Morphometry of upper cheek teeth of cave bears (Carnivora, Ursidae)


Material Information

Morphometry of upper cheek teeth of cave bears (Carnivora, Ursidae)
Series Title:
Boreas An international journal of Quaternary research
Baryshnikov, Gennady F.
Puzachenko, Andrey Y.
John Wiley & Sons
Publication Date:


serial ( sobekcm )


Univariate and multivariate statistics were applied to analyse the morphometrical variability of 4920 upper cheek teeth (P4, M1 and M2) of cave bears from 123 geographical sites (180 samples) of different Pliocene – Pleistocene ages. The analysed specimens included those belonging to the big cave bears Ursus kudarensis, U. deningeri, U. spelaeus (three subspecies) and U. kanivetz (including U. ingressus), as well as the small cave bear U. rossicus. The information‐theoretical parameters (Shannon entropy and orderliness (Von Foerster, 1960: On self‐organizing systems and their environments. In Self‐Organizing Systems, 31–50. Pergamon Press, London) were used to estimate tooth diversity in different teeth, different taxa and in selected local chrono‐populations. Multivariate allometry coefficients (Klingenberg, 1996: Multivariate allometry. In Advances in Morphometrics, 23‐49. Plenum Press, New York) were used to describe the relationships of different ‘parts’ of a tooth and to compare allometric patterns amongst species or selected local samples. A multivariate analysis showed a significant overlap of the size/shape parameter ranges in deningeroid and spelaeoid bears within morphological spaces. Within the cave bear lineage, the Deninger's bear has the greatest morphological diversity index (entropy) of all the teeth overall, and the lowest diversity is observed in the final taxon of this lineage – U. kanivetz (=ingressus). The P4 and M2 diversity showed multidirectional correlations with elevation above sea level amongst several ‘local’ populations of Late Pleistocene cave bears. The morphological disparities between the studied taxa are in close agreement with the distances in the available schemes of genetic differentiation based on ancient mitochondrial DNA. The split of U. kudarensis and U. deningeri has a good bootstrap support, which corresponds to the hypothesis about their parallel evolution. The small cave bear U. rossicus is placed between U. arctos and U. deningeri. The phylogenetic signal is more pron
Original Version:
Boreas An international journal of Quaternary research, Vol. 48, no. 3 (2018-11-19).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

University of South Florida
Karst Information Portal

Postcard Information



Download Options


No images or PDF downloads are available for this resource.

Cite this item close


Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.


Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.


Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.


Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.