Submarine and intertidal groundwater discharge through a complex multi-level karst conduit aquifer


previous item | next item

Citation

Material Information

Title:
Submarine and intertidal groundwater discharge through a complex multi-level karst conduit aquifer
Series Title:
Hydrogeology Journal
Creator:
Schuler, Philip
Duran, L.
McCormack, T.
Gill, G.
Publisher:
Springer Nature
Publication Date:
Language:
English/French/Spanish/Mandarin-Chinese/Portuguese

Subjects

Subjects / Keywords:
Karst ( local )
Coastal Aquifers ( local )
Tracer Tests ( local )
Numerical Modelling ( local )
Ireland ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
The quantification of submarine and intertidal groundwater discharge (SiGD) or purely submarine groundwater discharge (SGD) from coastal karst aquifers presents a major challenge, as neither is directly measurable. In addition, the expected heterogeneity and intrinsic structure of such karst aquifers must be considered when quantifying SGD or SiGD. This study applies a set of methods for the coastal karst aquifer of Bell Harbour in western Ireland, using long-term onshore and offshore time series from a high-resolution monitoring network, to links catchment groundwater flow dynamics to groundwater discharge as SiGD. The SiGD is estimated using the “pollution flushing model”, i.e. a mass-balance approach, while catchment dynamics are quantified using borehole hydrograph analysis, single-borehole dilution tests, a water balance calculation, and cross-correlation analysis. The results of these analyses are then synthesised, describing a multi-level conduit-dominated coastal aquifer with a highly fluctuating overflow regime draining as SiGD, which is in part highly correlated with the overall piezometric level in the aquifer. This concept was simulated using a hydraulic pipe network model built in InfoWorks ICM [Integrated Catchment Modeling]® version 7.0 software (Innovyze). The model is capable of representing the overall highly variable discharge dynamics, predicting SiGD from the catchment to range from almost 0 to 4.3 m3/s. The study emphasises the need for long-term monitoring as the basis for any discharge studies of coastal karst aquifers. It further highlights the fact that multiple discharge locations may drain the aquifer, and therefore must be taken into consideration in the assessment of coastal karst aquifers.
Original Version:
Hydrogeology Journal, Vol. 26, no. 8 (2018-07-06).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This item is licensed with the Creative Commons Attribution License. This license lets others distribute, remix, tweak, and build upon this work, even commercially, as long as they credit the author for the original creation.
Resource Identifier:
K26-05182 ( USFLDC: LOCAL DOI )
k26.5182 ( USFLDC: LOCAL Handle )

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.