Genetic spatial structure of an anchialine cave annelid indicates connectivity within - but not between - islands of the Great Bahama Bank


Material Information

Genetic spatial structure of an anchialine cave annelid indicates connectivity within - but not between - islands of the Great Bahama Bank
Series Title:
Molecular Phylogenetics and Evolution
Gonzalez, Brett C.
Martinez, Alejandro
Borda, Elizabeth
Iliffe, Thomas M.
Fontaneto, Diego et al
Publication Date:


Subjects / Keywords:
Anchialine ( local )
Ecological Speciation ( local )
DNA Taxonomy ( local )
Pelagomacellicephala Iliffei ( local )
Polynoidae ( local )
Species Delineation ( local )
serial ( sobekcm )


Land-locked anchialine blue holes are karstic sinkholes and caves with tidally influenced, vertically stratified water bodies that harbor endemic fauna exhibiting variable troglomorphic features. These habitats represent island-like systems, which can serve to elucidate evolutionary and biogeographic processes at local scales. We investigated whether the ‘continuous spelean corridor’ hypothesis may elucidate the biogeographical distributions of the stygobitic annelid Pelagomacellicephala iliffei (Polynoidae) collected from the Great Bahama and Caicos Banks of the Bahamas Archipelago. Phylogenetic reconstructions were performed using Bayesian Inference on individual and combined datasets of three molecular markers (16S rDNA, COI, 18S rDNA) and species delimitation employed three widely accepted methods in DNA taxonomy, namely GMYC, bPTP, and ABGD. Mantel tests were used to test the effect of geography on genetic structure. Using these analyses, we recovered five independently evolving entities of the focal species across four islands of the Great Bahama Bank including Cat, Eleuthera, Exumas, and Long. Genetic data yielded strong correlations between islands and phylogenetic entities, signifying independent evolutionary histories within anchialine caves across the platform. The island of Eleuthera showed intra-island gene flow and dispersal capabilities between blue holes separated by 115 km, providing evidence of a crevicular spelean corridor within the island. However, no evidence of inter-island dispersal is present in the analyzed system. Consistent with previous biogeographic studies of cave crustaceans, the major barriers shaping the cave biota of the Bahamas Archipelago appears to be the deep trenches and channels separating the Bahamian banks.
Original Version:
Molecular Phylogenetics and Evolution, Vol. 109 (2017).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

University of South Florida
Karst Information Portal

Postcard Information



Download Options


No images or PDF downloads are available for this resource.

Cite this item close


Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.


Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.


Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.


Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.