|
Dracula's children: Molecular evolution of vampire bat venom
previous item
|
next item
Citation |
- Permanent Link:
- https://digital.lib.usf.edu/SFS0069824/00001
Material Information
- Title:
- Dracula's children: Molecular evolution of vampire bat venom
- Series Title:
- Journal of Proteomics
- Creator:
- Low, Dolyce H.W.
Sunagar, Kartik
Undheim, Eivind A.B.
Ali, Syed A.
Alagon, Alejandro C.
Ruder, Tim
Jackson, Timothy N.W.
Pineda Gonzalez, Sandy
King, Glenn F.
Jones, Alun
Antunes, Agostinho
Fry, Bryan G.
- Publisher:
- Elsevier
- Publication Date:
- 2013-08-26
- Language:
- English
Subjects
- Subjects / Keywords:
- Molecular Evolution ( local )
Vampire Bat ( local ) Venom ( local ) Positive Selection ( local ) Desmodus Rotundus ( local )
- Genre:
- serial ( sobekcm )
Notes
- Abstract:
- While vampire bat oral secretions have been the subject of intense research, efforts have concentrated only on two components: DSPA (Desmodus rotundus salivary plasminogen activator) and Draculin. The molecular evolutionary history of DSPA has been elucidated, while conversely draculin has long been known from only a very small fragment and thus even the basic protein class was not even established. Despite the fact that vampire bat venom has a multitude of effects unaccounted by the documented bioactivities of DSPA and draculin, efforts have not been made to establish what other bioactive proteins are secreted by their submaxillary gland. In addition, it has remained unclear whether the anatomically distinct anterior and posterior lobes of the submaxillary gland are evolving on separate gene expression trajectories or if they remain under the shared genetic control. Using a combined proteomic and transcriptomic approach, we show that identical proteins are simultaneously expressed in both lobes. In addition to recovering the known structural classes of DSPA, we recovered a novel DSPA isoform as well as obtained a very large sequence stretch of draculin and thus established that it is a mutated version of the lactotransferrin scaffold. This study reveals a much more complex secretion profile than previously recognised. In addition to obtaining novel versions of scaffolds convergently recruited into other venoms (allergen-like, CRiSP, kallikrein, Kunitz, lysozyme), we also documented novel expression of small peptides related to calcitonin, PACAP, and statherin. Other overexpressed protein types included BPI-fold, lacritin, and secretoglobin. Further, we investigate the molecular evolution of various vampire bat venom-components and highlight the dominant role of positive selection in the evolution of these proteins. Conspicuously many of the proteins identified in the proteome were found to be homologous to proteins with known activities affecting vasodilation and platelet aggregation. We show that vampire bat ve
- Original Version:
- Journal of Proteomics, Vol. 89 (2013-08-26).
Record Information
- Source Institution:
- University of South Florida Library
- Holding Location:
- University of South Florida
- Rights Management:
- This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.
Postcard Information
- Format:
- serial
|
printinsert_linkshareget_appmore_horiz | |
Download Optionsclose
No images or PDF downloads are available for this resource.
Cite this
item
close
APACras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.
MLACras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.
CHICAGOPhasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.
WIKIPEDIANunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.
|