Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome

Citation

Material Information

Title:
Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome
Series Title:
Biological Chemistry
Creator:
Beekman, Chapman
Jiang, Zhenze
Suzuki, Brian M.
Palmer, Jonathan M.
Lindner, Daniel L.
O'Donoghue, Anthony J.
Knudsen, Giselle M.
Bennett, Richard J.
Publisher:
De Gruyter
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Bat Infection ( local )
Peptidase ( local )
Proteomics ( local )
Secretome ( local )
Virulence ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Pseudogymnoascus destructans is a pathogenic fungus responsible for White-nose Syndrome (WNS), a disease afflicting multiple species of North American bats. Pseudogymnoascus destructans infects susceptible bats during hibernation, invading dermal tissue and causing extensive tissue damage. In contrast, other Pseudogymnoascus species are non-pathogenic and cross-species comparisons may therefore reveal factors that contribute to virulence. In this study, we compared the secretome of P. destructans with that from several closely related Pseudogymnoascus species. A diverse set of hydrolytic enzymes were identified, including a putative serine peptidase, PdCP1, that was unique to the P. destructans secretome. A recombinant form of PdCP1 was purified and substrate preference determined using a multiplexed-substrate profiling method based on enzymatic degradation of a synthetic peptide library and analysis by mass spectrometry. Most peptide substrates were sequentially truncated from the carboxyl-terminus revealing that this enzyme is a bona fide carboxypeptidase. Peptides with arginine located close to the carboxyl-terminus were rapidly cleaved, and a fluorescent substrate containing arginine was therefore used to characterize PdCP1 activity and to screen a selection of peptidase inhibitors. Antipain and leupeptin were found to be the most potent inhibitors of PdCP1 activity.
Original Version:
Biological Chemistry, Vol. 399, no. 12 (2018-10-28).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.