Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus

Citation

Material Information

Title:
Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus
Series Title:
PNAS
Creator:
Yang, Yang
Du, Lanying
Liu, Chang
Wang, Lili
Ma, Cuiqing
Tang, Jian
Baric, Ralph S.
Shibo, Jiang
Li, Fang
Publisher:
PNAS
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Bat-To-Human Transmission ( local )
Mers ( local )
Mers Coronavirus ( local )
Bats ( local )
Coronavirus ( local )
Hku4 ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Middle East respiratory syndrome coronavirus (MERS-CoV) currently spreads in humans and causes ∼36% fatality in infected patients. Believed to have originated from bats, MERS-CoV is genetically related to bat coronaviruses HKU4 and HKU5. To understand how bat coronaviruses transmit to humans, we investigated the receptor usage and cell entry activity of the virus-surface spike proteins of HKU4 and HKU5. We found that dipeptidyl peptidase 4 (DPP4), the receptor for MERS-CoV, is also the receptor for HKU4, but not HKU5. Despite sharing a common receptor, MERS-CoV and HKU4 spikes demonstrated functional differences. First, whereas MERS-CoV prefers human DPP4 over bat DPP4 as its receptor, HKU4 shows the opposite trend. Second, in the absence of exogenous proteases, both MERS-CoV and HKU4 spikes mediate pseudovirus entry into bat cells, whereas only MERS-CoV spike, but not HKU4 spike, mediates pseudovirus entry into human cells. Thus, MERS-CoV, but not HKU4, has adapted to use human DPP4 and human cellular proteases for efficient human cell entry, contributing to the enhanced pathogenesis of MERS-CoV in humans. These results establish DPP4 as a functional receptor for HKU4 and host cellular proteases as a host range determinant for HKU4. They also suggest that DPP4-recognizing bat coronaviruses threaten human health because of their spikes’ capability to adapt to human cells for cross-species transmissions. As of June 16, 2014, the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) had infected 701 people, with a fatality rate of ∼36% (www.who.int/csr/don/2014_06_16_mers/en/), and had demonstrated the capability for human-to-human transmission (1, 2). Alarmingly, coronavirus surveillance studies have suggested that MERS-CoV originated from animals, with bats as the likely natural reservoir and camels as the likely intermediate hosts (3⇓⇓–6). Hence, cross-species transmission of MERS-CoV from bats to humans, either directly or through camels, poses a constant and long-term threat to human health.
Original Version:
PNAS, Vol. 111, no. 34 (2011-08-11).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.