U–Pb Dating of Cave Spar: A New Shallow Crust Landscape Evolution Tool

Citation

Material Information

Title:
U–Pb Dating of Cave Spar: A New Shallow Crust Landscape Evolution Tool
Series Title:
Tectonics
Creator:
Decker, D. D.
Polyak, V. J.
Asmerom, Y.
Lachniet, M. S.
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
U-Pb DATING ( local )
Cave Spar ( local )
Carbonate Terranes ( local )
Apatite Fission Track (AFT) ( local )
(U/Th)‐He Chronometry (Ahe) ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
In carbonate terranes, rocks types that provide apatite are not available to effectively use apatite fission track (AFT) or (U/Th)‐He chronometry (AHe). Here we suggest that calcite cave spar can be an effective chronometer and complimentary to AFT and AHe thermochronometers in carbonate regions such as our study area, the Guadalupe Mountains of southeastern New Mexico, and west Texas. Our measured depth of cave spar deposition is 500 ± 250 m beneath the regional water table, formed at temperatures of 40° to 80°C, indicating that these caves and their spar crystals form near the supercritical CO2‐subcritical CO2 boundary where we interpret the origin of both the caves and spar to occur. This depth‐temperature relationship suggests a higher than normal geotherm, likely associated with regional magmatic activity. As a case study we examined the timing of uplift of the Guadalupe Mountains previously attributed to the compressional Laramide orogeny (ca. 90 to 50 Ma), later extensional tectonics associated with Basin and Range (ca. 36 to 28 Ma) or the opening of the Rio Grande Rift (ca. 20 Ma to Present). We show that most of the spar origin is coeval with the ignimbrite flare‐up between 36 and 28 Ma. Our results constrain the initiation of Guadalupe Mountains block uplift, relative to the surrounding terrain, to between 27 and 16 Ma and reconstruct the evolution of a low‐lying regional landscape prior to block uplift from 185 to 28 Ma, in support of models that attribute regional surface uplift to extensional tectonics and associated volcanism.
Original Version:
Tectonics, Vol. 37, no. 1 (2017-11-20).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.