Disease alters macroecological patterns of North American bats


Material Information

Disease alters macroecological patterns of North American bats
Series Title:
Global Ecology and Biogeography
Frick, Winifred F.
Puechmaille, Sebastien J.
Hoyt, Joseph R.
Nickel, Barry A.
Langwing, Kate E. et al
Publication Date:


Subjects / Keywords:
Disease Ecology ( local )
Extinction Risk ( local )
Macroecology ( local )
Population Monitoring ( local )
Pseudogymnoascus Destructans ( local )
White-Nose Syndrome ( local )
serial ( sobekcm )


Aim: We investigated the effects of disease on the local abundances and distributions of species at continental scales by examining the impacts of white‐nose syndrome, an infectious disease of hibernating bats, which has recently emerged in North America. Location: North America and Europe. Methods: We used four decades of population counts from 1108 populations to compare the local abundances of bats in N orth A merica before and after the emergence of white‐nose syndrome to the situation in Europe, where the disease is endemic. We also examined the probability of local extinction for six species of hibernating bats in eastern North America and assessed the influence of winter colony size prior to the emergence of white‐nose syndrome on the risk of local extinction. Results: White‐nose syndrome has caused a 10‐fold decrease in the abundance of bats at hibernacula in North America, eliminating large differences in species abundance patterns that existed between Europe and North America prior to disease emergence. White‐nose syndrome has also caused extensive local extinctions (up to 69% of sites in a single species). For five out of six species, the risk of local extinction was lower in larger winter populations, as expected from theory, but for the most affected species, the northern long‐eared bat (M yotis septentrionalis ), extinction risk was constant across winter colony sizes, demonstrating that disease can sometimes eliminate numerical rarity as the dominant driver of extinction risk by driving both small and large populations extinct. Main conclusions: Species interactions, including disease, play an underappreciated role in macroecological patterns and influence broad patterns of species abundance, occurrence and extinction.
Original Version:
Global Ecology and Biogeography, Vol. 24, no. 7 (2015-01-27).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

University of South Florida
Karst Information Portal

Postcard Information



Download Options


No images or PDF downloads are available for this resource.

Cite this item close


Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.


Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.


Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.


Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.