The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach


previous item | next item

Citation
The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach

Material Information

Title:
The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach
Series Title:
Hydrogeology Journal
Creator:
Carrière, Simon D.
Chalikakis, Konstantinos
Danquigny, Charles
Davi, Hendrik
Mazzilli, Naomi
Ollivier, Chloé, Emblanch, Christophe
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Karst ( local )
France ( local )
Hydrogeophysics ( local )
Carbonate Rocks ( local )
Matrix Porosity ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB – Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.
Original Version:
Hydrogeology Journal, Vol. 24, no. 7 (Nov-16).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.
Resource Identifier:
K26-05230 ( USFLDC: LOCAL DOI )
k26.5230 ( USFLDC: LOCAL Handle )

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

REPORTTheroleofporousmatrixinwaterflowregulationwithinakarst unsaturatedzone:anintegratedhydrogeophysicalapproachSimonD.Carrière1&KonstantinosChalikakis2&CharlesDanquigny1&HendrikDavi3&NaomiMazzilli2&ChloéOllivier2&ChristopheEmblanch2Received:2August2015/Accepted:25April2016 # Springer-VerlagBerlinHeidelberg2016Abstract Someportionsoftheporousrockmatrixinthekarst unsaturatedzone(UZ)cancontainlargevolumesofwaterand playamajorroleinwaterflowregulation.Theessentialresultsarepresentedofalocal-scalestudyconductedin2011 and2012abovetheLowNoiseUndergroundLaboratory (LSBB – LaboratoireSouterrainàBasBruit)atRustrel,southeasternFrance.Previousresearchrevealedthegeological structureandwater-relatedfeaturesofthestudysiteandillustratedthefeasibilityofspecifichydrogeophysicalmeasurements.Inthisstudy,thefocusisonhydrodynamicsatthe seasonalandeventtimescales.Magneticresonancesounding (MRS)measuredahighwatercontent(morethan10%)ina largevolumeofrock.Thislargevolumeofwatercannotbe storedinfracturesandconduitswithintheUZ.MRSwasalso usedtomeasuretheseasonalvariationofwaterstoredinthe karstUZ.Aprocess-basedmodelwasdevelopedtosimulate theeffectofvegetationongroundwaterrechargedynamics.In addition,electricalresistivitytomography(ERT)monitoring wasusedtoassesspreferentialwaterpathwaysduringarain event.Thisstudydemonstratesthemajorinfluenceofwater flowwithintheporousrockmatrixontheUZhydrogeological functioningatboththelocal(LSBB)andregional(Fontaine deVaucluse)scales.Bytakingintoaccounttheroleofthe porousmatrixinwaterflowregulation,thesefindingsmay significantlyimprovekarstgroundwaterhydrodynamic modelling,exploitation,andsustainablemanagement. Keywords Karst . France . Hydrogeophysics . Carbonate rocks . MatrixporosityIntroductionKarstifiedrockscoveralargeportionoftheworld ’ ssurface (Gunn 2004 ),particularly aroundtheMediterraneanSea (BakalowiczandDörfliger 2005 ).Unfortunatelythecomplexityofkarsthydrosystemscontinuestoimpedesustainablewaterexploitationandmanagement(e.g.Mangin 1975; Bakalowicz 1995 ;FordandWilliams 2007 ;Goldscheider andDrew 2007;White 2007).Inthecontextofclimate change,additionalstressonwaterresourcesmayrequiremore intenseexploitationofkarsthydrosystemwaterresources. Thesefactorsandsustainablemanagementrequireimproved knowledgeabouthowkarsthydrosystemsfunction. Karstisacomplexmediumwithmulti-scaleheterogeneity. Waterflowpathwaysarepresentthroughouttheentiremedium,fromrockmatrixtofracturesandkarstfeatures(Fig. 1 ). Thehydrodynamicroleofthesewaterpathwaysisstillpoorly understood(e.g.Bailly-Comteetal. 2010 )andwaterflow regulationwithinkarsthydrosystemsremainsanimportant issue.Ononehand,karsthydrosystemshavehighpermeabilitybecausealargeamountofwatermovesquicklythrough karstconduitsandrapidpressuretransferoccurs.Ontheother hand,karsthydrosystemsprovideanimportantbuffereffect becausespringdischargeremainshighevenduringlongdry periods,asattheFontainedeVauclusespringinFrance. Severalhypotheseshavebeenadvancedtoexplaintheimportantwaterflowregulationcapacityofkarsthydrosystems:(1) significantwaterstoragewithinthesaturatedzoneinkarst * SimonD.Carrière simon.carriere@paca.inra.fr1UMR1114EMMAH,INRA,DomaineSaintPaul,SiteAgroparc, 84914Avignon,France2UMR1114EMMAH,UAPV,301rueBaruchdeSpinoza,BP21239, 84916Avignon,France3UR629,URFM,INRA,DomaineSaintPaul,SiteAgroparc, 84914Avignon,France HydrogeolJ DOI10.1007/s10040-016-1425-8

PAGE 2

conduits(e.g.Mangin 1975 ;Marsaud 1996 );(2)waterstorage intheepikarst(fracturedandweatherednear-surfacekarst; e.g.Aquilinaetal. 2006 ;FordandWilliams 2007 );and(3) delayedinfiltrationortraveltimewithintheentireunsaturated zone(UZ;e.g.Celle-Jeantonetal. 2003 ;Emblanchetal. 2003;MudarraandAndreo 2010 ;Mudarraetal. 2012). However,thisregulationcapacitywithintheUZisnotrelated toidentifiedgeologicalfeatu res(e.g.fractures,matrix). Finally,fewresearchersconsiderwaterstorageintheUZzone tobesignificantenoughtoplayaroleinwaterflowregulation andthecapacitivefunctionofkarst. Duetothesecomplexities,distributedhydrogeological modelingofkarstsystemsremainsdifficulttoimplement andisnotoftendone(e.g.Kiraly 1998 ;Larocqueetal. 1999 ;Scanlonetal. 2003 ;Worthington 2009 ;Worthington andFord 2009 ).Theusualapproachtokarsthydrosystems istheso-called B blackbox ^ model(e.g.Mangin 1975; Marsaud 1996 ;Labatetal. 2000a , b ;RimmerandSalingar 2006 ;Fleuryetal. 2007 ;Moussuetal. 2011 ;Hartmannetal. 2012 ).However, B blackbox ^ modelsaresite-specific.The lackofphysicsandgeologyinsuchmodelsmakestheirtransferdifficultfromonekarstsystemtoanother.Moreover, B black-box ^ modeling(e.g.Fleuryetal. 2007 )and hydrochemicalestimates(e.g.Batiotetal. 2003 )haveindicatedlargeresidencetimedifferenceswithinasinglekarst hydrosystem. Mosttechniquestraditionallyusedinhydrogeologyareof limitedsuccessinacomplexandheterogeneousmediasuchas karst(Bakalowicz 2005 ).Hydrogeologistsoftenapplytechniquescommonlyusedinsurfacehydrologysuchasnatural andartificialtracersorrainfall/runoffmodels.Inrecentyears, surface-basedgeophysicswasaddedtothemethodological suitetoimprovetheanalysisofspatialandtemporalvariabilityofundergroundproperties(Berkowitz 2002 ).Numerous techniquesareavailable,eachwithitsstrengthsand weaknesses.Chalikakisetal.( 2011 )proposedageneraloverviewofgeophysicalmethodsforkarstmediaandmore recentlyKaufmannandDeceuster( 2014 )publishedanoverviewontheuseofgeophysicalsurveystodetectghostrock.In recentyears,anincreasingnumberofhydrogeophysicalprojectsaimedatstudiesofkarsthydrogeologicalfunctioning haveappeared(e.g.Jacobetal. 2008 , 2009 , 2010 ;Gondwe et al. 2010 ;Zhuetal. 2011 ;Deville 2013 ;Mazzillietal. 2013 ). Thisreportpresentsanintegratedhydrogeophysicalapproachbasedonseveralground-basedgeophysicalmethods combinedwithgeologicalandhydrogeologicaltechniques. Thisintegratedapproachprovidesadditionalinsightintokarst UZstructureandfunctioning.Italsoproposesaconceptual hydrogeologicalmodeltoexplainthemulti-annualdynamics ofthestudiedkarsthydrosystem.Thisconceptualmodelwill likelypromoteadditionalandmoreaccuratehydrodynamic modeling.Themethodologicalapproachwasdevelopedand testedinatypicalMediterraneankarsthydrosystemobservatory:TheFontainedeVaucluse – LowNoiseUnderground Laboratory(LSBB)karstwatershed.ExperimentalsiteGeneralgeologicalandhydrogeologicalcontext TheLSBB,anearlyhorizontalundergroundpassagewayoriginallydugformilitarypurposes,wasconvertedtoaresearch laboratoryin1997(Figs. 1 and 2c ).Itissituatedinthe FontainedeVauclusehydrosystemkarstUZ,inthevillage ofRustrel.Therockcoveroverthepassagewayrangesin thicknessfrom0to519mdependingonthetopography. Fig.1 Karstsystemmodel showingtheFontainedeVaucluse hydrosystemandtheLowNoise UndergroundLaboratoryof Rustrel( LSBB ) HydrogeolJ

PAGE 3

Thegeneralsaturatedzoneofthekarstsystemisapproximately400mbeneaththeLSBB.The3.8-km-longpassageway traversesthekarstmediumandarbitrarilyintersectsfaults andkarstnetworks.Asaresult,thepassagewayalsointersects someflowpathsintheUZ.Since2003,morethan61flow pointshavebeenidentifiedandstudiedwithinthelaboratory. Threeoftheflowpointsarepermanentand58aretemporary; theyarelocatedbetweenapproximatedepthsof33and440m (Garry 2007 ;Blondel 2008 ;Barbel-Perineau 2013 ). Onepermanentflowpointislocated33mbelowthesurfaceatthewesternextremityoftheLSBBpassageway (Fig. 2c ).Thispoint,called B pointD, ^ hasanaverage dischargeofapproximately130ml/min(Perineauetal. 2011 ).TheflowatpointDisofgreathydrogeologicalinterest becauseitoccursinafeaturelesszoneinakarstenvironment: nomajorfault,noapparentkarstification(inbothsurface, exokarst,andatdepth).Furthermore,itislocatedseveraltens ofmetersbelowtheso-called B epikarst ^ zone — accordingto Mangin ’ sschema(Mangin 1975 );however,itpresentssurprisinglysmoothwaterdynamicscomparedtootherflow pointsintheLSBB.TheflowatDhassometimesincreased afterarainevent,whileatothertimesflowhasremained unchangedafterasimilaramountofrain(Barbel-Perineau 2013 ).Thegeologicalcontextassociatedwiththispuzzling Fig.2a TheFontainedeVauclusebasinlocatedinFrance; b TheRustrel experimentalsitelocatedintheFontainedeVauclusebasin; c Excerptof localgeologicalmap,No.942(afterBlancetal. 1973 ); d Totalporosityof limestoneoutcroppingonFontainedeVauclusehydrosystemmeasuredin asmallsample(afterGuglielmi 2010 ) HydrogeolJ

PAGE 4

hydrogeologicalbehaviorledtoaresearchfocusonthearea locatedabovepointD. ThestudysiteislocatedwithintheFontainedeVaucluse karsthydrosysteminsoutheasternFrance.TheFontainede VaucluseisthelargestkarstspringinEurope;between1877 and2004itproducedanaveragedailyoutletdischargeof 19m3/s(Cognard-Plancqetal. 2006 ).Thecatchmentareais approximately1,115km2(Fig. 2b )andthekarstUZisparticularlythick;itsaveragethicknessisapproximately800m (Puig 1987 ).Thelargesizeisduetothepresenceofanearly 1,500-m-thickmassiveandcontinuouslimestone(Masse 1969 , 1976 )comprisingNecomanianmarlstoupperAptian marls.Apartofthiscarbonateplatformiscomposedofreef limestone,whichmayreachathicknessofapproximately 450mintheregion(Fig. 2d ).Thisreeflimestonecontains Urgonianfaciesthataretraditionallydividedintothreesubdivisions:U1,U2,andU3(Leenhardt 1883 ).Apartofthis Urgonianlimestonehasexceptionallyhightotalmatrix porosityforalimestoneanditcoversatleasthalfofthe FontainedeVauclusecatchment(e.g.Masse 1969 ;Léonide etal. 2014 );however,theroleofthisporosityinwaterdynamicsisstillunknown. Localgeologicalstructureinvestigatedinpreviousstudies Thegeologicalstructureofthestudysitewasinvestigated usinggeophysicalandgeologicalsurveys(Carrièreetal. 2013 )andgeologicalmodeling(Ollivieretal. 2013 ).Todetect geologicalstructure,acombinationofground-penetratingradar(GPR)andelectricalresistivitytomography(ERT)were usedtoidentifygeologicalfeaturesthatmayimpactgroundwaterdynamics.TheGPRresultsprovidenear-surfacehighresolutionimaging,andthuscanproviderelevantgeological informationsuchasstratificationandfractures(Fig. 3b,c ). Despitetheexceptionalqualityoftheresults,GPR ’ sinvestigationaldepthremainslimitedtoaround12m.ERTisableto Fig.3 Comparisonbetweendifferenttypesofgeologicaland geophysicalinformation: a regionallithostratigraphiclog(Masseand Fenerci-Masse 2011 ,modified); b 3Dgeologicalmodel(Ollivieretal. 2013 )with252-m-longelectricalresistivitytomography(ERT)section LSBB03,invertedinthreeiterations; c zoomonERTsectionLSBB03 withbeddingandfracturesdetectedbyground-penetratingradar(GPR); d Magneticresonancesoundings( MRS )ofJuly2011andJanuary2012 (Carrière 2014 ) HydrogeolJ

PAGE 5

investigatedownto40m,butitisanintegrativetechniquethat haslowerresolutionthanGPR.Inthestudyarea,theinvestigatedlimestoneiscommonlyanelectricallyresistiveformation(morethan2,000 .m).However,belowadepthof5 – 7m,theERTprofilesrevealseveralzonesofmoderateresistivity(around900 .m).Inthesezones,cross-stratifications wereclearlyidentifiedbyGPR.ThecombinationofbothGPR andERTresults,inadditiontofieldgeologicalstudiesand geotechnicalobservations(recordedduringundergroundpassagewayconstruction),leadtoawell-foundedgeologicalinterpretation(Fig. 3 ).Cross-stratificationsformedundercertain sedimentationconditions(highenergy,forexample)may haveproducedamoreporouslimestone;however,during thefirstphaseofthestudy,itwasimpossibletodetermine theexactroleoftheidentifiedgeologicalfeatures.Whatare therespectiverolesofthedetectedfaults,fractures,orcrushed zones?Isitpossibletomonitorwaterrechargedynamicsinthe moderateresistivityzone?Thesequestionswereanswered duringthesecondphaseofthestudypresentedinthisreport. Ollivieretal.( 2013 )performedgeologicalmodeling (Fig. 3b )usingGOCADsoftwaretocombineallavailable geophysical,geological,andgeotechnicalinformation.This geologicalmodelingmadeitpossibletoproposeawellfoundedinterpretationforgeologicalstructuresandtoextend theanalysisofthesitebelowthedepthinvestigatedby geophysics.Anintegratedhydrogeophysicalapproach:methods andtoolsTheapproachusedinthisstudycombinesseveraltools(surfacebasedgeophysics,geologyandtectonics,geotechnical information,hydrodynamics,andinfiltrationmodeling)toexplainthefunctioningofthelocalhydrosystem. Effectiveinfiltrationassessment Toassessasaccuratelyasposs ibletheeffectiveinfiltrationenteringlocallyintothekarsthydrosystem,exchangesbetweensoil/plant/atmosphereweremodeled usingCASTANEA(Davietal. 2005;Dufrêneetal. 2005 ).Thismodelcalculatesthe effectiveinfiltration bytakingintoaccountthefollowingprocesses:canopy waterinterception,treetran spiration,soilandlitter evaporation,dynamicsofsoilwatercontentanddrainage.ThismodelisbasedonthePenmann-Monteith equationforcalculatingevapo-transpiration.Themodel includesthedownregulationofsoildroughtontranspirationviastomataclosure.CASTANEAisaspeciesspecificmodelthatconsidersfeaturesoftheforestenvironmentinthestudyarea.CASTANEAwasvalidated inasimilarenvironment(Mediterraneanshrubbyforest withholmoak)atthePuéchabonsite(southernFrance) usingeddy-covariancemeasurements(Davietal. 2006 ; Martin 2012).Arequisiteinventoryofforestspecies wasconductedforarepresentativezonemeasuring 120m×20mtodefinestand-specificinputparameters; itincludedatreeinventorytoassessthestandingbiomass,hemisphericalphotographstoassessthecanopy leafareaindex(Davietal. 2008 ),andsoilpitstoestimatesoilwatercontent. MeteorologicaldatawererecordedattheCentre d ’ InformationRégionalAgro-Météorologiqueet Economique(CIRAME)stationatSaintSaturnin-les-Apt (Fig. 2 ).Between2004and2012,averagedailytemperatures rangedbetween – 7.2and28.7°C.Theaverageannualtemperaturewas13.5°Candtheaverageannualrainfallwas 660mm. Flowmeasurement ThedischargerateatpointDhasbeenmonitoredsince2003 tostudytheresponseoftheUZtonaturalrainfallevents (Garry 2007;Blondel 2008 ;Barbel-Perineau 2013 ).Flow pointDshowssmoothhydrodynamicbehavioreventhough itislocatedatadepthof33m(Figs. 4 and 5 ). WithintheLSBBpassageway,42otherflowpointshave alsobeenmonitoredsince2003.Inthisreport,acomparison ofpointDtopointCisgiven;thesetwopointsshowthe maximumdifferenceintermsofhydrodynamics.Themeasurementfrequencywasalmostweekly(349measurement campaignsattheendof2012).Dischargesaremeasuredby collectingwaterinagraduatedcylinderoveraperiodoftime. Geophysicsimplementation,acquisitionstrategy, andfieldconstraints Afterextensivetestingwithalargearrayofgeophysical methods(electromagnetic,electric,gravimetric,andnuclear magneticresonance;Carrière 2014 ),twoefficientandaccuratetechniqueswereselectedtostudyhydrodynamicsatthe localscale(afewhundredmeterssquared):ERTandmagnetic resonancesounding(MRS).Thesegeophysicaltechniques makeitpossibletoimagetemporalvariationincomplementaryphysicalpropertiesofthesubsurface(until90m).This variationmayberelatedtovariationinwatercontentandthus mayshedlightonhydrodynamicbehavior. Measurementsatthestudysitewereconductedattwotimescales:(1)withaseasonaltimesteptodetectroughvariations, and(2)withashorttimestepduringalargeraineventtodetect fastwaterflows.Attheexperimentalsite(Fig. 4 ),theslope, thevegetation,andthegravelcoverrequiredextensivepreparationpriortomeasurements.Theexactpositionofallgeophysicalmeasurementswascalculatedviatherealtime HydrogeolJ

PAGE 6

kinematic(RTK)acquisitionmethodevery2musingthedifferentialglobalpositioningsystem(GPS)TRIMBLE5800. MRS MRSistheonlyground-basedgeophysicalmethodthatcan obtainasignaldirectlyrelatedtothepresenceofwatertoa depthofseveralmeters.MRS,whichisdesignedforaquantitativedescriptionofaquiferformations,isbasedonthephenomenonofhydrogenprotonmagneticresonance.TheMRS arraygeneratesasignalwithaspecificfrequencytoexcitethe hydrogenprotonsinwatermolecules,andtheMRSsignal receivedisspecificallyrelatedtogroundwater(e.g. Legchenkoetal. 2002 ;Vouillamozetal. 2003 ). TheminimalamountoftimenecessarytoconductanMRS survey(approximatelyonedaypersounding)andthehigh costoftheequipmentledtotheuseofthisgeophysicaltechniqueattheseasonaltimestepforimagingseasonalvariations inwatercontent.OnlytwoMRSsurveyswererepeatedatthe seasonaltimestepandtheresultsofbothshowthesame Fig.5 Precipitationandeffective infiltrationcalculatedusing CASTANEAcomparedwithflow dynamicsatpoints C and D between2004and2012 Fig.4 ExperimentalsiteoftheLowNoiseUndergroundLaboratory( LSBB ): a locationofgeophysicalmeasurementsonaerialphoto; b pseudo3D locationofgeophysicalmeasurementsdiscussedinthisreport HydrogeolJ

PAGE 7

dynamics.Inthisreport,thetemporalvariabilityofonlyone MRSsounding,MRSS2,ispresentedanddiscussed.This soundingwaschosenbecauseitislocatedabovethemoderate resistivityzonedetectedwithERT. TheacquisitionsystemusedisaNumisPlusbyIRISinstruments.Themeasurementswerecollectedinsummer(July 2011)andinwinter(January2012).Tointegratealargearea abovewaterpointD,awideMRSarray(80×80m)was chosenforthesesurveys.Itisimportanttomentionthatfor bothMRSsurveys,electromagneticnoisewaslowcompared tosignalamplitude(ratiosignaltonoise>1.5),ensuringinterpretabilityandcomparabilitybetweenmeasurements(e.g. Legchenkoetal. 2002 ). ThedetailsofMRSresultsfromthissitewerediscussed andpresentedbyMazzillietal.( 2012 )andChalikakisetal. ( 2014 ).Theseresultsindicatedthepresenceofasignificant amountofwaterintheUZkarsttoadepthof90m(MRS sometimesindicatedawatercontentgreaterthan10%).Eight MRSwereconductedattheexperimentalsitetostudythe spatialvariabilityofMRSsignals.Allsoundingsexhibitsimilarforms;however,significantlateralvariationinwatercontentwasobservedbetweensoundings(Mazzillietal. 2012 ), revealingthatthekarstUZisalsoaheterogeneousenvironmentintermsofwatercontent. ERT TheERTtechniquehasbeenwidelyusedinkarstareas becauseitisrobustandreliable(e.g.Cardarellietal. 2006;Robertetal. 2012 ).Thesensitivityofelectrical resistivitytomoisturevariationsandtherapidityofERT measurements(approximately1hpersection)ledtothe selectionofthisgeophysicaltechniquetoimagerapid resistivityvariationduringheavyrainfall.Duringthe 30-daycampaign,ERTtime-lapseacquisitionranged fromevery3hduringtherainevent(17days)toone sectionadayaftertherainevent. TheacquisitionsystemusedisanABEMTerrameterSAS 4000(Dahlin 2001 )withfourchannelsand64electrodes. ImplantationoftheERTelectrodes,mainlyatlimestoneoutcrops,requiredholesthatweremechanicallydugintothe rock;saltwaterandmudwereaddedtoensureagoodquality groundcontact.TheERTsectionLSBB03acquiredwith Gradientarrayispresentedinthisreport(Fig. 4 ).Thesection isorientedeast – west.Thisdirectionisperpendiculartothe generalslope,issub-perpendiculartooneofthemainfault andlineamentdirections,andisthemostheterogeneousdirectionintermsofapparentresis tivityspatialdistribution (Carrièreetal. 2013 ).TheGradientarraywaschosenforthis surveybecauseofitsrobustnessanditsrapidity(Dahlinand Zhou 2004 ). AportionofthefirstERTresultswerepresentedby Carrièreetal.( 2015)toevaluatetheeffectivenessand technicallimitsofERTtomonitorwaterinfiltrationviapreviouslyrecognizedkarstfeaturesundernaturalconditions. Apparent(directlymeasured)resistivity( )analysisisnot usuallyconsideredinERTsurveys;however,Carrièreetal. ( 2015 )demonstratethatwiththecurrenttechnology,inthis kindofcomplicatedmedia,existinginversionschemesarenot adequate.Itwashopedthatrawresultswithnoartifactsrelated toinversionschemescouldproviderelevantinformation.If oneanalyzesvariationinresistivityofinvertedsections,itis onlypossibletoobservegeneralevolutionofthenearsurface. Duetoitsintegrativecharacter,theinversionprocess smoothsanyfinevariationevenifonetriestoobserve onlyinvertedresistivityvariationbetweentwoconsecutivetimesteps.Inthiscontext,apparentresistivityvariations( )betweentwoconsecutivetimestepswere analyzed.Thesevariationswerenormalizedbythedelay ( T)betweenconsecutivemeasurements( nand n – 11) usingthefollowingequation. ¼ n 1n 1 100 Tð 1 ÞResultsandinterpretationThehydrodynamicsofflowpointsCandDasafunctionof recharge(rainandeffectiveinfiltration)ispresentedfirst, followedbytheresultsofgeophysicalmonitoringatboth seasonalandeventtimescales. Flowdynamicsversusrainandeffectiveinfiltration Twohydrologicalperiodscanbeobserved:adryperiodfrom 2004to2007andarainyperiodfrom2008to2013(Fig. 5 ; Barbel-Perineau 2013 ).Effectiveinfiltrationmodelingusing CASTANEA(Fig. 5 )confirmsthisalternationofwetanddry periods.Onenotesthateffectiveinfiltrationisquitelimited between2004and2007.Rigorousmodelingofeffectiveinfiltrationisessentialinsupportingsubsequentinterpretations becausethedifferencebetweenrainandeffectiveinfiltration canbequitelargeandcanleadtomisinterpretation. Duringthefirstdryperiod,thewaterdischargeatpointD generallydecreasesandthereisnoclearreactionduringrain events.Onthecontrary,duringthesecondrainyperiod,this waterdischargeincreasesandresponsestoraineventsare moreapparent.TheregularityofpointDisobviouswhen comparingvariationrangesbetweenpointsDandC. PointCdischargeishighlyreactivetorainfall;itshows typicalkarsticdynamicseventhoughitislocatedatadepth of256m(Fig. 5 ).NotethatthereactivityofflowpointDtoa raineventdiffersfromdryperiod(novariation)towetperiod (rapiddischargeincreasesforstrongrainyevents);however, HydrogeolJ

PAGE 8

theflowrateatpointCincreasesproportionallywitheffective infiltrationinbothdryandwetperiods.Withoutmorearguments,itisdifficulttoexplainthedifferencebetweenDandC. OnecanonlypointoutthatpointDislocatedwithinporous UrgonianlimestoneandCislocatedwithinlowerBarremian limestone(Fig. 2d ). Hydrogeophysicalmonitoring Seasonaldynamics MRSwasusedtodetecttheseasonalvariationinstorageinthe karstUZbetweensummer2011andwinter2012.Inprocessed MRSresults(Fig. 3d ),twolayersrevealunusualwatercontentsforkarstUZ.Thefirstintervalwithhighwatercontent (10%watercontentaccordingtoMRS)isatadepthofapproximately15m(abovelowpointD);theotherhighwater contentinterval(12%watercontentaccordingtoMRS)is deeperthan40m. Althoughtheseelevatedwatercontentsaresurprisingfora karsthydrosystemUZ,thesevaluesagreewiththehighporosityestimatedbyothergeophysicalmethodsusedatthe LSBB(Maufroy 2010 ;Bere š 2013 )andtotalmatrixporosity measuredinplugsintheregion(e.g.Masse 1969 ;Léonideet al. 2014 ;Fig. 2d ). SignificanttemporalvariationsinMRSwatercontentare observedatseveraldepthlevels(Fig. 3d ).Themeasuredvariationsareashighas3%watercontent,indicatingthatthese storagevariationscouldparticipateinseasonalwaterflow regulationinthekarstUZ. Itisdifficulttoconceivethatsuchalargevolumeofwater couldbestoredinfractureandconduitporosityofkarstUZ. Forthisreason,inthisgeologicalcontextwherelimestonecan beveryporous,themajorityofthewatercontentcanbeattributedtotheporousmatrix. ThehighwatercontentleveldetectedbyMRSnearthe depthof15mcorrespondstolocationofthecrossstratificationsandamoderateresistivityzonedetectedby GPRandERT(Fig. 3b,c ).Thisfeatureprobablycontainsa stockofwaterlocatedabovepointD,andsuppliesthiswater topointD.Itshydrogeologicalrolewillbediscussedinthe nextsection. Eventdynamics Thisuniquelarge-scaleERTsurface-basedexperiment wasconductedduringatypicalMediterraneanautumn rainevent(17days).Atotalof230mmofrainwere recordedand120ERTtime-lapsesectionsweremeasuredoverthesameprofile(LSBB03)duringandafter therainevent(atotalof30days). Apparentresistivityvalueshavebeenarithmeticallyaveragedforeachsection.Apparentresistivitydecreasedsharply duringtheraineventfrom1,750to1,050 .m(Fig. 6b ).These variationsdonotseemtoberelatedtotemperaturevariations becauseairtemperatureandwatertemperature(atpointD) remainedstableduringtheexperiment(Carrière 2014 );thus, theseelectricalresistivityvariationscanbereasonablyrelated tovariationinwatercontentinthesubsurface.Analysisofthis meanapparentresistivityindicatormadeitpossibletoselect the12criticaltimestepspresentedinFig. 6a :before,during, andaftertherainevent.Theseresultsarepresented(Fig. 6a )as hourlypercentagechangesin withabasicrepresentationof vegetationandsoilcoveraroundtheprofile.Previouslyrecognizedkarstfeatur es(Carrièreetal. 2013)arealso represented. Atthebeginningoftherainevent(Fig. 6a ,section1 2), decreasedmoderatelyandhomogeneouslyalongthesection.Thisresistivitydecreasecouldberelatedtomoisteningof nearsurfacehorizons;however,afterthefirstrainevent (Fig. 6a ,section2 3), stabilizedquickly.Duringthefollowingheavyrainepisode(Fig. 6a ,sections4 5to7 8), themoisteningprocessappearedtobequiteheterogeneous andsomezonesresembledwaterpathwaysorpreferential infiltrationzones;nevertheless,itwouldbeunwisetolink observed variationsatdepthwithdeepmoisteningprocesses.Theobservedvariationscanalsobedirectlyinfluencedby nearsurfacevariations.Immediatelyaftertherain(Fig. 6a , sections9 10and10 11), increasedinsomezones. Thisresultmayberelatedtodrainageprocesses.Thesezones correlatewellwithzonespreviouslyidentifiedaspreferential pathways.Thissecondobservationreinforcedthehypothesis ofpreferentialpathwaysplayingahydraulicrolethatcanbe tracedwithERTmonitoring;however,itisstillnotpossibleto specifypropertiessuchasthegeometryofthesepathways. Otherzoneswheresuchdrainageprocessesarenotidentifiablemayberelatedtozoneswheresoilisthickerandremains moistafterrainfall. Theassumedwaterpathwaysidentifiedonthebasisof apparentresistivitydonotseemtoberelatedtovegetation densityorsoilcovervariations(Fig. 6 );however,thesezones appearrelatedtofracturesorfaultzonespreviouslydetected byGPR(Carrièreetal. 2013 ).Notealsothatresistivityvariationsinfracturesaredifferentfromthosemeasuredinthe crushedzonelocatedinthewesternpartoftheprofile.A crushedzonemayprovidealargerwaterpathwaythanafracture.Itisimportanttoemphasizethatthemethodsusedinthis studydonotimagethepathwayswithcertainty.Fig.6a Hourlychangeinapparentresistivitybetweentwoconsecutive timesteps.Positionsoffractures previouslydetectedbyground penetratingradar( GPR )andbasicrepresentationofvegetationandsoil cover; b Evolutionofmeanapparentresistivityduringmonitoringversus rain.Each brownpoint representsoneelectricalresistivitytomography section(Carrièreetal. 2015 ). PsZ ispseudodepth HydrogeolJ

PAGE 9

HydrogeolJ

PAGE 10

DiscussionLocalscale:studyarea Thisintegratedhydrogeophysicalapproachattwodifferent timescaleshasimprovedthecurrentunderstandingknowledge ofthehydrogeologicalfunctioningofstudysite.Attheseasonaltimestep,MRSmadeitpossibletoidentifywaterstoragevariationaboveandbelowflowpointD.Thesevariations arerelatedtoslowwaterdynamicswithinmatrixporosity. Thishypothesisisconsistentwiththeregularflowdynamics atpointD,whichwereobservedduringbothdryandrecharge periods(Fig. 5 ).Moreover,itisconsistentwiththelargetotal matrixporositywithinUrgonianlimestone,whichmayreach 20%(Fig. 2d ).Attheraineventtimescale,ERTmonitoring revealedheterogeneityininfiltration(Fig. 6 ).Somefractures orfaultedzonespreviouslydetectedbyGPR(Fig. 3 )were identifiedasprobablepreferentialwaterpathways(Fig. 7b,d ). Duringwetperiods,whenwaterfillstheseverticalstructures,hydraulichead( h )increasesaboveflowpointD, whichinducesapromptincreaseinflowatDasinOctober 2011(Fig. 7d )duringERTmonitoring(Fig. 6 ).Duringthis typeofrainevent,thisincreasedflowmaypushforwardolder, lessmobilewateraccordingtothewaterschemaproposedby Barbel-Perineau( 2013 )whostudiedhydrochemistrywithin theLSBB. Duringlongdryperiods,asforexample,between2004and 2007(Fig. 7a ),flowpointDdidnotrespondtorainpulses evenduringextremeevents(Fig. 7b ).Thus,thereisprobably nosignificanthydrauliccontinuitybetweennear-surfacewater-filledfracturesandthedeeperporousmatrixreservoir; therefore,thereisnotransmissionofapressurepulsetocause increasedflowatpointD.Thisabsenceofconnectionisprobablyduetopartialdryingoftheporousmatrixreservoirabove pointD.Theevolutionofthedryporousmatrixtowater-filled matrixmaytakeseveralyears.Thistimeframecanexplainthe multi-annualinertiatorechargethestockthatsuppliespoint D,aswasobservedbetween2007and2010(Fig. 5 ). Toconfirmthisinterpretation,three50mboreholeswere dugaroundflowpointDattheendof2014,atadistanceof approximately20m.Ineachborehole,thewaterlevelwas measuredatadepthofapproximately40m.Another hydrogeologicalstudyiscurrentlyinprogresstoexamine boreholedynamicsandwatercirculation. Regionalscale:FontainedeVauclusehydrosystem Howcanthisknowledgeaboutthelocalhydrosystematpoint Dhelpexplainkarsthydrodynamicsatalargerscalesuchas theentireFontainedeVauclusehydrosystem?Itisparticularly relevanttostudytherelationshipbetweenrainfallandwater dischargeduringtheperiodfrom2004to2012becauserechargewashighlyvariableduringthisperiod.Alongdry periodbetween2004and2007wasfollowedbyamorerainy periodbetween2008and2012.Theannualdynamicsofrainfall,effectiveinfiltration,andwaterdischargepresentedin Fig. 8 illustratethesedryandwetperiods. Fig.7a – d Syntheticfunctioning modelofthelocalhydrosystem thatsuppliesflow pointD .Dflow variationdependsonrain conditions HydrogeolJ

PAGE 11

Althoughtheseresultsareapplicabletoadiscussionofthe relationshipbetweenrainfallandoutputflowatLSBBflow points,therelationshipwithspringdischargeattheFontaine deVaucluseshouldbeapproachedwithcaution.However,the totalannualrainfallinSaintSaturnin-les-Apt(Fig. 2b )isrepresentativeenoughofinter-annualrainfallvariationintheregiontoallowthefollowingdiscussion. Theseinter-annualrechargevariationscausechangesin dischargeratesattheoutletofthekarstsystemasawhole (FontainedeVauclusespring)andatlocaloutletsofkarst sub-systemssuchaswaterpointsCandDintheLSBB. However,thesevariationsarehighlyvariablebetweenthe FontainedeVaucluseandwaterpointsCandD,andaresummarizedasfollows: – WaterpointCexhibitstypicalkarstdynamicswithlarge flowrange(afactorof10)dependingonthequantityof annualeffectiveinfiltration.Thisrelationshipwasclearly demonstratedin2007wheneffectiveinfiltrationwasata minimumandwaterflowatCwasverylow. – ThewaterpointDhasdifferentdynamicsbecauseits waterdischargeisquiteregular;therangeofitsannual dischargevariationisonlyafactorof2.Theflowrateat pointDdecreasedcontinuouslybetween2004and2007, afterwhichitsflowincreasedregularlyuntil2010. However,effectiveinfiltrationdecreasedsignificantlybetween2008and2010;thus,thereisakindofdelayed dynamic.Theresultshighlighttheimportanceofporous matrixonwaterflow,eveninakarstlimestoneaquifer system. – TheannualwaterdischargeoftheFontainedeVaucluse exhibitsdynamicssimilartothoseatpointD(Fig. 8 ), althoughitsflowvariationrangeisslightlylargerthan pointD,afactorof3.5.SimilartopointD,theflowrate attheFontainedeVauclusealsoincreasedbetween2007 and2010;however,effectiveinfiltrationdecreasedsignificantlyfrom2008to2010.Thisobservationsuggeststhat waterflowregulationmechanismsobservedatpointD aresite-specific.Similarmechanismsofwaterflowregulationthroughtheporousmatrixmayplayanimportant roleintheentireFontainedeVauclusehydrosystem (Fig. 8 ).ConsideringthelargevolumeofUrgonianporousformationsinthehydrosystem(Fig. 2b ),thisassumptionisaplausibleexplanationofpartofthemultiannualdynamicsoftheFontainedeVauclusespring. Evenso,atadailytimestep,theFontainedeVaucluse springcanbehighlyreactive,similartoflowpointC;however,eveniffloodsattheFontainedeVauclusecanbeimpressive,theyrepresentonlyalimitedpartoftheannualwater discharge.TheannualflowdynamicsoftheFontainede Vaucluseseemtobepredominantlyinfluencedbyslowwater flowwithinaporousmatrix,asisthecaseatpointD.ConclusionsThisstudywasconductedatalocalscalearoundtheLSBB undergroundlaboratorytoimprovethecurrentunderstanding ofthelocalkarsthydrosystem.Theresultspresentedinthis reportdemonstratethataconsiderablevolumeofwatercanbe storedwithinmatrixrockinthekarstUZ.Masse( 1969 )measuredexceptionalmatrixporosityforlimestone(upto20%) ontheUrgonianplatformaroundFontainedeVaucluse Fig.8 Comparisonofannual waterdischargeforFontainede Vaucluse( FdV )andflowpoints D and C withannualprecipitation andeffectiveinfiltrationmodeled fortheperiodof2004to2012by CASTANEA HydrogeolJ

PAGE 12

catchmentarea;however,thehydrodynamicroleofthismatrixporositywasnotyetknown. MRSsurveysconfirmedhighfreewatercontent(5 – 10%) withinthekarstUZ.Thishighwatercontentindicatesalarge volumeofwaterthatcannotbestoredwithinfracturesorkarst conduitsintheUZ.Thiswaterisstoredwithinlimestone layersthatwerealsoidentifiedbypreviousERTandGPR surveys;moreover,MRSsurveysidentifiedseasonalvariationsinstoredwater(around3%),whichindicatesthatthis waterreserveisactive.TheERTmonitoringattheeventscale madeitpossibletodemonstratethatdespitethepresenceof porouslimestone,thestudysitehascharacteristicsofa fractured/karstifiedareainwhichrechargeprocessesarehighlyheterogeneous.Rapidwatercirculationcanoccurthrough preferentialwaterpathwaysandcauseflowpeaksatpointD. Withoutadditionalmeasurements,thegeophysicalsurvey cannotbeusedtoextendthehydrodynamicpropertiesobservedattheLSBBsitetotheFontainedeVaucluse hydrosystem,eitherwhollyorinpart.Thatiswhyitisnot reasonabletotrytoquantifytheconsequencesofthepresence ofporouslimestoneontheFontainedeVauclusespringflows; however,consideringthatUrgonianlimestonecoversmore thanhalfthesurfaceareaoftheFontainedeVauclusebasin (Fig. 2b )andthatMasse( 1969 )measuredhighmatrixporosityontheentireUrgonianplatform,therearenecessarilyrepercussionsinFontainedeVaucluseoutletflowthatmayexplainthemulti-annualdynamicsofwaterflow(Fig. 8 ). IfUrgonianlimestonesplayanimportantroleinFontaine deVauclusehydrodynamics,similargeologicalformations canimpactthehydrodynamicsofotherkarsthydrosystems incomparableways,includingareasfarfromthe MediterraneanSeawherethesedimentaryconditionsarealmostidentical — forexample,Cenozoiccarbonaterocksinthe GulfofMexicoandtheCaribbeanarehighlyporous(Halley andSchmoker 1983 ).Therefore,onthebasisoftheseresults presented,itisessentialtoconsidertheroleoftheporous matrixinwaterflowregulationwithinakarstUZ. Hydrodynamicmodellingshouldbeadjustedaccordinglyto properlyassessthegroundwaterresourcepotentialandimprovesustainablemanagementandexploitationofkarst hydrosystems.Acknowledgements Theauthorswouldliketoexpresstheirgratitude toCIRAME,toOREH+andtoalltheLSBBteamfortheirtechnicaland logistichelp.ThisstudywasfundedbyaFrenchministryofeducation andresearchPhDgrant.Thisworkwasperformedwithintheframework oftheFDV/LSBBobservationsite,partoftheKARSTobservatorynetwork( www.sokarst.org )initiativeofINSU/CNRS,whichseeksto supportknowledgesharingandpromotecross-disciplinaryresearchon karstsystems.Wealsothanktheeditorialboardof Hydrogeology Journal ,S.White,M.Saribudakandananonymousreviewerforhelping usimprovethisreport.ReferencesAquilinaL,LadoucheB,DörfligerN(2006)Waterstorageandtransferin theepikarstofkarsticsystemsduringhighflowperiods.JHydrol 327(3 – 4):472 – 485 Bailly-ComteV,MartinJB,JourdeH,ScreatonEJ,PistreS,LangstonA (2010)Waterexchangeandpressuretransferbetweenconduitsand matrixandtheirinfluenceonhydrodynamicsoftwokarstaquifers withsinkingstreams.JHydrol386(1 – 4):55 – 66.doi: 10.1016/j. jhydrol.2010.03.005 BakalowiczM(1995)Lazoned ’ infiltrationdesaquifèreskarstiques: méthodesd ’ étude,structureetfonctionnement[Infiltrationzones inkarstaquifers:methodsofstudy,structureandfunctioning]. Hydrogéologie4:3 – 21 BakalowiczM(2005)Karstgroundwater:achallengefornewresources. HydrogeolJ13:148 – 160 BakalowiczM,DörfligerN(2005)Ressourceseneaudukarst:unenjeu pourlebassinméditerranéen[Karstwaterresources:anissueforthe Mediterraneanbasin].Géosciences-l ’ eausouterrainesBRGM2, BRGM,Orléan,France,pp26 – 31 Barbel-PerineauA(2013)Caractérisationdufonctionnementdelazone nonsaturéedesaquifèreskarstiques:approchedirecteparétudes hydrodynamiquesethydrochimiquessurlebassinderecherche, d ’ expérimentationetd ’ observationdefontainedeVaucluseLaboratoireSouterrainàBasBruitdeRustrel-Paysd ’ Apt [Characterizationofbehavioroftheunsaturatedzoneofkarstaquifers:directapproachthroughhydrodynamicandhydrochemical studiesontheresearch,experimentalandobservationalbasinof theFontainedeVaucluse-UndergroundLowNoiseLaboratoryof Rustrel-Paysd ’ Apt].PhDThesis,Univ.d ’ AvignonetdesPaysde Vaucluse,France,226pp BatiotC,EmblanchC,BlavouxB(2003)Totalorganiccarbon(TOC) andmagnesium(Mg2+):twocomplementarytracersofresidence timeinkarsticsystems.CRGeosci335(2):205 – 214 Bere š J(2013)Caractérisationdel ’ anisotropied ’ uneplate-forme carbonatéekarstifiée:approcheméthodologiqueconjointesismique etélectrique[Characterizationofanisotropyofakarstifiedcarbonate platform:jointseismicandelectricmethodologicalapproach].PhD Thesis,Univ.ParisSud,Orsay,France,190pp BerkowitzB(2002)Characterizingflowandtransportinfracturedgeologicalmedia:areview.AdvWaterResour25(8 – 12):861 – 884 BlancMM,MasseJP,DePeyronnetP,RouxM,WeydertP,RouireJ (1973)Cartegéologiqueetnoticeexplicative(1/50000),feuille 942[Geologicmapandexplanatorynotes(1/50,000)Sheet942], Sault-de-Vaucluse,France.BRGM,Orléan,France BlondelT(2008)Traçagespatialettemporeldeseauxsouterrainesdans leshydrosystèmeskarstiquesparlesmatièresorganiquesdissoutes: expérimentationetapplicationsurlessitesduLaboratoireSouterrain àBasBruit(LSBB)deRustrel-Paysd ’ AptetdeFontainede Vaucluse[Spatialandtemporaltracingofgroundwaterinkarst hydrosystemsusingdissolvedorganicmatter:experimentsinand applicationtositeswithintheUndergroundLowNoiseLaboratory (LSBB)ofRustrel-PaysdAptandtheFountainedeVaucluse].PhD Thesis,Univ.d ’ AvignonetdesPaysdeVaucluse,France,192pp CardarelliE,DiFilippoG,TuccinardiE(2006)ElectricalresistivitytomographytodetectburiedcavitiesinRome:acasestudy.Near SurfaceGeophys4(6):387 – 392 CarrièreSD(2014)Etudehydrogéophysiquedelastructureetdu fonctionnementdelazonenonsaturéedukarst[Hydrogeophysical studyofthestructureandfunctioningofthekarstunsaturatedzone]. PhDThesis,Univ.d ’ AvignonetdesPaysdeVaucluse,France,217 pp CarrièreSD,ChalikakisK,SénéchalG,DanquignyC,EmblanchC (2013)Combiningelectricalresistivitytomographyandgroundpenet ratingradartostudygeologicalstructuringofkarstunsaturated HydrogeolJ

PAGE 13

zone.JApplGeophys94(0):31 – 41.doi: 10.1016/j.jappgeo.2013.03. 014 CarrièreSD,ChalikakisK,DanquignyC,ClémentR,EmblanchC (2015)Feasibilityandlimitsofelectricalresistivitytomographyto monitorwaterinfiltrationthroughkarstmediumduringarainy event.In:AndreoB,CarrascoF,DuránJJ,JiménezP,LaMoreaux JW(eds)Hydrogeologicalandenvironmentalinvestigationsinkarst systems.Springer,Heidelberg,pp45 – 55 Celle-JeantonH,EmblanchC,MudryJ,CharmoilleA(2003) Contributionoftimetracers(M g2+,TOC,deltaC-13(TDIC), NO3-)tounderstandtheroleoftheunsaturatedzone:acase study — karstaquifersintheDoubsValley,easternFrance. GeophysResLett30(6):1322 ChalikakisK,PlagnesV,GuerinR,ValoisR,BoschFP(2011) Contributionofgeophysicalmethodstokarst-systemexploration: anoverview.HydrogeolJ19(6):1169 – 1180 ChalikakisK,CarrièreSD,MazzilliN,DanquignyC,LegchenkoA, EmblanchC(2014)Waterinkarsthydrosystemsunsaturatedzone: MRSevidenceswithinanintegratedhydrogeophysicalapproach. NearSurfaceGeosciences2014,20thEuropeanMeetingof EnvironmentalandEngineeringGeophysics,AthensGreece,14 – 18September,ExtendedabstractTuPA110 Cognard-PlancqAL,GevaudanC,EmblanchC(2006)Historicalmonthlyrainfall-runoffdatabaseonFontainedeVauclusekarstsystem: reviewandlessons.In:DurànJJ,AndreoB,CarrascoF(eds) Karst,cambioclimaticoyaguassubmediterraneas[Karst,climate changeandsubmediterraneanwaters].PublicacionesdelInstituto GeológicoyMinerodeEspaña,Madrid,pp465 – 475 DahlinT(2001)ThedevelopmentofDCresistivityimagingtechniques. ComputGeosci27(9):1019 – 1029 DahlinT,ZhouB(2004)Anumericalcomparisonof2Dresistivityimagingwith10electrodearrays.GeophysProspect52(5):379 – 398 DaviH,DufrêneE,GranierA,LeDantecV,BarbarouxC,FrançoisC, BrédaN(2005)Modelingcarbonandwatercyclesinabeechforest, partII:validationofthemainprocessesfromorgantostandscale. EcolModel185(2 – 4):387 – 405.doi: 10.1016/j.ecolmodel.2005.01. 003 DaviH,DufrêneE,FrancoisC,LeMaireG,LoustauD,BoscA,Rambal S,GranierA,MoorsE(2006)Sensitivityofwaterandcarbonfluxes toclimatechangesfrom1960to2100inEuropeanforestecosystems.AgricForMeteorol141(1):35 – 56 DaviH,BaretF,HucR,DufrêneE(2008)EffectofthinningonLAI varianceinheterogeneousforests.ForEcolManag256(5):890 – 899 DevilleS(2013)Caractérisationdelazonenonsaturéedeskarstsparla gravimétrieetl ’ hydrogéologie[Gravimetricandhydrogeologic characterizationofthekarstunsaturatedzone].PhDThesis,Univ. deMontpellierII,Montpellier,France,241pp DufrêneE,DaviH,FrançoisC,MaireGI,DantecVL,GranierA(2005) Modellingcarbonandwatercyclesinabeechforest,partI:model descriptionanduncertaintyanalysisonmodelledNEE.EcolModel 185(2 – 4):407 – 436.doi: 10.1016/j.ecolmodel.2005.01.004 EmblanchC,ZuppiGM,MudryJ,BlavouxB,BatiotC(2003)Carbon13 ofTDICtoquantifytheroleoftheunsaturatedzone:theexampleof theVauclusekarstsystems(southeasternFrance).JHydrol279(1 – 4):262 – 274.doi: 10.1016/s0022-1694(03)00180-x FleuryP,PlagnesV,BakalowiczM(2007)Modellingofthefunctioning ofkarstaquiferswithareservoirmodel:applicationtoFontainede Vaucluse(SouthofFrance).JHydrol345(1 – 2):38 – 49.doi: 10.1016/ j.jhydrol.2007.07.014 FordDC,WilliamsPW(2007)Karsthydrogeologyandgeomorphology. Wiley,Chichester,UK,562pp GarryB(2007)Etudedesprocessusd ’ écoulementsdelazonenonsaturée pourlamodelisationdesacquifèreskarstiques:expérimentation hydrodynamiqueethydrochimiquesurlessitesduLaboratoire SouterrainàBasBruit(LSBB)deRustreletdeFontainede Vaucluse[Studyofflowprocessesintheunsaturatedzonefor modelingkarstaquifers:hydrodynamicandhydrochemicalexperimentsontheUndergroundLow-NoiseLaboratory(LLBB)in RustrelandtheFontainedeVaucluse].PhDThesis,Univ. d ’ A vignonetdesPaysdeVaucluse,France,234pp GoldscheiderN,DrewD(2007)Methodsinkarsthydrogeology.Taylor andFrancis,London,264p GondweBRN,LererS,StisenS,MarinL,Rebolledo-VieyraM, Merediz-AlonsoG,Bauer-GottweinP(2010)Hydrogeologyofthe south-easternYucatanPeninsula:newinsightsfromwaterlevel measurements,geochemistry,geophysicsandremotesensing.J Hydrol389(1 – 2):1 – 17.doi: 10.1016/j.jhydrol.2010.04.044 GuglielmiY(2010)Carbonatereservoirs-TheRustrel-Fontainede VaucluseLSBB:auniquefacilityfordeepcarbonatereservoir. Proceedingsofi-Dust2010,Apt,France,May2014. http://www. lsbb.eu/index.php/en/ct-menuitem-178/ct-menu-item-178 . AccessedMay2016 GunnJ(2004)Encyclopediaofcavesandkarstscience.Fitzroy, Dearborn,1940p HalleyRB,SchmokerJW(1983)High-porosityCenozoiccarbonate rocksofsouthFlorida:progressivelossofporositywithdepth. AAPGBull67(2):191 – 200 HartmannA,LangeJ,VivóAguadoÀ,MizyedN,SmiatekG, KunstmannH(2012)Amulti-modelapproachforimprovedsimulationsoffuturewateravailabilityatalargeEasternMediterranean karstspring.JHydrol468 – 469:130 – 138 JacobT,BayerR,CheryJ,JourdeH,LeMoigneN,BoyJP,HindererJ, LuckB,BrunetB(2008)Absolutegravitymonitoringofwater storagevariationinakarstaquiferontheLarzacplateau(southern France).JHydrol359(1 – 2):105 – 117.doi: 10.1016/j.jhydrol.2008. 06.020 JacobT,CheryJ,BayerR,LeMoigneN,BoyJP,VernantP,BoudinF (2009)Time-lapsesurfacetodepthgravitymeasurementsonakarst systemrevealthedominantroleoftheepikarstasawaterstorage entity.GeophysJInt177(2):347 – 360.doi: 10.1111/j.1365-246X. 2009.04118.x JacobT,BayerR,CheryJ,LeMoigneN(2010)Time-lapsemicrogravity surveysrevealwaterstorageheterogeneityofakarstaquifer.J GeophysRes115(B6):B06402.doi: 10.1029/2009jb006616 KaufmannO,DeceusterJ(2014)Detectionandmappingofghost-rock featuresintheTournaisisareathroughgeophysicalmethods:an overview.GeolBelg17(1):17 – 26 KiralyL(1998)Modellingkarstaquifersbythecombineddiscretechannelandcontinuumapproach.BullHydrogéol16:77 – 98 LabatD,AbabouR,ManginA(2000a)Rainfall-runoffrelations forkarsticsprings,partI:convolutionandspectralanalyses. JHydrol238(3 – 4):123– 148.doi: 10.1016/s0022-1694(00) 00321-8 LabatD,AbabouR,ManginA(2000b)Rainfall-runoffrelationsfor karsticsprings,partII:continuouswaveletanddiscreteorthogonal multiresolution.JHydrol238(3 – 4):149 – 178.doi: 10.1016/s00221694(00)00322-x LarocqueM,BantonO,AckererP,RazackM(1999)Determiningkarst transmissivitieswithinversemodelingandanequivalentporous media.GroundWater37(6):897 – 903.doi: 10.1111/j.1745-6584. 1999.tb01189.x LeenhardtF(1883)EtudegéologiquedelarégionduMontVentoux [GeologicstudyoftheMontVentouxregion].Masson,Paris,273pp LegchenkoA,BaltassatJM,BeauceA,BernardJ(2002)Nuclearmagneticresonanceasageophysicaltoolforhydrogeologists.JAppl Geophys50:21 – 46 LéonideP,FournierF,ReijmerJJG,VonhofH,BorgomanoJ,DijkJ, RosenthalM,VanGoethemM,CochardJ,MeulenaarsK(2014) Diageneticpatternsandporespacedistributionalongaplatformto outer -shelftransect(Urgonianlimestone,Barremian – Aptian,SE France).SedimentGeol306:1 – 23 HydrogeolJ

PAGE 14

ManginA(1975)Contributionàl ’ étudehydrodynamiquedesaquifères karstiques[Contributiontothehydrodynamicstudyofkarstaquifers].PhDThesis,Univ.deDijon,Dijon,France,298pp MarsaudB(1996)Structureetfonctionnementdelazonenoyéedes karstsàpartirdesrésultatsexpérimentaux.[Structureandfunctioningofthekarstsaturatedzonebasedonexperimentalresults].PhD Thesis,Univ.ParisXI,Orsay,France,305pp MartinN(2012)Ajustementsfonctionnelsduchênevert(Quercusilex L.)àlasécheresseàdifférenteséchellestemporelles:incidencessur lamodélisationdesprocessus[Functionaladjustmentsoftheevergreenoak(QuercusilexL.)todroughtatdifferenttimescales:effectsonthemodellingoftheprocesses].PhDThesis,Univ.de MontpellierII,Montpellier,France,239pp MasseJP(1969)Contributional ’ étudedel ’ Urgonien(BarrémienBédoulien)desMontsdevaucluseetduLuberon.[Contributionto thestudyoftheUrgonian(Barremian-Bedoulian)oftheVaucluse andtheLuberonmountains].BureaudeRecherchesGéologiqueset Minières,Orléan,France,59pp MasseJP(1976)LescalcairesurgoniensdeProvence,ValanginienAptieninférieur,tome1:stratigraphie-paléontologie;tome2:Les paléoenvironnementsetleurévolution[UrgonianLimestonesof Provence,Valanginian – LowerAptian,vol1:statigraphy – paleontology,vol2:paleoenvironmentsandtheirevolution].PhDThesis, Univ.d ’ Aix-Marseille,Marseille,France,445pp MasseJP,Fenerci-MasseM(2011)Drowningdiscontinuitiesandstratigraphiccorrelationinplatformcarbonates:theLateBarremian – EarlyAptianrecordofsoutheastFrance.CretacRes32(6):659 – 684 MaufroyE(2010)Caractérisationetmodélisationnumériquedel ’ effetde sitetopographique3D:applicationàlaGrandeMontagnede Rustrel,Vaucluse[Characterizationandnumericalmodelingof3D topographicsiteeffects:applicationtotheGrandeMontagneof Rustrel,Vaucluse].PhDThesis,Univ.deNiceSophia-Antipolis, Nice,France,236pp MazzilliN,CarrièreSD,ChalikakisK,LegchenkoA,JourdeH(2012) MRSapplicabilityforthecharacterisationoftheunsaturatedzoneof karsthydrosystems:firstresultsfromtheLSBBsite(Rustrel, France).Proceedingsofi-Dust2012,Apt,France. http://www. lsbb.eu/index.php/en/ct-menu-item-178/ct-menu-item-178 . AccessedMay2016 MazzilliN,JourdeH,JacobT,GuinotV,LeMoigneN,BoucherM, ChalikakisK,GuyardH,LegchenkoA(2013)Ontheinclusionof ground-basedgravitymeasurementstothecalibrationprocessofa globalrainfall-dischargereservoirmodel:caseoftheDurzonkarst system(Larzac,southernFrance).EnvironEarthSci68:1631 – 1646. doi: 10.1007/s12665-012-1856-z MoussuF,OudinL,PlagnesV,ManginA,BendjoudiH(2011)Amultiobjectivecalibrationframeworkforrainfall – dischargemodels appliedtokarstsystems.JHydrol400(3 – 4):364– 376.doi: 10. 1016/j.jhydrol.2011.01.047 MudarraM,AndreoB(2010)Hydrogeologicalfunctioningofakarst aquiferdeducedfromhydrochemicalcomponentsandnaturalorganictracerspresentinspringwaters:thecaseofYedraspring (southernSpain).ActaCarsol39(2):261 – 270 MudarraM,AndreoB,MudryJ(2012)Monitoringgroundwaterinthe dischargeareaofacomplexkarstaquifertoassesstheroleofthe saturatedandunsaturatedzones.EnvironEarthSci65(8):2321 – 2336.doi: 10.1007/s12665-011-1032-x OllivierC,CarrièreSD,ChalikakisK,DanquignyC,MassonnatG (2013)Improvinga3Dgeologicalmodelusingmultiplegeophysicalmethods.33rdGOCAD-MEETING,Nancy,France,17 – 20 September2013 PerineauA,DanquignyC,EmblanchC,PozzodiBorgoE,BoyerD, PoupeneyJ(2011)Hydrodynamicorganisationoftheflowsinthe unsaturedzoneoftheFontainedeVauclusekarstsystem:firstresults.Proceedingsofi-Dust2010.doi: 10.1051/idust/201101001 PuigJM(1987)LesystèmekarstiquedelaFontainedeVaucluse[The karstsystemoftheFontainedeVaucluse].PhDThesis,Univ. d ’ AvignonetdesPaysdeVaucluse,France,207pp RimmerA,SalingarY(2006)Modellingprecipitation-streamflowprocessesinkarstbasin:thecaseoftheJordanRiversources.IsraelJ Hydrol331(3 – 4):524 – 542 RobertT,CaterinaD,DeceusterJ,KaufmannO,NguyenF(2012)Asalt tracertestmonitoredwithsurfaceERTtodetectpreferentialflow andtransportpathsinfractured/karstifiedlimestones.Geophysics 77(2):B55 – B67.doi: 10.1190/geo2011-0313.1 ScanlonBR,MaceRE,BarrettME,SmithB(2003)Canwesimulate r egionalgroundwaterflowinakarstsystemusingequivalentporous mediamodels?Casestudy,BartonSpringsEdwardsaquifer,USA.J Hydrol276(1 – 4):137 – 158.doi: 10.1016/s0022-1694(03)00064-7 VouillamozJM,LegchenkoA,AlbouyY,BakalowiczM,BaltassatJM, Al-FaresW(2003)Localizationofsaturatedkarstaquiferwithmagneticresonancesoundingandresistivityimagery.GroundWater 41(5):578 – 586.doi: 10.1111/j.1745-6584.2003.tb02396.x WhiteWB(2007)Abriefhistoryofkarsthydrogeology:contributionsof theNSS.JCaveKarstStud(69):13 – 26 WorthingtonSRH(2009)Diagnostichydrogeologiccharacteristicsofa karstaquifer(Kentucky,USA).HydrogeolJ17(7):1665 – 1678.doi: 10.1007/s10040-009-0489-0 WorthingtonSRH,FordDC(2009)Self-organizedpermeabilityincarbonateaquifers.GroundWater47(3):326 – 336.doi: 10.1111/j.17456584.2009.00551.x ZhuJF,CurrensJC,DingerJS(2011)Challengesofusingelectrical resistivitymethodtolocatekarstconduits:afieldcaseintheInner BluegrassRegion,Kentucky.JApplGeophys75(3):523 – 530.doi: 10.1016/j.jappgeo.2011.08.009 HydrogeolJ


printinsert_linkshareget_appmore_horiz

Download Options

close


  • info Info

    There are only PDFs associated with this resource.

  • link PDF(s)



Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.