2/mm781.7838.5856.413.6Depthtowaterm158.2284.0443.864.1Hydraulicconductivitym/s110)]TJ/F43 7.572 Tf 5.906 0 Td[(4210)]TJ/F43 7.572 Tf 5.906 0 Td[(4310)]TJ/F43 7.572 Tf 5.906 0 Td[(3410)]TJ/F43 7.572 Tf 5.905 0 Td[(4 Theconsideredparametersyieldedsomeadditionaldatathathelpedincharacterisingtheaquifer,suchasthedepthtogroundwater,thethicknessoftheunsaturatedzoneandofthesaturatedaquifer,thehydraulicconductivity,andthetypeofgroundwaterow.Inordertoproducemapsofallthedif-ferentvariablesmeasuredintheboreholesandusefulinas-sessingvulnerability,thewelldatawereinterpolatedusingageostatisticalapproach.Asemi-variogramforeachvariablewasmadefrompointdatatodenetheinterpolationfunc-tion.Severalrastermaps,with10mresolution,werethencomputedforthedifferentvariablesusingkrigingtechniquesortheinversesquaredistancemethodDeutschandJuornel,1992andsoftwareSurfer,Arcview,Arcmap.Thetopographicaldataweremainlyobtainedfromof-cial1:25000:50000hardcopiesofmapsandfromdigitaldataprovidedbytheCartographicOfceRegionePugliab/.A10mgridwasusedfortheDEMcalculation,using5mspacedcontourlinesandbenchmarks.Eachgriddedcal-culationasanexample,thedistancefromasinkingstreamorthecatchmentsofkarsticfeatureswasrealisedusinga10mresolution.Geologicalinformationandkarsticfeaturesmainlydolines,swallowholes,caves,andsinkingstreamsweredenedusingofcial1:100000geologicalmaps,to-pographicalmaps,aerialphotoanalysis,publishedspeleo-logicalandmorphologicaldata,andauthor'seldinvestiga-tionRegionePugliaa;b/.LanduseandcoverweredenedconsideringdatadenedonthebasisofCorineclassicationRegionePugliab/.SoiltypesandthicknesseswereobtainedfrompedologicalmapsandpublisheddataderivedfromeldinvestigationsProvinciadiBari,RegionePuglia1999.Theactualandnetyearlyrainfall,thenumberofrainydays,therainfallrate,andotherhydrologicalcalculationswereper-formedbyinterpolatingdatafrom11gaugestations,usinginversesquareddistanceinterpolationtechniques.Theusedrainfallandtemperaturemonthlydataarefrom1921to2005.Thewetyears,denedasyearsinwhichtheprecipitationis15%aboveannualmeanvalueCOST,2003,wereidentiedforeachraingauge;usingthesameinterpolationalgorithm,therainfallmapofthewetyearswasobtainedTable2.Theelevationinthetestsiterangesfrom90to330ma.s.l.,andthemaximumdistancefromtheseaAdriaticSeais15km.TheclimateistypicallyMediterranean;themeanan-nualrainfallandtemperaturerangefrom600to657mmandfrom14.8to16.2C,respectively.Themeanannualrain-fallofthewetyearsrangesfrom782to856mm.Themeanannualvalueofrealevapotranspirationrangesfrom494to513mm,andthenetrainfallrangesfrom105to156mm.Theslopeisgenerallylowin96%ofareaislessthan6exceptwheremorphologicalscarpsareobserved,wheretheslopeisgreaterthan12.Aloamyclayeysoillessthan1mthickcoversthelimestonebedrock;thesoilcoverisgenerallythinornegligible<0.50mwiththeexceptionofanarrowarealocatedinthenorth-east%oftotalarea.Thicklayersofclaysoilarepresentalongthedrainagenetworkandinthedolines.Themeanspatialvalueofannualinltrationcanbeassessedequalto105mmonthebasisofSINTACSmethodTable2.AwideandthickaquiferislocatedinthecarbonaterocksofMurgia.Theaquiferisdividedintomorepermeablestrataduetothevariabledistributionoffracturedandkarstiedstrata,connedbetweenlesspermeablelevelsofvariousex-tentsandthicknesses,mainlyduetotectoniceventsthatfrac-turedthecarbonaterocksinadiscontinuousmannerandtothevariationofbaselevelofow.Thegroundwaterowisgenerallyconnedexceptalonganarrowcoastalstrip;faultsgovernthemajorpreferentialowpathsandseawaterintru-sion.Thehydraulicconductivityrangesaboutfrom10)]TJ/F43 7.572 Tf 5.906 0 Td[(4to10)]TJ/F43 7.572 Tf 5.906 0 Td[(3m/s,andthedepthtogroundwaterrangesfrom158to444mbelowthegroundsurface. Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009www.nat-hazards-earth-syst-sci.net/9/1461/2009/

PAGE 7

M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods1467 Fig.3.MapsofthevulnerabilitynormalisedindexInofthetestsite. 4ResultsFigure3showsthenalmapsofIn.TheInGODmapisnotshown,asInwasequalto20everywhere.Thishomoge-neousvaluewasduetotwocircumstances:theaquiferisnotphreaticwasconsideredsemi-phreaticintheGODapplica-tionandsotheeffectofunsaturatedstratawasconsiderednullintermsofprotection,andthedepthtowaterwasevery-whereinthelowervulnerabilityclass>100m.TheInvaluescanbeclassiedinveclassesofvul-nerability:verylow.0.9,low.0–39.9,moderate.0.9,high.0.9,andveryhigh.0.0.ThisclassicationschemewasappliedtoeachInoutput;theresultsintermsofpercentagespatialoccurrencearesum-marisedinTable3.TheGODassessmentindicatedthelowestInvalueswiththeuniqueexceptionoftheCOPmethod,whichindicatedIn<20over2.5%ofthetestsiteand18.1asminimumInvalueTable3.Thismethodseemedtounderestimatethevulnerabilityandtoprovidealowsensitivitytothespatialvariationofkeyhydrogeologicalparameters.Thesecharac-teristicswerealsoobservedbyotherauthorsCivitaandDeRegibus,1995;Cornielloetal.,1997;GoguandDassargues,2000.GODshouldbemainlyusedtomapvulnerabilityas-sessmentforverylargeareas,withsmallscales100000–200000orwithhighvulnerabilitycontrasts,especiallyifthedatasetispoor.Forthesereasons,GODwasnotconsideredfurther.TheDRASTICvalueswereintherangeof23Fig.3;Table3;inpracticalterms,theydenedtwoclasses,lowandmainlymoderatevulnerability.ApeculiarityoftheInDRASTICmap,aswellastheSINTACSmap,wastheev-idenceoffaultsintermsofaslightincreaseofvulnerabil-itywithrespecttoneighbouringpixelsFig.3.Thiswasduetotheassumptionthatfaultscouldcreateanincreaseoffracturingwithinastrip,denedwitha20m-widebufferinthiscase.Thebufferwasusedonlyinthecaseofparameter“A”inbothmethods,whichconsiderstheroleoftheaquifermediaormaterial.TheDRASTICassessmentshowedsen-sitivitytoparameterssuchassomekarsticfeaturescaves,dolines,andswallowholes.TheSINTACSassessmentwasintherangeof39.Ex-cludingGOD,SINTACSshowsthelowestvariabilityorstan-darddeviation,andisaboutequaltotheDRASTICvalues.Twovulnerabilityclasseswereagainobserved,butthesewereofonelevelhigherthantheDRASTICvalues,from www.nat-hazards-earth-syst-sci.net/9/1461/2009/Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009

PAGE 8

1468M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods Table3.StatisticalvaluesofthenormalisedvulnerabilityindexInandspatialpercentageoccurrenceinthetestsiteofInclasses. METHODGODDRASTICSINTACSEPIKPICOP InMinimum20.023.338.924.020.018.1Mean20.043.561.139.835.774.0Maximum20.063.379.1100100100St.Dev.0.04.94.39.915.813.6Spatialoccurrence%0.0.9verylow2.520.0.9low10020.2<0:189.282.00.440.0.9moderate79.833.78.313.10.660.9high<0:166.31.02.684.080.0.0veryhigh1.52.312.5 moderatetothemoreprevalenthighvulnerability.Atapre-liminarycomparisonwithDRASTIC,SINTACSInvaluesandstatisticsseemedtobesimilar,butwerehigherbyabout10.Adetailedeye-scanningoftheSINTACSmaphigh-lightedthatitwasalsosomewhatsensitivetothedrainagenetwork,theeffectofwhichwasabsentintheDRASTICas-sessment.ThiswasduetotheeffectofthedrainagesetofweightsCivitaandDeMaio,1997.ThedisadvantagewasthatthetraditionaldrainagesetofweightsgenerallyreducedIn,withrespecttoneighbouringpixelsinthesehydrogeolog-icalconditions,inwhichthekarsticsetofweightwasused,anddeterminedaIndecreasewhichdidnotseemtobere-alisticeverywhere.TheSINTACSoutputappearedcomplexandwasinuencedbyrelevantparametersasdepthtowa-ter,hydraulicconductivity,tectonicfaults,drainagenetwork,lithology,soilcover,andurbanareas.TheEPIKresultsspannedalargeInrange,from24to100,andhadalowmeanvalueequalto39.8.Hightoveryhighvulnerabilitywasobservedin2.5%ofthetestsite,mostlyinnarrowareassurroundingkarsticfeaturesandsink-ingstreams.Thelargestspatialoccurrencewasobservedinthelowvulnerabilityclass,whichincluded89.2%ofthetestsite.TheLowvaluesobservedinthenorth-easternsectorweremainlyduetotheeffectofdischargingoutsidethekarstareaFig.2.Themoderateclassassessmentcovered8.3%ofthearea,butthepatterndidnotappeartobeclearlylinkedtoevidentorobjectivefeaturesorparameters.Thewholeassessment,asinthecaseoftheGODmethod,appearedun-derestimated.ThePImethoddenedaverylargerange,20,andtheminimumofthemeansofeachmethod.ThesevalueswerealmostequaltotherespectiveEPIKstatistics;thedistributionoftheclassoccurrencewasquitesimilartoEPIKaswell,butthereweresomerelevantdifferences.Theclassesfrommod-eratetoveryhighvulnerabilityshowedslightlylargerspatialoccurrenceduetothereductionofthelowclassoccurrence.Themaindifferenceappearedaftertheexpert-eye-scanning:theInvariabilityoverthewholeobservedrangewasdeter-minedinlargeareassurroundingkarsticfeatures,andwasclearlyduetotheeffectoftheroleofcatchmentsofsinkingstreamsortoareasdischargingintothekarsticsubsurfaceasitwasreasonable.Lowvariabilitywasobservedonlyinthenorth-easternsector,themainpartofwhichdischargesout-sidethekarstregion.TheCOPmethoddenedthelargestrange,from18to100,andsowastheonlymethodthatspansallthevulnerabilityclasses.ThemeanInvalue,equalto74,wasthemaximumofallthemethods.TheclassoccurrencewasstatisticallybimodalaswasEPIK,whiletheremainingcaseswereuni-modalduetothesecondarypeak.5%ofverylowvulner-ability,andtotheabsolutemaximum%ofhighvulnera-bility.Theverylowvulnerabilityclasswasduetotheeffectofalluvialdepositsoutcroppinginthenorth-westernsector,whilethelowvulnerabilityclass.4%,theminimumspatialoccurrencewasduetotheeffectofthethickersoilsinthenorth-easternsector.Inanycase,theCOPoutputwasmostlyfromhightoveryhighvulnerability,classesthatcover96.5%ofthearea.ThethirdstepoftheanalysishighlightedthatthehighestcorrelationwasbetweentheDRASTICandSINTACSout-puts,whichappearedsimilar,thoughtheInvaluesappeartobetranslatedorshiftedtogreatervaluesfromtheformermethodtothelatterTable4.Thecorrelationanalysiscon-rmedthegoodagreementbetweentheEPIKandPIresults,whichwasalreadyobservedqualitatively.Italsoseemedrel-evantthatthecorrelationanalysisdeterminedtwogroupsofmethods,SINTACSandDRASTICinonegroupandPIandEPIKintheother,thatshowverylowcorrelations.TheCOPmethodwastheonlymethodwhoseoutputwasalmostcor-relatedwithanyothermethodoutputTable4. Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009www.nat-hazards-earth-syst-sci.net/9/1461/2009/

PAGE 9

M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods1469 Table4.CorrelationcoefcientsbetweenInmaps. METHODSINTACSEPIKPICOP DRASTIC0.811)]TJ/F43 8.966 Tf 6.994 0 Td[(0.0710.1880.333SINTACS0.0760.0440.325EPIK0.4440.204PI0.239 5ConclusionsTheresultsofthisstudyhighlightedthatthekarstictestsiteshowsaquifervulnerabilitythatrangesfromlowtoveryhigh.Thehighestcontributiontovulnerabilitywasduetokarsticfeaturessuchasdolines,swallowholes,caves,andsinkingstreams.IftheInvalueofeachmethodexcepttheGODmethodwasconsideredforeachcell,thehighestvariabilitybetweenmethodswasdenedintheneighbourhoodofkarsticfea-tures.Inthesespatialdomains,additionaleffortstodenemorereliableandglobalmethodsarerequired.Themini-mumvulnerabilityineachcellwasgenerallygeneratedbythePI,EPIK,andDRASTICmethods,whilethemaximumwasduemainlytotheCOPmethodandsecondlytotheSIN-TACSmethod.TheGODmethodshouldbeusedmainlytomapvulner-abilityassessmentforverywideareas,withsmallscalesorwithhighvulnerabilitycontrasts.TheDRASTICandSINTACSmethodsare“any-aquifer”methodsthatconsiderthegreatestnumberofparameters.Forthisreason,theyproduceresultsthatcanbeusedatveryhighresolutionoratlargescalesifthedatasetisrobustenough,asinthiscase.TheyalsodeneanevariationofInoveranarrowerrange.Onthecontrary,themethodsdenedforkarsticorcarbonateaquifers,EPIK,PI,andCOP,seemtobeblack-whiteorlow-highmethods;inotherwords,theyareabletodiscriminateinthekarsticenvironmentthepotentiallymostdangerouslocationsforpollutionsources.TheSINTACSassessmentseemstobemoreaccurateandexiblethantheDRASTICmethod.Ittakesintoaccounttheroleofdifferentprevalentconditions,suchasdrainageandhighanthropogenicmodications,butsomeoftheweightsprobablyrequirefurtheroptimisation.Betweenthekarsticaquifermethods,PIandCOPshowmorerealisticresultsonthebasisoftheexpert-eye-scanningapproachandreliableprocedures.Thelatterappearssim-plertoapplyandmoreexibleinconsideringtheroleofcli-maticparameters;thenalmapsseemtoreecttheauthor'sknowledgeofthevulnerabilitycharacteristicsofthespecicaquiferandtestsite.Furthereffortsandresearchshouldbeperformed.Theroleofpreferentialowpathsandofepikarstorshallowsubsoilneedtobebetterschematisedwithtoolsthatpermittheaf-fordablequanticationoftheircontributionstothevulnera-bility.Additionaleffortsarenecessarytoimprovethevulner-abilityassessmentmethods,movingfromintrinsicvulnera-bilitytoacompletevulnerabilityassessmentthatincludeshazardmapping,thecharacterisationofgroundwaterqual-itydegradationduetoexistingpotentialsourcesofpollution,andthecriticalanalysisoftheassessmentprocedure. Acknowledgements. Theresultswereachievedduetotheactivitiessupportedbytheproject“Developmentandutilizationofvulner-abilitymapsforthemonitoringandmanagementofgroundwaterresourcesintheArchimedareaWATER-MAP”,foundedbytheEUprogrammeINTERREGIIIB.ThispaperbenetedbythecommentsandsuggestionsmadebyKristineWalraevensandanotheranonymousreviewer.Editedby:J.BirkmannReviewedby:KristineWalraevensandanotheranonymousrefereeReferences Aller,L.,Bennett,T.,Lehr,J.H.,Petty,R.H,andHackett,G.:DRASTIC:Astandardisedsystemforevaluatinggroundwaterpollutionpotentialusinghydrogeologicsettings,USEPAReport600/2-87/035,RobertS.KerrEnvironmentalResearchLabora-tory,Ada,Oklahoma,1987. Civita,M.:AquiferVulnerabilitymapstopollution,PitagoraEd.,Bologna,1994. Civita,M.andDeRegibus,C.:Sperimentazionedialcunemetodologieperlavalutazionedellavulnerabilitadegliaquiferi,Q.Geol.Appl.,Pitagora,Bologna,3,63,1995. Civita,M.andDeMaio,M.:SINTACSUnsistemaparametricoperlavalutazioneelacartograaperlavalutazionedellavul-nerabilitadegliacquiferiall'inquinamento,Metodologiaeau-tomazione,PitagoraEd.,Bologna,191pp.,1997. Corbelli,V.,Manos,B.,Patrikaki,O.,Polemio,M.,Sapiano,M.,andVoudouris,K.:Aquifervulnerabilitymapsanddecisionsup-portsystemsforthesustainablemanagementofgroundwaterresourcesintheMediterraneanarea,Geophys.Res.Abstracts,EGU,10,6903,2008. Corniello,A.,Ducci,D.,andNapolitano,P.:ComparisonbetweenparametricmethodstoevaluateaquiferpollutionvulnerabilityusingGIS:anexampleinthe“PianaCampana”,southernItaly,in:Engineeringgeologyandtheenvironment,editedby:Mari-nos,P.G.,Koukis,G.C.,Tsiambaos,G.C.,andStournaras,G.C.,Balkema,Rotterdam,1721,1997. Cotecchia,V.,Dauru,M.,Limoni,P.P.,Mitolo,D.,andPolemio,M.:Lavalutazionedellavulnerabilitaintegratadegliacquiferi.Lasperimentazionenell'areacampionediCoriglianoinSalento.Pubbl.GNDCIn.2477,AcqueSotterranee,GEO-GRAPH,77,9,2002. Cotecchia,V.,Grassi,D.,andPolemio,M.:CarbonateaquifersinApuliaandseawaterintrusion,GiornalediGeologiaApplicata,1,219,2005. COST:Action620–Vulnerabilityandriskmappingforthepro-tectionofcarbonatekarstaquifers,EuropeanCommission,Directorate-GeneralforResearch,ReportEUR20912,Luxem-burg,2003. www.nat-hazards-earth-syst-sci.net/9/1461/2009/Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009

PAGE 10

1470M.Polemioetal.:Karsticaquifervulnerabilityassessmentmethods Cucchi,F.,Franceschini,G.,Zini,L.,andAurighi,M.:Intrin-sicvulnerabilityassessmentofSetteComuniPlateauaquiferVenetoRegion,Italy,J.Environ.Manage.,88,984,2008. Daly,D.,Dassargues,A.,Drew,D.,Dunne,S.,Goldscheider,N.,Neale,S.,Popescu,C.,andZwhalen,F.:Mainconceptsofthe“EuropeanApproach”forkarstgroundwatervulnerabilityas-sessmentandmapping,Hydrogeol.J.,10,340,2002. Deutsch,C.V.andJuornel,A.G.:Geostatisticalsoftwarelibraryanduser'sguide,OxfordUniversityPress,NewYork,1992. Doeriger,N.andZwahlen,F.:EPIK:anewmethodforoutlin-ingofprotectionareasinkarsticenvironment,in:Internationalsymposiumandeldseminaron“karstwatersandenvironmen-talimpacts”,editedby:Gunay,G.andJonshon,A.I.,Antalya,Turkey,Balkema,Rotterdam,1173,1997. Doeriger,N.,Jeannin,P.Y.,andZwahlenF.:Watervulnerabil-ityassessmentinkarstenvironments:anewmethodofdeningprotectionareasusingamulti-attributeapproachandGIStoolsEPIKmethod,Environ.Geol.,39,165,1999. Ducci,D.:IntrinsicvulnerabilityoftheAlburnikarstsystemsouth-ernItaly,in:NaturalandAnthropogenicHazardsinKarstAr-eas:Recognition,AnalysisandMitigation,editedby:Parise,M.andGunn,J.,GeologicalSociety,London,SpecialPublications,279,137,2007. Ford,D.andWilliams,P.:Karsthydrogeologyandgeomorphology,J.Wiley&Sons,Chichester,England,562pp.,2007. Foster,S.:Fundamentalconceptsinaquifervulnerability,pollutionriskandprotectionstrategy,in:Vulnerabilityofsoilandground-watertopollutants,editedby:VanDuijvenbooden,W.andVan-Waegeningh,H.G.,CommitteeonHydrologicalResearch,TheHague,69,1987. Gogu,R.C.andDassargues,A.:Currenttrendsandfuturechal-lengesingroundwatervulnerabilityassessmentusingoverlayandindexmethods,EnvironmentalGeology,39,549,2000. Goldscheider,N.,Klute,M.,Sturm,S.,andHotzl,H.:ThePImethod–aGIS-basedapproachtomappinggroundwatervul-nerabilitywithspecialconsiderationofkarstaquifers,Z.Angew.Geol.,46,157,2000. Grassi,D.:Difformitadiambienteidrogeologicopromossainsenoallapiattaformacarbonaticaappuladaunaevoluzionetettonico-carsicadifferenziata,Geol.Appl.eIdrogeol,XVIII,I,209,1983. Kacaroglu,F.:Reviewofgroundwaterpollutionandprotectioninkarstareas,KluwerAcademicPublishers,Water,Air,andSoilPollution113,337,1999. Holting,B.,Haertle,T.,Hohberger,K.H.,Nachtigall,K.H.,Villinger,E.,Weinzierl,W.,andWrobel,J.P.:KonzeptzurErmittlungderSchutzfunktionderGrundwasseruberdeckung,Geol.Jb.,C63,5,Hannover,1995. Jousma,G.,Attanayake,P.,Chilton,J.,Margane,A.,Navarrete,C.M.,Polemio,M.,Melo,T.,LopezGuerrero,P.N.,Roelof-sen,F.,Sharma,S.K.,Streetly,M.,Subah,A.,andAlYaqoubi,A.:Guidelineon:Groundwatermonitoringforgeneralref-erencepurposes,InternationalGroundwaterResourcesAssess-mentCentreIGRAC,Utrecht,165pp.,2006. Margat,J.:Contaminationvulnerabilitymappingofgroundwater,BureaudeRecherchesGeologiquesetMinieres,Orleans,1968. Mimi,Z.A.andAssi,A.:Intrinsicvulnerability,hazardandriskmappingforkarstaquifers:Acasestudy,J.Hydrol.,364,298–310,2009. Parise,M.andPascali,V.:Surfaceandsubsurfaceenvironmen-taldegradationinthekarstofApuliasouthernItaly,Environ.Geol.,44,247,2003. Polemio,M.:SeawaterintrusionandgroundwaterqualityintheSouthernItalyregionofApulia:amulti-methodologicalap-proachtotheprotection,UNESCO,IHP,Paris,77,171,2005. Polemio,M.:Extremerainfalleventsandoodsinakarsticenvi-ronmentSouthernItaly,Z.Geomorphol.,inpress,2009. Polemio,M.,Casarano,D.,Dragone,V.,Limoni,P.P.,andSan-taloia,F.:Reportonthehydrometeorologicandgeologicaldata,“DevelopmentandutilizationofvulnerabilitymapsforthemonitoringandmanagementofgroundwaterresourcesintheArchimedareaWATER-MAPProject”,INTERREGIIIB,ARCHIMED,2007. Polemio,M.D.,Dragone,V.,andLimoni,P.P.:MonitoringandmethodstoanalysethegroundwaterqualitydegradationriskincoastalkarsticaquifersApulia,SouthernItaly,EnvironmentalGeology,Springer-Verlag,58,299,2009. Polemio,M.andLimoni,P.P.:GroundwaterpollutionandrisksforthecoastalenvironmentsoutheasternItaly,PredictionsinUngaugedBasins:PromiseandProgress,IAHS,303,477,2006. Polemio,M.andRicchetti,E.:VulnerabilityMappingofanApulianDeepCarbonateAquiferUsingGIS.IISymp,“Protezionedelleacquesotterraneedall'intrusionemarinaedall'inquinamento”,IstitutoItalo-Russodiformazioneericercheecologiche,Bari,Italy,1October1999,291,2001. ProvinciadiBari:Studioperlarealizzazionediunacartapedo-logicadisintesiedicartederivateapplicativeperilterritoriodellaProvinciadiBari,ProvinciadiBari,UniversitadiBari,CIHEAM-IAMB. RegionePugliaa:Caveregisterwebgis,Assessoratoall'Ecologia,UfcioParchieRiserveNaturali,onlineavailableat: http://151.2.170.110/ecologia.puglia/start.html ,lastaccess:2008inItal-ian. RegionePugliab:SistemaInformativoTerritorialeSIT,SettoreAssettodelTerritorio,ServizioCartograco,onlineavailableat: http://www.cartograco.puglia.it ,lastaccess:2008. RegionePuglia:ProgettoACLA:Caratterizzazioneagro-ecologicadellaregionePugliaeclassicazionedelterritorioinfunzionedellepotenzialitaproduttive,AssessoratoAgricolturaeForeste,Bari,1999. Shiklomanov,I.A.:Worldfreshwaterresources,StateHydrologi-calInstitute,St.Petersburg,RussiaandIHP–UNESCO,Paris,1999. UNESCO:Submarinegroundwaterdischarge,IHPGroundwaterseriesno.5,2004. Vas,J.M.,Andreo,B.,Perles,M.J.,Carrasco,F.,Vadillo,I.,andJimenez,P.:Proposedmethodforgroundwatervulnerabilitymappingincarbonatekarsticaquifers:theCOPmethodAp-plicationintwopilotsitesinSouthernSpain,Hydrogeol.J.,14,912,2006. Vrba,J.:GroundwaterQualityMonitoringasaToolofGroundwa-terResourcesProtection,21stCongressofIAH,KarstHydroge-ologyandKarstEnvironmentProtection,GeologicalPublicationHouse,Beijing,China,2,88,1988. WorldBank,onlineavailableat: http://www.worldbank.org ,lastac-cess:2008. Nat.HazardsEarthSyst.Sci.,9,1461– 1470 ,2009www.nat-hazards-earth-syst-sci.net/9/1461/2009/


printinsert_linkshareget_appmore_horiz

Download Options

close


  • info Info

    There are only PDFs associated with this resource.

  • link PDF(s)



Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.