Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea


previous item | next item

Citation
Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea

Material Information

Title:
Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea
Series Title:
Nature Communications
Creator:
Roberts, Patrick
Louys, Julien
Zech, Jana
Shipton, Ceri
Kealy, Shimona
Samper Carro, Sofia
Hawkins, Stuart
Boulanger, Clara
Marzo, Sara
Fiedler, Bianca
Boivin, Nicole
Mahirta
Aplin, Ken
OʼConnor, Sue
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Isotopic Evidence ( local )
Coastal Colonization ( local )
Diversification ( local )
Human ( local )
Wallacea ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
The resource-poor, isolated islands of Wallacea have been considered a major adaptive obstacle for hominins expanding into Australasia. Archaeological evidence has hinted that coastal adaptations in Homo sapiens enabled rapid island dispersal and settlement; however, there has been no means to directly test this proposition. Here, we apply stable carbon and oxygen isotope analysis to human and faunal tooth enamel from six Late Pleistocene to Holocene archaeological sites across Wallacea. The results demonstrate that the earliest human forager found in the region c. 42,000 years ago made significant use of coastal resources prior to subsequent niche diversification shown for later individuals. We argue that our data provides clear insights into the huge adaptive flexibility of our species, including its ability to specialize in the use of varied environments, particularly in comparison to other hominin species known from Island Southeast Asia.
Original Version:
Nature Communications, Vol. 11 (2020-04-29).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This item is licensed with the Creative Commons Attribution License. This license lets others distribute, remix, tweak, and build upon this work, even commercially, as long as they credit the author for the original creation.
Resource Identifier:
K26-05214 ( USFLDC: LOCAL DOI )
k26.5214 ( USFLDC: LOCAL Handle )

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

ARTICLE Isotopicevidenceforinitialcoastalcolonizationand subsequentdiversi cationinthehumanoccupation ofWallaceaPatrickRoberts 1,2 ,JulienLouys 3,JanaZech1,CeriShipton 4,5,ShimonaKealy 4,5, So aSamperCarro4,6,StuartHawkins4,5,ClaraBoulanger 5,7,SaraMarzo1,BiancaFiedler1,NicoleBoivin1, Mahirta5,8,KenAplin4,9&SueO Connor 4,5Theresource-poor,isolatedislandsofWallaceahavebeenconsideredamajoradaptive obstacleforhomininsexpandingintoAustralasia.Archaeologicalevidencehashintedthat coastaladaptationsin Homosapiens enabledrapidislanddispersalandsettlement;however, therehasbeennomeanstodirectlytestthisproposition.Here,weapplystablecarbonand oxygenisotopeanalysistohumanandfaunaltoothenamelfromsixLatePleistoceneto HolocenearchaeologicalsitesacrossWallacea.Theresultsdemonstratethattheearliest humanforagerfoundintheregion c .42,000yearsagomadesigni cantuseofcoastal resourcespriortosubsequentnichediversi cationshownforlaterindividuals.Wearguethat ourdataprovidesclearinsightsintothehugeadaptive exibilityofourspecies,includingits abilitytospecializeintheuseofvariedenvironments,particularlyincomparisontoother homininspeciesknownfromIslandSoutheastAsia. https://doi.org/10.1038/s41467-020-15969-4 OPEN 1DepartmentofArchaeology,MaxPlanckInstitutefortheScienceofHumanHistory,07745Jena,Germany.2SchoolofSocialScience,TheUniversityof Queensland,StLucia,QLD4072,Australia.3AustralianResearchCentreforHumanEvolution,EnvironmentalFuturesResearchInstitute,Grif thUniversity, Nathan,QLD4111,Australia.4SchoolofCulture,HistoryandLanguage,CollegeofAsiaandthePaci c,TheAustralianNationalUniversity,Canberra,ACT 2600,Australia.5ARCCentreofExcellenceforAustralianBiodiversityandHeritage,AustralianNationalUniversity,Canberra,ACT2600,Australia.6Centre d ’ EstudisdelPatrimoniArqueologic,FacultatdeLletres,UniversitatAutònomadeBarcelona,08193Bellaterra,Spain.7MuséumNationald ’ HistoireNaturelle, DépartementHommeetEnvironment,CNRSUMR7194,HistoireNaturelledel ’ HommePréhistoriqueParis,France.8DepartmentofArchaeology, UniversitasGadjahMada,Yogyakarta55281,Indonesia.9Deceased:KenAplin. email: roberts@shh.mpg.de ; sue.oconnor@anu.edu.auNATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications1 1234567890():,;

PAGE 2

Recent,high-pro lestudiesofsymbolicmaterialculture (e.g.,ref.1),technologicalcomplexity(e.g.,ref.2),fossil morphologyandchronology(e.g.,ref.3),andgenetics4are demonstratinganincreasinglycomplexanddynamicpictureof thecapacitiesandinteractionsofdifferenthomininpopulations intheLatePleistocene(126 – 12ka),particularlyinAsia.Ifweare todeterminethe ‘ uniqueness ’ of Homosapiens ,thelastextant homininonthefaceoftheplanet,itisbecomingapparentthatwe mustexaminehowitsecologicaladaptationsdifferedfromthose ofothermembersofthegenus Homo5 , 6.Ithasbeensuggested thatLatePleistocenepopulationsof H.sapiens expandingacross theglobewereabletonotonly exiblyexploitvaried,andoften extreme,environments — includingdeserts,tropicalrainforests, high-altitudesettings,anddeep-seamaritimehabitats — butalso specializeintheoccupationofthem,enablingourspeciesasa wholetoproliferateevenwhilelocalcommunitiesmaysometimes havefailed6.Bycontrast,earlierandcontemporaneous Homo speciesexpandingintoEurasiaintheEarlyandMiddlePleistocene(2.6Ma – 126ka)madegeneralizeduseofforestandgrasslandmosaics7 , 8,potentiallymakingthemvulnerabletomore extremeLatePleistoceneenvironmentalchanges(e.g.,ref.3)and unabletosurviveonislandsdepauperateinlargeterrestrial fauna9. Testingthishypothesisisparticularlytimelygivenrecent nds thatimplyotherhomininspeciesmayhaveventuredintochallengingadaptivesettings4 , 10.Wallaceaprovidesanideal ‘ island laboratory ’ settinginwhichtodosointheincreasingly palaeoanthropologicallysigni cantSoutheastAsianregion.Wallaceaisanisolatedseriesofislandsthatwasneverconnectedto theneighboringPleistocenelandmassesofSundaorSahul, necessitatingwatercrossingstoreach9 , 11 – 15.Theseislandshave beenhypothesizedashostingdepauperateislandforest environments,lackinginreliableterrestrialproteinandcarbohydrateresources13 , 16 , 17.Signi cantly,whiletheseislandsarehome tosomeoftheearliest rmevidencefor H.sapiens eastofAfrica andtheMiddleEastc.45ka(refs.13 , 18 , 19),fossilandartifact nds havealsosuggestedthepresenceofearliermembersofthegenus Homo ontheislandofFloresfrom~1Ma(refs.20 , 21),Luzonfrom 0.7Ma(ref.22),andSulawesifrom~0.2Ma(ref.23).Although zooarchaeologicalrecordshaveprovidedsomeinsightsintothe ecologicalnichesofdifferenthomininpopulationsinWallacea9 , 24, moredirectassessmentsofoverallhomininresourcerelianceand palaeoenvironmentalchangeintheregionhavebeenlacking. Inthispaper,weexaminetheadaptationsoftheearliest knownfossilmembersofourspeciesinWallaceabymeansof isotopicanalysisofarchaeologicalhumantoothenamelfrom twoislands(TimorandAlor;Fig. 1 ).Timorhasyieldedthe earliestdatedmaterialcultureandfossilevidencefor H. sapiens inWallaceaatthesitesofAsitauKuru(formerlyJerimalai)andLaili18 , 19.Attheformer,faunalremainsandculturalartifactssuggestLatePleistocenehumanrelianceon marineshell shand sh,obtainedinpartthroughoffshore shing13.Lailialsoprovidesevidenceforearlyrelianceon marineresources18.Thisstandsincontrasttothegeneralized mixedgrasslandandwoodlandadaptationsassociatedwith otherhomininsintheregion9 , 24 , 25.However,humanreliance onpelagic shingatAsitauKuruhasbeenquestioned26. Moreover,thereremainsthepo ssibilitythatgiantrattaxa, withproposedpreferencesforclosedforestenvironmentsand anadultbodyweightofupto6kg,representedsigni cantfood resources;andtheyhavebeenidenti edinearlycoastaland inlandarchaeologicalcontextsinAlorandTimor(e.g.,ref.27). InsightsintotheenvironmentspresentonWallacea,aswellas humanrelianceondifferentecosystemsisdif culttoresolve Fig.1MapsshowingthelocationofthestudiedsiteswithinWallacea. AsitauKuru,LeneHara,MatjaKuru1and2(Timor),Makpan,andTronBonLei (Alor). ARTICLENATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-42NATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications

PAGE 3

usingtraditionalzooarchaeologicalmethodsalonedueto preservationbiasesandtheroleofnonhumanpredatorsinsite taphonomy(e.g.,ref.28). Here,weapplystablecarbon( 13C)andoxygen( 18O)isotope analysestohumanandfaunaltoothenamelfromsixLatePleistocene/Holocenearchaeologicalsequences(Fig. 1 )onTimorand Alor,inordertodeterminethevaryingrelianceofearlyhuman colonisersofWallaceaontropicalforestandterrestrialversus marineresources.Stablecarbonisotopeanalysisoffaunal (includinghominin)toothenamelintropicalregionshasbeen usedtoassesstheproportionofC3-dominatedwoodland/forest andC4grasslandbiomassindiets29 – 31.Inregionssuchas PleistoceneWallacea,wheresomeresearchershavesuggestedthat tropicalforestsdominatedterrestrialenvironments32,with grasslandsconsideredlargelyabsent,themostsigni cantdriver ofterrestrialstablecarbonisotopevariationwillbethecanopy effect,wherebylowlightandrespiredCO2causeforest-dwelling plantbiomassanditsconsumerstohavemorenegative 13C valuesthantheircounterpartsinmoreopenhabitats30 , 31. Meanwhile,marineproducerbiomasshashigher 13CthanallC3terrestrialplants33 , 34,enablingmarineconsumerstobedistinguishedfromterrestrialC3consumers35.Basedonresearch doneinEastAfrica30,SriLanka31,andJapan35,including extensivemodernstudies30,weexpectpreindustrialhumans relyingcompletelyontropicalforest,openC3resources,and marineresourcestohavetoothenamel 13Cvaluesofc. 14 ‰ ,c. 11 ‰ ,andc. 4 ‰ ,respectively. Stableoxygenisotope( 18O)measurementsfromanimaltooth enamelprovideadditionalpaleoecologicalinformationabout waterandfood,andhavealsobeenarguedtodistinguish terrestrialfrommarineconsumers36.Basedonexisting, published,andavailablechronologicalinformation,theLate Pleistocene – HolocenedepositsofAsitauKuru,MatjaKuru1and 2,LeneHara,Makpan,andTronBonLeiprovideauniquesuiteof humanandassociatedfaunalsamplesspanningtheearliestfossil appearanceof H.sapiens inWallacea,throughtheLastGlacial Maximum,andacrosstheTerminalPleistocene – Holocene transition18 , 19.Theyalsocoverbothcoastalandhinterlandhabitats(Fig. 1 ).Ampleterrestrialandmarineanimalremainsalso allowustobuildthe rstdetailedpaleoecologicalandpalaeoenvironmentalrecordsforPleistoceneWallaceaandtestassumptionsinrelationto:(1)pureC3terrestrialenvironmentsonTimor andAlorinthepast;(2)the 13Cdistinctionbetweenavailable terrestrialandmarineresources;and(3)environmentalshifts acrossthePleistocene – Holoceneboundaryproposedelsewhere inSoutheastAsia(e.g.,5 , 37).Thepreservationofasubsectionofthe analysedtoothenamelsampleswasalsocheckedusing Fouriertransforminfraredspectroscopy(FTIR)asperRoberts etal.31 , 38. Ourextensivefaunalbaselinedemonstratesthatterrestrialand marineenvironmentscanbeclearlydistinguishedisotopicallyin Wallaceaonthebasisofstableisotopeanalysisoffossiltooth enamel.Weshowthatatoothoftheearliestpreserved H.sapiens fossilfoundfromtheregionc.42 – 39,000yearsagoshowsthatthis individualmadesigni cantuseofcoastalresources.From20,000 yearsago,humanpopulationsshowanincreasingrelianceon interior,terrestrialenvironmentsontheislandsofbothTimor andAloratatimeofincreasingforestexpansioninIsland SoutheastAsiamoregenerally,thoughsomeindividualscontinue tointensivelyusemarineresources.Wearguethatourdatafurther demonstratesthehugeadaptive exibilityofourspecies, acutelyvisibleasitrapidlyandpersistentlycolonizedWallacean environments.Itsabilitytospecializeintheuseofmore extremeenvironmentsseemstostandincontrasttootherhominin speciesknownfromIslandSoutheastAsiabasedoncurrent evidence. Results Sites,samples,andchronology .Thedetailedstratigraphicand chronologicalinformationforthesixsitesstudied(Supplementary Note1)hasenableddivisionofthehumanandfaunalsamplesinto occupationphasesateachsite(Figs. 2 – 6 ).Todisplayandcompare ourdataonabroaderscale,wehavealsodividedthehumanand faunaldataintobroaderislandphasesofoccupationforTimorand Alor,respectively,basedonthestratigraphicandchronometric information(SupplementaryNote1,SupplementaryTables6and 7,Fig. 2 ).ForthesitesofAsitauKuru,LeneHara,MatjaKuru1, andMatjaKuru2onTimor,thissystemincludesfourbroad phases:aLatePleistocenepre-LGMphase(46,000 – 29,000years ago),aTerminalPleistocenephase(20,000 – 11,001yearsago),an EarlyandMiddleHolocenephase(11,000 – 4001yearsago),anda LateHoloceneNeolithicphase(4000 – 0yearsago).Forthesitesof Fig.2 13Cmeasurementsforhumanandfaunaltoothenamelfromthe islandsofAlorandTimoranalyzedinthisstudy. Datashownbyphases developedonthebasisofexistingandpublishedstratigraphic,and chronologicalinformation(SupplementaryNote1).Boxplots(showing medianandinterquartilerange — withoutliersindicated)ofterrestrialfauna areshowningreen(blackdiamondpoints)andthoseofmarinefaunain blue(blacksquarepoints).Humansamplesareshownaswhitesymbols dependingonsite(circle,AsitauKuru;diamond,MatjaKuru1and2;square, LeneHara;triangle,Makpan;andinvertedtriangle,TronBonLei).Source dataforFig.2canbefoundintheaccompanyingSourceData leinTable1 (Fig.2). NATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-4ARTICLENATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications3

PAGE 4

MakpanandTronBonLeionAlor,thephasingsystemincludes threebroadphases:aLatePleistocenepre-LGMphase (40,000 – 21,000yearsago),aTerminalPleistocenetoMiddle Holocenephase(15,000 – 7400yearsago),andaLateHolocene Neolithicphase(4000 – 0yearsago).Thespeci cassociateddates forthehumansampleswithinthesebroaderphasesarediscussed inthemaintextwhereappropriate. Stableisotopeanalysisofarchaeologicaltoothenamel .Faunal 13CfromtheLatePleistocene – HolocenesequencesofAsitau Kuru,MatjaKuru2,Makpan,andTronBonLei(Figs. 2 – 6 )show a 13Cdivisionintermsofterrestrialandmarinefauna(Fig. 2 , SupplementaryFigs.13and14,SupplementaryData1).Forthe islandofTimor,terrestrialfaunarecoveredfromthecoastalsite ofAsitauKuru(Fig. 3 )andinlandsiteofMatjaKuru2(Fig. 4 ) have 13Crangesof 14.9to 7.9 ‰ (mean = 11.6±1.8 ‰ ) and 14.9to 9.0 ‰ (mean = 12.0±1.4 ‰ ),respectively.By contrast,themarinefaunafromAsitauKuru(Fig. 3 )hasa 13C rangeof 8.3to3.7 ‰ (mean = 4.1±3.0 ‰ ).Thesituationis slightlymorecomplexonAlor(Fig. 2 )whereterrestrialfauna fromMakpan(Fig. 5 )has 13Crangingfrom 19.2 ‰ to 3.1 ‰ (mean = 8.7±3.5 ‰ ),andmarinefaunafromMakpan(Fig. 5 ) andTronBonLei(Fig. 6 )have 13Crangingfrom 6.4to4.9 ‰ (mean = 3.2±2.9 ‰ )and 8.9to4.7 ‰ (mean = 5.4± 3.5 ‰ ),respectively. AShapiro – Wilktestindicatedthatthe 13C( p = <0.05)and 18O( p = <0.05)oftheentirefaunaldataset( n = 223)werenonnormallydistributed.Mann – Whitney – Wilcoxontestsdemonstratedthe 13C( W = 9257, p = <0.05)and 18O( W = 5264, p = <0.05)offaunatobesigni cantlydifferentbetweenTimor andAlor.Consequently,thefaunal 13Cand 18Odatasetsofthe islands(Timor n = 111;Alor n = 112)wereseparatedfor subsequentanalysesunlessotherwisespeci ed.ForbothTimor andAlor,Shapiro – Wilktestsfoundtheresulting 13Cand 18O datasetsforeachislandtobenon-normallydistributed( p = < 0.05).Mann – Whitney – Wilcoxontestsfoundmarineandterrestrialfaunatobesigni cantlydifferentintermsof 13Conboth Timor( W = 2657, p = <0.05)andAlor( W = 2423, p = <0.05). Nodifferencewasfoundbetweenterrestrialandmarinefaunal groupsintermsof 18OoneitherTimor( W = 1507, p = >0.05) orAlor( W = 1375, p = >0.05). Intermsofterrestrialpalaeoenvironmentalconditionsand changesinLatePleistocene – HoloceneWallacea,ourdatadirectly con rmstheC3forest – woodlandpreferencesfornow-extinct giantrattaxaonbothTimorandAlor(Figs. 3 – 5 ;asperref.27). SeparationoftheterrestrialfaunadatasetfromTimor( n = 76) andKruskal – Wallisanalysisshowstheretobenosigni cant 13C differencesbyphaseonthisisland(Kruskal – Wallischi-squared = 3.157,df = 3, p = >0.05).Althoughsigni cantdifferencesin 18Owerenotedbetweenphases(Kruskal – Wallischi-squared = 13.647,df = 3, p = <0.05),pairwisecomparisonfailedtodrawout anyspeci cdifferences(>0.05)(SupplementaryTable8).Forthe Alorterrestrialfaunaldataset( n = 42),thesituationismore complicated.Here,aKruskal – Wallistest(Kruskal – Wallischisquared = 14.386,df = 2, p = <0.05)followedbypairwisecomparisondemonstratedsigni cant 13Cdifferencesbetweenphases A(40,000 – 21,000yearsago)andC(4000 – 0yearsago),andB (15,000 – 7400yearsago)andC(4000 – 0yearsago;Supplementary Table9).Nosigni cantdifferenceswerefoundfor 18O (Kruskal – Wallischi-squared = 2.321,df = 2, p = >0.05). Thedifferencebetweentheislandsisdrivenbythefactthatin theearliestphaseofoccupationonAlor(40 – 21,000cal.yearsBP) thereisanoverlapbetweenterrestrialandmarinefaunain 13C (Figs. 2 and 5 ).Fromthispoint,the 13Cofterrestrialfauna declinesthroughthephases,withterrestrialandmarinefauna becomingobviouslydifferentbetween15,000 – 7400cal.yearsBP and4000 – 0cal.yearsBP(Fig. 2 ).TheseresultssuggestthatC4resourcesmayhavebeenavailabletosometerrestrialfaunainthe earliestphaseofhumanoccupationonAlor,withtheirpresence decliningthroughtime.However,itisalsopossiblethatelevated rat 13Ccouldbeaproductofearlyaccesstomarineresources39. Finally,separationofthecombineddatasetofmarinefaunafor TimorandAlor( n = 105),andKruskal – Wallisanalysisand pairwisecomparison(Kruskal – Wallischi-squared = 17.975,df = 8, p = <0.05)showedsigni cant 13Cdifferencesbetweenreef taxasuchasBalistidae(Trigger shes)andmorewide-ranging taxa,suchas Scaridae (Parrot shes)(SupplementaryTable10), indicatingthepotentialutilityofisotopicanalysisofteethto distinguish shfromdifferentmarineniches(seealsoref.40). Ourlarge,robustfaunalbaselineenablesthelong-term ecologicalnichesofLatePleistocene/Holocenehumanforagers tobedirectlydeterminedforAsitauKuru,MatjaKuru2, Makpan,andTronBonLei,aswellastheadditionalsitesofLene HaraandMatjaKuru1whereonlyhumansampleswereavailable (Figs. 2 – 6 ; n = 26).Sampledhuman 13Cand 18Oranges between 14.1and 5.6 ‰ and 6.2to 3.2 ‰ ,respectively (Fig. 2 ,SupplementaryData2).Theearliesthumansampleinthe study,andtheearliestrecoveredfromWallacea,fromcontextB63 atAsitauKuru,datedtoc.42,440 – 38,853cal.yearsBP,hasa 13C valueof 5.6 ‰ (Fig. 3 ).Thisisindicativeofahighrelianceon marineresources,giventhelackofanyevidenceforC4resources inthispartofTimoratthistimeandzooarchaeologicalevidence forabundantmarineresources(Fig. 2 ).Themajorityofthe remaininghumanssampledfromtheTerminalPleistoceneand HolocenecontextsofAsitauKuru(Fig. 3 ),LeneHara(Fig. 3 ), MatjaKuru1and2(Fig. 4 ),andthesiteofMakpan(Fig. 5 )on Alor,have 13Cvaluesbetween 14.1 ‰ and 9.6 ‰ ,indicating humanrelianceonamixtureofterrestrialtropicalforest resourcesandmoreopenC3environments(Fig. 2 ). Indeed,Fig. 6 demonstratesthateventhe 13Cvaluesof humansexcavatedfromTronBonLei(SupplementaryNote1), withanassumedeconomicandculturalrelianceonmarine resources,havearangeofbetween 12.5 ‰ and 9.6 ‰ .With perhapstheexceptionoftheindividualfromsquareCwitha valueof 9.6 ‰ ,wholikelydemonstratessomecontributionof marineorC4resources,thisshowsthatterrestrialC3resources madeupthemajorityofthedietsoftheseindividuals.Nevertheless,itisclearthattwoTerminalPleistocene/Holocene individualsatMakpan,Alor( 8.1 ‰ ;15,000 11,000cal.years BP;Fig. 5 ),andMatjaKuru2,Timor( 5.6 ‰ ;Fig. 4 ; 11,000 – 4000cal.yearsBP)incorporatedasigni cantproportion ofC4/marineandmarineresourcesintotheirdiets,respectively, basedonassociatedfaunaldata(Fig. 2 ),suggestingthatdietswere diversebetweenindividualsandsocietiesduringtheTerminal PleistoceneandHolocene. Fouriertransforminfraredspectroscopy .Fullresultsofthe infraredindicesofsamplessubjectedtoFTIRanalysisareshown inSupplementaryData3.Allofthefossilandmodernenamel samplesdisplayedclassicenamelFTIRspectra(Supplementary Fig.15).Noadditionalbandsfromsecondarycarbonate(e.g. calciteat710cm 1;ref.41)wereobservedinthespectraofthe fossilsamples(SupplementaryFig.15).BoxplotsofAPI,BPI, WAMPI,PCI,andBAIforthegroupsof ‘ Modern ’ , ‘ Fossil Human ’ , ‘ FossilTerrestrialFauna ’ ,and ‘ FossilMarineFauna ’ are showninSupplementaryFig.16.Broadly,thereareminimal changesbetweenthegroupswithfossilsamplesperhapshaving marginallylowerAPI,slightlyhigherBPI,andhigherBAIthan the ‘ Modern ’ sample(SupplementaryFig.16).Analysisofvariance(ANOVA)andpost-hocTukeypairwisecomparisons ARTICLENATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-44NATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications

PAGE 5

supportthis, ndingnosigni cantdifferencesinA-sitecarbonation( F (3,55) = 1.194, p >0.05),B-sitecarbonation( F (3,55) = 1.387, p >0.05),PCI( F (3,55) = 1.845, p >0.05),orWAMPI( F (3,55) = 1.245, p >0.05)betweenthedifferentsamplegroups.By contrast,BAIdoesshowadifferencebetweenthegroups ( F (3,55) = 6.232, p <0.05),with ‘ FossilMarineFauna ’ and ‘ Fossil TerrestrialFauna ’ beingsigni cantlydifferentfrom ‘ Modern ’ samples(SupplementaryTable11). Poorpreservationofskeletalmaterialhasbeensuggested elsewhereintropicalrainforestenvironments,thoughsuch Fig.3IsotopedatafromAsitauKuru(Timor). Stablecarbon( 13C)andoxygen( 18O)isotopedatafromterrestrialandmarinefaunaltoothenamel samples,withhumansamplesshownaswhitecircles,displayedbysitephases(seeSupplementaryNote1). NATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-4ARTICLENATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications5

PAGE 6

Fig.4IsotopedatafromMatjaKuru1and2(Timor). Stablecarbon( 13C)andoxygen( 18O)isotopedatafromterrestrialfaunaltoothenamelsamples fromMatjaKuru2(Timor),withhumansamplesshownaswhitediamonds,displayedbysitephases(seeSupplementaryNote1).Regionalphasinghas beenusedforthe11,000 – 4000cal.yearsBPgroupingsoindividualsfromMatjaKuru1and2canbecombined.Thegroupingof16,000 – 11,000cal.years BPisonlyrepresentedbytwohumanindividualsfromMatjaKuru1asthereisnooccupationatMatjaKuru2atthistime(seeSupplementaryNote1). ARTICLENATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-46NATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications

PAGE 7

commentshavemainlyfocusedonorganicbonematerial42.The fossilenamelFTIRspectraproducedherearevirtuallyindistinguishablefrommodernspectra(SupplementaryFigs.15and 16).Theprecipitationofcarbonatemineralsislikelytobemore ofaprobleminthecontextofmoreporousmaterials,suchas bone43 , 44.Subtledifferencesnotedinfaunalenamelapatite duringfossilizationnotedhere,includingincreasedBAIand decreasedA-carbonateonphosphateindex,havealsobeen Fig.5IsotopedatafromMakpan(Alor). Stablecarbon( 13C)andoxygen( 18O)isotopedatafromterrestrialandmarinefaunaltoothenamelsamples, withhumansamplesshownaswhitetriangles,displayedbysitephases(seeSupplementaryNote1). NATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-4ARTICLENATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications7

PAGE 8

demonstratedinotherstudies,includingwithinthetropicsof SouthAsia,andhavebeenarguedtobeaproductofthereduction inorganicmaterialwithintheapatitematrixthroughtime31 , 38 , 45. Suchchangeisnotconsideredtohavemajorimpactsonoverall enamelapatitestructureorstablecarbonandoxygenisotope measurementsfromenamel45,asfurthersuggestedbythe preservationofexpectedecologicaldifferencesintheenamel hereandelsewhere29 , 31. Discussion Ourstableisotopedataallowustodirectlyassesstheecological relianceondifferentcategoriesofresourcesthataccompaniedour species ’ arrivalandsubsequentsettlingofWallacea.Theearliest humanstoarriveinthispartoftheworldseeminglyspecializedin theuseofcoastalresources.Whilewecannotcurrentlydistinguishbetweenpelagicandotherformsofoffshoreresourceuse13, andoursamplesizefromthisearlyperiodislimited,wecanbe con dentthatthe 13Cvalueforthisindividualindicatesarelianceonmarineresources.Following20,000cal.yearsBP,aclear diversi cationinhumanresourceuseacrossWallaceaemerges. Whilesomecoastalrelianceisindicatedbyoneindividualat MatjaKuru2,andperhapsalsoMakpan,mostindividuals demonstratebroaderuseofinteriorenvironments,including closedtropicalforesthabitats.Thismaybeconsideredsurprising, particularlygiventheongoingpresenceof shandshell sh9,the symbolicburialofanindividualatTronBonLeiwith shhooks (SupplementaryNote1),aswellasarchaeologicalevidencefor increasedtransferofmaterialculturebetweenislandsfromthis time46 , 47.However,toothenamel 13Cre ectsthewholedietof anindividual,andourdatahighlightsthenecessityofpaying moreattentiontothecontributionofplant(andterrestrialanimal)resourcestohumandietsontropicalislands,particularlyas thosepopulationsbecomemoreestablished — somethingalso recentlyurgedevenforthestudyofthelaterLapitaexpansionin thePaci c48 , 49. Thisstudypresentsthe rstdetailedpalaeoenvironmental informationforLatePleistocene – HoloceneWallacea,directly associatedwithrecordsofhumanbehavior.Ourdataindicates that,onTimor,tropicalforestenvironmentsremainedprevalent throughoutthepast45,000years,onlydecreasingduringtheLate Holocenewiththearrivalofhuman-induceddeforestationduring theIronAge27 , 50.ThereisnoevidenceforthepresenceofC4grasslandenvironmentsinthevicinityofanyofthesitesstudied. Bycontrast,onAlor,C4resourcesmayhavebeenavailabletosome smallmammals,andpresumablyalsohumans,duringtheearliest Fig.6IsotopedatafromTronBonLei(Alor). Stablecarbon( 13C)andoxygen( 18O)isotopedatafromterrestrialandmarinefaunaltoothenamel samples,withhumansamplesshownaswhiteinvertedtriangles,displayedbysitephases(seeSupplementaryNote1). ARTICLENATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-48NATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications

PAGE 9

periodofoccupation(40,000 – 21,000yearsago).Fromthispoint onward,theseresourcesdisappearastropicalforestenvironments expandedacrosstheTerminalPleistocene – Holoceneboundary. Whileitremainspossiblethatelevated 13Cforsomefaunainthe earlierphaserepresentsconsumptionofmarineresources,this palaeoenvironmentalpatternofincreasingtropicalforestsduring theTerminalPleistocenehasalsobeendocumentedelsewherein bothIslandandMainlandSoutheastAsia5.Inthesecases,the expansionoftropicalforestduringtheTerminalPleistoceneand EarlyHolocenehasalsobeenassociatedwithincreasinglyspecializedhumanhuntingofarborealandsemi-arborealmammalsand theuseoftropicalforestplants5. Ourisotopicevidencesupportshumancolonizationmodelsof WallaceaandAustraliathatsuggestarapid,initialcoastalcolonization,followedbylaterinlandsettlement12 , 14,atleastwith regardstothesitesstudiedhere.Thismodeofcolonization isdistinctfromisotopicandmaterialevidencefromtheWetZone rainforestsofLatePleistoceneSriLanka31 , 51andarchaeological evidencefromtheNiahCavesinBorneo52thatindicatededicated,specializedtropicalforestforagingbyearlyhumanpopulationsintheseregionsfrom45,000yearsago.Thisfurther highlightsthepotentialroleofsophisticatedseafaringinthe humancolonizationofeasternWallaceaandAustralasia12 , 13 , 53.A later,increasedfocusonterrestrialresourcesornearshorecoastal resourcesduringtheTerminalPleistoceneandHolocenehasalso beenarguedonthebasisofzooarchaeologicalevidencefrom Timor,andelsewhereinIslandSoutheastAsia18 , 54.Thissubsistencepatternoccursalongsideanincreaseinoccupation intensityacrossWallaceafromtheTerminalPleistocene,aswell asanincreaseinformalizedlong-distancetradingnetworks,and islikelyrepresentativeofexchangebetweensettledgroupsinthe region46 , 47. Theadaptive exibilityvisibleinthecolonizationofalmostall oftheEarth ’ scontinentsbyourspeciesintheLatePleistocene standsinstarkcontrasttotheadaptationsofotherhominin species3 , 6 , 9 , 24.Whilethereissomeevidencethatotherhominins mayhavemadewatercrossings20 – 23orventuredintohighaltitudeenvironments10,wherepresent,existingzooarchaeological/paleontologicalandpalaeoenvironmentalevidencesuggestsa general,albeitdiverse,focusonmixedgrasslandandwoodland environments,withdispersalsandcontractionsoftenrelianton climaticallydrivenenvironmentalchange24 , 55.Futureisotopic analysisandmoredetailedzooarchaeologicalworkarerequiredto testthisdistinction,bothinWallaceaandbeyond.However,there isclearevidencethatdifferentpopulationsof H.sapiens wereable tospecializeinavarietyofextremeenvironmentsevenasour speciesasawholegeneralizedintheuseofmultiplesettings6. This exibility,perhapssupportedbyuniquecapacitiesofinnovation,technologicalsophistication,andsocialcommunication (e.g.,ref.56),enabledadaptationtoavarietyofconditions,not justthroughspacebutalsothroughtime,thatwouldeventually leaveusthelasthomininstanding. MethodsSites,samples,andchronology .Wesampledavailablehumanandanimalteeth fromtheLatePleistocene – HolocenedepositsofAsitauKuru,MatjaKuru1and2, andLeneHaraontheislandofTimorandMakpanandTronBonLeiontheisland ofAlor.Existing,includingpublished,stratigraphic,andchronologicalinformation wascompiled,inordertoenabletheplacementofsamplesintheirpropercontext. Alloftheavailabledatesused,stratigraphicinformation,andaccompanying archaeological ndscanbefoundinSupplementaryNote1,Supplementary Figs.1 – 12,andSupplementaryTables1 – 7.Theavailablesampleswereselectedon thebasisofoccupationphasesnotedandpublishedforeacharchaeologicalsite (SupplementaryNote1,SupplementaryTables1 – 7).Basedontheseestablished sequences,sampleswerealsogroupedintoanoverall ‘ phasing ’ foreachofthe islandsofTimorandAlortoprovidelargersamplesizesforthebroaderevaluation ofadaptivecontextforthearrivalofhumansoneachisland,hypothesized palaeoenvironmentalchangesacrosstheTerminalPleistocene/Holoceneboundary, andchangesfollowingthearrivalof ‘ Neolithic ’ materialcultureduringtheHolocene(SupplementaryNote1,SupplementaryTables6and7). Althoughbonecollagenisfrequentlytheprimarytissueusedintheisotopic determinationofancientdiets,itisoftendegradedandnearlyimpossibletoextract fromarchaeologicalremainsinthehumidtropics,particularlythosedatingbackto thePleistocene57 , 58.Thisisthecaseforthesitesstudiedhere.Bycontrast,tooth enamelconsistsprimarilyofaninorganicfractionextremelyresilientto postmortemdiagenesis59,meaningthatitisthefossiltissueofchoicefortropical dietaryreconstruction58 , 60.Toothidenti cationandanalyseswereconductedatthe AustralianNationalUniversity(ANU).Fish,reptile,andnon-muridmammal identi cationswerefacilitatedthroughcomparisonswithspecimensfromtheANU ArchaeologyandNaturalHistoryOsteologyLaboratoryreferencecollection.Murid identi cationswerefacilitatedthroughcomparisonswitharchaeologicalandfossil specimenscollectedfrompreviousANUexpeditions,materialheldinKA ’ sprivate collections,theAustralianNationalWildlifeCollectionoftheCommonwealth Scienti candIndustrialResearchOrganisationNationalFacilitiesandCollections, anddescriptionsandillustrationsinAplinandHelgen61andGlover62. Toothenamelrecordsanisotopicdietarysignaturefortheperiodofenamel formationthatwillvarydependingonthespeciesandtoothsampled.Forhumans, thelongestisotopicsignatureisprovidedbythirdmolarsthatcandevelopanytime between7and13yearsofage,andthemidtolateteenageyears63 , 64.While collagen 13Cisalsobiasedtowardproteincomponentsofthediet65,toothenamel 13Cre ectsthatofthewholedietduringformation.Duetotherarityoffossil humanremainsinPleistocenearchaeologicalsites,wesampledalloftheavailable humanteethpresent(SupplementaryData2).Theresultisoneofthelargest collectionsofhumantoothenameldatathatspanstheLatePleistocene/Holocene (seerefs.31 , 60forcomparisoninSriLanka)andthe rstforIslandSoutheastAsia. Whilesomeoftheseteethcomefromskeletonsthathavebeenagedandsexed,the majorityarelooseteeth.Subtlevariationsin 13Cand 18Obetweenteethcould occurasaresult,particularlyforteethformedduring ‘ weaning ’66.However,overall thisminor ‘ noise ’ willnothinderthetestingofthemajor 13Cdistinctionsbetween closedcanopyC3resources,C3opensettings,C4resources,andmarineresources. Stableisotopeanalysisofarchaeologicaltoothenamel .Allteethorteeth fragmentswerecleanedusingair-abrasiontoremoveanyadheringexternal material.Enamelpowderforbulkanalysiswasobtainedusinggentleabrasionwith adiamond-tippeddrillalongthefulllengthofthebuccalsurface,inordertoensure arepresentativemeasurementfortheentireperiodofenamelformation.All enamelpowderwaspretreatedtoremoveorganicorsecondarycarbonatecontaminates.Thismethodfollowedestablishedprotocolsthathavebeenapplied elsewheretoPleistocenetoothenamelinthetropics,whereithasproventobe effective31 , 60 , 67 , 68,enablingfuturecomparisonbetweendatasets.Sampleswere washedin1.5%sodiumhypochloritefor60min,followedbythreerinsesinpuri edH2Oandcentrifuging,before0.1Maceticacidwasaddedfor10min,followed byanotherthreerinsesinpuri edH2O.Sampleswerethenlyophilizedfor24h. Followingreactionwith100%phosphoricacid,gasesevolvedfromthesamples weremeasuredbystablecarbonandoxygenisotopeanalysisusingaThermoGas Bench2connectedtoaThermoDeltaVAdvantageMassSpectrometeratMPISHH. 13Cand 18OvalueswerecomparedagainstInternationalStandards (IAEA-603( 13C = 2.5; 18O = 2.4);IAEA-CO-8( 13C = 5.8; 18O = 22.7); USGS44( 13C = 42.2))andin-housestandard(MERCK( 13C = 41.3; 18O = 14.4))usingIsodat3.0softwarefromThermoElectronCorporation.Replicate analysisofMERCKcarbonatestandardssuggeststhatmachinemeasurementerror isc.±0.1 ‰ for 13Cand±0.2 ‰ for 18O.Whileeachsamplewasmeasuredonly oncetopreservematerialforfutureanalyses,asisstandardforthisapproach, overallmeasurementprecisionandreproducibilityfortoothenamelsampleson thismachinesetupwasstudiedthroughthemeasurementofrepeatextractsfrom anin-housebovidtoothenamelstandard( n = 20; 13C = 12.4±0.2 ‰ ; 18O = 8.0±0.3 ‰ ). Fouriertransforminfraredspectroscopy .Whilereliable 13C-and 18O-based dietaryandenvironmentalindicatorshavebeendemonstratedacrossmillionsof years29,protocolstocheckthestructuralpreservationoffossiltoothenamel samplesremainimportant(seeref.69).Thisisparticularlythecaseintropical forestenvironmentswithion-richsoilsandhighhydrologicalactivity.Onemeans tocheckenamelpreservationistheapplicationofFTIR,whichabsorbsradiationat discretevibrationalfrequenciesrelatedtothepresenceandcrystallographic environmentofkeyfunctionalgroups(seerefs.45 , 70 , 71).Thepolyatomicionsof interestarephosphates(PO43 ),carbonates(CO32 ),andhydroxylgroups(OH). Theobservedabsorbancebandsofenamelcanbeascribedtotheinternalvibrations ofthesemoleculargroups41 , 72(SupplementaryTable12). WeusetheempiricalindicesfromSponheimerandLee-Thorp70,andRoche etal.45tocharacterizethecrystal-chemicalpropertiesofenamelbioapatite (SupplementaryTable12).Thepossiblepresenceofcalcitewasassessedinall samplesbycheckingforapeakat710cm 1(refs.41 , 70).14 ‘ FossilHuman ’ ,15 ‘ Fossil TerrestrialFauna ’ ,and15 ‘ FossilMarineFauna ’ samplesweresubjectedtoFTIR analysisfollowingpretreatment,inordertodeterminetheremainingpotentialfor diageneticstructuralandcompositionalmodi cationofenamelafterpretreatment. Sampleswererandomlyselectedtocoveravarietyofthetemporalphasesandallof thesitesstudied(SupplementaryData3).Thefossilspectrawerecomparedtothose NATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-4ARTICLENATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications9

PAGE 10

availablefor15modernprimateandcervidsamples,andhistorical(latenineteenth andearlytwentiethcentury)humanenamelsamples( ‘ Modern ’ ),frompopulations livingintropicalforestenvironmentsinSriLankaalreadypublishedbyRoberts etal.73(SupplementaryData3). Forallsamples,powderedenamelwasanalysedbetween400and4,000cm 1by FTIRwithAttenuatedTotalRe ectance(FTIR-ATR — BrukerVertex70v)using theOPUS8.5softwarefromBruker.Eachsamplewasmeasuredthreetimes.The backgroundwassubtractedandabaselinecorrectionwascarriedoutusingthe OPUS8.5softwarefromBruker.Thebaselinesofthespectrawerenormalizedand allthreespectraofeachsamplewereaveragedbeforecalculationofthevarious infraredindices.Toensurebetterreproducibilityofthemeasurements,onlyspectra withaminimumabsorbanceof0.06forthehighestphosphatebandat ~ 1035cm 1weretakenintoaccount.ThereproducibilitiesoftheindicesBPI,API,BAI,and PCIare±0.01,±0.007,±0.1,and±0.1,respectively. Statisticalanalysis .All 13Cand 18Odatasetsweretestedfornormalityusing theShapiro – Wilktestandhistogramobservations.Followingobservationsofalack ofnormality,thesigni canceof 13Cand 18Ovariationbetweenthetwoislands (TimorandAlor),andbetweenterrestrialandmarinefaunaoneachislandwere testedusingMann – Whitney – Wilcoxontests.Thesigni canceof 13Cand 18O variationbetweentaxaandbetweenthedifferentperiodswastestedusing Kruskal – Wallistests.Wheresigni cant,thesetestswerefollowedbyapairwise Wilcoxoncomparisontodeterminewhichgroupsweresigni cantlydifferentfrom eachother.Inallcases,thedatasetbeingtestedanditssizeareexplicitlystated.All statisticalanalyseswereconductedusingthefreeprogramRsoftware74. AllFTIRindexvaluesweretestedfornormalityusingtheShapiro – Wilktest andhistogramobservations.Analysisofvariance(ANOVA)followedbyposthoc TukeypairwisecomparisonswereperformedforeachofthemainFTIRindicesof enamelapatite(PCI,BAI,BPI,API,andWAMPI — per45andde nedin SupplementaryTable12)acrossthesamplegroups(i.e., ‘ FossilMarineFauna ’ , ‘ FossilTerrestrialFauna ’ , ‘ FossilHumans ’ ,and ‘ Modern ’ ),inordertodetermine statisticaldifferencesinenamelcrystallinityandstructurebetweenfossiland modernsamples.Allstatisticalanalyseswereagainconductedusingthefree programRsoftware74. Reportingsummary .Furtherinformationonresearchdesignisavailablein theNatureResearchReportingSummarylinkedtothisarticle.DataavailabilityAllofthedatareportedinthepaperarepresentedinthemaintextorin theSupplementaryNotes,Tables,Figures,andData les.Thesourcedataunderlying Fig. 2 andSupplementaryFig.16areprovidedasaSourceData le.Thesourcedatafor Fig. 2 ,aswellasSupplementaryDataFiles1and2,alsounderlieFigs. 3 – 6 .Allotherdata supportingthe ndingsandinterpretationsofthisstudyareavailableinexisting publicationsandtheSupplementaryInformationprovidedalongsidethismanuscript. ThefaunalandhumanremainssampledfromTimor-Lestearecuratedinthe ArchaeologycollectionattheCollegeofAsiaandthePaci c,AustralianNational University,AustraliaunderthesitecodesJ(AsitauKuru),MK(MatjaKuru),andLH (LeneHara).ThesematerialsaretobereturnedtoTimor-Lesteuponconstructionofa nationalmuseumstorehouse.ThefaunalandhumanremainsfromAlorarehousedin theDepartmentofArchaeology,UniversitasGadjahMada,Indonesia,underthesite codesTBL(TronBonLei)andMP(Makpan).Allsitecodesarefollowedbysuf xesofa singleletterdenotingtheexcavationsquareandanumberdenotingthespit.Received:26January2020;Accepted:6April2020; References1.Aubert,M.etal.Earliesthuntingsceneinprehistoricart. Nature 576 ,442 – 445 (2019). 2.Akhilesh,K.etal.EarlyMiddlePalaeolithiccultureinIndiaaround385-172 kareframesOutofAfricaModels. Nature 554 ,97 – 101(2018). 3.Rizal,Y.etal.Lastappearanceof Homoerectus atNgandong,Java,117,000108,000yearsago. Nature 577 ,381 – 385(2020). 4.Reich,D.etal.Denisovaadmixtureandthe rstmodernhumandispersalsintoSoutheastAsiaandOceania. Am.J.Hum.Genet. 89 ,516 – 528 (2011). 5.RabettR.J. HumanAdaptationintheAsianPalaeolithic (Cambridge UniversityPress,Cambridge,2012). 6.Roberts,P.&Stewart,B.A.De ningthe ‘ generalist-specialist ’ nichefor Pleistocene Homosapiens . Nat.Hum.Behav. 2 ,542 – 550(2018). 7.Zhu,R.X.etal.Earlyevidenceofthegenus Homo inEastAsia. J.Hum.Evol. 55 ,1075 – 1085(2008). 8.Gamble,C. Timewalkers:ThePrehistoryofGlobalColonization (AlanSutton Press,Cheltenham,1993). 9.O ’ Connor,S.etal.HominindispersalandsettlementeastofHuxley ’ sLine:the roleofsea-levelchanges,islandsize,andsubsistencebehaviour.Curr. Anthropol. 58 ,S567 – S582(2017). 10.Chen,F.etal.AlateMiddlePleistoceneDenisovanmandiblefromtheTibetan Plateau. Nature 569 ,409 – 412(2019). 11.Bird,M.,Taylor,D.&Hunt,C.PalaeoenvironmentsofinsularSoutheastAsia duringthelastglacialperiod:asavannacorridorinSundaland? Quat.Sci.Rev. 24 ,2228 – 2242(2005). 12.Bird,M.I.etal.EarlyhumansettlementofSahulwasnotanaccident. Nat.Sci. Rep. 9 ,8220(2019). 13.O ’ Connor,S.,Ono,R.&Clarkson,C.Pelagic shingat42,000yearsbeforethe presentandthemaritimeskillsofmodernhumans. Science 334,1117 – 1121 (2011). 14.Kealy,S.,Louys,J.&O ’ Connor,S.ReconstructingpalaeogeographyandinterislandvisibilityintheWallaceanArchipelagoduringthelikelyperiodofSahul Colonization,65 – 45000YearsAgo. Archaeol.Prospect. 24 ,259 – 272(2017). 15.Norman,K.etal.AnearlycolonizationpathwayintonorthwestAustralia7060,000yearsago. Quat.Sci.Rev. 180 ,229 – 239(2017). 16.O ’ Connell,J.F.&Allen,J.Therestaurantattheendoftheuniverse:modeling thecolonizationofSahul. Aust.Archaeol. 74 ,5 – 31(2012). 17.SamperCarro,S.C.etal.HumanmaritimesubsistencestrategiesintheLesser SundaIslandsduringtheterminalPleistocene-earlyHolocene:Newevidence fromAlor,Indonesia. Quat.Int. 416 ,64 – 79(2016). 18.Hawkins,S.etal.OldesthumanoccupationofWallaceaatLailiCave,TimorLeste,showsbroad-spectrumforagingresponsestolatePleistocene environments. Quat.Sci.Rev. 171 ,58 – 72(2017). 19.Shipton,C.etal.Anew44,000-yearsequencefromAsitauKuru(Jerimalai), Timor-Leste,indicateslong-termcontinuityinhumanbehaviour. Archaeol. Anthropol.Sci. 11 ,5717 – 5741(2019). 20.Morwood,M.J.etal.Furtherevidenceforsmall-bodiedhomininsfromthe LatePleistoceneofFlores,Indonesia. Nature 437 ,1012 – 1017(2005). 21.VandenBergh,G.D.etal. Homo oresiensis -likefossilsfromtheearlyMiddle PleistoceneofFlores. Nature 534 ,245 – 248(2016). 22.Ingicco,T.etal.EarliestknownhomininactivityinthePhilippinesby709 thousandyearsago. Nature 557 ,233 – 237(2018). 23.VandenBergh,G.D.etal.EarliesthomininoccupationofSulawesi, Indonesia. Nature 529 ,208 – 211(2016). 24.Roberts,P.&Amano,N.Plasticpioneers:Homininbiogeographyeastofthe MoviusLineduringtheLatePleistocene. Archaeol.Res.Asia 17 ,181 – 192 (2019). 25.Brumm,A.etal.Ageandcontextoftheoldestknownhomininfossilsfrom Flores. Nature 534 ,249 –253(2016). 26.Anderson,A.Theantiquityofsustainedoffshore shing. Antiquity 87 , 879 – 895(2013). 27.Louys,J.etal.NewgenusandspeciesofgiantratfromAlorIsland,Indonesia. J.Asia-Pac.Biodiv 11 ,503 – 510(2018). 28.SamperCarro,S.C.,Louys,J.&O ’ Connor,S.Methodologicalconsiderations foricthyoarchaeologyfromtheTronBonLeisequence,Alor,Indonesia. Archaeol.Res.Asia 12 ,11 – 22(2017). 29.Lee-Thorp,J.A.,Sealy,J.C.&vanderMerwe,N.J.Stablecarbonisotoperatio differencesbetweenbonecollagenandboneapatite,andtheirrelationshipto diet. J.Archaeol.Sci. 16 ,585 – 599(1989). 30.Levin,N.E.etal.in TheGeologyofEarlyHumansintheHornofAfrica (edsJ. Quade&J.G.Wynn.)215 – 234(GeologicalSocietyofAmericaSpecialPaper 446,Boulder,Colorado,2008). 31.Roberts,P.etal.Fruitsoftheforest:Humanstableisotopeecologyand rainforestadaptationsinLatePleistoceneandHolocene(~36to3ka)Sri Lanka. J.Hum.Evol. 106 ,102 – 118(2017). 32.Monk,K.A.,deFretes,Y.&Reksodiharjo-Lilley,G. TheEcologyofNusa TenggaraandMaluku (PeriplusEditions,Jakarta,Indonesia,1997). 33.Smith,B.N.&Epstein,S.Twocategoriesof13C/12Cratiosforhigherplants. PlantPhysiol. 47 ,380 – 384(1971). 34.Fry,B. StableIsotopeEcology (Springer,NewYork,2006). 35.Kusaka,S.etal.Carbonisotoperatiosofhumantoothenamelrecordthe evidenceofterrestrialresourceconsumptionduringtheJomonperiod,Japan. Am.J.Phys.Anthropol. 158 ,300 – 311(2015). 36.Clementz,M.T.&Koch,P.L.Differentiatingaquaticmammalhabitatand foragingecologywithstableisotopesintoothenamel. Oecologia 129 ,461 – 472 (2001). 37.Cannon,C.H.,Morley,R.J.&Bush,A.B.G.Thecurrentrefugialrainforests ofSundalandareunrepresentativeoftheirbiogeographicpastandhighly vulnerabletodisturbance. PNAS 106 ,11188 – 11193(2009). 38.Roberts,P.etal.FossilherbivorestableisotopesrevealmiddlePleistocene homininpalaeoenvironmentin ‘ GreenArabia ’ . Nat.Ecol.Evol. 2 ,1871 – 1878 (2018). ARTICLENATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-410NATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications

PAGE 11

39.Polis,G.A.etal.In FoodWebsattheLandscapeLevel (edsPolis,G.A.,Power, M.E.&Huxel,G.R.)200 – 216(UniversityofChicagoPress,Chicago,Illinois, USA,2004). 40.Schoeninger,M.J.&DeNiro,M.J.Nitrogenandcarbonisotopiccomposition ofbonecollagenfrommarineandterrestrialanimals. Geochim.Cosmochim. Acta 48 ,625 – 639(1984). 41.Farmer,V.C. TheInfraredSpectraofMinerals (TheMineralogicalSociety, London,1974). 42.Tappen,M.Boneweatheringinthetropicalrainforest. J.Archaeol.Sci. 21 , 667 – 673(1994). 43.Lee-Thorp,J.A.&vanderMerwe,N.J.Aspectsofthechemistryofmodern andfossilbiologicalapatites. J.Archaeol.Sci. 18 ,343 – 354(1991). 44.Michel,V.,Ildefonse,P.&Morin,G.Assessmentofarchaeologicalboneand dentinepreservationfromLazaretCave(MiddlePleistocene)inFrance. Palaeogeogr.Palaeoclimatol.Palaeoecol. 126 ,109 – 119(1996). 45.Roche,D.etal.PreservationassessmentofMiocene-Pliocenetoothenamel fromTugenHills(KenyanRiftValley)-throughFTIR,chemicalandstableisotopeanalyses. J.Archaeol.Sci. 37 ,1690 – 1699(2010). 46.Reepmeyer,C.etal.Kisar,asmallislandparticipantinanextensivemaritime obsidiannetworkintheWallaceanArchipelago. Archaeol.Res.Asia 19 , 100139(2019). 47.Shipton,C.etal.ShellAdzes,ExoticObsidian,andInter-Islandvoyagingin theearlyandMiddleHoloceneofWallacea. JICA https://doi.org/10.1080/ 15564894.2019.1581306 (2019). 48.Maxwell,J.J.etal.Timingandimportanceofarboricultureandagroforestry inatemperateEastPolynesiaSociety,theMoriori,Rekohu(ChathamIsland). Quat.Sci.Rev. 149 ,306 – 325(2016). 49.Tromp,M.etal.Exploitationandutilizationoftropicalrainforestsindicated indentalcalculusofancientOceanicLapitaculturecolonists. Nat.Hum. Behav. https://doi.org/10.1038/s41562-019-0808-y (2020). 50.O ’ Connor,S.&Aplin,K.Amatterofbalance:anoverviewofPleistocene occupationhistoryandtheimpactoftheLastGlacialPhaseinEastTimorand theAruIslands,easternIndonesia. Archaeol.Ocean 42 ,82 – 90(2007). 51.Wedage,O.etal.Specializedrainforesthuntingby Homosapiens 45,000years ago. Nat.Commun. 10 ,739(2019). 52.Barker,G.,Farr,L. ArchaeologicalInvestigationsintheNiahCaves,Sarawak (TheArchaeologyoftheNiahCaves,Sarawak2) (McDonaldInstitutefor ArchaeologicalResearch,Cambridge,2016). 53.Balme,J.Ofboatsandstring:themaritimecolonisationofAustralia. Quat. Int. 285 ,68 – 75(2013).54.Boulanger,C.etal.Coastalsubsistencestrategiesandmangroveswamp evolutionatBubogIRockshelter(IlinIsland,Mindoro,Philippines)fromthe LatePleistocenetothemid-Holocene. JICA 14 ,584 – 604(2019). 55.Louys,J.&Turner,A.Environment,preferredhabitatsandpotentialrefugia forPleistocene Homo inSoutheastAsia. C.R.Palevol 11 ,203 – 211(2012). 56.Boyd,R.,Richerson,P.J.&Henrich,J.Theculturalniche:whysociallearning isessentialforhumanadaptation. PNAS 108 ,10918 – 10925(2011). 57.Krigbaum,J.NeolithicsubsistencepatternsinnorthernBorneoreconstructed withstablecarbonisotopesofenamel. J.Anthropol.Archaeol. 22 ,292 – 304 (2003). 58.Krigbaum,J.ReconstructinghumansubsistenceintheWestMouth(Niah Cave)Sarawak)burialseriesusingstableisotopesofcarbon. AsianPerspect. 44 ,73 – 89(2005). 59.Wang,Y.&Cerling,T.Amodeloffossiltoothandbonediagenesis: implicationsforpaleodietreconstructionfromstableisotopes. Palaeogeogr. Palaeoclimatol.Palaeoecol. 107 ,281 – 289(1994). 60.Roberts,P.etal.Directevidenceforhumanrelianceonrainforestresourcesin latePleistoceneSriLanka. Science 347 ,1246 – 1249(2015). 61.Aplin,K.P.&Helgen,K.M.QuaternarymuridrodentsofTimorPartI:new materialof Coryphomysbuehleri Schaub,1937,anddescriptionofasecond speciesofthegenus. Bull.Am.Mus.Nat. 341 ,1 – 80(2010). 62.Glover,I. ArchaeologyinEasternTimor,1966 – 67.TerraAustralis11 (DepartmentofPrehistory,ResearchSchoolofPaci cStudies (Australian NationalUniversity,Canberra,1986). 63.Hillson,S. DentalAnthropology (CambridgeUniversityPress,Cambridge, 1996). 64.Scheid,R.C. Woelfel ’ sDentalAnatomy 7thedn(Lipincoot,Williams& Wilkins,Philadelphia,2007). 65.Ambrose,S.H.&Norr,L.In PrehistoricHumanBone:Archaeologyatthe MolecularLevel (edsLambert,B.&Grupe,G.)1 – 37(Springer,Berlin,1993). 66.Wright,L.E.&Schwarcz,H.P.Stablecarbonandoxygenisotopesinhuman toothenamel:Identifyingbreastfeedingandweaninginprehistory. Am.J. Phys.Anthropol. 106 ,1 – 18(1998). 67.Sponheimer,M.etal.Hominins,sedges,andtermites:Newcarbonisotope datafromtheSterkfonteinvalleyandKrugerNationalPark. J.Hum.Evol. 48 ,301 – 312(2005). 68.Lee-Thorp,J.A.etal.IsotopicevidenceforanearlyshifttoC4resourcesby PliocenehomininsinChad. PNAS 109 ,20369 – 20372(2012). 69.Schoeninger,M.J.etal.Isotopicalterationofmammaliantoothenamel. Int.J. Osteoarchaeol. 13 ,11 – 19(2003). 70.Sponheimer,M.&Lee-Thorp,J.A.Isotopicevidenceforthedietofanearly hominid, Australopithecusafricanus . Science 283 ,368 – 370(1999). 71.Nagy,Z.K.etal.Comparativeperformanceofconcentrationandtemperature controlledbatchcrystallizations. J.ProcessControl 18 ,399 – 407(2008). 72.LeGeros,R.Z.CalciumphosphatesinOralBiologyandMedicine. Monogr. Oral.Sci. 15 ,1 – 201(1991). 73.Roberts,P.etal.HistoricaltropicalforestrelianceamongsttheWanniyalaeto (Vedda)ofSriLanka:anisotopicperspective. Hum.Ecol. 46 ,435 – 444(2018). 74.RCoreTeam. R:Alanguageandenvironmentforstatisticalcomputing (R FoundationforStatisticalComputing,Vienna,Austria,2013).AcknowledgementsForpermissiontoconduct eldwork,wethanktheSecretariadoEstadodaArtee Cultura,Timor-Leste,andtheIndonesianMinistryofResearch,Technology,andHigher Education(RISTEK)ForeignResearchPermitDivision(S.O ’ .C.1172/FRP/E5/Dit.KI/V/ 2016).ThisprojectwasfundedbytheMaxPlanckSociety,aEuropeanResearchCouncil StarterGrantawardedtoP.R.(no.850709),anAustralianResearchCouncilLaureate FellowshipawardedtoS.O ’ .C.(FL120100156),andtheAustralianResearchCouncil CentreofExcellenceforAustralianBiodiversityandHeritage(CE170100015).Wewould liketothankthelandownersandvillagersofAlorandTimor-Leste,staffandstudents fromtheUniversitasGadjaMada,PusatPenelitianArkeologiNasional,andBalai ArkeologiBalifortheirassistanceinthe eld.WealsothankCartoGISANUfortheir assistance.AuthorcontributionsP.R.,J.L.,C.S.,S.K.,andS.O ’ C.designedtheresearch;P.R.,J.L.,J.Z.,C.S.,S.K.,S.S.C.,S. H.,C.B.,S.M.,B.F.,K.A.,andS.O ’ C.collectedthedata;P.R.,J.L.,J.Z.,C.S.,S.K.,S.S.C.,S. H.,C.B.,andS.O ’ C.analyzedthedata;P.R.,J.L.,J.Z.,C.S.,S.K.,S.S.C.,S.H.,C.B.,S.M.,B. F.,N.B.,M.M.,K.A.,andS.O ’ C.wrotethepaper.CompetinginterestsTheauthorsdeclarenocompetinginterests.AdditionalinformationSupplementaryinformation isavailableforthispaperat https://doi.org/10.1038/s41467020-15969-4 . Correspondence andrequestsformaterialsshouldbeaddressedtoP.R.orS.O. Peerreviewinformation NatureCommunicationsthanksJohnKrigbaumandtheother, anonymous,reviewersfortheircontributiontothepeerreviewofthiswork.Peer reviewerreportsareavailable. Reprintsandpermissioninformation isavailableat http://www.nature.com/reprints Publisher ’ snote SpringerNatureremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaf liations. OpenAccess ThisarticleislicensedunderaCreativeCommons Attribution4.0InternationalLicense,whichpermitsuse,sharing, adaptation,distributionandreproductioninanymediumorformat,aslongasyougive appropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreative Commonslicense,andindicateifchangesweremade.Theimagesorotherthirdparty materialinthisarticleareincludedinthearticle ’ sCreativeCommonslicense,unless indicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthe article ’ sCreativeCommonslicenseandyourintendeduseisnotpermittedbystatutory regulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfrom thecopyrightholder.Toviewacopyofthislicense,visit http://creativecommons.org/ licenses/by/4.0/ . ©TheAuthor(s)2020 NATURECOMMUNICATIONS|https://doi.org/10.1038/s41467-020-15969-4ARTICLENATURECOMMUNICATIONS | (2020) 11:2068 |https://doi.org/10.1038/s41467-020-15969-4|www.nature.com/naturecommunications11


printinsert_linkshareget_appmore_horiz

Download Options

close


  • info Info

    There are only PDFs associated with this resource.

  • link PDF(s)



Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.