|
Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species
previous item
|
next item
Citation |
- Permanent Link:
- https://digital.lib.usf.edu/SFS0069600/00001
Material Information
- Title:
- Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species
- Series Title:
- Annual Review of Animal Biosciences
- Creator:
- Teeling, Emma C.
Vernes, Sonja C.
Davalos, Liliana M.
Ray, David A.
Gilbert, M. Thomas P.
- Publication Date:
- 2018
- Language:
- English
Subjects
- Subjects / Keywords:
- Echolocation ( local )
Flight ( local ) Longevity ( local ) Immunity ( local ) Ecosystem ( local ) Mammals ( local )
- Genre:
- serial ( sobekcm )
Notes
- Abstract:
- Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.
- Original Version:
- Annual Review of Animal Biosciences, Vol. 6 (2018).
Record Information
- Source Institution:
- University of South Florida Library
- Holding Location:
- University of South Florida
- Rights Management:
- This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.
Postcard Information
- Format:
- serial
|
printinsert_linkshareget_appmore_horiz | |
Download Optionsclose
No images or PDF downloads are available for this resource.
Cite this
item
close
APACras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.
MLACras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.
CHICAGOPhasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.
WIKIPEDIANunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.
|